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Summary

Armor-piercing, depleted-uranium (DU) munitions were used by the U.S. Armed Forces on the battlefield
for the first time during the 1991 Gulf War Operation Desert Storm (ODS).® Although the U.S. Army
has conducted periodic impact tests on armored targets, the tests involved only limited sampling to
characterize the aerosols that form when DU penetrators impact and perforate targets. As a consequence,
the available data were insufficient for performing human health risk assessments. To remedy this, the
U.S. Department of Defense (DoD) committed to obtaining more complete data about aerosols generated
by the impact and perforation of armored vehicles by DU munitions to support a revised and updated
personnel exposure assessment and human health risk characterization. The program arising from this
commitment is the Capstone DU Aerosol Characterization and Risk Assessment Program consisting of
two separate components. The first is the Capstone DU Aerosol Study, in which DU aerosols were
generated through perforation of armored target vehicles, and the chemical and physical properties of
aerosols generated were characterized. The study methods and results are presented in this report. The
second component of the program is the Human Health Risk Assessment, documented in the Human
Health Risk Assessment of Capstone Depleted Uranium Aerosols (Guilmette et al. 2004).

S.1 Purpose

Under a program jointly sponsored by the Office of the Special Assistant for Gulf War IlInesses, Medical
Readiness and Military Deployment (OSAGWI)® and the U.S. Army, the Army Heavy Metals Office
provided oversight to the Capstone DU Aerosol Study, which was designed to quantify and characterize
DU aerosols inside, on, and near Abrams tanks and Bradley Fighting Vehicles (also referred to as Bradley
vehicles) struck by large-caliber DU (LC-DU) penetrators. This report, which documents the Capstone
study, is the sourcebook of data from which reasonable and appropriate data could be selected for
assessing exposure and characterizing human health risks to personnel who were exposed to aerosols
during the Gulf War/ODS or potentially could be exposed to aerosols in future military activities. These
data are expected to fill many gaps in available aerosol knowledge, thereby helping risk assessors to
better estimate the health risks from DU aerosols to affected personnel.

The aerosol data derived from this study provides the basis for modeling input parameters by
summarizing the bounds and characteristics of typical aerosols generated by perforating armored vehicles
with LC-DU penetrators. The test results will be used to update the human health risk characterizations
for OSAGWI Gulf War/ODS exposure scenarios, and to determine if changes in personnel protective
measures are warranted to reduce risks to DoD personnel in the future.

S.2 Investigation Team

An independent subject matter expert from Pacific Northwest National Laboratory (PNNL) directed the
Capstone DU Aerosol Study. The project staff, known as the Capstone test team, consisted of Army
health physicists and engineers from the Aberdeen Test Center (ATC), Aberdeen Proving Ground (APG),
Maryland; the U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM),

(a) ODS is used to differentiate the 1991 Gulf War from the 2003 Operation Iragi Freedom.
(b) The OSAGWI organization currently is referred to as the Deployment Health Support Directorate.



Aberdeen Proving Ground-Edgewood Area, Maryland; and the U.S. Army Tank-Automotive and
Armaments Command, Armament Research, Development and Engineering Center (TACOM-ARDEC),
Picatinny Arsenal, New Jersey. Collaborators from outside the Army included health physicists, aerosol
specialists, and instrument engineers from Lovelace Respiratory Research Institute (LRRI), Los Alamos
National Laboratory (LANL), and PNNL.

An Army steering committee (the Depleted Uranium Research—Integrated Process Team [DUR-IPT])
guided the overall test objectives and test implementation. The U.S. Army Medical Command
(MEDCOM) developed a set of Data Quality Objectives (DQOs) for the specific information to be
derived from this testing program. An independent nine-member peer review panel provided technical
feedback on the project plans and the draft report.

