PNWD-3235 WTP-RPT-054, Rev 0

Hanford Tank 241-AZ-102 Waste Concentration and Composition

S. K. Fiskum	C. Z. Soderquist
O. T. Farmer	M. J. Steele
L. R. Greenwood	R. G. Swoboda
E. D. Jenson	M. W. Urie
B. M. Oliver	J. J. Wagner
R. L. Russell	

January 2003

Prepared for Bechtel National, Inc. under Contract No. 24590-101-TSA-W0000-004

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS

OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Hanford Tank 241-AZ-102 Waste Concentration and Composition

S. K. Fiskum
O. T. Farmer
L. R. Greenwood
E. D. Jenson
B. M. Oliver
R. L. Russell

C. Z. Soderquist M. J. Steele R. G. Swoboda M. W. Urie J. J. Wagner

January 2003

Test specification: 24590-PTF-TSP-RT-01-002, Rev. 1 Test plan: TP-RPP-WTP-111 Test exceptions: None R&T focus area: Pretreatment Test Scoping Statement(s): B-44

Battelle, Pacific Northwest Division Richland, Washington, 99352

Completeness of Testing

This report describes the results of work and testing specified by 24590-PTF-TSP-RT-01-002, Rev. 1 and TP-RPP-WTP-111. The work and any associated testing followed the quality assurance requirements outlined in the Test Specification/Plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

Gordon H. Beeman, Manager WTP R&T Support Project Date

G. Todd Wright, Manager Research and Technology

Date

Summary

The U.S. Department of Energy is tasked with the disposition of high-activity radioactive waste stored at the Hanford site. The waste is to be vitrified following specific pretreatment processing to separate the waste into a small-volume high-activity waste fraction, and a large-volume low-activity waste fraction. The River Protection Project-Waste Treatment Plant (RPP-WTP) baseline process for ¹³⁷Cs removal from Hanford high-activity tank waste is ion exchange. The current pretreatment flowsheet includes the use of Cs-selective, organic ion exchanger SuperLig[®] 644^(a) (SL-644) material for cesium removal from the aqueous waste fraction. However, tests conducted at Savannah River Technology Center resulted in poor ion exchange performance when tested with Hanford Tank 241-AZ-102 (AZ-102) waste. It was postulated that the low Na molarity (2.77) of the AZ-102 supernatant contributed to the poor Cs ion exchange performance and that the ion exchange removal of Cs from AZ-102 concentrated to nominally 5 M Na would be more effective.

Battelle Pacific Northwest Division (PNWD) was contracted to perform Cs ion exchange studies under Contract 24590-101-TSA-W000-0004. In preparation for Cs ion exchange, PNWD was also contracted to perform AZ-102 characterization, concentration, and subsequent concentrate characterization. The Cs ion exchange activities are defined in Technical Scoping Statement B-44, which is included in Appendix C of the *Research and Technology Plan*.^(b) These studies are to verify design and operating parameters for plant-scale ion exchange systems. Test results will also be used to validate ion exchange models.

Objectives

The objectives of this work were to composite the AZ-102 tank waste samples, perform limited characterization on the composite, concentrate the AZ-102 to nominally 5 M Na, perform limited characterization of the concentrate, and provide the concentrated waste to the Cs ion exchange task for follow-on Cs ion exchange processing. All objectives were met.

Conduct of Testing

Ten jars containing AZ-102 waste (retrieved from Tank AZ-102, cores 261 and 262) were provided to PNWD in October of 2001. All bottles were similar in appearance, containing clear liquid. An organic layer could not be discerned in these bottles. Some of the samples had a small amount of white precipitate.

The contents of the 10 jars (4659 g or 4078 mL) were filtered, combined into a single composite, and the composite mixed by stirring. Following stirring, the composite was sub-sampled and measured for density, inorganic analytes, and ¹³⁷Cs and total Cs. Characterization included:

• inductively coupled plasma-atomic emission spectrometry (ICP-AES)

^(a) This material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT.

^(b) Research and Technology Plan, PL-W375-TE00007, Rev. 1, April 11, 2002, S. Barnes, R. Roosa, and R. Peterson, BNI, Richland, WA.

- inductively coupled plasma-mass spectrometry (ICP-MS) for total Cs and Cs isotopic abundances
- kinetic phosphorescence analysis (KPA) for total uranium
- ion chromatography (IC) analysis for inorganic anions
- titration for hydroxide
- total inorganic carbon (TIC) and total organic carbon (TOC)
- gamma energy analysis (GEA) for ¹³⁷Cs and ¹²⁵Sb.

After removing sub-samples, 3372 mL of the composite were then evaporated to a targeted Na concentration of 5 M (one half the volume). The AZ-102 concentrate density was determined to be slightly high. A small amount of dilute caustic was added to reduce the solution density to 1.25 g/mL (from 1.271 g/mL). The final volume was 1,808 mL corresponding to a concentration factor of 1.8. The concentrated AZ-102 was sub-sampled and characterized in a manner similar to the as-received supernatant (excluding ICP-MS).

Solids (35.5 g dry mass) precipitated from the solution during evaporative concentration. The solids were sub-sampled and characterized for inorganic analytes and ¹³⁷Cs. The solids characterization included

- ICP-AES on dissolved subsample
- IC on dissolved subsample
- GEA on dissolved subsample
- X-ray Diffraction (XRD) on solid subsample

Performance and Results

The compositions of the as-received and concentrated AZ-102 supernatants, as well as AZ-102 solids formed as a result of concentration are summarized in Table S1. The solids were largely composed of Na_3FSO_4 (kogarkoite) and $Na_2C_2O_4$ (natroxalate) mineral phases. Sample mass balance was maintained during processing operations. Furthermore, good mass balances of all significant anions and metals were obtained between the as-received AZ-102 and concentrated AZ-102 plus solids.

	AZ-102 As-Re		AZ-102 Concen		AZ-102 Precip		
	Supernata 02-366	nı	Supernatan 02-751	ι	Solids 02-1299	Mass	
	Average Data		Average Data		Average	Data	Balance
Analyte	$\mu g/mL^{(a)}$	Flag	$\mu g/mL^{(a)}$	Flag	$\mu g/g^{(a)}$	Flag	%
Test Specification	n Analytes						
Al	518		929		1,080		99.2
Са	33	U	34	U	[260]	J	NA
Cr	856		1,510		1,210		96
Cs (total) ^(b)	36.6		71.6		48		115
¹³⁷ Cs	946 μCi/mL		2,005 μCi/mL		1,345 μCi/g		115
Li	3.9	U	4	U	3.5	U	NA
K	3,340		6,660		5,460	Х	108
Na	64,400		106,000		364,500	Х	94.3
¹²⁵ Sb	4 μCi/mL	U	4 μCi/mL	U	4 μCi/g	U	NA
U(KPA)	10.1		15.2	Х	NM		80.5
F ^(c)	1,050		1,760		40,150		130
Cl	140	U	140	U	72	U	NA
NO_2	37,500		78,000		47,000		113
NO ₃	19,600		37,700		25,800		105
$PO_4^{(d)}$	820		1,340		595		88.2
SO_4	20,000		35,400		219,000		107
ОН	10,200		18,800		NM		99.2
Density	1.143 g/mL		1.246 g/mL		NM		
Other Measured	Analytes						
C_2O_4	3,160	Х	1,680		221,000		102
Мо	[60]	J	110		91		99.5
Р	150		286		229		104
Si	[280]	JB	[255]	JB	6,050	BX	72.9
TOC/F (e)	10,200		13,800		NM		(f)
TIC/F ^(e)	1,400	U	1,400		NM		(f)
TOC/P ^(e)	1,000	U	1000		NM		NA
TIC/P ^(e)	7,340		14,600		NM		106
Analytes detected	are bolded for clari	ty and bet	ter readability				•

Table S1. Summary of AZ-102 As-Received and Concentrated Supernatants and Solids Compositions

Analytes detected are bolded for clarity and better readability.

NM = not measured; NA = not applicable

U signifies undetected analyte; the concentration provided represents the instrument detection limit (IDL) multiplied by the sample dilution factors.

B signifies associated preparative blank concentration resulted in 5% or more of the sample concentration.

X signifies a quality control parameter (e.g., precision, blank spike recovery, etc.) was exceeded.

signifies an estimated concentration; the concentration was within 10-times the detection limit.

The overall error for bolded values without brackets is estimated to be within $\pm 15\%$ (analytes greater than 10 times the method detection limit [MDL]). Bracketed values identify sample concentrations that are <10 times the MDL, and errors likely exceed $\pm 15\%$.

The total Cs concentration was calculated based on the ¹³⁷Cs concentration and the isotopic distribution determined from the AZ-102 as-received sample by ICP-MS

Fluoride results should be considered the upper-bound concentration. Significant peak distortion of the F peak suggests the presence of co-eluting anion(s), possibly formate or acetate.

The P determined as PO_4 by IC was higher than the P determined by ICP-AES. The IC chromatograms had many other anions at much higher concentrations and peak tailing may have biased the PO_4 high.

For TOC and TIC: P=by hot persulfate method; F=by furnace method/TIC by difference (TIC = TC-TOC). Furnace TIC and TOC results questionable; hot persulfate results used for mass balance calculation.

Quality Requirements

PNWD implemented the RPP-WTP quality requirements by performing work in accordance with the quality assurance project plan (QAPjP) approved by the RPP-WTP Quality Assurance (QA) organization. This work was conducted to the quality requirements of NQA-1-1989 and NQA-2a-1990, Part 2.7, as instituted through PNWD's *Waste Treatment Plant Support Project Quality Assurance Requirements and Description* (WTPSP) Manual.

PNWD addressed verification activities by conducting an Independent Technical Review of the final data report in accordance with Procedure QA-RPP-WTP-604. This review verified that the reported results were traceable, that inferences and conclusions were soundly based, and that the reported work satisfied the Test Plan objectives.

Issue/Observation

Solids formed upon evaporation are composed primarily of Na_3FSO_4 (57%) and $Na_2C_2O_4$ (28%). The precipitated solids were nominally 1 wt% of the AZ-102 as-received solution mass.

Terms and Abbreviations

ASR	Analytical Service Request
BNI	Bechtel National Inc.
BS	blank spike
DI	deionized
DRD	Development Requirements Document
EQL	estimated quantitation limit
GEA	gamma energy analysis
HASQARD	Hanford Analytical Services QA Requirements Document
HPIC	high-performance ion chromatography
IC	ion chromatography
ICP-AES	inductively coupled plasma-atomic emission spectrometry
ICP-MS	inductively coupled plasma-mass spectrometry
IDL	instrument detection level
KPA	kinetic phosphorescence analysis
LCS	laboratory control standard
MDA	minimum detectable activity
MDL	method detection limit
MRQ	minimum reportable quantity
MS	matrix spike
MSD	matrix spike duplicate
NA	not applicable
ND	not detected
NM	not measured
n/r	not recovered
nr	not reported
%D	percent difference
ОН	hydroxide
PB	preparation blank
PNWD	Battelle - Pacific Northwest Division
QA	quality assurance
QC	quality control
RPD	relative percent difference
RPL	Radiochemical Processing Laboratory
RPP	River Protection Project
SAL	Shielded Analytical Laboratory
TC	total carbon

TIC	total inorganic carbon
TOC	total organic carbon
ТР	test plan
TS	test specification
WTP	Waste Treatment Plant

Units

°C	degree Celsius
g	gram
kV	kilovolt
ma	milliamp
μCi	microcurie
μg	microgram
μm	micrometer
mL	milliliter
М	molarity
wt%	weight percent

Contents

Sun	imary	iii
Terr	ns and Abbreviations	vii
Uni	is	.viii
1.0	Introduction	. 1.1
2.0	Sample Receiving	. 2.1
3.0	AZ-102 Sample Processing	. 3.1
	3.1 Filtration and Compositing	. 3.1
	3.2 Sample Splitting	. 3.1
	3.3 Evaporation	. 3.1
4.0	Analytical Sample Processing	. 4.1
	4.1 Density	. 4.1
	4.2 Direct Sub-Sampling/Analysis	. 4.2
	4.3 Acid Digestion	. 4.2
	4.4 Water Leach	. 4.2
	4.5 X-Ray Diffraction	. 4.3
	4.6 Cs Isotopic Distribution	. 4.3
5.0	Analytical Results	. 5.1
	5.1 Introduction	. 5.1
	5.2 Analyte List Modifications	. 5.2
	5.3 Data Limitations and General Observations	. 5.2
	5.4 X-Ray Diffraction Analysis of Solids	5.14
	5.5 Fractional Analyte Recovery	5.16
6.0	Procedures, Quality Control, and Data Evaluation	. 6.1

	6.1	Inductively Coupled Plasma-Atomic Emission Spectroscopy	6.1
	6.2	Inductively Coupled Plasma/Mass Spectrometry	6.2
	6.3	U Analysis by KPA	6.2
	6.4	Gamma Spectrometry	6.9
	6.5	Anions	6.9
	6.6	Hydroxide Titration	6.10
	6.7	TOC/TIC by Hot Persulfate and Furnace	
		6.7.1 Hot Persulfate Method (PNL-ALO-381)	
		6.7.2 Furnace Oxidation Method (PNL-ALO-380)	
		6.7.3 Comparison of TIC/TOC by Hot Persulfate and Furnace Oxidation Methods	6.11
7.0	Con	clusions	7.1
8.0	Refe	erences	8.1
App	endi	x A: Chains of Custody	A.1
Арр		x B: Test Plan TP-RPP-WTP-111 "Tank 241-AZ-101 and 241-AZ-102 Waste Sample Exchange Testing"	B.1
Арр		x C: Test Instruction TI-RPP-WTP-127 "Mixing of AZ-102 and Evaporation to ninally 5 M Na" and Addendum	C.1
App	endi	x D: Target Analyte List, Minimum Reportable Quantities, and QC Acceptance Criteria	D.1
App	endi	x E: ICP-AES Laboratory Control Sample and Matrix Spike Failures – AZ-102C Solids	E.1

Figures

Figure 3.1. AZ-102 Sample Compositing and Splitting	3.2
Figure 3.2. AZ-102 Composite Concentration and Subsequent Processing	3.4
Figure 4.1. Flow Diagram for Analytical Processing of AZ-102, AZ-102C, and AZ-102C Solids Sub-samples	4.1
Figure 5.1. XRD Pattern for AZ-102C Precipitated Solids	5.15

Tables

Table S1. Summary of AZ-102 As-Received and Concentrated Supernatants and Solids Compositions	v
Table 2.1. Observations from As-Received AZ-102 Samples	2.1
Table 5.1. AZ-102 As-Received Supernatant Metals Analysis by ICP-AES	
Table 5.2. AZ-102 As-Received Supernatant Anion and TOC/TIC Analysis	
Table 5.3. AZ-102 As-Received Supernatant Uranium and Cs Analysis	
Table 5.4. AZ-102C Filtrate Metals Analysis by ICP-AES	
Table 5.5. AZ-102C Filtrate Anion and TIC/TOC Analysis	5.9
Table 5.6. AZ-102C Filtrate U, Cs, and GEA.	
Table 5.7. AZ-102C Precipitated Solids Metals Analysis	
Table 5.8. AZ-102C Precipitated Solids Anion Analysis	
Table 5.9. AZ-102C Precipitated Solids Gamma Analysis	
Table 5.10. Estimated Solids Composition from AZ-102 Evaporation	
Table 5.11. Mass Balance of Various Analytes	
Table 6.1. ICP-AES, ICP-MS, and KPA QC Results for AZ-102	
Table 6.2. ICP-AES and KPA QC Results for AZ-102C	
Table 6.3. ICP-AES QC Results for AZ-102C Solids	6.7
Table 6.4. QC Results for GEA	6.9
Table 6.5. Anion and TOC/TIC QC Results for AZ-102 As-Received	
Table 6.6. Anion and TOC/TIC QC Results for AZ-012C	
Table 6.7. Anion QC Results for AZ-102C Solids	

1.0 Introduction

The U. S. Department of Energy plans to vitrify tank wastes at the Hanford Site in preparation for permanent disposal. Before vitrification, tank wastes will be divided into low-activity and high-activity fractions through specific pretreatment processes. The pretreatment flowsheet for the Hanford high-activity tank wastes includes the use of SuperLig[®] 644 (SL-644) material for ¹³⁷Cs removal from the aqueous waste fraction. Small-scale ion exchange testing with AZ-102 tank waste conducted at the Savannah River Technology Center demonstrated poor Cs removal using the SL-644 (Hassan et al. 2001). One reason proposed for the demonstrated poor Cs ion exchange performance was that the Na concentration in this tank waste was low (2.77 M). The SL-644 is supposed to operate best with high ionic strength solution and typical tank waste Na concentrations of 5 M.

Battelle Pacific Northwest Division (PNWD) was tasked with the testing of concentrated AZ-102 on small-scale SL-644 ion exchange columns per 241-AZ-101 and 241-AZ-102 Ion Exchange Test Specification 24590-PTF-TSP-RT-01-002, Rev.1, J. Toth, 10/1/01. The AZ-102 tank waste had to be concentrated to nominally 5 M Na. This report describes the analytical testing of the AZ-102 as-received sample, the concentration process, and the AZ-102 concentrate and solids byproduct analyses and compositions. Other processing aspects of the test plan (ion exchange, batch contacts, effluent and eluate analyses) are reported separately.

The objectives of this work were to:

- composite the AZ-102 samples received from 222-S
- perform limited characterization of the inorganic anion and metals content of AZ-102
- concentrate the AZ-102 to nominally 5 M Na
- perform limited characterization of the AZ-102 concentrate
- provide concentrated AZ-102 to the Cs ion exchange task.

2.0 Sample Receiving

Tank AZ-102 was sampled from June 23, 1999, through September 23, 1999, from Core 261 and Core 262. Various sub-samples from different segments along the core were composited at the 222-S laboratory into ten nominally 400-mL samples. The composite samples were received under chain of custody (Appendix A) in the Radiochemical Processing Laboratory (RPL) Shielded Analytical Laboratory (SAL) hot cells on October 9, 2001. Each sample was assigned an RPL identification number.

The samples were weighed and observations of their physical appearances recorded. The measured gross composite sample masses agreed well with the gross masses reported by 222-S prior to sample transfer. All samples contained a small amount of solids; the solids' appearance was recorded for each of these samples and is given in Table 2.1. The solids' color may have been distorted through the yellow hot cell windows. There was no evidence of a separate organic phase in any of the samples.

Bottle ID	RPL ID	Reported gross mass, g	Measured gross mass, g	Solids present	Solids color	Estimated solids volume	Solids Appearance
18819	02-0226	782.1	782.04	Yes	White	1 mL	White crystalline, some large, ~2 mm long
18990	02-0227	757.6	757.80	Yes	White with slight gray	0.5 mL	Flocculent, white
18988	02-0228	767.5	764.15	Yes	White	2 mL	Crystalline
18989	02-0229	776.5	776.99	Yes	White	3 mL	White crystalline, small + one large piece ~5 mm
18996	02-0230	746.2	746.70	Yes	Grey	1 mL	Small particles, silty appearance
18992	02-0231	772.9	773.34	Yes	White	4 mL	Flocculent
18993	02-0232	737.7	738.14	Yes	White	2 mL	Flocculent
18998	02-0233	739.0	739.40	Yes	White	<1 mL	Mostly small with some large pieces ~2mm
18994	02-0234	771.8	772.27	Yes	Dark gray	2 mL	Silty
18986	02-0235	772.4	772.63	Yes	Brown	4 mL	Silty

Table 2.1. Observations from As-Received AZ-102 Samples

3.0 AZ-102 Sample Processing

The AZ-102 samples were processed according to Test Specification (TS) 24590-PTF-TSP-RT-01-002 ^(a) and Test Plan TP-RPP-WTP-111 (Appendix B). Raw data were recorded in Test Instruction TI-RPP-WTP-127 (Appendix C), and are maintained in the Project 42365 file.

3.1 Filtration and Compositing

The contents of the as-received AZ-102 bottles were passed sequentially through a 0.45- μ m nylon filter, and the filtrates were combined in a 6-L stainless steel evaporating beaker. The combined filtrates were then stirred thoroughly and sub-sampled for various tests including characterization. The compositing and sub-sampling are summarized in Figure 3.1. There was a 25-g mass loss attributed primarily to evaporation during hot cell processing activities. The residual solids from the filter were retained for possible additional characterization. The supernatant density was determined in duplicate and averaged 1.143 ± 0.002 g/mL (T = 28°C).

3.2 Sample Splitting

The filtered composite sample was split into sub-samples for mixing process heels testing activities (not addressed in this report), large archive sub-samples, and archive analytical sub-samples. All sub-samples were stored in glass bottles. The various fractions were given the sample identifications shown in Figure 3.1. The analytical sub-samples were assigned a new RPL ID of 02-366 and analyzed according to Analytical Services Request (ASR) 6265 and, as amended, 6265.01. The remaining AZ-102 bulk sample remained in the stainless steel beaker for subsequent evaporation.

3.3 Evaporation

The AZ-102 filtrate was heated and evaporated at a controlled temperature of $50 \pm 2^{\circ}$ C under an argon cover gas with continuous stirring from a stainless steel impeller. Evaporation continued from 10/31/01 15:15 to 11/3/01 12:00 (2.9 days) to nominally half the original volume. The concentrated filtrate was cooled and then passed through a 0.45-µm nylon filter. Solids formation was evident; most solids settled to the bottom of the beaker, but a small fraction floated. The settled solids remained in the bottom of the beaker during the supernatant decant for filtration. The wet solids (hereafter identified as "AZ102C solids") weighed 56.4 g (52.8 g in beaker and 3.6 g captured in the filter). The solids were allowed to air-dry in the beaker to constant mass at ambient temperature. The total air-dried solids mass remaining in the beaker was measured at 35.5 g. The loss of mass (17 g) is attributed to free water. Most of this water source was from residual concentrated AZ-102 solution remaining with the solids. The filtered concentrated AZ-102 density was determined to be 1.271 ± 0.004 g/mL (T = 25°C).

^(a) Test Specification 24590-PTF-TSP-RT-01-002, Rev. 1, *Tank 241-AZ-101 and 241-AZ-102 Ion Exchange Test Specification*, James Toth, October 1, 2001.

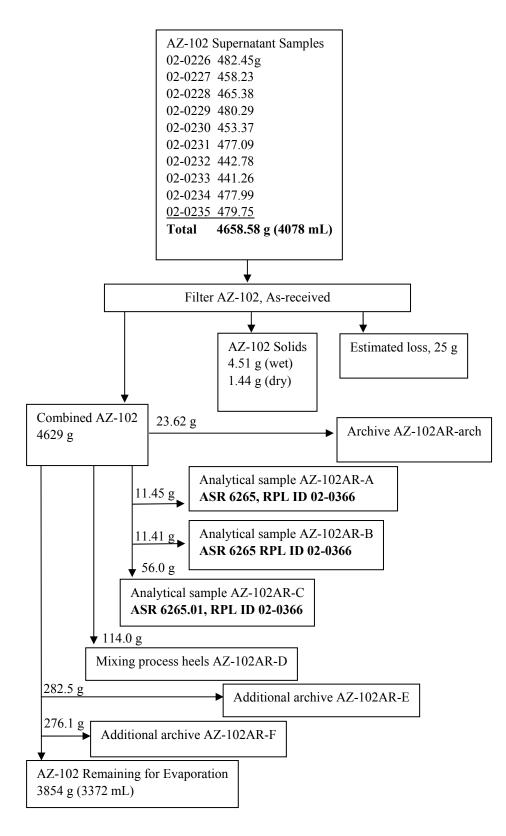


Figure 3.1. AZ-102 Sample Compositing and Splitting

The dried solids mass remaining in the beaker was a combination of the precipitated solids and the dissolved solids (DS) from the residual supernatant phase. The actual precipitated solids mass (M_P) from evaporative concentration can be calculated by subtracting the mass of residual supernatant solids (M_{DS}) from the total solids mass (M_T) according to Equation 1.

$$M_P = M_T - M_{DS} \tag{1}$$

The mass of residual supernatant dissolved solids (M_{DS}) can be estimated from the mass loss on drying of the total solids. By assuming that the weight loss on drying is water, M_{DS} can be estimated by the density of the residual liquid (ρ_L), density of water (ρ_W), and the water mass loss (M_W) according to Equation 2.

$$M_{DS} = \left(\rho_L * \frac{M_W}{\rho_W}\right) - M_W \tag{2}$$

where $\rho_L = 1.271 \text{ g/mL}$ $\rho_W = 1.000 \text{ g/mL}$ $M_W = 17 \text{ g}$

Based on Equation 2, the estimated M_{DS} is 4.6 g or 13 wt% (i.e., 100 * [4.6 g / 35.5 g]) of the total dry solids. Applying Equation 1, the mass of solids precipitated from solution as a result of evaporative concentration was *estimated* to be:

$$M_{p} = 35.5 g - 4.6 g = 30.9 g$$

The dry-mass precipitated solids (30.9 g in beaker plus 3.6 g on filter) represented 0.89 wt% of the starting AZ-102 as-received supernatant mass (3854 g) and 1.7 wt% of the concentrated AZ-102 mass (2057 g).^a Because the solids were not dried to 100°C, the total air-dried mass could include residual water. Thus the calculated wt% solids should be considered an upper bound.

The solids were transferred to glass bottles for storage. The dried solids were assigned RPL ID 02-1299 and submitted for characterization under ASR 6344.

The AZ-102 concentrate density of 1.271 g/mL was considered to be too high for subsequent processing through the Cs ion exchange SL-644 resin beds. A 200-mL aliquot of 0.01M NaOH was added back to the filtered AZ-102 concentrate to reduce the total density. The density of the slightly diluted AZ-102 concentrate was determined in duplicate to be 1.246 ± 0.003 g/mL (T = 26°C), satisfactory for subsequent Cs ion exchange processing. This concentrate, labeled AZ-102C, was the AZ-102 feed solution for Cs ion exchange testing. Analytical sub-samples were taken and assigned an RPL ID of 02-0751 and submitted for characterization under ASR 6280. Figure 3.2 summarizes the entire sequence of evaporation, filtration, dilution, and analytical sub-sampling.

^a Most, if not all, supernatant was removed from the 3.6 g solids on the filter, however the solids were not necessarily dry. The wt% solids can be considered and upper bound.

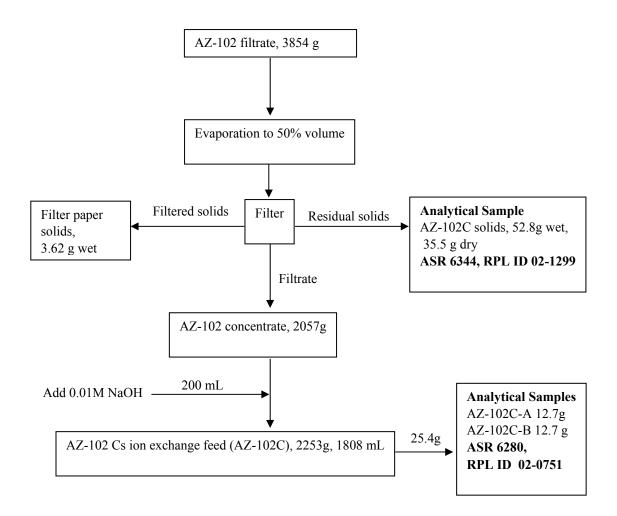


Figure 3.2. AZ-102 Composite Concentration and Subsequent Processing

4.0 Analytical Sample Processing

The analytical processing and distribution of the AZ-102 as-received composite (AZ-102), concentrate (AZ-102C), and solids from the concentration of the as-received composite (AZ-102C solids) are detailed in Figure 4.1. The ASRs and assigned RPL IDs are shown with each sample.

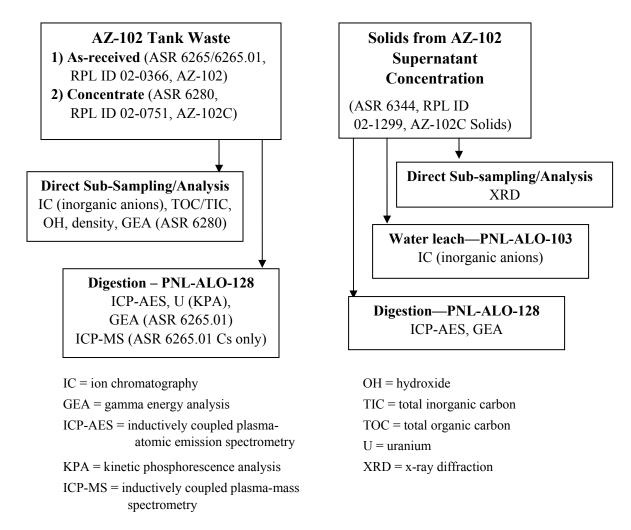


Figure 4.1. Flow Diagram for Analytical Processing of AZ-102, AZ-102C, and AZ-102C Solids Sub-samples

4.1 Density

Density was determined in the SAL hot cells using 10-mL Class A volumetric flasks. All density determinations were performed in duplicate by measuring the net mass in the volumetric flask.

4.2 Direct Sub-Sampling/Analysis

Sub-samples of the AZ-102 and AZ-102C filtrates were taken in the SAL hot cells and then delivered to the RPL analytical workstations for various measurements including anions, hydroxide, TOC, and TIC. Preparation blanks (PBs) or diluent blanks were prepared with the samples, as appropriate. The analytical workstation was responsible for assuring that the appropriate batch and analytical QC samples were analyzed, as well as providing any additional processing to the sub-samples that might be required. That is, no lab control samples/blank spikes (LCS/BS), process blanks (PB), or matrix spikes (MSs) were prepared in the SAL. Aliquots of AZ-102C filtrate were also submitted for direct gamma energy analysis (GEA).

4.3 Acid Digestion

Aliquots of the AZ-102 as-received filtrate were acid digested in the SAL hot cells according to procedure PNL-ALO-128, *HNO₃-HCl Acid Extraction of Liquids for Metals Analysis Using a Dry-Block Heater*. The SAL processed 1-mL aliquots of the AZ-102 filtrates in duplicate. The acid-extracted solutions were brought to a nominal 25-mL volume, absolute volumes were determined based on final solution weights and densities. The final digestion solution appeared to be clear and contain no precipitated solids. Along with a sample and duplicate, the SAL processed duplicate digestion PBs, two blank spikes (BSs) (one for ICP-AES and one for ICP-MS), and two MSs (one for ICP-AES and one for ICP-MS). Aliquots of the BS, MS, and PBs were provided with aliquots of the duplicate samples for ICP-AES and ICP-MS analyses. For AZ-102 (as-received) GEA, only the two PBs were provided with aliquots of the duplicate samples for analysis. Aliquots of the duplicate samples for ICP-AES, total U by KPA, and for gamma emitters by GEA, as appropriate. Aliquots of the filtered AZ-102C (concentrate) were processed identically but at a different time, and the digested solution distributed for all analyses except ICP-MS and GEA. The AZ-102C was analyzed directly (no acid digestion) by GEA.

Portions of AZ-102C solids were processed in the SAL hot cells according to PNL-ALO-129, *HNO*₃-*HCl Acid Extraction of Solids for Metals Analysis Using a Dry-Block Heater*. The SAL processed 0.2-g aliquots of AZ-102C solids in duplicate. The acid-extracted solutions were brought to a nominal 25-mL volume, absolute volumes were determined based on final solution weights and densities. Along with the sample and duplicate, the SAL processed one PB, one BS, and one MS. The solids samples appeared to be completely dissolved by the acid-extraction process. The sample, duplicate, and all QC samples were submitted for ICP-AES analysis; only the sample, duplicate, and PB were submitted for GEA.

4.4 Water Leach

Aliquots of AZ-102C solids were water leached according to PNL-ALO-103, *Water Leach of Sludges, Soils and Other Solid Samples* in the SAL hot cells. Nominally 0.2-g aliquots of solids were contacted with nominally 11 g of deionized (DI) water. The actual water volume was determined gravimetrically. The solid samples completely dissolved in the DI water based on visual examination. A PB, BS, and MS were processed in the SAL with the samples. Sample aliquots were submitted to the inorganic anion analysis workstation.

4.5 X-Ray Diffraction

Aliquots of the AZ-102C solids were analyzed by XRD according to PNNL-RPG-268, *Solids Analysis: X-ray Diffraction Analysis.* Corundum was added as an internal standard to precisely calibrate the x-ray diffractometer. Sample duplicates were run with a 45-kV accelerating potential and 40 ma current to the XRD tube. The step size was 0.02 degrees 2-theta.

4.6 Cs Isotopic Distribution

The Cs isotopic distribution (¹³³Cs, ¹³⁵Cs, and ¹³⁷Cs) was determined on the AZ-102 as-received supernatant according to PNL-SC-01, *Inductively Coupled Plasma Mass Spectrometric (ICP-MS) Analysis*. The Cs was separated from isobaric interferences using high-performance ion chromatography (HPIC), and the eluate was fed directly to the ICP-MS.

5.0 Analytical Results

5.1 Introduction

Tables 5.1 through 5.3 summarize the analytical results for the composited AZ-102 (as-received supernatant) tank waste. Tables 5.4 through 5.6 summarize the analytical results for the AZ-102 concentrated supernatant (AZ-102C). Tables 5.7 through 5.9 summarize the analytical results for solids that formed upon evaporation of the AZ-102 as-received supernatant (AZ-102C solids). Results are reported in μ g/mL or μ Ci/mL (or μ g/g or μ Ci/g), as appropriate. For some analyses, the nominal propagated uncertainties are also provided (as 1- σ , unless otherwise noted). However, for most analyses, no uncertainties are included in the tables. For these analyses, the estimated uncertainty is 10 to 15% for results above the estimated quantitation limit (EQL). Besides the duplicate sample results, the results obtained on the PBs are also reported, as appropriate.

