PNWD-3340 WTP-RPT-082 Rev. 0

Assessment of Sr/TRU Removal Mechanisms Using AN-102 and AN-107 Tank Waste Samples

R. T. Hallen J.G.H. Geeting M. A. Lilga F. V. Hoopes

September 2003

Prepared for Bechtel National, Inc. under Contract 24590-101-TSA-W000-00004

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Assessment of Sr/TRU Removal Mechanisms Using AN-102 and AN-107 Tank Waste Samples

R. T. Hallen J.G.H. Geeting M. A. Lilga F. V. Hoopes

September 2003

Test Specification: 24590-WTP-TSP-RT-02-013 Test Plan: TP-RPP-WTP-191 Test Exceptions: None R&T Focus Area: Pretreatment Testing Scoping Statement: B-38

Battelle—Pacific Northwest Division Richland, Washington 99352

COMPLETENESS OF TESTING

This report describes the results of work and testing specified by Test Specification 24590-WTP-TSP-RT-02-013 and Test Plan TP-RPP-WTP-191. The work and any associated testing followed the quality assurance requirements outlined in the Test Specification/Plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

Gordon Beeman, Manager WTP R&T Support Project Date

Summary

The River Protection Project-Waste Treatment Plant (RPP-WTP) baseline for pretreating Envelope C low-activity waste (LAW) at Hanford includes a precipitation step for removing radioactive strontium (Sr-90) and transuranic (TRU) isotopes before the waste is vitrified. The current design basis for the Sr/TRU removal process is the addition of strontium nitrate (0.075M), for isotopic dilution and Sr-90 precipitation as SrCO₃, and sodium permanganate (0.05M), for precipitation of the TRU elements, at 50°C and 1M additional sodium hydroxide. Section 5 of the *Research and Technology Plan*, prepared by Bechtel National, Inc., identifies further research needs. One need shown is to determine the mechanism of the Sr/TRU precipitation process (SOW Ref.: Sec. C.6 Std.2(a)(3)(ii)(B) and WBS No.: 1.2.10.01 and .02). Reaction mechanism assessment for the Sr/TRU precipitation process is addressed in Scoping Statement B-38, which is included in Appendix C of the *Research and Technology Plan*. In accordance with Scoping Statement B-38, Test Specification 24590-WTP-TSP-RT-02-013, and Test Plan TP-RPP-WTP-191, studies were conducted with actual tank waste samples to develop a better understanding of the TRU decontamination mechanisms.

Objectives

This report discusses investigations into the mechanism of the Sr/permanganate treatment process for removing Sr-90 and TRU from tank supernatant destined for immobilization as LAW. Experiments were conducted with actual waste samples from Envelope C tanks, AN-102 and AN-107. The purpose of these mechanistic studies was to determine the role of permanganate reactions in TRU decontamination. Of specific interest is the importance of various mechanisms, such as oxidation, absorption, precipitation, and ligand displacement, on TRU decontamination. Past studies, supported by additional results from these investigations, have demonstrated the effectiveness of Sr-90 removal by isotopic dilution and precipitation as SrCO₃ by added nonradioactive Sr(NO₃)₂.

Previous mechanistic investigations were conducted with waste simulant solutions. The results of the simulant tests were used to define experiments for actual waste testing. The results from the actual waste tests are provided in this report and support observations reported from the simulant studies. This is important because the earlier conclusions were based on the removal of surrogate elements, not actual TRU components. Although the chemistry is expected to be similar for the waste simulant solutions, the exact composition of organics and complexants in the actual waste is not fully known or understood. Consequently, tests with actual wastes provide further support for conclusions and recommendations based on simulant results.

Conduct of Testing

Small-scale radioactive tests (~20 mL) were conducted with tank waste samples from both AN-102 and AN-107. A series of tests with each tank waste were conducted approximately 1 month apart. Not all conditions tested were identical for each set of experiments. In all but one experiment (permanganate-only addition), $Sr(NO_3)_2$ was added first for Sr-90 precipitation. The strontium addition was followed by

the addition of a reagent targeted at TRU removal. In general, the experiments examined TRU removal by the impact of the Mn oxidation state [Mn(VII), Mn(VI), Mn(IV) as solid, and Mn(II)]; oxidation by a nonprecipitating, non-Mn-containing, reagent (periodate); and a complexant-competing, highly-charged cation, Zr(IV).

The decontamination of Sr-90 was examined as a function of treatment chemistry. The decontamination factors (DFs) were high (>10) for all experiments [except when no $Sr(NO_3)_2$ was added, Mn(VII) only], and for the Sr/periodate experiment with the AN-102 sample. In general, both wastes gave quite similar results for Sr-90 removal. The most notable differences between the two wastes were for the no-mix experiment and the Sr/periodate treatment. Examination of the [Sr] data shows that this is a direct result of the differences in Sr solubility for these treated samples. All other treatment schemes resulted in an overall decreased [Sr]. The results are consistent with the Sr-90 DF resulting from isotopic dilution and dependent on the final Sr concentration (amount of Sr that precipitates from solution).

The TRU removal is represented by the DF for the sum of alpha emitters. All of the reagents tested gave some level of TRU removal. For AN-102 waste, permanganate generally gave the highest DF, the exception being the high TRU DF for periodate addition. The results for Zr(IV) addition suggest that ligand exchange and precipitation alone do not result in as high TRU removal as when oxidation also occurs (when treated with permanganate). This result, combined with the results from different Mn oxidation states, suggests oxidation is important for TRU decontamination in AN-102. The results suggest that the TRU removal process is most effective for removing the tri-valent actinide ions, Am and Cm. These TRU elements make up approximately 95% of the TRU in the Envelope C wastes.

Ligand exchange, precipitation, and sorption appear to be most important for TRU removal from AN-107. Addition of reduced oxidation states of Mn [Mn(VI) and Mn(II)] was just as effective as permanganate. For AN-107, oxidation-only (periodate) resulted in significant TRU removal (75%), but experiments with no oxidation, Mn(II) and Zr(IV), gave higher TRU removal (>80%). Oxidation was not as important for TRU removal in AN-107 as with AN-102 treatment. When all of the data are examined, including the Sr data discussed above, it is concluded that AN-102 has significantly more EDTA/HEDTA-type complexants than AN-107.

From the simulant results, it was concluded that experiments involving an oxidant generally had higher levels of surrogate TRU element (lanthanides) removal than those in which only precipitation or absorption occurred. Some differences were noted between the simulant and actual waste data. In simulant studies, ligand displacement appeared to be important for Zr(IV), which resulted in similar removal as the permanganate treatment for most of the surrogate TRU elements. The concentration of Zr in the simulant samples (4h and 24h) was also very high. Presumably, Zr(IV) competed well for ligands while remaining soluble, and displaced other metal ions that then precipitated in the basic solution.

The results of the simulant no-mixing tests (1h after reagent addition) were confirmed with actual waste samples. Good mixing during the Mn reduction reactions was not as important as earlier expected, as long as the resulting precipitate was well mixed with the supernatant before the sample was filtered. This was expected for Sr-90 removal (isotopic exchange still occurs with the SrCO₃ precipitate), but surprising for permanganate treatment, since a large fraction of the waste was not directly contacted/oxidized with Mn(VII). However, the addition of preformed Mn(IV) solids to AN-102 waste was not as successful;

thus, it is important for precipitation to occur in the waste. The better removal by Mn solids formed in the waste is likely a result of a more active form of Mn precipitate. Results suggest that the precipitate contains substantial quantities of more reduced Mn (III and possibly II).

The time dependence of Sr-90 and TRU removal was examined for selected experiments. The TRU was found to be independent of time, similar to earlier reported bench-scale tests. The greatest time dependence (between the 4h and 24h samples) is noted for the Sr-90 DF, and is directly related to the corresponding [Sr]. This was the same result as observed in the simulant tests. The soluble Sr was nearly twice as high at 4h as 24h, which translates to a near twofold increase in the Sr-90 DF between the 4h and 24h samples. The overall Sr-90 DF is determined by the amount of isotopic dilution and final Sr concentration. Increasing the Sr-90 DF by waiting 24h to filter would have the same effect as doubling the initial nonradioactive Sr addition if filtration were to occur at 4h. These results suggest that crossflow filtration to remove solids should not begin until more than 4h after reagent addition.

Results and Performance Against Objectives

The objective of this work was to demonstrate that the Sr/TRU removal process provides adequate decontamination of Envelope C waste to meet the contract requirements for immobilized low-activity waste (ILAW). The initial waste from Tank AN-107 was higher in both Sr-90 and TRU compared to waste from Tank AN-102. The experimental data from both wastes can be used to predict the loading of Sr-90 and TRU (sum of alpha) expected in the ILAW at a fixed waste sodium loading of 15 wt% (contract limit >10 wt%). At 24h of reaction, the levels of Sr-90 and TRU in the supernatant from treatment of both wastes were quite similar. For Sr-90 loading, the levels were three times below the ILAW requirements of 20 Ci/m³ and for TRU loading, the levels were four times below the requirements of 100 nCi/g when treated by addition of nonradioactive Sr and sodium permanganate at reagent levels of 0.02M. These reagent levels are significantly below the baseline treatment conditions of 0.075M Sr and 0.05M permanganate.

Quality Requirements

Testing began in September 2002 and continued through January 2003 to assess the reaction mechanisms of Sr/TRU removal by added Sr(NO₃)₂ and permanganate. Battelle—Pacific Northwest Division (PNWD) implemented the RPP-WTP quality requirements by performing work in accordance with the River Protection Program-Waste Treatment Plant Technical Support Quality Assurance Project Plan (QAPjP) approved by the RPP-WTP Quality Assurance (QA) organization. PNWD addressed verification activities by conducting an Independent Technical Review of the final data report in accordance with Implementing Procedure QA-RPP-WTP-604 contained in the Waste Treatment Plant Support Project Quality Assurance and Description (WTPSP) Quality Assurance Manual. This review verified that the reported results were traceable, that inferences and conclusions were soundly based, and that the reported work satisfied the test plan objectives.

This page intentionally left blank.

Contents

Sumr	nary	iii
1.0	Introduction	1.1
2.0	Test Conditions and Experimental Procedures	2.1
	2.1 Description of Waste Samples	2.1
	2.2 Development of Test Conditions	2.1
	2.3 Experimental	2.3
	2.4 Chemical Analyses	2.3
	2.5 Quality Assurance Requirements	2.4
3.0	Results and Discussion	3.1
	3.1 Decontamination of Sr-90	3.1
	3.2 Decontamination of TRU	3.4
	3.3 Change in Chemical Composition	3.6
	3.4 Comparison of AN-102 Active and Simulant Test Results	3.10
	3.5 Estimated Sr-90 and TRU Levels in ILAW Glass	3.11
4.0	Conclusions and Recommendations	4.1
5.0	References	5.1
Appe	ndix A - Sample Data	A.1
Appe	ndix B - Analytical Data	B.1

Figures

3.1.	Strontium-90 Decontamination Factors for Treated AN-102 Samples as a Function of	
	Added Reagent and Reaction Time.	3.2
3.2.	Total Strontium Solubility in the Treated AN-102 Samples as a Function of Reagent	
	Addition and Reaction Time	3.2
3.3	Comparison of Sr-90 DF for AN-102 and AN-107 Experiments	3.4
3.4	TRU (Sum of Alpha) Decontamination Factors for Treated AN-102 Samples as a Function	
	of Reagent Addition and Reaction Time	3.4
3.5	Comparison of Decontamination Factors for Total Alpha, the Various Isotope Pairs, and	
	the Sum of Alpha	3.5
3.6	Comparison of TRU (Sum of Alpha) DF for AN-102 and AN-107 Waste Samples	3.6
3.7	Fe and Mn Levels in AN-102 and AN-107 Samples After Addition of Sr	
	and Permanganate	3.9
3.8	Comparison of Strontium Solubility for Active AN-102 and Inactive AN-102/C-104 Waste	
	Blend Treated with Similar Reagents and Sampled	3.10
3.9	Percent Removal of Target ICP Metals for Selected Samples	3.11

Tables

Table 2.1. Test Matrix for Experiments Using Tank AN-102 Waste Samples	
Table 3.1. Isotopic Exchange Ratio, [Sr-90]/[Sr] in µCi/µg, for AN-102 Tests	
Table 3.2. AN-102 Chemical Composition and Change on Treatment as Percent Removal	
Table 3.3. AN-107 Chemical Composition and Change on Treatment as Percent Removal	
Table 3.4. Sr-90 and TRU ILAW Glass Loadings for 15 wt% Waste Na ₂ O	

1.0 Introduction

This report summarizes work performed by Battelle—Pacific Northwest Division (PNWD) in support of the River Protection Project-Waste Treatment Plant (RPP-WTP) at Hanford. Before the liquid (supernatant) fraction of Envelope C^(a) wastes (Tanks AN-107 and AN-102) can be disposed of as low-activity waste (LAW), pretreatment is required to remove radioactive strontium (Sr-90) and transuranic (TRU) elements in addition to Cs-137 and the entrained solids. The Sr-90 removal process consists of isotopic dilution by nonradioactive Sr(NO₃)₂ addition and precipitation of SrCO₃. The TRU removal process involves addition of permanganate, stepwise manganese reduction, Mn(VII) to Mn(VI) to Mn(IV); precipitation of MnO₂; and concomitant TRU precipitation. This TRU decontamination method is based on work conducted at Pacific Northwest National Laboratory by Orth et al. (1995). Entrained solids and Sr/TRU precipitate are to be removed via crossflow filtration; Cs-137 is to be removed by ion exchange. In previous work for the RPP-WTP contractor, PNWD and the Savannah River Technology Center demonstrated Sr/TRU removal with actual waste samples from Envelope C tanks (Hallen et al. 2000a,b; Hallen et al. 2002a,b,c; Nash et al. 2000a,b) by added nonradioactive Sr and permanganate.

Optimized treatment conditions were identified in small-scale tests (20 mL) with AN-102 waste samples (Hallen et al. 2002a). Hallen et al. (2002b,c) conducted additional small-scale and bench-scale tests with a waste blend consisting of AN-102 waste and C-104 high-level waste (HLW) pretreatment streams. This additional testing verified that the optimized process conditions, which minimized reagent addition (0.02M) and reduced the process temperature to ambient ($25 \pm 5^{\circ}$ C), provided adequate Sr-90 and TRU removal to meet immobilized low-activity waste (ILAW) requirements. Results from the bench-scale test established the mechanism of Sr-90 removal (Hallen et al. 2002c). Before Sr addition, the waste was undersaturated with Sr. Sampling the reaction mixture 18 min after Sr(NO₃)₂ addition showed the total Sr concentration was near 200 µg/g and that isotopic dilution of Sr-90 in the supernatant was complete. With increased reaction time, the Sr-90 decontamination factor (DF) continued to increase as a result of decreased total Sr concentration. A decrease in temperature resulted in increased total Sr concentration, which decreased the Sr-90 DF (Hallen et al. 2002a).

The primary mechanism for Sr-90 removal was isotopic dilution by added nonradioactive $Sr(NO_3)_2$ and $SrCO_3$ precipitation. The addition of permanganate increased the Sr-90 decontamination, likely a result of oxidation of the chelating agents and precipitation of additional $SrCO_3$. The Sr-90 DFs increased significantly with time. However, this increased Sr-90 decontamination was not a result of increased isotopic exchange or ligand oxidation, but, rather, continued precipitation, i.e., reduction of total soluble Sr concentration. Isotopic exchange was found to be complete 18 min after reagent addition was complete (Hallen 2002c). Therefore, the kinetics of the Sr decontamination reaction were shown to be important; more than 4h was required to approach the final concentration. When the sample was cooled to 22-25°C for filtration testing, the Sr concentration increased (Sr-90 DF decreased) as a result of the retrograde solubility of SrCO₃ (Felmy and Mason 2003). Therefore, in addition to isotopic dilution, the other important factor in decontamination is the total Sr concentration (distribution of Sr between the solution and solid phases), which is a function of the carbonate concentration, complexant concentration,

⁽a) Envelope designations are explained in DOE (2000).

temperature, and time. Both AN-102 and AN-107 have such high levels of carbonate (>0.5M) that the carbonate concentration has little impact on SrCO₃ solubility (Felmy and Mason 2003).

The TRU removal from AN-102 diluted waste (Hallen et al. 2002a) and the AN-102/C-104 waste blend (Hallen et al. 2002c) was consistent. The TRU decontamination in the AN-102/C-104 waste blend occurred after the permanganate was added (Hallen et al. 2002b,c). The TRU removal exceeded the requirements for ILAW glass by a factor of 5. This result suggested that blending had no impact on TRU removal. The initial concentrations of TRU elements were also significantly decreased with the waste blending, such that the waste without treatment was below the ILAW levels.

Previous work has shown that permanganate addition to waste results in reduction to a variety of Mn species (Gauger and Hallen 2001). Oxidation of formate and organics in the waste reduces Mn(VII) to Mn(VI), then to Mn(IV) and likely lower Mn oxidation states. Depending on the organic compounds present, soluble Mn(IV) complexes can form, but eventually the Mn precipitates from solution. Further investigations of the Mn reaction chemistry relevant to waste processing were performed with an AN-102/C-104 waste blend simulant (Lilga et al. 2003). The purpose of those mechanistic studies was to determine the importance of oxidation, absorption, precipitation, and ligand displacement on decontamination. The results showed that permanganate is the preferred reagent because all potential mechanisms for TRU removal are operative: oxidation, absorption, precipitation, and ligand displacement. Results from the simulant studies were used to define the conditions for the active (actual) waste tests described in this report.

The objective of the work reported here was to repeat the earlier reaction mechanism experiments (Lilga et al. 2003), using actual waste samples, and determine if similar reaction mechanisms are important. The experiments discussed in this report were performed in radioactive hot cells using approximately 20-mL samples of waste with various amounts of added reagents. Samples of both AN-102 and AN-107 were available for the actual waste tests so potential differences between the two Envelope C wastes could be identified. Earlier results (Hallen et al. 2000a,b and Nash et al. 2000a,b) suggested that AN-107 may be more difficult to treat and may require higher levels of reagent addition to meet the ILAW requirements.

The results from reaction mechanism tests with actual waste samples from AN-102 and AN-107 are presented in this report. Test conditions and experimental procedures are described in Section 2.0. Results from the tests are discussed in Section 3.0. The major conclusions and recommendations are given in Section 4.0. The appendices include the quantities of samples and reagents used for each test matrix, and provide all of the analytical data.

2.0 Test Conditions and Experimental Procedures

Experiments probing the mechanism of Sr-90 and TRU removal used actual samples of AN-102 and AN-107 waste that had been shipped to PNWD for integrated process testing. The waste samples, test conditions, experimental procedures, and chemical analyses are described below. Additional details are provided in Appendices A and B.

2.1 Description of Waste Samples

PNWD received two bottles of AN-102 tank waste from Hanford's 222-S Laboratory. The material was originally collected by grab sampling of AN-102 from riser 022 over the period August 7 through 11, 2000, and shipped to the 222-S Laboratory in Hanford's 200 West Area. The sample material was transferred to 125-mL bottles that were shipped to the Radiochemical Processing Laboratory (RPL) in the 300 Area, where they were inspected on receipt. The two bottles used for testing in this study contained a settled layer of light brown solids, with a dark brownish/black standing liquid. The samples were assumed to be similar in composition to the earlier AN-102 samples characterized by Urie et al. (2002). Analyses determined the AN-102 samples contained approximately 0.25M free hydroxide, 1M carbonate (total inorganic carbon, TIC), and 2M total organic carbon (TOC). The samples were diluted with an appropriate amount of 0.01M NaOH to give a diluted feed of approximately 5.5M sodium prior to reagent addition. Free OH⁻ in the diluted samples was determined, by titration, to be 0.14M.

A 500-mL bottle of AN-107 diluted feed (designated AN-107 UFC, Urie et al. 1999a) had been retained for future testing during the bench-scale testing with AN-107 (Hallen et al. 2000b). Urie et al. (1999a) had prepared the diluted feed to a target of 7.7M sodium and 1.1M added hydroxide. AN-107 was hydroxide-deficient when originally received (Urie et al. 1999b), but the diluted feed preparation, addition of 1.1M hydroxide, resulted in a free hydroxide content of 0.7M. The caustic adjustment resulted in 86.4% of the total sodium as waste sodium. The carbonate (TIC) and TOC concentrations were determined to be 1.4M and 2.5M, respectively. Since the waste had been stored in the hot cell and aged for approximately 4 years, samples were taken and reanalyzed before the experiments were begun. The sodium concentration was determined to be 8.6M by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Samples were analyzed to confirm free hydroxide was still present before testing was initiated. Titration determined the AN-107 UFC sample contained 0.55M free hydroxide. Since excess free hydroxide was still present in the AN-107 diluted feed, no caustic adjustment was required. The [Na] data were used to determine the quantity of 0.01M NaOH to add to the AN-107 UFC sample to yield approximately 5.5M sodium in the waste prior to treatment.

2.2 Development of Test Conditions

Experimental conditions were defined using the results from earlier reaction mechanism studies with AN-102/C-104 waste blend simulant (Lilga et al. 2003). Based on these studies, minimum levels (0.02M) of reagents were added to determine the differences in the effectiveness of treatment conditions. The addition of 0.02M $Sr(NO_3)_2$ and permanganate showed adequate Sr-90 and TRU decontamination (Hallen et al. 2002a). The test matrix for each tank sample was slightly different. The total number of tests was

held to a minimum to limit the volume of waste used and to keep associated analytical costs within the budget. This information was used to construct the test matrices shown in Tables 2.1 and 2.2 for AN-102 and AN-107, respectively. The target concentrations listed in the test matrices are based on the final composition after addition of all reagents. Both test matrices included a repeat of the second experimental conditions as the final experiment in the matrix to examine the variability in conducting duplicate experiments. The quantity of each reagent to add to the waste to achieve these values, as well as the actual quantities that were used, are listed in Appendix A.

Experiment Number	Sr ⁺²	Mn(VII)	Mn(VI)	Mn(IV)	Mn(II) ^(a)	Other ^(b)	Stir	Added OH ⁻
RX-01							No	AR ^(c)
RX-02	0.02M	0.02M					Yes	AR
RX-03		0.02M					Yes	AR
RX-04	0.02M	0.02M					Yes	0.3M
RX-05	0.02M	0.02M					No ^(d)	AR
RX-06	0.02M		0.02M				Yes	AR
RX-07	0.02M			Solid ^(e)			Yes	AR
RX-08	0.02M				0.02M		Yes	AR
RX-09	0.02M					IO4-(t)	Yes	AR
RX-10	0.02M					Zr(IV) ^(g)	Yes	AR
RX-11	0.02M	0.02M					Yes	AR

Table 2.1. Test Matrix for Experiments Using Tank AN-102 Waste Samples

(a) Mn^{+2} precipitates as $Mn(OH)_2$, which air oxidizes to Mn(IV).

(b) Periodate (IO_4) is a non-precipitating oxidant, and zirconium, Zr(IV), is a non-oxidizing precipitant.

(c) $AR = as received, 0.14M OH^-$; no added hydroxide.

(d) Mix sample after 1h of reaction.

(e) Solid reagent, freshly precipitated MnO(OH)(ONa) \cdot xH₂O, same number of Mn equivalents added.

(f) Solid reagent, KIO_4^- . (g) 0.02M Zr(NO₃)₄.

Table 2.2. Test Matrix for Experiments Using Tank AN-107 Waste Samples

Experiment Number	Sr ⁺²	Mn(VII)	Mn(VI)	Mn(II) ^(a)	Other ^(b)	Stir
SS-01						No
SS-02	0.02M	0.02M				Yes
SS-03	0.02M		0.02M			Yes
SS-04	0.02M	0.02M				No ^(c)
SS-05	0.02M			0.02M		Yes
SS-06	0.02M				IO4 ^{-(d)}	Yes
SS-07	0.02M				Zr(IV) ^(e)	Yes
SS-08	0.02M	0.02M				Yes

(a) Mn^{+2} precipitates as $Mn(OH)_2$, which air oxidizes to Mn(IV).

(b) Periodate $(\overline{IO_4})$ is a non-precipitating oxidant, and zirconium, Zr(IV), is a non-oxidizing precipitant.

(c) Mix sample after 1h of reaction.

(d) Solid reagent, KIO_4 .

(e) $0.02M Zr(NO_3)_4$.

2.3 Experimental

The waste samples were diluted with 0.01M NaOH just prior to waste testing in the Shielded Analytical Laboratory hot cells (in the RPL). The small-scale experiments were conducted in 60-mL sample jars with approximately 20 mL of the diluted tank waste. The reagents were added rapidly to the wastes with an adjustable pipette, in the order listed in Tables 2.1 and 2.2 (from left to right), at ambient hot cell temperature, and mixed with magnetic stir bars when specified. The ambient hot cell temperatures ranged from 26°C to 28°C on the days of these tests. Each series was conducted over a 2-day period, approximately 1 month apart. Samples were collected at the specified times of 4h and/or 24h and filtered immediately with a 0.2-µm disposable syringe filter. Duplicate samples of initial waste, RX-01 and SS-01, were filtered, along with the other samples, but no chemical reagents were added. The samples for chemical and radiochemical analyses were acidified and diluted to the appropriate levels for the analytical method. Samples for titration were submitted without any chemical addition.