S.3 Study Overview

The Capstone DU Aerosol Study involved the development of scenarios to determine an upper bound on
aerosol concentrations and to quantify other aerosol characteristics from actual firing incidents and from
possible future engagements. The field tests, which incorporated two target vehicles and various firing
angles, were divided into phases so the investigators could separately focus on circumstances 1) that were
similar to Gulf War/ODS actions (retrospective exposure scenarios) and 2) that simulated possible future
actions (prospective exposure scenarios). The study focused on the quantities and characteristics of
aerosols and residues 1) generated inside the vehicles at the time of impact, 2) collected inside the
vehicles during and after settling had occurred, and 3) collected outside vehicles struck by DU
penetrators. The series of field tests was designed to collect aerosol data for input to radiological and
chemical health risk assessments, thereby enabling investigators to estimate a range and an upper bound
of aerosol concentrations, and their associated characteristics, that would be generated from shot lines
similar to those that occurred during the Gulf War/ODS and those that might occur during future
conflicts.

Four field-test phases were conducted at the ATC DU Containment Facility (“Superbox™), which is a
25.6-m (84-ft) diameter, half-sphere vessel/dome with auxiliary components and facilities that protect the
environment by containing contaminants generated from targets impacted by DU (or non-DU) munitions
(see Figure S.1). Phase-I tests fired at a ballistic hull and turret (BHT) version of an Abrams tank
(without DU armor) and recreated shot lines from the Gulf War/ODS as well as simulating possible future
firing incidents. Phase-11 tests fired at a Bradley vehicle, primarily recreating experiences from the Gulf
War/ODS. An Abrams tank BHT with DU armor was used as the target in the Phase-111 tests, while
Phase-1V testing was performed in conjunction with a congressionally mandated testing program that
used an operational Abrams tank with DU armor as the target. Phases 1l and IV simulated possible
future firing incidents. Each phase featured specific vehicle configurations and scenarios that defined the
instrument setup in and around the vehicles and the target impact points needed to achieve specific entry
and exit angles for observation and collection of data.

The munition used for all shot tests in Phases I, I, and I11 was a LC munition with a DU penetrator. The
Phase-1V test used a variety of munitions, only one of which was a DU munition, which was specifically
relevant to the Capstone study. The projectiles were fired from a fixed-gun position. In addition to the
selection of shot lines, priorities in testing included preserving instrumentation and maximizing
generation of aerosol to establish upper and lower bounds of aerosol production from the stated scenarios.



To preserve unique and expensive instrumentation and to ensure data acquisition, instrumentation was
strategically located to limit damage from expected fragmentation and shielding was provided as further
protection.

For each field test phase, the relevant target vehicle was prepared, instruments were set up, shots were
fired, air samples were recovered, targets were repaired, and the Superbox was cleaned. The field testing
parameters were adjusted with field experience to improve their effectiveness in representing actual
combat field experience. Air sampling, contamination surveys, personal monitoring of recovery entry
personnel, pressure and temperature measurements, impact observations, recovery observations, and
observation of aerosol resuspension with recovery activities were all documented.

Figure S.1. Superbox: ATC DU Containment Facility

The aerosol collection system used during the testing program was designed to function in an
environment in which high temperature and pressure transients occur, to survive damage from fragments,
and to provide sample collection redundancy, confidence in timing, adequate flow rates, and sufficient
sample collection for chemical analyses of selected samples. Aerosols were collected inside the vehicle
as a function of time, position, and shot line; outside the vehicle as aerosols and as deposited material; and
in sufficient quantity to allow for characterization in terms of uranium concentration, particle size, and
other chemical and physical parameters.



Stainless steel filter cassettes, cascade impactors (CIs), a five-stage cyclone, and a moving filter sampler
were used to collect aerosols samples inside the vehicle. Sampling arrays that paired filter cassettes with
Cls for eight separate sampling times provided an effective means of containing and operating the
samplers. An engineering software program remotely controlled the operation of these air samplers.
Limited sampling was also conducted outside the vehicle using large-volume Cls to collect aerosols
created by armor perforation and deposition trays to collect particulate matter deposited by gravitational
sedimentation. Wipes of the interior and exterior surfaces were taken to determine the quantity of
deposited material.

All samples were evaluated for uranium by measuring their radioactivity. Samples obtained primarily
from the cyclone sampler, but also from most other sampler types were selected for additional chemical
and physical analyses. These analyses measured uranium and non-DU element concentrations, and
evaluated particle morphology, DU oxide phases, particle size distribution, and solubility in lung fluid —
characteristics that provide the basis for input to computer models to assess chemical and radiological
doses from inhalation and ingestion of DU.