The analytical results in Tables 5.1 through 5.9 and the quality control (QC) results in Tables 6.1 through 6.9 include a Data Flag column (i.e., a "Data Qualifier Code"), and the analyte concentrations or averages are flagged, as appropriate. The codes utilized are taken from the QA Plan and are defined below, as they relate to this report:

- U Undetected: Analyte was analyzed, but not detected (e.g., no measurable instrument response) or response was less than the MDL. (Note: For some analyses, no results are reported below an EQL established by the lowest calibration standard adjusted for processing and analysis dilutions. In these cases, results less than EQL are flagged with a U. Footnotes in the tables identify which analyses use the lowest calibration standard as the reporting level.)
- J Estimated value: The value reported is below the EQL and above the MDL. For radiochemical data, the J flag identifies results that have a propagated error of >10%, indicating that the results are typically within 10 times the minimum detectable activity (MDA).
- B Analyte found in associated laboratory PB above the QA plan acceptance criteria (i.e., analyte concentration in the blank is greater than the EQL, or exceeds 5% of sample concentration).
- X A QC deficiency is associated with the reported result. For this report, the X flag is used for the following: a) batch LCS or BS fails, b) both the MS *and* the post spike fail, c) serial dilution test (if required) fails for analytes with concentration greater than 0.1%.

The term MDL used in this report is an estimated MDL. That is, the MDLs have not been determined on the AZ-102 waste matrix per SW-846^(a) protocol. For the inorganic methods, the estimated MDLs are based on an instrument detection limit (IDL) established from using reagents and/or low-concentration high-purity standards as samples and evaluating instrument response near background levels. For radiochemical methods, the MDA is calculated per the QA Plan and is based on the background counting statistics.

^(a) U.S. Environmental Protection Agency (EPA). 1998. Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW-846, Third Edition Update IIIA, Office of Solid Waste and Emergency Response. Washington, D.C.

The EQL is typically set at 10 times the estimated MDL, which is adjusted for dilution factors resulting from digestion or leaching processing. No estimated MDL is determined for the IC analysis. The IC analysis EQL is based on the lowest calibration standard adjusted for sample dilution; no results are reported below the EQL for this method. For radiochemical methods, no EQL is established; however, results are flagged with a "J" when the uncertainty exceeds 10%.

The test specification TS 24590-PTF-TSP-RT-01-002^a was used as the basis to define the target analyte list, minimum reportable quantities (MRQ), and QC performance criteria for these analyses. The TOC and TIC were measured to help define the fractional recoveries of major species (organics and carbonate). Specific QC and QA discussions are given in Section 6.0.

5.2 Analyte List Modifications

- Analyte concentrations in addition to those required by the TSs are provided. These additional analytes were measured as part of the method and are provided for additional information only.
- Total Cs was calculated from the AZ-102 (as-received) ICP-MS ¹³³Cs result and the Cs isotopic ratios: ¹³³Cs (52.9 wt%), ¹³⁵Cs (15.0 wt%), and ¹³⁷Cs (32.2 wt%). The isotopic ratio does not change as a function of the processing conditions; thus the same isotopic ratio was used for the AZ-102C and AZ-102C solids, where total Cs was calculated based on ¹³⁷Cs determined by GEA.

5.3 Data Limitations and General Observations

- The F results have significant technical deficiencies. The reported F results represent the summation of F, acetate, and formate concentrations, as these are not readily resolved on the anion analysis IC system. The F results are most likely an overestimate of the actual F present in the AZ-102 samples.
- Total Cs concentrations in the AZ-102C and AZ-102C solids were calculated based on the ¹³⁷Cs in the solids and concentrated supernatant measured by GEA, and the Cs atomic mass ratio measured in the as-received AZ-102 supernatant.
- The TIC and TOC results from the two analysis methods (i.e., hot persulfate oxidation and furnace oxidation) are significantly different for both the AZ-102 and AZ-102C samples, with the TIC from the hot persulfate method being very similar in concentration to the TOC from the furnace method. Since it is unlikely that the TIC from the hot persulfate method is in error, the high TOC from the furnace method is considered to be questionable and should not be used.
- The anion and cation composition of the as-received AZ-102 generally agreed well with previously reported data from the Savannah River Technology Center (Hay and Bronikowski 2000).
- Good agreement for ¹³⁷Cs concentration in the AZ-102 as-received supernatant was obtained between the calculated concentration from ICP-MS-measured ¹³³Cs and applied isotopic mass ratios, and the independently-measured ¹³⁷Cs by GEA (see Table 5.3).

^a Tank 241-AZ-101 and 241-AZ-102 Ion Exchange Test Specification 24590-PTF-TSP-RT-01-002, Rev. 1, J. Toth, 10/1/01

	Process Blank 1			Process Blank 2			Sample			Duplicate		
	MDL 02-366 PB1 Data		Data	Data MDL 02-366 PB2 Data		Data			Data	MDL 02-366D		Data
Analyte	μ	g/mL ^(a)	Flag		μg/mL ^(a)	Flag	μg	/mL ^(a)	Flag	μg	/mL ^(a)	Flag
ICP-AE	S Test S	Specification										
Al	1.6	1.6	U	1.6	1.6	U	7.9	513		8.0	524	
Ca	6.6	6.6	U	6.7	6.7	U	33	33	U	33	33	U
Cr	0.52	0.52	U	0.54	0.54	U	2.6	846		2.7	867	
Li	0.79	0.79	U	0.81	0.81	U	3.9	3.9	U	4.0	4.0	U
K	52	52	U	54	54	U	262	3,310		267	3,380	
Na	3.9	[17]	J	4.0	[14]	J	19.7	63,700		20.0	65,000	
U	52	52	U	54	54	U	262	260	U	267	270	U
Other A	nalytes	Measured		T	1	1	1					
Ag	0.66	0.66	U	0.67	0.67	U	3.3	3.3	U	3.3	3.3	U
As	6.6	6.6	U	6.7	6.7	U	33	33	U	33	33	U
В	1.3	[12]	J	1.3	[12]	J	6.6	97.5	В	6.7	86.8	В
Ba	0.26	0.26	U	0.27	0.27	U	1.3	1.3	U	1.3	1.3	U
Be	0.26	0.26	U	0.27	0.27	U	1.3	1.3	U	1.3	1.3	U
Bi	2.6	2.6	U	2.7	2.7	U	13	13	U	13	13	U
Cd	0.39	0.39	U	0.40	0.40	U	2.0	2.0	U	2.0	2.0	U
Ce	5.2	5.2	U	5.4	5.4	U	26	26	U	27	27	U
Co Cu	1.3 0.66	1.3 0.66	U U	1.3 0.67	1.3 0.67	U U	6.6 3.3	6.6 3.3	U U	6.7 3.3	6.7 3.3	U U
Dy	1.3	1.3	U	1.3	1.3	U	6.6	5.5 6.6	U	5.5 6.7	6.7	U
Eu	2.6	2.6	U	2.7	2.7	U	13	13	U	13	13	U
Fe	0.66	0.66	U	0.67	0.67	U	3.3	3.3	U	3.3	3.3	U
La	1.3	1.3	U	1.3	1.3	Ŭ	6.6	6.6	Ŭ	6.7	6.7	Ŭ
Mg	2.6	2.6	U	2.7	2.7	U	13	13	U	13	13	U
Mn	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.7	6.7	U
Мо	1.3	1.3	U	1.3	1.3	U	6.6	[59]	J	6.7	[61]	J
Nd	2.6	2.6	U	2.7	2.7	U	13	13	U	13	13	U
Ni	0.79	[3.3]	J	0.81	[3.2]	J	3.9	[13]	JB	4.0	[10]	JB
P	2.6	2.6	U	2.7	2.7	U	13	147	TT	13	153	TT
Pb	2.6	2.6	U	2.7	2.7	U U	13	13 98	U	13 100	13	U U
Pd Rh	20 7.9	20 7.9	U U	20 8.1	20 8.1	U	98 39	98 39	U U	40	100 40	U U
Ru	29	29	U	30	30	U	144	140	U	40 147	150	U
Sb	13	13.1	U	13	13.5	U	66	66	U	67	67	U
Se	6.6	6.6	U	6.7	6.7	Ŭ	33	33	U	33	33	U
Si	13	[26]	J	13	[25]	J	66	[280]	JB	67	[270]	JB
Sn	39	39	U	40	40	U	197	200	U	200	200	U
Sr	0.4	0.4	U	0.4	0.4	U	2.0	2.0	U	2.0	2.0	U
Te	39	39	U	40	40	U	200	200		200	200	U
Th	26	26	U	27	27	U	131	131	U	130	130	U
Ti	0.66	0.7	U	0.67	0.7	U	3.3	3.3	U	3.3	3.3	U
Tl	13	13	U	13	14	U	66	66	U	67	67	U

 Table 5.1.
 AZ-102 As-Received Supernatant Metals Analysis by ICP-AES

Table 5.1 (Contd)

]	Process Blank	x 1]	Process Blank	2		Sample			Duplicate	
	MDL	02-366 PB1	Data	MDL	02-366 PB2	Data	MDL	02-366	Data	MDL	02-366D	Data
Analyte	μ	g/mL ^(a)	Flag		μg/mL ^(a)	Flag	μg/	mL ^(a)	Flag	μg	/mL ^(a)	Flag
V	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.7	6.7	U
W	52	52	U	54	54	U	260	260	U	270	270	U
Y	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.7	6.7	U
Zn	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.7	6.7	U
Zr	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.7	6.7	U

Analytes detected by ICP-AES are bolded for clarity and better readability.

U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors. B signifies that the associated preparative blank concentration resulted in 5% or more of the sample concentration.

X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.

J signifies an estimated concentration; the concentration is >MDL but <EQL.

(a) The overall error for bolded values without brackets is estimated to be within $\pm 15\%$ (analytes greater than 10-times the MDL). Bracketed values identify sample concentrations that are <10-times the MDL, and errors likely exceed 15%.

TOC/TIC Analysis	
Supernatant Anion and	
AZ-102 As-Received	
Table 5.2.	

		Process Blank	Blank			Sai	Sample			Duplicate	icate	
	EQL ^(a)	MDL ^(a)	02-366 PB	Data	$EQL^{(a)}$	MDL ^(a)	02-366	Data	EQL ^(a)	MDL ^(a)	02-366D	Data
Analyte		μg/mL		Flag		µg/mL		Flag		μg/mL		Flag
Test Specif	Test Specification Analytes	lytes										
$F^{(b)}$	0.13	NA	0.13	U	140	NA	1,100		140	NA	1,000	
CI	0.13	NA	0.13	U	140	NA	140	Ŋ	140	NA	140	U
NO_2	0.25	NA	0.25	U	2,800	NA	38,100		2,800	NA	36,900	
NO_3	0.25	NA	0.25	U	280	NA	19,900		280	NA	19,200	
НО	NA	NA	(q)	U	NA	NA	10,000		NA	NA	10,300	
Other Anal	Other Analytes Measured	red										
TOC/F ^(c)	ΝA	NA	NM ^(e)		NA	1,400	$11,300^{(f)}$		NA	1,400	0006	
TOC/P ^(c)	NA	NA	NM ^(e)		NA	1,000	1,000	N	NA	1,000	1,000	U
TIC/F (c)	NA	NA	NM ^(e)		NA	1,400	1,400	N	NA	1,400	1,400	N
TIC/P ^(c)	NA	NA	NM ^(e)		NA	380	6,380	Х	NA	380	8,300	Х
Br	0.13	NA	0.13	U	140	NA	140	N	140	NA	140	N
C_2O_4	0.25	NA	0.25	U	280	NA	3,150	Х	280	NA	3,170	Х
PO_4	0.25	NA	0.25	U	280	NA	850		280	NA	800	
SO_4	0.25	NA	0.25	U	280	NA	20,000		280	NA	19,900	
Analytes de	tected are bo	olded for cla	Analytes detected are bolded for clarity and better readability.	er readabi	ility.							
U signifies	undetected a	analyte; the	U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.	n provide	d represen	ts the IDL	multiplied b	y the sam	ole dilution	factors.		
X signifies	that a QC pa	arameter (e.	signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded	blank sp	ike recove	ry, etc.) wa	is exceeded.					
<∵	pplicable; NI	$M = not met = \frac{3}{2} - \frac{2}{2} - \frac{2}{2}$	asured		-	- -	L. T.C.T.	۲ ج	. 10		-	т Н
(a) F, CI, IN analytes	F, CI, INO ₂ , INO ₃ , FO ₄ , SO ₄ , analytes the MDL is presented	04 , 204 , s nresented	BI, and C2U4	report	uny resuu	s above line	erut; unere	lore, une E	UL IS prese	ntea in LNIS	F, CI, NO ₂ , INO ₂ , FO ₄ , DO4, , DI, and C ₂ O4 reportionly results above the EQL, therefore, the EQL is presented in this column. For all other analytes the MDL is presented in this column. For all other	all ouner
(b) Fluoride	results shou	uld be consi	Fluoride results should be considered the upper-bound concentration.	er-bound	concentra	ttion. Sign	ificant peak	distortion	of the F pea	ik suggests	Significant peak distortion of the F peak suggests the presence of co-	of co-
eluting 6	eluting anion(s), possibly formate	sibly forma	te or acetate.									
(c) For TOC	C and TIC:]	P = by hot p	ersulfate met	hod; $F =$	by furnace	method w	here TIC wa	as determi	ned by diffe	rence of tw	For TOC and TIC: $P = by$ hot persulfate method; $F = by$ furnace method where TIC was determined by difference of two subsamples	
(IIC = t NA)	IIC = total carbon [IC]-IOC); s IA)	(201-[21]	system blan	ks are sul	otracted fro	om all sam	ple results po	er procedu	re and are n	ot reported	system blanks are subtracted from all sample results per procedure and are not reported (i.e., not applicable,	icable,
(d) For the (OH ⁻ blank, n	o inflection	For the OH ⁻ blank, no inflection point was detected	tected.								
(e) The sam	iple was dilu	ited before a	The sample was diluted before analysis; a diluent blank was not analyzed	uent blan	k was not	analyzed.						
(f) Result is	Result is significantly higher than	y higher th	an sample and	l duplicat	te TC resul	lts (9,400 µ	ug/mL and 9,	,200 µg/m	L, respectiv	ely), sugges	sample and duplicate TC results (9,400 μg/mL and 9,200 μg/mL, respectively), suggesting result may be metation . Note footmore (c)	iy be
	ומון נווע מעומנ				<u>viv (v).</u>							

		Process Blank	k 1			Process Blank 2	k 2			Sample	ple			Duplicate	ate	
	MDL	02-366 PB1 ± 1SD Data	± 1SD	Data	MDL	02-366 PB2	$\pm 1SD$		Data MDL	02-366	$\pm 1SD$	Data	MDL	02-366	$\pm 1SD$	Data
Analytes		μg/mL		Flag		μg/mL		Flag		μg/mL		Flag		μg/mL		Flag
$U(KPA)^{(a)}$	0.01	0.048	17%	J	0.01	0.078	11%	ſ	0.06	10.3	2%		0.06	9.88	2%	
¹³³ Cs	0.04	0.04		D	0.06	0.06		D	0.03	20.1	5%		0.02	18.6	1%	
^{135}Cs ^(b)	NA	NA			NA	NA			NA	5.70	5%		NA	5.28	1%	
^{137}Cs ^(b)	NA	NA			NA	NA			NA	12.2	5%		NA	11.3	1%	
Total Cs (b)	0.04	0.04		Ŋ	0.06	0.06		U	0.03	38.0	5%		0.02	35.2	1%	
		μCi/mL				μCi/mL				μCi/mL				μCi/mL		
$^{137}Cs^{(c)}$	nr	0.00036	6%		nr	0.00037	13%	ſ	nr	942 ^(d)	4%		nr	949 ^(d)	4%	
^{125}Sb	0.0003	0.0003		D	0.0003	0.0003		Ŋ	4	4		Ŋ	4	4		D
Analytes dé Standard dé NA = not aj	stected are viation (S pplicable;	Analytes detected are bolded for clarity and better readability. Standard deviation (SD) in report in percent. NA = not applicable; nr = not reported	larity a. in perce ported	nd bet ant.	ter readabi	ility.										
U signifies J signifies	undetecte an estime	ed analyte; the ated concentra	e conce ttion; tł	ntratic le ana	on provide lyte concer	signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors. signifies an estimated concentration; the analyte concentration is $>$ MDL but $<$ EQL. For radiochemical analyses, the uncertainty is $>$ 10%.	e IDL m DL but <	ultipli ∉QL.	ed by the For rad	e sample dil iochemical a	ution facto analyses, th	rs. 1e uncei	tainty is >	>10%.		
 (a) Uranium results by KPA (b) Total Cs, ¹³⁵Cs, and ¹³⁷Cs (b) Total Cs, ¹³⁵Cs 32.2%. MI (c) Decay correction reference (d) The ¹³⁷Cs concentration i 	n results l s, ¹³⁵ Cs, a ¹³⁷ Cs 32.2 correction Cs concen	 (a) Uranium results by KPA (b) Total Cs, ¹³⁵Cs, and ¹³⁷Cs were calculated from the ICP-M 15.0%, ¹³⁷Cs 32.2%. MDL is set to ¹³³Cs MDL. (c) Decay correction reference date is nominally March 2002. (d) The ¹³⁷Cs concentration is calculated to be 10.8 and 10.9 µ 	e calcul set to ¹³ e is non ulated	ated fi ³ Cs M ninall to be 1	rom the IC IDL. y March 2 10.8 and 10	 (a) Uranium results by KPA (b) Total Cs, ¹³⁵Cs, and ¹³⁷Cs were calculated from the ICP-MS ¹³³Cs results, and independent Cs atomic mass ratios determined by ICP-MS: ¹³³Cs 52.9%, ¹³⁵Cs 15.0%, ¹³⁷Cs 32.2%. MDL is set to ¹³³Cs MDL. (c) Decay correction reference date is nominally March 2002. (d) The ¹³⁷Cs concentration is calculated to be 10.8 and 10.9 µg/mL based on the specific activity of ¹³⁷Cs (87 µCi/µg). 	sults, and ed on the	d indej e speci	pendent fic activ	Cs atomic r r ity of ¹³⁷ Cs (ass ratios - (87 µCi/µg	determi	ned by IC	P-MS: ¹³³ C	's 52.9%,	¹³⁵ Cs

Table 5.3. AZ-102 As-Received Supernatant Uranium, Cs, and ¹²⁵Sb Analysis

	Pr	ocess Blank 1		P	rocess Blank 2			Sample		I	Duplicate	
	MDL	02-751 PB1	Data	MDL	02-751 PB2	Data	MDL	02-751	Data	MDL	02-751D	Data
Analyte		g/mL ^(a)	Flag		ig/mL ^(a)	Flag		/mL ^(a)	Flag		$/mL^{(a)}$	Flag
		ecification Ana	. 0	r f	8		- F*8	,	8	1 18		8
Al	1.6	[2.0]	J	1.6	1.6	U	7.9	917		8.2	941	
Ca	6.7	6.7	Ŭ	6.7	6.7	Ŭ	33	33	U	34	34	U
Cr	0.54	0.54	U	0.53	0.53	U	2.6	1,490	-	2.7	1,530	-
Li	0.81	0.81	U	0.80	0.80	U	4.0	4.0	U	4.1	4.1	U
K	54	54	U	53	53	U	264	6,560	0	273	6,750	U
Na	4.0	[19]	J	4.0		J	204	104,000		20	108,000	
INA U	4.0 54	54	U U	4.0 53	[14] 53	U U	260	260	U	270	270	U
Other An			U	55	55	0	200	200	0	270	270	0
Ag	0.67	0.67	U	0.67	0.67	U	3.3	3.3	U	3.4	3.4	U
As	6.7	6.7	U	6.7	6.7	Ū	33	33	Ū	34	34	Ū
В	1.34	[13]	XJ	1.3	[12]	XJ	6.6	69	BX	6.8	85	BX
Ва	0.27	0.27	U	0.27	0.27	U	1.3	1.3	U	1.4	1.4	U
Be	0.27	0.27	U	0.27	0.27	U	1.3	1.3	U	1.4	1.4	U
Bi	2.7	2.7	Ŭ	2.7	2.7	U	13	13	U	14	14	U
Cd	0.40	0.40	U	0.40	0.40	U	2.0	2.0	U	2.0	2.0	U
Ce	5.4	5.4	U	5.3	5.3	U	26	26	U	27	27	U
Со	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.8	6.8	U
Cu	0.67	0.67	U	0.67	0.67	U	3.3	3.3	U	3.4	3.4	U
Dy	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.8	6.8	U
Eu	2.7	2.7	U	2.7	2.7	U	13	13	U	14	14	U
Fe	0.67	0.67	U	0.67	0.67	U	3.3	3.3	U	3.4	3.4	U
La	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.8	6.8	U
Mg	2.7	2.7	U	2.7	2.7	U	13	13	U	14	14	U
Mn Ma	1.3 1.3	1.3 1.3	U U	1.3 1.3	1.3 1.3	U U	6.6 6.6	6.6	U	6.8 6.8	6.8	U
Mo Nd	1.5 2.7	1.3 2.7	U	1.5 2.7	1.3 2.7	U	0.0 13	108 13	U	0.8 14	111 14	U
Ni	0.81	[0.88]	J	0.80	0.80	U	4.0	4.0	U	4.1	4.1	U
P	2.7	2.7	U	2.7	2.7	U	13	283	0	14	290	0
Pb	2.7	2.7	U	2.7	2.7	U	13	13	U	14	14	U
Pd	20	20	U	20	20	U	99	99	U	100	100	U
Rh	8.1	8.1	U	8.0	8.0	U	40	40	U	41	41	U
Ru	30	30	U	29	29	U	145	145	U	150	150	U
Sb	13	13	U	13	13	U	66	66	U	68	68	U
Se	6.7	6.7	U	6.7	6.7	U	33	33	U	34	34	U
Si	13	[33]	J	13	[25]	J	66	[220]	BJ	68	[290]	BJ
Sn	40	40	U	40	40	U	200	200	U	200	200	U
Sr	0.40	0.40	U	0.40	0.40	U	2.0	2.0	U	2.0	2.0	U
Te	40	40	U	40	40	U	200	200	U	200	200	U
Th	27	27	U	27	27	U	130	130	U	140	140	U
Ti Tl	0.67	0.67	U U	0.67	0.67	U	3.3	3.3	U U	3.4	3.4 68	U U
Tl V	13 1.3	13 1.3	U	13 1.3	13 1.3	U U	66 6.6	66 6.6	U	68 6.8	68 6.8	U U
v	1.3	1.3	U	1.3	1.3	U	0.0	0.0	U	0.8	0.8	U

 Table 5.4.
 AZ-102 Filtered Concentrate (AZ-102C) Metals Analysis by ICP-AES

Table 5.4 (Contd)

	Pr	ocess Blank 1		Р	rocess Blank 2			Sample		Ι	Duplicate	
	MDL	02-751 PB1	Data	MDL	02-751 PB2	Data	MDL	02-751	Data	MDL	02-751D	Data
Analyte	μ	g/mL ^(a)	Flag	Ļ	ıg/mL ^(a)	Flag	μg	/mL ^(a)	Flag	μg	mL ^(a)	Flag
W	54	54	U	53	53	U	260	260	U	270	270	U
Y	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.8	6.8	U
Zn	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.8	6.8	U
Zr	1.3	1.3	U	1.3	1.3	U	6.6	6.6	U	6.8	6.8	U

Analytes detected by ICP-AES are bolded for clarity and better readability.

U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.

B signifies that the associated preparative blank concentration resulted in 5% or more of the sample concentration.

X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.

J signifies an estimated concentration; the concentration is >MDL but <EQL.

(a) The overall error for bolded values without brackets is estimated to be within ±15% (analytes greater than 10 times the MDL). Bracketed values identify sample concentrations that are <10 times the MDL, and errors likely exceed 15%.</p>

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			Proce	Process Blank			Sample	ple			Dup	Duplicate	
Analyteµg/mLFlagµg/mLFlagµg/mLTest Specification AnalytesTest Specification Analytes $F^{(0)}$ 114NA114U140NACl114NA114U1400NANACl114NA2.8U1,400NANANO22.8NA2.8U1,400NANANO32.8NA2.8U1,400NANANO32.8NA2.8U1,400NANANO32.8NA2.8U1,400NANO32.8NA0U1,400NANO32.8NANANA1,0001,400NANANANANA1,0001,400NA1,400TICP(6)NANANA1,0001,400NA1,400Br1.4NANANA1,9001,400NA1,400Br1.4NANANA1,9001,400NANABr1.4NANANA1,400NANANABr1.4NANANANANA1,400NABr1.4NANANANANA1,400NABr1.4NANANANA1,400NANABr1.4NANANA </th <th></th> <th>$EQL^{(a)}$</th> <th></th> <th></th> <th>Data</th> <th>EQL^(a)</th> <th>MDL^(a)</th> <th>02-751 PB</th> <th>Data</th> <th>EQL^(a)</th> <th>MDL^(a)</th> <th>02-751 PB</th> <th>Data</th>		$EQL^{(a)}$			Data	EQL ^(a)	MDL ^(a)	02-751 PB	Data	EQL ^(a)	MDL ^(a)	02-751 PB	Data
Test Specification Analytes Ft ^(b) 1.4 NA 1.4 U 140 NA 140 NA Cl 1.4 NA 1.4 U 140 NA 140 NA Cl 1.4 NA 1.4 U 1400 NA 81,800 U 1400 NA NO2 2.8 NA 2.8 U 1,400 NA 81,800 U 140 NA OH Analytes 2.8 U 1,400 NA 39,400 NA 1,400 NA OH Analytes Ma NA NA 1,700 U 1,400 NA Offer NA NA NA NA NA 1,000 U NA 1,000 TIC/P(6) NA NA NA 1,000 U NA 1,400 NA Br 1.4 N NA 1,900 N NA 1,400 <th>Analyte</th> <th></th> <th>hg/mI</th> <th></th> <th>Flag</th> <th></th> <th>µg/mL</th> <th></th> <th>Flag</th> <th></th> <th>μg/mL</th> <th></th> <th>Flag</th>	Analyte		hg/mI		Flag		µg/mL		Flag		μg/mL		Flag
F ^(b) 14 NA 140 NA 140 NA 140 NA CI 14 NA 14 U 140 NA NA NO2 2.8 NA 2.8 U 1,400 NA NA NO3 2.8 NA 2.8 U 1,400 NA NA NO3 2.8 NA 2.8 U 1,400 NA NA NO3 2.8 NA 1,400 NA 39,400 NA NA NO3 2.8 NA 1,400 NA NA NA TOCF (*) NA NA NA NA NA NA TOCF (*) NA NA NA NA NA NA NA TOCF (*) NA NA NA NA NA NA NA TOCF (*) NA NA NA 1,000 1,000 NA NA 1,400 <	Test Specifica	tion Ana	lytes										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$F^{(b)}$	1.4	NA	1.4	U	140	NA	1,840		140	NA	1,690	
NO2 2.8 NA 2.8 U 1,400 NA 39,400 1,400 NA NO3 2.8 NA 2.8 U 1,400 NA 39,400 1,400 NA OH NO3 2.8 NA 2.8 U 1,400 NA 39,400 1,400 NA Other Analytes Measured TOC/F(e) NA NA NA 1,000 1,4500 NA 1,000 TOC/P(e) NA NA NA NA 1,000 1,000 U NA 1,000 TIC/P(e) NA NA NA 1,000 U NA 1,400 Br 1,4 NA 1,000 U NA 1,400 NA Br 1,4 NA NA 1,400 NA 1,400 NA Br 1,4 NA 1,400 NA 1,400 NA 1,400 Br 1,4 NA 1,400 NA <td>CI</td> <td>1.4</td> <td>NA</td> <td>1.4</td> <td>U</td> <td>140</td> <td>NA</td> <td>140</td> <td>Ŋ</td> <td>140</td> <td>NA</td> <td>140</td> <td>U</td>	CI	1.4	NA	1.4	U	140	NA	140	Ŋ	140	NA	140	U
NO32.8NA2.8U1,400NA39,4001,400NAOHNA0HNA17,400NA14,00NAOHer Analytes MeasuredNANANA1,00014,500VNA1,000TOC/F (°)NANANANM(°)NANA1,00014,500NA1,000TIC/F (°)NANANM(°)NANA1,00014,500VNA1,000TIC/F (°)NANANM(°)NA1,400NA1,400NA1,400TIC/F (°)NANANANM(°)NA1,400NA1,400NATIC/F (°)NANANANA1,400NA1,400NA1,400TIC/F (°)NANANA1,400NA1,400NA1,400R1,4N1,40NA1,400NA1,400NAR2,042,8U1,400NA1,400NAR2,042,8U2,80NA1,400NAR2,042,8U2,80NANA1,400R2,042,8U2,80NA1,400NAR2,042,8U2,80NA1,400NAR2,042,8U2,80NA1,400NAR2,042,8U2,80NA1,400NA </td <td>NO_2</td> <td>2.8</td> <td>NA</td> <td>2.8</td> <td>N</td> <td>1,400</td> <td>NA</td> <td>81,800</td> <td></td> <td>1,400</td> <td>NA</td> <td>74,100</td> <td></td>	NO_2	2.8	NA	2.8	N	1,400	NA	81,800		1,400	NA	74,100	
OHNA(a)UNANA17,400NANAOther Analytes MeasuredTOC/F (a)NANANANA1,0001,4500NANA1,000TOC/F (a)NANANANM(^{a)} NANA1,000UNA1,000TOC/F (a)NANANANM(^{a)} NANA1,000UNA1,000TIC/F (a)NANANANM(^{a)} NA1,900UNA1,400TIC/F (a)NANA1.44U140NA140NA1,400TIC/F (b)NANA1.44U140NA1,400NA1,400TIC/F (c)NA2.8U2.80NA1,400NA1,400PO42.8NA2.8U1,400NA1,400NASO42.8NA2.8U1,400NA1,400NAAnalytes detected are bolded for clarity and better readability.1,400NA1,3001,400NANA = not applicable; NM = not measuredU1,400NA1,3001,400NANA = not applicable; NM = not measuredU1,400NA1,3001,400NANA = not applicable; NM = not applicable	NO ₃	2.8	NA	2.8	N	1,400	NA	39,400		1,400	NA	36,000	
Other Analytes MeasuredTOC/F (°)NANANM(°)NANM (°)NANM (°)NANANM (°)NANANM (°)NANANM (°)NA </td <td>НО</td> <td></td> <td>NA</td> <td>(q)</td> <td>U</td> <td>NA</td> <td>NA</td> <td>17,400</td> <td></td> <td></td> <td>NA</td> <td>20,100</td> <td></td>	НО		NA	(q)	U	NA	NA	17,400			NA	20,100	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Other Analyt	es Measu	Ired										
TOC/P (°)NANANM (°)NM (°)NA500500UNA500TIC/F (°)NANANM (°)NANM (°)NA1,000UNA1,400TIC/F (°)NANANANM (°)NA1,400U1,400NA190Br1.4NA1.4U140NA140V140NA190Br1.4NA2.8U2.8NA2.8V280NA O_4 2.8NA2.8U1,400X280NA O_4 2.8NA2.8U1,400NA1,400NA SO_4 2.8NA2.8U1,400NA280NA SO_4 2.8NA2.8U1,400NA280NA SO_4 2.8NA2.8U1,400NA280NA SO_4 2.8NA2.8U1,400NA280NA SO_4 2.8NA2.8U1,400NA280NA SO_4 2.8NA9.00NA1,3001,400NA SO_4 2.8V1,400NA1,3001,400NA SO_4 2.8NA1,300NA1,400NA SO_4 2.8NA2.8V1,400NA SO_4 2.8NA1,400NA1,400	TOC/F ^(c)	NA	NA	NM ^(e)		NA	1,000	14,500		ΥN	1,000	13,300	
TIC/F(c)NANANM(e)NANM(e)NA1,0001,0001,0000NA1,400TIC/P(e)NANANANM(e)NA1.4U140NA190Br1.4NA1.4U140NA19015,000U140NABr1.4NA2.8U280NA1,900X280NA PO_4 2.8NA2.8U280NA1,900X280NA PO_4 2.8NA2.8U1,400NA1,900X280NAAnalytes detected are bolded for clarity and better readability.NA1,3801,400NANAAnalytes detected are bolded for clarity and better readability.NA1,3801,400NASolifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.V signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.(a)F, Cl, NO2, NO3, PO4, SO4, Br, and C204 report only results above the EQL; therefore, the EQL is presented in this column.(b)He MDL is presented.(c)He MDL is presented. <td>TOC/P^(c)</td> <td>NA</td> <td>NA</td> <td>NM^(e)</td> <td></td> <td>NA</td> <td>500</td> <td>500</td> <td>D</td> <td>NA</td> <td>500</td> <td>1,000</td> <td></td>	TOC/P ^(c)	NA	NA	NM ^(e)		NA	500	500	D	NA	500	1,000	
TIC/P(c)NANANANM(e)NA19015,000NA190NA190Br1.4NA1.4U1.4U140NA140NA190C2042.8NA2.8U280NA1,900X280NAPO42.8NA2.8U280NA1,300X280NAAnalytes detected are bolded for clarity and better readability.NA1,300X280NAMalytes detected are bolded for clarity and better readability.NA37,1001,400NASola2.8NA2.8U1,400NASola2.8NA2.8U1,400NASola2.8NA2.8U1,400NAAnalytes detected are bolded for clarity and better readability.37,1001,400NANA = not applicable; NM = not measured1,30037,1001,400NAU signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.A. Dubb is presented.A. Dubb is presented. <t< td=""><td>TIC/F^(c)</td><td>NA</td><td>NA</td><td>NM^(e)</td><td></td><td>NA</td><td>1,000</td><td>1,000</td><td>D</td><td>NA</td><td>1,400</td><td>1,400</td><td>N</td></t<>	TIC/F ^(c)	NA	NA	NM ^(e)		NA	1,000	1,000	D	NA	1,400	1,400	N
Br1.4NA1.4U140NA140U140NA C_2O_4 2.8NA2.8U280NA1,900X280NA PO_4 2.8NA2.8U2.80NA1,300X280NA SO_4 2.8NA2.8U1,400NA1,300X280NAAnalytes detected are bolded for clarity and better readability.1,400NA37,1001,400NANA = not applicable; NM = not measured2.8U1,400NA37,1001,400NAU signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.(e.g., precision, blank spike recovery, etc.) was exceeded.(a) F, Cl, NO ₂ , NO ₃ , PO ₄ , SO ₄ , Br, and C ₂ O ₄ report only results above the EQL; therefore, the EQL is presented in this column.(b) The MDL is presented.	TIC/P ^(c)	NA	NA	NM ^(e)		NA	190	15,000		NA	190	14,100	
C_2O_4 2.8NA2.8U280NA1,900X280NA PO_4 2.8NA2.8U2.80NA1,380280NA SO_4 2.8NA2.8U1,400NA1,380280NAAnalytes detected are bolded for clarity and better readability.NA37,1001,400NANA = not applicable; NM = not measuredU1,400NA37,1001,400NAU signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.(a) F, Cl, NO ₂ , NO ₃ , PO4, SO4, Br, and C ₂ O4 report only results above the EQL; therefore, the EQL is presented in this column.(b) The MDL is presented.	Br	1.4	NA	1.4	N	140	NA	140	D	140	NA	140	U
PO_4 2.8 NA 2.8 U 280 NA $1,380$ 280 NA SO_4 2.8 U $1,400$ NA $37,100$ $1,400$ NA Analytes detected are bolded for clarity and better readability. $NA = not applicable; NM = not measured1,400NA37,1001,400NAN and the sublet of the concentration provided represents the IDL multiplied by the sample dilution factors.X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.(a) F, Cl, NO2, NO3, PO4, SO4, Br, and C2O4 report only results above the EQL; therefore, the EQL is presented in this column.(a) F, Cl, NO2, NO3, PO4, SO4, Br, and C2O4 report only results above the EQL; therefore, the EQL is presented in this column.$	C_2O_4	2.8	NA	2.8	N	280	NA	1,900	X	280	NA	1,450	Х
SO4 2.8 N 2.8 U 1,400 NA 37,100 1,400 NA Analytes detected are bolded for clarity and better readability. Analytes detected are bolded for clarity and better readability. NA = not applicable; NM = not measured NA = not applicable; NM = not measured U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors. X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded. (a) F, Cl, NO ₂ , NO ₃ , PO ₄ , SO ₄ , Br, and C ₂ O ₄ report only results above the EQL; therefore, the EQL is presented in this column.	PO_4	2.8	NA	2.8	N	280	NA	1,380		280	NA	1,310	
Analytes detected are bolded for clarity and better readability. NA = not applicable; NM = not measured U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors. X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded. (a) F, Cl, NO ₂ , NO ₃ , PO ₄ , SO ₄ , Br, and C ₂ O ₄ report only results above the EQL; therefore, the EQL is presented in this column. the MDL is presented.	SO_4	2.8	NA	2.8	U	1,400	NA	37,100		1,400	NA	33,600	
 NA = not applicable; NM = not measured U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors. X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded. (a) F, Cl, NO₂, NO₃, PO₄, SO₄, Br, and C₂O₄ report only results above the EQL; therefore, the EQL is presented in this column. the MDL is presented. 	Analytes detec	ted are bo	olded for cl	arity and bette	r readabi	lity.							
 U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors. X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded. (a) F, Cl, NO₂, NO₃, PO₄, SO₄, Br, and C₂O₄ report only results above the EQL; therefore, the EQL is presented in this column. the MDL is presented. 	NA = not appl.	icable; NN	$M = not m\epsilon$	easured									
A signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded. (a) F, Cl, NO ₂ , NO ₂ , PO ₄ , SO ₄ , Br, and C ₂ O ₄ report only results above the EQL; therefore, the EQL is presented in this column. the MDL is presented.	U signifies un	detected a	nalyte; the	concentration	provided	1 represents	the IDL m	ultiplied by th	e sample	e dilution fac	ctors.		
(a) F, Cl, NO ₂ , NO ₃ , PO ₄ , SO ₄ , Br, and C ₂ O ₄ report only results above the EQL; therefore, the EQL is presented in this column. the MDL is presented.	A signifies that	r a ער pa	irameter (e.	.g., precision, l	olank spi	ke recovery	/, etc.) was t	sxceeded.					
the MDL is presented. Elimited received the considered	(a) F, Cl, NO_2	, NO ₃ , PC	04, SO4, Br	; and C_2O_4 rep	ort only	results abo	ve the EQL;	therefore, the	EQL is	presented ir	n this colum	n. For all othe	er analytes
Elinarida racinte chande ha acuaidarad	the MDL	s presente	ed.										
FINOTIDE LESUILS SHOULD DE CONSIDETED	(b) Fluoride re	ssults shor	uld be con:	sidered the upt	pound	d concentra	tion. Signif	icant peak dis	tortion c	of the F peak	suggests th	e presence of	co-eluting

