Automated Microarray Image Analysis Toolbox
for use with MATLAB®)

Amanda M. White
Don Simone Daly

Pacific Northwest National Laboratory
Richland, WA 99352

November 7, 2005

Contents

Introduction

Analysis Process
Find the Spots in the Image L
Characterize the Spots e
Analysis Diagnostics e e e e e

Using the AMIA Toolbox
Setup e e
Example 1. e e e e
Example 2 o

Appendix: Functions in Automated Microarray Image Analysis Toolbox
align grid_to_well.m 0L
amia_inputdlg.m e
analyze slides.m oL L
ars.swstatl.m Lo e
centroid.m e e e e e
choosefilesm L L
coliind.m e e e
collect_results.m L
config_diagnostic_statistics.m
conv2D.m . ..o L e e e
create_diagnosticiimages.m L e e e e
create_experiment_diagnostics_htmlmo oo L Lo
create_grid_from_spacing.m e
create_html.m
create_ideal spot.m L. L e
create_main_html.m e
create.spot_mask.m L L e e
create_well map.m L L L
default_stat_summarizer.mo
diagnostic_stats.m Lo
display_image_ enhanced.m
display_well_boundaries.m e
dsdrange.mo Lo Lo e
estimate_quantiles.m L. L L

10
10
10
13

experiment_diagnostics.m L L L 27

findPeakCenters.m L 27
find_peaks.m e 27
find_spot_centers2.m 28
find_struct.m L e 29
find_wells.m oL e 29
get_analysis_settings.m L L 29
get_bright_spots.m L 30
get_column names.m e e e e 30
getfilesm 31
get_grid_initial fit.m L 31
get_slide_info_diff blocks.m 31
get_spot_positions.m 32
GrOW_SPOLS.IILo 32
ideal_axes.m Lo 33
ideal_shape_float_spot_map.m 33
ideal_spot_map.m oL e 34
image stats.m L L Lo e 34
initialize.m oL 35
instruction.mo e e e e 35
load_image.m L. e e e 35
maha dist.mo 36
make synth_imagem Lo 36
mat2index img.mo Lo e 36
outline_spots_image.m L e 37
pad.am ..o e 37
pad matrix.m e 38
plot_pointsiimg.m L 38
read_img.mo e e e 38
seeded region_growerd.m oL oL oo e e e e 39
solve_grid_spacing.m L. e e 39
spot_centers.m L L e e e e e e e e e e e 40
spot_shape_stats.m Lo 40
spot_stats.m Lo e e e 41
SETip.m . . L L e e 41
write_stats_tofilem L 42

Introduction

Microarray technology is an increasingly widely-used biological tool for investigating the genome
or proteome. However, the utility of this tool is limited by the image analysis software used to
summarize the data contained in the microarray images into a form that can be analyzed with
traditional statistical methods. The Automated Microarray Image Analysis (AMIA) Toolbox for
use with MATLAB (Mathworks, Inc. Natick, MA) is a powerful tool for analyzing microarray
images and extracting response profiles. The AMIA Toolbox is designed to analyze large sets of
slides of the same design with little user input, and provides extensive diagnostic statistics, images
and plots to help the user pinpoint suspect data or analysis results.

Unlike most microarray image analysis tools, the AMIA Toolbox is an open-source tool, giving
the analyst the ability to customize the image analysis for a particular application. The toolbox is
distributed as code for use with the MATLAB mathematical programming environment (version 6.5
or higher). The toolbox also requires the Statistics Toolbox 4.1 and the Image Processing Toolbox
4.1 for MATLAB. The open-source nature of this tool allows users to understand how each result
is calculated, and to modify algorithms or add additional routines to the analysis process.

The AMIA Toolbox analyzes a set of images at once, and can deal with a many different slide
designs. The toolbox prompts the user to enter some preliminary information regarding the slide
layout and identify the grid of spots on an initial slide, then this grid is automatically fit to each
subsequent slide without requiring user intervention. After the initial spot centers are identified,
AMIA uses three methods to determine the exact pixels contained in each spot. The first method
is the most simple method, but provides a stepping off point for two more sophisticated algorithms.
This method assumes that each spot is identically shaped and that the spots are equally spaced.
The typical spot size and shape is dynamically determined from the brightest spots on the slide.
The second spot identification method assumes that the spots are still identically shaped, but now
allows the spot centers to vary within a small region from the perfect grid. This allows for slight
variations in slide printing. The final method uses a seeded-region-growing algorithm [1] to deter-
mine which pixels are statistically different from the background. This allows the spots to assume
any shape within a region around the expected center. This is helpful when the slide printing
process has a great deal of variation, as can occur with custom-printed slides. However, if a spot
has not reacted, then no pixels are identified and no statistics are calculated for that spot for the
seeded-region-growing method.

After the spots are identified, summary and diagnostic statistics are calculated for each spot for
each of the three spot identification methods. These include spot intensity statistics, local back-
ground statistics, and size and shape information. All of this information is saved in an ASCII
file of results for each image. Diagnostic statistics and images are also produced for each image
and for the entire collection. These statistics are designed to bring to light two different types of

problems: poor quality images and software analysis problems. If potential problems are found,
they are flagged prominently for the user, so that one does not have to dig through all the results
for each image to find them. The output for each image is saved in a separate subdirectory.

The results and diagnostics are displayed for the user via an HTML interface. This allows the
user to easily browse the diagnostic images and statistics for each microarray image, and those for
the entire collection. If processing problems are found, AMIA provides the capability to re-analyze
chosen images with the user confirming each step of the analysis process to ensure correct results.

Analysis Process

AMIA is designed to analyze a collection of microarray images that share a common layout, includ-
ing array size and position of control spots. These images should be stored in a single directory,
and can take any common image format (e.g. GIF, JPEG, TIF). The analysis process is started
by calling the analyze_slides function with the directory name as the only parameter. During
the analysis, a subdirectory is created for each image where data and analysis diagnostics for that
image are stored.

Prior to performing the image analysis, the user should review the images (or some subset thereof)
to get an understanding of the quality of the slides and any problems that may interfere with
analysis and to determine the layout of spots on the slide.

The analyze_slides function first prompts the user to provide a few parameters for the analysis
process. These include the maximum and minimum spot size allowed in pixels and two threshold
values all for the seeded region growing algorithm. The seeded region grower cutoff determines the
threshold for ”growing” the spots and the spot mask cutoff is the threshold for estimating the spot
size and shape from the brightest spots in the image. (The second is necessarily higher because it
only uses the brightest spots.) The last five parameters require yes (y) or no (n). The diagnostic
images that are created can be turned on or off. Interactive mode determines whether the tool
will prompt the user for input during the analysis. Fix mode is to be used when the user wishes
to confirm each step of the analysis, typically as a second pass after automatic analysis produced
an error. If the set of images is of a single slide that was not moved between the images, then the
images are registered, or lined up. This could be used if analyzing a series of images of a slide taken
over time. Finally, the user can choose whether to have all plots displayed during the analysis.
(This can slow down analysis and lead to many windows open if a large collection of images is
analyzed.)