S.4 Study Results

Twelve LC-DU munitions were fired at BHT versions of an Abrams tank and a Bradley vehicle. One
LC-DU munition was fired at an operational Abrams tank. These shots successfully simulated
retrospective and prospective trajectories through armored vehicles. Each of the shots hit the target
vehicle in the area intended, and none caused excessive loss of air samplers. As a result, an extensive and
comprehensive data set was obtained from the many samples recovered. Results and generalizations
about the tests are related to 1) physical aspects of the field tests, 2) uranium concentration in the aerosols,
and 3) physical and chemical characteristics of the aerosols. Generalizations related to physical
parameters include the following:

o Field tests were performed to the satisfaction of the project team. The researchers found the Army’s
Superbox and support staff to be well qualified to conduct field tests in which LC-DU munitions
were fired at target vehicles. The facility was large enough to allow appropriate configuration of
target vehicles for aerosol sampling and sample recovery.

o The vehicle and shot line variations were effective for determining an upper bound for aerosol
concentrations and for quantifying other aerosol characteristics from actual firing incidents and
possible future incidents. The use of the vehicle BHTs accommodated placement for many air
samplers and relative ease of access.

o Temperature and pressure pulses in the crew compartments were brief. The temperature pulse lasted
from about 0.2 to 4.6 sec, and the pressure pulse lasted for milliseconds.

o Immediately after each vehicle perforation, tiny DU fragments underwent rapid oxidation,

disappearing within 1 to 2 sec. These fragments, referred to as “fireflies,” were visible on high-speed
videotape.
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e The amount of penetrator erosion varied with test phase. The Bradley vehicle armor caused the least
penetrator erosion, and the Abrams DU armor caused the most. (In this context, erosion refers to the
removal of surface layers as the penetrator perforated armor. Higher erosion rates lead to a higher
guantity of uranium in the aerosol.)

o The filter cassette, Cl, and cyclone samplers performed well under the adverse environmental
conditions in the tests. Shielding was necessary to minimize fragment hazard and enhance sampler
survivability. The initial filter medium used in the filter cassettes was too sensitive for the
environmental conditions and was replaced by a Teflon-based medium that was sufficiently durable.

e A shielded moving filter (MVF, inlet unshielded) successfully collected aerosols immediately after
impact on five of the shots. This was especially useful because the other sampler types did not begin
operating until 5 sec post-shot. The moving filter provided 1) a means for estimating the initial
aerosol concentration immediately after impact and 2) an independent comparison with the data
obtained using the filter cassettes that began operating 5 sec post shot.

DU aerosol mass concentrations inside the vehicles were analyzed as a function of time beginning 5 sec
after perforation and at sequential time intervals post shot. DU concentrations varied with shot and with
crew position within the vehicle. Deposition occurred as particles settled on vehicle surfaces and some
dispersed through open hatches or other structures. A summary of the mean DU concentrations (time-
standardized) as measured by the IOM filter cassettes (in grams per cubic meter [g/m?]) by vehicle
configuration are listed in Table S.1.

Table S.1. Mean DU Aerosol Mass Concentrations Over Time

Mean DU Concentration (g/m°)

Shot Description 10sec | 30sec | 1min | 30min | 1h
Retrospective Scenarios
. Abrams_BHT—crossing hull through turret; 11 90 6.0 011 0.057
no ventilation ' ' ' '
e Bradley BHT—crossing turret or passenger 3.0 27 29 013 0.049

compartment; no ventilation

Prospective Scenarios

e Abrams BHT—crossing turret; no ventilation 8.8 7.9 5.7 0.15 0.064

. Abra.ms.BHT—crossmg turret into breech; no 16 12 6.4 0.020® 0029
ventilation

. Abra.ms.BHT—flred into DU armor; no 10 79 42 0.049 0017
ventilation

e Abrams tank—fired into DU armor; with

) U 0.092 0.14 0.22 0.011 --®
operating ventilation

(a) Samplers for both shots showed similar pattern in large reduction from 1 min; most 30 min DU concentrations were lower
than at 1 h.
(b) Averages not extrapolated past last sample.