TIC/TOC Analysis
nion and
(AZ-102C) A
Concentrate
. AZ-102 Filtered
able 5.5. AZ

anion(s), possibly formate or acetate. For TOC and TIC: P=by hot persulfate method; F=by furnace method/TIC by difference (TIC = total carbon [TC]-TOC); system blanks are ত

(e) (e)

subtracted from all sample results per procedure and are not reported (i.e., not applicable, NA). For the OH blank, no inflection point was detected. The sample was diluted before analysis; a diluent blank was not analyzed.

		Process Bl	ank 1			Sam	nle			Dupli	rate	
	MDL		± 1 RSD	Data	MDL	1	±1 RSD	Data	MDL		± 1 RSD	Data
Analytes		μg/mL	-1100	Flag		μg/mL	-1100	Flag		μg/mL	-1100	Flag
U(KPA) ^(a)	0.03	0.032	64%	J	0.03	14.9	4%	0	0.03	15.4	4%	
¹³³ Cs ^(b)		NA			NA	38.3			NA	37.4		
¹³⁵ Cs ^{b)}		NA			NA	10.9			NA	10.6		
$^{137}Cs^{(b)}$		NA			NA	23.3			NA	22.8		
Total Cs ^(b)		NA			NA	72.5 μCi/mL ^(c)			NA	70.7 μCi/mL ^(c)		
		μCi/mL				µCI/mL*				µCI/mL~		
¹³⁷ Cs		(d)			nr	2,030	3%		nr	1,980	3%	
¹²⁵ Sb		(d)			4	4		U	4	4		U
Other Ana	lvtes r	neasured by (GEA									
	Č.	μCi/mL				μCi/mL ^(c)				μCi/mL ^(c)	-	
¹³⁴ Cs		(d)			nr	1.32	6%		nr	1.19	7%	
⁶⁰ Co		(d)			0.03	0.03		U	0.05	0.05		U
¹⁰⁶ Ru/Rh		(d)			6	6		U	6	6		U
¹²⁶ Sn/Sb		(d)			0.02	0.02		U	0.02	0.02		U
¹⁵⁴ Eu		(d)			0.1	0.1		U	0.1	0.1		U
Relative	standa	ed are bolded t rd deviation (R	SD) in rep	port in							•	

Table 5.6. AZ-102 Filtered Concentrate (AZ-102C) U, Cs, and GEA

NA = not applicable; nr = not reported

U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.

J signifies an estimated concentration; the analyte concentration is >MDL but <EQL. For radiochemical analyses, the uncertainty is >10%.

(a) Uranium results by KPA

(b) Total Cs, ¹³³Cs, and ¹³⁵Cs are calculated from the ¹³⁷Cs GEA results, and independent Cs atomic mass ratios are determined by ICP-MS for the as-received sample (RPL ID 02-0366): ¹³³Cs 52.9%, ¹³⁵Cs 15.0%, ¹³⁷Cs 32.2%.

(c) Decay-correction reference date is nominally December 2001.

(d) Not required; GEA measured on direct sample aliquot.

	F	Process Blank 1	l		Sample			Duplicate	
	MDL	02-1299 PB1	Data	MDL	02-1299	Data	MDL	02-1299D	Data
Analyte		$\mu g/g^{(a)}$	Flag		$\mu g/g^{(a)}$	Flag		μg/g ^(a)	Flag
ICP-AES T	Fest Spec	cification Analy	ytes						
Al	7.2	[31]	J	7.3	1,040		6.9	1,110	
Ca	30	30	U	30	[260]	J	29	[260]	J
Cr	2.4	2.4	U	2.4	1,260		2.3	1,160	
Li	3.6	3.6	U	3.6	3.6	U	3.5	3.5	U
K	240	240	U	243	5,660	Х	231	5,250	Х
Na	18	272	Х	91	367,000	Х	87	362,000	Х
U	240	240	U	240	240	U	230	230	U
Other Ana	lytes Me	asured				•			
Ag	3.0	3.0	U	3.0	3.0	U	2.9	2.9	U
As	30	30	U	30	30	U	29	29	U
В	6.0	212		6.1	1,500	XB	5.8	1,460	XB
Ва	1.2	1.2	U	1.2	[7.2]	J	1.2	[6.5]	J
Be	1.2	1.2	U	1.2	1.2	U	1.2	1.2	U
Bi	12	12	U	12	12	U	12	12	U
Cd	1.8	1.8	U	1.8	[4.0]	J	1.7	[4.1]	J
Ce	24	24	U	24	24	U	23	23	U
Co	6.0	6.0	U	6.1	6.1	U	5.8	5.8	U
Cu	3.0	3.0	U U	3.0 6.1	3.0 6.1	U U	2.9 5.8	2.9 5.8	U U
Dy Eu	6.0 12	6.0 12	U	12	12	U	3.8 12	3.8 12	U
Fe	3.0	[6.0]	J	3.0	[19]	JB	2.9	[21]	JB
La	6.0	6.0	Ŭ	6.1	[6.5]	J	5.8	[6.3]	J
Mg	12	12	U	12	12	U	12	12	U
Mn	6.0	6.0	U	6.1	6.1	U	5.8	5.8	U
Мо	6.0	6.0	U	6.1	95		5.8	87	
Nd	12	12	U	12	[15]	J	12	[15]	J
Ni	3.6	3.6	U	3.6	3.6	U	3.5	3.5	U
P	12	12	U	12	235	TT	12	222	TT
Pb Pd	12 90	12 90	U U	12 91	12 91	U U	12 87	12 87	U U
Pd Rh	90 36	90 36	U U	36	91 36	U	35	87 35	U
Ru	130	130	U	130	130	U	130	130	U
Sb	60	60	U	61	61	U	58	58	U
Se	30	30	U	30	30	U	29	29	U
Si	60	[600]	J	61	7230	XB	58	4870	XB
Sn	180	180	U	180	180	U	170	170	U
Sr	2	1.8	U	1.8	[2.8]	J	1.7	[2.6]	J
Te	180	180	U	180	180	U	170	170	U
Th	120	120	U	120	120	U	120	120	U
Ti	3.0	3.0	U	3.0	[5.2]	J	2.9	[5.5]	J
Tl	60	60	U	61	61	U	58	58	U

Table 5.7. AZ-102C Precipitated Solids Metals Analysis
--

Table 5.7 (Contd)

	F	Process Blank 1	l		Sample			Duplicate	
	MDL	02-1299 PB1	Data	MDL	02-1299	Data	MDL	02-1299D	Data
Analyte		$\mu g/g^{(a)}$	Flag		$\mu g/g^{(a)}$	Flag		$ug/g^{(a)}$	Flag
V	6	6.0	U	6.1	6.1	U	5.8	5.8	U
W	240	240	U	240	240	U	230	230	U
Y	6	6.0	U	6.1	6.1	U	5.8	5.8	U
Zn	6.0	6.0	U	6.1	6.1	U	5.8	5.8	U
Zr	6.0	6.0	U	6.1	[16]	J	5.8	[16]	J

Analytes detected by ICP-AES are bolded for clarity and better readability.

U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.

B signifies that the associated preparative blank concentration resulted in 5% or more of the sample concentration.

X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.

J signifies an estimated concentration; the concentration is >MDL but <EQL.

(a) The overall error for bolded values without brackets is estimated to be within ±15% (analytes greater than 10-times the MDL). Bracketed values identify sample concentrations that are <10 times the MDL, and errors likely exceed 15%.

	Pr	ocess Blank			Sample		l	Duplicate	
Analyte	EQL ^(a)	02-1299 PB	Data Flag	EQL ^(a)	02-1299 g/g	Data Flag	EQL ^(a)	02-1299D	Data Flag
Test Spec				î			r		8 _
F ^(b)	8	8	U	1,400	40,400		1,500	39,900	
Cl	8	8	U	71	71	U	73	73	U
NO ₂	16	16	U	2,800	49,900		2,900	44,000	
NO ₃	16	16	U	2,800	27,200		2,900	24,400	
PO ₄	16	16	U	140	600		150	590	
SO_4	16	16	U	2,800	225,000		2,900	213,000	
Other An	alytes Me	asured			-			-	
Br	8	8	U	71	71	U	73	73	U
C_2O_4	16	16	U	2,800	217,000		2,900	225,000	
U signi		are bolded for octed analyte; factors.		-		-	ts the IDL	multiplied b	y the
(b) Fluori		, PO ₄ , SO ₄ , B should be con acetate.		-	•		-		red

 Table 5.8.
 AZ-102C Precipitated Solids Anion Analysis

		Process Bla	nk 1			Samp	le			Duplica	te	
	MDL	02-1299 PB	±1SD	Data	MDL	02-1299	± 1SD	Data	MDL	02-1299D	± 1SD	Data
Analytes		μCi/g ^(a)		Flag		μCi/g ^(a)		Flag		μCi/g ^(a)		Flag
Test Specif	ication	Analytes										
¹³⁷ Cs	nr	0.021	5%		nr	1,390	4%		nr	1,300	4%	
¹²⁵ Sb	0.002	0.002		U	4	4		U	4	4		U
		μg/g				μg/g				μg/g	T	
¹³⁷ Cs	nr	0.0003			nr	16.0	4%		nr	14.9	4%	
Cs (total)	NA	(b)			NA	49.6 ^(c)	4%		NA	46.4 ^(c)	4%	
Other Ana	lytes M	easured										
		μCi/g ^(a)				μCi/g ^(a)				μCi/g ^(a)		
²⁴¹ Am	nr	0.001	23%	J	20	20		U	20	20		U
Standard NA = not U signific factors	deviatio applica es unde	d are bolded f on (SD) in rep able; $nr = r$ tected analyte timated conce	oort in p not repo ; the co	ercent rted ncentr	ation pro ^v	vided repre			1	5 1		tion

Table 5.9. AZ-102C Precipitated Solids Gamma Analysis

J signifies an estimated concentration; the analyte concentration is >MDL but <EQL. For radiochemical analyses, the uncertainty is >10%.

(a) Decay correction reference date is nominally February 2002.

(b) Total Cs cannot be determined since isotopic ratio of the blank is not known.

(c) Total Cs and ¹³⁷Cs in μ g/g are calculated from the GEA ¹³⁷Cs concentration, specific activity of ¹³⁷Cs (87 μ Ci/ μ g), and the isotopic ratio of AZ-102 as-received supernatant (RPL ID 02-0366) where ¹³⁷Cs = 32.2 wt%.

5.4 X-Ray Diffraction Analysis of Solids

The duplicate sample analyses resulted in virtually identical XRD spectra. An XRD spectrum with the stick diagrams of identified components is given in Figure 5.1. The major phases found in the solids were sodium fluorosulfate (Na₃FSO₄, Kogarkoite) and sodium oxalate (Na₂C₂O₄, natroxalate). The dominant materials found by destructive analysis support the Na₃FSO₄ and Na₂C₂O₄ compositions where 36-wt% Na, 4-wt% F, 22-wt% SO₄, and 22-wt% C₂O₄ were found. A small amount of sodium nitrite (NaNO₂) was present and is supported by the measured 4.7-wt% NO₂. Very small amounts of phases matching zinc nitrate hydroxide hydrate [Zn₅(NO₃)₂(OH)₈•2H₂O] and potassium hydrogen acetate (C₆H₁₁KO₆) patterns were present. Potassium was detected by ICP-AES analysis in the AZ-102C solids at 0.5 wt%; however, zinc was not detected. A breakdown of the estimated solids composition based on the anion, metals, and XRD results is provided in Table 5.10. The presence of NaNO₃ is estimated based on the anion and cation composition, but was not detected by XRD.

Compound	Formula	Weight percent
Sodium fluorosulfate	Na ₃ FSO ₄	57
Sodium oxalate	$Na_2C_2O_4$	28
Sodium nitrite	NaNO ₂	7
Sodium nitrate ^(a)	NaNO ₃	4
Minor constituents	Various	4
(a) The presence of NaNO ₃ is as	sumed based on ICP-AES a	nd IC analyses; its
presence is not supported by	the XRD analysis.	

 Table 5.10.
 Estimated Solids Composition from AZ-102 Evaporation

[1020103A.bin] Fiskum, AZ-102 Solid C, SCAN: 5.0/65.0/0.02/0.5(*/m), Cu, I(max)=7474, 01/04/02 08:26

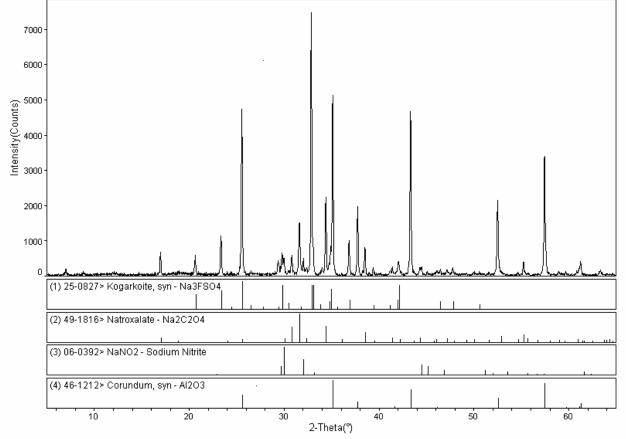


Figure 5.1. XRD Pattern for Precipitated AZ-102C Solids with Matching Stick Diagrams of Identified Components

The major phases (Na₃FSO₄ and Na₂C₂O₄) certainly precipitated from solution as part of the AZ-102 concentration process. A small fraction (~4.6 g) of the total solids mass (35.5 g) was contributed from total dissolved solids of residual AZ-102C (Section 3.3). It is possible that the observed NaNO₂ and predicted NaNO₃ are from the dried, residual AZ-102 concentrate fraction.

5.5 Fractional Analyte Recovery

Within analytical uncertainty, generally 100% of the anions and metals present in the AZ-102 as-received sample were recovered in the combined AZ-102 concentrate filtrate plus solids. Most of the analytes in the AZ-102 as-received material were recovered in the AZ-102 concentrate filtrate. Losses from the aqueous phase to the solid phase were found for SO_4 , F, C_2O_4 , and some Na. Analyte concentrations, masses, and fractionations are summarized in Table 5.11. Despite the presence of SO_4 in the solids, the final SO_4 concentration in the aqueous phase was a factor of 1.8 more concentrated than the initial sulfate concentration and equivalent to the average concentration factors of other analytes. Oxalate concentration, however, dropped with the aqueous phase volume reduction from an initial 0.036 M to a final 0.019 M. Silicon showed mass loss; however, the aqueous compositions had high uncertainties for Si, and thus initial and final Si masses in the aqueous fractions may be higher or lower than shown.

	AZ-102 As-Received	Received	AZ-1	AZ-102 Concentrate	rate		AZ-102 P	AZ-102 Precipitated Solids	Solids	
Analyta	Average M	Total ma	Average M	Total ma	% recovered	Conc. factor	А үлагада ца/а	Total ma	% recovered	% accounted for
Metals	AVUI AGU IVI				TUDALIC		AVUI ABU HB/B		ו ררטע כו כמ	
Al	1.90E-2	1.73E+3	3.44E-2	1.68E+3	67	1.8	1.08E+3	3.82E+1	2.2	99.2
Cr	1.65E-2	2.89E+3	2.90E-2	2.73E+3	94.5	1.8	1.21E+3	4.30E+1	1.5	96
K	8.56E-2	1.13E+4	1.70E-1	1.20E+4	107	2.0	5.46E+3	1.94E+2	1.7	108
Na	2.80E+0	2.17E+5	4.61E+0	1.92E+5	88.3	1.6	3.65E+5	1.29E+4	6	94.3
U (KPA)	4.24E-5	3.40E+1	6.37E-5	2.70E+1	80.5	1.5	NM	NA	NA	80.5
Mo	[6.25E-4]	[2.02E+2]	1.14E-3	1.98E+2	97.9	1.8	9.07E+1	3.22E+0	[1.6]	99.5
Р	4.84E-3	5.06E+2	9.25E-3	5.18E+2	102	1.9	2.29E+2	8.11E+0	1.6	104
Si	[9.79E-3]	[9.27E+2]	[9.08E-3]	[4.61E+2]	49.7	0.93	6.05E+03	2.15E+2	[23.2]	72.9
Anions										
$F^{(a)}$	5.53E-2	3.54E+3	9.29E-2	3.19E+3	90.1	1.7	4.02E+4	1.43E+3	40.3	130
NO_2	8.15E-1	1.26E+5	1.69E+0	1.41E+5	112	2.1	4.70E+4	1.67E+3	1.3	113
NO_3	3.15E-1	6.59E+4	6.08E-1	6.82E+4	103	1.9	2.58E+4	9.16E+2	1.4	105
PO_4	8.69E-3	2.78E+3	1.42E-2	2.43E+3	87.4	1.6	5.95E+2	2.10E+1	0.8	88.2
SO_4	2.08E-1	6.73E+4	3.68E-1	6.39E+4	95	1.8	2.19E+5	7.78E+3	11.6	107
C_2O_4	3.59E-2	1.07E+4	1.90E-2	3.03E+3	28.4	0.53	2.21E+5	7.85E+3	73.6	102
НО	5.98E-1	3.43E+4	1.11E+0	3.40E+4	99.2	1.8	NM	NA	NA	99.2
TIC ^(b)	6.12E-1	2.48E+4	1.21E+0	2.63E+4	106	2.0	NM	NA	NA	106
	Average		Average		%	Conc.			%	%
Radioisotope	μCi/mL	Total µCi	μCi/mL	Total µCi	recovered	factor	Average µCi/g	Total µCi	recovered	accounted for
^{137}Cs	9.46E+2	3.19E+6	2.01E+3	3.63E+6	114	2.1	1.34E+3	4.77E+4	1.5	115
NM = not measured; NA = not applicable	sured; $NA = not$	t applicable								
						,			•	,
The overall error for bolded values without brackets is estimated to be within $\pm 15\%$ (analy identify sample concentrations that are <10 -times the MDL and errors likely exceed 15%	r for bolded val	ues without	brackets is esti times the MDI	mated to be v and errors	within ±15% likelv exceed	(analytes ξ 15%	The overall error for bolded values without brackets is estimated to be within ±15% (analytes greater than 10-times the MDL). Bracketed values identify samule concentrations that are <10-times the MDL, and errors likely exceed 15%.	mes the MD	L). Bracketed	values
(a) Fluoride res	sults should be e	considered th	ie upper-bound	concentratic	on. Significat	nt peak dis	Fluoride results should be considered the upper-bound concentration. Significant peak distortion of the F peak suggests the presence of co-eluting	eak suggests	the presence	of co-eluting
	anion(s), possibly formate or acetate	or acetate.								
(b) TIC, or cart	TIC, or carbonate, is reported as mg C and	ted as mg C i	and is based on	the hot pers	is based on the hot persulfate results.					

Table 5.11. Mass Balance of Various Analytes

6.0 Procedures, Quality Control, and Data Evaluation

A discussion of procedures, data quality, and QC is provided below for each analytical method. Analytical instrument calibration and calibration verification were performed in accordance with the QA Program's plan *Conducting Analytical Work in Support of Regulatory Programs*, which is in compliance with the Hanford Analytical Services QA Requirements Document (HASQARD)^(a). Raw data, including bench sheets, instrument printouts, data reduction, and calibration files, are maintained or crossreferenced in the Project 42365 file.

The sample averages, MRQs, quality data flags, QC parameters, and QC acceptance criteria are summarized in Tables 6.1 through 6.7. In some cases, one sample value was reported as less than the MDL/MDA (i.e., U flagged) and the duplicate reported with a value (i.e., either J flagged or a value measured above the EQL). The reported average was conservatively estimated as the single reported value above the MDL/MDA.

The QC and results evaluations provided in the following sections are limited to the analytes of interest defined by the TSs (See Section 5.1). Analytes other than those specified by the TSs are considered "opportunistic" and are provided for information only. Some of these "opportunistic" analytes have been measured per the requirements stated in the governing QA Plan or TS; however, the data have not been fully evaluated against the acceptance criteria. The QC performance of "opportunistic" analytes is not discussed.

6.1 Inductively Coupled Plasma-Atomic Emission Spectroscopy Tables 5.1, 5.4, 5.7, 6.1, 6.2, and 6.3

The AZ-102 and AZ-102C acid-digested (PNL-ALO-128) samples and the AZ-102C solids acid-digested (PNL-ALO-129) samples were analyzed according to PNL-ALO-211, *Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry*. The detected analytes at or above the EQL (equivalent to ten times the MDL) were reported with an uncertainty of $\pm 15\%$ (2- σ). As the MDL was approached, uncertainty increased to 100%. The samples (i.e., AZ-102, AZ-102C, and AZ-102C solids) were processed and analyzed at separate times; thus, each had a different set of QC samples for evaluating system performance. Quality control for the ICP-AES analysis consisted of sample duplicates, PBs, MSs, LCS/BSs, post spikes, calibration verification check standards, instrument blanks, interference check standards, and linear range check standards.

<u>AZ-102 as-received:</u> All QC acceptance criteria were met. The ICP-AES MS for this analysis did not contain U; however, the U concentration was <MDL, and the U concentration was measured by KPA, which had a MS. The MSs and post spikes for Na and Cr did not show adequate recovery since the spikes were less than 20% of the analyte concentration; serial dilution was used to assess matrix interferences for these analytes.

⁽a) Hanford Analytical Services Quality Assurance Requirements Document; Volume 4: Laboratory Technical Requirements. DOE/RL-96-68, Rev. 2, September 1998.

<u>AZ-102C concentrate</u>: Except for the Na RPD, all QC acceptance criteria were met. However, Na RPD only slightly exceeded the acceptance criterion (i.e., 3.7% versus criterion of 3.5%) and was not considered a significant failure. The ICP-AES MS for this analysis did not contain U; however, the U concentration was <MDL and the U concentration was measured by KPA, which had a MS. The MSs and post spikes for Na and Cr could not be recovered since the spikes were less than 20% of the analyte concentration; serial dilution was used to assess matrix interferences for these analytes.

<u>AZ-102C solids</u>: Although QC acceptance criteria were not specifically addressed in the TSs, the AZ-102C solids analysis was evaluated to the same criteria as the supernatant analysis. Except for the K and Na LCS/BS and the K MS, all QC acceptance criteria were met. The Na LCS/BS over-recovery was assumed to be from contamination during processing; the PB exhibited Na contamination well above the EQL. The K MS under-recovery was attributed to incorrect K concentration being assigned to the matrix spiking standard (see Appendix E for discussion).^a The K post spike, which used a different spiking standard, exhibited excellent recovery, and thus the failure of the K MS was not considered significant.

6.2 Inductively Coupled Plasma/Mass Spectrometry Tables 5.2 and 6.1

Only the AZ-102 as-received supernatant samples (acid digested per PNL-ALO-128) were analyzed by ICP-MS for ¹³³Cs and Cs isotopic analysis according to procedure PNL-ALO-280, *Inductively Coupled Plasma-Mass Spectrometer Analysis*. Except for the MS and LCS/BS, the acid-digested samples were from the same processed solutions as were analyzed by ICP-AES analysis.

Quality control for the ICP-MS analysis consisted of sample duplicates, PBs, MS, LCS/BS, calibration verification check standards, and instrument blanks. All QC met the acceptance criteria. The duplicate analyses met the QC criterion of <15% RPD. The Cs MS (i.e., ¹³³Cs) recovery was within the acceptance criteria of 70% to 130%. No Cs was measured in the PBs above the acceptance criteria (i.e., <EQL or <5% of sample concentration).

6.3 U Analysis by KPA Tables 5.3, 5.6, 6.1, and 6.2

Aliquots from the acid digestion (PNL-ALO-128) of the AZ-102 as-received supernatant and AZ-102C concentrate samples were further processed for U analysis. The aliquots were treated with concentrated HNO₃, evaporated to dryness, and then re-dissolved in dilute HNO₃ for U analysis. Total U was measured according to procedure RPG-CMC-4014, *Uranium by Kinetic Phosphorescence Analysis*. The AZ-102C solids were not analyzed for U by KPA. The aliquots from the AZ-102 as-received and AZ-102C concentrate samples were processed at different times and analyzed in separate analytical batches. Each processing batch for U(KPA) analysis consisted of a sample, duplicate, PB, MS, and BS. Calibration verification standards and instrument blanks were analyzed to verify system performance.

The U concentration for both the AZ-102 as-received supernatant and AZ-102C concentrate were well below the MRQ value of 780 μ g/mL. For both samples, all QC criteria were met with the exception of one MS. The duplicate analysis RPDs (4% and 3%) easily met the QC criterion of <15%. The BS

^a The K concentration in the spiking standard was lower than the certificate value.

recoveries (95% and 91%) met the acceptance criteria of 80% to 120%. The MS recovery for the AZ-102 as-received supernatant met the QC criteria of 75% to 125%, but the MS recovery for the AZ-102C was low at 66%; the reason was unknown. Uranium was present in the SAL hot cell PBs, but at a concentration \ll 1% of any sample U concentration.

					1	1	1				
	MRQ	MDL	02-366 Average	Data	RPD	Target RPD	Lab Control (LCS/BS)		Post Matrix Spike (PS-A)	Post Matrix Spike (PS-B)	Serial Dilution
Analyte	µg/mL⇔	μg/mL	µg/mL ^(b)	Flag	%	%	% Rec. 80% -	%Rec. 75% -	%Rec. 75% -	% Rec. 75% -	%D
Acceptance	Criteria						80% - 120%	125%	73% - 125%	125%	< ±10%
Test Speci		nalvtes					12070	12570	125/0	125/0	< ±1070
Al	75	7.9	518		2.2	<15	99	99	97		0.2
Ca	150	33	33	U		<15	101	104	101		
Cr	15	2.6	856		2.5	<15	99	n/r	n/r		3.4
¹³³ Cs ^(d)	1.5	0.0003	19.4		7.1	<15	99	99			
Li	4	3.9	3.9	U		<15	101	99	98		
K	75	260	3,340		2.1	<15	100	106	93		•
Na	75	20	64,400	TT	2.1	<3.5	103	n/r (e)	n/r		3.0
U U(KPA)	600 780	260 0.06	260 10.1	U	4	<15 <15	95 95	97			
			10.1		4	<13	95	91			
Other Ana	lytes Me										
Ag		3.3	3.3	U							
As		33	33	U							
B		6.6	92	В	11.7		113	77	100		
Ba Be		1.3 1.3	1.3 1.3	U U			97	98	96		
Bi		1.5	1.5	U					98		
Cd		2.0	2.0	U			101	101	98 99		
Ce		26	26	U			101	101			
		6.6					99				
Co			6.6	U							
Cu		3.3	3.3	U			98	93	95		
Dy		6.6	6.6	U						95	
Eu		13	13	U							
Fe		3.3	3.3	U			99	103	100		
La		6.6	6.6	U							
Mg		13	13	U			102	108	105		
Mn		6.6	6.6	U			102				
Мо		6.6	[60]	J					97		
Nd		13	13	J U					21		
Ni		3.9	[12]	JB			99	102	105		
P		13	150		4		101	102	98		
Pb		13	130	U	Т		100	98	95		
ΓU	l	15	13	U	1		100	78	93		1

Table 6.1. ICP-AES, ICP-MS, and KPA QC Results for AZ-102

Analyte	MRQ μg/mL ^(a)	MDL µg/mL	02-366 Average μg/mL ^(b)	Data Flag	RPD •⁄•(c)	Target RPD %	Lab Control (LCS/BS) % Rec.	Matrix Spike (MS) %Rec.	Post Matrix Spike (PS-A) %Rec.	Post Matrix Spike (PS-B) % Rec.	Serial Dilution %D
Pd		98	98	U							
Rh		39	39	U							
Ru		140	140	U							
Sb		66	66	U							
Se		33	33	U							
Si		66	[280]	JB					106		
Sn		200	200	U							
Sr		2.0	2.0	U			98	99	98		
Те		200	200	U							
Th		130	130	U						99	
Ti		3.3	3.3	U					93		
T1		66	66	U							
V		6.6	6.6	U							
W		260	260	U							
Y		6.6	6.6	U							
Zn		6.6	6.6	U			100	103	102		
Zr		6.6	6.6	U					97		

Table 6.1 (Contd)

Analytes detected by ICP-AES are bolded for clarity and better readability.

Blank areas indicate that QC results were not evaluated, or QC analyses were not performed, for opportunistic (other) analytes.

n/r = not recovered; spike concentration <20% of sample concentration.

U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.