The next window asks for the types of images to use; the default is all image types. AMIA
next prompts the user to input information about the structure of the slides in the directory (if
this information is not already present). The user will need to know how many blocks (or subar-
rays) of spots are present, how they are arranged, and the location of the positive control spots
(or positional markers) within the blocks. In addition, the user is asked to give an initial estimate
of spot diameter, in pixels. This information is saved in the file slide_info.mat in the directory
with the images. If another collection of slides with the same layout is analyzed, this file can be
copied to the new directory so that the information need not be entered again.

Once the slide structure has been defined, the function begins to analyze the images, one at a
time. For each image there are two parts to the problem: finding the spots and characterizing the
spots. AMIA also includes several functions for data visualization and analysis diagnostics.

Find the Spots in the Image

Finding the spots means identifying the pixels belonging to each spot. Since traditional microarray
analysis tools have assumed that the spots are laid out in a perfect grid and are identically shaped,
we have also implemented this for consistency. However, this application goes further and defines
two additional spot identification algorithms. The first allows the identically-shaped spots to float
within a small region from the expected spot center, and the second uses a seeded region growing
algorithm to find spots that are not perfectly shaped. This is important because while some print-
ing processes are highly accurate, others (e.g. robots) introduce imperfections to the slides.

Figure 1: Original microarray slide image

In order to find the spots, the image must first be contrast-enhanced to make it easier to see the
features of the slide. Figures 1 and 2 show the effect of contrast enhancing. The original slide is
very dark with a few bright spots, however the enhanced slide shows the spots and background
more clearly, including uneven texture of the spots and overshine around the brightest spots. The
contrast enhancement is done by censoring the extremes of the data. In addition, a log transfor-
mation or square root transformation may be performed if necessary. Following this enhancement,
estimates of the spot centers are found with the spot_centers function. This function first rotates
the slides (if desired) then calls the find_spot_centers2 function to create a naive estimate of the
spot centers. We will call this a naive estimate because it assumes that the grid has been layed out
on the slide perfectly: every row and column is equally spaced and the between block spacing is
consistent.

The create_well_map function is called to extract information from the user to create a grid of
points for a single well if there is a teflon mask on the slide, or for the entire image. The user
is prompted to click on each of the positional markers or control spots (and additional spots as
desired). A seeded region grower is used to find the extent of each of these spots, then a linear
model is fit to the data to find the row, column and block spacing within a well. Finally, a grid of
expected spot centers is created for this well (Figure 3). Next the find_spot_centers2 function
calls the align_grid_to_well function for each well. This function searches for the positional

Figure 2: Contrast-enhanced microarray slide image

markers within the well and uses these to fit the previously created grid to the new well. To allow
for small differences in spacing between the wells, a linear model is again used to perfect the spac-
ing.

Figure 3: Contrast-enhanced image with naive spot center estimates

The create_well_map function also produces a map indicating which pixels belong to which po-
sitional marker. This is used by the create_ideal_spot function to line up the centers of the
positional markers to find the average spot (Figure 4). We use this to create our ideal spot shape
and size using the create_spot_mask function (Figure 5). The degree of difference required be-
tween the spot and the background is controlled by the spot mask cutoff value entered by the
user. An increase in this value corresponds to a more strict criteria, and the ideal spot will become
smaller. The spot mask is combined with the naive spot center estimates to create the ideal spot

map with the ideal_spot_map function, which indicates which pixels belong to each spot.

The second spot-finding algorithm allows the spot centers to vary within a small neighborhood
of the expected spot centers, while maintaining identical size and shape for each spot. This spot
map is created with the ideal_shape_float_spot_map. This function finds the spot center that
maximizes the mean spot intensity within the neighborhood.

The final spot-finding algorithm allows the spots to assume almost any shape and size (up to
a maximum) using a seeded region growing algorithm (seeded_region_grower4) that compares
the seed to the corners of the neighborhood to find the pixels that differ sufficiently from the back-
ground. The degree of difference between spot and background is determined by the seeded region
grower cutoff value entered by the user. The default value for this is 2. (As with the spot mask
cutoff, a higher value for the seeded region grower cutoff gives smaller spots.) The grow_spots
function outputs a map of the slide image where 0 indicates background and n > 0 indicates that
pixel belongs to spot n.

Figure 4: Average spot Figure 5: Spot mask

Characterize the Spots

Once the spots have been identified, summary statistics can be calculated on the spot pixels and the
surrounding neighborhood to help the analyst determine the degree of reaction of the spots. This
is a relatively straightforward process. Note that all statistics are calculated on the original image,
not the enhanced image used for identifying spots. The image_stats function takes the image,
the three spot maps and the spot neighborhood dimensions. For each spot the function takes the
section of the spot map and corresponding section of the image determined by the spot center and
neighborhood dimensions and calls the spot_stats function. This is where the actual statistics
are calculated, and if further statistics are desired, they can be easily added to this function. The
statistics calculated for each spot on each spot map include mean, median, min, max and standard
deviation of the spot, the mean and standard deviation of the background, as well as the mean and
standard deviation of each corner of the background individually. For the seeded region grower
spots, some shape statistics are also calculated. The statistics are written to a comma-delimited
text file with the same name as the image, stored in the directory of data for that image. This file
can be easily imported into most data analysis programs because it is an ASCII file.

Analysis Diagnostics

Through every step of the analysis diagnostic images and statistics are created to help the user
determine the validity of the results, and if there are problems, to make it clear in what step
they arose. An HTML-based interface (results.html in the images directory) is also created during
the analysis to organize and display these diagnostics, and to call attention to those which may
indicate a problem with data processing. The diagnostic images take up several MB of disk space
per microarray image, so if desired they can be turned off by entering 'n’ for ’Diagnostics on?’ in
the Analysis Settings window. If the user wants to have all of these images be displayed on the
screen while the analysis is running, enter 'y’ for 'Plots on?’. In addition to visual diagnostics, the
functions in this toolbox also calculate statistical diagnostics. One such diagnostic is to compare
the row and column spacing between the slides. If the spot spacing on one slide is significantly
different from the rest, this slide is flagged as containing possible problem. All slides that are
identified as potential problems by this diagnostic or any other are prominently flagged in the
HTML pages displaying the results. Other diagnostics include looking at background intensity as
a function of position in the image, which could possibly indicate uneven lighting during imaging,
and a comparison of typical spots between images to identify images that have particularly large
or bright (or small or dim) spots overall.

Using the AMIA Toolbox

Setup

To use the AMIA Toolbox for MATLAB, extract the zip file to any location on the hard drive. In
MATLAB, choose Set Path from the File menu. Add the AMIA Toolbox directory to the path,
save, then close. Now the functions in the toolbox can be located by MATLAB.

Example 1

The files for Example 1 can be downloaded from http://www.pnl.gov/statistics/AMIA/download.
Save the zip file to the hard drive, then extract the files to any directory.

From the MATLAB command line, type

analyze_slides(’ExamplelDirectoryName’)

When Analysis Settings window appears enter the
values shown in Figure 6 and choose OK. Next you

will be asked to choose the type of images to ana- o
lyze. The default is all image types; you can leave '
the default since there are no other image types in

Analysis Settings

Min spot size.
40

this directory, or choose ”.img”. (The .img file type Seade Rogon Grsver Ciof
is a custom image type. Other custom image types

. . Spot Mask Cutoff
may be incorporated by adding the necessary code E3

to the load_image function.)