Generalizations related to the DU aerosol concentrations include the following:

o Initial radiological data were analyzed assuming that the uranium in the aerosols was in secular
equilibrium with its immediate short-lived progeny. This assumption was tested and found to be
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incorrect for most sample types and particle sizes. A procedure to adjust for the progeny
disequilibrium was developed to ensure that the uranium in these aerosols was not underestimated.

o Based on the sampling results of the moving filter, the highest measured uranium concentration in a
perforated Bradley BHT was 1.1 g/m® (1.1E+06 pug/ m®). This peak occurred 7 sec post shot. The
highest concentrations in a perforated Abrams BHT ranged from 2.3 to 6.0 g/m®in a vehicle without
DU armor and 8.2 to 9.1 g/m*in a vehicle with DU armor. In each case for which MVF data were
collected, the peak occurred within the first 13 sec post shot.

e The peak DU aerosol concentration measured by the filter cassettes in the BHTs occurred during the
first sampling interval, which began 5 sec post shot and lasted from 10 to 30 sec. (In the Abrams
tank, the DU concentration in the 1 min sample was greater than in the 10 sec sample, probably
because of less initial dispersion of aerosol into the driver’s position where the samples were
collected.)

e The highest mean DU aerosol concentrations within the Abrams and Bradley BHTs and the Abrams
tank as shown in Table S.1 were the following:

> Abrams BHT hull shot (conventional armor) — 11 g/m®

> Abrams BHT turret-crossing shot (conventional armor) — 8.8 g/m°

> Abrams BHT turret-crossing into breech shot (conventional armor) — 16 g/m®
> Abrams BHT shot fired into DU armor — 10 g/m®

> Abrams tank (with ventilation) shot fired into DU armor — 0.22 g/m®

> Bradley BHT turret and passenger compartment shots — 3.0 g/m?

e The Abrams tank, in which samples were collected in an equipped and operational vehicle instead of
a BHT, most closely represents actual tank conditions. As such, it may provide a better estimate of
DU aerosol concentrations in an Abrams tank perforated through DU armor than similar shots to the
BHT. However, few samplers operated during this single test, making firm conclusions difficult.

e An extensive database of analyzed wipe samples was developed that provides upper bounds on
surface deposition inside and outside the vehicle and provides qualitative information about the
amount of uranium potentially available for resuspension. Uranium on the wipe media and on the
cotton gloves used to evaluate the quantity potentially available for hand-to-mouth transfer will be
useful when assessing the ingestion pathway of uranium intake.

Generalizations related to the other physical and chemical parameters of the aerosols include the
following:

e The percentages of uranium mass in the total mass of aerosol collected in the cyclone samples varied
as follows:

> 3810 54% in the Abrams BHT/hull shot, conventional armor

> 4310 72% in the Abrams BHT/turret shots, conventional armor
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» 60 to 72% in the Abrams BHT/turret shot, DU armor
» 1810 29% in the Bradley BHT/passenger compartment shots.

As expected, particle size distributions decreased as a function of time as settling occurred. The
particle size distributions were analyzed using unimodal and bimodal models. The bimodal model
provided a better fit for many of the samples, but neither approach modeled a significant number of
samples well. Use of the actual size distribution data may be preferable to using activity median
aerodynamic diameters when using the Capstone data in human health risk assessments.

Exterior air sampling yielded ranges of uranium concentrations and particle size distributions.
Because the aerosols generated by target perforation were confined within the Superbox, use of these
data to estimate exterior source term will overestimate DU aerosol concentrations.

The predominant uranium oxide phase consisted of Us0s/UQ3. Its presence increased as particle size
decreased while the percentage of U,Oy which was highest with the large particles, decreased as
particle size decreased. A small amount of UO3*2H,0 (schoepite) was detected in several cyclone
stages and in backup filter samples.

The particles obtained from the cyclone residues and from other samples evaluated under a scanning
electron microscope had a complex, heterogeneous structure. The uranium particles displayed many
different shapes, from spheres to grain-appearing structures to fractured appearances. These
different shapes suggest the likelihood that the DU particles were formed by several different
mechanisms.

The in vitro dissolution rates most closely resembled Type-M (a moderate rate of dissolution)
absorption behavior. More than half of each sample (about 58 to 99%) fit the Class-Y (halftime of
>100 days) clearance category. These samples also contained a Class D (half-time of <10 days)
function ranging between 1 and 36%. Several samples also contained a Class-W (intermediate)
component.