B signifies that the associated preparative blank concentration resulted in 5% or more of the sample concentration.

signifies an estimated concentration; the concentration is >MDL but <EQL. J

(a) MRQs from 24590-WTP-TSP-RT-01-002, Tables A.1, B.2, and D.1.

(b) The overall error for bolded values without brackets is estimated to be within $\pm 15\%$ (analytes greater than 10-times the MDL). Bracketed values identify sample concentrations that are <10-times the MDL, and errors likely exceed 15%.

(c) RPD only calculated when both the sample and duplicate results are greater than the EQL. (d) Cs concentration and QC are based on 133 Cs analysis by ICP-MS.

(e) U was not present in the MS spike solution.

Analyte	MRQ μg/mL ^(a)	MDL μg/mL	02-751 Average μg/mL ^(b)	Data Flag	RPD %	Target RPD %	Lab Control (LCS/BS) % Rec.	Matrix Spike (MS) ^(d) %Rec.	Post Matrix Spike (PS-A) %Rec.	Post Matrix Spike (PS-B) % Rec.	Serial Dilution %D
							80% -	75% -	75% -	75% -	
Acceptance							120%	125%	125%	125%	< ±10%
Test Speci			020		2.6	-15	0.0	0.5	00	1	1.6
Ca	75 150	7.9 33	929 34	U	2.6	<15 <15	98 98	95 99	99 101		1.6
Cr	15	2.6	1,510	U	2.6	<15	96	n/r	n/r		1.5
Li	4	4.0	4.0	U		<15	99	94	100		
K	75	260	6,660		2.8	<15	99	94	102		
Na	75	20	106,000		3.7	<3.5	99	n/r	n/r		5.7
U	600	270	270	U		<15	99	(e)		103	
U (KPA)	780	0.03	15.2	Х	3	<15	91	66			
Other Ana	alytes Me					1					
Ag		3.3	3.3	U					101		
As		33	33	U					105		
В		6.6	77.2	В	21		108	102	100		
Ba		1.3	1.3	U			95	94	96 102		
Be Bi		1.3 13	1.3 13	U U					99		
Cd		2.0	2.0	U			99	99	103		
Ce		26	27	U					100	99	
Co		6.6	6.6	U			96		102	,,,	
Cu		3.3	3.3	U			90 97	86	94		
Dy		6.6	6.6	U			97	80	94	100	
-		13	13	U						99	
Eu							00	100	101	99	
Fe		3.3	3.3	U			98	100	101		
La		6.6	6.6	U						98	
Mg		13	13	U			98	103	105		
Mn		6.6	6.6	U			100		103		
Мо		6.6	110		2.6				99		
Nd		13	13	U						100	
Ni		4.0	4.0	U			97	100	103		
Р		13	286		2.5		99	100	101		
Pb		13	13	U			107	111	111		
Pd		100	100	U						114	
Rh		40	40	U						96	
Ru		150	150	U							

Table 6.2. ICP-AES and KPA QC Results for Filtered AZ-102 Concentrate (AZ-102C)

						0.12 (00	,				
Analyte	MRQ μg/mL ^(a)	MDL µg/mL	02-751 Average μg/mL ^(b)	Data Flag	RPD %	Target RPD %	Lab Control (LCS/BS) % Rec.	Matrix Spike (MS) ^(d) %Rec.	Post Matrix Spike (PS-A) %Rec.	Post Matrix Spike (PS-B) % Rec.	Serial Dilution %D
Sb		66	66	U					102		
Se		33	33	U					103		
Si		66	[255]	JB					111		
Sn		200	200	U						101	
Sr		2.0	2.0	U			96	94	97		
Те		200	200	U						102	
Th		130	130	U						98	
Ti		3.3	3.3	U					93		
T1		66	66	U					100		
V		6.6	6.6	U					100		
W		270	270	U							
Y		6.6	6.6	U					101		
Zn		6.6	6.6	U			98		101		
Zr	1 4 4 11	6.6	6.6	U		11 11	1.1.1.4		97		

 Table 6.2 (Contd)

Analytes detected by ICP-AES are bolded for clarity and better readability. Blank areas indicate that QC results were not evaluated, or QC analyses were not performed, for opportunistic (other) analytes.

Shaded/bolded results highlight non-compliances with QC acceptance criteria; see report for discussion.

n/r = not recovered; spike concentration <20% of sample concentration.

- U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.
- B signifies that the associated preparative blank concentration resulted in 5% or more of the sample concentration.
- X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.
- J signifies an estimated concentration; the concentration is >MDL but <EQL.

(a) MRQs from 24590-WTP-TSP-RT-01-002 Table A.1 and B.2.

(b) The overall error for bolded values without brackets is estimated to be within ±15% (analytes greater than 10 times the MDL). Bracketed values identify sample concentrations that are <10-times the MDL, and errors likely exceed 15%.

(c) RPD only calculated when both the sample and duplicate results are greater than the EQL.

(d) The process batch matrix spike was prepared from another sample of similar matrix (02-0752, AZ-102C Cs ion exchange effluent) and run with this sample.

(e) U was not present in the MS spike solution.

			02-1299			Torgot	Lab Control	Matrix Spike	Post Matrix Spike	Post Matrix Spike	Serial
	MRQ	MDL	Average	Data	RPD	Target RPD	(LCS/BS)	(MS)	(PS-A)	(PS-B)	Dilution
Analyte	~	μg/g	$\mu g/g^{(b)}$	Flag	% ^(c)	%	% Rec.	%Rec.	%Rec.	% Rec.	%D
							80% -	75% -	75% -	75% -	
Acceptan							120%	125%	125%	125%	< ±10%
-	cification				()	.1.5	105	101	101		
Al Ca	NA NA	6.9 29	1,080 [260]	J	6.3	<15 <15	105 103	101 97	101 103		3.2
Cr	NA	2.3	1,210	5	8.4	<15	105	n/r	103		5.0
Li	NA	3.5	3.5	U		<15	106	99	103		
K	NA	231	5,460	Х	7.5	<15	35 ^(e)	24 ^(e)	98		-1.6
Na	NA	87	364,500	Х	1.5 ^(d)		144	n/r	109		-0.1 ^(d)
U	NA	240	240	U		<15	107	99		102	
Other A	nalytes N	leasured	[1	I		I	
Ag		2.9	2.9	U					101		
As		29	29	U					105		
В		5.8	1,480	BX	2.4		169	136	103		3.3
Ва		1.2	[6.9]	J			105	92	102		
Be		1.2	1.2	U			100	98	103		
Bi		12	12	U			108	106	103		
Cd		1.7	[4.1]	J			103	100	105		
Ce		23	23	U			105	97		98	
Co		5.8	5.8	U					106		
Cu		2.9	2.9	U			111	91	103		
Dy		5.8	5.8	U						101	
Eu		12	12	U						102	
Fe		2.9	[20]	JB			109	107	106		
La		5.8	[6.4]	J			103	96		101	
Mg		12	12	U			103	100	109		
Mn		5.8	5.8	U			104	99	105		
Mo		5.8	91	0	8.4		105	97	103		3.5
Nd		5.8 12		J	0.4		108	97 96	104	99	5.5
			[15]						10.5	99	
Ni		3.5	3.5	U			106	102	106		
Р		12	229		5.6		103	100	103		0.4
Pb		12	12	U			117	113	117		
Pd		87	87	U							
Rh		35	35	U						94	
Ru		130	130	U							
Sb		58	58	U					101		

Table 6.3. ICP-AES QC Results for AZ-102C Solids

 Table 6.3 (Contd)

Analyte	MRQ μg/g ^(a)	MDL μg/g	02-1299 Average μg/g ^(b)	Data Flag	RPD %	Target RPD %	Lab Control (LCS/BS) % Rec.	Matrix Spike (MS) %Rec.	Post Matrix Spike (PS-A) %Rec.	Post Matrix Spike (PS-B) % Rec.	Serial Dilution %D
Se		29	29	U					105		
Si		58	6050	BX	39		107	75	111		
Sn		180	180	U						83	
Sr		1.7	[2.7]	J			106	99	106		
Те		180	180	U						104	
Th		120	120	U			101	97		101	
Ti		2.9	[5.4]	J			103	97	101		
Tl		58	58	U					103		
V		5.8	5.8	U			98	93	99		
W		240	240	U			100	92			
Y		5.8	5.8	U					100		
Zn		5.8	5.8	U			111	107	109		
Zr		5.8	[16]	J			105	101	105		

Analytes detected by ICP-AES are bolded for clarity and better readability.

Blank areas indicate that QC results were not evaluated, or QC analyses were not performed, for opportunistic (other) analytes.

Shaded/bolded results highlight non-compliances with QC acceptance criteria; see report for discussion.

n/r = not recovered; spike concentration <20% of sample concentration.

- U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.
- B signifies that the associated preparative blank concentration resulted in 5% or more of the sample concentration.
- X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.
- J signifies an estimated concentration; the concentration is >MDL but <EQL.
- (a) The TS provides no MRQs for solids.
- (b) The overall error for bolded values without brackets is estimated to be within ±15% (analytes greater than 10 times the MDL). Bracketed values identify sample concentrations that are <10-times the MDL, and errors likely exceed 15%.</p>

(c) RPD only calculated when both the sample and duplicate results are greater than the EQL.

- (d) RPD calculated from samples after an additional 5x dilution; %D calculated from results after additional 5x and 25x dilutions.
- (e) The K LCS/BS and MS failures were attributed to instability of K in the multi-element spiking standard. The K concentration at the time of spiking was much lower than the original certified value (see Appendix E for discussion).

6.4 Gamma Spectrometry Tables 5.3, 5.6, 5.9, and 6.4

Diluted aqueous sample aliquots were directly counted for gamma emitters according to procedure PNL-ALO-450, *Gamma Energy Analysis and Low-Energy Photon Spectrometry*. For the GEA analyses performed on acid-digested aliquots (i.e., RPL ID 02-366 and 02-1299), only sample, duplicate, and PBs were analyzed for gamma emitters; LCS/BS and MS were not prepared, nor required, for this analysis since the measurement is a direct reading of the gamma energy and is not subject to matrix interferences. The AZ-102C concentrate (i.e., RPL ID 02-751) was analyzed without digestion processing, and no PB was prepared. Before any analysis, reference standard and background counts were performed to verify GEA system performance. Only ¹³⁷Cs and ¹²⁵Sb determinations were required.

All ¹³⁷Cs sample results were well above the MRQ. All SAL hot cell PBs show the presence of ¹³⁷Cs, but the activities in the PBs are negligible with respect to the sample activities. The sample duplicates showed excellent repeatability for ¹³⁷Cs with RPD values well within the acceptance criterion of <15%. No ¹²⁵Sb was detected above the MDA of 4 μ Ci/mL for the supernatants or 4 μ Ci/g for the solids.

RPL ID	Samula ID	MRQ µCi/mL ^(a)	Average ¹³⁷ Cs µCi/mL ^(b)	±16D	Data Elog	RPD %	Target RPD%
KFL ID	*	μCI/IIIL	μCI/IIIL	±1SD	гад	KFD 70	KFD 70
02-366	AZ102 As-received Filtrate	0.01	946	4%		1	<15
02-751	AZ102C Concentrate	0.01	2,010	3%		3	<15
02-1299	AZ102C Solids	NA	1,350 ^(c)	4%		6.7	<15
Standard	detected are bolded for clarity deviation (SD) in report in pe applicable		readability.				
(b) GEA (02-129	from TS 24590-PTF-TSP-RT lecay correction reference dat 99 Feb 20, 2002. 2C Solids reported as μCi/g.		Feb 4, 2002; 02-	751 Dec	c 3, 200)1;	

Table 6.4. GEA QC Results for ¹³⁷Cs

6.5 Anions

Tables 5.2, 5.5, 5.8, 6.5, 6.6, and 6.7

Anion analyses were conducted according to method PNL-ALO-212, *Determination of Inorganic Anions by Ion Chromatography*. The IC method was used to evaluate the anions of interest on unprocessed aqueous sub-samples and on the water leach solutions (PNL-ALO-103) of the solids sample. Aliquots of the aqueous sub-samples and water leach solutions were prepared for IC anion analysis by dilution (100x to 5000x for aqueous samples and 10x to 200x for the water leach solutions) to assure that the anions were measured within the calibration range. The samples (i.e., AZ-102, AZ-102C, and AZ-102C solids) were processed and analyzed at separate times; thus, each has a different set of QC samples for evaluating system performance. Quality control for the anion analyses consisted of sample duplicates, PBs, MSs, BSs, calibration verification check standards, and instrument blanks. For the AZ-102, AZ-102C, and AZ-102C solids, all QC samples analyzed meet acceptance criteria, and no further discussion of the QC performance is necessary. Only those anions detected above the lowest calibration standard concentration adjusted for sample dilution factors (i.e., above the EQL) are reported. The EQL was less than the required MRQ for all anions, except F for the AZ-102C solids and Cl for all samples. The high total anion concentration for all samples required significant sample dilution to prevent column overloading during the IC analysis; this dilution made it impossible to meet the very low MRQ (10 µg/mL) for Cl.

6.6 Hydroxide Titration

Tables 5.2, 5.5, 6.5, and 6.6

The AZ-102 and AZ-102C samples were analyzed in duplicate for the hydroxide content following procedure PNL-ALO-228, *Determination of Hydroxyl and Alkalinity of Aqueous Solutions, Leachates & Supernates*. Sample aliquots were diluted in the SAL hot cells. These diluted aliquots were analyzed using a Brinkman 636 Auto-Titrator. A 0.1186 N NaOH solution was prepared for use as a verification standard and the matrix spiking solution, and a 0.2040 M HCl solution was prepared as the titrant. The first inflection point was defined as the hydroxide equivalency. The RPDs were within the acceptance criterion of <15%. The BS recoveries were within the acceptance criterion of 80% to 120%; an acceptance criterion for the MS was not specified. No hydroxide was detected in the reagent blanks.

6.7 TOC/TIC by Hot Persulfate and Furnace Tables 5.2, 5.5, 6.5, and 6.6

The AZ-102 and AZ-102C samples were analyzed for TOC and TIC by two different procedures: PNL-ALO-381, *Direct Determination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method*, and PNL-ALO-380, *Determination of Carbon in Solids Using the Coulometric Carbon Dioxide Coulometer*. The AZ-102 and AZ-102C samples were analyzed in separate batches; thus, each has a different set of QC samples for evaluating system performance. The AZ-102C solids were not analyzed for TOC or TIC. The TIC and TOC analyses were not required by the test specification. The quality control discussions refer to QA criteria delineated in the QA Plan Conducting Analytical Work in Support of Regulatory Programs.

6.7.1 Hot Persulfate Method (PNL-ALO-381)

The hot-persulfate wet oxidation method uses acid decomposition to measure TIC and acidic potassium persulfate oxidation at 92 to 95°C for measurement of TOC, with both the TIC and TOC being obtained from the same sample. The TC is defined as the sum of the TIC and TOC. All sample results were corrected for average percent recovery of instrument calibration check standards and were also corrected for contribution from the instrument blanks, as per procedure PNL-ALO-381 calculations. The QC for the method uses sample duplicates, LCS (or BS), and a MS.

The LCS/BS recoveries and MS recoveries for both the AZ-102 (as-received) and AZ-102C (concentrate) samples met the QC criteria (i.e., 80% to 120% for LCS/BS and 75% to 125% for MS) for both the TIC and TOC analysis. The RPD for the AZ-102C TIC analysis met the QC criterion of <20%.

However, the RPD for the AZ-102 TIC analyses was 26% and exceeded the QC criterion; the reason for the poor reproducibility is unknown. The RPDs for the AZ-102 or AZ-102C TOC analyses could not be determined since the TOC results were <5x MDL.

6.7.2 Furnace Oxidation Method (PNL-ALO-380)

The furnace oxidation method determined TOC by combusting an aliquot of sample in oxygen at 700°C for 10 to 20 minutes. The TC was determined on another aliquot of sample by combusting at 1000°C for 10 minutes, and the TIC was obtained by difference between the TC and TOC. All sample results were corrected for average percent recovery of instrument calibration check standards and were also corrected for contribution from the instrument blanks, as per procedure PNL-ALO-380 calculations. The QC for the method uses sample duplicates, LCS (or BS), and a MS.

The LCS/BS recoveries and MS recoveries for both the AZ-102 (as-received) and AZ-102C (concentrate) samples met the QC criteria (i.e., 80% to 120% for LCS/BS and 75% to 125% for MS) for both the TOC and TC analysis. The RPD for AZ-102 and AZ-102C TC analysis and the AZ-102C concentrate TOC analysis met the acceptance criterion of <20%. However, the RPD for the AZ-102 TOC analyses was 23%, and slightly exceeded the QC criterion.

6.7.3 Comparison of TIC/TOC by Hot Persulfate and Furnace Oxidation Methods

The TIC results from the furnace oxidation method were obtained by difference (TC-TOC), with the analysis being performed on <u>two independent</u> sample aliquots (one for TOC and one for TC). The TC for the hot-persulfate method was the summation of the TIC and TOC, with the analyses for both TOC and TIC being performed on a <u>single</u> aliquot under different oxidation conditions.

The average AZ-102 TC result from the hot-persulfate method (7300 µg C/mL) was lower than the average TC result from the furnace method (9300 µg C/mL), whereas the average AZ-102C TC results from the two methods were in excellent agreement (i.e., both 14,700 µg/mL). However, there were significant differences between the TOC and TIC results between the methods for both the AZ-102 and AZ-102C samples. Oxidation efficiency has been shown to vary between the methods as a function of the carbon-bearing compound (Baldwin et al. 1994). Volatile components may be removed by initial sparging during the hot-persulfate method. TIC determination and certain metal carbonates may fully or partially oxidize at the 700°C temperature used for the furnace method TOC determination. Thus, the reported results from the two methods may vary. Typically, the furnace method produces the most accurate TC results (i.e., results from single measurements and not a summation from two measurements) and the hot persulfate method provides the most accurate TIC results.

	MRQ	EQL ^(a)	02-366 Average	Data	(c)	Target RPD	Lab Control (LCS/BS)	Matrix Spike (MS)	Matrix Spike Duplicate (MSD)
Analyte	μg/mL	µg/mL	μg/mL	Flag	RPD %	%	% Rec.	% Rec.	% Rec.
							80% -	75% -	75% -
Acceptance	Criteria						120%	125%	125%
Test Specif	ication An	alytes							
F ^(b)	150	140	1,050		5	<15	94	95	91
Cl	300	140	140	U		<15	95	98	96
NO ₂	3,000	2,800	37,500		3	<15	98	99	108
NO ₃	3,000	280	19,600		4	<15	92	94	100
OH	17	_	10,200		3	<15	94	91 ^(f)	
Other Mea	sured Ana	lytes							
TOC/F (d)		$1,400^{(a)}$	10,200 ^(g)		23		102	81	
TIC/F ^(d)		$1,400^{(a)}$	1,400	U	2 ^(e)		103 ^(e)	104 ^(e)	
TOC/P ^(d)		1000 ^(a)	1,000	U			105	105	
TIC/P ^(d)		380 ^(a)	7,340		26		103	98	
Br		140	140	U			97	98	95
C_2O_4		280	3,160	Х	1		100	101	0
PO ₄		280	820		6		95	94	92
SO_4		280	20,000		1		94	95	103
2			clarity and be			nalvee w	ere not perfor	med for opp	ortunistic (other)

Table 6.5. Anion and TOC/TIC QC Results for AZ-102 As-Received

Blank areas indicate that QC results were not evaluated, or QC analyses were not performed, for opportunistic (other) analytes.

Shaded/bolded results highlight non-compliances with QC acceptance criteria; see report for discussion. MSD = matrix spike duplicate

- U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.
- X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.

(a) F, Cl, NO₂, NO₃, PO₄, SO₄, Br, and C₂O₄ report only results above the EQL; therefore, the EQL is presented in this column. For all other analytes, the MDL is presented.

- (b) Fluoride results should be considered the upper-bound concentration. Significant peak distortion of the F peak suggests the presence of co-eluting anion(s), possibly formate or acetate.
- (c) RPD only calculated when both the sample and duplicate results are greater than the EQL.
- (d) For TOC and TIC: P=by hot persulfate method; F=by furnace method/TIC by difference (TIC = TC-TOC).

(e) The LCS and MS recovery represents the recovery for the TC analysis. RPD represents the RPF for the TC analysis (9,400 μg/mL and 9,200 μg/mL).

- (f) No MS criteria for OH specified in TS.
- (g) One of the two TOC results (11,300 μg/mL) was significantly higher than sample and duplicate TC result (9,400 μg/mL and 9,200 μg/mL, respectively), suggesting that the average result may be higher than the actual TOC concentration.

	MRQ	EQL ^(a)	02-751 Average	Data	(c) RPD	Target RPD	Lab Control (LCS/BS)	Lab Control Duplicate (LCS/BS)	Matrix Spike (MS)
Analyte	$\mu g/mL^{(g)}$	μg/mL	μg/mL	Flag	%	%	% Rec.	% Rec.	% Rec.
							80% -	80% -	75% -
Acceptance	Criteria						120%	120%	125%
Test Specifi	ication Ana	alytes							
F ^(b)	150	140	1,760		9	<15	104	104	104
Cl	10	140	140	U		<15	97	96	101
NO ₂	3,000	1,400	78,000		10	<15	102	103	105
NO ₃	3,000	1,400	37,700		9	<15	94	96	97
OH	17		18,800		14	<15	93	100 ^(f)	89
Other Anal	ytes								
TOC-F ^(d)		1,000 ^(a)	13,900		9		97		112
TIC-F ^(d)		1,000 ^(a)	1,000	U	6 ^(e)		103 ^(e)		108 ^(e)
TOC-P ^(d)		500 ^(a)	1000				95		100
TIC-P ^(d)		220 ^(a)	14,600		6		102		101
Br		140	140	U			98	103	104
C_2O_4		280	1,680		27		107	107	105
PO ₄		280	1,340		5		103	103	103
SO_4		1,400	35,400		10		102	102	103

Table 6.6. Anion and TOC/TIC QC Results for Filtered AZ-102 Concentrate (AZ-102C)

Analytes detected are bolded for clarity and better readability.

Blank areas indicate that QC results were not evaluated, or QC analyses were not performed, for opportunistic (other) analytes.

Shaded/bolded results highlight non-compliances with QC acceptance criteria; see report for discussion.

- U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.
- X signifies that a QC parameter (e.g., precision, blank spike recovery, etc.) was exceeded.

(a) F, Cl, NO₂, NO₃, PO₄, SO₄, Br, and C₂O₄ report only results above the EQL; therefore, the EQL is presented in this column. For TOC and TIC analytes, the MDL is presented.

(b) Fluoride results should be considered the upper-bound concentration. Significant peak distortion of the F peak suggests the presence of co-eluting anion(s), possibly formate or acetate.

(c) RPD only calculated when both the sample and duplicate results are greater than the EQL.

(d) For TOC and TIC: P=by hot persulfate method; F=by furnace method/TIC by difference (TIC = TC-TOC).

(e) The LCS and MS recovery represents the recovery for the TC analysis. The RPD represents the RPD for the TC analysis (15,300 μg/mL and 14,500 μg/mL).

- (f) No MS criteria for OH specified in TS.
- (g) MRQs from Test Specification 24590-WTP-TSP-RT-01-002.

Analyte	MRQ μg/mL ^(e)	EQL ^(a) µg/g	02-1299 Average μg/g	Data Flag	(b) RPD %	Target RPD %	Lab Control Spike (LSC/BS) % Rec.	Post Matrix Spike% Rec. ^(c)
Acceptance C							80% - 120%	75% - 125%
Test Specific	ation Analy	tes				-		
F ^(d)		1,400	40,200		1	<15	90	112
Cl		71	71	U		<15	93	106
NO ₂		2,800	47,000		13	<15	97	110
NO ₃		2,800	25,800		11	<15	92	102
PO_4		140	600		2	<15	92	104
SO_4		2,800	219,000		5	<15	92	118
Other Analy	tes							
Br		71	71	U			94	105
C_2O_4		2,800	221,000		3		96	119

Table 6.7. Anion QC Results for AZ-102C Solids

Analytes detected are bolded for clarity and better readability.

Blank areas indicate that QC results were not evaluated, or QC analyses were not performed, for opportunistic (other) analytes.

U signifies undetected analyte; the concentration provided represents the IDL multiplied by the sample dilution factors.

(a) F, Cl, NO₂, NO₃, PO₄, SO₄, Br, and C₂O₄ report only results above the EQL.

(b) RPD only calculated when both the sample and duplicate results are greater than the EQL.

(c) The matrix spike was not recoverable. The diluted MS sample (leached) resulted in all anion concentrations <EQL or <<20% of the sample concentration. A post-matrix spike was performed instead.

(d) Fluoride results should be considered the upper-bound concentration. The F co-elutes with formate and acetate.

(e) No MRQs for solids were defined.

7.0 Conclusions

The Hanford tank waste AZ-102 samples received from 222-S were composited and characterized for metals (ICP-AES), inorganic anions, TOC/TIC, and ¹³⁷Cs. The AZ-102 composite was evaporated to nominally 50% volume, resulting in nominally 1-wt% precipitate formation. The precipitate consisted primarily of Na₃FSO₄ (57%) and Na₂C₂O₄ (28%). Characterization of the AZ-102 concentrate showed good total mass recovery of most measured analytes (e.g., Na, Al, K, Cr, Mo, P, NO₃, NO₂, PO₄, SO₄, OH, and ¹³⁷Cs), with the notable exception of oxalate. The AZ-102 concentrate was forwarded to the Cs ion exchange task for ion exchange processing.

8.0 References

Baldwin DL, RW Stromatt, and WI Winters. 1994. *Comparative Study of Total Organic Carbon (TOC) Methods for High-Level Mixed Waste*, PNL-SA-23718, Battelle Pacific Northwest Laboratory, Richland, WA.

Hassan NM, WD King, DJ McCabe, and ML Crowder. 2001. *Small-Scale Ion Exchange Removal of Cesium and Technetium form Envelope B Hanford Tank 241-AZ-102*, WSRC-TR-2000-00419, SRT-RPP-2000-000036, Savannah River Technology Center, Aiken, SC.

Hay MS, and MG Bronikowski. 2000. *Chemical Characterization of an Envelope B/D Sample from Hanford Tank 241-AZ-102*, BNF-003-98-0249, Savannah River Technology Center, Aiken, SC.

Appendix A

Chains of Custody

Appendix A: Chains of Custody

			CHAII	N OF C	CUSTODY/SAM	CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST	REQUEST			C.O.C. No. Ship Page	nent 1	A6004 of 1
Collector Rice, Andrew D.					Contac/Requestor Myers, Ronald L.	or L.		Telephone No.	372-1323	MSIN P7-28	FAX 376	7127
SAF No.					Sample Origin Tank 241-AZ-102	5		Purchase Order/Charge Code	/Charge Co			
Project Title Packacing and Shipping for fank 241-AZ-102	ipping for Tank	241.	AZ-102		Logbook No. n/a			lce Chest No. n/a		Temp. n/a		
Shipped To (Lab) PNN: 325 BId S	SAL HOT Cell (West end of bld.)	est est	nd of blo		Method of Shipment TWRS CPO Sample Truck	ent e Truck		Bill of Lading/Air Bill No.	r Bill No.		:	
					Data Turnaround			Offsite Property No. n/a	No.			
Sample No.	Lab IO	ŀ	Date	Time	No./Type Container		Samp	Sample Analysis		10-	76-25-c1 PI	Preservative
AZ-102 COMP9	S01T001856	L			500 mL glass	i.a.w. ICD-23 requirements	irements J42	R 18994		A verptik " wT-or Lock	OCH Done	e e
AZ-102COMP10	S01T001857	L			500 mL glass	i.a.w. ICD-23 requi	requirements JAR	28981 3		except "wit -OP. WARA	Vy al A none	e.
										.9/	13-5 C-	•
										×		
										-		
POSSIBLE SAMPLE HAZARDS/REMARKS (List all known wastes) N see DST Part A in DOE-RL88-21 for listed waste codes.	E HAZARDS/REI 1 in doe-rl89-	MARK -21 f	(S (List all ku or listed	nown was l waste	tes) MSDS 🗍 Yes codes.	92 22 22	SPECIAL INSTRUCTIONS Contact Rudy Thornhill upon arrival, 376-6769.	ıpon arrival,	376-6769.	Hold Time . n/a		
Relinquished By RT <f <="" td=""><td>Print</td><td></td><td>Sign / 0.</td><td>olzslar</td><td>Date/Time Re ノイイの</td><td>Received By Print</td><td>15 Ame dec</td><td>Typeo DaletTypeo</td><td>5,-</td><td></td><td></td><td></td></f>	Print		Sign / 0.	olzslar	Date/Time Re ノイイの	Received By Print	15 Ame dec	Typeo DaletTypeo	5,-			
Relinquished By	5				Date/Time Re	Received By	A Star	Date Date	25C	S = Soit SE = Sediment SO = Solid	DS D L L L L L L L L L L L L L L L L L L	Drum Solids Drum Liquids Tissue
Relinquished By					Date/Time /Rec	ceived By		Date	Date/Time	11 U	11 II —	= Wipe = Liquid
Relinquished By					Date/Time Rec	Received By		Date	Date/Time (0 = 0i A = Air	> 0 = = > X	 Vegetation Other
	e) potlett lesues	ΩR	sturn to cust	omer, per	Disposal Method (e.g., Return to customer, per lab procedure, used in process)		Disposed By			Date	Date/Time	

BC-6000-828 (04/98)

An samples containing riskaruous materials suan be proceed up by requestor and returned to par DISTRIBUTION: White - Remain with Samples Color - Customer