Diagnostics on (y/n)
¥

For this example, each array on the slide has been Jﬂiﬁf.ﬂqw.l? mod (y/n)
imaged separately, thus all layout questions will be =

1 : . Fix mode (yin}
answered with respect to the image, not the entire P r—

slide. When asked if the slide has a teflon mask
separating wells on the slide, choose ”"No.” You will
next be asked to enter information about the slide Show al pots i) :
layout, including the number and arrangement of :
wells and blocks of spots, and the approximate di-
mension of the spots. The appropriate values are
shown in Figure 7. Since all blocks have the same Figure 6: Analysis settings for Example 1

size but not the same control spots (or positional markers) you will be asked to enter this infor-
mation for each block individually. Then you will enter the size of the blocks and the positions of

Are all images registered? (y/n)
n

10

the positive control spots. Figures 8 and 9 show the layout information for Block row 1, column
1. Each block is the same size (10 by 10) and has 2 control spots. All of the control spots are
shown in Table 1. Now all of the slide layout information is entered and will be saved in the file
slide_info.mat in the Examplel directory with the images. Any time you want to analyze a
new set of images that has the same layout as a previously analyzed set, you can simply copy the
slide_info.mat file from the previous set to the new directory and you will not be prompted to
enter this information again. (Note that all slide layout information is relative to the image, so if
each image contains part of a slide, for example, one array, then answer the questions relative to
the image, not the entire slide.)

 Stide Layout 3

Rows of Blocks
2

Columns of Blocks:
B |

Do all blocks have the same size and control spots? (yin)
n |

What i= the approximate diameter of the spot {in pixels)?
|25 |

Do you want to find rotation of slide? (vin}
n |

Figure 7: Slide layout parameters for Example 1

J Block row 1, column 1 E|

Rows of =pots in block row 1, column 1

[10

Columns of spots in block row 1, column 1
|10

Number of control =pots

2
oK Cancel

Figure 8: Block size and number of control spots for Example 1

You will next be asked to click on a point in each image to give the algorithms a starting point
for placing the grid. As each image appears, use the figure buttons to zoom in, if necessary, then
hit enter. When you see the crosshairs mouse, click on a spot on the image. For this example, it
is easiest to click on the spot in Row 6 and Column 2 of Block Row 1, Block Column 1. Then
in the command window, enter the block row and column and spot row and column (1, 1, 6, 2).
This information must only be entered once for each image since it is saved in a file (grid_fit.mat
in the directory with the images) so if you need to re-analyze an image it will load this information
automatically.

You will be offered the choice of which files to include in the analysis, so if you want to only

analyze a subset you can choose the images at this step. For the example, choose all images. Next
choose the image on which to create the initial estimate of the spot grid spacing. This step will

11

Row of control =pot: 1
5

Column of control spot: 1
2

Row of control =pot: 2
10

Column of control spot: 2

1

ok Cancel

Figure 9: Control spot position for Example 1

Block Row | Block Column | Control Spot Row | Control Spot Column
1 1 6 2
1 1 10 10
1 2 2 5
1 2 9 10
2 1 7 1
2 1 1 10
2 2 9 10
2 2 5 4

Table 1: Control Spot Positions for Example 1

be done on one image only, then this grid will be applied to the other images in the collection,
therefore at this step you should choose the highest quality image (best contrast, low background,
uniform spots, etc) in the set. For the example, choose any image.

The next step is to estimate the grid spacing on the initial image. For this step you will be
asked to click on the control spots, or positional markers, previously entered. You will also be
asked if you want to zoom in closer on the blocks, which should not be necessary in this case. Next,
you will be offered the opportunity to discard the previously entered control spots and enter new
positional markers or to keep the control spots and enter additional spots. For the example, do
not take either of these options. However, if positional markers of a set of slides happen to fall in
a single row or column on an image, it would be necessary to enter additional spots here. These
additional spots do not have to be visible in all images, just the initial image.

Click on each control spot when prompted. The program will use this information to create a
grid of expected spot centers, and then this will be displayed for your approval. After the initial
grid is approved, the program will not prompt for any more information for this image. The progress
will be displayed in the command window as each step in the analysis is completed. When the first
image is completed, the subsequent images will be analyzed. When all images are complete, the
results can be viewed via an HTML-based interface that enables quick browsing of the diagnostics
and analysis performance. To view these diagnostics, open the results.html file that is created
in the same directory as the images. The quantitative results are located in the .csv files found in
the data directory for each image.

12

Example 2

The files for Example 2 can be downloaded from http://www.pnl.gov/statistics/AMIA/download.
Save the zip file to the hard drive, then extract the files to any directory.

From the MATLAB command line, type
analyze_slides(’Example2DirectoryName’)

When Analysis Settings window appears enter the values shown in Figure 10 and choose OK. For

Analysis Settings

Max spot size

| 500 |

Min spotsize i

| 40 | Slide Layout

Seeded Region Grower Cutoff Rows of Wells

2 | E |
Spot Mask Cutoff . Columns of Wells

[30 | | 2 |
Diagnostics on (yin) Rows of Blocks

E | 2 |
Interactivemodefyn) Columng of Blocks

E | [|
Fix mode (vin} Do all blocks have the =ame size and control spote? (yin}

j | E |
Are allimages registered? (yin) . What is the approximate diameter of the spot (in pixels)? .
B | |2 |
Show all plots (y/n} Do you want to find rotation of slide? (y/in}

B | i |

Figure 10: Analysis settings for Example 2 Figure 11: Slide layout parameters for Exam-
ple 2

image types, either leave the default of all types or choose ”.tif”. When asked if the slide has a
teflon mask separating wells on the slide, choose ”Yes.” For the slide layout, each block has the
same size and control spots, so it is only necessary to enter this information once. Enter the values
shown in Figures 11-14 in the appropriate windows.

You will next be asked to click on a point in each well to give the algorithms a starting point for
placing the grid. (If the tool is unable to locate the edges of the wells automatically, it will ask you
to click on the edges so it can locate them.) As each image appears, use the figure buttons to zoom
in, if necessary, then hit enter. When you see the crosshairs mouse, click on a spot on the image.
For this example, it is easiest to click on the spot in Row 1 and Column 1 of the top block. Then
in the command window, enter the block row and column and spot row and column.