Besides the predominance of uranium, other metals present in the cyclone aerosols consisted
primarily of aluminum and iron. Aluminum varied the most by phase and was highest in Phase-II
samples and lowest in Phase-111 samples. Other major constituents included titanium (alloyed with
DU in the penetrator), zinc, and copper.

Some data were collected even though they were outside the main scope of the project. These data,
which were subjected to a preliminary analysis, are presented and may be useful to specific
assessments.



S.5 Conclusions

During the course of this project, the Capstone DU Aerosols Study successfully generated, collected, and
evaluated DU aerosols from firing DU munitions at an Abrams tank BHT and a Bradley vehicle BHT.
Priority was placed on characterizing DU aerosols within crew compartments during the first 2 h post
shot. An analysis of aerosols during recovery activities 2.5 to 4 h post shot added to the timeline during
which air samplers were collecting samples, at least intermittently. Samplers also operated outside the
vehicles after each shot to collect and size aerosol particles near the vehicles. An extensive database was
acquired from which exposure may be characterized and human health risks may be assessed to update
previous efforts related to exposure by Gulf War/ODS personnel and to apply to assessments and
characterizations of potential future engagements.

The interior aerosol source term was well characterized over time for the various retrospective and
prospective shots. The BHTSs provided sufficient space to contain the sampling configurations described
in this report. However, scaling from the BHTS to operational vehicles may not be straightforward
because of differences in air volume and surfaces available for deposition. The Abrams tank shot (P1V-4)
and the ventilation tests provide additional information to assist in scaling.

Physical and chemical characterization of the DU aerosols was extensive. Aerosol composition, particle
size, morphology, and in vitro dissolution properties over a wide gamut of interior samples has led to a
greater understanding of the properties of these materials and helps bracket the range of expected
characteristics. Their heterogeneous nature was identified through scanning electron microscopy, and the
ramifications of such heterogeneity on particle size distributions and in vitro dissolution were demon-
strated in the variability in these results. In spite of the depth of evaluation already conducted, more data
are contained in the report than the project team had opportunity to thoroughly evaluate. These activities
are left to other investigators.

Overall, the project results have greatly expanded our understanding of DU aerosol concentrations and
properties resulting from perforation of armored vehicles with LC, Kinetic-energy, DU munitions. The
comprehensive data set arising from the project will support analysis of human health risk assessments for
both retrospective and prospective exposure scenarios. The data generated is applicable for assessing
human health risks associated with various DU exposure scenarios related to personnel in, on, or near
vehicles during perforation or entering vehicles immediately or well after perforation.
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USACHPPM U.S. Army Center for Health Promotion and Preventive Medicine
U,Oy uranium oxide phase, typically UO,, U30g, UO3, or UO3¢2H,0
VvDC volts direct current

XRD x-ray diffraction

XXXI



Glossary

Abrams Main Battle Tank — A full-tracked, armored, land combat vehicle with a 105-mm (M1) or 120-
mm (M1A1/M1A2) gun operated by a four-man crew consisting of a commander, gunner, loader, and
driver. The Abrams tank is the principal weapon of tank battalions of the Army during all types of
combat operations.

aerodynamic diameter (AD) or aerodynamic equivalent diameter (AED) — AD and AED are both
used to describe the diameter of a sphere, in um, of unit density (1 g/cm®) that has the same terminal
settling velocity in air as the particle of interest. A 1-um-AED particle has 1000 times the volume of a
0.1-um-AED particle. Discussion of AED measurements refers to individual particles.

aerosol — An assemblage of liquid or solid particles suspended in a gaseous medium long enough to be
observed and measured; generally about 0.001-pm to 100-pum AED.

ballistic hull and turret (BHT) — A production Abrams or Bradley structure without any operational
components. The turret is mounted on the hull via a race ring, but no other internal or external
components are present (i.e., no power train, fire control system, ventilation system, etc). A BHT may
contain a gun, road wheels, and track if the specific test requires these. A BHT is typically used to reduce
test costs when an operational vehicle is not required to meet test objectives.

breech — The rear part of the bore of a gun, especially the opening that permits the projectile to be loaded
at the rear of the bore.

bioassay — An analysis of body fluids, tissue, or excreta to determine the absence, the degree, or presence
of specific materials. Used as an index of radioactivity in the body.