October Description Description <thdescrip< th=""> <thdescrip< th=""> Descrip</thdescrip<></thdescrip<>					CHAII	N OF C	USTODY/SA	CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST	'SIS REQUE	эт Г			C.O.C. No. ship	.C. No. shipment A6000	A6000
Defense Conselfequencies Defense Defense Defense Defense Defense 91 States 11 10 10 10 10 10 10 91 States 11 10 10 10 10 10 91 State 11 10 10 10 10 10 91 10 10 10 10 10 10 10 91 10 10 10 10 10 10 10 91 10 10 10 10 10 10 10 91 10 10 10 10 10 10 10 91 10 10 10 10 10 10 10 91 10 10 10 10 10 10 10 91 10 10 10 10 10 10 10 91 10 10 10 10 10 10 10 91 10 10 10 10 10 10 10 91 10 10 10 10 10 10 10<													Page	1	f
Same of Color Same	Collector Rice, Andrew	Д					Contact/Requi	estor d.b.			72		P7-78	. "	7015
Stratting for Train, N1, N1, N2, N2, N2, N2, N2, N2, N2, N2, N2, N2	SAF No.						Sample Origin Tank 241-AZ-	102			Purchase Order/Charc	ge Code			-
9. 10. Total Turner Local 10. Method of Palparent Salu lini, Ciri Lover: end of bld.1 Tenno Mol Type Constance Contract Mol Constance Contract Mol Constance Salu lini, Ciri Lover: end of bld.1 Data Turneroud Contract Mol Constance Contract Mol Constance Contract Mol Constance Salu lini, Ciri Lover: end of bld.1 Data Turneroud Constance Sampo Analysis Fig. 400.33 In Salu lini, Ciri Lover: end of bld.1 End Cuanter Sampo Analysis Sampo Analysis In A. YOU Mol Constance Salu lini, Ciri Lover: end of bld.1 End Cuanter Sampo Analysis Sampo Analysis In A. YOU Mol Constance Salu lini, Ciri Lover: end of bld.1 End Cuanter Sampo Analysis In A. YOU Mol Constance Sampo Analysis In A. YOU Mol Constance Salu lini, Ciri Lover: end of bld.1 End Cuanter Sampo Analysis In A. YOU Mol Constance Mol Mol Constance Mol Mol Constance Salu lini, Ciri Lover: end Particle End Cuanter Cuanter Mol Mol Constance Mol Mol Constance Sampo Analysis Mol Mol Constance Plant District Mol Mol Constance Plant Mol Mol Constance M	Project Title Packaging and	Shipping	for Tank	¢ 241	-AZ-102		Logbook No. n/a				Ice Chest No.		Temp. n/a		
Jast Turnecurd Jast Turnecurd Jast Turnecurd Jast Turnecurd Lab 10 - Dae Time No.Type Containe Law. (CD-2) requirements JA/2 I S 9/9 V <	Shipped To (La PNNL 325 Bld.	b) SAL HOU	Cell (We	100	end of blo	d.)	Method of Shi	pment ple Truck			Bill of Lading/Air Bill N	o,			
Labit i Date Time No.flype Container Sample Knalpeis sorrootate L son mit grass 1.a.v. : CD-21 requirements 7.47 15719 V_{10} <td>Protocol n/a</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Data Turnarot n/a</td> <td>pur</td> <td></td> <td></td> <td>Offsite Property No. n/a</td> <td></td> <td></td> <td></td> <td></td>	Protocol n/a						Data Turnarot n/a	pur			Offsite Property No. n/a				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample No.	Lab	Q	•	Date	Time	No./Type Contain	er		Sample	Analysis				reservative
CORPC2 S017001849 L 500 mL glasts Li.a. w. ICD-33 requirements 7.47,2 18990 V.D. WO. W I Part No No No No No No I E SAMPLE HAZAROS/REMARKS (Last al known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time ILE SAMPLE HAZAROS/REMARKS (Last al known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time T Part A.I. DOS-RUB9-11 for 11 glog MSDS Yes No SPECIAL INSTRUCTIONS Hold Time T Record By Chin-Marks (Last al known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time T Record By Chin-Marks (Last al known wastes) MSDS Yes No No No T Record By Chin-Marks (Last al known wastes) MSDS Yes No Second A No T Record By Mark Chin-Marks (Last al known wastes) MSDS Yes Second A No T Record By Chin-Mark Chin-Mark No Second By No Second B No Record By Chin-Mark Record By Record By Mark Second B N	AZ-102 COMPI		1848	1			500 mL glass			JAR		7			ne
Print A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. A in DOE-RLBB-21 for 1 leted wate codes. D mention Received By A in DOE-RLBB-21 for 1 leted wate codes. D mention A in DOE-RLBB-21 for 1 leted wate codes. D mention A in DOE-RLBB-21 for 1 leted wate codes. D mention A in DOE-RLBB-21 for 1 leted wate codes. D mention A in DoE-RLBB-21 for 1 leted wate codes. D mention A in Distribution B convel By A in Distribution D c colin A in Drocedure. D c colin A in Drocedure. D c colin A in Drocedure. D c colin A proceedure D c colin A proceedure D c colin A proceedure. D c colin A proceedure D c colin A proceedure D c colin A proceedure D c colin			1849	ч			Ъ.		L L	J412	18990	S			ne
Print Second State Main A in DOC-RUAR-21 for 11 sted water codes. MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOC-RUAR-21 for 11 sted water codes. MSDS Yes No Second State MSDS Yes No SPECIAL INSTRUCTIONS Print Sign Date/Time Hold Time A in DOC-RUAR-21 for 11 sted water codes. Date/Time Hold Time A in DOC-RUAR-21 for 11 sted water codes. Date/Time Sign Date/Time A in DOC-RUAR-21 for 11 sted water codes. Date/Time Sign Date/Time A in DoC-RUAR-21 for 11 sted water codes. Date/Time Sign Sign Diate/Time A in DoC-RUAR-21 for 11 sted water codes. Date/Time Sign Sign Sign Sign A in DoC-RUAR-21 for 11 sted water codes. Date/Time Received Sign For the code Sign Sign Sign Sign A in Date/Time Received Sign Print Received Sign For the code Sign Sign </td <td></td>															
Print Second interactions Model me A in DOZ-RLBA-21 for 11cred warte codes. Model me Model me A in DOZ-RLBA-21 for 11cred warte codes. Model me Model me A in DOZ-RLBA-21 for 11cred warte codes. Model me Model me A in DOZ-RLBA-21 for 11cred warte codes. Date/Time Model me A in DOZ-RLBA-21 for 11cred warte codes. Date/Time Model me A in DOZ-RLBA-21 for 11cred warte codes. Date/Time Model me A in DOZ-RLBA-21 for 11cred warte codes. Date/Time Model me A in DOZ-RLBA-21 for 11cred warte codes. Date/Time Model me A in DOZ-RLBA-21 for 11cred warte codes. Date/Time Model me A in DOZ-RLBA-21 for 11cred warte codes. Date/Time Second model A in DOZ-RLBA-21 for 11cred warte codes. Date/Time Second model A in DOZ-RLBA Date/Time Second model Second model A in DOZ-RLBA Date/Time Received B Date/Time Second model A in Dozerute Date/Time Received B Date/Time Notec L A in Drocedure. Date/Time Received B Disposed B A in Arr A in Arr															
Print Sign Date/Time Received By Print Sign Date/Time A in DDE-RUBB-21 for 11sted varte codes. A in DDE-RUBB-21 for 11sted varte codes. Point Sign Date/Time A in DDE-RUBB-21 for 11sted varte codes. Date/Time Received By Print Sign Date/Time A in DDE-RUBB-21 for 11sted varte codes. Date/Time Received By Print Sign Date/Time A in DDE-RUBB-21 for 11sted varte codes. Date/Time Received By Print Sign Date/Time A in DDE-RUBB-21 for 11sted varte codes. Date/Time Received By Print Sign Date/Time A in DDE-RUBB-21 for 11sted varte codes. Date/Time Received By Print Sign Date/Time A in DDE-RUBB-21 for 11sted varte Date/Time Received By Print Sign Date/Time A in DDE-RUBB-21 for 11sted Date/Time Received By Print Sign Diate/Time A in DDE-RUBE Date/Time Received By Print Sign Diate/Time Sign Diate/Time A in DDE-RUBE Date/Time Received By Print Sign Diate/Time Sign Diate/Time A in DDE-RUBE Date/Time Received By Diate							-								
Pint Sign Date/Time Add Time A in DOE-RLAB-21 for 11sted wate codes. MSPECIAL INSTRUCTIONS Hold Time A in DOE-RLAB-21 for 11sted wate codes. MSPECIAL INSTRUCTIONS Hold Time A in DOE-RLAB-21 for 11sted wate codes. Date/Time Received By Print A in DOE-RLAB-21 for 11sted wate codes. Date/Time Hold Time A in DOE-RLAB-21 for 11sted wate codes. Date/Time Received By Print Sign Date/Time Sign Date/Time A in DOE-RLAB-21 for 11sted wate codes. 10-247-01 Advector Date/Time A in DOE-RLAB-21 for 11sted wate codes. 10-247-01 Advector Date/Time A in T Date/Time Received By Print Sign Date/Time A in T Date/Time Received By Date/Time Sign Date/Time Date/Time Received By Date/Time Sign Date/Time Sign Diate/Time A in T Date/Time Received By Date/Time Date/Time Noter V Sign A in T Date/Time Received By Date/Time Noter V Sign A in T Date/Time Received By Date/Time Date/Time Noter <															
PER HAZARDS/REMARKS (List all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RLBB-21 for 1isted waste codes. MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RLBB-21 for 1isted waste codes. MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RLBB-21 for 1isted waste codes. MSDS Yes No Second Contact Rudy Thornhill upon arrival, 376-6769. n/a A in DOE-RLBB-21 for 1isted waste codes. Date/Time Received By Print Sep Material A in DOE-RLBB-21 for 1isted waste codes. Date/Time Received By Print Sep Second Date/Time A in Doe-RLBB-21 For 1isted waste codes. Date/Time Received By Print Second Date/Time Second Date/Time A in Doe-RLBB-21 For 1isted waste codes. Date/Time Received By Print Second Date/Time Second Second Second Second Date/Time Second Second Second Second Secondo															
PLE HAZARDS/REMARKS (List all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DDE-RLB8-21 for listed warte codes. A in DDE-RLB8-21 for listed warte codes. Model Time Hold Time Matrix A in DDE-RLB8-21 for listed warte codes. MSDS Yes No Sign Date/Time Matrix A in DDE-RLB8-21 for listed warte codes. MSDS Yes No Sign Date/Time Matrix A in DDE-RLB8-21 for listed warte codes. Date/Time Received By Print Sign Date/Time Sign Matrix A in DE-RLB8-21 for listed warte codes. Date/Time Received By Print Sign Date/Time Sign Matrix Aut/Lin Sign Date/Time Received By Print Sign Date/Time Sign DS Sign DS Aut/Lin Aut/Lin Received By Aut/Lin Sign DS Sign DS Sign															
PLE HAZARDS/REIMARKS (List all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RLB8-21 for listed waste codes. A in DOE-RLB8-21 for listed waste codes. Mature Na A in DOE-RLB8-21 for listed waste codes. Date/Time Received By Print Sign Date/Time Mature Print Sign Date/Time Received By Print Sign Date/Time Sign Mature Print Sign Date/Time Received By Print Sign Date/Time Sign Mature Print Sign Date/Time Received By Print Sign Date/Time Sign Mature Print Sign Date/Time Received By Print Sign Date/Time Sign Diate/Time Sign Diate/Time Sign															
Print Sign Date/Time Date/Time Received By Print Sign Date/Time Matrix Matrix 10 - 24-01 Acciric Acui / ac Acui / ac Acui / ac Matrix Second 10 - 24-01 Acciric Acui / ac Acui / ac Matrix Second 10 - 24-01 Acciric Acui / ac Acui / ac Matrix Second 10 - 24-01 Acciric Acui / ac Acui / ac Matrix Second 10 - 24/01 Received By Acciric Acui / ac Matrix Date/Time Received By Acciric Acui / ac Cold T T Date/Time Date/Time Received By Acciric Acui / ac Cold T T Date/Time Received By Date/Time Received By Active L T T T Date/Time Date/Time Received By Date/Time Received By T T T T T T Date/Time Date/Time Received By Date/Time Received By T T T T T Date/Time Received By Date/Time Received By Date/Time	POSSIBLE SAN See DST Part	WPLE HAZA t A in DO	RDS/REI E-RL88-	MARI 21 f	<pre>S(List all kr or listed</pre>	nown wast i waste (MSDS es.	s; ∾N ⊠	SPECIAL INSTRUCT	iONS inhill upc	m arrival, 376-6		Hold Time n/a		
Print Sign Date/Time Received By Print Sign Date/Time Antix Matrix Nation 10 - 24 - 0 Active Activ															
Supposed Method (e.g., Return to customer, used in process) $Supposed By$ $Supposed$	Relinquished B	^{id}	101	1	Sign		-		Print - /	Less .	Date/Time	8	Ma	ıtrix*	
Date/Time Date/Time Received By Date/Time SL Solud Date/Time Received By Date/Time SL SL SUdge Wi Date/Time Received By Date/Time SL SL SUdge Wi Disposal Method (e.g., Return to customer, per lab procedure, used in process) Disposed By Disposed By Disposed By A A A	Relinquished B	Lei I		R 3			-1-7	Received By-	s t c		1, 1, e			11 11 1	brum Solids brum Liquids
Date/Time Received By Date/Time O O = Oil V V Disposal Method (e.g., Return to customer, per tab procedure, used in process) Disposed By Disposed By Date/Time Date/Time	Relinquished B	A TANK) }		Jan			Acceived By			Date/Time	ភ្នំ ខ្ល	= solid = Sludge = Water	6 B II	Vipe
	Relinquished B	~						Received By			Date/Time	0 <		I1 II	/egetation Dther
Disposition for the brocente	FINAL SAMPLE	Disposal M	lethod (e.	.g., R(eturn to cust	omer, per	lab procedure, used	in process)	Disposed By				Date/	Time	
	DISPOSITION	ber -un	brocean	p I											

BC-6000-828 (04/98)

DISTRIBUTION: White - Remain with Samples Color - Customer

			СНА	IN OF	CUSTO	DY/SAM	PLE ANAL	CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST	ST			C.O.C. No. ship	ment	L00J
Collector Rice, Andrew D					Cont	Contact/Requestor Myers, Ronald L.	or			Telephone No.	5651-	MSIN F	FAX	- <u>10 - 10 - 10 - 10 - 10 - 10 - 10 - 10</u>
SAF No.	*				Sam	Sample Origin Tank 241-AZ-103	4			Purchase Order/Charge Code	arge Code	2		
Project Title Packaging and	Project Title Packaging and Shipping for Tank 241-A2-102	ank 24	:-AZ-:02		q6o1	Logbook No. n/a				lce Chest No.		Temp. n/a		
Shipped To (Lab) PNNL 325 BJd.	b) SAL HAT Cell (west end of bld.)	{west	end of bl	(.)	Meth TWRS	Method of Shipment TWRS CPO Sample Truck	ent 2 Truck			Bill of Lading/Air Bill No.	ll No.			
Protocol n/a					Data n/a	Data Turnaround n/a				Offsite Property No. n/a				
Sample No.	Lab ID		Date	Time		No./Type Container			Sample	Sample Analysis	1	[Preservative
AZ-102 COMP3	S01T001850	L			500 mL	glass	i.a.w. ICD-2	-23 requirements	JAR	18988	Pig H	1 4 4 LO.22	. 22 none	ue
AZ-102 COMP4	SOLTOOLBEL	د.			500 mL,	glass	i.a.w. JCD-23	23 requirements	JAR	18989	5		J none	ne
POSSIBLE SAA See DST Part	POSSIBLE SAMPLE HAZARDS/REMARKS (Listall known wastes) N see DST Part A in DOE-RL88-21 for listed waste codes.	REMAF 88-21	for liste	known wa. d waste	stes) MSDS codes.	Ss 🗍 Yes	°N X	SPECIAL INSTRUCTIONS Contact Rudy Thornhill upon arrival, 376-6769.	TIONS tornhill up	on arrival, 376	6 - 6769 .	Hold Time n/a		
Relinquished By	Relipquished By Print	5	uBis	24	Date/Time		Received By	Print N.	Sign MATTHEND		R	Ma		
Relinquished By	Hhaws		The second		Date/Time		Received By Und		- Area		SE SE	= Soit = Sediment = calla	000 10 10 10 10	Drum Solids Drum Liquids
Relinquished By		*			Date/T	1	Received By			Date/Time			ı II II	= Vipe = Liquid
Relinquished By					Date/Time	<u> </u>	Received By			Date/Time		= Oil = Aìr	> 0 = = > ×	= Vegetation = Other
FINAL SAMPLE	Disposal Method (e.g., Return to customer, per lab procedure, used in per lab procedure	ا (e.g., f sdure	Return to cut	slomer, pe	r lab proced		process)	Disposed By				Date/Time	Лime	
All samples con	taining hazardous	s materi	ials shall be	picked up	by requestor	and returne	d to parent cont	All samples containing hazardous materials shall be picked up by requestor and returned to parent container or site of origin.						

.

BC-6000-828 (04/98)

DISTRIBUTION: White - Remain with Samples Color - Customer

Page 1 Telephone No. Telephone No. Pruchase Order/Chargo Code 110190/FF21 Pruchase Order/Chargo Code 110190/FF21 Pruchase Order/Chargo Code Train No. Bill of Lading/Air Bill No. Train No. Othsite Property No. Train No. Difficie Property No. Train No. Difficient Diffici				CHAI	N OF C	USTODY/SA	CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST	IS REQUEST	L			shipment	E A6002
Reserve Terretion					, , ,						Pag.		
The second of the second se	Collector Rice, Andrew D					Contact/Reque	sstor 1 L.			Telephone No. 372-132	MSIN	FAX	76-7127
Other Display No. Display No. <thdisplay no.<="" th=""> <thd< td=""><td>SAF No.</td><td></td><td></td><td></td><td></td><td>Sample Origin Tank 241-A2-</td><td>102</td><td></td><td></td><td>Purchase Order/Charg</td><td></td><td></td><td></td></thd<></thdisplay>	SAF No.					Sample Origin Tank 241-A2-	102			Purchase Order/Charg			
Tot (Lab) Tot (Lab) Bit of Lading/Ar Bit No. 0 St (C., Str. Str. Str. Str. Str. Str. Str. Str.	Project Title Packaging and	Shipping for Tar	3k 241	-AZ-102		Logbook No.				tce Chest No. n/a		.dr	
Deside frage Deside Deside frage Deside frage Deside Transmid evo. Lab 0 - Date Time No. Yupo Container Sample Analysis connels sol 1 al v Sol nu glass 1 a. v. 1CD-21 requirements TAR 1597G V V.Q.W.V.V.D. D connels sol 1 al v. v. 1 CD-21 requirements TAR 1597G V V.Q.W.V.V.D. D connels sol 1 al v. v. 1 CD-21 requirements TAR 1879G V V.Q.W.V.V.D. D connels sol 1 al v. v. 1 CD-21 requirements TAR 1879G V V.Q.W.V.V.D. D connel sol 1 al v. v. 1 CD-21 requirements TAR 1879G V V.Q.W.V.V.D. D connel sol 1 al v. v. 1 CD-21 requirements TAR 1879G V V.Q.W.V.V.D. D connel sol 1 al v. v. 1 CD-21 requirements TAR 1879G V V.Q.W.V.D. D connel sol 1 al v. v. 1 CD-21 requirements TAR 1879G V V.Q.W.V.D. D connel sol 1 al v. v. 1 CD-21 requirements TAR 1879G V V.Q.W.V.D. D connel sol 1 al v. v. 1 CD-21 requirements TAR 1879G V V.M.N.N.T.T.D. D connel sol 1 al v. v. 1 C	Shipped To (Lat	() SAL 901 Cell (V	vest		d.1	Method of Shir TWRS CPO Sam	sment sie Truck			Bill of Lading/Air Bill No			
e.M. Lab i Date Tune No.frye Consister Stand Labor i A. U.CD-21 requirements JAR 1999 V S. (J. M. Libo. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V S. (J. M. Libo. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. W. 400. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. W. 400. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. W. 400. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. W. 400. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. W. 400. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. W. 400. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. W. 400. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. W. 400. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. W. 400. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. 4) In Conservation 1 i.a. v. 100-21 requirements JAR 1999 V V. 4) In Conservation 1 i.e. 1 In Conservation 1 i.e.	Protocol n/a					Data Turnarou n/a	nd			Offsite Property No. n/a			
COMPS F01: TOL 152: 1 COMPS F01: ALC COMPS F01: ALC COMP F01: ALC F02: ALC	Sample No.	Lab ID	·	Date	Time	No./Type Contains	yr		Sample	Analysis			Preservative
connel International L 500 mi. glause I.a. w. ICD-23 requirements JAQ JQG2 V Pick W- 4/03 min Part N N N N N N N Part N N N N		S017001852	L			ar T	. ICD-23]	74R	7		4.09	none
PLE HAZARDSREMARKS (List all known waster) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time PLE HAZARDSREMARKS (List all known waster) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-BLIR 21 for Linted waste codes. MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-BLIR 21 for Linted waste codes. MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-BLIR 21 for Linted waste codes. Doe PLIA Doe PLIA No SPECIAL INSTRUCTIONS Hold Time A in DOE-BLIR 21 for Linted waste codes. Doe PLIA Doe PLIA No SPECIAL INSTRUCTIONS Marks A in DOE-BLIR 21 for Linted waste codes. Doe PLIA Doe PLIA SECONAL SECONAL No A in DOE-BLIR 21 for Linted waste codes. Doe PLIA Doe PLIA SECONAL No SECONAL No A in DOE-BLIR 21 for Linted waste codes. Doe PLIA Doe PLIA SECONAL No SECONAL No A in Doe-BLIR 21 for Linted waste codes. Disposed By Disposed By Disposed By No SECONAL No SECONAL A in Disposed By Disposed By Disposed By Disposed By Disposed By No No No No		S01T001853	د			500 mL glass	ICD-23		TAR	18992 V	アンドキュ	1. 89	none
PLE HAZABOSIFEMARKS (List all known wastee) MSDS Yes No SPECIAL INSTRUCTIONS Hald Time PLE HAZABOSIFEMARKS (List all known wastee) MSDS Yes No SPECIAL INSTRUCTIONS Hald Time A in DOP-stude -11 for listed waste codes. MSDS Yes No SPECIAL INSTRUCTIONS Hald Time A in DOP-stude -11 for listed waste codes. MSDS Yes No SPECIAL INSTRUCTIONS Hald Time A in DOP-stude -11 for listed waste codes. MSDS Yes No SPECIAL INSTRUCTIONS Hald Time A in DOP-stude -11 for listed waste codes. DateTime Received By Marks Marks SSPECIAL INSTRUCTIONS Marks Minimum Zight DateTime Received By Marks Marks SSPECIAL INSTRUCTIONS Marks Minimum Zight Marks Marks Marks Marks SSPECIAL INSTRUCTIONS Marks Minimum Zight Marks Marks Marks Marks SSPECIAL INSTRUCTIONS Marks Minimum Zight Received By Marks Marks Marks Marks Minimum Zight Received By Marks Marks Marks Marks DateTime Received By <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td></td<>													-
PLE HAZARDSREAMARKS (Last all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time PLE HAZARDSREAMARKS (Last all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RL4B-21 for 1 jared waste codes. MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RL4B-21 for 1 jared waste codes. Contact Rudy Thornhill upon arrival, 376-6769. NA NA A in DOE-RL4B-21 for 1 jared waste codes. Contact Rudy Thornhill upon arrival, 376-6769. NA A in DOE-RL4B-21 for 1 jared waste codes. Contact Rudy Thornhill upon arrival, 376-6769. NA A in DOE-RL4B-21 for 2010 Date/Time Received By Pin Sgn Date/Time A in DoE-RL4B-21 for 2010 Date/Time Received By Pin Sgn Date/Time A in Date/Time Received By Date/Time Received By Date/Time Sold T Sold A in Date/Time Received By Date/Time Received By Disposed By Date/Time Sold T Sold A in Date/Time Received By Date/Time Received By Disposed By Date/Time Sold T Sold A in Date/Time Received By Disposed By Date/Time <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					-								
PE HAZARDSREMARKS (List all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS PLE HAZARDSREMARKS (List all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS A in DOB- sLa8-21 for Listed waste codes. Molecular (Molecular (Mo													
Rint SPECIAL INSTRUCTIONS Hold Time A in DOE-RUBB-31 for listed wate codes. MasDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RUBB-31 for listed wate codes. MasDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RUBB-31 for listed wate codes. Date/Time Received By Print Sign Date/Time Hold Time A in DOE-RUBB-31 for listed wate codes. Date/Time Received By Print Sign Date/Time Sector Native A in DOE-RUBB Date/Time Received By Print Date/Time Sector Native Sector Native Native A in Doe-RUBB Date/Time Received By Date/Time Received By Date/Time Sector Date/Time Sector Sector <td></td>													
PLE HAZARDSREMMARK (List all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RLAB-21 for lipted waste codes. MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RLAB-21 for lipted waste codes. MSDS Yes No Sign Date/Ting Matrix A in DOE-RLAB-21 for lipted waste codes. Date/Time Received By Pinn Sign Date/Ting Sectiment L A in DOE-RLAB-21 for lipted waste codes. Date/Time Received By Pinn Sign Date/Ting Sectiment L A in Date/Time Received By Date/Time Received By Date/Time So is Solid L L A in Date/Time Received By Date/Time Received By Date/Time So is Solid L L E Solid L <													
PLE HAZARDS/REMARKS (List all known wastes) MSDS Ves No SPECIAL INSTRUCTIONS Hold Time A in DDS-RL88-21 for 11sted waste codes. A in DDS-RL88-21 for 11sted waste codes. Contact Rudy Thornhill upon arrival, 376-6769. n/a A in DDS-RL88-21 for 11sted waste codes. Date/Time Received By Pini Sign Date/Time Rind Sign Date/Time Received By Pini Sign Date/Time Sign Date/Time Rind Sign Date/Time Received By Pini Sign Date/Time Sign Sign Date/Time Rind Sign Date/Time Received By Pini Sign Date/Time Sign Sign Date/Time Rind Received By Pini Received By Pini Sign Date/Time Sign Sign Distortime Sign Sign Sign Sign Date/Time Received By Pini Received By Pini Received By Matrix Sign Sign <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
PLE HAZARDS/REMARKS (List all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RLAB-21 for listed waste codes. MSD SPECIAL INSTRUCTIONS Hold Time A in DOE-RLAB-21 for listed waste codes. MSD SPECIAL INSTRUCTIONS Hold Time A in DOE-RLAB-21 for listed waste codes. Date/Time Received By Pini Sign Date/Time Matrix Minit Sign U.O. J.W.D. U.O. J.W.O Date/Time Received By Pini Sign U.O. J.W.O Sign Natrix Matrix Date/Time Received By Pini Sign Date/Time Sign U.O. J.W.O Matrix Date/Time Received By Pini Sign Date/Time Sign U.O. J.W.O Matrix Date/Time Received By Pini Date/Time Sign U.O. J.W.O Sign Sign <td></td>													
PLE HAZARDS/REMARKS (List all known wastes) MSDS Yes No SPECIAL INSTRUCTIONS Hold Time A in DOE-RLB9-21 for listed waste codes. A in DOE-RLB9-21 for listed waste codes. Contact Rudy Thornhill upon arrival, 376-6769. n/a Member State Date/Time Received By Print Sign Date/Time Marini. Member RUD Date/Time Received By Print Sign Date/Time Sign Date/Time Member RUD Date/Time Received By Print Received By Size Solid T Size <td></td>													
Rint Sign Date/Time Received By Print Sign Date/Time Bate/Time Matrix Rint Rint Rint Date/Time Received By Print Sign Date/Time Sign Matrix Rint Date/Time Received By Print A Sign Date/Time Sign Natrix Revel Date/Time Received By Print A Sign Date/Time Sign Natrix Revel Date/Time Received By Print A Sign Date/Time Sign Natrix Date/Time Received By Print Print Natrix Sign Sign </td <td>POSSIBLE SAN See DST Part</td> <td>IPLE HAZARDS/RI A in doe-rlaa</td> <td>EMAR 3-21</td> <td>KS (List all + for liste</td> <td>d waste</td> <td>MSDS</td> <td>°2 ⊠</td> <td>CIAL INSTRUCTIO stact Rudy Thor</td> <td>NS Du Tliqu</td> <td>on arrival, 376-6</td> <td></td> <td>Ð</td> <td></td>	POSSIBLE SAN See DST Part	IPLE HAZARDS/RI A in doe-rlaa	EMAR 3-21	KS (List all + for liste	d waste	MSDS	°2 ⊠	CIAL INSTRUCTIO stact Rudy Thor	NS Du Tliqu	on arrival, 376-6		Ð	
Finit Sigh Date/Time Received By Print Sign Date/Time Matrix Matrix PLONexuLx 12 - 3 4 - 01 Xou + 2 4 - 01 Xou + 2 4 - 01 Xou + 2 4 - 01 Sign Sign Date/Time Sign DS Sign Solid T Sign DS Solid T Sign Solid T Sign <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
August	Relinquished By	4	$%$	Sign C	en la	<u>`</u>	Brui	Seul	ne ne	Date Time	(Matrix"	
Date/Time Received By Date/Time Received By Date/Time SL Sludge W W W W W M	Relinquished By		Q	J. J.	0		Received By	all all	100	Date/Time	11 IA I	ñ d F	= Urum Solids = Drum Liquids = Tiseus
ived By Date/Time O O O V z ocess) Disposed By A = Air X = to parent container or site of origin.	Relinquished By					┣───	Received By			bate/Time	1 11 N	- 🛛 _	= Wipe = 1 Jonid
ocess) Disposed By to parent container or site of origin.	Relinquished By					1	Received By			Date/Time		> ×	 Vegetation Other
		Disposal Method (per Tab proced	e.g., F Jure	teturn to cus	tomer, per	lab procedure, used	in process)	Disposed By			-	Date/Time	
	All samples con	taining hazardous i	materi	als shall be	bicked up b	y requestor and retu-		or site of origin.					

			CH	AIN OF	Cn :	STODY/SAM	IPLE ANAL	CHAIN OF CUSTODY/SAMPLE ANALYSIS REQUEST	H		C.O.C. No. ship	.C. No. shipment A6003	03
Collector						Contact/Reorrest			É-	Telephone No.	MSIN	FAX of	
ndrew	D.					Myers, Ronald L.	1.			372-1323	P7-28	376-7127	~
SAF No.						Sample Origin	7		-	Purchase Order/Charge Code 116198/6F21	Code		
Project Title Packaging and	Project Title Packaging and Shipping for Tank 241-AZ-102	ank 24	11-AZ-102			Logbook No. n/a				lce Chest No. n/a	Temp. n/a		
Shipped To (Lab) PNNL 325 Bld.	b) SAL Hot Cell (west end	(west	: end of	(.bld.)		Method of Shipment TWRS CPO Sample T	ient e Truck			Bill of Lading/Air Bill No.			
Protocol n/a	ļ					Data Turnaround	_			Offsite Property No. n/a			
Sample No.	Lab 1D	ŀ	· Date	e Time		No./Type Container			Sample	Sample Analysis		Prese	Preservative
AZ-102 COMP7	7 SOLTOD1854					500 mL glass	і.а.w. ICD-23	23 requirements	JAR	18993	Die # 460.15	U.V none	
AZ-102 COMP8	8 SOLT001855	<u>г</u>				500 mL glass	i.a.w. ICD-23	23 requirements	J4R	~ 86681		10.16 none	
											、		
			 							- - -			
POSSIBLE SAI	POSSIBLE SAMPLE HAZARDS/REMARKS (Listall known wastes) A See DST Part A in DOE-RLB8-21 for listed waste codes.	REMA. 88-21	RKS (List (for lis	all known w ted wast	vastes) :e coú	MSDS 🗌 Yes les.	s 🕅 No	SPECIAL INSTRUCTIONS Contact Rudy Thornhi	IONS %rnhill upc	SPECIAL INSTRUCTIONS Contact Rudy Thornhill upon arrival, 376-6769	Hold Time 69. n/a		
Relinquished By	By Print	K	Sen Sen	N. S.	ι.	Date/Time Rev	Received By	Print 1	Sign A	Date/Time 21/0 21/0			
Relinquished By	V ATTAFWIS				1	·	Received By		X	Date/Time	H S = Soit SE = Sediment SO = Solid	DS = Drum S DL = Drum L T = Tissue	Drum Solids Drum Liquids Tissue
Relinquished By	I	;					Received By		د	DaleAime	11 11	II 11	
Relinquished By	Ā				1	Date/Time Re	Received By			Date/Time	O = Oil $A = Air$	V = Vegetation X = Other	ation
FINAL SAMPLE DISPOSITION		d (e.g. edure	Return to	customer.	per lab	Disposal Method (e.g., Return to customer, per lab procedure, used in process) per lab procedure	process)	Disposed By			Date	Date/Time	
All samples cor	l ntaining hazardou	s mate	rials shall {	be picked u	n yd dr	oquestor and return	ed to parent conta	All samples containing hazardous materials shall be picked up by requestor and returned to parent container or site of origin.					

BC-6000-828 (04/98)

DISTRIBUTION: White - Remain with Samples Color - Customer

Appendix **B**

Test Plan TP-RPP-WTP-111 "Tank 241-AZ-101 and 241-AZ-102 Waste Sample Ion Exchange Testing"

Appendix B: Test Plan TP-RPP-WTP-111 "Tank 241-AZ-101 and 241-AZ-102 Waste Sample Ion Exchange Testing"

Battelle Test Plan	Document No.: TP-RP Rev. No.: 0	P-WTP-111
Title: Tank 241-AZ-101 and 241-AZ-102 W	Vaste Sample Ion Exchange Testin	g
Work Location: RPL/ Various	Page 1 of 29	
Author: D.L. Blanchard Jr.	Effective Date: On final sign Supersedes Date: New	ature
Identified Hazards: Radiological Hazardous Materials Physical Hazards Hazardous Environment Other:	Required Reviewers: _X_Author _X_Technical Reviewer _X_Quality Engineer _X_Project Manager _X_Client	
Approval Signatu	re	Date
Author <u>Lailzner</u> Technical Reviewer standra K. fist		11/5/61 11/5/61
Quality Engineer <u>Almeida</u>		11/5/01
Project Manager _ 9 E Kurath		11/5/01
		-

Applicability

This test plan applies to the testing of solid phase extractant materials (organic and inorganic ion exchange materials) with samples from Hanford tanks 241-AZ-101 and 241-AZ-102. (The "241" prefix will be hereafter omitted in this document.) Both of these tank wastes belong to the RPP-WTP (River Protection Project-Waste Treatment Plant) tank waste classification Envelope B. The testing includes contacting the tank wastes with ion exchange material (i.e. batch contacts), and passing the tank wastes through small column (5-30 mL) packed with the ion exchange material in flow tests. The materials to be tested include Superlig® 644 (SL-644, for cesium removal), and Superlig® 639 (SL-639, for technetium removal). The testing may be conducted in hot cells in the HLRF (High Level Radiation Facility) and its supporting analytical laboratories, and in labs 410, 507, 510, and 511. This test plan also applies to the use of a prototype instrument being developed under a separate task to monitor technetium during testing.

Justification

The tests described herein will be conducted for the River Protection Project Waste Treatment Plant Project (RPP-WTP) to demonstrate contract cesium (Cs) and technetium (Tc) decontamination, operating and throughput requirements with Envelope B waste samples, and to demonstrate a prototype instrument suitable for monitoring Tc-99 in the Envelope B samples at the contract Tc removal decontamination, operating and throughput requirements.

The RPP-WTP is conducting batch contacts with ion exchange materials and simulated and radioactive candidate LAW solutions to determine ion selectivity. Small-scale ion exchange column tests are being conducted with simulated and radioactive candidate LAW feed solutions to provide breakthrough curves for modeling and to prepare LAW solutions for subsequent LAW vitrification testing. The information from this series of ion exchange material tests will be used to validate ion exchange models^{(1),(2)} prepared by SRTC personnel. These models will enable personnel to verify design and predict performance of the full-scale ion exchange systems within the waste treatment plant.

SRTC personnel have evaluated the ability of the SL-644 resin to remove cesium from an Envelope B waste sample from tank AZ-102⁽³⁾. The cesium ion exchange column performance was unexpectedly poor. However, the test was conducted on as-received decanted tank waste supernate at 2.65 M sodium with a density of 1.15 g/mL. The reference process for the treatment of LAW solutions includes dilution or evaporation, as necessary, to provide a feed at 5 M sodium concentration, not 2.65 M as used in prior tests. Column and batch contact tests with Envelope B wastes AZ-101 and AZ-102 need to be repeated under reference process conditions, using the proper ionic strength of the feed. The resulting data will be used validate ion exchange models for AZ-101 and AZ-102 supernate pretreatment design verification (Envelope B). Sufficient samples will be taken from both AZ-101 and AZ-102 to determine the extent, if any, of precipitation that occurs during the ion-exchange of these materials. It is essential that this precipitation data be obtained to provide insight into the limitations of performing the ion exchange

BNF-003-98-0220, Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste using SuperLig[®] 644 Resin, June 16, 2000, L. L. Hamm et al, Westinghouse Savannah River Company, Aiken South Carolina.

⁽²⁾ SRT-RPP-2000-00011 November 2000, Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste using SuperLig[®] 639 Resin, June 16, 2000, L. L. Hamm et al, Westinghouse Savannah River Company, Aiken South Carolina.

⁽³⁾ WSRC-TR-2000-00419, Small Scale Ion Exchange Removal of Cesium and Technetium from Envelope B Hanford Tank 241-AZ-102, N.M. Hassan, Savannah River Technology Center, January 17, 2001, Aiken, South Carolina.

process at the baseline 5 M sodium concentration. In addition, sufficient sample exists from Tank AZ-102 to perform an additional Cs IX test if necessary.