Sample RX-06, Mn(VI) addition, was spilled during weighing after the reagent addition. The sample could not be recovered, and no additional waste remained to re-run this condition. The Mn(VI) test condition, SS-03, was examined with AN-107 waste to provide data for reaction mechanism assessment.

Stock solutions of the reagents were prepared for addition to the waste. The experiments used 0.44M solutions of $Sr(NO_3)_2$, $NaMnO_4$, $MnCl_2$, and $Zr(NO_3)_4$. The Mn(VI) solution was freshly prepared before each series of tests by reducing $NaMnO_4$ (0.44M) with an equal volume of 0.22M $NaHCO_2$ in 2M NaOH. The resulting solution was 0.22M Mn(VI), and 2 mL were added to approximately 20 mL of waste to give the target of 0.02M Mn addition. The 1M free hydroxide stabilized the Mn(VI) solutions for up to 24h after preparation. Without additional hydroxide, the Mn(VI) would disproportionate to Mn(VI) and Mn(V), ultimately leading to loss of Mn(VI) from the solution.

The Mn(IV) solids were prepared by the NaMnO₄ reduction with NaHCO₂ in 0.1M NaOH. After complete precipitation of the Mn (no remaining solution color), the solids were collected on a filter, washed with deionized water, and then dried in a vacuum oven. A sample of the dried solids was digested and analyzed by ICP-AES. The formula weight of the Mn(IV) solids was determined to be 205 grams per mole of Mn. The target Mn addition of 0.02M is equal to 0.09 grams of solids added for each approximately 20 mL of sample. Potassium periodate, target 0.06M or 0.3 grams, was added as a solid because of its low solubility in water at room temperature. Caustic addition to RX-04 involved adding 1 mL of 6.6M NaOH to approximately 20 mL of waste. The actual quantities of waste and reagents used are given in Appendix A.

The test specification stated the temperature for these tests as $25 \pm 5^{\circ}$ C. The ambient hot cell temperature on the days of these tests varied from 26°C to 29°C, which was within the temperature requirement; hence, no external heating or cooling was provided for the samples during this testing.

2.4 Chemical Analyses

All of the chemical analyses were conducted at PNWD. The test specification designated the analytes of interest and minimum reportable quantities (Abodishish 2002). Alpha energy analysis was used to

determine the TRU content based on the reported sum of the alpha emitters. Total alpha counting was conducted on the RX samples only. The Sr-90 concentration was determined by chemical separation followed by beta counting. Sodium concentration was determined by ICP-AES, as were the other metals listed in the test instructions. Selected samples were also analyzed by direct titration with 0.2M HCl to determine the free hydroxide concentration (free hydroxide in the sample corresponds to the first equivalence point). All of the analytical results are included in Appendix B.

2.5 Quality Assurance Requirements

PNWD implements the RPP-WTP quality requirements by performing work in accordance with the River Protection Program-Waste Treatment Plant Technical Support Quality Assurance Project Plan (QAPjP) approved by the RPP-WTP Quality Assurance (QA) organization. This work was performed to the quality requirements of NQA-1-1989 Part I, Basic and Supplementary Requirements, and NQA-2a-1990, Subpart 2.7. These quality requirements are implemented through the Waste Treatment Plant Support Project Quality Assurance Requirements and Description (WTPSP) Quality Assurance Manual. The analytical requirements for this work were implemented through the Laboratory's internal QA Manual, Conducting Analytical Work in Support of Regulatory Programs.

Experiments that are not method-specific were performed in accordance with QA Implementing Procedures QA-RPP-WTP-1101 "Scientific Investigations" and QA-RPP-WTP-1201 "Calibration Control System," assuring that sufficient data were taken with properly calibrated measuring and test equipment to obtain quality results. All QA Implementing Procedures are contained in the WTPSP Quality Assurance Manual.

PNWD addressed internal verification and validation activities by conducting an Independent Technical Review of the final data report in accordance with Implementing Procedure QA-RPP-WTP-604. This review verified that the reported results were traceable, that inferences and conclusions were soundly based, and the reported work satisfied the test plan objectives.

BNI's QAPjP, 24590-QA-0001, is not applicable since the work was not performed in support of environmental/regulatory testing, and the data should not be used as such.

3.0 Results and Discussion

The results of experiments with AN-102 and AN-107 waste to assess the reaction mechanisms for the Sr/TRU removal process are discussed in this section.

3.1 Decontamination of Sr-90

Each series of experiments using AN-102 and AN-107 waste involved multiple samples, analyzed as multiple analytical batches, and provided analytical results to determine the change in waste composition upon treatment. Duplicate samples of each starting waste were analyzed after filtration to determine the initial composition of the supernatant. The radionuclide composition of the treated samples was compared with the initial composition to determine the extent of decontamination. The DF for a specific radionuclide is defined as the concentration of the component in the initial waste divided by the concentration after treatment, corrected by the amount of dilution that occurred during sample treatment:

$$DF = [A]_i / ([A] * MD)$$

where $[A]_i$ is the concentration of component A per mass in the initial sample; [A] is the concentration of component A per mass in the treated sample; and MD is the mass dilution, final mass of treated solution divided by the initial mass of solution. The final mass is determined by summing the mass of initial waste and all dilutions, adjustments, and/or reagent additions.

The DFs for Sr-90 from treated AN-102 samples are shown in Figure 3.1. Sr-90 removal was observed for all experiments where nonradioactive $Sr(NO_3)_2$ was added, consistent with the mechanism for Sr-90 removal involving isotopic dilution and SrCO₃ precipitation. The addition of permanganate alone resulted in no Sr-90 removal; nonradioactive Sr must be added to remove Sr-90 from Envelope C wastes. The Sr-90 DFs were greatly increased by the solids digest time of 24h versus 4h. The added free hydroxide (0.3M) had little impact on the Sr-90 DFs compared with treatment of the waste without any additional hydroxide (0.1M). The no-mix experiment for the first hour of reaction did not have a significant impact on the Sr-90 DF, supporting the earlier conclusions from simulant tests that mixing during reagent addition and initial permanganate reduction are not important as long as the treated samples are well mixed before filtration. The oxidation state of the Mn added had little impact on the Sr-90 DF. Sr-90 removal was less effective when combined with periodate addition, compared with other experiments where $Sr(NO_3)_2$ was added. Nonradioactive Sr and Zr(IV) addition gave a Sr-90 DF that was nearly as high as permanganate. These results suggest that complexant oxidation is not important for Sr-90 removal and that isotopic dilution and SrCO₃ precipitation are the primary mechanisms.

Addition of 0.02M nonradioactive Sr would result in 1400 μ g/g [Sr] if SrCO₃ precipitation did not occur. The [Sr] data for the AN-102 tests are shown in Figure 3.2. Note that the relatively high concentration of Sr for periodate addition corresponds to precipitation of 84% of the added Sr, and the highest DFs (permanganate addition) correspond to precipitation of 94% of the added Sr. The [Sr] data also show the same consistent trend as found in earlier tests: at 4h, the total [Sr] is still relatively high; after 24h, the values are generally half the 4h values, resulting in a doubling of the Sr-90 DF. However, the

Figure 3.1. Strontium-90 Decontamination Factors for Treated AN-102 Samples as a Function of Added Reagent and Reaction Time. Target Reagent Levels: 0.02M for all except OH^- (target of an additional 0.3M) and IO_4^- (target concentration of 0.06M).

Figure 3.2. Total Strontium Solubility in the Treated AN-102 Samples as a Function of Reagent Addition and Reaction Time

[Sr] is not the only difference in DF for the 4h samples. When the isotopic dilution ratio, Sr-90/[Sr], is examined (Table 3.1), three of the four samples taken at 4h of reaction time do not appear to have reached the final equilibrium ratio (~0.018 μ Ci/ μ g). The experimental average of the 24h samples and the calculated ratio based on the quantity of added Sr(NO₃)₂ agree quite well, showing that isotopic exchange is complete. The slow isotopic exchange for the 4h samples is likely a result of the procedure used for the small-sample tests with reagent addition via an autopipetter, where the Sr(NO₃)₂ solution is injected rapidly into the waste solution. In the bench-scale tests where complete isotopic exchange was noted at 18 min, the Sr solution was added slowly over 6 min with continuous stirring by an overhead-driven impeller. The undersaturation of Sr in the initial waste can be seen by comparing the [Sr] in the initial waste (~1 μ g/g) to the [Sr] in any of the samples with added nonradioactive Sr (85-228 μ g/g).

The results for experiments with AN-107 waste can be compared to those for AN-102 waste. The comparison of Sr-90 DFs at 24h of reaction is shown in Figure 3.3. Sr-90 removal was high (DF >10) for the AN-107 waste and in most cases quite similar to AN-102. The corresponding TRU removal process did not significantly impact Sr-90 removal from AN-107 as was noted for AN-102. Only minor differences appear for Sr-90 removal from the two Envelope C wastes for the no-mix and periodate experiments. The AN-102 sample results appear to be more sensitive to changes in process conditions than for corresponding treatment conditions with AN-107 samples. The carbonate (TIC) concentrations are high (>0.5M) in both these wastes and likely have little impact on the differences observed, as only 0.02M is consumed on SrCO₃ precipitation.

	[Sr-90]	, μCi/g	[Sr], μg/g	[Sr-90]/[Sr], μg/g		
Conditions	4h	24h	4h	24h	4h	24h	
Initial	28	28	[1.2]	[1.1]	24.1	25.8	
Sr/Mn(VII)	4.4	1.5	132	85	0.0330	0.0177	
Sr/Mn(VII) dup	2.5	1.5	149	88	0.0165	0.0166	
Mn(VII)		22		[1.0]		22.2	
Sr/Mn(VII)/OH ⁻	4.3	1.7	151	85	0.0281	0.0198	
Sr/Mn(VII) no mix	5.3	1.3	141	85	0.0373	0.0150	
Sr/Mn(IV) solid		1.5		89		0.0164	
Sr/Mn(II)		1.7		101		0.0172	
Sr/IO ₄ ⁻		4.7		228		0.0204	
Sr/Zr(IV)		2.0		111		0.0180	
				Exper	imental Avg.	0.0176	
(MDL) but less than the es	greater than the stimated quanti	method detect tation limit (EQ	ION limit DL), with		Stddev	0.0018	
errors likely to exceed 159	%.			Calculated ratio 0.0185			

Table 3.1. Isotopic Exchange Ratio, [Sr	-90]/[Sr] in µCi/µg, for AN-102 Tests
---	---------------------------------------

Figure 3.3. Comparison of Sr-90 DF for AN-102 and AN-107 Experiments

3.2 Decontamination of TRU

The effectiveness of the various treatment conditions for TRU removal from AN-102 can be seen by examining the DFs for the sum of the alpha shown in Figure 3.4. The DFs were significantly higher when

Figure 3.4. TRU (Sum of Alpha) Decontamination Factors for Treated AN-102 Samples as a Function of Reagent Addition and Reaction Time

oxidation occurred, i.e., experiments where permanganate, Mn(VII), or periodate was added. The periodate treatment (oxidation) showed even greater TRU removal than permanganate, possibly because the target concentration of periodate was 0.06M, which corresponds to about twice the oxidation equivalence as permanganate at 0.02M. Process changes coupled with permanganate addition (no Sr addition; hydroxide added; or no mixing for the first hour of reaction) did not significantly impact TRU decontamination. Precipitation, sorption, and ligand exchange by reduced states of Mn (IV and II) and Zr(IV) resulted in only low levels of TRU removal, DF ~2 (50% removal). The precipitation of Mn solids in the waste solution (no mix) resulted in higher TRU DFs than addition of preformed Mn(IV) solids. The high organic content in the waste solution likely resulted in the formation of more reduced Mn solids, which were more effective at TRU removal than preformed Mn(IV) solids. There was very little difference in time dependence in the TRU DFs, with little difference between DFs at 4h and 24h sample times.

Two different radiochemical methods were used to determine the alpha content of the waste samples. Individual isotope pairs were determined by the alpha counting technique and added together to give the sum of alpha. Total alpha was determined in a separate technique by counting the entire sample. The DFs for the two techniques and individual isotopes can be plotted individually for comparison (Figure 3.5). DFs for the two techniques and Am and Cm isotopes are very similar. The Am and Cm

Figure 3.5. Comparison of Decontamination Factors for Total Alpha, the Various Isotope Pairs, and the Sum of Alpha (Treated AN-102 at 24h)

isotopes are most likely in the most stable +3 oxidation state. Since Am-241 accounts for approximately 90% of the TRU in AN-102 waste, the Pu-238+Am-241 data can be considered all Am-241. The Cm isotopes, primarily 243 and 244, account for approximately 5% of the total TRU. The Cm isotope data have greater variability due to increased analytical error associated with the very low concentrations of these isotopes. The DFs for the Pu isotopes (Pu-239+240) are consistently lower than found for the Am and Cm isotopes. Both Pu and U+Np isotopes were reported to have lower DFs than Am and Cm in earlier bench-scale tests (Hallen et al. 2002c). Permanganate treatment is most effective for removing the +3 valence TRU elements.

Treatment of AN-107 waste under similar conditions gave significantly different results than AN-102; see the comparison shown in Figure 3.6. TRU removal from AN-107 was significantly higher for most treatment schemes compared to the corresponding treated AN-102 sample. The results for Mn(II), IO₄⁻, and Zr(IV) show that oxidation is not as important for TRU decontamination in AN-107 waste. This was somewhat surprising because AN-107 is initially higher in TOC and concentrations of soluble Fe and Mn. Co-precipitation, sorption, and ligand exchange result in high TRU removal from AN-107 waste. AN-102 waste may have higher concentrations of active complexants that require oxidation for effective TRU removal.

Figure 3.6. Comparison of TRU (Sum of Alpha) DF for AN-102 and AN-107 Waste Samples (24h data)

3.3 Change in Chemical Composition

ICP-AES data can be used to determine the impact of the various process conditions on the chemical composition of the supernatant. The impact of the process condition on the chemical composition of the treated supernatant is calculated as a percent removal relative to the starting waste. Table 3.2 shows the composition of the AN-102 starting waste in μ g/g, and the percent change that occurred for the various treatment conditions. Similar data are shown for AN-107 waste and treated samples in Table 3.3.

	Initial Waste,	Sr/Mn % Rer	(VII), noved	Sr/Mn(V % Rei	/II) Dup, moved	Mn(VII), % Removed	Sr/Mn() % Ref	/II)/OH, moved	Sr/Mn(V % Re	II) No Mix, emoved	Sr/Mn(IV), % Removed	Sr/Mn(II) , % Removed	Sr/IO ₄ ⁻ , % Removed	Sr/Zr(IV), % Removed
Analyte	µg/g	4h	24h	4h	24h	24h	4h	24h	4h	24h	24h	24h	24h	24h
Al	4,890	6	4	-4	-3	8	5	6	6	5	-2	-5	-1	-2
Ca	201	17	19	18	20	7	19	21	19	22	19	20	45	21
Cd	27	5	3	-1	-2	7	5	5	6	6	-1	-3	17	-2
Co	[2]	-1	0	10	10	-1	1	-4	15	15	8	8	9	6
Cr	84	26	22	24	23	27	25	18	34	39	24	39	6	20
Cu	7	6	5	7	7	8	11	13	12	11	6	3	10	5
Fe	8	72	73	60	74	74	71	72	75	83	49	61	70	37
K ^(a)	935	4	3	-7	-7	6	5	5	7	8	-6	-8	-210	-7
La	[7]	61	71	70	78	44	73	70	68	79	59	66	>79	49
Mn ^(a)	[2]	-96	>39	-53	37	2	-51	>35	-72	-126	-23	-233	47	>35
Мо	22	3	2	1	0	5	4	3	5	6	1	-3	0	0
Na ^(a)	98,700	5	4	-4	-6	8	0	0	0	3	-4	-5	-4	-4
Nd	14	63	63	73	72	59	64	48	70	78	43	60	81	27
Ni	181	4	2	1	1	5	4	3	5	4	2	-1	1	0
Р	825	6	4	1	1	7	6	5	8	7	1	-1	-1	9
Pb	82	11	10	11	11	12	18	18	21	18	22	13	36	23
Sr ^(a)	[1]	-12,600	-8,100	-14,300	-8,400	20	-15,100	-8,500	-13,500	-8,100	-8,200	-9,700	-21,300	-10,600
W	[57]	6	7	1	2	8	6	5	9	8	8	-1	-2	-1
Zr ^(a)	[3]	57	61	61	64	62	57	62	49	62	30	45	53	-3,705
(a) Reage	ent contair	ning this ele	ment was	added to s	some samp	oles during tes	ting, whic	h resulted	in increase	d concentrat	ion (a negative	percent remov	val).	

Table 3.2. AN-102 Chemical Composition and Change on Treatment as Percent Removal

># = analyte was below the method detection limit (MDL) and % removal given as greater than the MDL.

Values in brackets [] are greater than the MDL but less than the estimated quantitation limit (EQL), with errors likely to exceed 15%.

	Initial Waste,	Sr/Mr % Re	n(VII), moved	Sr/Mr Du % Rer	n(VII) 1p, noved	Sr/Mn(VI), % Removed	Sr/Mn(II), % Removed	Sr/Mn(VII) No Mix, % Removed	Sr/IO ₄ ⁻ , % Removed	Sr/Zr(IV), % Removed
Analyte	µg/g	4h	24h	4h	24h	24h	24h	24h	24h	24h
Al	1740	-2	0	2	1	1	3	1	2	5
Ca	336	20	19	25	18	18	20	16	24	25
Cd	27	0	0	2	0	1	2	2	2	3
Co	2	4	0	-2	-2	-2	-4	-5	4	-7
Cr	43	26	21	24	20	24	52	29	-9	39
Cu	9	0	0	2	1	2	2	2	3	3
Fe	242	97	97	97	97	97	93	85	91	83
K ^(a)	732	-5	-4	0	0	-3	-1	-3	-232	3
La	[6]	79	79	>75	80	77	70	77	76	75
Mn ^(a)	51	90	97	90	96	96	78	82	96	88
Mo	15	2	2	1	1	2	3	-1	1	2
Na ^(a)	100,000	-2	2	2	0	-1	6	5	2	3
Nd	19	78	77	76	76	75	65	75	72	72
Ni	222	1	1	-1	-1	2	3	2	0	1
Р	302	0	0	1	1	1	1	1	1	4
Pb	102	29	30	24	25	30	32	33	20	48
Sr ^(a)	[3]	-6400	-2800	-5800	-3200	-3000	-3500	-3100	-4700	-3400
W	75	2	0	4	3	1	2	3	3	5
Zr ^(a)	15	79	82	80	82	82	73	79	67	-137
(a) Reagent $># = ant$	containing alyte was be	this eleme low the m	nt was add ethod dete	led to some ction limit	e samples (MDL) ai	during testing, wh nd % removal give	ich resulted in incr n as greater than th	reased concentration he MDL.	(a negative percer	t removal).

Table 3.3. AN-107 Chemical Composition and Change on Treatment as Percent Removal

Values in brackets [] are greater than the MDL but less than the estimated quantitation limit (EQL), with errors likely to exceed 15%.

Figure 3.7. Fe and Mn Levels in AN-102 and AN-107 Samples After Addition of Sr and Permanganate

Both treated wastes showed similar trends with the analytes that had little or no significant change for the various treatments: Al, Cd, Co, Cu, K, Mo, Ni, and P. It is important that both Al and P stay in the supernatant that goes to the LAW glass melter, because these components can limit waste loading in the glass. Chromium is also an important element that is preferred in the supernatant, because it can limit waste loading in the glass. Some Cr is removed when permanganate is added. Some differences were noted for Cr, with very little Cr removal with IO_4^- . However, with the low reagent addition much less Cr is removed. Earlier tests with AN-107 waste and 0.05M added permanganate showed Cr removal ranging from 50% to as high as 90% removal. Consequently, the reduced level of permanganate has resulted in less Cr in the Sr/TRU precipitate (HLW).

As discussed in Section 3.1, Sr addition caused a large increase in [Sr] in the treated supernatant. The Sr addition removed Ca from solution. This is likely a result of the competition of Sr and Ca for the complexing agents (EDTA/HEDTA) and precipitation of calcium carbonate. However, the Ca removal, like the Sr-90 decontamination, was not significantly impacted by the addition of permanganate, hydroxide, or other reagents. The Zr concentration also decreased with permanganate treatment and increased when $Zr(NO_3)_4$ was added. This supports the conclusion that Zr(IV) effectively competes for the organic complexants with TRU elements by ligand exchange, which results in TRU precipitation.

Large differences can be seen in the initial concentrations and removal of Fe and Mn from the two wastes and various treatment conditions. The initial levels of Fe and Mn are approximately 25 times greater in AN-107 than in AN-102. However, after treatment, the levels of Fe and Mn are quite similar (Figure 3.7). The Fe levels show little change with time, a similar trend as the TRU DFs. However, the Mn concentration is significantly decreased after 24h of reaction. Reduced levels of soluble Mn will result in less potential for post-filtration precipitation.

3.4 Comparison of AN-102 Active and Simulant Test Results

Similar chemical analyses of actual waste (active) and simulant (inactive) test samples were performed by ICP-AES. The ICP-AES results can be used to compare the [Sr] results from the active AN-102 tests with those of Lilga et al. (2003) using simulant (Figure 3.8). The data shown are only for the 24h samples. The data are quite close, and the slightly higher Sr levels in the simulant suggest the EDTA/HEDTA concentration in the simulant experiments was higher than in the diluted AN-102 waste. With respect to Sr chemistry, the waste simulant results appear to represent actual waste treatment; hence, the corresponding [Sr] in the treated simulant can be used to assess the expected Sr-90 DF.

Of the target analytes evaluated in the simulant tests (Lilga et al. 2003), the actual waste samples had concentrations of Fe, La, and Nd above the minimum detection limit. Results for these elements for selected treatment schemes of AN-102 simulant and active waste are shown in Figure 3.9. The results of the actual tank waste, 60-80% removal, are very similar to the simulant results for La and Nd. The Fe removal in the simulant was typically higher, ranging from 80-90%. The La and Nd removal was also similar to the TRU elements (DF 3-5 is 67-80% removal). This is likely because the primary TRU elements, Am and Cm (>95% of the TRU), are +3 actinide series ions that are similar in charge to the lanthanide ions. These results support the conclusions from simulant tests and the use of La and Nd removal as an indication of TRU decontamination of Envelope C wastes (AN-102 and AN-107).

Oxidation appears to be important for TRU removal from AN-102 waste, similar to the results reported by Lilga et al. (2003) for waste simulant using surrogate lanthanide ions as an indication of TRU removal. Some differences are noted between the actual and simulant tests; Lilga et al. (2003) found Zr(IV) addition was nearly equivalent to permanganate addition, not found for actual AN-102 waste tests.

Figure 3.8. Comparison of Strontium Solubility for Active AN-102 and Inactive AN-102/C-104 Waste Blend Treated with Similar Reagents and Sampled (24h Data)

Figure 3.9. Percent Removal of Target ICP Metals for Selected Samples

3.5 Estimated Sr-90 and TRU Levels in ILAW Glass

The data from the experiments discussed here can be used to estimate the Sr-90 and TRU loadings that would be expected in ILAW glass made from the treated supernatant. The Sr-90 data are used directly for the calculation with an assumed LAW glass density of 2.76 g/mL. The TRU activity is calculated by summing the individual TRU isotopes (the sum of alpha). For AN-107 waste samples, the waste Na was 86.4% of the total Na because of the caustic adjustment (Hallen et al. 2000b). The calculated glass loadings are listed in Table 3.4 for the current baseline design waste glass concentration of 15 wt% waste Na₂O. The results show that all treated samples were below the contract limits for ILAW glass (DOE 2000), except for Sr-90 when no Sr(NO₃)₂ was added (permanganate-only). The target level of 50% below the limit was not met for Sr-90 at 4h of reaction. Thus, 0.02M added Sr(NO₃)₂ and ambient temperature are adequate to meet the contract requirement if the reaction time is 24h.

TRU loadings well below 50% of the contract limit were met when permanganate was added. Addition of other forms of Mn, periodate, and Zr(IV) generally led to higher levels of TRU in the LAW but still low enough to meet the contract requirements.

AN-107 waste initially had higher levels of Sr-90 and TRU than AN-102. After treatment, the levels of Sr-90 and TRU in the supernatant from both wastes were quite similar. These results show good decontamination of both wastes at low levels of reagent addition, $0.02M \operatorname{Sr}(NO_3)_2$ and $0.02M \operatorname{NaMnO_4}$, and ambient temperature. However, to minimize the concentration of Sr-90 in the ILAW waste, filtration should not begin until approximately 24h after reagents are added.