Bradley Fighting Vehicle — A full-tracked, medium-armored fighting vehicle that provides protected,
cross-country mobility and vehicular-mounted firepower to infantry/cavalry units. The Bradley Fighting
Vehicle System family consists of an infantry and a cavalry version, which differ primarily in the number
of passengers carried and placement of ammunition.

catch plate — A backstop consisting of stacked armor plates and other materials positioned behind the
target, and designed to capture the residual penetrator.

chemical composition — The elemental makeup of a chemical compound.

deposition tray — An object with a specific dimension (usually 100 cm?) that passively collects formerly
aerosolize material that has since deposited on surfaces.

dissolution rate — The rate of change of a solid into a liquid form by immersion in a fluid of suitable
chemical composition or character.

Data Quality Objective — A systematic strategic planning tool based on the scientific method that
identifies and defines the type, quality, and quantity of data needed to satisfy a specified use.
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depleted uranium — Depleted uranium (DU) is the primary material used in the large-caliber penetrators
fired at vehicle targets in this study. Uranium is considered depleted if it contains a smaller component of
the uranium-235 isotope (approximately 0.2 percent for U.S. munitions) than natural uranium, which
contains about 0.7 percent uranium-235. DU, which is mostly uranium-238, is less radioactive than
natural uranium.

DU cone sample — A pile of DU oxide powder resembling a cone (point side up)

environmental control/nuclear-biological-chemical ventilation system (EC/NBC) — A ventilation
system found on the Abrams Main Battle tank that conditions air for breathing (filtering out nuclear,
biological, and chemical agents) as well as personal heating and cooling as required, while crew members
are wearing protective suits and masks. The EC/NBC system on the Abrams tank also provides positive
air pressure within the turret and driver’s locations to prevent diffusion of NBC contaminants.

fireflies — Nickname of tiny DU fragments created immediately after vehicle perforation that undergo
rapid oxidation and burn out very quickly.

first responder + Soldiers who enter damaged vehicles after DU perforation to evacuate personnel.
glacis — Sloped portion of a tank turret.

hull — Armored structure primarily containing the power train, road wheels, and track to provide vehicle
mobility.

inhalable fraction — The fraction of aerosolized material of a particular size (usually particles 100 um or
less aerodynamic equivalent diameter) available for intake via the respiratory tract.

LabVIEW - A computer engineering controller program used to remotely start, stop, and monitor
pressure aerosol monitoring instrumentation.

large-caliber DU munitions — Rounds with large-caliber depleted uranium penetrators that are fired from
the Abrams platform (M1A1 and M1A2 series tanks). These heavy metal, long-rod penetrators use
Kinetic energy to penetrate a target.

Level I — Crewmembers in, on, or near an armed vehicle at the time of DU perforation or first responders
who enter the vehicle within minutes of perforation.

Marple cascade impactor — A personal cascade impactor consisting of several stages used to separate
particle sizes. Marple impactors used in this test had a nominal flow rate of 2 Lpm through an 8-stage
(34-mm-diameter) unit capable of collecting particles ranging from about 0.5 to 20 um AED.

particle mass concentration — The mass of particulate matter or material in a unit volume of air, usually
expressed in pg/m®, mg/m?, or g/m®.

particle size distribution — The number concentration of particles as a function of particle diameter,
usually aerodynamic diameter, and expressed in micrometers, um.
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particle morphology — The appearance or shape of a particle, usually characterized by parameters such
as shape, volume, and surface area.

penetration — Used here to convey the piercing of the armor by the DU penetrator that may or may not
enter a turret, driver, or passenger (Bradley) compartment.

perforation — Used here to convey the breach by the DU penetrator through vehicle armor into the turret,
driver, or passenger (Bradley) compartment.

quality assurance — An integrated system of management activities involving planning, implementation,
assessment, reporting, and quality improvement to ensure that a process, item, or service is of the type
and quality needed and expected by the customer.