On-line monitoring of the Tc removal process in the Waste Treatment Plant will be required for continuous operation. On-line monitoring will simplify operations and allow on-line process control. A separate Tc monitor task is underway because no on-line Tc monitors are currently commercially available. The work described in this test plan includes tasks to demonstrate the operation of a prototype on-line Tc monitor using the Envelope B waste samples. Successful demonstration of the prototype will enable design and assembly of an on-line Tc monitor for the Waste Treatment Plant.

Test Objectives

The objectives of this test are to:

- Measure and report equilibrium Cs and Tc batch distribution coefficients (i.e. K_d's) for AZ-101 supernate using SL-644 (Cs) and SL-639 (Tc) ion exchange resin.
- Measure and report equilibrium Cs batch distribution coefficients (i.e. K_d's) of AZ-102 supernate using SL-644 (Cs) ion exchange resin.
- Develop loading and elution breakthrough profiles for columns of SL-644 (Cs) and SL-639 (Tc) ion exchange materials using samples of candidate LAW feed solutions from Tank AZ-101 supernate.
- Develop loading and elution breakthrough profiles for columns of SL-644 (Cs) resin ion exchange material using samples of candidate LAW feed solutions from Tank AZ-102.
- Pretreat the AZ-101 filtrate sample to reduce the concentrations of ¹³⁷Cs and ⁹⁹Tc to meet LAW pretreatment requirements.
- Pretreat the AZ-102 supernate sample to reduce the concentration of ¹³⁷Cs to meet LAW pretreatment requirements.
- Measure the concentration of Tc in the AZ-102 sample over a range of values from the concentration in the feed down to an estimated detection limit (EDL) of 1.8E-06 Ci/L using the prototype Tc monitor.

Test Success Criteria

The batch contact data will provide a practical description of the projected resin performance of envelope B wastes AZ-101 and AZ-102 in the form of an equilibrium distribution coefficient (K_d). The column tests will provide performance measures including column distribution ratio (the product of K_d and the resin bed density), composite decontamination factors, and maximum decontamination factors.

The Cs and Tc concentration in the column loading effluent must be accurately determined to quantify the exchange capacity of each ion exchange resin. Therefore, the Estimated Quantitation Levels (EQL) for ¹³⁷Cs and ⁹⁹Tc should be at least 10 to 100 times lower than the LAW vitrification criteria. The EQL for ¹³⁷Cs must be 1E-05 Ci/L (or less) and the EQL for ⁹⁹Tc must be 3E-06 Ci/L (or less) to accurately determine the loading profiles. The EQL is defined as the lowest concentration that can be reliably achieved within specified limits of precision and accuracy during routine laboratory operating conditions.

For analytes that are detected above the estimated quantitation level (EQL), the relative percentage difference between duplicate analyses should be less than 20%. For laboratory analyses where matrix spikes, blank spikes, post-spikes, process blanks, and serial dilutions are used the following criteria should be met.

Quality Control Method	Tolerance Limit
Matrix spikes recoveries	75% to 125%
Blank spikes recoveries	80% to 120%
Post spikes recoveries	75% to 125%
Process blanks analyses	Analytes of interest below the EQL or less than 5% of the sample concentration
Serial Dilutions	\pm 10% of the sample analysis, where the analyte concentration exceeds the EQL

Criteria for Laboratory Analyses

Laboratory control standards (LCSs) shall be traceable to the National Institute of Standards and Technology (NIST), and all analytes above the EQL should exhibit recoveries within acceptance criteria. The acceptance criteria for calibration verification check standards are \pm 10% of true value.

The use of the Tc monitor to analyze AZ-101 samples will be considered successfully completed when the prototype monitor has accurately determined at least four different Tc concentrations in the waste during continuous operation with sampling rates of at least two samples per hour. The concentrations will be considered accurately determined if the values are within 20% of those determined for the same samples by ICP-MS, with an estimated detection limit (EDL) for Tc-99 of 1.8E-06 Ci/L for a 5 M sodium waste solution. In addition, statistical methods will be used to show that results of the two methods are statistically equivalent.

Background

The RPP-WTP has identified reference processes for the treatment of low activity waste (LAW) solutions and high-level waste (HLW) slurries⁴. The reference process for separating cesium and technetium from LAW solutions is ion exchange using SL-644 and SL-639 resins, respectively. The RPP-WTP has conducted tests with these resins using simulated and radioactive LAW solutions. SL-644 resin is a proprietary ion exchange resin comprised of a polymer ligand that selectively separates cesium from alkaline solutions. SL-639 resin is also a proprietary material that consists of a ligand attached to a polystyrene substrate. SuperLig 639 resin separates pertechnetate (or perrhenate) as a salt-pair from acidic or basic solutions. Both resins are elutable. IBC Advanced Technologies Inc. in American Fork, Utah developed and manufactures both SL-644 and SL-639.

The LAW glass-equivalent production rate requirement is at least 30 MT LAW glass per day with envelope B waste. The LAW facility must average 1100 units of waste throughput per year, in accordance with Specification 7.2.3. For envelope B feed, an average processing rate of 1100 units of waste annually corresponds to processing 423.1 MT of sodium (Na) annually. The average flowrate through the 1.05 m³ column is about 0.4 resin bed volumes per hour (BV/hr) at 100% attainment. Assuming 60% process attainment, the required flowrate through the ion exchange column must be only 0.67 BV/hr. An

⁴(4) Waste Treatment Plant Request for Proposals Solicitation No. DE-RP27-00RV14136, August 31, 2000, section C.7, FACILITY SPECIFICATION, item (d)(iii) and (d)(iv), U. S. Department of Energy Office of River Protection, Richland, Washington.

important objective of this test is demonstration of the required Cs and Tc decontamination at the required throughput.

A method must be demonstrated to detect ⁹⁹Tc in the effluent from the technetium removal columns at the concentration required to comply with the immobilized LAW product specification⁵ for process control. A prototype instrument for this purpose is currently under development and testing⁶. Part of the planned testing of the instrument is the analysis of the samples from one of the small column actual waste Tc removal tests in a continuous test. More background may be found in test plan TP-PNNL-WTP-045.

Equipment and Materials Descriptions

The test equipment required for the batch distribution tests are as follows:

- Aqueous test solutions prepared as required in accordance with test instructions.
- Ion Exchange Materials obtained from the RPP-WTP client or from a vendor as required.
- Appropriate tracers (⁹⁹Tc, ^{99m}Tc, ^{95m}Tc, ¹³⁷Cs) the radiotracers may be obtained either through commercial sources (i.e., New England Nuclear, Boston, MA; or Amersham, Arlington, IL) or from stock solutions already in the laboratory. Technical data sheets accompanying the commercial shipments should list the assay of the isotope (i.e., chemical form, purity, assay date, specific activity, concentration, and volume).
- Counting Equipment gamma counting is performed by the use of a multichannel analyzer and a suitable detector, such as a high purity germanium detector. Additionally a liquid scintillation counter may be used for ⁹⁹Tc determination. The equipment is user calibrated to determine that the equipment is working properly. Known standards of each tracer are counted along with the samples.
- Shaker/Temperature Control Systems A variety of shaker systems are used, such as those made by Eberbach, Ann Arbor, MI. The shaker table will include a test chamber that holds the sample container.
- Filters, 0.2 um pore size disposable Gelman #4192 or equivalent (man-made material).
- Syringe, 5 mL, plastic, Luer-Loc or equivalent.
- Vials, 20 mL glass scintillation.
- Bottles, 20 to 2000 mL polyethylene, Nalgene #2003-0001 or equivalent.
- Pipets, adjustable, 100 to 10,000 uL maximum capacity, Gilson Pipetman or equivalent.
- The vessel material of construction selected for the evaporation shall not leach metals nor silicon into the waste feed.

⁵ WTP Contract No. DE-AC27-01RV14136, December 2000, Specification 2.2.2.8 Radionuclide Concentration Limitations.

⁶ Battelle Test Plan TP-PNNL-WTP-045, "On-Line Tc Monitor Development and Testing"

For the Ion Exchange column tests, the following additional equipment is required:

- An analytical balance.
- Pump.
- Ion exchange columns (< 30mL volume).
- Gamma counting equipment.
- Liquid scintillation counter.
- Prototype Tc Monitoring Equipment⁷
- Recirculating heater/chiller.

The experimental apparatuses for the SL-644 and SL-639 column flow tests have already been assembled and used for testing AP-101 and AN-102/C-104 waste samples⁸. Each apparatus consists primarily of two ion exchange columns, (a lead and a lag column), feed storage bottles, pump, valves, and effluent collection and storage bottles. A recirculating heater/chiller is also used with the SL-639 apparatus to heat the column during elution. The SL-644 resin beds are nominally 10 mL in 0.25 M NaOH; 1.5 cm in diameter by 6 cm in height. The SL-639 resin beds are nominally 5 mL in 0.25 M NaOH; 1.5 cm in diameter by 3 cm in height. The columns of the SL-644 system may be run independently or connected in series; similarly for the SL-639 system. The SL-639 columns employ plungers to restrict the volume available for the resin bed. A plug of quartz wool at the top of each column is used to provide some space for liquid above the bed but prevent the resin from floating

All solutions to the columns are normally fed downflow through pumps from feed tanks. The feed pump is used to control the flow rate. A valve located at the bottom of each column permits sampling of each column's effluent during testing. The effluent from the final column is routed to the weighing bottle. The bed volumes (BV's) of the effluent processed are determined by the effluent weight divided by the specific gravity of the feed. The systems include a pressure relief valve between the pump and the first column. The valve insures that no solution is lost in case of overpressurization and reduces the likelihood of a contamination incident in that event. The columns are generally operated 24 hours, 7-days per week until the objective of a test is met, although testing may be halted overnight or over a weekend if the system can be placed in a safe state without significantly interrupting the test. Such an interruption may occur between feed displacement rinse and elution, for example. A process step (i.e., loading, feed displacement, elution, etc.) would generally not be interrupted unless there was a safety concern, or continuation of the process step was deemed fruitless in consultation with the WTP pretreatment technical contact. Additional equipment that may be used, for indication only, includes gamma-counting equipment, a ruler and a clock.

⁷ The prototype Tc monitor instrumentation is described in Test Plan TP-PNNL-WTP-045, "On-Line Tc Monitor Development and Testing"

⁸ Battelle Test Plan TP-RPP-WTP-013, "AP-101 and AN-102/C-104 Actual Waste Ion Exchange Testing."

Test Description

AZ-101 Feed

A sample of the candidate LAW feed solution from tank AZ-101 is being used to verify the combined LAW and HLW pretreatment process flowsheet and prepare LAW solutions for subsequent LAW vitrification. As part of a separate test specification, Battelle will characterize the AZ-101 sample to determine compliance with the LAW and HLW feed specifications⁽⁹⁾. The test specification for the AZ-101 HLW filtration using the CUF is described elsewhere. The permeate solution from the ultrafiltration process test will be used for the cesium and technetium ion exchange tests described in this test plan. The allowable ion exchange feed concentration range of sodium in the AZ-101 supernate feed for this test is 5.0 ± 0.2 M sodium. If evaporation of the AZ-101 supernate sample is necessary to achieve this sodium concentration range, the directions for AZ-102 evaporation below will be used, on notification and concurrence of the RPP-WTP pretreatment technical contact. If dilution is necessary, the feed will be diluted with 0.01 M NaOH to reach the required range, on notification and concurrence of the RPP-WTP pretreatment technical contact. A sample of the AZ-101 feed will be archived for six months following completion of the AZ-101 Cs IX test. If evaporation or dilution is necessary, a sample of the AZ-101 feed will be collected beforehand and archived for the same duration.

AZ-102 Feed

A sample of the candidate LAW feed solution from tank AZ-102 will be used primarily to verify cesium ion exchange process parameters for this waste. The allowable ion exchange feed concentration range of sodium in the AZ-102 supernate feed for this test is 5.0 ± 0.2 M sodium.

Data from the TWINS¹⁰ database indicates that the samples will have an average sodium concentration of 2.43 M. Therefore the AZ-102 feed will be prepared as follows:

- 1. The hot cell temperature will be recorded periodically during the feed preparation.
- 2. A material balance for the AZ-102 sample will be maintained throughout the process steps. Items to be recorded (whenever possible) include sample bottle identification number, the mass (or volume) of sample received in each bottle, loss of sample due to residual sample left in each bottle, mass (or volume) of combined AZ-102 sample, mass and volume of chemical additions, mass of samples removed for analysis, mass of solids removed by filtering, mass of sample transferred to process testing, and any other significant activities that add or remove mass from the AZ-102 sample.
- 3. The material present in each of the AZ-102 sample bottles will be transferred into a clean mixing vessel. If solids are evident (opaque solution or visible solids) it will be filtered first. Concurrence of the BNI pretreatment technical contact will be obtained prior to recovery and analysis of the solids. The vessel used to combine the samples may be the evaporation vessel, if the evaporation step is imminent. Filter the material after the evaporation step to prevent any introduction of solids into the Ion Exchange system.
- 4. The combined supernatant will be mixed with a mechanical stirrer.

⁽⁹⁾ TSP-W375-01-00031, Tank 241-AZ-101 Sample Composite, Homogeneity, and Analysis. E. Lee, Characterization, R&T, BNI/WGI, May 1, 2001.

¹⁰ http://twins.pnl.gov/twins3/twins.htm

- 5. Two subsamples will be collected from the supernate after mixing. The first will be immediately prepared and submitted for (sodium) Na analysis by ICP (Inductively Coupled Plasma). The second sample (approximately 20 mL in a glass vial) will be archived for six months after completion of the Cs IX test in case future characterization of the initial (non-concentrated) supernatant is needed. The density and volume of the combined supernate sample will be determined.
- 6. Data from the TWINS database indicates that the samples will have an average sodium concentration of 2.43 M. The volume reduction required to reach a target of 5.0 M sodium will be calculated based on this sodium concentration and the measured volume of the combined supernate sample.
- 7. The AZ-102 sample will be concentrated by evaporation at 50 (+/-5) °C. An inert gas such as argon (Ar) or nitrogen (N₂) will be used to cover the surface of the sample to minimize reaction with atmospheric oxygen. The sample will be stirred as needed during evaporation.
- 8. The evaporation will proceed until the target volume calculated in (6) is reached. As soon as the Na analysis from step 5 is available, the evaporation will be continued 0.01 M NaOH will be added as necessary to reach 5.0 ± 0.2 M Na.
- 9. Once the target volume is obtained, the feed will be filtered in preparation for Cs IX. Any solids present will be recovered, and appropriate analyses will be determined in consultation with the BNI (Bechtel National Incorporated) pretreatment technical contact. Analyses of the solids will be covered outside of this test plan.
- 10. A sample of the evaporated, filtered feed will be collected and analyzed for the analytes listed in Table 1. Submission may wait for the AZ-102 effluent and eluate composite samples. A sample of the evaporated, filtered feed will also be collected and archived in a glass vial or bottle for six months after completion of the Cs IX test.

Batch Contacts

- 1. The lot number, date of receipt of the resin, any treatment of the resin, and general storage conditions prior to use in the batch contact tests will be recorded and reported.
- The solution temperatures will be recorded to ±1°C for the batch contact test, and each contact will be conducted in duplicate.

3. The AZ-101 feed will be analyzed to determine the concentrations of Na, potassium (K), total Cs, free hydroxide, total inorganic carbon (TIC), total organic carbon (TOC), nitrate, chloride, Cs¹³⁷, pertechnetate, total ⁹⁹Tc and the density. The AZ-102 is to be analyzed for the same analytes, except pertechnetate and total ⁹⁹Tc. The minimum reportable quantity (MRQ) for each analyte is provided in Table 1. SuperLig 644 and 639 resins have exhibited exchange affinity for these analytes. Additional analytes will be reported on an opportunistic basis.

Analyte	MRQ (µg/mL)
Na, K	7.5E+01
Cs	1.0 E+01
Free Hydroxide	1.7E+01
TIC	1.5E+02
TOC	1.5E+03
Nitrate	3.0E+03
Nitrite	3.0E+03
Fluoride	3.0E+02
Chloride	3.0E+02
Radionuclide	MRQ (µCi/mL)
Cs ¹³⁷	1.0E-02
Pertechnetate	3.0E-03
Total Tc ⁹⁹	3.0E-03

Table 1. Analyte Minimum Reportable Quantity

- 4. The SL-639 resin will be pre-conditioned by contacting with an NaOH solution, then rinsing with deionized (or demineralized) water.
 - a. The SL-639 will be contacted with 1 M NaOH (volume in milliliters equal to 10 times the mass of the resin in grams) for a minimum of 2 hours with gentle agitation. Most of the solution will then be separated from the resin by decanting and discarded as waste.
 - b. The SL-639 will be contacted with de-ionized (or demineralized) water (volume in milliliters equal to 10 times the mass of the resin in grams). The contact will be agitated gently for 1 hour. Most of the rinse water will then be separated from the resin by decanting and discarded as waste.
 - c. The water rinse will be repeated twice more for a total of 3 water rinses.
 - d. The resin will be dried in air and stored until use.
- 5. The SL-644 will be converted to the H⁺ form for the batch contacts, due to the presence of a large amount of potassium (K) in the as-received SL-644 that may alter the composition of the contacting solution and resulting equilibrium.
 - a. The SL-644 resin will be soaked for a minimum of 4 hours in deionized water (volume in milliliters equal to 10 times the mass of the resin in grams). Most of the water will then be separated from the resin by decanting.
 - b. The resin will then be contacted with 0.5 M HNO₃ (volume in milliliters equal to10 times the mass of resin in grams). Most of the 0.5 M HNO₃ will be separated from the resin by decanting.
 - c. Step (b) will be repeated twice more.
 - d. The resin will then be contacted with deionized water (volume in milliliters equal to 10 times the mass of the resin in grams). Most of the water will then be separated from the resin by decanting.

- e. Step (d) will be repeated twice more.
- f. The resin will be allowed to air dry until the mass changes no more than 5% between measurements taken at least 3 hours apart.
- 6. The SL-644 and SL-639 resins will be contacted with the solutions shown in Table 2. A 10±0.1-mL of each solution will be contacted with 0.1±0.01-g samples of the appropriate resin. The batch contacts will be conducted for a minimum of 48 hours.

Solution	Additive
S	uperLig 644 Resin Batch Contacts
AZ-101 solution	None
AZ-101 solution	Increase total Cs concentration to ~1E-03M
AZ-101 solution	Increase total Cs concentration to ~4E-03M
AZ-101 solution	Increase total Cs concentration to ~7E-03M
AZ-102 solution	None
AZ-102 solution	Increase total Cs concentration to ~1E-03M
AZ-102 solution	Increase total Cs concentration to ~4E-03M
AZ-102 solution	Increase total Cs concentration to ~7E-03M
5	SuperLig 639Resin Batch Contacts
AZ-101 solution	None
AZ-101 solution	Increase ⁹⁹ Tc concentration to ~1E-03 Ci/L
AZ-101 solution	Increase ⁹⁹ Tc concentration to ~4E-03 Ci/L
AZ-101 solution	Increase ⁹⁹ Tc concentration to ~7E-03 Ci/L

Table 2. Cs Batch Contacts

- 7. The batch contacts of AZ-101 and AZ-102 conducted with SuperLig 644 resin will be analyzed to determine the concentrations of Na, K, and Cs¹³⁷ or total cesium. The batch contacts of AZ-101 conducted with SuperLig 639 resin will be analyzed to determine the concentrations of nitrate, fluoride, chloride, nitrite, and ⁹⁹Tc. The MRQ for each analyte is provided in Table 1.
- 8. The F factors for the SL-644 and SL-639 resins will be determined. The subsamples for the F factor determinations will be weighed out at the same time and from the same samples of resin used for the batch contacts. Since these samples are already preconditioned, the subsamples only need to be dried.
 - a. Two approximately 0.5 g samples of the resin will be weighed out. The masses will be measured and recorded to the nearest \pm 0.01 g.
 - b. The samples will be dried at $50 \pm 5^{\circ}$ C under house vacuum (approx. 20in Hg).
 - c. The sample masses will be measured periodically to +/- 0.01 g. The samples will be sealed in vials during weighing to prevent water absorption.
 - d. The samples will be considered dry and the final weight will be recorded when the mass of a sample has not changed by more than ± 0.01 g over one 24 hour period or three consecutive measurements taken at intervals of at least two hours.

Cs Ion Exchange Column Tests

The AZ-101 and AZ-102 supernate solutions will be processed through the SL-644 ion exchange columns. All solutions will be passed downflow at ambient hot cell temperature through the two columns in series, except as noted below. Note that the AZ-102 tank will be processed first. The lead column will then be eluted and regenerated prior to proceeding with the next test. If significant loading of the lag column is experience, it will also be eluted and regenerated prior to the next test. This decision will be made in consultation with the WTP representative.

- The AZ-101 feed will be analyzed to determine the concentrations of Na, K, total Cs, free hydroxide, TIC, TOC, nitrate, chloride, Cs¹³⁷, pertechnetate, total ⁹⁹Tc and the density. The AZ-102 is to be analyzed for the same analytes, except pertechnetate and total ⁹⁹Tc. The minimum reportable quantity (MRQ) for each analyte is provided in Table 1 above. SuperLig 644 and 639 resins have exhibited exchange affinity for these analytes. Additional analytes will be reported on an opportunistic basis.
- 2. The actual volume of waste solution and reagents used during the ion exchange column tests will be recorded. The temperature in the cell where the Cs ion exchange testing is being conducted will be recorded periodically.
- The lead and lag column positions will be switched from those of the previous run (AN-102/C-104 sample). The lead column was eluted at the end of the previous test. No significant loading of the lag column was observed during the prior test.
- 4. In each test the waste solution will be transferred into the lead column at a flow-rate of 1.5 BV/hr.
- Single small samples (approx. 2 mL) of the effluent will be collected from the lead column during the loading cycle at 10-BV increments, and from the lag column during the loading cycle at 20-BV increments. These samples will be analyzed to determine the concentration of ¹³⁷Cs.
- 6. The AZ-101 sample will be processed through the columns until reaching ~50% cesium breakthrough on the first column. The lag column effluent will be collected in 10 BV fractions. The Ci Cs¹³⁷/mole Na ratio for each fraction will be evaluated. The fractions will be combined, in the order collected, until addition of the next fraction would result in a composite that exceeds the target level of 1.75E-05 Ci ¹³⁷Cs/mole Na. This composite sample will be analyzed for the analytes listed in Table 1. Additional analytes will be reported on an opportunistic basis. This effluent composite will be used for Tc removal testing.
- The AZ-102 sample will be processed through the columns until reaching ~50% cesium breakthrough on the first column. The composite effluent sample will be analyzed for the analytes listed in Table 1. Additional analytes will be reported on an opportunistic basis.
- 8. Residual feed solution will be displaced from the columns following the load cycle.
 - a. A minimum of two total apparatus volumes of 0.1 molar sodium hydroxide will be transferred at 3 BV/hr through the lead column into the lag column.
 - b. Feed displacement using 0.1 M sodium hydroxide solution will continue until the ¹³⁷Cs concentration in the effluent from the lag column decreases to less 0.01 times the ¹³⁷Cs concentration of the waste sample (i.e., $C/C_0 < 0.01$).
 - c. The 0.1 M sodium hydroxide solution will be collected in 1-BV increments in separate containers, and analyzed to determine the concentrations of ¹³⁷Cs. MRQ is given in Table 1.

- 9. The 0.1 M sodium hydroxide solution will be displaced from both columns with de-ionized or demineralized water.
 - a. A minimum of two total apparatus volumes of de-ionized (or de-mineralized) water will be transferred through the columns at 3 BV/hr.
 - b. The water displacement solution will be collected in 1-BV increments in separate containers.
 - c. Each water displacement sample will be analyzed for the concentration of ¹³⁷Cs.
- 10. The lead column will be eluted. If more than 5% of the ¹³⁷Cs removed from the feed is present on the second column, it may also be eluted, based on Battelle's recommendation and concurrence of the WTP contractor.
 - a. The column(s) will be eluted at 1 BV/hr using at least 15 BV of 0.5 M nitric acid solution. The elution will be continued, if necessary, until the ¹³⁷Cs concentration decreases to less than 1% of the initial ¹³⁷Cs feed concentration (C/Co < 0.01). The eluate will be collected in fractions of 2 BV or less. The fractions will be analyzed for the concentration of ¹³⁷Cs.
 - b. The eluted column(s) will be rinsed with 2 total apparatus volumes of de-ionized (or demineralized) water to displace acid from the resin bed. Excess liquid will be drained from atop the lead column and collected.
 - c. The AZ-102 cesium eluate fractions will be combined and analyzed for the analytes listed in Table 3. Additional analytes will be reported on an opportunistic basis. Chloride in the AZ-102 eluate composite will be measured to a 10 mg/L MRQ. This will require methods development outside the current scope of this task, and is contingent on approval of funding. Analytical requirements for the AZ-102 tests are different than for the AZ-101 tests.

Analyte	MRQ (µg/mL)
K, Na	7.5E+01
TOC	1.5+E03
Cl	1.0 E+01
Nitrate	3.0E+03
Total and free OH	1.7E+01
Total Cs	1.0E+01
Radionuclide	MRQ (µCi/mL)
Cs ¹³⁷	1.0E-02

Table 3. Analytical Requirements for AZ-102 Cs Eluate Composite

- d. The AZ-101 cesium eluate fractions will be combined and analyzed for the analytes listed in Table 4. Quality control parameters are given in Table 6. The table includes analytes requested for the vitrification activity. Chloride in the AZ-101 will be measured to a 10 mg/L MRQ. This will require methods development outside the current scope of this task, and is contingent on approval of funding.
- e. The WTP contractor will review the TOC result for the AZ-101¹³⁷Cs eluate composite and then decide and direct Battelle either to deliver 50 mL of sample for organic analysis or to skip organic

analysis and deliver the IX pretreated feed to vitrification. Organic analysis requires significant sample and is beyond the scope of this test specification.

- f. The cesium eluate solutions from both tests will be archived for 6 months following the completion of the tests. The AZ-101 cesium eluate will be combined with HLW sludge for vitrification tests.
- 11. The eluted column(s) will be regenerated and rinsed.
 - a. Two total apparatus volumes of 0.25M sodium hydroxide solution will be transferred at 1 BV/hr through the eluted column(s).
 - b. The excess liquid will be drained from atop the column, leaving approximately 1-BV of sodium hydroxide solution atop the resin bed. The regeneration solution will be composited and analyzed to determine the concentrations of ¹³⁷Cs, sodium, and hydroxide. The MRQ's are given in Table 1. The residual concentration of cesium on the columns after elution and regeneration will be calculated based on the Cs mass balance.
 - c. The solution from regeneration of the column will be archived for six months after completion of testing.
 - d. The 0.25 M NaOH regenerant solution will be displaced from the column with 2 AV of deionized or demineralized water. No analysis of this displacement solution will be performed and it will be disposed as waste.
- 12. The positions of the lead and lag columns will be switched between processing of the two waste samples.
- 13. Unless otherwise noted, all solutions used in the testing will be archived until analytical data is returned and analysis indicates no problems. A portion of the AZ-102 sample will be used for testing of the Tc monitor. Other solutions will be disposed, archived, or used for additional testing based on Battelle's recommendation and the WTP contractor's concurrence.

Technetium Removal Column Tests

The pretreated AZ-101 LAW solution from the cesium ion exchange column test will be used as feed to the SL-639 technetium removal columns. If more feed is deemed necessary for the Tc removal test, additional feed may be processed to remove Cs, based on Battelle's recommendation and the WTP contractor's concurrence, and contingent on receipt of funding for this additional scope. The processing would follow the Cesium Ion Exchange Test description, but with greatly reduced sampling and analysis.

- 1. The actual volume of waste solution and reagents used during the ion exchange column tests will be recorded.
- 2. All solutions for the SL-639 test will be passed downflow at 25±2°C through the two columns in series, except as noted below.
- 3. If not already analyzed as part of previous testing, the feed to the technetium ion exchange columns will be analyzed to determine the concentrations of pertechnetate, total ⁹⁹Tc, hydroxide, and nitrate. The MRQ's for these analytes are listed in Table 1. Other analytes will be reported on an opportunistic basis.

- 4. A Tc-95m pertechnetate tracer will be added to the AZ-101 feed to follow the progress of the various processing steps and to indicate the pertechnetate behavior in the waste.
- 5. The waste solution will be transferred downflow into the lead technetium column at a flow rate of 3 BV/hr.
- 6. Single samples of the effluent from the lead technetium column will be collected during the loading cycle at ~20-BV increments and from the lag technetium column at ~40-BV increments.
 - a. The effluent samples from the lead and lag columns will be analyzed to determine the concentration of ⁹⁹Tc.
 - b. The loading effluent from the column run will be composited and analyzed for ⁹⁹Tc.
 - c. After reaching ~50% pertechnetate breakthrough in the lead column, the waste flow will be stopped. Excess liquid, if present, will be drained from atop the lead column into the lag column.
- 7. Residual feed solution will be displaced from the columns following the load cycle.
 - a. Two total apparatus volumes of 0.1 M sodium hydroxide will be transferred at 3 BV/hr through the columns.
 - b. Feed displacement will continue until the concentration of technetium in the lead column effluent is less than 1% of the feed concentration (C/Co < 0.01).
 - c. The 0.1 M sodium hydroxide solution will be collected in 1-BV increments in separate containers.
 - d. The 1-BV increments of 0.1 M sodium hydroxide solution will be analyzed to determine the concentrations of ⁹⁹Tc.
- 8. The 0.1 M sodium hydroxide solution will be displaced from the lead column as follows.
 - a. One-half (0.5) of a total apparatus volume of de-ionized (or de-mineralized) water at 3 BV/hr will be transferred through the lead column.
 - b. The displaced solution will be collected in 1-BV increments in separate containers. Excess liquid, if present, will be drained from atop the column in preparation for elution.
 - c. The 1-BV increments of water displacement solution will be analyzed to determine the concentrations of ⁹⁹Tc.
- The lead technetium column will be eluted. If more than 5% of the Tc removed from the feed is
 present on the second column, it may also be eluted, based on Battelle's recommendation and
 concurrence of the WTP contractor.
 - a. The temperature of the resin bed, now containing water, will be raised to $65 \pm 5^{\circ}$ C.
 - b. The column will be eluted at 1 BV/hr using de-mineralized water at $65 \pm 5^{\circ}$ C. Elution will continue until the ⁹⁹Tc concentration in the column effluent is less than 1% of the original lead

column feed concentration. Excess liquid, if present, will be drained from atop the lead column and collected.

- c. The technetium eluate will be collected in no more than 2-BV increments, which will be analyzed to determine the concentration of ⁹⁹Tc.
- d. The technetium eluate fractions will be combined and analyzed for the analytes listed in Table 4. Quality control parameters are given in Table 6. The table includes analytes requested for the vitrification activity. Chloride will be measured to a 10 mg/L MRQ. This will require methods development outside the current scope of this task, and is contingent on approval of funding.
- e. The technetium eluate solution will be saved for combination with HLW sludge for vitrification tests.
- 10. Prior to subsequent tests, the eluted column(s) will be regenerated.
 - a. Two total apparatus volumes of 0.25M sodium hydroxide solution will be transferred at 1 BV/hr through the eluted column(s).
 - b. The excess liquid, if present, will be drained from atop the column. The regeneration solution will be composited and analyzed to determine the concentrations of ⁹⁹Tc, sodium, and hydroxide. The MRQ's are given in Table 1. The residual concentration of Tc on the columns after elution and regeneration will be calculated based on the Tc mass balance.
 - c. The solution from regeneration of the column will be archived for six months after completion of testing.
- 8. Unless otherwise noted, all solutions used in the testing will be archived until analytical data is returned and analysis indicates no problems. The solutions will then be disposed, archived, or used for additional testing based on Battelle's recommendation and the WTP contractor's concurrence.

Quality Assurance

Battelle implements the RPP-WTP quality requirements in a quality assurance project plan (QAPjP) as approved by the RPP-WTP QA organization. This work is to be conducted to the quality requirements in NQA-1-1989 Part I, Basic and Supplementary Requirements, and NQA-2a-1990, subpart 2.7 as instituted through Battelle's Nuclear Quality Assurance Requirements and Description Manual (NQARD).

A listing of applicable NQARD implementing procedures is shown in Table 7 below.

The Tc monitor system will be calibrated using spiked simulants and actual waste samples spiked with ⁹⁹Tc. Monitor calibration will be performed prior to analysis of the sample batch. During operation, automated standard addition measurements will be implemented with at least every fourth sample to verify instrument calibration.

The following tables give the analytical requirements for the Cs and Tc eluates (Table 4) and the pretreated LAW analyses (Table 5), and quality control parameters (Table 6).