AN-102	Reaction Time, h	Sr-90, Ci/m ³	Sum of Alpha, nCi/g
ILAW Limits		20	100
Initial Waste	NA	88	89
	4	16	
Sr/Mn(VII)	24	5	17
	4	8	
Sr/Mn(VII) dup	24	5	19
Mn(VII)	24	78	24
	4	15	
Sr/Mn(VII)/OH ⁻	24	6	26
	4	18	
Sr/Mn(VII) no mix	24	4	21
Sr/Mn(IV) solid	24	5	35
Sr/Mn(II)	24	6	29
Sr/IO ₄ ⁻	24	15	11
Sr/Zr(IV)	24	6	52
AN-107	Reaction Time, h	Sr-90, Ci/m ³	Sum of Alpha, nCi/g
ILAW Limits		20	100
Initial Waste	NA	107	160
	4	13	19
Sr/Mn(VII)	24	6	24
	4	13	21
Sr/Mn(VII) dup	24	7	22
Sr/Mn(VI)	24	6	21
Sr/Mn(VII) no mix	24	8	24
Sr/Mn(II)	24	10	33
Sr/IO ₄	24	10	41
Sr/Zr(IV)	24	8	31

Table 3.4. Sr-90 and TRU ILAW Glass Loadings for 15 wt% Waste Na_2O

4.0 Conclusions and Recommendations

Experiments were conducted with samples of diluted AN-102 and AN-107 waste at various modified Sr/TRU removal process conditions. These experiments provided a better understanding of the Sr/TRU removal process. Conclusions from this work and recommendations to consider for plant operation are presented in this section.

Experiments were conducted to assess the precipitation chemistry for Sr/TRU removal. A primary focus was to assess the reaction chemistry of Mn species relevant to the mechanism of TRU removal by permanganate treatment and to determine the importance of various mechanisms for decontamination, such as precipitation, absorption, ligand exchange, and oxidation of organic complexants. These studies were conducted with AN-102 and AN-107 waste samples. The optimized treatment conditions—no added hydroxide, addition of Sr (0.02M target concentration) followed by sodium permanganate (0.02M target concentration) with mixing at ambient temperature—were used as a reference for comparison. Reagent and treatment conditions were varied to give information about mechanisms of TRU decontamination and Sr-90 removal in the treatment process. Sr-90 is removed from solution by isotopic dilution with added nonradioactive Sr and precipitation as SrCO₃.

The addition of a chemical oxidant did not increase Sr-90 decontamination. None of the various treatment schemes or reagents added showed an improved Sr-90 DF. Strontium concentrations, and therefore decontamination levels, are time dependent. In all experiments in which Sr was added, the Sr concentrations decreased significantly between 4h and 24h. In some cases, the concentration was halved over this time, i.e., a doubling of the Sr-90 DF. This behavior is the same as that observed by Lilga et al. (2003) for simulated waste samples. The Sr concentrations in the actual waste and the simulated waste were also about the same, supporting the conclusions from the simulant studies.

The important factors for determining Sr-90 decontamination are the isotopic dilution ratio and the [Sr]. Approximately 95% of the added Sr is precipitated from solution. The isotopic dilution is quite rapid relative to $SrCO_3$ precipitation. The precipitation of $SrCO_3$ is slow, and adequate time must be allowed for equilibrium to be approached. Therefore, these results suggest that the treated waste should not be filtered at 4h after reagent addition; instead, additional time should be allowed for Sr to precipitate.

Several treatments employing various species of Mn (VII, VI, IV, and II); an alternative oxidant; and competing metal ion, Zr(IV), were examined. The DF of TRU (sum of alpha) was used as an indication of the extent/effectiveness of treatment. The performance of the reference treatment conditions was very similar to earlier tests with actual waste (Hallen et al. 2002c). In general, the reference process conditions gave the best TRU removal of the treatments tested. For AN-102, the treatments involving oxidation performed the best, although addition of Mn(IV), Mn(II) and Zr(IV) resulted in some TRU removal. For AN-107, oxidation appears to be less important, and similar TRU removal was found for permanganate and reduced Mn(II) and Zr(IV). AN-107 appears easier to treat for TRU removal. Ligand displacement, precipitation, and sorption of TRU ions appeared to be important for treatments of AN-107.

Time has very little impact on the TRU removal when comparing the 4h and 24h data. However, increased levels of Mn were noted for the treated samples after only 4h of reaction, whereas all Mn was removed by 24h of reaction. These results again suggest that the treated waste should not be filtered after only 4h of reaction; in this case, the increased Mn levels will likely lead to post-filtration precipitation. Instead, if filtration begins after 24h of reaction, all Mn will already have precipitated from solution.

The results for AN-102 simulant and active tests were very similar, supporting the earlier conclusions of Lilga et al. (2003). The lanthanide elements used in simulant studies as surrogates for the TRU elements have very similar removals as the actual waste samples and correlate well to the TRU decontamination. This correlation is likely because 95% of the TRU in the Envelope C wastes are Am and Cm isotopes that are in a similar oxidation state as the lanthanide elements.

The initial waste from Tank AN-107 was higher in both Sr-90 and TRU compared to waste from Tank AN-102. The experimental data from both wastes can be used to predict the loading of Sr-90 and TRU (sum of alpha) expected in the ILAW at a fixed waste sodium loading of 15 wt% (contract limit >10 wt%). At 24h of reaction, the levels of Sr-90 and TRU in the supernatant from treatment of both wastes were quite similar. For Sr-90 loading, the levels were three times below the ILAW requirements of 20 Ci/m³ and for TRU loading, the levels were four times below the requirements of 100 nCi/g when treated by addition of nonradioactive Sr and sodium permanganate at reagent levels of 0.02M. These reagent levels are significantly below the baseline treatment conditions of 0.075M Sr and 0.05M permanganate.

5.0 References

Abodishish, H. 2002. "Assessment of Reaction Mechanisms for TRU Removal Using AN-102 Waste Samples." Test Specification 24590-WTP-TSP-RT-02-013. Bechtel National, Inc., Richland, WA.

Bechtel National, Inc. (BNI). 2002. *Research and Technology Plan.* 24590-WTP-PL-RT-01-002, U.S. Department of Energy, Office of River Protection, Richland, WA. [Work conducted to Rev. 1.]

Felmy, A. R., and M. J. Mason. 2003. "An Aqueous Thermodynamic Model for the Complexation of Sodium and Strontium with Organic Chelators Valid to High Ionic Strength. I. N-(2-hydroxyethyl)ethylenedinitrilotriacetic acid (EDTA)." *Journal of Solution Chemistry* 32(4):283-300.

Gauger, A. M., and R. T. Hallen. 2001. "Individual Reactions of Permanganate and Various Reductants." *J. Undergraduate Research* 1:54.

Hallen, R. T., K. P. Brooks, and L. K. Jagoda. 2000a. *Demonstration of Entrained Solids and Sr/TRU Removal Processes with Archived AN-107 Waste*. PNWD-3033, Battelle, Pacific Northwest Division, Richland, WA.

Hallen, R. T., P. R. Bredt, K. P. Brooks, and L. K. Jagoda. 2000b. *Combined Entrained Solids and Sr/TRU Removal from AN-107 Diluted Feed*. PNWD-3035, Battelle, Pacific Northwest Division, Richland, WA.

Hallen, R. T., I. E. Burgeson, F. V. Hoopes, and D. R. Weier. 2002a. *Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste*. PNWD-3141, Battelle, Pacific Northwest Division, Richland, WA.

Hallen, R. T., I. E. Burgeson, and F. V. Hoopes. 2002b. Verification of Process Conditions for Sr/TRU Removal from AN-102/C104 Waste Blend. PNWD-3189, Battelle, Pacific Northwest Division, Richland, WA.

Hallen, R. T., Geeting, J.G.H., Jackson, D. R., and D. R. Weier. 2002c. *Combined Entrained Solids and Sr/TRU Removal from AN-102/C-104 Waste Blend*. PNWD-3264, Battelle, Pacific Northwest Division, Richland, WA.

Lilga, M. A., Hallen, R. T., K. M. Boettcher, T. R. Hart, and D. S. Muzatko. 2003. Assessment of the Sr/TRU Removal Precipitation Reaction Mechanisms Using Waste Simulant Solutions. PNWD-3263, Battelle, Pacific Northwest Division, Richland, WA.

Nash, C. A., S. W. Rosencrance, and W. R. Wilmarth. 2000a. *Entrained Solids, Strontium-Transuranic Precipitation, and Crossflow Filtration of AN-102 Small C.* BNF-033-98-0218, Savannah River Technology Center, Aiken, SC.

Nash, C. A., H. H. Hiroshi, and W. R. Wilmarth. 2000b. *Strontium-Transuranic Precipitation and Crossflow Filtration of 241-AN-102 Large C.* BNF-033-98-0317, Savannah River Technology Center, Aiken, SC.

Orth, R. J., A. H. Zacher, A. J. Schmidt, M. R. Elmore, K. R. Elliott, G. G. Neuenschwander, and S. R. Gano. 1995. *Removal of Strontium and Transuranics from Hanford Tank Waste Via Addition of Metal Cations and Chemical Oxidant - FY 1995 Test Results*. PNL-10766, Pacific Northwest National Laboratory, Richland, WA.

Urie, M. W., L. R. Greenwood, J. J. Wagner, O. T. Farmer, S. K. Fiskum, R. T. Ratner, and C. Z. Soderquist. 1999a. *Inorganic and Radiochemical Analysis of AW-101 and AN-107 "Diluted Feed" Materials*. PNWD-2463, Battelle, Pacific Northwest Division, Richland, WA.

Urie, M. W., L. R. Greenwood, J. J. Wagner, O. T. Farmer, S. K. Fiskum, R. T. Ratner, and C. Z. Soderquist. 1999b. *Inorganic and Radiochemical Analysis of AW-101 and AN-107 Tank Waste Inorganic Radiochemistry*. PNWD-2462, Battelle, Pacific Northwest Division, Richland, WA.

Urie, M. W., S. K. Fiskum, J. A. Campbell, O. T. Farmer, L. R. Greenwood, E. W. Hoppe, G. M. Mong, C. Z. Soderquist, and R. G. Swoboda. 2002. *Chemical Analysis and Physical Property Testing of 241-AN-102 Tank Waste-Supernatant and Centrifuged Solids*. PNWD-3229, Battelle, Pacific Northwest Division, Richland, WA.

U.S. Department of Energy (DOE), Office of River Protection. 2000. *Contract Between DOE Office of River Protection and Bechtel National, Inc. for the Design, Construction, and Commissioning of the Hanford Tank Waste Treatment and Immobilization Plant (WTP).* Contract DE-AC27-01RV14136, Richland, WA. Appendix A

Sample Data

	AN-102	2 Added	Sr Added	(0.44 M)	Reagen	Reagents Added		
Experiment	Target,	Actual	Target,	Actual		Target,	Actual	
Number	mL	wt, g	mL	wt, g	Reagent	mL	wt, g	MDF
RX-01	10	16.9160			None			1
RX-02	20	25.3779	1	1.0164	Mn(VII)	1	1.0213	1.0803
RX-03	20	25.2622	0	0.0000	Mn(VII)	1	1.0218	1.0404
RX-04	20	25.0623	1	1.0413	Mn(VII)/OH	1 Each	2.1939	1.1291
RX-05	20	25.3820	1	(a)	Mn(VII)	1	2.0222	1.0797
RX-07	20	24.8547	1	1.0378	Mn(IV)	Solid	0.0767	1.0448
RX-08	20	25.2263	1	1.0411	Mn(II)	1	1.0298	1.0821
RX-09	20	25.2498	1	1.0452	KIO ₄	Solid	0.276	1.0523
RX-10	20	24.9617	1	1.0385	Zr(IV)	1	1.0605	1.0841
RX-11	20	24.8819	1	1.0369	Mn(VII)	1	1.0289	1.0830
(a) No-mix e	experiment	t; no indivi	dual weight	s.				

Table A.1. Mass Dilution Factors (MDF) Used in DF and Percent Removed Calculations for AN-102 Tests

Table A.2. Mass Dilution Factors (MDF) Used in DF and Percent Removed Calculations for AN-107 Tests

	AN-107	Added	Sr Added	(0.44M)	Rea	gents Add	ed	
Experiment	Target,	Actual	Target,	Actual		Target,	Actual	
Number	mL	wt, g	mL	wt, g	Reagent	mL	wt, g	MDF
SS-01	~40	47.3920			None			1
SS-02	20	25.3219	1	1.0622	Mn(VII)	1	1.0206	1.0823
SS-03	20	25.3296	1	1.0713	Mn(VI)	2	2.1183	1.1259
SS-04	20	25.6255	1	1.0553	Mn(II)	1	1.0339	1.0815
SS-05	20	24.9558	1	(a)	Mn(VII)	1 Each	2.1042	1.0843
SS-06	20	24.8524	1	1.0141	KIO ₄ ⁻	Solid	0.2461	1.0507
SS-07	20	24.7991	1	1.0699	Zr(IV)	1	1.0759	1.0865
SS-08	20	24.6714	1	1.0669	Mn(VII)	1	1.0253	1.0848
(a) No-mix e	experiment	; no indivic	lual weights	3.				

Appendix B

Analytical Data

Battelle PNNL/RS&E/Inorganic Analysis ... ICPAES Analysis Report PO Box 999, Richland, Washington 99352

> Project / WP#: 42365 / W63934 ASR#: 6583 Client: R. Hallen **Total Samples:** 18 (liquid)

First RPL#: 02-03410 Client ID: RX-01-04 Sample Preparation: PNL-ALO-128 (SAL/vh)

Last 02-03428 AN-107-UFC-Dup

Revision 1 (Fe and Mg added to AOI section of data report)

Procedure: PNNL-ALO-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).

Analyst: D.R. Sanders

Analysis Date (File): 10-01-2002 (A0849) 10-02-2002 (A0850)

See Chemical Measurement Center 98620 file: ICP-325-405-1 (Calibration and Maintenance Records)

M&TE Number:

<u>WB73520</u> 360-06-01-029

(ICPAES instrument) (Mettler AT400 Balance)

B.M. Dem 11/1/02 Preparer 7/1/W/1/4 11/1/02

eview and Concur
Eighteen supernatant samples submitted under Analytical Service Request (ASR) 6583 were analyzed by ICPAES. The samples were prepared by acid extraction per PNL-ALO-128 in the Shielded Analytical Laboratory (SAL) using a nominal 1.0 mL of sample and diluting to a final volume of approximately 25 mL. Sample preparation and analysis were conducted in two separate batches.

A summary of the ICPAES analyses, including QC performance, is given in the attached ICPAES Data Report (9 pages). Analytes of interest (AOIs) were specified in the ASR, and are listed in the upper section of the report. The quality control (QC) results for each of these analytes have been evaluated and are presented below. Analytes other than those identified as AOIs are reported in the bottom section of the data report, but have not been fully evaluated for QC performance.

The results are given as μ g/mL for each detected analyte, and have been adjusted for all laboratory processing factors. Minimum Reportable Quantity (MRQ) values were specified in the ASR for selected AOIs. To meet this requirement, method detection limits (MDL) for the ICPAES analyses should be \leq (MRQ \div 3). The required MRQ levels were met for all of the selected AOIs except for potassium. However, potassium was detected in all the samples at levels from about 1000 to 1500 μ g/mL, which is above the MDL and also well above the MRQ of 75 μ g/mL.

The following is a list of quality control measurement results relative to ICPAES analysis requirements of the controlling QA plan. For each extraction processing, a process blank, blank spike, matrix spike, and duplicate were prepared along with the samples. The blank spikes and matrix spikes were prepared using 1.5 and 0.5 mL respectively of multi-element spike solutions BPNL-QC-1A and -2A. One of the AOIs, europium, was not present in the combined spike solution.

Process Blank:

A process blank (reagents only) was prepared with each group of samples. The concentrations of all AOIs in the blank were within the acceptance criteria of \leq EQL (estimated quantitation level \equiv 10 x MDL) or \leq 5% of the concentration in the samples.

Blank Spike:

A blank spike (reagents and spike solution) was prepared with each group of samples. Except for sodium in the second sample batch, the recovery values were within the acceptance criterion of 80% to 120% for all AOIs. Analytes recovered at levels less than the EQL are shown as bold.

The second component of the blank spike (BPNL-QC-2A) contains 0.7% HF. Thus, the slight over-recovery for sodium in the second batch is almost certainly due to leaching of Na (as well as B and Si) from the glass container used to prepare the sample. Note, that the recovery for Na was also at the high end of the acceptance criterion for the first blank spike, and that B and Si were over-recovered for both blank spikes. It should be noted that sodium results for sample analyses not containing the BPNL-QC spike are not affected by this leaching process.

Duplicate RPD (Relative Percent Difference):

A duplicate was prepared with each group of samples. RPDs are listed for all analytes with concentrations \geq EQL. The RPDs were within the acceptance criteria of ±15% (±10% for Na) for all AOIs meeting the above requirement.

Laboratory Control Standard (LCS):

No LCS samples were prepared for analysis.

Matrix Spiked Sample:

Matrix spikes were prepared with Samples 02-03413 and 02-03421. Recovery values are listed for all analytes in the spike measured above the EQL, and with spike concentrations $\geq 20\%$ of that in the sample. The recovery values were within the acceptance criterion of 75% to 125% for all AOIs meeting the above requirements. Analytes not meeting these requirements have either no recovery value listed (< EQL), or are listed as not recovered ("nr").

Post-Spiked Samples (Spike A Elements):

A post-spike A was conducted on Samples 02-03410 and 02-03421. Recovery values are listed for all analytes in the spike with concentrations > 20% of that in the sample. The recovery values were within the acceptance criterion of 75% to 125% for all AOIs meeting the above requirement. Analytes not meeting the 20% requirement are listed as not recovered ("nr"). Analytes recovered at levels below the EQL are shown as bold.

Post-Spiked Samples (Spike B Elements):

A post-spike B was conducted on Samples 02-03410 and 02-03421. Recovery values are listed for all analytes in the spike with concentrations > 20% of that in the sample. The recovery values were within the acceptance criterion of 75% to 125% for all AOIs. Analytes recovered at levels below the EQL are shown as bold.

Serial dilution (Percent Difference):

Five-fold serial dilution was conducted on Samples 02-03410 and 02-03421. Percent differences (%Ds) are listed for all analytes with concentrations \geq EQL in the diluted sample. The %Ds were within the acceptance criterion of ±10% for all AOIs meeting the above requirement. Note, that the %Ds for sodium were obtained from the 5x/25x dilutions.

Other QC:

All other instrument-related QC tests for the AOIs passed within the appropriate acceptance criteria.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilutions performed on the samples during processing and analysis, unless specifically noted.
- 2) Instrument detection limits (IDL) shown are for acidified water. Detection limits for other matrices may be determined if requested. Method detection limits (MDL) can be estimated by multiplying the 'Multiplier' by the IDL. Estimated quantitation limit (EQL) is equal to 10 x MLD.

- 3) Routine precision and bias is typically ± 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight). Note that bracketed values listed in the data report are within ten times instrument detection limit (adjusted for processing factors and laboratory dilutions) and have a potential uncertainty much greater than 15%.
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is two.

Page 1 of 9

	Run Date=	10/1/2002	10/1/2002	10/1/2002	10/1/2002	10/1/2002	10/1/2002	10/1/2002
	Multiplier=	26.4	26.6	133.2	27.1	135.3	27.3	136.4
	RPL/LAB #=	02-03410-PB	02-03410	02-03410 @5	02-03412	02-03412 @5	02-03411	02-03411 @5
Instr. Det.	Olleration		O Y /				DV 04	24 Dun
		process blank	RX-0	<u>11-04</u>	<u>RX-(</u>	<u>)1-24</u>	<u>RX-07-</u>	24-DUD
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.060	Al	[5.7]	6,380		6,160		6,190	
0.250	Ca		259		253		256	
0.015			34.3		33.4		33.0	
0.200	Ce Ce						[5.5]	
0.020			108		108		100	
0.100	Eu							
2 000	re V		1 210		1 1 1 9 0		1 100	
2.000	<u> </u>		1,210		1,100		1,150	
0.000	Ца Ма		[0.0]		[0.4]		[0.0]	
0.100	Mo		[2 G]		 ۱۹۵۱		12 01	
0.050	No			129.000		124 000		126 000
0.100	Nd	50.9	ries	120,000	range	124,000	(40)	120,000
0.100	NG		224		220		232	
0.030			234		1.040		232	
0.100	P		1,070		1,040		1,050	
0.100	PO Sa		105		104		100	
0.015	<u> </u>		[1.5]		[1.4]		[1.4]	
0.050	<u>Zr</u>		[4.4]	L	[4.3]	L	[4.4]	I
Other Analyt	es	r	r	F	r	[<u>г</u>
0.025	Ag							
0.250	AS				40.4			
0.050	<u>В</u>	32.4	49.7		46.4		49.2	+
0.010	Ва		[0.52]		[0.52]		[0.53]	
0.010	De		16 01	}				
0.100		[14]	[0.9]		[3,0]		[0.0]	<u> </u>
0.050			[2.3]		[[2.4]		[2.4]	
0.025			9.45		9.17		9.33	
0.030								
0.050	Mo		29.7		28.2		28.4	
0.050	Dd Dd		20.1		20.2		20.4	
0.750	Ph		<u> </u>	<u> </u>				1
1 100	Pu Ru							
0.500	<u>Ru</u> ek							1
0.000	<u> </u>	<u> </u>		<u> </u>				
0.200	Si Si	1791	1821	+	1881	+	1851	+
0.500		[/3]	[02]	+	[30]		[17]	+
0.500	<u>т</u> а			<u> </u>				1
1 000	тъ Тъ			+				1
0.025	+			+				1
0.025	<u> </u>	+		1		+		+
2 000	<u> </u>	1				+		1
0.050	+ v	<u> </u>		+		+		+
0.000	+	<u> </u>	[74]	+	1721		[73]	+
0.050		1						+
0.050	7.		[2.6]	†	12 61	+	12 71	

 U.USU
 Zn
 - [2.6]
 [2.6]

 1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"</td>

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within $\pm 15\%$.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

Page 2 of 9

	Run Date=	10/1/2002	10/1/2002	10/1/2002	10/1/2002	10/1/2002	10/1/2002
	Multiplier≃	26.0	130.2	26.6	133.1	25.3	126.6
				02-03413-	02-03413-		
	RPL/LAB #=	02-03413	02-03413 @5	DUP	DUP @5	02-03414	02-03414 @5
lasta Dat							
Limit (IDL)	Client ID-	PV	024	DY 02	4 Dun		12.24
	(Analyte)	(un/ml.)	(ug/ml)	(ug/ml)	(ug/ml)	(unimi)	(ualm1)
0.060		5 250	(ug/iiic)	5340	(ug/iiic)	(ug/iii)	(ug/iiic)
0.000	 Ca	189		192		185	
0.015	C4	28.8		29.3		20.1	
0.010	Ce					23.1	
0.020	Cr	70.8		71 7		74.0	·····
0.100	Eu						
0.025	Fe	[2.7]		[2.8]		[2 6]	
2.000	ĸ	1.030		1.040		1.030	
0.050	La	[3.0]		[3.0]		[2,2]	
0.100	Ma						
0.050	Mn	[5.0]		[5.1]			
0.150	Na	over range	107.000	over range	108.000	over range	108.000
0.100	Nd	[6.3]		[6.0]		[6.1]	
0.030	Ni	199		202		201	
0.100	Р	889		899		897	
0.100	Pb	84.1		84.4		84.1	
0.015	Sr	162		167		104	
0.050	Zr	[1.7]		[1.7]		[1.5]	
Other Analyte	95	·	·		•	· · · · · · · · · · · · · · · · · · ·	
0.025	Ag						
0.250	As	••					
0.050	В	43.9		46.5		45.7	
0.010	Ba						
0.010	Be						
0.100	Bi	[5.8]		[5.0]		[4.7]	
0.050	Co	[2.2]		[2.1]		[2.1]	
0.025	Cu	7.88		7.92		7.83	
0.050	Dy						
0.030	Li						
0.050	Мо	24.6		24.9		24.8	
0.750	Pd						
0.300	Rh						
1.100	Ru						
0.500	Sb	••					
0.250	Se						
0.500	Si	[77]		[79]		[73]	
0.500	Sn	[15]		[14]		[13]	
0.500	Te			••			
1.000	Th				<u> </u>		
0.025	<u> </u>						
0.500	TI			**			
2.000	U						
0.050	V						
0.500	W	[61]		[62]		[60]	
0.050	Y	**				•-	
0.050	Zn	••	L		I	L	L

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within ±15%.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

Page 3 of 9

	Run Date=	10/1/2002	10/1/2002	10/1/2002	10/1/2002	10/1/2002	10/1/2002
	Multiplier=	26.1	130.5	27.1	135.3	25.9	129.4
		02-03415	02-03415 @5	02-03416	02-03416 @5	02-03417	02-03417 @5
				02 00410	02-00410 (80	02-00411	02-00411 (20
instr. Det.							
Limit (IDL)	Client ID=	<u>RX-0</u>	03-24	<u>RX-</u>	<u>04-4</u>	<u>RX-0</u>	<u>)4-24</u>
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.060	Al	5,560		5,060		5,030	
0.250	Ca	230		177		172	
0.015	Cd	30.5		27.6		27.4	
0.200	Ce						
0.020	Cr	75.6		68.4		74.7	
0.100	Eu						
0.025	Fe	[2.7]		[2.7]		[2.6]	
2.000	к	1,080		976		965	
0.050	La	[4.6]		[2.0]		[2.2]	
0.100	Mg	••	ļ			**	
0.050	Mn	[2.7]		[3.7]			
0.150	Na	over range	112,000	over range	108,000	over range	107,000
0.100	Nd	[7.3]		[5.7]		[8.2]	
0.030	Ni	212		191		192	
0.100	Р	947		849		852	
0.100	Pb	89.0		74.2		73.4	
0.015	Sr	[1.1]		187		105	
0.050	Zr	[1.6]		[1.6]	1	[1.4]	
Other Analyte	es	-	,				
0.025	Ag						
0.250	As			••			
0.050	В	44.6		44.6		42.6	
0.010	Ba						
0.010	Be						
0.100	Bi	[4.4]		[3.8]		[4.8]	
0.050	Co	[2.3]		[2.0]		[2.1]	
0.025	Cu	8.29		7.11		6.90	
0.050	Dy						
0.030	<u> </u>						
0.050	Mo	26.1		23.5		23.6	
0.750	Pd	••					
0.300	Rh		ļ				
1.100	Ru			••		**	
0.500	Sb	**					
0.250	Se						
0.500	Si	[68]		[67]		[75]	
0.500	Sn	[15]		[14]		[15]	
0.500	Те	••		••			
1.000	1 <u>Th</u>						
0.025	<u>Ti</u>						
0.500				**			
2.000	U			••			
0.050	V				ł		
0.500	w	[65]		[59]		[59]	
0.050	<u> </u>	**		••	 		
0.050	Zn		<u> </u>		L		L

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within ±15%.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

10/1/2002 10/1/2002 10/1/2002 10/1/2002 Run Date= 135.9 25.4 126.8 Multiplier= 27.2 RPL/LAB #≈ 02-03418 02-03418 @5 02-03419 02-03419 @5 Instr. Det. Limit (IDL) Client ID= RX-05-04 <u>RX-05-24</u> (ug/mL) (ug/mL) (ug/mL) (Analyte) (ug/mL) (ug/mL) 0.060 5,250 5,290 Al 0.250 185 179 Са 0.015 Cď 28.4 28.6 0.200 Ce -----0.020 Cr 62.5 58.0 0.100 Eu --•• 0.025 Fe [2.4] [1.6] 2.000 к 986 978 0.050 La [2.4] [1.6] 0.100 Mg ... --0.050 Mn [4.4] [5.8] 0.150 112,000 109,000 Na over range over range 0.100 Nd [4.9] [3.6] 0.030 Ni 197 198 0.100 Ρ 869 877 77.4 0.100 Pb 74.2 0.015 Sr 174 105 0.050 [2.0] Zr [1.5] Other Analytes 0.025 Ag ----0.250 As ------0.050 в 46.1 45.8 0.010 Ва --•• 0.010 Be •• •• 0.100 Bi •• --0.050 Со [1.8] [1.8] 0.025 Cu 7.30 7.39 0.050 Dy --•• 0.030 Ц -----0.050 Мо 24.1 24.0 0.750 Pd ----0.300 Rh •• ••• 1.100 Ru •• --0.500 Sb ----0.250 Se ---0.500 Si [64] [66] 0.500 Sn ---0.500 Te ---••• 1.000 Th ----0.025 Ti -----0.500 ТΙ ----2.000 U ---v 0.050 -----W 0.500 [59] [60] 0.050 Y ----

Page 4 of 9

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "mult

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL. 2) Overall error for values > EQL is estimated to be within $\pm 15\%$.