When offered the choice of which files to include in the analysis, choose both images. Then choose

either image in order to create the initial grid estimate. For this step you will be asked to click on
the control spots, or positional markers, previously entered. Prior to clicking on the spots, you may

13

) Slide Layout E|

Rows of 2pots per block
13

Columns of spots per block
12

Number of control =pots per block

|10
oK Cancel

Figure 12: Block size and number of control spots for Example 2
) Slide Layout [-) Slide Layout [5]
Row of control spot: 1 Row of control spot: 6
1 E
Column of control spot: 1 Column of control spot: &
1 1
Row of control spot. 2 Row of controlspot: 7
2 1 13
Column of control spot: 2 Column of control spet: 7
1] E]

Row of control spot: 3 Row of control spot: &

3 19
Column of control spot: 3 Column of control spot: &
1 10

Row of control spot: 4 Row of controlspet: 8
4 15

Column of control spot: 4 Column of control spot: 9§
1 11
Row of control spot:. 5 Row of control spot: 10
] 19

Column of control spot: 5 Column of control spot: 10
1 12
N cancel |

Figure 13: Control spot position for Example Figure 14: Control spot position for Example
2 2

be asked to help the tool identify the boundaries of the wells and to choose a single well in which
to identify the spots. For the example, choose well 1. You will also be asked if you want to zoom
in closer on the blocks, which may be necessary depending on the screen resolution. Do no discard
the previously entered control spots or enter any additional points. You will be prompted to click
on each control spot in both blocks in the well. If the grid of initial spot estimates is reasonable
type 'y’ and the program will continue with the analysis.

As the progress of the analysis is displayed in the command window, be aware that each step
may take a little time since these example images are very large. When all images are complete,
open the results.html file that is contained in the same directory as the images. The quantitative

results are located in the .csv files found in the data directory for each image.

Additional examples may be found at http://www.pnl.gov/statistics/AMIA/download. Each

14

example contains the layout and parameter values for that set of images.

15

Appendix: Functions in Automated
Microarray Image Analysis Toolbox

align _grid_to_well.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The align_grid_to_well function takes an image of a single well
and a grid of expected spot centers created from another well
and finds the expected centers of the spots from these.

[spot_centers, spacing, ideal_spot] = align_grid_to_well(well_img,
grid, well_map, control_spots, block_rows, block_cols,...
rows_of_blocks, cols_of_blocks, init_spacing, curr_grid_fit)

well_img = grayscale image (uintl6) of a single well
grid = the arrangement of the spot centers from a previous well
well map = the spot map of the previous well (0 = background,
n > 0 indicates that pixels is part of spot n)
control_spots = the relative position of the control spots within
each block
spot_diam = the diameter in pixels of the spots
block_rows = number of rows of spots in each block (matrix)
block_cols = number of columns of spots in each block (matrix)
rows_of_blocks = number of rows of blocks per well
cols_of_blocks = number of columns of blocks per well
init_spacing = the row, column and block spacing for the grid
curr_grid_fit = the initial grid fitting info for this well

spot_centers = matrix of spot center locations (not necessarily
integer values) relative to the dimensions of the
well (row, column)

spacing = 6-column matrix giving row spacing, column spacing,
vertical and horizontal block spacing, and vertical
and horizontal offsets (row 1) along with 95% confidence
intervals for each (row 2 and 3) and associated
R"2 statistics (row 4)

ideal_spot = a composite image of the brightest spots on this well

find_peaks, solve_grid_spacing, centroid

16

amia_inputdlg.m

Purpose:

Usage:
Inputs:
Outputs:

Requires:

The amia_inputdlg function is a bug fix for Matlab 7.0.4

which throws an error if the num_lines parameter of the
inputdlg function is two-dimensional. This function queries
Matlab to determine the version being used. If version

7.0.4 then num_lines will be one-dimensional only.

answer = amia_inputdlg(prompt,dlg title,num_lines,defAns,Resize)
see Matlab documentation for inputdlg

answer = output form inputdlg function

(nothing)

analyze_slides.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The analyze_slides function runs the microarray image analysis
process on a collection of slides.

analyze_slides(curr_path)

curr_path = directory containing the images to be analyzed
(optional, user will be prompted if missing)

none

read_img, spot_centers, mat2index_img, create_spot_mask,
bwmorph (Matlab Image Processing Toolbox), grow_spots,
ideal_spot_map, image_stats, display_wells_with_spot_map,
draw_boxes_on_img, make_synth_img

ars_sw_statl.m

Purpose:

Usage:

Inputs:

The ars_sw_statl function is a test statistic for
identifying if a spot is on or off by comparing it to the
local background.

[swStatl, swStatlOn] = ars_sw_statl1(0ODMat, forePixNum,
bckPixNum, critvalue)

ODMat = a 1x4 vector of Spot Mean, Spot Std Dev, Background Mean,

17

Background Std Dev.
forePixNum = the number of pixels in spot mean
bckPixNum = the number of pixels in background mean.
critvalue = critical value to use as cutoff for z-score

Outputs: swStatl = z-score statistic comparing spot to background
swStatlOn = 1 if swStatl >= critvalue, O otherwise
Requires: (nothing)
centroid.m
Purpose: The centroid function takes an array of the form
(row, column, weight) and calculates the two dimensional
weighted average of the points.
Usage: [row, col] = centroid(weight_array, round_ans);
Inputs: weight_array = a 3-column array with point locations
(row, column) and weights (or intensities)
round_ans = optional string variable that can take on
values ’round’ or ’noround’, if no value specified
it is assumed to be ’noround’
Outputs: row = the weighted average of the rows
col = the weighted average of the columns
Requires: (nothing)

choose_files.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The choose_files function allows the user to specify
which files to analyze and to choose which image should
be used to create the initial grid if it does not
already exist.

files_to_open = choose_files(curr_path, file_types)

curr_path = the directory containing the images
file_types = list of image file extensions to look at

files_to_open = list of image files to analyze

get_files

18

col ind.m

Purpose: The col_ind function allows the user to access data in
a matrix using column headers rather than column numbers.
For example, if we had a matrix called M and a list of
column header names called colnames we could get the
column(s) corresponding to ’name’ by
M(:, col_ind(’name’, colnames))

Usage: index = col_ind(names, column_header, match_type)

Inputs: names = 1 or more names of columns
column_header = list of column names (in order)
match_type = (optional) ’exact’ (default),
’begin’ or ’contain’, indicates which type of match

Outputs: index = the column numbers corresponding to names

Requires: (nothing)

collect_results.m

Purpose: The collect_results function collects the data from each file
of the AMIA analysis and creates a single spot statistic
using the stat_summarize_fcn and outputs results to
output_file.

Usage: collect_results(data_path, output_file, stat_summarize_fcn)
Inputs: data_path = the path containing the image files
output_file = file to store results
stat_summarize_fcn = (optional) handle of the function that
calculates the spot estimate from the variety of
statistics AMIA calculates. Default values is
’default_stat_summarizer’.

Outputs: get_column_names

Requires: (nothing)

config_diagnostic_statistics.m

Purpose: The config diagnostic_statistics function sets up the
variables related to diagnostic stats.

19

Usage: [diagnostic_statistics, spacing, diag_names,
error_ind, diag_ind] = ...
config_diagnostic_statistics(curr_path, curr_file)

Inputs: curr_path = the directory containing the images
curr_file = the name of the current image file
Outputs: diagnostic_statistics = array of structures that contain

information about the analysis of each image
spacing = array of structures containing information
about the grid spacing of each image
diag_names = array of file names indicating which
element of diagnostic_statistics goes with
which file
error_ind = vector indicating errors/problems
(0=0K, 1=error in processing, 2=spacing problem)
diag_ind = index of current file in error_ind and diag_names

Requires: (nothing)

conv2D.m

Purpose: The conv2D function converts the arguments ml and m2 to double
before applying conv2. (Necessary for MATLAB 7.0)

Usage: result = conv2D(ml, m2, type)
Inputs: ml = matrix
m2 = matrix

type = type of convolution (see conv2 for options)
Outputs: result = result of 2 dimensional convolution

Requires: (nothing)

create_diagnostic_images.m

Purpose: The create_diagnostic_images function creates diagnostic
images that may help pinpoint problems in the image processing.