Analyte	Minimum Reportable Quantity ⁽¹⁾	Analysis Method/ Driver
	mg/L	
Al	7.50E+01	
Ba	2.30E+00	
Ca	1.50E+02	
Cd	7.50E+00	
Co	3.00E+01	
Cr	1.50E+01	
Cu	1.70E+01	
Fe	1.50E+02	
K	7.50E+01	ICP-AES ⁽⁴⁾
La	3.50E+01	(Pretreatment Specification)
Mg	3.00E+02	
Mn	1.50E+02	
Мо	1.50E+02	
Na	7.50E+01	
Ni	3.00E+01	
Pb	3.00E+02	
Si	1.70E+02	
Sn	1.50E+03	
Ti	1.70E+01	
U	6.00E+02	
Zn	1.65E+01	
Ag		
As		
В		
Be		
Bi		

Analyte	Minimum Reportable Quantity ⁽¹⁾	Analysis Method/ Driver
Ce		
Dy		
Eu		ICP-AES ⁽⁴⁾
Li		(Vitrification Request)
Nd		
Р		
Sb		
Se		
Sr		
Te		
Th		
V Y		
Zr		
Pd		IOD MO (MILLIO LI O LIO
Pr Pt		ICP-MS (Vitrification Specification)
Rh		
Ru		
Ta		
TOC	1.50E+03	Silver catalyze persulfate method
TIC	1.50E+02	Silver catalyze persulfate method
Cl	1.00E+01	
Br		
F	1.50E+02	
NO ₂	3.00E+03	IC Anions
NO ₃	3.00E+03	
oxalate		
PO ₄	2.50E+03	
SO ₄	2.30E+03	
Hg		Cold Vapor AA
CN		Colorimetric
NH3		ISE
tal and free OH	1.70E+01	Titration
Radionuclides	mCi/L	
⁹⁹ Tc	3.00E-03	
²³⁷ Np		
²³⁹ Pu		ICP-MS (Pretreatment Specification)
²⁴⁰ Pu		
²⁴¹ Pu / ²⁴¹ Am		
129 _I		

TP-RPP-WTP-111 Rev. 0 Page 19 of 29

Analyte	Minimum Reportable Quantity ⁽¹⁾	Analysis Method/ Driver
²³³ U		
²³⁴ U		ICP-MS (Vitrification Request)
²³⁵ U		
²³⁶ U		
²³⁸ U	2 44 6	
²⁴² Pu		
⁶³ Ni		Beta Scintillation
⁹⁰ Sr	1.50E-01	
²⁴¹ Pu		Separations / Liquid Scintillation
³ H		
¹⁴ C		Distillation and Liquid Scintillation
¹⁵¹ Sm		Separation / Beta Scintillation
⁷⁹ Se		
²³⁶ Pu		
²³⁸ Pu		
^{39/240} Pu		Separations / AEA
²⁴¹ Am	3.00E-02	
²⁴² Am		
²⁴² Cm		
²⁴² Pu	(
^{43/244} Cm		
⁵¹ Cr		
⁵⁹ Fe		1
⁶⁰ Co		
⁸⁸ Y		
⁹⁵ Nb		
¹⁰³ Ru		
¹⁰⁶ Ru		
¹¹³ Sn		
¹²⁵ Sb		Extended Counting Time GEA
¹²⁶ Sn/Sb		
¹³⁴ Cs		
¹³⁷ Cs	5.00E-02	
¹⁴⁴ Ce		
¹⁵² Eu		
¹⁵⁴ Eu	2.00E-03	
¹⁵⁵ Eu	9.00E-02	

Table		
Analyte	Minimum Reportable Quantity ⁽¹⁾	Analysis Method/ Driver
²³² Th		
Total Alpha	2.30E-01	. Alpha counting
Total Beta		Beta Counting
Sum of Alpha	To be determined	Summation of ²³⁸ Pu, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Am, ²⁴² Cm ²⁴³⁺²⁴⁴ Cm
Physical Property	Expected Range	
Wt% Oven Dried Solids	0.1 to 100 wt%	Gravimetry
Separate Organic Phase	N/A	Visual Observation
Density	0.9 to 1.7 gm/mL	Gravimetry
Wt% Oxides	0.1 to 100 wt%	Gravimetry

⁽¹⁾ Those analytes without a specified MRQ are to be determined as a best effort by the laboratory. The detection limit for each analyte should be reported along with the analytical results. Matrix spikes and laboratory control standards are not required for these analytes, but should be reported when available.

⁽³⁾ Organic analyses have been dropped from this table. Only if the TOC is greater than 60 mg/L should samples be submitted for organic analysis. In the event that the TOC exceeds the 60 mg/L limit, the organic analytes of interest will be determined.

⁽⁴⁾ Report any additional ICP-AES analytes on an opportunistic basis.

Analyte	Minimum Reportable Quantity ⁽¹⁾	Analysis Method/ Driver
	mg/L	
Al	7.50E+01	
Ba	2.30E+00	
Ca	1.50E+02	
Cd	7.50E+00	
Cr	1.50E+01	
Fe	1.50E+02	
K	7.50E+01	ICP-AES ⁽³⁾
La	3.50E+01	(Pretreatment Specification)
Mg	3.00E+02	(Frededition operation)
Na	7.50E+01	
Ni	3.00E+01	
P	6.00E+02	
Pb	3.00E+02	
U	6.00E+02	
Ag		
As		
В		
Be		
Bi		
Ce		
Co		
Cu		
Dy		
Eu		ICP-AES ⁽³⁾
Li		(Vitrification Request)
Mn		
Mo		
Nd		
Sb		
Se		
Si		4
Sn		
Sr		
Te		
Th		
Ti		
V		
Y		
Zn		
Zr		
Cs	1.50E+01	
Rb	1.00E+00	ICP-MS (Pretreatment Specification)

Analyte	Minimum Reportable Quantity ⁽¹⁾	Analysis Method/ Driver		
Pr		ICP-MS (Vitrification Specification)		
Pt				
Rh				
Ru				
Та				
TOC	1.50E+03	Silver catalyze persulfate method		
TIC	1.50E+02	Silver catalyze persulfate method		
Cl	3.00E+02			
Br				
F	1.50E+02			
NO ₂	3.00E+03	IC Anions		
NO ₃	3.00E+03			
oxalate	1.80E+03			
PO ₄	2.50E+03			
SO ₄	2.30E+03			
Hg ⁽²⁾	1.50E+00	Cold Vapor AA		
CN		Colorimetric		
NH3		ISE		
total and free OH	7.50E+04	Titration		
Organic Analytes	mg/L			
Acetate				
Citrate	1.50E+03			
Formate	1.50E+03			
Gluconate	1.50E+03	IC (Organic Anions)		
Gylcolate	1.50E+03			
D2EHPA	1.50E+03			
EDTA	1.50E+03			
HEDTA	1.50E+03	Derivatization/ GC-MS		
IDA	1.50E+03			
NTA	1.50E+03			
Radionuclides	mCi/L			
⁹⁹ Tc	3.00E-03			
²³⁷ Np	2.70E-02			
²³⁹ Pu	3.00E-02	ICP-MS (Pretreatment Specification)		
²⁴⁰ Pu	1.00E-02			
²⁴¹ Pu / ²⁴¹ Am	5.10E-02			
¹²⁹ I				
²³³ U				
²³⁴ U		ICP-MS (Vitrification Request)		

Analyte	Minimum Reportable Quantity ⁽¹⁾	Analysis Method/ Driver
²³⁶ U		
²³⁸ U		
²⁴² Pu		
⁹⁹ Tc	3.00E-03	Separations / Liquid Beta Scintillation without sample oxidation to determine pertechnetate
⁶³ Ni		Beta Scintillation
⁹⁰ Sr	1.50E-01	
²⁴¹ Pu		Separations / Liquid Scintillation
³ H		A A
¹⁴ C		Distillation and Liquid Scintillation
¹⁵¹ Sm		Separation / Beta Scintillation
⁷⁹ Se		Separation / Deta Semitination
²³⁶ Pu		
²³⁸ Pu	1.00E-02	
^{239/240} Pu	3.00E-02	Separations / AEA
²⁴¹ Am	3.00E-02	Separations / AEA
²⁴² Am	5.00E-02	
²⁴² Cm	1 50E 01	
²⁴² Pu	. 1.50E-01	
^{243/244} Cm	1.50E-02	
⁵¹ Cr		
⁵⁹ Fe		
⁶⁰ Co	1.00E-02	
88Y	1.00E-02	
95Nb		
¹⁰³ Ru		
¹⁰⁶ Ru		
¹¹³ Sn		
¹²⁵ Sb		Extended Counting Time GEA
¹²⁶ Sn/Sb		
¹³⁴ Cs		
¹³⁷ Cs	9.00E+00	
¹⁴⁴ Ce		
¹⁵² Eu		
¹⁵⁴ Eu	2.00E-03	
¹⁵⁵ Eu	9.00E-02	
²³² Th		

.

TP-RPP-WTP-111 Rev. 0 Page 24 of 29

Analyte	Minimum Reportable Quantity ⁽¹⁾	Analysis Method/ Driver Alpha counting	
Total Alpha	2.30E-01		
Sum of Alpha	To be determined	Summation of ²³⁸ Pu, ²³⁹ Pu, ²⁴⁰ Pu, ²⁴¹ Am, ²⁴² Cm ²⁴³⁺²⁴⁴ Cm	
Physical Property	Expected Range		
Wt% Oven Dried Solids	0.1 to 100 wt%	Gravimetry	
Separate Organic Phase	N/A	Visual Observation	
Density	0.9 to 1.7 gm/mL	Gravimetry	
Wt% Oxides	0.1 to 100 wt%	Gravimetry	

⁽¹⁾ Those analytes without a specified MRQ are to be determined as a best effort by the laboratory. The detection limit for each analyte should be reported along with the analytical results. Matrix spikes and laboratory control standards are not required for these analytes, but should be reported when available.

⁽³⁾ Report any additional ICP-AES analytes on an opportunistic basis.

N	Parameters for Ion Exchange Effluent Composite and Tc and Cs El QC Acceptance Criteria				
Liquid Fraction	Analytical Technique	LCS %Recovery ^(a)	Spike %Recovery ^(b)	Duplicate RSD ^(c)	
all requested analytes except Na		80 - 120%	75 - 125%	<15%	
Na	ICP/AES	80 - 120%	75 - 125%	<3.5%	
All requested analytes except as specified below	ICP/MS	80 - 120%	70 - 130%	<15%	
Cs ^(d) , Eu ^(d)	ICP/MS	N/A	N/A	N/A	
²³³ U, ²³⁴ U, ²³⁵ U, ²³⁶ U, ²³⁷ Np ^(e) , ²⁴³ Am/Cm	ICP/MS	90 - 110%	75 - 125%	<15%	
¹²⁹ I	ICP/MS or Separation/GEA	NP	N/A	<15%	
All requested anions	IC	80 - 120%	75 - 125%	<15%	
CN [.]	Distillation colorimetric	80 - 120%	75 - 125%	<15%	
U (total)	Kinetic Phosphorescence	80 - 120%	75 - 125%	<15%	
NH ₃ /NH ₄ ⁺	ISE, standard additions	80 - 120%	75 - 125%	<15%	
OH.	Potentiometric titration	80 - 120%	N/A	<15%	
TIC/CO ₃	Persulfate	80 - 120%	75 - 125%	<15%	
ГОС	Silver catalyzed persulfate	80 - 120%	75 - 125%	<15%	
Density		N/A	N/A	N/A	
Wt% oven dried solids and wt% oxides	Gravimetric	80 - 120%	N/A	<21%	
	Radiochemical	Analytes/Methods			
H ^(e)	Separation/ Liquid Scintillation	80 - 120%	N/A	<15%	
⁴ C	Separation/ Liquid Scintillation	80 - 120%	75 - 125%	<15%	
All except ¹²⁵ Sb	GEA	NP	N/A ^(f)	<15%	
²⁵ Sb	GEA	to be obtained	N/A ^(f)	TBD	
⁹ Se ^(e)	Liq. scintillation	NP	N/A	<15%	
¹⁰ Sr ^(e) , ²⁴¹ Pu	Isotopic specific separation/beta count	75 - 125%	N/A	<15%	
⁹ Tc (pertechnetate)	Separation/beta count	80 - 120%	70 - 130%	<15%	
Fotal Pu	Sum of Isotopes	N/A	N/A	N/A	
³³⁸ Pu ^(g) , ²³⁹ Pu ^(g) , ²⁴⁰ Pu ^(g) , ⁽⁴¹ Am ^(g) , ²⁴² Cm, ^{243 + 244} Cm	Separation/AEA	NP	N/A	<15%	
Fotal Alpha ^(g)	Proportional counter	70 - 130%	70 - 130%	<15%	
Fotal Beta	Beta counting	70 - 130%	70 - 130%	<15%	

Table 6. Quality Control Parameters for Ion Exchange Effluent Composite and Tc and Cs Eluates

Acronyms:

AEA – Alpha Energy Analysis

CVAA - Cold Vapor Atomic Absorption

GEA - Gamma Energy Analysis

IC – Ion Chromatography

ICP/AES- Inductively Coupled Plasma Atomic Emission Spectroscopy

ICP/MS – Inductively Coupled Plasma Mass Spectroscopy

LSC – Laboratory Control Standard N/A – Not applicable NP – Not performed RSD – Relative Standard Deviation Wt% – Weight percent

Footnotes:

^(a) LCS = Laboratory Control Standard. This standard is carried through the entire method. The accuracy of a method is usually expressed as the percent recovery of the LCS. The LCS is a matrix with known concentration of analytes processed with each preparation and analyses batch. It is expressed as percent recovery; i.e., the amount measured, divided by the known concentration, times 100.

^(b) For some methods, the sample accuracy is expressed as the percent recovery of a matrix spike sample. It is expressed as percent recovery; i.e., the amount measured less the amount in the sample, divided by the spike added, times 100. One matrix spike is performed per analytical batch. Samples are batched with similar matrices. For other analytes, the accuracy is determined based on use of serial dilutions.

 $^{(c)}$ RSD = Relative Standard Deviation between the samples. Sample precision is estimated by analyzing replicates taken separately through preparation and analysis. Acceptable sample precision is usually <15% RSD if the sample result is at least 10 times the instrument detection limit. RSD = (standard deviation of the mean/mean) x 100

^(d) Total Cs and Eu are sums of all isotopes, therefore spiking and LCS does not apply.

^(e) Matrix spike analyses are not required for this method because a tracer is used to correct for analyte loss during sample preparation and analysis. The result generated using the tracer accounts for any inaccuracy of the method on the matrix. The reported results reflect this correction.

^(f) The measurement is a direct reading of the energy and the sample matrix does not affect the analysis; therefore, a matrix spike is not required.

^(g) The sum of ²³⁸Pu, ²³⁹Pu, ²⁴⁰Pu, and ²⁴¹Am activities will be used as a measurement of alpha-emitting TRU. The selected isotopes account for greater than 95% of the alpha-emitting TRU activity based on previous analysis of Phase I candidate tank waste (Esch 1997a, 1997b, 1997c). Additional isotopes that are defined as alpha-emitting TRU (e.g., ²³⁷Np, ²⁴²Pu, ²⁴²Cm, ²⁴³Am, and ²⁴³⁺²⁴⁴Cm) are not used to calculate total TRU activity because the MDAs for these isotopes are large in comparison with the envelope limits and it is expected that their concentrations are well below the MDA. Note that ²⁴¹Pu is a beta-emitting TRU whose analysis, along with ²⁴²Cm, is required specifically for class C waste determination.

A listing of applicable NQARD implementing procedures is shown in the following table.

NQA-1	Yes	No	Implementing Procedure Title	Justification for Exclusion
BR 1	x		NQARD Manual Section 1.1, Organization NQARD-101, Communication and Commitment (Interface) Control	
1S-1	x		NQARD Manual Section 1.1, Organization NQARD-1501, Nonconforming Items	
2 X			NQARD Manual Section 2.1, Quality Assurance Program	
			NQARD-205, Quality Assurance Plans NQARD-208, Applying QA Controls (Grading)	
2S-1		X	NQARD Manual Section 2.1, Quality Assurance Program	This work does not require qualified inspection and test personnel.
28-2		X	NQARD Manual Section 2.1, Quality Assurance Program	NDE is not performed; therefore qualified NDE
28-3	X		NQARD Manual Section 18.1, Audits NQARD-1801, Internal Audits	personnel.
2S-4	X		NQARD-1001, Internal Addits NQARD-201, Indoctrination and Training	
BR 3		X	NQARD 201, Indecrination and Training NQARD Manual Section 3.1	
DICS		~		Design activities will not be performed.
			NQARD-301, Hand Calculations	
3S-1		X	NQARD-302, Design Control	
55-1		Λ	NQARD-301, Hand Calculations	Design activities will not be performed.
BR 4	X		NQARD-302, Design Control	
DIC 7	A		NQARD Manual Section 4.1	
			NQARD-401, Purchase Requisitions	
4S-1	X		NQARD-404, Procurement of Internal Quality Affecting Services	
10-1	^		NQARD-401, Purchase Requisitions	
BR 5	X	-	NQARD-404, Procurement of Internal Quality Affecting Services	
DRJ	л		NQARD Manual Section 5.1 NQARD-501, Preparation, Review and Approval of QA	
DD /	v		Implementing Procedures	
BR 6	X		NQARD Manual Section 6.1	
			NQARD-601, Document Control	
10.1			NQARD-602, Document Change Control	
6S-1	X		NQARD-601, Document Control	
BR 7	х		NQARD-602, Document Change Control NQARD Manual Section 7.1	
			NQARD-401, Purchase Requisitions NQARD-404, Procurement of Internal Quality Affecting Services	
7S-1	X		NQARD-401, Purchase Requisitions	
BR 8	X		NQARD Manual Section 8.1	
			NQARD-801, Sample Control	
8S-1	X		NQARD-801, Sample Control	
BR 9		X	NQARD Manual Section 9.1	Wade all be and all 12 to 11 DB 5 to
1000100			NQARD-902, Control of Special Processes	Work will be controlled in accordance with BR 5 and
98-1		X	NQARD-902, Control of Special Processes	BR 11.
BR 10		X	regimes 702, control of operal Flocesses	Design activities will be the state
10S-1		X		Design activities will not be performed.
BR 11	X		NQARD Manual Section 11.1	Design activities will not be performed.
			NQARD-1101, Scientific Investigation	
11S-1	X		NQARD-1101, Scientific Investigation	
115-2	X		NQARD-1101, Scientific Investigation	-
BR 12	X		NQARD Manual Section 12.1	
100.1	v		NQARD-1201, Calibration Control System	
128-1	х		NQARD-1201, Calibration Control System NQARD-1101, Scientific Investigation	2
BR 13	х		NQARD Manual Section 13.1 NQARD-1301, Handling, Storage and Shipping	
13S-1	X		NQARD-1301, Handling, Storage and Shipping	
BR 14	X		NOARD Manual Section 14.1	
			NQARD Manual Section 14.1 NQARD-1401, Inspection and Test Status and Tagging	
	X		NQARD-1401, Inspection and Test Status and Tagging NQARD Manual Section 15.1	
BR 15			NQARD Manual Section 15.1 NQARD-1501, Nonconforming Items	
BR 15	~			
15S-1	X		NQARD-1501, Nonconforming Items	
BR 15 15S-1 BR 16				

Table 7. Applicable Quality Assurance Procedures

TP-RPP-WTP-111 Rev. 0 Page 28 of 29

BR 17	х		NQARD Manual Section 17.1 NQARD-1701, Records System NQARD-1704, Laboratory Record Books	
17S-1	х		NQARD-1701, Records System NQARD-1704, Laboratory Record Books	
BR 18	Х		NQARD Manual Section 18.1 NQARD-1801, Internal Audits	
18S-1	X		NQARD-1801, Internal Audits	
NQA-2a, Part 2.7	Yes	No	Implementing Procedure Title	Justification for Exclusion
1.0	X		QA-RPP-WTP-SCP, Software Control (to be issued)	
2.0	Х		QA-RPP-WTP-SCP, Software Control (to be issued)	
3.0	X		QA-RPP-WTP-SCP, Software Control (to be issued)	
4.0	Х		QA-RPP-WTP-SCP, Software Control (to be issued) NQARD-604, Independent Technical Review	
5.0	X		QA-RPP-WTP-SCP, Software Control (to be issued)	
6.0	X		QA-RPP-WTP-SCP, Software Control (to be issued)	
7.0	Х		QA-RPP-WTP-SCP, Software Control (to be issued) NQARD-604, Independent Technical Review	
8.0	X		QA-RPP-WTP-SCP, Software Control (to be issued)	
9.0	X		QA-RPP-WTP-SCP, Software Control (to be issued)	
10.0	Х		QA-RPP-WTP-SCP, Software Control (to be issued) NQARD-401, Purchase Requisitions NQARD-404, Procurement of Internal Quality Affecting Services	
11.0	х		QA-RPP-WTP-SCP, Software Control (to be issued) NQARD-1701, Records System	

23

Reporting

A final report will be prepared to cover the AZ-101 and AZ-102 batch-contact and column tests described in this test plan. A separate report for the technetium monitor results will be submitted. Each report will include a description of the relevant test apparatus, actual test conditions, all raw data and resin material measurements collected, all calculations conducted, error(s) associated with tests and calculations, and interpretation of test results. Each final report will be delivered to the RPP-WTP contractor within 30 calendar days after receiving comments on the draft report.

All process verification and waste-form qualification test results will be reported. All relevant samplebatch QC sample results (blanks, LCS, MS, MSD, etc.) and standard accuracy and precision measurements will be included. A draft report will be delivered to the RPP-WTP contractor for review within 30 calendar days after completing the cesium and technetium ion exchange tests and receiving the analytical results for both supernate batch contact and column tests.

Appendix C

Test Instruction TI-RPP-WTP-127 "Mixing of AZ-102 and Evaporation to Nominally 5 M Na" and Addendum

Appendix C: Test Instruction TI-RPP-WTP-127 "Mixing of AZ-102 and Evaporation to Nominally 5 M Na" and Addendum

	and Evaporation to No.	minally 5 M Na
Work Location: RPL S	FO HLRF and SAL	Page 1 of 12
Author: SK Fiskum		Effective Date: New
Use Category Identifica	tion: Reference	Supersedes Date: New
Identified Hazards:		Required Reviewers:
<u>x</u> Radiological <u>x</u> Hazardous Materials		<u>x</u> Author
Physical Hazards		<u>x</u> Technical Reviewer
Hazardous Environment		RPL Manager Project Manager
Other:		RPG Quality Engineer
		CHG
On-The Job Training Required?	ations are not anticipated to e controlling Project QA PI	ocedure? x_Yes No impact safety. For documentation requirements of a an as appropriate.
NOTE: If Yes, then modifie modification see SBMS or the On-The Job Training Required? FOR REVISIONS: Is retraining to this procedure re-	ations are not anticipated to e controlling Project QA PI Yes or quired?Yes	impact safety. For documentation requirements of a an as appropriate.
NOTE: If Yes, then modifie modification see SBMS or the On-The Job Training Required? FOR REVISIONS: Is retraining to this procedure re- Does the OJT package associate YesNo	ations are not anticipated to e controlling Project QA PI Yes or quired?Yes	impact safety. For documentation requirements of a an as appropriate.
NOTE: If Yes, then modifie modification see SBMS or the On-The Job Training Required? FOR REVISIONS: Is retraining to this procedure re- Does the OJT package associate	ations are not anticipated to e controlling Project QA PI Yes or quired?Yes d with this procedure requ	impact safety. For documentation requirements of a an as appropriate.
NOTE: If Yes, then modifie modification see SBMS or the On-The Job Training Required? FOR REVISIONS: Is retraining to this procedure re- Does the OJT package associate YesNo No No	Ations are not anticipated to e controlling Project QA Pl Yes or Yes quired?Yes d with this procedure requ N/A	<pre>b impact safety. For documentation requirements of a an as appropriate. No No uire revision to reflect procedure changes? Date</pre>

Purpose/Scope

This test instruction is for the consolidation, sampling, and evaporation of AZ-102 tank waste. The work will be conducted according to RPL *Routine Research Operations Procedure*, RPL-OP-001 and *Tank 241-AZ-101 and 241-AZ-102 Waste Sample Ion Exchange Testing*, TP-RPP-WTP-111, Rev. 0. These tests will use the 10 AZ-102 500-g sample materials received from 222-S. The waste mixture will be evaporated in the SAL to approximately 5 M sodium. This material will then be characterized and used as feed for Cs ion exchange and other pretreatment testing activities. Work will be conducted according to NQARD.

Work is to be performed by hot cell technicians under the supervision of a cognizant specialist. The cognizant specialist shall be responsible for implementation and adherence to this test instruction. This instruction is specific to:

- AZ-102 as-received sub-sample mixing
- AZ-102 as-recieved sample aliquoting
- AZ-102 as-received sample evaporation
- AZ-102 concentrate filtration, and
- AZ-102 concentrate sub-sampling

Applicability

Demonstration of pretreatment processes with the AZ-102 Hanford tank waste needs to be conducted to demonstrate decontamination of the supernatant to meet ILAW requirements. This will require demonstration of Cs ion exchange. The AZ-102 mixture is below 5 M in sodium concentration. Testing at SRTC showed poor performance of this waste in Cs IX testing. Concentrating the waste to 5M may improve the Cs IX performance. Results from this active, small-scale evaporation test will support plant flowsheet development.

Quality Control

Method Specific Quality Control (QC) or special calibration requirements are described here. Items that may be included are:

- Analytical QC requirements and acceptance criteria are shown in Table 4
- Calibration requirements and frequency are defined in the method-specific procedures.

Hazard Mitigation

This work will be conducted in cell. Therefore, contact hazards are not at issue. The major hazard associated with this work is loss of sample through spill. Hot cell technicians shall conduct tests in a manner to minimize the impact of a spill. This will include taking all extra steps prudent for material stabilization. In the event of a spill, all practical efforts will be made to recover the test material. Recovered material will be segregated and retained pending a decision by the Cognizant specialist on how to proceed. Contact Sandy Fiskum or the Task Manager for guidance if uncertain on how to proceed.

Feed Description

This test will use the as-received AZ-102 supernatant received in ten 500-mL bottles. (This material will be evaporated to approximately 5 M sodium.) The approximate density of the as-received AZ-102 is 1.15 g/mL; the approximate Na concentration is 2.4 M (note the reported Na concentration by SRTC was 2.65M).

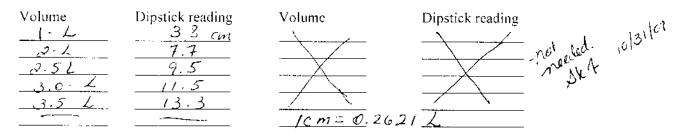
Equipment Description

Evaporation will be conducted in a large stainless steel beaker in the SAL. An overhead mechanical stirrer will provide mixing of the sample. A hot plate with a temperature controller shall be used to heat the sample to approximately 50 °C. An argon line will purge the beaker headspace to facilitate evaporation. Appropriate glass vials (20 mL) will be used to collect samples. Disposable syringes and filters will be used to filter the supernatant.

Responsible Staff

The staff responsible for executing this test plan are as follows.

- Task Manager Dave Blanchard
- SFO Manager Randy Thornhill
- Test Specialist/Scientist Sandy Fiskum
- Hot Cell Technician list names/location/work performed
- Radiological Control Technician


Materials, Equipment, Supplies and Reagents Needed Materials Required

6-L stainless steel beaker fitted with clamp handles top and bottom Hot Plate
Mechanical stirrer and impeller
Argon line/argon bottle
Analytical balance
4.5-kg balance
Thermocouple/hot plate controller
Dipstick, stainless steel rod marked at 1-cm intervals
Ring stand for stabilization of the beaker on the hot plate
10-mL volumetric flasks
Glass LSC vials

Work Instructions

This Test Instruction shall be used to record observations and other testing information as required. Crosscontamination of samples from outside sources must be minimized at each step. Use new supplies and bottles for each sample as much as practical.

1 Calibrate the liquid level dipstick as a function of volume in the stainless steel beaker. Record the volume and dipstick reading data below:

2 Obtain the following information:

M&TE List: Note Balance Location, HLRF and cell

_____ Hot Cell Analytical Balance

	Calib ID	38914 AW	Calib Exp Date $2/02$
	Hot Cell 4.5 Kg H	Balance	,
	Calib ID	1120100479	Calib Exp Date <u>8/02</u>
	Benchtop Analyti	cal Balance	
	Calib ID	NO4143	Calib Exp Date <u>2/02</u>
	Benchtop Large-c	apacity Balance	
	Calib ID	3505099	Calib Exp Date <u>8/21/0</u> 2
		ng device (thermometer or	
	Calib ID	5/N 15265	Calib Exp Date <u>4/9/2002</u>
		25-125°C tol.	vare = 2.2°C
3	Sample Reciept	Hemperature con	Calib Exp Date <u>4/9/2002</u> erane = 2.2°C trad type K thermocouple of Digisense tradled
3.1	Observe each sample	individually, note the solution	1 color, approximate volume, and appearance of any

- solids (and volume) that may be present. Note any discrepancies between expected and received condidtion. Record observations in Table 1
- 3.2 Weigh each sample bottle as-received, record masses in Table 1. Note that the expected gross mass is incorporated in the table.
- 3.3 Record the hot cell temperature $37^{\circ}C$ 10/31/01 10:00

S.K. Jisk-

TI-RPP-WTP-127 Rev. 0 Page 5 of 12

Jem lach - 2mm low 3 white ory stalline, such mestly unull of Jenes + / targe are a vestime 1 mars white organicue. Inche Pristor in Zmm foccule-t, white Silly avsencence & locenter + Or y plealine prof. Boud · ylow when Comments eilty 2 110 5 (mm) < 1 mm } Smm & 0.5 30 S mai 2000 400 volume Solids ship amy Solids color white wite white a der k كالمناد white Prom white travo stute 35 present orti Solids 64.45 3 ġ Ula 11/10 50% 210 27 CALI Solution volume 746.70 Rolorbo 773.34 Polor 600 762.cy Color Lus Poler 10 23 CC (NY 4:23) 7 F4.99 Con 40 738.14 asterless Colorless 02-00235 772.63 Colerbad 739.40 Color lew Solution color 757.30 764.15 772.27 mass, g Gross 02-00226 02-00229 02-00228 02-00227 02-00234 02-00233 02-00230 02-00231 02-00232 RPL ID Bottle ID Gross mass 782.1 g 18988 767.5 g 18989 × 176.7 g 757.6 g ✓ <mark>18998</mark> 739.0 g $\sqrt{4}$ 18990 **18996** 746.2 g **18992** 772.9 g 18993 737.7 g VV 18986 772.4 g **18994** 771.8 g 2 2 1 5 3

Table 1. Sample Receipt Log

D.K. Liku-

mu h

4 Compositing

- Label vials with unique sample identification mark before transfer into the hot cells. NOTE: Tare 4.1 bottle/vials with caps/lids.
- 4.2 Inventory materials, equipment, and supplies to ensure all required items are available. Modified materials/equipment as needed for remote handling.
- Record the tare mass of the 6-L evaporating beaker 899.59 (with all handle clamps in place). No lid 4.3
- 4.4 Stablize the stirrer above the beaker, leaving enough room for maneuvering the beaker.
- 4.5 Stabilize the beaker on the cool hot plate using ring stand and clamps.
- If solids were observed (step 3.1) the samples will need to be initially filtered prior to compositing. If no 4.6 solids were observed, this step may be skipped.
 - Prepare filtration apparatus ensuring a vacuum trap is in line between the filter apparatus and 4.6.1 the vacuum hookup.
 - 4.6.2 Tare a 1-L filter apparatus. Upper reservoir <u>85, 891 (no lid</u>); 109, 159 (with lid) Lower reservoir <u>206, 445</u> (with lid)
 - Pour each solution through the filter apparatus. Disconnect the upper section from the lower 4.6.3 section and pour filtrate into 6-L stainless steel beaker. Maintain the lid with the bottle for later weighing.
 - 4.6.4 After all solutions are filtered and filtrate collected in 6-L beaker, weigh the upper section and lower filter section. 10/31/01 11/1/01 8:550m 11/2/01 £ Upper reservoir 90.401 = (20.64) 87.327 = 87.331Lower reservoir 208.353 (with fiel)
 - 4.6.5 Save solids for later analysis by scraping them into a 20-mL glass LSC vial.
- Mix and pour the waste solutions from each of ten bottles into the 6-L stainless steel beaker. Maintain the 4.7 lid with the bottle for later weighing.
- 4.8 Adjust stirrer to low setting. Adjust stir speed to obtain a good mixing rate of the sample (see Cognizant scientist).
- Allow the solution to stir for nominally 15 minutes. Start 1-40, m 4.9
- Reweigh each emptied bottle and record the gross mass in Table 2. Calculate total solution mass 4.10 transferred.
- 4.11 Determine the solution density in duplicate:
 - Tare a 10-mL vol. Flask
 <u>i1, i7, 89</u>

 Add AZ-102 from the beaker into the vol flask

 a) Measure the gross flask mass 22,6320 Calculate the net mass 11.4531 Determine the solution density 1.1453

p.4. fisher Descraped polides into hid, quild mans of filter reservoir: 86.451 g "AZIOZAR Jolide" mens transferred 0.8800g mote: this mass is combined with polide Dicroped from bottle 18992

D.K. fiski

Hot cell temperature \mathcal{ZE}

- b) Tare a 10-mL vol. Flask 12.84217 skp 10/31/01 Add AZ-102 from the beaker into the vol flask Measure the gross flask mass 24.2508Calculate the net mass 11.4091Determine the solution density 1.1409Hot cell temperature 28%
- 4.12 Pour the 10-mL density aliquots into tared glass LSC analytical sample vials labeled "AZ-102AR-A" and "AZ-102AR-B" re-weigh, and fill out an ASR (QARD) for rapid Na analysis.
 - a) Tare AZ-102AR-A <u>17.0988</u> Gross AZ-102AR-A <u>28.9317</u> Net mass AZ-102AR-A Identify RPL sample ID <u>02-0366</u> called AZ102AR on ASR
 - b) Tare AZ-102AR-B 17.1243Gross AZ-102AR-B 28.3730Net mass AZ-102AR-B Identify RPL sample ID 02-0366 Called AZ/02AR dup on ASR
- 4.13 Extract a 20-mL sample into a tared glass LSC vial labeled "AZ-102AR-arch,"^{1,2} re-weigh, and archive the sample. Tare AZ-102AR-arch <u>17.09774</u> *fuscal plastic squinges* Gross AZ-102AR-arch <u>40.7141</u> +0 m-ke transfer.
 Net mass AZ-102AR-arch <u>23. ie/67</u>
- 4.14 Extract a 50-mL sample into a tared glass bottle labeled "AZ-102AR-C," re-weigh and alert M. Urie as to the sample location. This will be used for characterization activities.