Zn

0.050

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

[2.0]

Page 5 of 9

[Run Date=	10/2/2002	10/2/2002	10/2/2002	10/2/2002	10/2/2002	10/2/2002	10/2/2002
	Multiplier=	26.5	26.7	133.5	26.3	131.3	26.4	131.8
						02-03421-DUP		
	RPL/LAB #=	02-03421-PB	02-03421	02-03421 @5	02-03421-DUP	@5	02-03422	02-03422 @5
Instr. Det.	Cilent ID=	process blank		7.04	DY 07	14 Due		
	(Applied)	(uning)	(un/ml)	//-24	<u>RX-0/-</u>	24-Dup	RX-C	18-24
	(Analyte)	(ug/mL)	(ug/mL)	(ug/nic)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.000		[3.8]	3,010		5,820		6,060	
0.250		·	185		189		189	
0.015			30.0		31.0		32.2	
0.200	Ce							
0.020	Cr		/1.8		/ 3.9		60.1	
0.100	<u> </u>		 (E 41					
0.025	re V		[5.4]		[4.5]		[3.9]	
2.000	<u> </u>		1,120		1,150		1,190	
0.050	La		[3.1]		[3.2]		[2.7]	
0.100	Mg							
0.050	Mn		[3.1]		[3.2]		[8.8]	
0.150	Na	46.3	over range	117,000	over range	118,000	over range	122,000
0.100	Nd		[9.3]		[9.3]		[6.7]	
0.030	Ni		201		206		215	
0.100	P		925		948		984	
0.100	Pb		72.8		73.7		84.6	
0.015	Sr	••	104		109		129	
0.050	Zr	•	[2.7]	l	[2.8]		[2.2]	J
Other Analyte	es			r				
0.025	Ag		•-					
0.250	As						••	
0.050	B ⁻	30.5	49.2		53.1		52.9	
0.010	Ba	[0.58]						
0.010	Be							
0.100	Bi	[23]	[4.8]		[4.2]		[3.3]	
0.050	Co		[1.9]		[2.0]		[2.0]	
0.025	Cu		7.71		7.93		8.32	
0.050	Dy							
0.030	LI							
0.050	Mo		24.9		25.5		27.0	
0.750	Pd							
0.300	Rh							
1.100	Ru						••	
0.500	Sb		••					
0.250	Se							
0.500	Si	[57]	[68]		[75]		[77]	
0.500	Sn		••		ļ 			
0.500	Te							
1.000	Th							
0.025	Ti							
0.500	TI		••					
2.000	U							
0.050	v							
0.500	W		[59]		[61]		[68]	
0.050	Y							
0.050	Zn		[1.5]		[1.6]		[1.8]	

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within $\pm 15\%$.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

Page 6 of 9

	Run Date=	10/2/2002	10/2/2002	10/2/2002	10/2/2002	10/2/2002	10/2/2002
	Multiplier=	27.0	135.0	27.0	134.8	26.6	132.9
	RPL/LAB #=	02-03423	02-03423 @5	02-03424	02-03424 @5	02-03425	02-03425 @5
Instr Det							
Limit (IDL)	Client ID=	RX-0	9-24	RX-	10-24	RX-	11-4
(ua/mL)	(Analvte)	(ua/mL)	(ug/mL)	(ua/mL)	(ug/mL)	(ua/mL)	(ug/mL)
0.060	Al	5,850	¥	5.710		5.750	(- 0 1
0.250	Ca	131		182	· · · · · · · · · · · · · · · · · · ·	186	
0.015	Cd	25.9		31.0		30.4	
0.200	Ce						
0.020	Cr	93.2		76.8	· · · · · · · · · · · · · · · · · · ·	72.3	
0.100	Eu	••				•-	
0.025	Fe	[3.0]		[6,1]	· ······	[3.8]	
2.000	к	3,430		1,140		1.130	
0.050	La			[3.9]		[2.3]	
0.100	Mg						
0.050	Mn	[1.4]				[3.9]	
0.150	Na	over range	121.000	over range	118.000	over range	116.000
0.100	Nd	[3.2]		[12]		[4.4]	
0.030	Ni	212		207		204	
0.100	Р	986		861		926	
0.100	Pb	62.6		72.8		82.7	
0.015	Sr	284		138		183	
0.050	Zr	[1.9]		149		[1.5]	
Other Analyte	es	L	•		L	L	L
0.025	Ag					e	
0.250	As						
0.050	В	47.9		49.7		50.9	
0.010	Ba						
0.010	Be						
0.100	Bi	[3.1]				[3.0]	
0.050	Co	[2.0]		[2.0]		[1.9]	
0.025	Cu	7.78		7.96		7.71	
0.050	Dy			••			
0.030	Li						
0.050	Mo	26.4		25.6		25.1	
0.750	Pd						
0.300	Rh			••			
1.100	Ru						
0.500	Sb						
0.250	Se						
0.500	Si	[55]		[61]		[63]	
0.500	Sn						
0.500	Te						
1.000	Th						
0.025	Ti						
0.500	TI			**			
2.000	U					**	
0.050	v						
0.500	w	[69]		[66]		[64]	
0.050	Y						
0.050	Zn	[1.5]		[2.3]		••	

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within $\pm 15\%$.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

ASR 6583 Final (2) - ~A0850 R. Hallen ASR-6583 ICP98 hi.XLS

Page 7 of 9

	Run Date=	10/2/2002	10/2/2002	10/2/2002	10/2/2002	10/2/2002	10/2/2002
	Multiplier=	26.1	130.4	130.8	653.8	26.3	658.3
	RPL/LAB #=	02-03426	02-03426 @5	02-03427 @5	02-03427 @25	02-03428	02-03428 @25
Instr. Det. Limit (IDL)	Client ID=	RX-1	11-24	AN-10	7-UFC	AN-107-	UFC-Dup
(up/ml)	(Analyte)	(ug/mL)	(ug/m1)		(ug/mL)	(ug/mL)	(ug/mL)
0.060	Δι	5 740	(49/11-/	3 290	(-9,	3,220	
0.250	Ca	183		637		614	1
0.015	Cd	30.7		50.1		49.8	1
0.010	Ce			[27]		[23]	
0.020	Cr	73.5		116	1	113	· · ·
0.020	Eu						
0.025	Fo	[2 5]		834		820	
2 000	re K	1 140		[1 500]		1 330	
0.050	<u> </u>	[1 7]		[1,300]		16.1	
0.050	La					(4.1)	
0.100	Mo	[1 6]		224		223	+
0.050	Min No		110.000	224	202.000	223	195 000
0.150	Na NJ	overrange	119,000	te71	202,000	64 Q	195,000
0.100	Na	[4.6]		13/]		51.9 404	+
0.030		205		423		404 E 47	
0.100	P	928		544		54/	
0.100	Pb	83.6		23/		<u> </u>	
0.015	Sr	108		[6.0]		5.09	
0.050	Zr	[1.4]	L	[39]	I	39.0	L
Other Analyt	es	1	1	T	T	r	·
0.025	Ag						
0.250	As				· · · · · · · · · · · · · · · · · · ·		
0.050	В	46.0		[58]		58.9	
0.010	Ba		<u> </u>	[3.7]		3.62	
0.010	Be						
0.100	BI	[3.0]	· · · · · · · · · · · · · · · · · · ·				
0.050	Co	[1.9]				[3.7]	
0.025	Cu	7.68	<u> </u>	[16]		10.2	
0.050	Dy						
0.030	L)						
0.050	Mo	25.3	l	[29]		21.2	
0.750	Pd					[36]	
0.300	Rh					[9.9]	
1.100	Ru						
0.500	Sb	·		·			
0.250	Se						
0.500	Si	[54]		[89]		[94]	
0.500	Sn						
0.500	Te						
1.000	Th	·					
0.025	TI					-	
0.500	TI			••	+		
2.000	U					[69]	
0.050	V						
0.500	W	[64]		[140]		138	
0.050	Y			[8.7]		[8.4]	
0.050	1 7n	I	1	[[16]		I 16.3	1

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within ±15%.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

Criteria>	<15% ^(a)	80% - 120%	75%-125%	75%-125%	75%-125%	< +/-10%
QC ID=	02-03413 & 02-03413-D	LCS/BS	02-03413 & 02-03413-MS	02-03410 + Post Spike A	02-03410 + Post Spike B	02-03410 @1/@5 Seria Dil
Analytes	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Diff
Al	1.7	99	103	103		3.9
Ca	1.6	101	97	100		
Cd	1.5	101	99	102		4.1
Ce		100	97		100	
Cr	1.3	104	100	105		7.1
Eu					99	
Fe		107	100	105		
к	1.3	100	90	101		· · · · · · · · · · · · · · · · · · ·
La		98	91		97	
Ma		105	101	109		
Mn		103	97	107		
Na	0.4 (b)	117	nr	nr		9.1(b)
Nd		97	89		96	
Ni	12	104	100	105		6.3
P	12	104	104	98		2.6
Ph	0.4	113	108	111		
Sr	29	104	nr	105		
	2.0	119	106	105		
Other Analyte	e	1	1	1		
An An	<u> </u>	1	1	97	<u> </u>	1
<u>~</u>				105		
	57	132	100	99		
<u>B</u>	0.7	102	92	101		
Bo		08	96	98	<u> </u>	
De		90	30	08		
<u>Di</u>			30	106		+
<u> </u>	0.5	107	00	104		
Cu	0.5	107		104	100	
Uy		101	02	101		
LI	1.5	101	93	101		
NO	1.5	105	- 97	103	107	
<u>Pa</u>					107	
- Kh		<u> </u>		+		+
<u>KU</u>			+	102	·	+
50				102		+
Se		1. St. 207		104		+
<u> </u>		10/	04	115	100	
<u>5n</u>					104	
<u>le</u>				4	104	
<u>ih</u>		98	93			+
<u> </u>		102	93	98		
	 			100	102	+
<u> </u>	·	101	93		103	
V		9/	93	9/		
W					+	
Y	· · · · · · · · · · · · · · · · · · ·		+	101	+	
7.5	1	106	107	I 108	1	1

QC Performance 10/1/02

Shaded results exceed acceptance criteria

L

Bold results for information only - spiked concentration less than EQL

nr = not recovered; spike concentration less than 20% of sample concentration.

(a) = RPD <10% for Na; (b) Value for 5x/25x dilutions

QC Performance 1	10/2/02
------------------	---------

Criteria>	<15% ^(a)	80% - 120%	75%-125%	75%-125%	75%-125%	< +/-10%
						02-03421
QC ID=	02-03421 &		02-03421 &	02-03421 +	02-03421 +	@1/@5 Serial
	02-03421-0	LCS/BS	02-03421-MS	Post Spike A	Post Spike B	Dil
Analytes	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Diff
AI	3.0	104	/6	96		6.2
	2.3	101	93	101		4.0
Ca	3.5	102	92	104		4.0
Ce	20	100	97	401	90	7.2
E.	2.8	101	79	101	404	1.3
Eu		105	06	102	101	
ге v	2.0	110	90	103		
K	3.0	100	90	107	402	
		102	95	407	102	
Mg		102	90	107		
Na	1.2(b)	104	97	109		6 0/h)
Na	1.2(0)	102	N	nt	102	0.0(D)
NG	2.2	103	76	00	102	7.4
	2.5	101	70	95		2.1
<u>г</u> РЬ	2.3	110	104	100		2.1
<u>FU</u> 87	1.3	105	104	109		
7,	4.4	112	100	103		
LI Other Analyte	e	112	100	103		
An An	3		[96	[r
7.9 Ae			·	100		
<u></u>	7.5	125	08	102		
Ba	<u> </u>	103	03	102	· · · · · · · · · · · · · · · · · · ·	
Ba		97	95	97		
Bi		77	92	98		
<u> </u>		159403898 4 - 1		103		
Cu	2.8	106	97	103		
Dv					102	
		113	102	108	102	
Mo	24	102	94	102		
Pd	<u> </u>	102			94	
Rh					99	
Ru						
Sb				100		
Se				101		
Si		169	109	110		
Sn					93	
Te					100	
Th		101	96		101	
Ti		101	92	97		
ті				98		
U		105	96		102	
v		97	92	96		
w						
Y				100	1	
Zn		105	99	105	<u> </u>	

Shaded results exceed acceptance criteria

Bold results for information only - spiked concentration less than EQL

nr = not recovered; spike concentration less than 20% of sample concentration.

(a) = RPD <10% for Na; (b) Value for 5x/25x dilutions

Project No. <u>42365</u>

Internal Distribution File/LB

Date May 21, 2003

To R. T. Hallen

J., R. Greenwood JPI From

Subject <u>Radiochemical Analyses for- ASR 6583</u>

Samples of the AN-102 supernate were analyzed for ⁹⁰Sr, total alpha, and alpha emitters according to ASR 6583. The samples were acid digested in the hot cells according to procedure PNL-ALO-128. Aliquots of these preps were then delivered to the laboratory for analysis. The samples were prepared in two hot cell batches, but analyzed in the lab in one batch. Batch numbers are indicated on the report so that QC results can be associated with the samples in a given batch. Results are reported in uCi per gram of sample weight. The reported errors (1- σ) represent the total propagated error including counting, dilution, yield, and calibration errors, as appropriate. Laboratory and process blank values given with each analysis are the best indicators of the method detection limits, taking into account the actual sample sizes and counting times used for each analysis.

Strontium-90

The Sr separation was performed according to PNL-ALO-476 and radiochemical yields were traced with ⁸⁵Sr. The separated fractions were then beta-counted according to RPG-CMC-408 and gamma counted according to PNL-ALO-450 (for ⁸⁵Sr determination and ¹³⁷Cs impurity assessment). No ¹³⁷Cs activity was observed in the separated strontium fractions and negligible levels of ⁹⁰Sr were found in the process and laboratory preparation blanks. The LCS and matrix spike recoveries were 94% and 96%, respectively. RPD values were 7% and 12% for two sample duplicates. The ⁹⁰Sr activities were well above the requested MRQ value of 0.15 uCi/ml in all cases.

Total Alpha

The total alpha activities were determined by evaporating small aliquots of the samples onto planchets according to RPG-CMC-4001. The samples were then counted on Ludlum ZnS alpha scintillation counters according to RPG-CMC-408. All of the samples showed alpha activities at or above the requested MRQ value of 7.24E-4 uCi/ml. Sample duplicates showed acceptable repeatability, with an RPD value of 4% for sample RX-07-24 and a MD value of 0.73 for sample RX-11-24, indicating that the results agree when counting statistics are taken into account. The LCS and matrix spike recoveries were 109% and 104%, respectively. No significant alpha activities were observed in the hot cell or lab blanks. The total alpha activities show good agreement with the sum of the alpha emitters, within expected uncertainty.

Ř. T. Hallen May 21, 2003 Page 2

Total Alpha Energy Analyses

Aliquots of each sample were precipitation plated according to procedure PNL-ALO-496 and counted by alpha energy analysis according to procedure PNL-ALO-422. Four peaks were observed in all of the samples due to unresolved alphas from ²³⁹Pu+²⁴⁰Pu, ²³⁸Pu+²⁴¹Am, ²⁴³Cm+²⁴⁴Cm, and ²⁴²Cm. Most of the individual alpha activities were above the requested MRQ value of 7.24H-4 uCi/ml and the sum of the alpha emitters is in good agreement with the total alpha results (within expected uncertainty). The sum of the alpha emitters is generally the best estimate of the total alpha activity. No significant alpha activities were observed in the hot cell or laboratory blanks. J.CS and matrix spike recoveries were 102% and 108%, respectively. Duplicate results showed acceptable RPD values (< 20%) in all cases.

Review! C soderquist 5-21-03

Battelle Pacific Northwest National Laboratory Radiochemical Processing Laboratory -325 Building

01/09/03

-

Client : R. Hallen ASR: 6583

Cognizant Scientist:

<u>LRGreenred</u> Date: <u>TTrang-le</u> Date: <u>1/9/03</u> 1/9/03

Procedure: PNL-ALO-476/408 for Sr-90 Reference Date: Dec. 30, 2002

Concur:

Measured Activities (uCi/g) with 1-sigma error

RPL ID Client ID	Hot Cell Batch #	Sr-90 Error +/-	
02-3410 PB Process Blank	1	5.85E-4 11%	
02-3410 RX-01-04	1	2.86E+1 2%	
02-3411 RX-01-24 DUF	1	2.91E+1 2%	
02-3412 RX-01-24	1	2.71E+1 2%	
RPD		7%	
02-3413 RX-02-4	1	4.16E+0 3%	ř.
02-3413 <u>DUP</u> RX-02-4	1	4.59E+0 3%	
RPD		10%	
02-3414 RX-02-24	1	1.50E+0 5%	an an an tha an
02-3415 RX-03-24	1	2.22E+1 2%	
02-3416 RX-04-4	1	4.26E+0 3%	
02-3417 RX-04-24	1	1.69E+0 5%	
02-3418 RX-05-4	1	5.28E+0 3%	
02-3419 RX-05-24	1	1.28E+0 6%	

Page 1 of 2

Measured Activities (uCi/g) with 1-sigma error

RPL ID Client ID	Hot Cell Batch #	Sr-90 Error +/-			
02-3421PB Process Blank	2	<2.E-4			
02-3421 RX-07-24	2	1.34E+0 6%			
02-3421 DUP RX-07-24 DUP	2	1.59E+0 5%			
	a an	17%	a Antonio antonio antonio a	ي ميدين يا يون ما يا ي	t to a tangkang disebut
02-3422 RX-08-24	2	1.74E+0 5%			
02-3423 RX-9-24	2	4.66E+0 3%			
02-3425 RX-11-4	2	2.46E+0 4%			
02-3426 RX-11-24	2	1.55E+0 5%			
02-3426 DUP RX-11-24	2	1.37E+0 6%			
RPD		12%			
Reagent Spike		94%			
Matrix Spike 34	112	96%	•		
Lab Blank	ø.,	<2.E-4			

Note: Sample 02-3424 (RX-10-24) was lost during lab processing and will be reanalyzed.

Page 2 of 2

Battelle Pacific Northwest National Laboratory Radiochemical Processing Laboratory -325 Building

03/28/03 Rev. 1

Client : R. Hallen ASR: 6583

Cognizant Scientist:

Refreenses 3/28/03 Date : 3/28/03 Trang-le ____Date : Concur:

Procedure: PNL-ALO-476/408 for Sr-90 Reference Date: Jan. 21, 2003

Measured Activities (uCi/g) with 1-sigma error

RPL ID	Sr-90
Client ID	Error +/-
02-3424	2.00E+0
RX-10-24	5%
Reagent Spike	90%
Matrix Spike 00096	88%
Lab Blank	<5.E-6

Page 1 of 1

Battelle Pacific Northwest National Laboratory Radiochemical Processing Laboratory -325 Building.

01/23/03 Rerun

Client : R. Hallen

ASR: 6583		· · · · · · · · · · · · · · · · · · ·	
Cognizant Scientist:	IR herman	Date :	1/23/03
Concur :	T. Tzang-le	Date :	1/24/03

Procedure: PNL-ALO-4001/422 for Alpha/AEA

and the second	1	a to the store of	Measured Ac	tivities (uCi/	g) with 1-s	gma error	e en la companya est
RPL ID Client ID	Hot Cell Batch #	Alpha Error %	Pu-239+ Pu-240 Error %	Pu-238+ Am-241 Error %	Cm-243+ Cm-244 Error %	Am-242m* Cm-242 Error %	Sum of Alpha Emitters Error %
02-3410 PB Process Blank	1	<6.E-5	3.84E-6 8%	1.62E-5 4%	1.20E-5 4%	<6.E-8	3.20E-5 ± 3%
02-3410	1	7.80E-2	2.39E-3	7.09E-2	2.77E-3	3.01E-4	7.64E-2
RX-01-04		5%	3%	2%	3%	9%	± 2%
02-3411	, 1	7.78E-2	2.72E-3	7.72E-2	3.05E-3	2.94E-4	8.33E-2
RX-01-24 DUP	,	5%	3%	2%	3%	9%	± 2%
02-3412	1	7.37E-2	2.31E-3	7.20E-2	2.65E-3	2.85E-4	7.72E-2
RX-01-24		5%	4%	2%	4%	12%	± 2%
RPD		5%	16%	7%	14%	3%	7%
MD		0.38	1.66	1.23	1.43	0.10	1.42
02-3413	1	1.92E-2	7.21E-4	1.59E-2	7.46E-4	8.24E-5	1.74E-2
RX-02-4		11%	6%	2%	6%	17%	± 2%
02-3413 DUP	1	1.71E-2	7.73E-4	1.57E-2	6.68E-4	4.96E-5	1.72E-2
RX-02-4		13%	6%	2%	7%	24%	± 2%
RPD		12%	7%	1%	11%	50%	1%
MD		0.34	0.41	0.22	0.60	0.89	0.28
02-3414	1	1.70E-2	7.79E-4	1.62E-2	8.60E-4	7.70E-5	1.79E-2
RX-02-24		13%	5%	2%	5%	17%	± 2%
02-3415	1	2.09E-2	7.66E-4	1.72E-2	7.37E-4	7.57E-5	1.88E-2
RX-03-24		11%	5%	2%	6%	17%	± 2%
02-3416	1	8.72E-3	1.31E-3	1.62E-2	7.04E-4	7.56E-5	1.83E-2
RX-04-4		22%	4%	2%	6%	18%	± 2%
02-3417	1	2.55E-2	1.03E-3	2.10E-2	1.06E-3	8.88E-5	2.32E-2
RX-04-24		10%	5%	2%	5%	17%	± 2%
02-3418	1	1.94E-2	1.45E-3	1.80E-2	7.85E-4	6.92E-5	2.03E-2
RX-05-4		12%	4%	2%	6%	19%	± 2%
02-3419	1	1.68E-2	8.06E-4	1.14E-2	6.12E-4	3.61E-5	1.29E-2
RX-05-24		13%	5%	2%	6%	25%	± 2%

Page 1 of 2

RPL ID Client ID	Hot Cell Batch #	Alpha Error %	Pu-239+ Pu-240 Error %	Pu-238+ Am-241 Error %	Cm-243+ Cm-244 Error %	Am-242m* Cm-242 Error %	Sum of Alpha Emitters Error %
02-3421PB Process Blank	2	<5.E-5	5.37E-7 24%	2.25E-6 10%	4.75E-7 23%	<2.E-7	3.26E-6 ± 9%
02-3421	2	4.37E-2	2.16E-3	3.73E-2	1.58E-3	1.22E-4	4.12E-2
RX-07-24		7%	4%	2%	4%	16%	± 2%
02-3421 DUP	2	4.19E-2	1.90E-3	3.66E-2	1.54E-3	1.11E-4	4.02E-2
RX-07-24 DUF		7%	6%	2%	6%	23%	± 2%
RPD		4%	13%	2%	3%	9%	2%
02-3422	. 2	2.70E-2	1.53E-3	2.52E-2	1.09E-3	1.12E-4	2.79E-2
RX-08-24		9%	4%	2%	5%	14%	± 2%
02-3423 RX-9-24	2	9.67E-3 18%	4.84E-4 9%	8.95E-3 2%	4.64E-4 9%	<3E-5	9.93E-3 ± 2%
02-3424	2	5.81E-2	1.78E-3	4.55E-2	1.85E-3	1.61E-4	4.93E-2
RX-10-24		7%	5%	2%	5%	16%	± 2%
02-3425	2	1.93E-2	7.65E-4	1.82E-2	7.37E-4	6.85E-5	1.98E-2
RX-11-4		12%	8%	2%	7%	24%	± 2%
02-3426	2	1.82E-2	7.56 E-4	1.61E-2	8.48E-4	8.36E-5	1.78E-2
RX-11-24		12%	7%	2%	7%	23%	± 2%
02-3426 DUP	2	1.38E-2	7.87E-4	1.68E-2	8.35E-4	7.09E-5	1.85E-2
RX-11-24		15%	7%	2%	7%	24%	± 2%
RPD		28%	4%	4%	2%	16%	4%
MD		0.73	0.20	0.75	0.08	0.25	0.74
R. Spike		109%	102%				
MS3412	4	104%	108%				
R. Blank		<4.E-5	<3.E-5	<3.E-5	<3.E-5	<7.E-6	

Measured Activities (uCi/g) with 1-sigma error

*Cm-242 (0.45 y) is the daughter of Am-242 (16 h) and Am-242m (141 y).