Usage: create_diagnostic_images(original_img, grid, stats, columns,
i_spot_map, float_spot_map, srg_spot_map, spot_diam, output_path)

Inputs: original_img = the original slide image
grid = the grid of expected spot centers

20

Outputs:

Requires:

stats = the matrix of statistics

columns = a vector of column names

i_spot_map = the ’ideal’ spot map

float_spot_map = the ’float’ spot map

srg_spot_map = the ’srg’ spot map

spot_diam = the expected spot diameter

spot_mask = the spot mask

neighborhood_height = vertical radius of the
spot neighborhood

neighborhood_width = horizontal radius of the
spot neighborhood

output_path = the directory in which to save the images

plots_on = 0/1 indicator, 1=show plots

(nothing)

draw_boxes_on_image, estimate_quantiles, outline_spots_image,
make_synth_image

create_experiment_diagnostics_html.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The create_experiment_diagnostics_html function creates an HTML
page to display the experiment diagnostics.

create_experiment_diagnostics_html(root_path, file_list, flags)
root_path = path containing the images to be analyzed

file_list list of image files analyzed
flags = output of create_experimetn_diagnostics function

none

(nothing)

create_grid_from_spacing.m

Purpose:

Usage:

Inputs:

The create_grid_from_spacing function takes the spacing
structure and creates a grid of expected spot centers.
This version assumes that each block in a row or column
may not be aligned--must be used with the version of
solve_grid_spacing that assumes the same.

grid = create_grid_from_spacing(spacing)

spacing = structure giving spot spacing information, the

21

output of solve_grid_spacing function.

Outputs: grid = matrix giving expected pixel row and column, with
spot row and column and block row and column.

Requires: (nothing)

create_html.m

Purpose: The create_html function creates the html results page for each
image analyzed.

Usage: create_html (output_path, filename, stats)

Inputs: output_path = the path containing the output for this image
filename = the name of the image file
stats = the structure containing the diagnostic statistics

Outputs: (nomne)

Requires: (nothing)

create_ideal_spot.m

Purpose: The create_ideal_spot function creates an image of the ideal
spot from the control spots found with the seeded region
growing algorithm.

Usage: ideal_spot = create_ideal_spot(control_spot_map,
well_img, spot_diam)

Inputs: control_spot_map = matrix the same size as well_img where
0 indicates background and integer n>0 indicates
that pixel belongs to control spot n, OR
a list giving pixel row, pixel column and spot
number for every pixel in a control spot
well_img = grayscale image (uint16) of a single well
spot_diam = the estimated diameter of the spots
input_type = ’matrix’ or ’list’, indicates what form
the control spot map is in (default is ’matrix’)

Outputs: ideal_spot = a matrix giving the average intensity of the
control spots

Requires: find_peaks

22

create_main_html.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The create_main_html function creates the main results html page
called "results.html" in the image directory, with links to
the results for each image, and experiment diagnostics.

create_main_html (output_path, file_list, error_list, statistics)

output_path = the path containing the output for this image

file_list = list of images analyzed

error_list = list of error indicators

statistics = the array of structures containing the diagnostic
statistics to be passed to create_html

(none)

experiment_diagnostics, create_experiment_diagnostics_html,
create_html, find_struct, create_help_html

create_spot_mask.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The create_spot_mask function takes the matrix of an "ideal"

spot (created in spot_centers) and creates a 0/1 matrix
indicating which pixels are in the spot and which are background.
If zcrit is so high that there are no pixels that meet this
criteria, then zcrit is decremented by 1 until there is at least
one pixels that is chosen.

spot_mask = create_spot_mask(ideal_spot, zcrit)

ideal_spot = the matrix of an ideal spot created in
spot_centers (create_ideal_spot function)

zcrit = the critical value cutoff for comparing to
the background (z-score cutoff)

interactive = prompt user to approve spot mask? (0/1 flag)

spot_mask = a matrix the same size as ideal_spot where
1 indicates spot and O indicates background

bwmorph (Matlab Image Processing Toolbox)

23

create_well map.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The create_well_map function creates a grid of expected spot centers
for a single well and creates a spot map for the control spots.

[spot_centers, control_spot_map, well]l = ...
create_well_map(original_img, well_row_bd, well_col_bd,
control_spots, spot_diam, block_rows, block_cols,
rows_of_blocks, cols_of_blocks)

original_img = grayscale image (uint16) that has been rotated
so the array is parallel to the image
well_row_bd = 2-column matrix where the first column indicates
pixel row position and the second column is a -1/1
indicator where -1 is beginning of well and 1 is end
well_col_bd = same as well_row_bd for pixel columns
control_spots = the relative positions of the control spots
in each block
spot_diam = the user-provided estimated spot diameter in pixels
block_rows = the rows of spots in each block (matrix)
block_cols = the columns of spots in each block (matrix)
rows_of_blocks = the number of rows of blocks per well
cols_of_blocks = the number of columns of blocks per well
block_has_controls = 0/1 matrix indicating whether a block has
control spots

spot_centers = matrix of spot center locations (not necessarily
integer values) with relative position within the slide
(pixel row, pixel column, relative row, relative column,
block row, block column)

control_spot_map = matrix the same size as a single well where
0 indicates background and integer n>0 indicates
that pixel belongs to control spot n

well = the number of the well chosen to create the grid

spacing = 6-column matrix giving row spacing, column spacing,
vertical and horizontal block spacing, and vertical
and horizontal offsets (row 1) along with 95% confidence
intervals for each (row 2 and 3) and associated
R™2 statistics (row 4)

grow_spots, centroid, solve_grid_spacing

default_stat_summarizer.m

Purpose:

The default_stat_summarizer function takes a matrix of
statistics from AMIA for a single image, and summarizes

24

Usage:

Inputs:

Outputs:

Requires:

the results for each spot to the necessary information.
Used by collect_results.m

(summary, cnames) = default_stat_summarizer(data, colnames)

data = numeric data matrix of statistics calculated by AMIA
for a single image (each row corresponds to one spot)

colnames = column names

summary = numeric matrix of summary statistics, one row for
each spot

cnames = column names for summary matrix

col_ind

diagnostic_stats.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

diagnostic_stats function calculates some diagnostics using the
spot and background statistics, and the ideal spot.

s = diagnostic_stats(stats, colnames, ideal_spot, output_path)

stats = the matrix of statistics calculated in the image_stats
function
colnames = a vector of column names for the stats matrix\
ideal_spot = the ideal spot for this image
output_path = the path containing the output for this image
best_stats = (optional) ’float’, ’srg’ or ’ideal’
default is ’float’

s = a structure containing diagnostics including:
variation in background

correlation between spot and background intensity

col_ind

display_image_enhanced.m

Purpose:

Usage:

Inputs:

The display_image_enhanced function displays an image at the largest size
possible on the screen while preserving aspect ratio, and contrast-
enhances the image by compressing the upper and lower ends of the data range.

fig_handle = display_image_enhanced(img, quantiles)

img = the image

25

quantiles = vector of length 2 giving upper and lower quantile for
data compression (by default, this is [0.01, 0.99])

Outputs: fig_handle = handle of the figure created

Requires: ideal_axes, mat2index_img, estimate_quantiles

display_well_boundaries.m

Purpose: The display_well_boundaries function creates a figure
of the slide image with the well boundaries overlaid.