Tale AZ-TUZAR-C	<u>8. f. 3.7</u>
Gross AZ-102AR-C	143.4
	<u></u>
Net mass AZ-102AR-C	56.0
-	

- 4.16 Consult with the Cognizant Scientist whether this step should continue or be modified (depending on actual as-received volume). Extract two 250-mL samples into tared glass bottles labeled "AZ-102AR-E" and "AZ-102AR-F," re-weigh and alert Dean Kurath to the sample location. These will be used for sulfate crystallization studies.

Tare AZ-102AR-E <u>218.96</u>	Tare AZ-102AR-F 217.98
Gross AZ-102AR-E	Gross AZ-102AR-F 494.1
Net mass AZ-102AR-E	Net mass AZ-102AR-F _ 276.12

¹ The term "arch" indicates archival sample.

² The term "AR" stands for the as-received condition of the waste.

Bottle ID	RPL ID	Gross mass, g (from Table 1)	Empty bottle mass, g	Net Mass transferred, g	Comments (filter order)
18819	02-00226	782.04	299.591	482.45	
18990	02-00227	757.80	299,568	458.23	(8)
18988	02-00228	764.15	298.767	465.38	(4)
18989	02-00229	776.99	296.704	486.29	(5) note loss.
18996	02-00230	746.70	293.334	453.37	(3) Conduct of or 225 (3) ~/ drup lost
18992	02-00231	773.34	296.250	477.09	(10) Solido Still remain in bottle
18993	02-00232	738.14	295.364	442.78	(9)
18998	02-00233	739.40	298.137	441.26	Combined of 202-220 D 1 drop lost
18994	02-00234	772.27	294,284	· · · ·	(G) ~ 20ml lost on transfer
18986	02-00235	772.63	292.883	479.75	(1) a c na 1051 m na 1960.
Net upper	reservoir ma	uss (filtered solids))	4.51	
Net lower	reservoir ma	ss (residual filtrat	te)	1.91	
Total mass	s transferred		₹~3:	92. E	
AZ-102AR	R-A density m	1ass		11.453	
AZ-102AR	-B density m	lass		11.4091	
AZ-102AR	-arch mass			23.6167	
AZ-102AR	-C analytical	l aliquot mass (Ur	ie)	56.0	
AZ-102AR-D mixing process heels mass (Rapko)			(Rapko)	114.0	
AZ-102AR	-E sulfate cry	ystallization mass	(Kurath)	282.5	
AZ-102AR-F sulfate crystallization mass (Kurath)			(Kurath)	276.1	
	AZ-102 mass remaining in beaker				

Table 2. AZ-102 Mass Transferred

Werenped Dolido into mal AZIOZAR Solido" 0.549 min Frence 293.37

5 Evaporation

5.1 Calculate the final volume required for AZ-102 to reach 5.0 M Na.

$$\frac{Total \ mass \ in \ beaker. \ g}{solution \ density, \ \frac{g}{mL}} \quad * \quad \frac{2.4 \ M \ Na}{5.0 \ M \ Na} = final \ volume, \ mL$$

Enter calculation here:

$$\frac{3E54}{1.143} = \frac{g}{mL} * \frac{2.4 M Na}{5.0 M Na} = \frac{1613}{mL} mL$$

Note: Reevaluate this equation when the Na concentration is determined by ICP-AES from samples submitted in Step 4.12.

- 5.2 Adjust the thermocouple in the beaker, ensuring it does not touch the beaker sides and is at least 2 cm away from the beaker floor.
- 5.3 Adjust the Ar gas flow to nominally 5-15 cc/min. Flush with Ar for about 15 minutes to displace air from top of solution.

5.4 Continue mixing the waste at a moderate rate with the mechanical stirrer. Maintain the argon flow, and begin heating the waste to 50 ± 5 °C until the volume is reduced to the desired level. Record the time the evaporation was started. Periodically, stop the stirrer and determine the liquid level using the stainless steel dipstick. Use this to calculate an estimated time to complete the evaporation. If this requires multiple days record the time the heat and sparge are turned on each day. After the desired volume reduction has been completed, allow the waste to cool for 60 minutes.

Heat time/date on 10/31/01 3:15 p.m Heat time/date off 10/31/01 1645 Heat time/date off 10/31/01 1645 Heat time/date off 10 0629 Heat time

- 5.5 Tare the capped receiver portion and upper reservoir section of a 1-L filtration apparatus. Capped receiver tare <u>200.992</u> Upper reservoir tare <u>115.199</u> (with Lid)
- 5.6 Place the filter apparatus in secondary containment. Stabilize the filter apparatus with a ring stand and clamps.
- 5.7 Ascertain the AZ-102 solution has reached room temperature. Record the solution temperature NA Dolution cooled $D^{crr} > 24$ hrs.

sk. fisk

Record the hot cell temperature $25^{\circ}C$

- Transfer the AZ-102 solution into the upper reservoir filter apparatus in nominal 500-mL increments 5.8 while vacuum is applied.
- 5.9 When 1-L has been filtered, transfer filtrate to a tared 2-L bottle labeled AZ-102C.³ Record 2-L AZ-102C bottle tare 310. 7
- Continue the filtration and transferring until the entire volume has been processed. 5.10
- 5.11 Weigh the upper reservoir filter chamber while wet. Record the mass. <u>118. 814 g</u> Clower read 202.9 g Calculate the net residual sample mass in the filter chamber <u>3.6.2.</u> Record observations. - music beaker + wel solicis = 932.39 (13:00 11/5/01); (950.74, 15:50 11/4/01) (

filtrate is clear, part had 2 components flating layer and mostly settled

NOTE: If there are significant solids, they will need to be scraped from the filter paper and collected (wet) into an LSC vial for later analysis. See Cognizant Scientist to make this call.

- 5.12 Weigh the bottle containing AZ-102C. <u>2340.79</u> Calculate the net mass of AZ-102C <u>2030.9</u> (note. not including tone determination)
- - Tare a 10-mL vol. Flask _____7 ___443___ a) Add AZ-102C from the beaker into the vol flask labeled AZ-102C-A Measure the gross flask mass _______. 30. 4881 Calculate the net mass 12.7438Determine the solution density 1.2744 - 7/5Hot cell temperature $25^{\circ}C$
 - Tare a 10-mL vol. Flask <u>17. 208 Y</u> Add AZ-102C from the beaker into the vol flask labeled AZ-102C-B b) Measure the gross flask mass _ <u>36</u>, <u>4</u>(8]] Calculate the net mass 12. 6727 Determine the solution density 1.2473Hot cell temperature 25CX= 1.27099/ml
- 5.14 Pour the 10-mL density check solutions into glass LSC vials labeled AZ-102C-A and AZ-102C-B and submit for analysis according to Tables 3 and 4 using an ASR.
- Assign the composited, concentrated AZ-102C sample the RPL number on the ASR indicated in 5.14. 5.15 Identify the RPL number here 02 - 00751 4 SR = 6280

³ The "C" indicates concentrated sample.

949.99 03:37 11/8/0, 949.19 09:13 11/9/01 (still wit) 934.89 13:45 11/12/01 (looko dry) p.K. fish 935.09 08:30 11/13/01

AnalyteMinimum Reportable Quantity, mg/LAl7.50E+01		Analysis Method/ Driver		
Ca 1.50E+02				
Cr	1.50E+01	-		
K	7.50E+01	ICP-AES ⁽¹⁾		
Li	2.3E+00			
Na	7.50E+01			
U	6.00E+02			
U	7.8E+02	Kin. Phosphorescence		
TOC	1.50E+03	Silver catalyze persulfate and furnace oxidation method		
TIC	1.50E+02	Silver catalyze persulfate and furnace oxidation method		
CI	3.00E÷02			
F	1.50E+02			
NO ₂	3.00E÷03	IC Anions ⁽¹⁾		
NO3	3.00E+03			
PO4	(+ 			
SO4	(1)			
total and free OH	1.70E+01	Titration		
Density	0.9 to 1.7 g/mL	Gravimetry		
Total Cs ⁽²⁾	1.5E+00	ICP-MS		
¹³⁷ Cs	5.00E-02	GEA ⁽¹⁾		
	alytes on an opportunistic basi and as a sum of ¹³³ Cs. ¹³³ Cs and ¹³⁷ Cs.			

Table 3. Minimum Reportable Quantities for Liquid Samples (supernatant/filtrate)

	· · · · · · · · · · · · · · · · · · ·	QC Acceptance Criteria			
Liquid Fraction	Analytical <u>Technique</u>	LCS %Recovery ^(a)	Spike %Recoverv ^(b)	Duplicate RSD ^(c)	
all requested analytes excep	nt Na ICP/AES	80 - 120%	75 - 125%	<15%	
<u>Na</u>	ICP/AES	80 - 120%	75 - 125%	<3.5%	
All requested analytes	ICP/MS	80 - 120%	70 - 130%	<15%	
All requested anions	IC	80 - 120%	75 - 125%	<15%	
U (total)	Kinetic Phosphorescence	80 - 120%	75 - 125%	<15%	
ОН ⁻	Potentiometric titration	80 - 120%	N/A	<15%	
TIC/CO3	Persulfate and combustion furnace	80 - 120%	75 - 125%	<15%	
тос	Silver catalyzed persulfate and combustion furnace	80 - 120%	75 - 125%	<15%	
Density		N/A	N/A	N/A	
	Radiochemical	Analytes/Methods			
¹³⁷ Cs	GEA	NP	N/A ^(d)	<15%	

Table 4. QC Parameters for AZ-102 Supernatant/Filtrate

Acronyms:

GEA ---- Gamma Energy Analysis

IC – Ion Chromatography

ICP/AES- Inductively Coupled Plasma Atomic Emission Spectroscopy

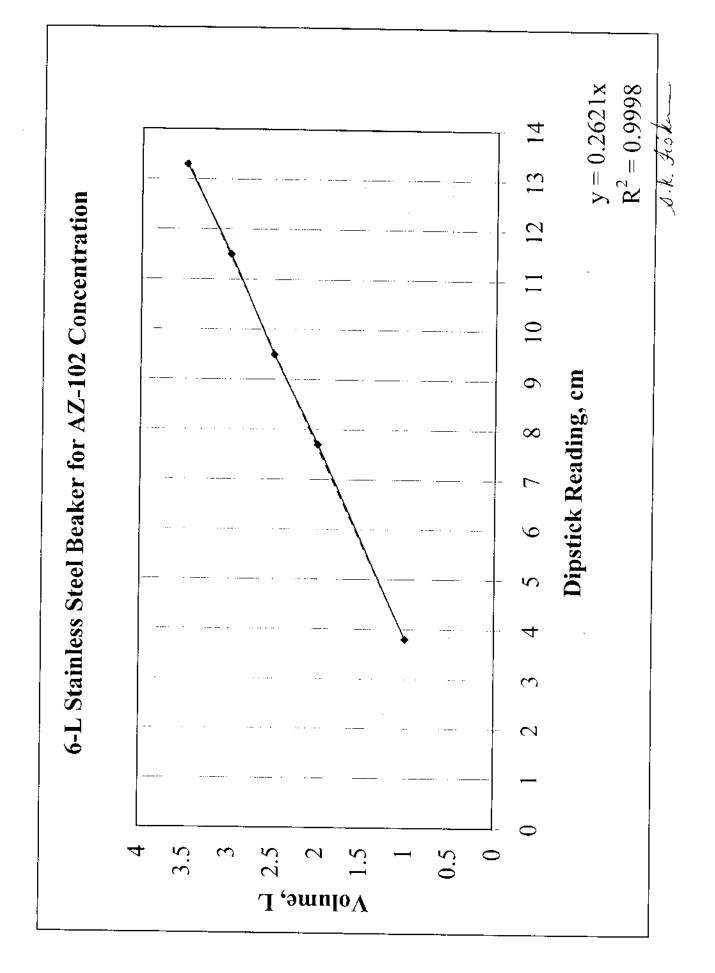
ICP/MS - Inductively Coupled Plasma Mass Spectroscopy

LCS - Laboratory Control Standard

N/A -- Not applicable

NP – Not performed

RSD - Relative Standard Deviation


Footnotes:

^(a) LCS = Laboratory Control Standard. This standard is carried through the entire method. The accuracy of a method is usually expressed as the percent recovery of the LCS. The LCS is a matrix with known concentration of analytes processed with each preparation and analyses batch. It is expressed as percent recovery; i.e., the amount measured, divided by the known concentration, times 100.

^(b) For some methods, the sample accuracy is expressed as the percent recovery of a matrix spike sample. It is expressed as percent recovery; i.e., the amount measured less the amount in the sample, divided by the spike added, times 100. One matrix spike is performed per analytical batch. Samples are batched with similar matrices. For other analytes, the accuracy is determined based on use of serial dilutions.

^(c) RSD = Relative Standard Deviation between the samples. Sample precision is estimated by analyzing replicates taken separately through preparation and analysis. Acceptable sample precision is usually <15% RSD if the sample result is at least 10 times the instrument detection limit. %RSD = (standard deviation /mean) x 100

^(d) The measurement is a direct reading of the energy and the sample matrix does not affect the analysis; therefore, a matrix spike is not required.

.

.

Addendum

Observations During Evaporation, Step 5.4

.

Date / Time	Temperature	Void Space Height, cm	Solution Height, cm	Observations]
p.m-10/31/01 3:37	43	10			
11/01/01 0630		~10	· · · · · · · · · · · · · · · · · · ·		-
11/01/01 0948	49.5	10.6	· · · · · · · · · · · · · · · · · · ·		-
11/01/01 1050	50.1	~ 10.8	· · · · · · · · · · · · · · · · · · ·		-
11/01/01 1140	48.1	11	·		-
11/01/01 1248	49.9	~ 11.2	·····		~ 11.75 DEEF
1/01/01 1348	49.1	~11.3		— — — — — — — — — —	7
Noilol 1948	48.6	11,5		class adutions	H.S DEEP
11/01/01 1600	49.3	11.75	11.25 DEPTH	dear polition	-
11/01/01 1640	48.7	~11,9		auplaa // file fait	-
11/02/01 0634	48.6	/3	10 DEPTH		-
1/02/01 0920	50,1	13,5	9.5 "		
11/02/01 1040	50.2	-13.75	19,25 "		1
11/02/01 15:10	49.4	14	9	thick apparance, pp to for	tran (
	· · · · · · · · · · · · · · · · · · ·		- /	ppu and ppts to	med.
11/03/01 11:55	50.4	NM		Liquid level 400 low	4
11/03/01 12:00	hot state	Auriad T	·	to All in a	-
		24	 ·	TC Cemeral in sull	-
			<u> </u>	re removed, impeller. nemoved, lid installed	1
			······································	on pol,	i
		·			-
	· · · · · ·			S.K. fick 11/3/01	-
				15/01	
			·		
				1	1
			··		
······					
				·	
		··			
			<u> </u>		
h					
L			· · · · ·		

Addendum

After evaporation was complete, analytical results for the as-received material were reported. The AZ-102-AR A and B averaged 2.8 M Na. This feed Na molarity results in nominally a 5.8 M Na product solution. The density was slightly high at 1.271 g/mL.

It is therefore necessary to dilute the feed slightly to produce a final solution density of 1.25 g/mL.

The two density samples AZ-102C-A and AZ-102C-B and the batch contact sample pulled (as delineated in TI-RPP-WTP-132) were combined back into the 2-L feed bottle. Then 200 mL of 0.01M NaOH solution was added to the AZ-102C and the solution mixed. Density samples were re-taken and the batch contact sample was re-taken.

$$\frac{3854 g}{1.143 g/mL} * \frac{2.8 M Na}{1618 mL} = 5.8 M Na$$

The 1618 mL was diluted to 1818 mL to produce a 5.2 M Na solution

AZ102C bottle tare 310.7
AZ102C (plus density samples and batch contact samples) 2363.7_{2}
AZ-102C plus 200-mL 0.01M NaOH256 4. / 1
AZ-102C net mass 2253.45

Determine the AZ-102C density in duplicate:

a) Tare a 10-mL vol. Flask <u>17.2013</u> Add AZ-102C from the bottle into the vol flask labeled AZ-102C-A Measure the gross flask mass <u>29.6360</u> Calculate the net mass <u>12.4347</u> Determine the solution density <u>1.2435</u> Hot cell temperature <u>26°C</u>

b) Tare a 10-mL vol. Flask <u>17.0350</u> Add AZ-102C from the bottle into the vol flask labeled AZ-102C-B Measure the gross flask mass <u>29.5733</u> Calculate the net mass <u>12.4883</u> Determine the solution density <u>1.2488</u> Hot cell temperature <u>26°C</u>

Pour the AZ-102C-A into a vial with the same label; repeat for AZ-102C-B.

Find volume : 2253.4g 1.246g/L = 1,808 mb a - 5.2 M Na Complete 11/05/01 S. K. fiskum

Appendix D

Target Analyte List, Minimum Reportable Quantities, and QC Acceptance Criteria

Test Specification 24590-PTF-TSP-RT-01-002 Tables A.1, B.2 and D.2

Appendix D: Target Analyte List, Minimum Reportable Quantities, and QC Acceptance Criteria

Test Specification 24590-PTF-TSP-RT-01-002 Tables A.1, B.2 and D.2

Batch Contacts with Cs Ion Exchange Resin

Note: Batch contacts are to be conducted prior to the small-scale column tests with the radioactive sample to verify that SuperLig 644 and SuperLig 639 resin exchange capacities are consistent with previous batches of these resins. Since these tests create wastes from listed wastes (AZ-101 and AZ-102) they in turn will be regulated as listed wastes and require appropriate disposal.

- 1. Personnel are to record the solution temperature to $\pm 1^{\circ}$ C for the batch contact test. Batch contact tests are to be conducted in duplicate.
- 2. Personnel are to record the production lot number for the resin samples used in the batch contacts. The resin samples used in the batch contacts are to be from the same production lot as the resin used in the column tests.
- 3. Personnel are to analyze the AZ-101 feed supernate solution to determine the density, and concentrations of Na, K, free hydroxide, nitrate, fluoride, chloride, nitrite, Cs¹³⁷, pertechnetate, and total Tc⁹⁹. The minimum reportable quantity (MRQ) for each analyte is provided in Table A.1. SuperLig 644 and 639 resins have exhibited exchange affinity for these analytes.

Analyte	MRQ (µg/mL)
Na or K	7.5E+01
Cs	1.0 E+01
Al	7.5E+01
Ca	1.5E+02
Free Hydroxide	1.7E+01
Nitrate	3.0E+03
Nitrite	3.0E+03
Chloride	3.0E+02
Fluoride	1.5E+02
Radionuclide	MRQ (µCi/mL)
Cs ¹³⁷	1.0E-02
Pertechnetate and Total Tc ⁹⁹	3.0E-03

Table A.1 Analyte Minimum Reportable Quantity

- 4. Personnel are to analyze the AZ-102 concentrated supernate solutions to determine the density and concentrations of analytes listed on Table A.1. Radionuclide analysis is for ¹³⁷Cs. The MRQ for each analyte is provided in Table A.1.
- Personnel are to contact 0.1±0.01-g of SuperLig 644 resin and 0.1±0.01-g of SuperLig 639 resin with 10±0.1-mL of the solutions listed in Table A.2. Batch contacts are to be conducted for a minimum of 24 hr.

d. Personnel are to collect all AZ-102 cesium eluate, composite the eluate, and analyze the eluate to determine the concentrations of the analytes listed in Table B.2. Analytical requirements for the AZ-102 tests are different than for the AZ-101 tests.

Analyte	MRQ (µg/mL)
Al	7.5E+01
Ca	1.5E+02
Cr	1.5E+01
К	7.5E+01
Li	4.0E+00
Na	7.5E+01
U	6.00E+02
TOC	1.5+E03
TIC [#]	7.5E+01
Cl*	1.0 E+01*
F	1.5E+02
Nitrate	3.0E+03
Nitrite	3.0E+03
Phosphate	3.0E+03
Sulfate	3.0E+03
Total and free OH	1.70E+01
Density	0.9 to 1.7 g/mL
Total Cs	1.5E+00
Radionuclide	MRQ (µCi/mL)
Cs ¹³⁷	1.0E-02
Sb-125	

Table B.2. Analytical Requirements for AZ-102 Cs Column Effluents and Eluents*

* Note the MRQ for the Chloride.

Note: Do not perform the TIC on the AZ-102 eluate.

- e. Personnel are to save the cesium eluate solution from both tests for at least 6 months. Personnel are to save the AZ-101 cesium eluate solutions from AZ-101 for combination with HLW sludge for vitrification tests.
- 9. After eluting and rinsing the lead cesium column, personnel are to regenerate the lead column as follows.
- a. Transfer through the lead column 2-total apparatus volumes of 0.25M sodium hydroxide solution at 1 BV/hr.
- b. Drain some of the excess liquid from atop the column, leaving approximately 1-BV of sodium hydroxide solution atop the resin bed. Composite and analyze the regeneration solution to determine the concentrations of ¹³⁷Cs, sodium, and hydroxide in the regeneration solution. Measure the residual concentration of cesium in the columns after elution and regeneration.
- c. Personnel are to retain the solution from regeneration of the column.

		0	C Acceptance Criteria	
Liquid Fraction	Analytical Technique	LCS %Recovery ^(a)	Spike %Recovery ^(b)	Duplicate RSD ^(c)
Ag, Al, Bi, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Nd, Ni, P, Pb, Pd, Rh, Ru, S, Sr, Si, Ti, U, Zn, Zr	ICP/AES	80 - 120%	75 - 125%	<15%
Na	ICP/AES	80 - 120%	75 - 125%	<3.5%
As, B, Ba, Be, Ce, Co, La, Li, Mo, Pr, Rb, Sb, Se, Ta, Te, Th, Tl, V, W, mass unit 90 ^(d)	ICP/MS	80 - 120%	70 - 130%	<15%
$Cl^{-}, F^{-}, NO_{2}^{-}, NO_{3}^{-}, PO_{4}^{-3}, SO_{4}^{-2}$	IC	80 - 120%	75 - 125%	<15%
CN ⁻	Distillation Colorimetric	80 - 120%	75 - 125%	<15%
Cs ⁽ⁱ⁾ , Eu ⁽ⁱ⁾	ICP/MS	N/A	N/A	N/A
Hg	CVAA	80 - 120%	75 - 125%	<15%
NH ₃ /NH ₄ ⁺	ISE, standard additions		75 - 125%	<15%
OH-	Potentiometric titration		N/A	<15%
TIC/CO ₃	Persulfate and combustion furnace	80 - 120%	75 - 125%	<15%
TOC	Silver catalyzed persulfate and combustion furnace	80 - 120%	75 - 125%	<15%
Y	Derived from calculation	N/A	N/A	N/A
³ H	Separation/liq. Scintillation	80 - 120%	N/A ^(e)	<15%
¹⁴ C	Separation/liq. Scintillation	80 - 120%	75 - 125%	<15%
⁶⁰ Co ^(f)	GEA	NP	N/A ^(g)	<15%
⁷⁹ Se	Liq. Scintillation	NP	N/A ^(e)	<15%
⁹⁰ Sr	Isotopic specific separation/beta count	75 - 125%	N/A ^(e)	<15%
⁹⁹ Tc	ICP/MS	80 - 120%	70 - 130%	<15%
⁹⁹ Tc (pertechnetate)	Separation/beta count	80 - 120%	70 - 130%	<15%
¹²⁵ Sb	GEA	to be obtained		
¹²⁶ Sn	ICP/MS	80 - 120%	70 - 130%	<15%
129I	ICP/MS or Separation/GEA	NP	N/A ^(g)	<15%
¹³⁷ Cs	GEA	NP	N/A ^(g)	<15%
¹⁵² Eu ^(f)	GEA	NP	N/A ^(g)	<15%
¹⁵⁴ Eu ^(f)	GEA	NP	N/A ^(g)	<15%
¹⁵⁵ Eu ^(f)	GEA	NP	N/A ^(g)	<15%
²³¹ Pa	ICP/MS	Developed by Labora		1070
²³³ U	ICP/MS	90 - 110%	75 - 125%	<15%
²³⁴ U	ICP/MS	90 - 110%	75 - 125%	<15%
²³⁵ U	ICP/MS	90 - 110%	75 - 125%	<15%
²³⁶ U	ICP/MS	90 - 110%	75 - 125%	<15%
²³⁸ U	ICP/MS	80 - 120%	70 - 130%	<15%
²³⁷ Np ^(e)	ICP/MS	90 - 110%	75 - 125%	<15%
Total Pu	Sum of Isotopes	N/A	N/A	N/A
²³⁸ Pu, ²³⁹ Pu, ²⁴⁰ Pu ^(h)	Separation/AEA	NP	N/A N/A ^(e)	<15%
Pu , Pu , Pu , Pu	ICP/MS	80 - 120%	70 - 130%	<15%
²⁴¹ Am	Separation/AEA	NP	N/A ^(e)	<15%
^{Am} ²⁴² Cm		NP	N/A ^(e)	
²⁴³ Am/Cm	Separation/AEA			<15%
^{243 + 244} Cm	ICP/MS	90 - 110%	75 - 125%	<15%
	Separation/AEA	NP	N/A ^(e)	<15%
Total Alpha ^(h)	Proportional counter	70 - 130%	70 - 130%	<15%
Total Beta	Beta counting	70 - 130%	70 - 130%	<15%
Total Gamma	GEA-Sum of isotopes	N/A	N/A	N/A

Table D.2.	Quality Control Parameters for Pretreated LAW Analysis
------------	--

		Tab	ble D.2 (Con't)		Appendices	
Den	sity		N/A	N/A	N/A	
	6 dissolved solids	Gravimetric	80 - 120%	N/A	<21%	
GEA C CP/	AA – Cold Vapor Ato A – Gamma Energy – Ion Chromatogr /AES – Inductively Cou /MS – Inductively Cou C – Laboratory Con – Not applicable – Not performed O – Relative Standar	mic Absorption Analysis aphy pled Plasma Atomic Em pled Plasma Mass Spect rrol Standard				
		percent recovery of the L aration and analysis batch centration, times 100. mple accuracy is express amount measured less th	CS. The LCS is a mat h. It is expressed as per sed as the percent recor- ne amount in the sample	rix with known conc ercent recovery; i.e., very of a matrix spik le, divided by the spi	entration of analytes the amount measured, the sample. It is expressed as the added, times 100. One	
c)	RSD = Relative Standard separately through prepar	ccuracy is determined based on use of serial dilutions. SD = Relative Standard Deviation between the samples. Sample precision is estimated by analyzing replicates taken eparately through preparation and analysis. Acceptable sample precision is usually <15% RSD if the sample result is at ast 10 times the instrument detection limit. RSD = (standard deviation of the mean/mean) x 100				
(d)	ICP-MS mass unit 90 inc	udes ⁹⁰ Sr, ⁹⁰ Y, and ⁹³ Zr.				
(e)		The result generated usi			analyte loss during sample of the method on the matrix.	
(f)	An extended counting tin quantity for ⁶⁰ Co and ¹⁵² E	e in the presence of high u, ¹⁵⁴ Eu, ¹⁵⁵ Eu.	n ¹³⁷ Cs activity may be	required to achieve	the minimum reportable	
(g)	The measurement is a dir spike is not required.	ect reading of the energy	and the sample matrix	does not affect the	analysis; therefore, a matrix	
(h) 1	isotopes account for great tank waste (Esch 1997a, ²⁴² Cm, ²⁴³ Am, and ²⁴³⁺²⁴⁴	er than 95% of the alpha 1997b, 1997c . Addition Cm) are not used to calcu	emitting TRU activity al isotopes that are def alate total TRU activity	based on previous ined as alpha-emitting because the MDAs	nitting TRU. The selected analysis of Phase I candidat ng TRU (e.g., ²³⁷ Np, ²⁴² Pu, for these isotopes are large elow the MDA. Note that	

in comparison with the envelope limits and it is expected that their concentrations are well below the MDA. Note that ²⁴¹Pu is a beta-emitting TRU whose analysis, along with ²⁴²Cm, is required specifically for class C waste determination.

(i) Total Cs and Eu are sums of all isotopes, therefore spiking and LCS does not apply.

Appendix E

ICP-AES Laboratory Control Sample and Matrix Spike Failures – AZ-102C Solids

Appendix E: ICP-AES Laboratory Control Sample and Matrix Spike Failures – AZ-102C Solids

The Laboratory Control Sample (LCS) processed with the AZ-101C Solids failed to meet the quality control acceptance criterion of 80% to 120% for K, Na, and B. The Matrix Spike failed to meet the QC acceptance criterion of 75% to 125% for K and B, and the Na recovery was not measurable since the sample concentration greatly exceeded the spiking concentration. The reason for each of these failures is described below.

Although the Quality Assurance Plan required re-preparation and re-analysis when the LCS fails, a decision was made not to reanalyze the AZ-102C Solids based on the following.

- a) All other QC samples analyzed for K, Na, and B were acceptable.
- b) The reasons for the failures could be determined.
- c) The failures were not systematic; i.e., the LCS for K, Na, and B did not fail for the AZ-102 as-received analysis or the AZ-102C liquid analysis.
- d) The measurement of the AZ-102C solids was performed on an opportunistic basis.
- e) The AZ-102 mass balance was reasonably good, based on the AZ-102 as-received, AZ-102C Liquid, and AZ-102C Solids analysis, and the AZ-102C Solids made up only about 1% of the mass.
- f) The AZ-102C solids dose levels were significantly high, and additional exposure to staff was not warranted based on data needs.

Potassium Failure Investigation

The LCS and MS were prepared from the same multi-element standard solutions (PBNL-QC-1 and PBNL-QC-2 from Inorganic Ventures, Inc.). The multi-element standard solutions were used over about a 3-month period and were used for the AZ-102 as-received, AZ-102C Liquid, and AZ-102C Solids ICP-AES analyses. The as-received and Liquid analyses were conducted within 1 month of the procurement of the standards, whereas the Solids analysis was conducted about 3 months after procurement. Only the LCS and MS associated with the AZ-102C Solids failed.

Just before preparing the LCS and MS for the AZ-102C Solids analysis, an LCS K failure (~30% recovery) on another batch of samples using the same multi-element solutions prompted an investigation. Based on the investigation, the multi-element standard PBNL-QC-2 was determined to have deteriorated and was removed from service. Unfortunately, this was not in time to restrict its use for the AZ-102C Solids analysis.

During the investigation, the laboratory analyzed the PBNL-QC-2 solution multiple times with an average recovery of about 35% of the certified concentration. The vendor was notified and conducted an independent evaluation of archived material. The vendor measured a K concentration of 1725 μ g/mL in the archive, where the certified value was 5000 μ g/mL. This evaluation was documented on the vendor's "Inquiry Report Form CL# 4359 (02/04/02)". A copy of this form and the laboratory's results on PBNL-QC-2 after 3 months is included in the ICP-AES system file.

If 1725 μ g/mL is used as the basis for the K LCS and MS calculation, the LCS recovers at 100% and the MS at about 70%. However, the 1725 μ g/mL is not a certified value and cannot be used for reporting the LCS and MS recoveries.

Sodium and Boron Failure Investigation

The failure of the LCS and MS for Na and B was attributed to blank contamination from processing the AZ-102C Solids in glass using procedure PNL-ALO-129, which requires nitric acid and hydrochloric acid in the digestion process. This procedure typically requires non-glass digestion vessels (e.g., Teflon, polyethylene, etc.) whenever Na, Si, and B (major glass components) are analytes of interest. However, for the AZ-102C Solids acid-digestion, glass-digestion vessels were used for preparing the standards and samples, primarily since the intent of the analysis was to identify the major components of the precipitated solids, and any blank contamination would have a minimal effect.

The Na and B (and Si, which was not identified as an analyte of interest) concentrations in the processing blank were 1.5 to 3.5 times greater than the estimated quantitation limits (EQL). Although the blank contributions were subtracted from the QC samples, the excessively high B and Na LCS recoveries and the B matrix spike recovery were due to variability from single process blank analysis.

Another contributing factor was the result of processing standard solutions containing HF (0.7% added in PBNL QC 2) in glass-digestion vessels. Since the absolute effect of the HF on the glass vessels was likely variable and cannot be quantified, it was not possible to correct the recoveries to account for this effect. Hence the failure was not a systematic problem.

Distribution

No. of Copies

OFFSITE

No. of Copies

ONSITE

2	Savannah River Technology Center			
	Jim Marra			
	PO Box 616, Road 1			
	Building 773-43A			
	Aiken, SC 29808			

Harold Sturm PO Box 616, Road 1 Building 773-A Aiken, SC 29808

20	Battelle Pacific Northwest Division			
	S. K. Fiskum (5)	P7-22		
	O. T. Farmer	P8-50		
	L. R. Greenwood	P7-22		
	E. D. Jenson	P7-22		
	B. M. Oliver	P7-22		
	R. L. Russell	K6-24		
	C. Z. Soderquist	P7-22		
	M. J. Steele	P7-22		
	R. G. Swoboda	P7-22		
	J. J. Toth	H4-02		
	M. W. Urie	P7-22		
	J. J. Wagner	P7-22		
	D. E. Kurath	P7-28		
	Project File	P7-28		
	Information Release (2)	K1-06		

7 <u>Bechtel National, Inc.</u>

S. Barnes	H4-02
W. Graves	H4-02
S. Jenkins	H4-02
R. Longwell	H4-02
R. Peterson	H4-02
R&T Manager	H4-02
WTP PDC Coordinator	H4-02