Page 2 of 2

Revision 2 6/12/2003 Date: 11/7/2002

Subject: ASR:

Client:

Rich Hallen

6583- rev12

Hydroxide Analyses for:

13/03

AN-102 and AN-107

Direct sample aliquots of four AN-102 Sr/TRU samples and two AN-107 DF (diluted feed) were analyzed in duplicate for the hydroxide content following procedure PNL-ALO-228 and using a Brinkman 636 Auto-Titrator. A 0.1018 N NaOH solution was used as a standard and sample spike and the titrant was a 0.2098 M HCI prepared solution for the all the samples (see ChemRec_86 attached).

The attached Report Summary indicates good RPD on the OH molarity (1st inflection point) on the sample and replicate results. The results hydroxide results are also shown converted to ug/ml to be more in line with the analytical service request (ASR). The calculation spreadsheet also shows the equivalent weight to the volume analyzed, therefore results in ug/g can also be easily attained. The MRQ value required equivalent to 0.05M hydroxide concentration was 850 **ug/ml** and in all cases concentrations well above this value were detected and the RPD's were 9% or less except for sample 02-03413 which was at 30%; in this case very low titrant volumes increased the error on this sample. The hydroxide recovery on the standard was 100%, the matrix spike recovery on 02-3410 was 97% and the matrix spike recovery on 02-3427 was 100%.. No hydroxide was detected in the reagent blank. The second and third inflection points showed excellent RPD for all the samples.

Following is the report summary, the sample results calculated from the raw data, and the record file for the standardized acid and base used. Also included in this report are copies of the titration curves.

-- Rev- 2 issued for 2 minor issues, neither of which affected the data as reported.

issue 1 --- strictly editorial -- NIST KAP-- SRM 84k was used instead of 84j as stated on original Standard Prep File ChemRec_86. -- Molecular Wt. did not change in either SRM certificate.

issue 2 -- Although performed, the weight check support data on the 10mL pipet, used to standardized the 0.2M HCI, was not located in original Chem Rec 86 file. Recently, re-certification of this acid titrant was conducted and the comparative results were within 0.29%. Supporting data appears in ChemRec_97.--- see copy attached.

Prepared by

Date: Date:

6/12/03

Reviewed by:

ASR6583-rev2.xls

Page 1 of \$ 6

6/12/2003

ASR # 6583- rev2

WP# W63934

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center

Hydroxide and Alkalinity Determination Procedure: PNL-ALO-228 Equip #

WB76843

Report Summary for ASR # --

6583- rev2

					Concer	ntration, mole	s / Lit	er	-
RPG #	Client ID			First Point	-	Second Point		Third Point	_
			OH conc				DDD		חתת
		an and all the states	ug/mL		RPD	and a set of each set of	RPD	and the design of the second	RPD
02-03410	RX-01-04		2.5E+03	0.15		1.29		0.87	0 404
02-03410	RX-01-04	Rep	2.6E+03	0.15	3%	1.29	0.2%	0.87	0.4%
02-03411	RX-01-04-dup		2.4E+03	0.14		1.29		0.86	
02-03411	RX-01-04-dup	Rep	2.2E+03	0.13	9%	1.30	1%	0.88	3%
02 03 413	RX-02-4		2.4E+03	0.14		1.11		0.74	
02-03413	RX-02-4	Rep	1.8E+03	0.11	30%	1.17	5%	0.72	3%
02 03 417	PX-04-24		6.9E+03	0.40		1.07		0.73	
02-03417	RX-04-24	Rep	7.1E+03	0.42	3%	1.04	3%	0.72	1%
02 03 427	AN-107-UFC		9.6E+03	0.56		1.81		1.49	17.0
02-03427	AN-107-UFC	Rep	8.9E+03	0.52	7%	1.84	2%	1.49	0.1%
02 02 129	AN 107 UEC-dup		9.5E+03	0.56		1.78		1.50	
02-03428	AN-107-UFC-dup	Rep	9.7E+03	0.57	2%	1.79	0.4%	5 1.51	1%
		MRO	MRO						
		Molarity	ug/mL						
OH conc (ug/m	L) = M (g/L) * 17,000	0.05	8.5E+02						
Reag. Blk.1				0		eas althe ann ann an an			
				100%					
Standard 1				10070					
MS 02-0341	10 Matrix spike			97%					
MS 02-0342	27 Matrix spike			100%		•			

Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

Mar Chur 6/13/03 Analyst: Reviewer:

page 2 of 6 Ballios B.22

$\label{eq:product} RyC-CVC-23C Determination of Priorem O(101-) and Supermetry of Approx (2012-) and Supermetry of Approx (2012-) and Supermetry of Approx (2012-) and Supermetry (2012-) and Supermet$	attelle Pacific N adiochemical Pr	orthwest Laboratory ocessing Group-325 Build	ling				Client:	ASR # 6 Rich Haller WP#	583- rev2 1 W63934	T Analy Revis	"ile: R:\rado ysis Date: 1 ion Date:	chem/hydroxi 0/11/2002 11/7/2002	de\asr	5583- rev2
$ \begin{array}{ $	Procedures: RP0	G-CMC-228: Determination Alkalinity of Aqueous Solo and Operation of Brinkman	on of Hydrox utions, Leach n 636 Auto-T Equip #	yl (OH-) ates and : itrator ('hem	and Supernates WB76843		Lab Loc.	Analyst: 525	et :	gref	(in)			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Titrant	Molarity	Rec#		Std. & Spike	Molarity	_		HO				
$ \begin{array}{ $	Strong	HCI	0.2098	86	1	NaOH	0.1018		Diluted	1st Equivaler	100			
Ollution Sample Samp	Weak	HCI -			in a			Titrator	Initial	Point		Found	Molonitu	alomillim
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	RPG #	Sample ID		Dilution Factor	Sample Vol. (mL)	Sample Wt. (g)	Density g/mL	Routine #	pH reading	Titrant Vol. (mL)	Hq	hase	holarity	RPD
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02-03410	RX-01-04		na	0.200	0.2582	1.291	3	11.379	0.142	10.713	0.030	0.15	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02-03410	RX-01-04	Replicate	na	0.300	0.3867	1.289	4	10.913	0.220	10.244	0.046	0.15	3.23%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02-03411	RX-01-04-dup		na	0.200	0.2566	1.283	9	11.294	0.136	10.672	0.029	0.14	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02-03411	RX-01-04-dup	Replicate	na	0.200	0.2600	1.300	7	11.436	0.124	10.887	0.026	0.13	9.23%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02-03413	RX-02-4		na	0.200	0.2509	1.255	8	11.190	0.137	10.582	0.029	0.14	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02-03413	RX-02-4	Replicate	na	0.200	0.2506	1.253	6	11.296	0.101	10.762	0.021	0.11	30.25%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02-03417	RX-04-24		na	0.200	0.2499	1.250	10	11.578	0.386	10.509	0.081	0.40	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	71020-CO	R.X-04-24	Renlicate	na	0.200	0.2486	1.243	11	11.566	0.397	10.486	0.083	0.42	2.81%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	LCVEU-CU	AN-107-1/FC		na	0.200	0.2799	1.400	12	12.072	0.537	11.009	0.113	0.56	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	12400-20	AN-107-LIFC	Renlicate	na	0.200	0.2791	1.396	13	11.785	0.500	10.792	0.105	0.52	7.14%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	171-CO-20	AN-107-LIFC-dun		na	0.200	0.2756	1.378	14	11.972	0.532	10.954	0,112	0.56	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	02420-20	AN-107-UFC-dup	Replicate	na	0.200	0.2780	1.390	15	11.686	0.544	10.864	0.114	0.57	2.23%
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					\$ 00			-	5.553			HO	% Recover	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Standard 1	0.1018N NaOH			5.000	5.0142	1.003	2	12.291	2.415	7.950	0.5067	65.66	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				·	-:4				100 01	1 000	10.760	71100	06.5%	WS
MS 02-03427 $+ 2mL 0.1N$ NaOH 0.100 0.1389 1.399 1.399 1.391 1.	MS 02-03410	+ 2mL 0.1N NaOH			0.100	0.128/	1.25/	21	12 050	200.1	10.73	0.7570	69.66	MS
Buffer Fisher Lot # $CMS#$ Expire Date 10 007467-24 161301 Dec-02 4 007374-24 161303 Nov-02 7 007376-24 161302 Nov-02 7 007376-24 161302 Nov-02 7 007376-24 161302 Nov-02 6389 161302 Nov-02 604171 5.00 5.0116 92501 0.200 0.1995 1hitial pH 7.0 reading = 6.989 161302 Nov-02 F04171 5.00 5.0116 92501 0.200 0.1988	MS 02-03427	+ 2mL 0.1N NaOH			0.100	0.1389	400.1	10	Performanc	e checks using	g Balance #	36001-06-03	7	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Duffer	Fisher Lot	#		CMS#	Expire Dat	0	Pipet #	Vol.	Wt.	Pipet #	Vol.	Wt.	
4 007374-24 161303 Nov-02 F04171 5.00 4.9987 92501 0.200 0.1995 7 007376-24 161302 Nov-02 F04171 5.00 5.0116 92501 0.200 0.1988 1 pH 7.0 reading = 6.989 6.989 6.1984 0.1988 0.1988	10100	AC-7467-00			161301	Dec-02		F04171	5.00	5.0014	92501	0.200	0.1999	
7 007376-24 161302 Nov-02 F04171 5.00 5.0116 92501 0.200 0.1988 Initial pH 7.0 reading 6.989 </td <td>21</td> <td>007374-24</td> <td></td> <td></td> <td>161303</td> <td>Nov-02</td> <td></td> <td>F04171</td> <td>5.00</td> <td>4.9987</td> <td>92501</td> <td>0.200</td> <td>0.1995</td> <td></td>	21	007374-24			161303	Nov-02		F04171	5.00	4.9987	92501	0.200	0.1995	
Initial pH 7.0 reading = 6.989	-	007376-24			161302	Nov-02		F04171	5.00	5.0116	92501	0.200	0.1988	_
	Initial	pH 7.0 reading	= 6.989	-										

Page 3 of 6

r i

ASR6583-rev2.xls

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building

ASR # 6583-rev2 File: R:\radchem\hydroxide\asr WP# [W63934]

Procedures: RPG-CMC-228: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Leachates and Supermates and Operation of Brinkman 636 Auto-Titrator

J 2 Analyst:

Titrant	Molarity											
HCI	0.2098		2nd Equiv	valence				3rd Equiv	alence			
	0	Sample	Point	E	Found illimoles v	dolarity n	nillimole	Titrant	Ни	Found millimoles hase	Molarity base	millimole RPD
RPG #		Vol. (mL	(III) (IIII)	Lid	Dabo	Depri	A IN	1 OII (1117)				
02-03410	0	0.200	1.371	7.520	0.258	1.289		2.202	4.875	0.174	0.87	
02-03410	Replicat	0.300	2.068	7.410	0.388	1.292	0.24%	3.309	4.881	0.260	0.87	0.4%
02-03411	0	0.200	1.370	7.479	0.259	1.294		2.186	4.881	0.171	0.86	
02-03411	Replicat	0.200	1.366	7.554	0.261	1.303	0.65%	2.204	4.847	0.176	0.88	2.7%
02-03413	0	0.200	1.194	7.582	0.222	1.109		1.896	4.909	0.147	0.74	
02-03413	Replicat	0.200	1.216	7.383	0.234	1.170	5.34%	1.900	4.895	0.144	0.72	2.6%
02-03417	0	0.200	1.406	7.533	0.214	1.070		2.102	4.822	0.146	0.73	
02-03417	Replicat	0.200	1.390	7.557	0.208	1.042	2.68%	2.078	4.880	0.144	0.72	1.2%
02-03427	0	0.200	2.260	7.509	0.361	1.807		3.682	4.838	0.298	1.49	
02-03427	Replicat	0.200	2.257	7.513	0.369	1.843	1.95%	3.681	4.788	0.299	1.49	0.1%
02-03428	0	0.200	2.229	7.516	0.356	1.780		3.659	4.771	0.300	1.50	
02-03428	Replica	0.200	2.248	7.506	0.357	1.787	0.41%	3.690	4.802	0.303	1.51	0.8%
						2-nd Rec	covered					
Standard 1		5.00(0 2.484	4.034	0.01448	2.8%	sample	3.277	3.965			
ULVEU CU SIX		0.100	1 653	7 820		-	sample	2.120	4.688			
MS 02-03427		0.100	0 2.089	7.662		-30	sample	2.831	4.791			
Matrix spike Spike = 2.00 n SpikeTitrant v	recovery nL 0.1018 ol. (sampl	is calcula 3 N NaOH le @ .1mL	tted as folle was added , + spike) -	ows: I to the 0. SampleT	100-mL of itrant vol.	sample (average	for each i sample o	matrix spik only equate	e. d to .1m	L)*0.2034	t N (HCI ti	trant) =
meq. OH meg OH / 2.00) mL adde) bau = pa	noj Jm/HC	ind / 0.10	018 N OH	added *	100 = %	recovered.				

Prep record on 0.2041 M HCl is on following page.

6/12/2003

Page 4 of 6

1-

ASR6583-rev2.xls

7/15/2002

Preparation and Standardization of 0.1 M, and 0.01M NaOH and Preparation and Standardization of 0.2 M HCI and dilutions

WP# K88426 Prepared by: rg Swoboda _____

Request: I need more NaOH and HCI solutions made up for the OH- analysis procedure --- rgs Preparation: Prepared ~ 0.1M NaOH and 0.2M HCI from reagent grade stock . Standardize the ~0.1M NaOH solution against NIST Potassium Acid Phthalate KHC8H4O4 (KAP) . Then prepare 0.2M HCI and standardize against the calibrated 0.1M NaOH. Do a verification check on all the subsequent dilutions of NaOH and HCI.

Standardization : Use NIST SRM 84k, Potassium Acid Phthalate KHC8H4O4 (KAP) --CMS# 186903 Technique used will be via hand-titration to the phenopthalein endpint. Project titration for about 20-25 mL of a 50 mL burrette.

Hence, ~20 mL * 0.1M NaOH = 2 meq. and ~2 meq of KAP = 204.22 mg/meq * 2 = ~ 400 mg KAP weighed on 5-place balance --- All preparations will be certified for 2 yrs beyond calibration date --- rgs.

0.1M NaOH and dilutions

Verification Test #	Wt. of KAP	Vol. Of ~ 0.1M NaOH to neutralize	NaOH Molarity =a * 1000 / b * 204.22	Molarity Error +/- @ 1 s	% error
1	0.43336	20.85	0.10178		
2	0.49981	24.05	0.10176		
3	0.63432	30.50	0.10184	_	
5	Standardized Av	erage NaOH Molarity =	0.10179	0.00004	0.04%

10X cut of ~ 0.1M NaOH

Verification Test #	Wt. of KAP	Vol. Of ~ 0.01M NaOH to neutralize	NaOH Molarity =a * 1000 / b * 204.22	Molarity Error +/- @ 1 s	% error
1	0.06842	33.05	0.01014		
2	0.07756	37.42	0.01015		
3	0.07141	34.42	0.01016		
	Standardized Av	verage NaOH Molarity =	0.01015	0.00001	0.11%
•	or and a standard of the			4	

0.2M HCI and dilutions

Titration Id.	aliquot of acid	NaOH to neutralize	Sample	+/- @ 1 s	% error
1	20.00	41.20	0.2097		
2	20.00	41.25	0.2099		
3	20.00	41.20	0.2097		
	Otondardinod A	warage HCI Molarity =	0 2098	0.00015	0.07%

Standardized Average HCI Molarity = 0.2098

	Titration Id.	aliquot of acid	Vol. of 0:01015M NaOH to neutralize	Molarity of Acid in Sample	Molarity Error +/- @ 1 s	% error
1	1	20.00	41.05	0.0208		
-	2	20.00	41.10	0.0209		
-	2	20.00	41.00	0.0208		
	3	Standardized /	Average HCI Molarity =	0.0208	0.00003	0.12%

0.0052 M HCI was prepared by making an exact 40X cut of 0.2098 M HCI -- Error ~ 0.5%

Analyst/Date	r. g. Swoboda	- mg mg	6/12/03	Expiration Date on Stds. 7/15/2004
		$\langle \rangle$		
ASR6583-rev2	.xls	Page	e 5 of 6	6/12/2003

Chem Rec_97

Preparation of Standardized 1.0 M NaOH Verification of 1 M HCI, 0.2 M HCI and 0.1 M NaOH WP#

06/11/03 6/12/03 Prep'd by: Verif. By:_ 12/03 Requester: rg swoboda

Request: Need new NaOH and HCL standardized solutions prepared for Hydroxide procedure.

Preparation Prepared~ 1.0M NaOH from reagent grade solid NaOH -- then standardize vs KAP. Standardization : Use NIST SRM 84k, Potassium Acid Phthalat&HC8H4O4 (KAP) --CMS# 186903. Dried KAP in oven @ 50 deg C for 30 min., cool and then weigh on 5-place balance. (from Chemrec_94)

Prep date:

Technique used will be via hand-titration to the phenopthalein endpint using Rainin motorized pipets in titration mode.

aOH Molarity veri	fication performed (target = 1g) Wt.	Vol. Of 1M NaOH prep. Vol. Of 1M NaOH to neutralize	NaOH Molarity =a * 1000 / b * 204.23	See Chemrec See Chemrec +/- @ 1 s
Ventication Test #	0.58126	2.88	0.98823	
2	1 19083	5.91	0.98660	
2	1.24888	6.18	0.98949	
3	1.22452	6.08	0.98615	
		-4	0.98762	0.0015
			certified value	0.16%

Tination Id	aliquot of acid	Vol. of 0.988 M NaOH to neutralize	Molarity of Acid in Sample	Molarity Error +/- @ 1 s	% erro
Tibauon iu.	8.00	1 745	0.2154		
1	8.00	1 740	0.2148		
2	8.00	1 751	0.2162		
Standardized Average Acid Molarity =			0.2155	0.00068	0.32%

~ 1.0M HCI Standardization n Vol. of 0.988 M NaOH Molarity of Acid in Molarity Error to neutralize Sample +/-@1 s % error

Titration Id.	aliquot of acid	to neuralize	Oumpie		-
4	8.50	8.71	1.0120		
1	8.00	8.30	1.0247		1
4	9.00	9.27	1.0172		
5	9.00	8.69	1.0097		
2	0.00	930	1 0205		1
3	9.00 Sold Molarity =		1.0168	0.00611	0.60%
	Standardized Ave	rage Aciu morany -	110100		A

~ 0.1M NaOH Standardization Molarity of Base in Sample +/- @ 1 s Vol. of 0.2155 M HCI to neutralize % error aliquot of base Titration Id. 4.77 0.1028 10.00

4.73

3	10.00	4.77	0.1028		
	Standardized A	verage Acid Molarity =	0.1025	0.00050	0.49%
~ 0 2M HCL Stand	ardization Check	(from Chemrec 86)			
Tiration Id	aliquot of acid	Vol. of 0.988 M NaOH to neutralize	Molarity of Acid in Sample	Molarity Error +/- @ 1 s	% error

~	0	herk	
	Nec	D.2m	HCI
	or	-	-

0.2M HCL Stand	aliquot of acid	Vol. of 0.988 M NaOH to neutralize	Molarity of Acid in Sample	Molarity Error +/- @ 1 s	% error
10 adon 10.	8.00	1.694	0.2091		/
2	8.00	1.693	0.2090		4
2	8.00	1.697	0.2095		
Standardized Average Acid Molarity =			0.2092	0.00026	0.12%

			Calib Expire Date:		deg C	cm3/g H2O	
Date	Balance M&TE#	and the second	Callo Expire Date.		24.0	1.0027	and the providence
06/10/03	360-06-01-017		August 51, 2005				
	000 = 0 =	0.2000 a					
Balance check	200 mg =	0.2000 g					7
	2 g =	2.0001 g					1
	20 g =	20.0009 g			Tama		- 1
Rainin Pinet ID	Delivery setting	pipeted mase in g.	Average mass (g)	1s Std. Dev.	corrected ave.	% of Nominal	% pipet error @ 1s
H30213	1.000 -	0.9975					-
H30213	1.000	0.9956			0.0000	00.02%	0.0962%
H30213	1.000	0.9968	0.99663	0.0010	0.9993	99.93%	0.0302.70
					-	1	_
H30973	8.000	8.0084					-
H30973	8.000	8.0095	0.00000	0.0061	8.0276	100.34%	0.0640%
H30973	8.000	8.0001	8.00600	0.0051	0.0270	1 100.0110	
			1	1	Temp in		7
	DI MATEN		Calib. Expire Date:		deg C	cm3/g H2O	
Date	Balance Mid IE#		August 31, 2003		22.5	1.0023	
06/11/03	360-06-01-017		Augusten				
Ralance check	2 g =	2.0002 g					_
Datarice crickit	20.0 =	20.0008 g					_
	209						_
Rainin Pinet ID	Delivery setting	pipeted mass in g	Average mass (g)	1s Std. Dev.	Temp. corrected ave.	% of Nominal	% pipet error @ 1s
H30973	4.75	4.7291					-
H30973	4.75	4.7409		0.0070	4 7 4 5 2	00.00%	0.1521%
H30973	4.75	4.7278	4.73260	0.0072	4.7453	39.90%	0.10217

ASR6583-rev2.xls

Page 6 of 6

6/12/2003

* *

Battelle PNNL/RS&E/Inorganic Analysis ... ICPAES Analysis Report PO Box 999, Richland, Washington 99352

Project / WP#:	42365 / W63934
ASR#:	6618
Client:	R. Hallen
Total Samples:	13 (liquid)

	First	Last
RPL#:	03-00086	03-00098
Client ID:	SS-01-4	AN-102 Sr/TRU decon-24hr
Sample Preparat	ion: PNL-ALO-128 (SA	L/vh)

Procedure: PNNL-ALO-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).

Analyst: D.R. Sanders

Analysis Date (File):	<u>10-29-2002</u>	(A0855)
	<u>10-30-2002</u>	(A0856)

See Chemical Measurement Center 98620 file: ICP-325-405-1 (Calibration and Maintenance Records)

M&TE Number:

WB73520 (ICPAES instrument) <u>360-06-01-029</u> (Mettler AT400 Balance)

B.N. Olwin 11/7/02 Preparer MINT/Ma, 11/8/02

Review and Concur

Page 1 of 4

Thirteen aqueous samples submitted under Analytical Service Request (ASR) 6618 were analyzed by ICPAES. The samples were prepared by acid extraction per PNL-ALO-128 in the Shielded Analytical Laboratory (SAL) using a nominal 1.0 mL of sample and diluting to a final volume of approximately 25 mL in Teflon vials. Sample preparation and analysis were conducted in two separate batches.

A summary of the ICPAES analyses, including QC performance, is given in the attached ICPAES Data Report (8 pages). Analytes of interest (AOIs) were specified in the ASR, and are listed in the upper section of the report. The quality control (QC) results for each of these analytes have been evaluated and are presented below. Analytes other than those identified as AOIs are reported in the bottom section of the data report, but have not been fully evaluated for QC performance.