guality control — The overall system of technical activities that measure the attributes and performance
of a process, item, or service against defined standards to verify that they meet the stated requirements
established by the customer, operational techniques, and activities that are used to fulfill requirements for
quality.

respirable fraction — The fraction of aerosolized material of a particle size (usually particles 10 pm or
less aerodynamic equivalent diameter) available for intake and deposition into the deep lung.

scenario — An outline of a projected chain of events, which as related to the Capstone field tests, includes
the selection of target vehicle, trajectory angle, and sampling equipment. Scenarios were developed to
evaluate aerosols created from retrospective actions, such as events that occurred during the Gulf
War/ODS, and possible prospective events.

shot line — A munition’s trajectory (attack azimuth and elevation) and impact point relative to a target.

solubility — The ability of a substance to form a solution with another substance. Normally lung or tissue
fluid is considered the fluid of choice for evaluation of residence time of a chemical in the body with
regard to inhalation intake.

source term — The amount of radionuclide or chemical released from a source or site to the environment
over a specific period for use in dose assessment or exposure assessment.

spall liner — Kevlar panels bolted to the inner walls of the passenger compartment in the Bradley vehicle,
designed to capture fragments from vehicle perforation that could injure the crew or damage internal
vehicle components.

Superbox — A state-of-the-art containment facility that can accommodate a fully loaded combat vehicle
for testing purposes. The facility has an air filtration system with 99.97 percent removal efficiency for
particles 0.3-um AED and greater efficiencies for all other particle sizes. There is a thick steel
fragmentation shield inside the vessel to contain fragments within the vessel wall.

turret — Revolving armored structure (located on top of the tank hull) that primarily houses the main gun
and fire control system.
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wipe sample — A type of sample (wipe or smear) that collects readily removable surface radioactivity in
which moderate pressure is applied to a collection substrate when wiping a surface suspected of
contamination over a known area. The wipe sample can then be assessed with standard radiation
detectors, and is usually expressed in units of disintegrations per minute per 100 cm?® (dpm/100 cm?).
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1.0 Introduction

The 1991 Gulf War (Operation Desert Storm [ODS]) was the first time that armor-piercing, depleted-
uranium (DU) munitions were used on the battlefield. Many Iraqi tanks and other vehicles were hit and
perforated by DU rounds fired by the U.S. contingent of the Coalition Forces. Fratricide incidents also
occurred in which 6 U.S. Abrams tanks and 15 Bradley Fighting Vehicles (referred to as Bradley
vehicles) were fired upon after having been mistakenly identified as enemy vehicles. In addition to the
Soldiers known to have been hit with DU fragments, others participating in certain battlefield actions or
recovery activities are presumed to have been exposed to DU aerosols as a result of 1) being in Abrams
tanks or Bradley vehicles at the time the vehicles were struck and perforated by one or more DU
projectiles, 2) entering DU-perforated vehicles as first responders to recover personnel or equipment, or
3) entering damaged vehicles to gather intelligence and/or assess or repair damage (i.e., performing
maintenance or operations work). Other individuals, including those without a clear purpose for entering
the vehicles (e.g., trophy hunters or scavengers), may have been exposed to DU residues on vehicle
interior or exterior surfaces or from DU aerosols following mechanical or wind resuspension of
particulate matter. Other exposure scenarios are possible, and these are discussed in reports by the Office
of the Special Assistant for Gulf War IlInesses, Medical Readiness and Military Deployment (OSAGWI1)
(1998) and U.S. Army Center for Health Promotion and Preventive Medicine (USACHPPM) (2000). The
work documented here focused primarily on exposure scenarios that involve personnel who were in the
vehicle.