Usage: h = display_well_boundaries(img, well_row_bd, well_col_bd)
Inputs: img = the slide image
well_row_bd = the row boundaries from find_wells function
well_col_bd = the column boundaries from the find_wells function

Outputs: h = figure handle

Requires: display_image_enhanced

dsd_range.m

Purpose: The dsd_range function finds the range of a matrix
Usage: [tmp_range,tmp_min,tmp_max] = dsd_range (tmp_mat)
Inputs: tmp_mat = matrix

Outputs: tmp_range = difference between tmp_min and tmp_max

tmp_min = minimum of tmp_mat
tmp_max = maximum of tmp_mat

Requires: (nothing)

estimate_quantiles.m

Purpose: The estimate_quantiles function estimates the
quantiles of a matrix.

Usage: [tmp_quant] = estimate_quantiles(tmp_mat,tmp_pct)
Inputs: tmp_mat = matrix

26

tmp_pct = (optional) vector of percent values

Outputs: tmp_quant = vector of estimated percentiles of tmp_mat
corresponding to tmp_pct

Requires: (nothing)

experiment_diagnostics.m

Purpose: The experiment_diagnostics function generates statistical
diagnostics comparing the results of each image to determine if
any results are unusual.

Usage: flags = experiment_diagnostics(diagnostic_statistics)

Inputs: diagnostic_statistics = array of structures generated during the
analysis process

Outputs: flags = array of strings containing messages that will be printed
in the experiment_diagnostics.html file

Requires: (nothing)

findPeakCenters.m

Purpose: The findPeakCenters function finds the centers of the peaks
identified by the peak_ids vector

Usage: centers = findPeakCenters(i_vec, peak_ids)

Inputs: i_vec = vector of the mean intensities in each
pixel row or column
peak_ids = integer vector where O indicates not
part of a peak and n>0 indicates that row is
part of peak n

Outputs: centers = the position of the center of each peak
(column vector)

Requires: (nothing)
find_peaks.m
Purpose: The find_peaks function finds the centers of the peaks

27

Usage:

Inputs:

Outputs:

Requires:

in a vector.

centers = find_peaks(dist_vec, peak_width, smooth_width)
dist_vec = a double-valued vector

peak_width = width for ordfilt (optional - default is 13)

smooth_width = (optional - default is 7)

centers = the weighted centers of the peaks in the
vector (not necessarily integer)

(nothing)

find_spot_centers2.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The find_spot_centers2 function takes a grayscale image that
represents an array of spots and identifies the expected centers
of the spots. Also saves information about the row and column
spacing in a file called ’diagnostics.mat’ in the input_path

[spot_centers, ideal_spot, well_row_bd, well_col_bd, spacing] = ...

find_spot_centers2(original_img, input_path, output_path)

original_img = grayscale image (uint16) that has been
rotated so the array is parallel to
the image
input_path = the path where the slide layout file is stored
(this file contains information about the structure
of the slide, including blocks, control spots, etc)
output_path = the path in which to store the images of the
wells overlaid with the grid

spot_centers = matrix of spot center locations (not necessarily
integer values) (row, column)

ideal_spot = average spot intensities of the control spots
(to be used to create expected spot size and shape)

well_row_bd = 2-column matrix where the first column indicates
pixel row position and the second column is a -1/1
indicator where -1 is beginning of well and 1 is end

well_col_bd = same as well_row_bd for pixel columns

spacing = a 6-column vector giving the row, column, and block
spacing along with the position (row, col) of the block
within the slide

find_wells, create_well_map, create_ideal_spot,
align_grid_to_well

28

find_struct.m

Purpose: The find_struct function provides matching capability for arrays
of structures similar to find() for arrays of double.

Usage: [indl, ind2] = find_struct(struct_array, fieldname, value, negation)
indl = find_struct(struct_array, fieldname, value, negation)

Inputs: struct_array = array of structures
fieldname = the name of the field to match on
value = value to find in the field corresponding to fieldname

negation = T/F, find structs where fieldname “= value?

Outputs: indl, ind2 = indices of structures in struct_array that match
the criteria

Requires: (nothing)

find_wells.m

Purpose: The find_wells function finds the boundaries of the wells on
a microarray slide.

Usage: [well_row_bd, well_col_bd] = find wells(tmp_mat, interactive)
Inputs: tmp_mat = the image of the slide
interactive = 0/1 indicator of whether to prompt user if there
are problems finding the well boundaries
Outputs: well_row_bd = 2-column matrix where the first column indicates
pixel row position and the second column is a -1/1
indicator where -1 is beginning of well and 1 is end

well_col_bd = same as well_row_bd for pixel columns

Requires: (nothing)

get_analysis_settings.m

Purpose: The get_analysis_settings function creates prompts the user
to input overall settings for the analysis, including
whether to show plots, and max and min spot size.

Usage: [diag_on, int_mode, fix_mode, plots_on, z_crit_srg,

29

Inputs:

Outputs:

Requires:

z_crit_spot_mask, max_spot_size, min_spot_size]
= get_analysis_settings

(none)

diag_on = 0/1 indicator of whether to create diagnostics

int_mode = 0/1 indicator for interactive mode
fix_mode = 0/1 indicator for fix mode
plots_on = 0/1 indicator for display plots

z_crit_srg = critical value cutoff for seeded region grower
z_crit_spot_mask = critical value cutoff for creating spot
mask
max_spot_size = the maximum allowable spot size (for SRG)
min_spot_size = the minimum allowable spot size (for SRG)
images_registered = 0/1 indicator: are the images registered
(lined up)

(nothing)

get_bright_spots.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The get_bright_spots function finds the brightest spots in
the image that have the approximate given diameter.

spot_mask = get_bright_spots(well_img, spot_diam, cutoff)

well_img = the image

spot_diam = approximate spot diameter

cutoff = percentile cutoff for identifying bright pixels

spot_mask = matrix the same size as well_img where O means pixel
is in the background, and integer n>0 means pixel is

part of bright spot n

estimate_quantiles, pad_matrix

get_column_names.m

Purpose:

Usage:

Inputs:

The get_column_names function extracts column names
from a file.

colnames = get_column_names(filename, delim)

filename = name of file
delim = (optional) delimiter (default is ’,’)

30

skip = (optional) lines to skip before column names
(default is 0)

Outputs: column names

Requires: (nothing)

get_files.m

Purpose: The get_files function creates a list of all the files
in the given directory. If extensions are provided it
returns a list of files of those types.