The results are given as $\mu g/mL$ for each detected analyte, and have been adjusted for all laboratory processing factors. Minimum Reportable Quantity (MRQ) values were specified in the ASR for selected AOIs. To meet this requirement, method detection limits (MDL) for the ICPAES analyses need to be \leq (MRQ \div 3). The required MRQ levels were met for all of the selected AOIs except for K (for all samples) and for Na (for the two AN-102 samples). However, since both K and Na were detected at levels well above the MRQ level of 75 $\mu g/mL$, this is not an issue in the present results.

The following is a list of quality control measurement results relative to ICPAES analysis requirements of the controlling QA plan. For each extraction processing, a process blank, blank spike, matrix spike, and duplicate were prepared along with the samples. The blank spikes and matrix spikes were prepared using 1.5 and 0.5 mL respectively of multi-element spike solutions BPNL-QC-1A and -2A. One of the AOIs, europium, was not present in the combined spike solution.

Process Blank:

A process blank (reagents only) was prepared with both groups of samples. Except for Fe and Ni in the first process blank, the concentrations of all AOIs were within the acceptance criteria of $\langle EQL \rangle$ (estimated quantitation level $\equiv 10 \times MDL$) or $\langle 5\% \rangle$ of the concentration in the samples. In the first process blank, iron was present at a level of $\sim 18 \mu g/mL$, representing from ~ 6 to 250% of that measured in the samples. Nickel was present at a level of $\sim 13 \mu g/mL$, representing $\sim 6\%$ of that measured in the samples. Both analytes are suspected to be from tramp contamination in the SAL, probably from stainless steel. No analytes were detected above the MDL in the second process blank.

Blank Spike:

A blank spike (reagents and spike solution) was prepared with both groups of samples. Recovery values for both blank spikes were within the acceptance criterion of 80% to 120% for all AOIs. Analytes recovered at levels less than the EQL are shown as bold.

~R. Hallen ASR-6618 ICP File A0855 & A086.doc

Duplicate RPD (Relative Percent Difference):

Duplicates were prepared for Samples 03-00086 and 03-00093. RPDs are listed for all analytes that had concentrations \geq EQL. The RPDs for both duplicates were within the acceptance criteria of ±15% (±10% for Na) for all AOIs meeting the above requirement.

Laboratory Control Standard (LCS):

No LCS samples were prepared for analysis.

Matrix Spiked Sample:

Matrix spikes were prepared with Samples 03-00086 and 03-00093. Recovery values are listed for all analytes in the spikes that were measured above the EQL, and that had a spike concentration $\geq 20\%$ of that in the sample. Analytes not meeting these requirements have either no recovery value listed (< EQL), or are listed as not recovered ("nr").

The recovery values for the first matrix spike (03-00086-MS) were within the acceptance criterion of 75% to 125% for all AOIs meeting the above requirements. The recovery values for 03-00093-MS, however, were outside the acceptance criteria for Cr, Fe, and Ni. As was the case for the earlier process blank, the over-recoveries (from 137 to 289%) are suspected to be from tramp contamination in the SAL.

Post-Spiked Samples (Spike A Elements):

A post-spike A was conducted with Samples 03-00086 and 03-00093. Recovery values are listed for all analytes in the spikes that had a concentration > 20% of that in the sample. The recovery values were within the acceptance criterion of 75% to 125% for all AOIs meeting the above requirement. Analytes not meeting the 20% requirement are listed as not recovered ("nr"). Analytes recovered at levels below the EQL are shown as bold.

Post-Spiked Samples (Spike B Elements):

A post-spike B was conducted with Samples 03-00086 and 03-00093. Recovery values are listed for all analytes in the spikes that had a concentration > 20% of that in the sample. The recovery values were within the acceptance criterion of 75% to 125% for all AOIs. Analytes recovered at levels below the EQL are shown as bold.

Serial dilution (Percent Difference):

Five-fold serial dilution was conducted on Samples 03-00086 and 03-00093. Percent differences (%Ds) are listed for all analytes that had a concentration \geq EQL in the diluted sample. The %Ds were within the acceptance criterion of ±10% for all AOIs meeting the above requirement. Note, that the %Ds for sodium were obtained from the 5x/25x dilutions.

Page 3 of 4

Other QC:

All other instrument-related QC tests for the AOIs passed within the appropriate acceptance criteria.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilutions performed on the samples during processing and analysis, unless specifically noted.
- 2) Instrument detection limits (IDL) shown are for acidified water. Detection limits for other matrices may be determined if requested. Method detection limits (MDL) can be estimated by multiplying the 'Multiplier' by the IDL. Estimated quantitation limit (EQL) is equal to 10 x MLD.
- 3) Routine precision and bias is typically ±15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight). Note that bracketed values listed in the data report are within ten times instrument detection limit (adjusted for processing factors and laboratory dilutions) and have a potential uncertainty much greater than 15%.
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is two.

~R. Hallen ASR-6618 ICP File A0855 & A086.doc

Page 1 of 8

Multipliere 28.9 28.9 27.2 138.0 25.9 129.5 RPL/LAB # 03-00086-B CHECK RUN 03-00086 @S DUP DUP @S Instr. Det, Limit (DL) Client (D D Decess. blank process. blank SS-01-4 SS-01-4-Oug QugmL) (ug/mL) (ug/mL) (ug/mL) (ug/mL) (ug/mL) (ug/mL) (ug/mL) QugmL) <		Run Date≃	10/29/2002	10/29/2002	10/29/2002	10/29/2002	10/29/2002	10/29/2002
RPL/LAB # 03-00066-B CHECK RUN 03-00066 03-00066 03-00066 03-00066 DUP 03-00066 Instr. Det, Limit (IDL) Client ID= process. blank process. blank SS-01-4 SS-01-4 SS-01-4-Dun (ug/mL) (ug/mL) (ug/mL) (ug/mL) (ug/mL) (ug/mL) (ug/mL) 0.050 Al 53.5 53.3 2,180 2,170 (ug/mL) 0.050 Ca 42.0 418 0.020 Ca 18.81 (16.5) 0.025 Fe 18.4 71.1 30.0 299 <td></td> <td>Multiplier=</td> <td>26.9</td> <td>26.9</td> <td>27.2</td> <td>136.0</td> <td>25.9</td> <td>129.5</td>		Multiplier=	26.9	26.9	27.2	136.0	25.9	129.5
RPLLAB #= 03-00066 CHECK RUN 03-00066 03-00066 03-00066 03-0008 03-0018				03-00086-B			03-00086-	03-00086-
Instr. Det. Discress. Drocess. SS-01-4 SS-01-4-Dup (ug/mL) (Analyte) (ug/mL)		RPL/LAB #=	03-00086-B	CHECK RUN	03-00086	03-00086 @5	DUP	DUP @5
Limit (ID1) Client IDa Data / blank - rezul SS-01-4 S3-01-4-Dug (ug/mL) (ug/	Instr. Det.		process	nrocess				
(ug/mL) (ug/mL) <t< td=""><td>Limit (IDL)</td><td>Client ID=</td><td>blank</td><td>blank - rerun</td><td>ss.</td><td>01-4</td><td>55-01</td><td>A-Dup</td></t<>	Limit (IDL)	Client ID=	blank	blank - rerun	ss.	01-4	55-01	A-Dup
Learn Carron Carron </td <td>(ug/mL)</td> <td>(Analyte)</td> <td>(ug/mL)</td> <td>(ug/mL)</td> <td>(ug/ml.)</td> <td>(ug/ml)</td> <td>(ug/ml.)</td> <td>(ug/ml)</td>	(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/ml.)	(ug/ml)	(ug/ml.)	(ug/ml)
0.250 Ca 420 418 0.015 Cd 34.1 34.0 0.200 Ce [8.5] [8.5] 0.020 Cr [4.5] [5.8] [8.5] 0.020 Cr [4.5] [5.8] [8.5] 0.025 Fe 18.4 17.1 300 209 0.025 Fe 18.4 17.1 300 209 0.050 La 917 914 0.050 Mn [5.5] [5.6] 64.3 63.9 0.150 Na 220 229 over range 124,000 over range 124,000 0.100 Nd 13.7 12.8 275 126 0.015 Sr - 128 126 0.025 Ag <	0.060	Al	53.5	53.3	2 180	(ug/iii_)	2 170	(ug/mL/
0.015 Cd - 34.1 34.0 0.200 Ce - - [8.8] [8.5] 0.020 Cr [4.5] 53.8 53.5 0.020 Cr [4.5] 53.8 53.5 0.025 Fe 18.4 17.1 300 299 2.000 K - - - - 0.505 La - - (7.2] [7.1] 0.100 Mg - - - - 0.050 Mn [5.5] [5.6] 64.3 63.9 0.150 Na 220 over range 124,000 0.100 Nd - - [23] [23] 0.030 Nil 13.7 12.8 276 . 0.100 Pb - - 13.6 18.5 . 0.101 Pa (0.58] (1.2] (1.2] . 0.250 Ag	0.250	Ca			420		419	
0.200 Ce (8.8) (2.5) 0.020 Cr (4.5) (4.5) 53.8 53.5 0.100 Eu 0.025 Fe 18.4 17.1 300 299 2.000 K 0.050 La 0.050 Mn (5.5) [5.6] 64.3 63.9 0.150 Na 220 229 over range 124,000 over range 124,000 0.100 Nd [23] 124,000 over range 124,000 0.100 Pb 128 275 0.100 Pb 126 124,000 0.005 27 128 124,000 0.015 Sr 128 13.5 10.05 13.5 0.050 27	0.015	Cd			34.1		34.0	
0.020 Cr [4.5] [4.5] 53.8 53.5 0.100 Eu 0.025 Fe 18.4 17.1 300 299 2.000 K 0.050 La 0.050 Ma 0.050 Ma 220 229 over range 124,000 over range 124,000 0.150 Na 220 229 over range 124,000 over range 124,000 0.100 Nd - [23] [23] [23] 0.010 P [3.7] 378 376 0.010 P [3.7] 128 126 0.010 Ba - 128 126 0.025 Ag	0.200	Ce			19 91		54.0	
0.100 Eu 0.025 Fe 18.4 17.1 300 299 2.000 K -917 914 0.050 La 17.2] 17.1] 0.100 Mg 0.050 Mn [5.5] [5.6] 64.3 63.9 0.100 Nd [23] (23) 0.010 Nd [23] 0.100 Nd [23] 0.100 P [3.7] 378 0.100 P [3.7] 18.6 18.5 0.105 Sr 13.3 19.3 0.025 Ag	0.020	Cr	[4 5]	14 51	53.8		[0.3] 52.5	· · · · · · · · · · · · · · · · · · ·
D.025 Fe 18.4 17.1 300 299 2.000 K 917 914 0.050 La (7.2) (7.1) 0.050 Ma 0.050 Mn [5.5] [5.6] 64.3 63.9 0.100 Na 220 over range 124,000 over range 124,000 0.100 Nd - [23] [23] [23] 0.030 Ni 13.7 12.8 278 275 0.100 P [3.7] 378 376 0.010 Pb 128 126 0.010 Pb 18.6 18.5 Other Analytes 19.3 19.3 0.025 Ag 0.250 As 0.250 Ag	0.100	Fu	[7:0]	[4.5]	33.0		53.5	
2.000 K 917 914 0.050 La 0.050 Ma 0.050 Ma 220 229 over range 124,000 over range 124,000 0.150 Na 220 229 over range 124,000 over range 124,000 0.100 Nd - [23] [23] 0.030 Ni 13.7 12.8 278 275 0.100 Pb 128 126 0.010 Pb 12.5 [3.5] [3.5] 0.025 Ag 18.6 18.5 0.025 Ag 0.025 Ag 19.3 <td>0.025</td> <td>Ea</td> <td>18.4</td> <td>17.1</td> <td></td> <td></td> <td></td> <td></td>	0.025	Ea	18.4	17.1				
Line Line Jit Jit Jit 0.050 La 7.1 7.1 0.100 Mg 0.050 Mn [5.5] [5.6] 64.3 63.9 0.150 Na 220 over range 124,000 over range 124,000 0.100 Nd - [23] [23] 124,000 0.030 Ni 13.7 12.8 278 275 0.100 P [3.7] 378 376 0.100 P [3.7] 378 135 0.005 Zr 18.6 18.5 Other Analytes 0.020 As 0.020 Bs	2 000	к	10.4	17.1	017		299	
Doto La I. (I.2) (I.71) 0.000 Mg - - 0.050 Mn [5.5] [5.6] 64.3 63.9 0.150 Na 220 over range 124,000 over range 124,000 0.100 Nd [23] [23] [23] 0.030 Ni 13.7 12.8 275 . 0.100 P [3.7] 378 376 0.010 Pb - 128 126 0.010 Pb - 18.6 18.5 Other Analytes - - - 0.025 Ag - - - 0.025 Ag - - - - 0.025 Ag - - - - - 0.050 Ba [0.59] [0.58]	0.050				517		914	
D.100 Mg D <td>0.000</td> <td>Ma</td> <td></td> <td></td> <td>[/.2]</td> <td></td> <td>[7.1]</td> <td></td>	0.000	Ma			[/.2]		[7.1]	
0.303 min $[3.5]$ $[3.6]$ $b4.3$ $b4.3$ $b3.9$ 0.150 Na 220 229 over range $124,000$ over range $124,000$ 0.100 Nd - - $[23]$ $[23]$ $[23]$ 0.030 Ni 13.7 12.8 275 $$ 0.100 P $[3.7]$ 378 376 0.100 Pb - 128 126 0.015 Sr - 128 126 0.050 Zr - - 13.6 18.5 Other Analytes - - - - - 0.050 B - - - - - 0.050 B - - - - - 0.050 B - - - - - 0.050 Dy - <td< td=""><td>0.100</td><td>Mo</td><td> (E E)</td><td></td><td></td><td></td><td></td><td></td></td<>	0.100	Mo	 (E E)					
U.130 Na 220 229 over range 124,000 over range 124,000 0.100 Nd - - [23] [23] [23] 0.030 Ni 13.7 12.8 278 275 0.100 P [3.7] - 378 376 0.101 Pb - - [3.5] [3.5] 0.015 Sr - - [3.5] [3.5] 0.050 Zr - - [3.5] [3.5] 0.050 Zr - - - - 0.250 Ag - - - - 0.250 As - - - - 0.250 As - - - - - 0.500 B - - - - - - 0.500 B - - - - - -	0.050	No	[5.5]	[5.0]	64.3		63.9	
0.130 NU - [23] [23] 0.030 Ni 13.7 12.8 278 275 0.100 P [3.7] 378 376 0.100 Pb 128 126 0.015 Sr [3.5] [3.5] 0.050 Zr 18.6 18.5 Other Analytes 0.250 As 0.250 As 19.3 19.3 0.3 0.050 B 19.3 19.3 0.3 0.010 Ba [0.59] [0.52] [1.2] [1.2] [1.2] 0.010 Bi [14] [2.6] [2.5] 0.25 0.025 Cu 11.0 11.0 11.0 0.050 Dy	0.100	Nd	220	229	over range	124,000	over range	124,000
0.030 NI 13.7 12.8 278 275 0.100 P $[3.7]$ 378 376 0.100 Pb 128 126 0.015 Sr 18.6 18.5 0.050 Zr 18.6 18.5 Other Analytes 19.3 19.3 0.025 Ag 0.250 As 0.050 B 0.050 B 0.100 Ba [0.59] [0.51] [1.2] (1.2] 0.050 Co 0.100 Bi [14] [2.5] [2.5] 0.025 Cu <td< td=""><td>0.100</td><td>NG</td><td></td><td></td><td>[23]</td><td></td><td>[23]</td><td></td></td<>	0.100	NG			[23]		[23]	
0.100 P $[3,7]$ 378 376 0.100 Pb 128 126 0.015 Sr 128 126 0.050 Zr 18.6 18.5 Other Analytes 0.025 Ag 0.050 B 0.050 B 0.050 B 0.010 Ba [0.59] [0.58] [1.2] [1.2] [1.2] 0.100 Bi [14] [2.5] 0.050 Co [2.5] 0.050 Mo	0.030		13.7	12.8	2/8		275	
0.100 PB - - 128 126 0.015 Sr - - [3.5] [3.5] (3.5) 0.050 Zr - - 18.6 18.5 Other Analytes - - - - - 0.025 Ag - - - - - 0.050 B - - - - - - 0.050 B - - 19.3 19.3 19.3 0.010 Be - - - - - - 0.100 Bi [14] - [2.8] - - - 0.050 Co - - 11.0 11.0 11.0 0.050 Dy - - - - - - 0.050 Mo - - 11.0 11.0 11.0 0.0 0.050 Mo - - - - - - - - - -	0.100	P Dh	[3.7]		378		376	
U013 Sr [3.5] [3.5] [3.5] 0.050 Zr 18.6 18.5 Other Analytes 0.025 Ag 0.050 B 0.050 B 19.3 19.3 0.010 Ba [0.59] [0.58] [1.2] [1.2] 0.010 Be 0.100 Bi [14] [2.5] [2.5] 0.025 Cu 11.0 11.0 0.050 Dy 0.050 Mo 0.050 Mo 0.050 Mo <td>0.100</td> <td>PD</td> <td></td> <td></td> <td>128</td> <td></td> <td>126</td> <td></td>	0.100	PD			128		126	
0.030 2r 18.6 18.5 Other Analytes 0.025 Ag 0.050 B 19.3 19.3 0.010 Ba [0.59] [0.58] [1.2] [1.2] 0.010 Be 0.050 Co 0.050 Co [2.5] [2.5] 0.050 Co 11.0 11.0 0.050 Dy 0.050 Mo 11.0 11.0 0.050 Mo 0.050 Mo 0.050 Mo 0.050 Mo 0.500 Rh	0.015	sr ~	•-		[3.5]		[3.5]	
Outer Analytes 0.025 Ag - - - - 0.250 As - - - - - 0.050 B - - 19.3 19.3 19.3 0.010 Ba [0.59] [0.58] [1.2] [1.2] [1.2] 0.010 Be - - - - - 0.100 Bi [14] - [2.8] - - 0.050 Co - - [2.5] [2.5] - 0.050 Co - - - - - - 0.050 Dy - - - - - - 0.030 Li - - - - - - 0.500 Mo - - - - - - 0.300 Rh - - - - - - <td>0.050</td> <td>Zr</td> <td></td> <td></td> <td>18.6</td> <td></td> <td>18.5</td> <td></td>	0.050	Zr			18.6		18.5	
0.025 Ag 0.250 As 0.050 B 19.3 19.3 0.010 Ba $[0.59]$ $[0.58]$ $[1.2]$ $[1.2]$ 0.010 Be 0.100 Bi $[14]$ $[2.8]$ 0.050 Co $[2.5]$ $[2.5]$ 0.025 Cu 11.0 11.0 0.050 Dy 11.0 11.0 0.050 Mo 11.0 11.0 0.030 Li $$ $$ 0.030 Kh $$ $$ 0.300 Rh $$ $$ 1.100 Ru $$ $$ 0.500	Other Analyte	-				·		
0.250 As <	0.025	Ag	••					
0.050 B 19.3 19.3 0.010 Ba $[0.59]$ $[0.58]$ $[1.2]$ $[1.2]$ 0.010 Be 0.100 Bi $[14]$ $[2.8]$ 0.050 Co $[2.5]$ $[2.5]$ 0.025 Cu 11.0 11.0 0.050 Dy 0.030 Li 0.050 Mo 18.5 18.4 0.750 Pd 0.300 Rh 0.300 Rh 0.500 Sb 0.500 Si 0.500 Si	0.250	As	**					
0.010 Ba $[0.59]$ $[1.2]$ $[1.2]$ 0.010 Be 0.100 Bi $[14]$ $[2.8]$ 0.050 Co $[2.5]$ $[2.5]$ 0.025 Cu 11.0 11.0 0.050 Dy $$ 0.050 Dy $$ 0.050 Mo 11.0 11.0 0.050 Mo 0.050 Mo 0.050 Mo 0.300 Rh 0.300 Sb 0.500 Si	0.050	В			19.3		19.3	
0.010 Be 0.100 Bi [14] [2.8] 0.050 Co [2.5] (2.5] 0.025 Cu 11.0 111.0 0.050 Dy 0.050 Dy 0.050 Mo 0.050 Mo 0.050 Mo 18.5 18.4 0.750 Pd 0.300 Rh 1.100 Ru 0.500 Sb 0.500 Si 0.500 Sn 0.500 Ti <td>0.010</td> <td>Ва</td> <td>[0.59]</td> <td>[0.58]</td> <td>[1.2]</td> <td></td> <td>[1.2]</td> <td></td>	0.010	Ва	[0.59]	[0.58]	[1.2]		[1.2]	
0.100 Bi [14] [2.8] 0.050 Co [2.5] [2.5] 0.025 Cu 11.0 11.0 0.050 Dy 11.0 11.0 0.050 Dy 0.030 Li 0.050 Mo 0.050 Mo 0.050 Mo 0.300 Rh 0.300 Sb 0.300 Sb 0.500 Si 0.500 Sn 0.500 Te .	0.010	Be						
0.050 Co [2.5] [2.5] 0.025 Cu 11.0 11.0 0.050 Dy 11.0 11.0 0.050 Dy 0.030 Li 0.050 Mo 18.5 18.4 0.750 Pd 0.300 Rh 0.300 Rh 0.300 Rh 0.500 Sb 0.250 Se 0.500 Sn 0.500 Th 0.025 <	0.100	Bi	[14]		[2.8]			
0.025 Cu 11.0 11.0 0.050 Dy 0.030 Li 0.050 Mo 18.5 18.4 0.750 Pd 0.300 Rh 0.300 Rh 1.100 Ru 1.100 Ru 0.500 Sb 0.500 Si 0.500 Sn 0.500 Sn 0.500 Th 0.025 T1 0.500 T1	0.050	Co			[2.5]		[2.5]	
0.050 Dy 0.030 Li 0.050 Mo 18.5 18.4 0.750 Pd 0.300 Rh 0.300 Rh 1.100 Ru 0.500 Sb 0.500 Sb 0.500 Si 0.500 Sn 0.500 Te 1.000 Th 0.025 Ti 0.025 Ti 0.050 V <td>0.025</td> <td>Cu</td> <td></td> <td>••</td> <td>11.0</td> <td></td> <td>11.0</td> <td></td>	0.025	Cu		••	11.0		11.0	
0.030 Li 0.050 Mo 18.5 18.4 0.750 Pd 0.300 Rh 1.100 Ru 1.100 Ru 0.500 Sb 0.500 Se 0.500 Si 124 [24] 0.500 Sn 0.500 Sn 0.500 Te 1.000 Th 0.025 Ti 0.500 Ti 0.500 V	0.050	Dy						
0.050 Mo 18.5 18.4 0.750 Pd 0.300 Rh 1.100 Ru 0.500 Sb 0.500 Sb 0.500 Se 0.500 Si 0.500 Si 0.500 Sn 0.500 Te 1.000 Th 0.025 Ti 0.500 T1 0.500 V 0.500 V <td>0.030</td> <td>Li</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	0.030	Li						
0.750 Pd 0.300 Rh 1.100 Ru 0.500 Sb 0.500 Sb 0.500 Se 0.500 Si 0.500 Si 0.500 Sn 0.500 Te 1.000 Th 0.500 Ti 0.500 Ti 0.500 V 0.500 V 0.500 Y	0.050	Mo			18.5		18.4	
0.300 Rh 1.100 Ru 0.500 Sb 0.250 Se 0.500 Si 0.500 Si 0.500 Sn 0.500 Sn 0.500 Te 1.000 Th 0.025 Ti 0.500 T1 2.000 U 0.500 V 0.500 V 0.500 Y	0.750	Pd						
1.100 Ru 0.500 Sb 0.250 Se 0.500 Si 0.500 Si [24] [24] [24] 0.500 Sn 0.500 Te 1.000 Th 0.025 Ti 0.500 T1 0.500 T1 0.050 V 0.500 W 0.500 Y	0.300	Rh						
0.500 Sb 0.250 Se 0.500 Si [24] [24] [24] 0.500 Sn 0.500 Sn 0.500 Te 1.000 Th 0.025 Ti 0.500 Ti 0.500 Ti 2.000 U 0.050 V 0.500 W [93] [93] 0.500 Y	1.100	Ru			••			
0.250 Se 0.500 Si [24] [24] 0.500 Sn 0.500 Sn 0.500 Te 1.000 Th 0.025 T1 0.500 T1 0.500 T1 0.500 V 0.050 V 0.500 W 193] 193] 0.050 Y 14.6] 14.6] 0.050 Zn [6.3] [6.2] [9.6] [9.3]	0.500	Sb						
0.500 Si [24] [24] 0.500 Sn 0.500 Te 1.000 Th 1.000 Th 0.025 Ti 0.500 Ti 0.500 Ti 0.500 Ti 0.050 V 0.050 V 0.500 W 0.500 Y 0.500 Y [93] [93] 0.050 Zn [6.3] [6.2] [9.6] [9.3]	0.250	Se						
0.500 Sn 1000 Th 1000 Th	0.500	Si			[24]		[24]	
0.500 Te 1.000 Th 0.025 Ti 0.500 Ti 0.500 Ti 2.000 U 0.050 V 0.500 W [93] [93] 0.500 Y [4.6] [4.6] 0.050 Zn [6.3] [6.2] [9.6] [9.3]	0.500	Sn			**			
1.000 Th 0.025 Ti 0.500 Ti 2.000 U 0.050 V 0.500 W 0.050 V 0.500 W [93] 0.050 Y [4.6] 0.050 Zn [6.3] [6.2] [9.6] [9.3]	0.500	Te						
0.025 Ti	1.000	Th						
0.500 TI 2.000 U 0.050 V 0.500 W [93] [93] 0.500 W [93] [93] 0.050 Y [4.6] [4.6] 0.050 Zn [6.3] [6.2] [9.6] [9.3]	0.025	TI					••	
2.000 U 0.050 V 0.500 W [93] [93] 0.500 W [93] [93] 0.050 Y [4.6] [4.6] 0.050 Zn [6.3] [6.2] [9.6] [9.3]	0.500	TI			**			
0.050 V 0.500 W [93] [93] 0.050 Y [4.6] [4.6] 0.050 Zn [6.3] [6.2] [9.6] [9.3]	2.000	U			••			
0.500 W [93] [93] 0.050 Y [4.6] [4.6] 0.050 Zn [6.3] [6.2] [9.6] [9.3]	0.050	v	•-		•			
0.050 Y [4.6] [4.6] 0.050 Zn [6.3] [6.2] [9.6] [9.3]	0.500	w			[93]		[93]	
0.050 Zn [6.3] [6.2] [9.6] [9.3]	0.050	Y			[4.6]		[4.6]	
	0.050	Zn	[6.3]	[6.2]	[9.6]		[9.3]	