Over the past two decades, the U.S. Army has conducted periodic impact tests on armored targets to
determine system survivability and/or the lethality of the impacts. In conjunction with these tests,
sampling was performed to characterize the aerosols that formed when DU penetrators impacted and
perforated the targets. However, the scopes of these tests and the aerosol monitoring equipment used
were limited. The data obtained in Fliszar et al. (1989) for exposure outside of the struck vehicle were
sufficiently robust for use in for human health risk assessments. However, the data from the limited
number of attempts to measure aerosol generation inside of the struck vehicles at the time of perforation
were insufficient for performing human health risk characterizations inside vehicles perforated by DU
munitions. To remedy this, the U.S. Department of Defense (DoD) made a commitment to obtain more
complete data about aerosols generated by the impact and perforation of armored vehicles by DU
munitions. Under a program jointly sponsored by OSAGWI® and the U.S. Army, the Army Heavy
Metals Office managed a study designed to quantify and characterize DU aerosols inside, on, and close to
Abrams tanks and Bradley vehicles at the time and shortly after they were struck and perforated by large-
caliber (LC) DU penetrators. The program, named the Capstone DU Aerosol Study, was designed to
generate data from which personnel exposure assessment and risk characterization could be conducted for
exposure scenarios that involved either being in the vehicle at the time the vehicle was struck or being in
the struck vehicle shortly after perforation occurred.

The Army selected a scientist from Pacific Northwest National Laboratory (PNNL) as the independent
Principal Investigator to direct the Capstone DU Aerosol Study and to work with the Capstone test team,
which was composed of Army health physicists and engineers from the Aberdeen Test Center (ATC),
Aberdeen Proving Ground (APG), Maryland; USACHPPM, Aberdeen Proving Ground-Edgewood Area,

(@) The OSAGWI organization currently is referred to as the Deployment Health Support Directorate.
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Maryland; and the U.S. Army Tank-Automotive and Armaments Command, Armament Research,
Development and Engineering Center (TACOM-ARDEC), Picatinny Arsenal, New Jersey. In addition,
scientists from Lovelace Respiratory Research Institute (LRRI) and Los Alamos National Laboratory
(LANL) were project collaborators, particularly in the areas of aerosol sampling and particle size analysis.
This group received guidance concerning overall test objectives and test implementation from an Army
steering committee, known as the Depleted Uranium Research—Integrated Process Team (DUR-IPT). The
U.S. Army Medical Command (MEDCOM) developed a set of Data Quality Objectives (DQOs) for the
specific information to be derived from this testing program.

Peer review was an integral part of the Capstone process. An independent panel of experts in the
disciplines of health physics, industrial hygiene, occupational health, inhalation physics, chemical
toxicology, radiation biology, aerosol science, and biostatistics was impaneled by the U.S. Army Medical
Research and Materiel Command. The function of this panel was to provide an independent scientific
and medical review of the data quality objectives and Capstone experimental objectives and to provide
technical feedback regarding the field tests and the draft report. The peer reviewers were given access to
all aspects of the test. The peer review comments were resolved in a series of joint meetings.

The Capstone DU Aerosol Study focused on the quantities and characteristics of aerosols and residues

1) generated inside the vehicles at the time of impact, 2) found inside the vehicles during and after settling
had occurred, and 3) to a lesser extent, found outside vehicles struck by DU penetrators. The Capstone
series of tests was designed to estimate an upper bound of the aerosols that would be generated from shot
lines similar to those that occurred during the Gulf War/ODS and those that might occur during future
conflicts.

Field tests for the program were conducted in four phases at the ATC DU Containment Facility. In
Phases I and 11, ballistic hull and turret (BHT) versions of an Abrams tank (without DU armor) and a
Bradley vehicle were used as targets to recreate experiences from the Gulf War/ODS and simulate
possible future incidents. Phases 11 and IV were designed to simulate possible future conflicts. An
Abrams tank BHT (with DU armor) was used as the target in the Phase-111 tests. Phase IV was performed
in conjunction with a congressionally mandated testing program and used an operational Abrams tank
with DU armor as the target. Each phase featured specific vehicle configurations and scenarios that
defined the instrument setup in and around the vehicles and the target impact points needed to achieve
specific entry and exit angles for observation and collection of data.

Volume I of this report describes the testing program (Chapter 2.0), the methods used to set up and
conduct the tests (Chapter 3.0), the test parameters and observations (Chapter 4.0), sample analysis
(Chapter 5.0), data analysis by target and shot (Chapter 6.0), conclusions (Chapter 7.0), and references
(Chapter 8.0).

Volume |1 of this report consists of seven appendices (A-G), which contain a) technical data collected
during the tests that were used to draw the conclusions discussed in Chapter 7.0 and 2) descriptions of
several of the methodologies used to analyze the data. The information contained in each appendix is
described belo