Usage: file_list = get_files(path, extensions)

Inputs: path = a string giving the path of the directory
extensions = (optional) a vector of extensions

(case-independent)
Outputs: files_list = a list of files in this directory

get_grid_initial_fit.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The get_grid_initial_fit function prompts the user to

input an initial point for fitting the grid of spot centers
for each image in the directory. Creates the file
’grid_fit.mat’ for use by analyze_slides.

tf = get_grid_initial_fit(curr_path, img_type)

curr_path = the path containing the images and the slide
layout file. Alternately, can be a file name.

img_type = (optional) vector of image types to look at

(e.g. img_type = strvcat(’.gif’, ’.tif’, ’.jpg’))

(nothing)

(nothing)

get_slide_info_diff blocks.m

Purpose:

The get_slide_info function prompts the user to input
information about the layout of the slides to be analyzed.

31

Usage:

Inputs:

Outputs:

Requires:

tf = get_slide_info(path)

path = full path of the directory where the slides are
located (this is where the output file will be saved)

output_file = (optional) name of output file, default is
’slide_info.mat’

tf = 0/1 indicator where 1 = successful completion

(nothing)

get_spot_positions.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The get_spot_positions function prompts the user to enter
positional information about spots of interest.

spot_positions = get_spot_positions(num_spots, label)

num_spots = number of spots

label = label to use for instruction (e.g. ’spot’, or
>control spot’) (default value is ’spot’)

block_prompt = (optional) prompt for block row and column?
(0/1 indicator)

default values = (optional) cell array of default values for
block row, block column, spot row and spot column

spot_positions = 4-column matrix holding spot row,
spot column, block row and block column, in that order

(nothing)

grow_spots.m

Purpose:

Usage:

Inputs:

The grow_spots function uses a seeded region growing algorithm
to find the actual shape and size of each spot on the slide.

[spot_map, new_seeds] = grow_spots(img, seeds, nbhood_rad,
spot_diam, min_size, max_size)

img = the image

seeds = 3-column matrix giving row, column and spot number
(a spot may have more than one seed pixel, but
they must be neighboring pixels)

nbhood_rad = 2-vector giving radius (in rows and columns)
of the neighborhood to use for growing the spots

32

Outputs:

Requires:

spot_diam = the expected (approximate) spot diameter
min_size = minimum number of pixels per spot
max_size = maximum number of pixels per spot

spot_map = a matrix the same size as img where O indicates
background and n>0 indicates that pixel belongs to
spot n

new_seeds = the new seeds that are estimated from the seeds
that are given and the neighborhood radius

seeded_region_grower4, find_peaks

ideal _axes.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The ideal_axes function creates a figure window and axes that
are as large as possible on your screen or largest possible
scaled by given scaling factor.

fig handle = ideal_axes(size, visible, scaling)

size = 2-element vector giving rows and columns

visible = ’on’ or ’off’ (optional)

scaling = number between 0 and 1 (optional)

fig_handle = the handle of the figure window created

(nothing)

ideal shape_float_spot_map.m

Purpose:

Usage:

Inputs:

Outputs:

The ideal_shape_float_spot_map function creates the spot map where
each spot has an identical shape, but the spots are allowed to
float within a small neighborhood from their expected location.

spot_coords = ideal_shape_float_spot_map(original_img, grid,
spot_mask, nbhood_rad)

original_img = microarray image

grid = grid of expected spot centers, where column 1 is row

spot_mask = 0/1 matrix giving the spot size and shape

nbhood_rad = length 2 vector giving the neighborhood radius
in rows and columns for allowing spots to float

spot_coords = matrix the same size as original_img where O = background
and n>0 indicates that pixel belongs to spot n

33

Requires:

centroid, ideal_spot_map

ideal_spot_map.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The ideal_spot_map function creates a map of which pixels
belong to which spot using the ideal spot size and shape.

spot_map = ideal_spot_map(grid, spot_mask, image_rows, image_cols)

grid = coordinates (row, column) of spot centers
spot_mask = a 0/1 matrix giving the size and shape of the
spot (O=background, 1=spot)

image_rows = number of rows in original image

image_cols = number of columns in original image

spot_map = a matrix of size image_rows by image_cols where
0 indicates background and n>0 indicates that

pixel belongs to spot n

(nothing)

image_stats.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The image_stats function collects statistics for
every spot on the image (both ideal and floating
spots)

[stats, names] = image_stats(img, mapl, map2, map3, nbhood_rad, grid)

img = the image

mapl = first (ideal) spot map (uinti16)

map2 = second (float) spot map (uint16)

map3 = third (srg) spot map (uinti16)

nbhood_rad = 2-element vector giving the radius
of the neighborhood to use in rows and columns

grid = grid of estimated spot centers as (row, column)
(used to reduce search area)

srg_seeds = seeds used in seeded_region_grower

stats = a matrix of statistics for each spot
vector of names for each column

names

spot_stats

34

initialize.m

Purpose: The initialize function creates output files, makes sure
the slide_info.mat and grid_fit.mat files exist and
gets the image files to analyze.

Usage: [files_to_open, summary_file_fid, all_results_fid,
experiment_diagnostic_dir] = initialize(curr_path)

Inputs: curr_path = the path containing the image files

Outputs: files_to_open = list of image files to analyze

summary_file_fid = the file id for the summary file
experiment_diagnostic_dir = if DIAG_ON==1 then this gives
the directory to store the experiment level diagnostics

Requires: choose_files, get_slide_info_diff_blocks, get_grid_initial_fit

instruction.m

Purpose: The instruction function displays an instruction that may be
linked to a figure. The message may be displayed as either
a message box, positioned so it does not overlap the figure
or as a title to the figure, if the figure is very large.

Usage: h = instruction(text, fig_handle, force_msgbox)

Inputs: text = instruction text
fig_handle = (optional) figure handle for positioning instruction
force_msgbox = (optional) 1=force separate message window, do

not display as title

Outputs: h = figure handle if separate message window is created,
otherwise -1

Requires: (nothing)

load_image.m

Purpose: The load_image function reads the image file and if
it is an RGB function it turns it into a 2D matrix
(assuming that all channels are identical).

Usage: original_img = load_image(filename)

35

Inputs: filename = the name of the image file
Outputs: original_image = the 2D image

Requires: read_img

maha _dist.m

Purpose: The maha_dist function calculates the Mahalanobis distances for
an array of data where each row is an observation.

Usage: score = maha_dist(data)

Inputs: data = array of numeric data

Outputs: score = vector of scores, 1 score for each row of data
Requires: (nothing)

make_synth_image.m

Purpose: The make_synth_image function creates a "synthetic" image
(matrix) of the slide using the same spot size and shape at
every position, and coloring the spots according to the given
vector of values.

Usage: [synth_image] = make_synth_image(spot_rowcol, spot_value,
spot_mask, plots_on)

Inputs: spot_rowcol = the centers of the spots on the image (row, col)
spot_value = a vector giving a value to be used to color
each of the spots
spot_mask = a 0/1 matrix giving the spot size and shape
plots_on = 0/1 indicator, where 1 = display images

Outputs: synth_image = a double-valued matrix that can be made into
an image
Requires: mat2index_img

mat2index_img.m

Purpose: The mat2index_img function takes a matrix and creates an
indexed image (either uint8 or uinti6).