 0.050
 Zn
 [6.3]
 [6.2]
 [9.6]
 [

 1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"</td>
 IDL
 The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within ±15%.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

Page 2 of 8

	Run Date=	10/29/2002	10/29/2002	10/29/2002	10/29/2002	10/29/2002	10/29/2002
	Multiplier=	29.2	146.2	26.8	133.9	26.6	132.0
					100.0	20.0	132.3
	RPL/LAB #=	03-00087	03-00087 @5	03-00088	03-00088 @5	03-00089	03-00089 @5
Instr. Det.							
Limit (IDL)	Client ID=	<u>ss-</u>)1-24	ss-	02-4	SS-0	2-24
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ua/mL)
0.060	Al	2,210		2,000	···· ·	1.990	
0.250	Ca	428		308		311	
0.015	Cd	34.7		31.1		31.1	·
0.200	Ce	[9.0]					
0.020	Cr	56.0		36.8		38.9	
0.100	Eu	:					
0.025	Fe	314		7.67		7 25	
2.000	к	929		874		870	
0.050	La	[7.5]		[1.4]		[1 4]	
0.100	Ma				<u> </u>		
0.050	Mn	64.7		[5 7]		[1 7]	
0.150	Na	over range	129.000	OVer range	116.000	OVer range	112 000
0.100	Nd	(24)		[4.6]	110,000	14 01	112,000
0.030	Ni	283		250		249	
0.100	P	384		2.50		249	
0 100	Ph	131		011		343	
0.015	<u> </u>	[2.6]		200		61.7	
0.010	7r	10.1		209		93.8	
Other Analyte	£1	13.1	LI	[3.5]	11	[3.0]	
0.025	Δα		Г				· · · · · · · · · · · · · · · · · · ·
0.250	^9						
0.050	~? R	10.0				47.7	
0.000	Ba	[4 2]		10.0		11.1	
0.010	Bo	[1:0]					
0.010	Bi						
0.050	<u>,</u>	13 61					
0.030	C	[2.0] 11.1		[2.2]		[2.3]	·····
0.020	Dv	11.1		10.0		9.95	
0.030	Uy						
0.050							
0.030	OW La	10.9		10.0		10.6	
0.750	Pa BL						
1 100	<u>RI</u>						·····
0.500	RU CL						·
0.250	30						
0.200	<u> </u>			••			
0.500	<u>Si</u>	[ZU]		[16]		[17]	
0.500	<u>ən</u>	••					· · · · · · · · · · · · · · · · · · ·
0.500	10						
1.000	1h 						
0.025	<u> </u>			**			
0.500		••					
2.000	<u> </u>			••			
0.050	V	••				••	
0.500	W	[96]		[84]		[85]	
0.050	Y	[4.7]		[1.8]		[1.8]	
0.050	Zn	[9.8]		[6.4]		[6.0]	

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL. 2) Overall error for values > EQL is estimated to be within $\pm 15\%$.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

Page 3 of 8

	Run Date=	10/29/2002	10/29/2002	10/29/2002	10/29/2002	10/29/2002	10/29/2002
	Multiplier=	25.4	127.0	27.6	138.1	26.8	133.9
	RPL/LAB #≖	03-00090	03-00090 @5	03-00091	03-00091 @5	03-00092	03-00092 @5
Instr. Det. Limit (IDL)	Client ID=	<u>şs-(</u>	<u>)3-24</u>	<u>ss-(</u>	<u>04-24</u>	<u>ss-</u>) <u>5-24</u>
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.060	Al	1,840		1,930		2,040	
0.250	Ca	293		308		336	
0.015	Cd	28.8		30.6		31.7	
0.200	Ce					••	
0.020	Cr	35.0		23.9		36.6	
0.100	Eu	•• :					
0.025	Fe	7.25		19.7		42.4	
2.000	к	808		849		893	
0.050	La	[1,4]		[2.0]		[1,6]	
0.100	Mg						
0.050	Mn	[2.2]		[13]		[11]	·····
0.150	Na	over range	108.000	over range	108,000	over range	113 000
0.100	Nd	[5.0]		[7.4]		[5.6]	, 10,000
0.030	Ni	233		247		258	
0.100	P	320		342		354	
0.100	Pb	76.7		79.9		81 1	****
0.015	Sr	92.9		116		108	
0.050	Zr	[2,9]		[4.6]		(3.81	
Other Analyte	es	[]		[]	1	[0.0]	
0.025	Aa						[]
0.250	As						
0.050	B	18.4		17.5		18.4	
0.010	Ba						
0.010	Be						
0.100	Bi		`				
0.050	<u> </u>	[2 2]		[2 4]		[2 5]	
0.025	Cu	0.22		0.80		10.2	
0.050	Dv	0.22	····	3.03			
0.030	<u></u>						
0.050	Mo	15.5		16.5		17.9	
0.750		10.0		10.0		17.0	
0.300	Rh						
1 100	Ru						
0.500	Sh						
0.300	50						
0.200	<u> </u>	[3.9]		1201		 [10]	
0.500		[32]		[20]		[10]	
0.500	То						
1 000	Th						
0.025	Ti						
0.025	TI	••			·		
2 000	11						
0.050							
0.000		[70]				1961	
0.050	¥¥ 	[(9]		[04]	·i	[00]	
0.050	7-	[1.0]		[2.1]	·	[1,0]	
0.050	 n	[2'A]		[5.9]	I	[11]	1

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within ±15%.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

-

Page 4 of 8

	Run Date=	10/30/2002	10/30/2002	10/30/2002	10/30/2002	10/30/2002
	Multiplier=	26.4	26.1	130.3	26.2	131.0
	····		· ·····		03-00093-	03-00093-
	RPL/LAB #≖	03-00093-B	03-00093	03-00093 @5	DUP	DUP @5
Instr. Det		Drocoss				
Limit (IDL)	Client ID=	blank	55-0	55 06 24		24-Dun
(ug/mL)	(Analyte)	(ua/mt)	(ua/ml.)	(ug/mt)	(ug/ml.) (ug/ml.)	
0.060	A		2 010	(ug//	1 990	(ug/mL)
0.250	Ca		298		7,990	
0.015	Cd		31.1		233	
0.200	Ce				51.2	
0.020	Cr		55.1		 EE A	
0.100	E11				55.4	
0.025	Eo		25.0			
2 000	ĸ		29.0		23.0	
0.050	<u> </u>		[1 6]		2,020	
0.000	Ma		[1.0]		[1.7]	
0.050	Ma		12 61			
0.050	No		[2.0]	444.000	[2.4]	445.000
0.100	Na		over range	114,000	over range	115,000
0.100	NU		[5.7]		[6.3]	
0.030			258	·····	259	
0.100	۲ م		348		349	
0.100	PD		94.9		96.0	
0.015			159		153	
0.050	<u> </u>	••	[5./]		[5.7]]
Other Analyte	es .			r1		
0.025	Ag					
0.250	As	••	••			
0.050	В		18.8		18.8	
0.010	Ba					
0.010	Be					
0.100	81		••			
0.050	Co	••	[2.2]		[2.3]	
0.025	Cu		10.0		9.97	
0.050	Dy				••	
0.030	Li				••	
0.050	Mo		17.0		17.1	
0.750	Pd	••			••	
0.300	Kh		•-			
1.100	Ru					
0.500	Sb					
0.250	Se		••			
0.500	Si		[27]		[26]	
0.500	Sn					
0.500	Te	••				
1.000	Th		••			
0.025	Ti					
0.500	TI					
2.000	U					
0.050	v		••			
0.500	w		[85]		[85]	
0.050	Y		[2.3]		[2.3]	
0.050	Zn		[6.8]		[6.7]	

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within $\pm 15\%$.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

,

Page 5 of 8

	Run Date=	10/30/2002	10/30/2002	10/30/2002	10/30/2002	10/30/2002	10/30/2002
	Multiplier=	26.4	131.8	26.6	133.1	26.0	129.8
	RPL/LAB #=	03-00094	03-00094 @5	03-00095	03-00095 @5	03-00096	03-00096 @5
Instr. Det. Limit (IDL)	Client ID=	\$\$-07-24		US 00000 @0		SS-08-24	
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.060	Al	1,840		1,910		1,920	
0.250	Ca	281		283		300	
0.015	Cd	29.6		29.8		30.4	
0.200	Ce						
0.020	Cr	29.6		36.6		38.5	
0.100	Eu						
0.025	Fe	45.9	· · ·	8.36		7.76	
2.000	к	796		819		815	
0.050	La	[1.6]				[1.3]	
0.100	Mg						
0.050	Mn	[6.7]		[6.0]		[2.0]	
0.150	Na	over range	108,000	over range	109.000	over range	111.000
0.100	Nd	[5.8]		[4.9]		[4.9]	
0.030	Ni	246		249		250	
0.100	P	323		333		334	
0.100	Pb	59.0		86.7		85.6	
0.015	Sr	110		186		105	· · · · · · · · · · · · · · · · · · ·
0.050	Zr	39.5		[3.4]		[3.0]	
Other Analyte	S						
0.025	Ag						
0.250	As						
0.050	В	18.0		18.6		18.2	
0.010	Ba	[0.32]					
0.010	Be						
0.100	Bi						
0.050	Co	[2.4]		[2.3]		[2.3]	
0.025	Cu	9.55		9.6		9.68	
0.050	Dy						
0.030	LI						
0.050	Мо	16.2		16.4		16.4	
0.750	Pd						
0.300	Rh						
1.100	Ru						······································
0.500	Sb						
0.250	Se					••	
0.500	Si	[17]		[21]		[20]	
0.500	Sn					••	
0.500	Te			••			
1.000	Th	••					
0.025	Ti	••					
0.500	ТІ			h #			
2.000	U	••					
0.050	v			••			
0.500	w	[79]		[80]		[81]	
0.050	Y	••		[1.7]		[1.7]	
0.050	Zn	[7.1]		[6.6]		[6.5]	

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within $\pm 15\%$.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

Page 6 of 8

	Run Date=	10/30/2002	10/30/2002	10/30/2002	10/30/2002
	Multiplier=	26.1	653.7	27.3	681.5
			03-00097	****	03-00098
r	RPL/LAB #=	03-00097	@25	03-00098	@25
Instr. Det.					
Limit (IDL)	Client ID=	<u>AN-102 Di</u>	luted Feed	AN-102 Sr/TR	U decon-24hr
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.060	Al	8,800		8,690	
0.250	Ca	259		207	
0.015	Cd	38.1		37.7	
0.200	Ce				
0.020	Cr	151		117	
0.100	Eu				
0.025	Fe	31.0		[3.5]	
2.000	ĸ	1,330		1,330	
0.050	La	[8.3]		[3.3]	
0.100	Mg	-			
0.050	Mn	[9.4]		[3.1]	
0.150	Na	over range	160,000	over range	154,000
0.100	Nd	[16]		[7.9]	
0.030	Ni	252		249	
0.100	Р	1,170		1,160	
0.100	Pb	119		92.8	
0.015	Sr	[1.5]		177	
0.050	Zr	[5.3]		[1.4]	
Other Analyte	9 \$				
0.025	Ag				
0.250	As				
0.050	В	32.3		30.3	
0.010	Ba	[1.5]			
0.010	Be			••	
0.100	Bi	[2.9]		[3.0]	
0.050	Co	[2.4]		[2.5]	
0.025	Cu	9.58		8.78	
0.050	Dy				
0.030	LI				
0.050	Мо	30.4		30.2	
0.750	Pd	••			
0.300	Rh	••			
1.100	Ru	••			
0.500	Sb				
0.250	Se	••			
0.500	Si	[58]		[54]	
0.500	Sn				
0.500	Te				
1.000	Th				
0.025	TI				
0.500	TI				
2.000	U				
0.050	V				
0.500	W	[77]		[76]	
0.050	Y				
0.050	Zn	[7.1]		[2.8]	

1) "--" indicates the value is < IDL. The method detection limit (MDL) = IDL times the "multiplier"

near the top of each column. The estimated quantitation limit (EQL) = 10 times the MDL.

2) Overall error for values > EQL is estimated to be within $\pm 15\%$.

3) Values in brackets [] are > MDL but < EQL, with errors likely to exceed 15%.

Page 7 of 8

	Υ	r	r			······
Criteria>	<15% ^(a)	80% - 120%	75%-125%	75%-125%	75%-125%	< +/-10%
			03-00086 &	03-00086 +	03-00086 +	03.00086
QC ID=	03-00086 &		03-00086-	Post Spike	Post Snike	@1/@5
	03-00086-D	LCS/BS	MS	A	B	Serial Dil
Analytes	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Diff
AI	0.1	98	99	107		2.9
Ca	0.5	99	101	103		3.6
Cd	0.4	101	102	105		3.0
Ce		94	91		100	
Cr	0.4	94	98	104		4.6
Eu		1			103	
Fe	0.4	94	101	105		49
к	0.3	104	99	108		
La		97	95		101	
Mg		101	102	109		
Mn	0.5	99	100	107		
Na	0.7 (b)	88	nr	nr		62(c)
Nd		97	93		100	0.2 (0)
Ni	0.9	94	98	105		49
Р	0.5	102	105	102		1 1
Pb	1.1	107	107	102		1.1
Sr		101	97	103		
Zr	07	107	102	103		
Other Analyte	s		102	102		L
Aq				04		
As				99		
В	0.5	104	101	104		
Ba		99	93	104		
Be		93	96	97		
Bi		104		98		
Co				105		
Cu	0.5	103	103	103		
Dv			100		103	
Li		105	102	110	100	
Mo	0.5	100	98	102		
Pd					95	
Rh					100	
Ru						
Sb				100		
Se				99		
Si		104	106	112		
Sn					91	
Te					104	
Th		97	96		103	
Ti		98	94	98		
TI				99		
U		98	96		101	
v		92	92	95		
w		97				
Y				102		
Zn		94	103	105		

Shaded results exceed acceptance criteria

Bold results for information only - spiked concentration less than EQL

nr = not recovered; spike concentration less than 20% of sample concentration.

(a) = RPD <10% for Na; (b) = Value for 5x dilutions; (c) = Value for 5x/25x dilutions.
Page 8 of 8

						·····
Criteria>	<15% ^(a)	80% - 120%	75%-125%	75%-125%	75%-125%	< +/-10%
QC ID=	03-00093 & 03-00093-D	LCS/BS	03-00093 & 03-00093- MS	03-00093 + Post Spike A	03-00093 + Post Spike B	03-00093 @1/@5 Serial Dil
Analytes	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Diff
A	0.9	101	92	101		4.1
Ca	0.2	99	93	102		
Cd	0.1	101	93	103		4.8
Ce		95	89		98	
Cr	0.5	98	173	101		6.8
Eu		i i			98	
Fe	4.9	103	289	104		
к	1.4	106	86	103		6.0
La		96	86		99	
Mg		101	95	107		
Mn		103	112	109		
Na	0.8 (b)	105	nr	nr		6.8 (c)
Nd		96	84		99	
Ni	0.4	100	137	100		5.9
Р	0.1	103	97	99		0.3
Pb	1.1	111	105	112		
Sr	3.4	101	nr	100		5.5
Zr		112	94	103		
Other Analyte	s		.		L	
Ag				101		
As				99		
В	0.3	106	92	103		
Ba		100	85	98		
Be		93.	88	95		
Bi		99		95		
Co				103		
Cu	0.4	103	93	102		·····
Dy					99	
Li		108	92	103		
Mo	0.3	100	90	100		
Pd					92	
Rh					98	
Ru					1	
Sb				98		
Se				97	1	
Si		108	99	114		
Sn					96	
Te		İ	1		104	
Th		95	86		98	
ТІ		98	86	95		
TI				94	· · · · · · · · · · · · · · · · · · ·	
U		100	89		103	
v		93	86	93		
w		96				
Y				98		
Zn		102	219	105		

Shaded results exceed acceptance criteria

Bold results for information only - spiked concentration less than EQL

nr = not recovered; spike concentration less than 20% of sample concentration.

(a) = RPD < 10% for Na; (b) = Value for 5x dilutions; (c) = Value for 5x/25x dilutions.

ASR 6618 Final (2) - ~A0856 R. Hallen ASR-6618 ICP98 hi.XLS

Project No. <u>42365</u>

Internal Distribution File/LB

Date February 10, 2003

Го	R. T. Hallen
----	--------------

From L. R. Greenwood JRL

SubjectRadiochemical Analyses for AN-107 and AN-102Diluted Feed – ASR 6618

Samples of the diluted feed from tanks AN-107 and AN-102 were analyzed for alpha emitters and ³⁰Sr activities according to ASR 6618. The samples were acid digested in two batches in the RPL hot cells according to procedure PNL-ALO-128. However, both hot cell batches were analyzed in the laboratory in one batch. Aliquots of these preps were then delivered to the laboratory for analysis, as described below. Results are reported in uCi/g. The reported errors $(1-\sigma)$ represent the total propagated error including counting, dilution, yield, and calibration errors, as appropriate. Laboratory and process blank values given with each analysis are the best indicators of the method detection limits, taking into account the actual sample sizes and counting times used for each analysis.

Strontium-90

The Sr separation was performed according to PNL-ALO-476 and radiochemical yields were traced with ⁸⁵Sr. The separated fractions were then beta-counted according to RPG-CMC-408 and gamma counted according to PNL-ALO-450 (for ⁸⁵Sr determination and ¹³⁷Cs impurity assessment). Negligible levels of ⁹⁰Sr were found in the process and laboratory preparation blanks. A few of the samples had small (<5%) corrections for 137Cs in the separated Sr fractions. The LCS and matrix spike recoveries were 90% and 89%, respectively. RPD values were very low for sample duplicates. The ⁹⁰Sr activities were well above the requested MRQ value in all cases.

Total Alpha /Alpha Energy Analysis

Aliquots of the acid digestions were directly plated according to procedure RPG-CMC-4001 and counted with alpha spectrometers according to procedure PNL-ALO-422. Since no chemical separations were performed, peaks could not be uniquely identified and are labeled with the possible combinations in the attached table. Duplicate analyses met the requirements of our QA plan either with RPD values below 20% or MD (mean difference) values less than 1.96 in cases where the results had high counting uncertainties. The LCS and matrix spike recoveries were 109% and 108%, respectively. The lab blank was clean; however, the hot cell blanks for both batches show some alpha activity. Generally, the hot cell blank activities are below the limit of our QA plan (< 5% of the sample activity). However, four cases where identified where the 5% blank limit was exceeded. This was for Cm-243+Cm-244 for a few samples in the first hot cell blank was 3.90E-5 uCi/g

R. T. Hallen February 10, 2003 Page 2

whereas four of the samples had Cm-243+244 activities ranging from 5.47E-4 to 7.18E-4, meaning that the activity in the blank ranged from 5.4% to 7.1% of the sample activities in these cases. To put this in perspective, the MRQ value was listed as 7.24E-4 uCi/ml (or about 5.8E-4 uCi/g if we use the measured density of about 1.25 g/ml). So the blank contamination was very low. The TRU removal process was also very effective for the samples with failed QC, reducing the Cm isotopes to very low levels, near the MRQ value. Other factors also need considered. The success criteria are evaluated using total alpha and/or sum of alpha data. The alpha activity is >90% Am-241. The Cm isotopes only contribute approximately 5% of the alpha activity. Also the AEA is never corrected for the hot-cell (prep) blank. Potential contamination of reagents, vials, etc. would result in a conservative alpha activity, since no blank subtraction or correction is made.

The WIP project was notified of this QC problem as soon as it was detected. Based on the information stated above, the project made the determination that the QC failure will not adversely impact the data analyses and reporting. This analytical report describes the failure and repreparation and analysis will not be performed.

01/30/03

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center

Client : R. Hallen

Date: <u>1/30/03</u> Date: <u>1/30/0</u>3 Cognizant Scientist: 12ang Concur:

Reference Date: Jan. 21, 2003 for AEA Procedure: PNL-ALO-4001 & 422 for AEA

Measured Activities (µCi/g) with 1-sigma error

			Alpha Ene	rgy Analysis	<u> </u>		-
ALO ID	U-234+ Np-237	Pu-239+ Pu-240	Pu-238+ Am-241	Cm-243+ Cm-244	(Am-242m)* Cm-242	Sum of alpha	Hot Cell
Client ID	± 1s	<u>± 1s</u>	± 1s	± 1s	± 1s	emitters	Batch**
03-00086PB Process Blank	<2.E-7	2.67E-5 ± 5%	1.81E-4 ± 2%	3.90E-5 ±4%	<5.E-7	2.47E-4 ± 2%	1
03-00086 SS-01-4	<4.E-5	1.07E-2 ± 4%	1.10E-1 ± 2%	3.51E-3 ± 7%	4.72E-4 ± 18%	1.25E-1 ± 2%	1
03-00086DUP SS-01-4	<4.E-5	8.85E-3 ± 4%	1.06E-1 ± 2%	4.10E-3 ±6%	4.34E-4 ± 18%	1.19E-1 ± 2%	1
RPD MD		19% 1.67	4% 0.65	16% 0.85	8% 0.16	4% 0.85	
03-00087 SS-01-24	<3.E-5	9.81E-3 ± 3%	1.15E-1 ± 2%	3.68E-3 ± 5%	4.46E-4 ± 14%	1.29E-1 ± 2%	1
03-00088 SS-02-4	<2.E-5	1.02E-3 ± 7%	1.24E-2 ± 2%	5.47E-4 ± 9%	8.90E-5 ± 22%	1.41E-2 ± 2%	1
03-00089 SS-02-24	<2.E-5	1.80E-3 ± 5%	1.43E-2 ± 2%	6.50E-4 ± 8%	1.01E-4 ± 20%	1.69E-2 ± 2%	. 1
03-00090 SS-03-24	<2.E-5	1.41E-3 ± 5%	1.27E-2 ± 2%	5.00E-4 ± 9%	9.51E-5 ± 21%	1.47E-2 ± 2%	1 s.
03-00091 SS-04-24	<2.E-5	1.41E-3 ±6%	1.39E-2 ± 2%	7.18E-4 ± 8%	5.32E-5 ± 29%	1.61E-2 ± 2%	1
03-00092 SS-05-24	<2.E-5	1.79E-3 ± 5%	1.97E-2 ± 2%	7.89E-4 ± 7%	1.63E-4 ± 16%	2.24E-2 ± 2%	· 1 · · ·
03-00093PB Process Blank	<2.E-7	5.61E-6 ±9%	3.90E-5 ± 3%	2.51E-5 ± 4%	<2.E-7	6.97E-5 ± 2%	2
03-00093 SS-06-24	<2.E-5	4.54E-3 ± 3%	2.48E-2 ± 2%	1.07E-3 ± 6%	1.15E-4 ± 19%	3.05E-2 ± 2%	2
03-00093 DUP SS-06-24	<2.E-5	4.42E-3 ± 3%	2.38E-2 ± 2%	9.41E-4 ± 7%	1.64E-4 ± 16%	2.93E-2 ± 2%	2
RPD MD		3% 0.32	4% 0.73	13% 0.70	35% 0.72	4% 0.83	
03-00094 SS-07-24	<2.E-5	2.52E-3 ± 4%	1.81E-2 ± 2%	7.39E-4 ± 8%	1.09E-4 ± 20%	2.15E-2 ± 2%	2
03-00095 SS-08-4	3.66E-4 ± 19%	1.11E-3 ± 7%	1.29E-2 ± 2%	6.45E-4 ± 9%	9.14E-5 ± 24%	1.51E-2 ± 2%	2

Page 1 of 2

~

			Alpha Ene	ergy Analysis	3		
	U-234+	Pu-239+	Pu-238+	Cm-243+	(Am-242m)*	Sum of	
ALO ID	Np-237	Pu-240	Am-241	Cm-244	Cm-242	alpha	Hot Cell
Client ID	<u>± 1s</u>	± 1s	± 1s	± 1s	± 1s	emitters	Batch**
03-00096 SS-08-24	< 2.E-5	1.59E-3 ± 5%	1.40E-2 ± 2%	6.96E-4 ± 8%	1.29E-4 ± 19%	1.64E-2 ± 2%	2
03-00096L Dup SS-08-24	<2.E-5	1.44E-3 ± 7%	1.29E-2 ± 2%	5.97E-4 ± 11%	1.01E-4 ± 29%	1.50E-2 ± 2%	2
RPD MD		10% 0.58	8% 1.44	15% 0.57	24% 0.37	9% 1.67	
03-00097 AN-102 Diluted Feed	<4.E-5	3.90E-3 ±6%	7.62E-2 ± 2%	2.86E-3 ± 7%	3.54E-4 ± 20%	8.33E-2 ± 2%	2
03-00098 AN-102 Sr/TRU decon-24 hr.	<2.E-5	1.09E-3 ± 8%	2.53E-2 ± 2%	1.08E-3 ±8%	1.29E-4 ± 25%	2.76E-2 ± 2%	. 2 - San an a
Matrix Spike00096		108%					N/A
Blank Spike		109%					N/A
Blank	<2.E-7	<8.E-7	<2.E-6	<2.E-7	<2.E-7		N/A

Measured Activities (µCi/g) with 1-sigma error

*Cm-242 is in equilibrium with the parent isotopes Am-242 (16 h) and Am-242m (141 y).