36

mat2index_img(tmp_mat,tmp_min,tmp_max,u_8_16)
mat2index_img(tmp_mat)

Usage: [tmp_index_img]
[tmp_index_img]

Inputs: tmp_mat = matrix (double, uint8, uintl6) representing the
image
tmp_min = minimum value for scaling (optional)
tmp_max = maximum value for scaling (optional)
u_8_16 = indicator for uint8 or uintl6, can take values 8
or 16 (optional)

Outputs: tmp_index_img = an indexed image of type uint8 or uintl6

Requires: (nothing)

outline_spots_image.m

Purpose: The outline_spots_image function creates an image where the
spots are outlined.

Usage: new_img = outline_spots_image(img, grid, spot_mask)

Inputs: img = the slide image, values scaled from O to 255
grid = coordinates (row, column) of spot centers
spot_mask = a 0/1 matrix giving the size and shape of the
spot (O=background, 1=spot)

Outputs: new_img = the slide img with spots outlined in black
Requires: bwmorph (Matlab Image Processing Toolbox)

pad.m

Purpose: The pad function pads a vector with the same value

as the end of the vector
Usage: padded_vec = pad(vec, first, last)
Inputs: vec = the vector to be padded
first = # to add to beginning of vector
last = # to add to end of vector

Outputs: padded_vec = the padded vector

Requires: (nothing)

37

pad_matrix.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The pad_matrix function pads a matrix with the same
value as the outer edge of the matrix.

padded_mat = pad_matrix(matrix, rows, cols)
vec = the vector to be padded

rows = # of rows to add to matrix

cols = # to add to end of vector

padded_mat = the padded matrix

(nothing)

plot_points_img.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The plot_points_img function plots a set of points on an image
by condensing the image values into the range 0-254 and setting
points pixels to 255, thus making it possible to create and
save an image overlaid with points without displaying on

the screen.

img = plot_points_img(original_img, grid, spot_rad, enhance)

original_img = the image

grid = grid of points to plot, where column 1 is pixel row and
column 2 is pixel column

spot_rad = radius of spots to plot

enhance = ’enhance’ or ’noenhance’, whether or not to contrast-
enhance the image

img = image with points (to plot and display points, use a colormap
similar to this: my_colormap = [hot(255); 0, 1, 1]1)

estimate_quantiles, mat2index_img

read_img.m

Purpose:

Usage:

The read_img function imports image files of type .img

raw_img = read_img(filename)

38

Inputs:

Outputs:

Requires:

filename = name of image file
raw_img = matrix representing the image

(nothing)

seeded_region_grower4.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The seeded_region_grower4 function takes a segment of an
image and a seed and determines which pixels are similar
enough to the seed that they are part of the same class.

[Current_Region] = seeded_region_grower3(subimage, seedrc,
z_critval,Nmax, plots_on)

subimage = segment of an image

seedrc = two-element vector consisting of the row and column
of the starting seed

z_critval = z-score cutoff for admitting new pixels into
the spot

Nmin = min number of pixels in the spot

Nmax = max number of pixels in the spot

plots_on = a 0/1 indicator of whether to display plots

Current_Region = a 2-column matrix giving row, column
coordinates of each pixel in the spot

imdilate (Matlab Image Processing Toolbox)

solve_grid _spacing.m

Purpose:

Usage:

Inputs:

The solve_grid_spacing function takes the information about the
control spots and finds the row and column spacing. This
version assumes that blocks in a row or column may be

offset from each other, but the spot spacing within a block

is the same for all blocks. Must be used with the version of
create_grid_from_spacing that also assumes this.

spacing = solve_grid_spacing(spot_positions, init_spacing)

spot_positions = matrix giving pixel row and column of
the spots, along with spot row and column and
block row and column

init_spacing = spacing structure from the original
well that was created with user input (optional).

39

Outputs: spacing = structure giving the spot spacing, confidence
intervals and R™2 values of the linear model.

Requires: (nothing)

spot_centers.m

Purpose: The spot_centers function takes a grayscale image that
represents an array of spots and identifies the
positions of the spots as well as creating an image
of the "ideal" spot from the control spots.

Usage: [grid, ideal_spot, well_row_bd, well_col_bd, spacing] = ...
spot_centers(original_img, do_rotate, input_path,
output_path, plots_on)

Inputs: original_img = grayscale image (uint16) that has been
rotated so the array is parallel to
the image

do_rotate = 0/1 indicator, l=rotate before finding spots
input_path = the path where the slide layout file is stored
(this file contains information about the structure
of the slide, including blocks, control spots, etc)
output_path = the path in which to store the images of the
wells overlaid with the grid
plots_on = 0/1 indicator, 1=show all plots

Outputs: grid = matrix of spot center locations (not necessarily

integer values) (row, column)

ideal_spot = average spot intensities of the control spots
(to be used to create expected spot size and shape)

spacing = 6-column matrix giving row spacing, column spacing,
vertical and horizontal block spacing, and vertical
and horizontal offsets (row 1) along with 95} confidence
intervals for each (row 2 and 3) and associated
R"2 statistics (row 4)

Requires: rotation, imrotate (Matlab Image Processing Toolbox),

find_wells, create_well_map, create_ideal_spot,
align_grid_to_well

spot_shape_stats.m

Purpose: The spot_shape_stats function generates statistics about

40

the size and shape of the spots in the given spot map.
Usage: stats = spot_shape_stats(spot_map, num_spots)
Inputs: spot_map = the spot map (see ideal_spot_map.m for

description of a spot map)
num_spots = number of spots

Outputs: stats = matrix of statistics, where row i gives these
statistics for spot i: (area, vertical diameter,
horizontal diameter, eccentricity (vert/horiz diameter),
and expected area based on diameters)

Requires: (nothing)

spot_stats.m

Purpose: The spot_stats function calculates statistics on a spot and
its surrounding neighborhood.

Usage: [stats, names] = spot_stats(img, spot_mask)
Inputs: img = segment of image (may be uint8, uintl6 or double)
spot_mask = a 0/1 matrix indicating which pixels belong to

the spot. Must be same size as img.

Outputs: stats = a row vector of statistics
names = vector of names of each statistic

Requires: ars_sw_statl
strip.m
Purpose: The strip function removes elements from

the ends of a vector
Usage: stripped_vec = strip(vec, front, back)
Inputs: vec = the vector
front = # to remove from beginning
back = # to remove from end

Outputs: stripped_vec = the stripped vector

Requires: (nothing)

41

write_stats_to_file.m

Purpose:

Usage:

Inputs:

Outputs:

Requires:

The write_stats_to_file function writes the statistics out
to one or more files.

write_stats_to_file(stats, columns,
individual_results_filename, all_results_fid)

stats = the matrix of statistics

columns = a vector of column names

filenames = vector of filenames

permissions = vector of write permissions
(either ’w’ or ’a’)

(nothing)

(nothing)

42