Page 2 of 2

. . ..

File: 03-00086.xls

01/30/03 Rev. 1

1/30/03

1/30/03

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center

Client: R. Hallen ASR: 6618

Date : Cognizant Scientist: le T Trang-Date : Concur :

Procedure: PNL-ALO-476/408 for Sr-90 Reference Date: Jan. 21, 2003

Measured Activities (uCi/g) with 1-sigma error

			and the second second second states and the second second second second second second second second second seco	· · · · · · ·	and the second second second second
ALO ID Client ID	Hot Cell Batch*	Sr-90 Error +/-	ALO ID Client ID	Hot Cell Batch*	Sr-90 Error +/-
03-00086PB Process Blank	1	2.59E-2 ± 3%	03-00093PB Process Blank	2	<3.E-4
03-00086 SS-01-4	1	3.11E+1 ± 3%	03-00093 SS-06-24	2	2.75E+0 ± 4%
03-00086DUP SS-01-4	1	2.94E+1 ± 3%	03-00093 DUP SS-06-24	2	2.62E+0 ± 4%
RPD		6%	RPD		5%
03-00087 SS-01 -24	1	3.00E+1 ± 3%	03-00094 SS-07-24	2	1.91E+0 ± 5%
03-00088 SS-02-4	1	3.35E+0 ± 4%	03-00095 SS-08-4	2	3.22E+0 ± 4%
03-00089 SS-02-24	1	1.55E+0 ± 6%	03-00096 SS-08-24	2	1.71E+0 ± 5%
03-00090 SS-03-24	1	1.58E+0 ± 5%	03-00096L Dup SS-08-24	2	1.66E+0 ±5% ►
03-00091 SS-04-24	1	2.00E+0 ± 5%	RPD MD		3% 0.21
03-00092 SS-05-24	· 1	2.42E+0 ± 4%	03-00097 AN-102 Diluted Feed	2	2.62E+1 ± 3%
			03-00098 AN-102 Sr/TRU decon-24 hr.	2	2.57E+0 ± 4%
Matrix Spike 0009	6 N/A	89%			
Blank Spike	N/A	90%			~
Blank	N/A	<2.E-4			

*The samples were prepared in the hot cells in 2 different batches and analyzed in the lab in 1 batch.

Page 1

Client:	Rich Hallen	Date:[Rev Date	11/6/2002 6/17/2003
Subject:	Hydroxide Analyses for:	AN-107 Diluted Feed (6)	
ASR:	6618-Rev-1	AN-102 Diluted Feed (1)	

-- Rev- 1 issued for 2 minor issues, neither of which affected the data as reported. issue 1 --- strictly editorial -- NIST KAP-- SRM 84k was used instead of 84j as stated on original Standard Prep File ChemRec_86. -- Molecular Wt. did not change in either SRM certificate. issue 2 -- Although performed, the weight check support data on the 10mL pipet, used to standardized the 0.2M HCl, was not located in original Chem Rec 86 file. Recently, re-certification of this acid titrant was conducted and the comparative results were within 0.29%. Supporting data appears in ChemRec_97.--- see copy attached.

Direct sample aliquots of **six AN-107 DF (diluted feed) and one AN-102 DF (diluted feed)** were analyzed in duplicate for the hydroxide content following procedure PNL-ALO-228 and using a Brinkman 636 Auto-Titrator. A 0.1018 N NaOH solution was used as a standard and sample spike and the titrant was a 0.2098 M HCl prepared solution for the all the samples (see ChemRec_86 attached).

The attached Report Summary indicates good RPD on the OH molarity (1st inflection point) on the sample and replicate results. The hydroxide results are also shown converted to ug/g to be comparable to the MRQ units specified in the analytical service request (ASR). The MRQ value required equivalent to 0.05M hydroxide concentration was 850 **ug/ml** and in all cases concentrations well above this value were detected and the RPD's were 12% or less. The hydroxide recovery on the standards were 97% and 96% respectively, the matrix spike recovery on 03-0088 was 96% and the matrix spike recovery on 03-0097 was 88%. No hydroxide was detected in the reagent blank. The second and third inflection points, generally associated with carbonate and bicarbonate respectively, showed excellent RPD's, less than 8% for all the samples. A fourth inflection point, somtimes associated with formate, was indicated on the curve (although not clearly visible) on four of the samples and associated replicates with RPD's 11% or less, therefore these results are also listed on the attached summary.

Following is the report summary, the calculation spreadsheet including the data from titration curves, and the record file for the standardized acid and base used. Copies of the titration curves are available upon request.

Prepared by:

Reviewed by:

Date: Date:

ASR6618-rev1.xls

Page 1 of 7 6

6/17/2003

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center

ASR # 6618-Rev-1

WP# W63934

Hydroxide and Alkalinity Determination Procedure: PNL-ALO-228 Equip #

WB76843

Report Summary for ASR # -- 6618-Rev-1

				C	Concer	itration, i	moles / l	Liter	_		
RPG #	Client ID	_		First Point	_	Second F	Point	Third Point	_	Fourth	Point
			OH conc ug/ml		RPD		RPD		RPD		RPD
03-0086	SS-01-4		5.9E+03	0.35		1.23		1.05			
03-0086	SS-01-4	Rep	6.7E+03	0.39	12%	1.20	2.5%	1.05	0.6%		
03-0087	SS-01-24		7.0E+03	0.41		1.19		1.04		0.56	
03-0087	SS-01-24	Rep	7.5E+03	0.44	7%	1.15	4%	1.01	3%	0.50	11%
03-0088	SS-02-4		6.2E+03	0.37		1.05		0.92		0.54	
03-0088	SS-02-4	Rep	6.1E+03	0.36	2%	1.05	0%	0.90	2%	0.56	4%
03-0089	SS-02-24		5.7E+03	0.34		1.06		0.92		0.58	
03-0089	SS-02-24	Rep	5.9E+03	0.35	2%	1.06	1%	0.93	1%	0.60	3%
03-0095	SS-08-4		6.5E+03	0.38		1.06		0.86			
03-0095	SS-08-4	Rep	6.3E+03	0.37	3%	1.05	1%	0.94	8.0%		
03-0096	SS-08-24		5.9E+03	0.35		1.05		0.91		0.59	
03-0096	SS-08-24	Rep	5.7E+03	0.34	3%	1.07	1.9%	0.91	1%	0.63	7%
03-0097	AN-102 Diluted feed		1.1E+04	0.64		1.48		0.88			
03-0097	AN-102 Diluted feed	Rep	1.1E+04	0.64	1%	1.49	0.4%	0.90	2%		
		MRQ	MRQ								
	M	lolarity	ug/ml								
OH conc (ug/mL	.) = M (g/L) * 17,000	0.05	8.5E+02								
Reag. Blk.1				0							
Standard 1				97%							
Standard 2				96%							
MS 03-0088	Matrix spike			96%							
MS 03-0097	Matrix spike			88%							

Note: Results are presented for the first, second, third, and sometimes a fourth inflection point on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second, third, and fourth points generally represent the carbonate, bicarbonate, and formate concentrations respectively.

Analyst: 19 6/17/04 Reviewer: MW Um 6/17/03

page 20f 6 10 glulo3

B.45

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building

Procedures: RPG-CMC-228: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Leachates and Supernates and Operation of Brinkman 636 Auto-Titrator

WB76843 Equip #

525 Lab Loc.

6618-Rev-1

File: R:\radchem\hydroxide\asr Analysis Date: 11/5/2002 Report Date: 11/6/2002

1

ASR # 6618-Rev-1 Rich Hallen WP# W63934

Client:

6/17/03

SW

Analyst:

			Chem										
	Titrant	Molarity	Rec#		Std. & Spike	Molarity			HO				
Stron	HCI HCI	0.2098	86		NaOH	0.1018		Diluted	1st Equivale	nce			
Wea	IK HCI						Titrator	Initial	Point		Found		
₽DC #	Samule ID	-	Dilution	Sample Vol. (mL)	Sample Wt. (g)	Density g/mL	Routine #	pH reading	Titrant Vol. (mL)	Hq	millimoles base	Molarity base	millimole RPD
# D N	ar adumo			0000	21245	1 772	c	11 784	0337	10 014	0.070	0.35	
03-0086	SS-01-4		na	0.200	C+C7.0	C17.1	4	11./04	766.0	110.01	010.0	000	
03-0086	SS-01-4	Replicate	na	0.200	0.2549	1.275	10	11.484	0.376	10.119	0.079	0.39	12.43%
03-0087	SS-01-24		na	0.200	0.2563	1.282	11	11.867	0.391	10.851	0.082	0.41	
03-0087	SS-01-24	Replicate	na	0.200	0.2537	1.269	12	11.409	0.418	10.088	0.088	0.44	6.67%
03-0088	SS-02-4		na	0.200	0.2479	1.240	13	11.900	0.348	10.851	0.073	0.37	
03-0088	SS-02-4	Replicate	na	0.200	0.2494	1.247	14	11.929	0.341	10.855	0.072	0.36	2.03%
03-0089	SS-02-24		na	0.200	0.2499	1.250	16	11.756	0.322	10.697	0.068	0.34	
03-0089	SS-02-24	Replicate	na	0.200	0.2493	1.247	17	11.796	0.329	10.738	0.069	0.35	2.15%
03-0095	SS-08-4		na	0.200	0.2508	1.254	18	11.647	0.364	9.117	0.076	0.38	
03-0095	SS-08-4	Replicate	na	0.200	0.2513	1.257	19	11.613	0.353	10.624	0.074	0.37	3.07%
03-0096	SS-08-24		na	0.200	0.2497	1.249	20	11.852	0.333	10.788	0.070	0.35	
03-0096	SS-08-24	Replicate	na	0.200	0.2487	1.244	21	11.871	0.322	10.829	0.068	0.34	3.36%
03-0097	AN-102 Diluted feed		na	0.200	0.2612	1.306	22	11.804	0.611	11.078	0.128	0.64	
03-0097	AN-102 Diluted feed	Replicate	na	0.200	0.2630	1.315	23	12.141	0.607	10.979	0.127	0.64	0.66%
Reag. Blk.1				5.00	5.0029		9	3.957			HO	% Recovery	
Standard 1	0.1018N NaOH			5.000	5.0531	1.011	7	12.348	2.354	10.368	0.4939	97.0%	
Standard 2	0.1018N NaOH			5.000	5.0422	1.008	8	12.353	2.341	10.402	0.4911	96.5%	
MS 03-0088	+ 2mL 0.1N NaOH			0.100	0.1191	1.191	15	11.789	1.101	10.788	0.2310	95.7%	MS
MS 03-0097	+ 2mL 0.1N NaOH			0.100	0.1310	1.310	24	12.331	1.016	10.883	0.2132	87.8%	MS
								Performance	e checks using	g Balance #	36001-06-0	37	
Buffer	ORION Lo	ot #		CMS#	Expire Date		Pipet #	Vol.	Wt.	Pipet #	Vol.	Wt.	
10	910110-GY	-1		186909	Apr-04		F04171	5.00	5.0004	92501	0.200	0.20019	
4	910104-GX	1		186908	Mar-04		F04171	5.00	4.9981	92501	0.200	0.19989	
7	910107-GY	-2		186907	Feb-04		F04171	5.00	5.0012	92501	0.200	0.20123	

Page 3 of 76

ASR6618-rev1.xls

> 6.875 7.002

pH 7.0 reading = pH 7.0 reading =

Initial Continuing

B.46

ASR # 618-Rev-1

Radiochemical Processing Group-325 Building Battelle Pacific Northwest Laboratory

File: R:\radchem\hydroxide\asr

CA Analyst: W63934 Procedures: RPG-CMC-228: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Leachates and Supernates and Operation of Brinkman 636 Auto-Titrator Equip # WB76843 WP#

٠	- 2	>
E	4	-
Ľ	.,	-
L	- 1	-
L	10	÷.
Ŀ	_	~
ı.	-	Ξ.
н.	. s	٠
Ł	-	-
L	2	>
E.	×	-
Ŀ		
L		
L		
I.		
I.		
£.		
т.		
L		
ı.		
L		
L		

Fitrant	Molarity						1					L					
HCI	0.2098		2nd Equi	valence			3	rd Equiva	alence				4-th Equiv	alence			
	0		Point		Found			Point		Found			Point		Found		
# Ddy		Sample Vol. (mL)	Titrant 'ol. (mL)	m Hd	illimoles v base	folarity n base	illimole RPD V	Titrant ol. (mL)	r PH	nillimoles base	Molarity 1 base	RPD	Titrant Vol. (mL)	pH	llimoles M base	olarity n base	RPD
)3-0086	0	0.200	1.501	7.618	0.245	1.226		2.500	4.735	0.210	1.05						
33-0086	Replicat	0.200	1.516	7.750	0.239	1.196	2.51%	2.521	4.730	0.211	1.05	0.6%					
03-0087	0	0.200	1.522	7.655	0.237	1.186		2.514	4.685	0.208	1.04		3.561	2.550	0.220	0.56	
03-0087	Replicat	0.200	1.510	7.769	0.229	1.146	3.51%	2.475	4.747	0.202	1.01	2.8%	3.474	2.616	0.210	0.50	11.4%
03-0088	0	0.200	1.351	7.672	0.210	1.052		2.226	4.672	0.184	0.92		3.129	2.613	0.189	0.54	
03-0088	Replicat	0.200	1.344	7.595	0.210	1.052	0.00%	2.199	4.730	0.179	0.90	2.3%	3.116	2.584	0.192	0.56	3.6%
03-0089	0	0.200	1.328	7.555	0.211	1.055		2.203	4.730	0.184	0.92		3.094	2.642	0.187	0.58	
03-0089	Replicat	0.200	1.343	7.636	0.213	1.064	0.79%	2.227	4.796	0.185	0.93	1.0%	3.161	2.633	0.196	0.60	2.6%
03-0095	0	0.200	1.379	7.345	0.213	1.065		2.203	4.835	0.173	0.86						
03-0095	Replicat	0.200	1.353	7.660	0.210	1.049	1.49%	2.246	4.689	0.187	0.94	8.0%					
03-0096	0	0.200	1.330	7.765	0.209	1.046		2.200	4.824	0.183	0.91		3.138	2.626	0.197	0.59	
03-0096	Replicat	0.200	1.338	7.623	0.213	1.066	1.89%	2.201	4.776	0.181	0.91	0.8%	3.170	2.560	0.203	0.63	6.6%
03-0097	0	0.200	2.026	7.499	0.297	1.484		2.868	4.890	0.177	0.88						
03-0097	Replica	0.200	2.027	7.460	0.298	1.490	0.35%	2.887	4.854	0.180	0.90	2.1%					
						2-nd Reco	vered										
Standard 1		5.000	2.433	7.908	0.01657	3.3%	sample	2.499	4.101								
Standard 2		5.000	2.433	7.84	0.0193	3.8%	sample	2.507	3.905								
MS 03-0088		0.100	1.660	7.367			sample	2.122	4.520								
MS 03-0097		0.100	1.875	7.635			sample	2.454	4.747								
Matrix spike 1	ecovery	is calculate	ed as follo	WS:	Of The Of	for the former	one quoi ero	this chilo									
Spike Titrant vo	I. (sample	e @ .1mL	+ spike) -	Sample Tit	trant vol. (autipic u	ample onl	y equated	to .1mL) * 0.2034	N (HCI titra	ant) =					
meq. OH			I.I.		TIONO		, o										
med UH / Z.UU	mL auge	O = Med O	H/mL IOUN	ULU / DU	IS N UT 3	11 . Dabb	$10 = \frac{10}{10}$	covereu.									

Prep record on 0.2041 M HCl is on following page.

ASR6618-rev1.xls

Page 4 of 1/4 Koglulo3

Chem Rec_86-rev-1

Prep date: 7/15/2002

Preparation and Standardization of 0.1 M, and 0.01M NaOH and Preparation and Standardization of 0.2 M HCI and dilutions

WP# K88426 Prepared by: rg Swoboda

Request: I need more NaOH and HCI solutions made up for the OH- analysis procedure --- rgs

Preparation: Prepared ~ 0.1M NaOH and 0.2M HCl from reagent grade stock . Standardize the ~0.1M NaOH solution against NIST Potassium Acid Phthalate KHC8H4O4 (KAP) . Then prepare 0.2M HCl and standardize against the calibrated 0.1M NaOH. Do a verification check on all the subsequent dilutions of NaOH and HCl.

Standardization: Use NIST SRM 84k, Potassium Acid Phthalate KHC8H4O4 (KAP) --CMS# 186903 Technique used will be via hand-titration to the phenopthalein endpint. Project titration for about 20-25 mL of a 50 mL burrette. ----- KHC8H404 = 204.23 g/mole or mg/meq

Hence, ~20 mL * 0.1M NaOH = 2 meq. and ~2 meq of KAP = 204.22 mg/meq * 2 = ~400 mg KAP weighed on 5-place balance --- All preparations will be certified for 2 yrs beyond calibration date --- rgs.

0.1M NaOH and dilutions

Verification Test #	Wt. of KAP	Vol. Of ~ 0.1M NaOH to neutralize	NaOH Molarity =a * 1000 / b * 204.23	Molarity Error +/- @ 1 s	% error
_ 1	0.43336	20.85	0.10177		
2	0.49981	24.05	0.10176 -		
3	0.63432	30.50	0.10183		
	Standardized Av	erage NaOH Molarity =	0.10179	0.00004	0.04%

10X cut of ~ 0.1M NaOH

		Vol. Of ~ 0.01M NaOH	NaOH Molarity =a *	Molarity Error	
Verification Test #	Wt. of KAP	to neutralize	1000 / b * 204.23	+/- @ 1 s	% error
1	0.06842	33.05	0.01014		
2	0.07756	37.42	0.01015		
3	0.07141	34.42	0.01016		
	Standardized Average NaOH Molarity =			0.00001	0.11%

0.2M HCI and dilutions

Titration Id.	aliquot of acid	Vol. of 0.10179M NaOH to neutralize	Molarity of Acid in Sample	Molarity Error +/- @ 1 s	% error
1	20.00	41.20	0.2097		
2	20.00	41.25	0.2099		
3	20.00	41.20	0.2097		
	Standardized A	verage HCI Molarity =	0.2098	0.00015	0.07%

Titution Id	aliquot of acid	Vol. of 0.01015M	Molarity of Acid in Sample	Molarity Error	% error
litration Id.	anquot of uola	Huon to hout dize	odinpio	1 6 10	70 01101
1	20.00	41.05	0.0208		
2	20.00	41.10	0.0209		1
3	20.00	41.00	0.0208		1
	Standardized A	verage HCI Molarity =	0.0208	0.00003	0.12%

0.0052 M HCI was prepared by making an exact 40X cut of 0.2098 M HCI -- Error ~ 0.5%

6/07/07 Expiration Date on Stds. Analyst/Date 7/15/2004

ASR6618-rev1.xls

Page 6 of 7 2 Page 5 of 6 Ko glulo3 6/17/2003

Chem Rec_97

Preparation of Standardized 1.0 M NaOH Verification of 1 M HCI, 0.2 M HCI and 0.1 M NaOH

06/11/03 -6/12/03 102/03

WP# Requester: rg swoboda Request: Need new NaOH and HCL standardized solutions prepared for Hydroxide proce

Preparation Prepared~ 1.0M NaOH from reagent grade solid NaOH -- then standardize vs KAP.

Standardization : Use NIST SRM 84k, Potassium Acid Phthalat&HC8H4O4 (KAP) --CMS# 186903. Dried KAP in over @ 50 deg C for 30 min., cool and then weigh on 5-place balance. (from Chemrec_94)

Prep date:

Prep'd by:

Verif. By:

Technique used will be via hand-titration to the phenopthalein endpint using Rainin motorized pipets in titration mode.

OH Molarity ver	ification performed	d on 1 M NaOH prep.		See Chemrec
Verification Test #	(target = 1g) Wt. of KAP	Vol. Of 1M NaOH to neutralize	NaOH Molarity =a * 1000 / b * 204.23	Molarity Error +/- @ 1 s
1	0.58126	2.88	0.98823	1
2	1.19083	5.91	0.98660	
3	1.24888	6.18	0.98949	
4	1.22452	6.08	0.98615	
		4	0.98762	0.0015
			110° 1 1	1 0 1 0 0 1

certified value 0.16%

Titration Id.	aliquot of acid	Vol. of 0.988 M NaOH to neutralize	Molarity of Acid in Sample	Molarity Error +/- @ 1 s	% erro
1	8.00	1.745	0.2154		
2	8.00	1.740	0.2148		
3	8.00	1.751	0.2162		
Standardized Average Acid Molarity =			0.2155	0.00068	0.32%

~ 1.0M HCI Standardization

Titration Id.	aliquot of acid	Vol. of 0.988 M NaOH to neutralize	Molarity of Acid in Sample	Molarity Error +/- @ 1 s	% error
1	8.50	8.71	1.0120		
4	8.00	8.30	1.0247		
5	9.00	9.27	1.0172		
2	8.50	8.69	1.0097		
3	9.00	9.30	1.0205		
	Standardized Average Acid Molarity =			0.00611	0.60%

~ 0.1M NaOH Standardization

Titration Id.	aliquot of base	Vol. of 0.2155 M HCI to neutralize	Molarity of Base in Sample	Molarity Error +/- @ 1 s	% error
1	10.00	4.77	0.1028		
2	10.00	4.73	0.1019		
3	10.00	4.77	0.1028		
Standardized Average Acid Molarity =			0.1025	0.00050	0.49%

itration Id.	aliquot of acid	to neutralize	Sample	+/- @ 1 s	% error
1	8.00	1.694	0.2091		/
2	8.00	1.693	0.2090		6
3	8.00	1.697	0.2095		-

Date	Balance M&TE#		Calib. Expire Date:		Temp in deg C	cm3/g H2O	
06/10/03	360-06-01-017		August 31, 2003		24.0	1.0027	
Balance check	200 mg =	0.2000 g					-
and the second second second second	2 g =	2.0001 g					1
	20 g =	20.0009 g					1
Rainin Pipet ID:	Delivery setting in mL	pipeted mass in g.	Average mass (g)	1s Std. Dev.	Temp. corrected ave.	% of Nominal	% pipet error @ 1s
H30213	1.000	0.9975					
H30213	1.000	0.9956					
H30213	1.000	0.9968	0.99663	0.0010	0.9993	99.93%	0.0962%
H30973	8 000	8.0084	1	1	1	1	7
H30973	8.000	8.0095					-
H30973	8.000	8.0001	8.00600	0.0051	8.0276	100.34%	0.0640%
Date	Balance M&TE#		Calib. Expire Date:		Temp in deg C	cm3/g H2O]
06/11/03	360-06-01-017		August 31, 2003		22.5	1.0023]
Balance check	2 g =	2.0002 g					-
	20 g =	20.0008 g					
Rainin Pipet ID:	Delivery setting	pipeted mass in g.	Average mass (g)	1s Std. Dev.	Temp. corrected ave.	% of Nominal	% pipet error @ 1s
H30973	4.75	4.7291					
H30973	4.75	4.7409					
H30973	4.75	4.7278	4.73260	0.0072	4.7453	99.90%	0.1521%

Recheck of 0.2m HCl

ASR6583-rev2.xls

Page fory KA 6/17/03 -7-9e-KS 9/11/03 Page 6 of 6

6/12/2003

Distribution

No. of Copies

OFFSITE

Savannah River Technology Center Jim Marra Building 773-43A P.O. Box 616, Road 1 Aiken, South Carolina 29808

Harold Sturm Building 773-A P.O. Box 616, Road 1 Aiken, SC 29808

No. of Copies

ONSITE

8 Bechtel National, Inc. H. A. Abodishish (2) H4-02 S. M. Barnes H4-02 W. L. Graves H4-02 H. R. Hazen H4-02 R. A. Peterson H4-02 W. L. Tamosaitis H4-02 WTP PDC Coordinator H4-02

14 Battelle Pacific Northwest Division

J.G.H. Geeting	P7-28
R. T. Hallen (5)	K2-12
T. L. Stewart	K2-12
D. E. Kurath	P7-28
M. A. Lilga	K2-12
F. V. Hoopes	P7-28
Project File (2)	P7-28
Information Release (2)	K1-06