PNWD-3267 WTP-RPT-041, Rev 0

Small Column Ion Exchange Testing of SuperLig® 644 for Removal of ¹³⁷Cs from Hanford Waste Tank 241-AZ-102 Concentrate (Envelope B)

S. K. Fiskum S. T. Arm D. L. Blanchard, Jr

April 2003

WTP Project Report

Prepared for Bechtel National, Inc. under Contract No. 24590-101-TSA-W0000-0004

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

PNWD-3267 WTP-RPT-041, Rev 0

Small Column Ion Exchange Testing of SuperLig® 644 for Removal of ¹³⁷Cs from Hanford Waste Tank 241-AZ-102 Concentrate (Envelope B)

S. K. Fiskum S. T. Arm D. L. Blanchard, Jr

April 2003

Test specification: 24590-PTF-TSP-RT-01-002, Rev. 1 Test plan: TP-RPP-WTP-111, Rev. 0 Test exceptions: None R&T focus area: Pretreatment Test Scoping Statement(s): B-44

Battelle—Pacific Northwest Division Richland, Washington, 99352

COMPLETENESS OF TESTING

This report describes the results of work and testing specified by Test Specification 24590-PTF-TSP-RT-01-002, Rev. 1 and Test Plan TP-RPP-WTP-111, Rev. 0. The work and any associated testing followed the quality assurance requirements outlined in the Test Specification/Plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

Gordon H. Beeman, Manager WTP R&T Support Project Date

G. Todd Wright, Manager Research and Technology

Date

Summary

The U. S. Department of Energy is tasked with the disposition of high-level radioactive waste stored at the Hanford site. The waste is to be vitrified following specific pretreatment processing, separating the waste into a small-volume high-level waste fraction and a large-volume low-activity waste fraction. The River Protection Project-Waste Treatment Plant (RPP-WTP) baseline process for ¹³⁷Cs removal from Hanford high-level tank waste is ion exchange. The current pretreatment flowsheet includes the use of Cs-selective, elutable, organic ion exchanger SuperLig[®] 644 (SL-644) material for Cs removal from the aqueous waste fraction. This material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. SL-644 has been shown to be effective in removing Cs from a variety of Hanford tank wastes.

Battelle—Pacific Northwest Division (PNWD) was contracted to perform Cs ion exchange studies under Contract 24590-101-TSA-W000-0004. The Cs ion exchange activities are further defined in Appendix C of the *Research and Technology Plan*^(a) under Technical Scoping Statement B-44. These studies are to verify design and operating parameters for plant-scale ion exchange systems. Test results will also be used to validate ion exchange models.

Objectives

Previous testing conducted at the Savannah River Technology Center with Hanford Tank 241-AZ-102 (AZ-102) waste resulted in poor ion exchange performance. The poor load performance was attributed to the possibility of *in situ* precipitation of metal hydroxides on the ion exchanger and/or the low ionic strength of the supernatant combined with the high Cs concentration. Because the low ionic strength (Na molarity equal to 2.77) of the AZ-102 supernatant was suspected to contribute to the poor Cs ion exchange performance, the AZ-102 was concentrated to nominally 5 M Na for performance testing.

The Cs ion exchange test objectives were to develop load and elution breakthrough profiles using 241-AZ-102 concentrated to 4.6 M Na (AZ-102C); produce and characterize the Cs eluate; remove ¹³⁷Cs from the AZ-102C to meet low-activity waste (LAW) vitrification criteria; and develop batch-distribution coefficients for AZ-102C. The final effluent was to contain <0.322 μ Ci ¹³⁷Cs/mL, based on a 5-wt% waste Na₂O loading in the waste glass.^(b) All testing objectives were met.

Conduct of Test

This report summarizes testing of the SL-644 in batch-contact studies and in a dual small-column system. The test matrix was Hanford tank waste 241-AZ-102 (Envelope B) concentrated by evaporation to 4.6 M Na, 1.246 g/mL (26°C), and 2.00E+3 μ Ci ¹³⁷Cs/mL. Batch contacts were performed with the waste at three Cs concentrations at a phase ratio of 100 (liquid volume to exchanger mass) with SL-644. The ion exchange processing system was composed of a lead and lag column with resin bed volumes

⁽a) S. Barnes, R. Roosa, and R. Peterson. 2002. Research and Technology Plan, 24590-WTP-PL-RT-01-002, Rev. 1.

⁽b) The minimum waste Na₂O loading is 5 wt% for Envelope B tank waste; the maximum waste Na₂O loading is 5.5 wt%, corresponding to $0.292 \mu \text{Ci/mL}^{137}$ Cs.

(BV) of 10.2 mL ($L/D^{(a)} = 4.2$) during the conditioning phase with 0.25 M NaOH, and 9.5 mL (L/D = 3.9) during the AZ-102C loading phase. Proper functioning of the ion exchange apparatus and resin beds had initially been tested with an AW-101 simulant. The resin beds had then been used to process 1.2 L of AP-101 diluted feed (an Envelope A waste feed) and 0.75 L of AN-102 (an Envelope C waste feed) combined with wash and leachate solutions of C-104 solids. The AZ-102C waste volume processed was 1.07 L, corresponding to 105 BVs. All ion exchange process steps were tested, including resin-bed preparation, loading, feed displacement, water rinse, elution, eluant rinse, and resin regeneration.

Results and Performance Against Objectives

The batch-contact performance data are summarized in Table S.1. The Cs λ value (column distribution ratio) represents a measure of the effective capacity of the SL-644 resin—the higher the λ value, the higher loading capacity. The batch-contact tests resulted in a predicted Cs distribution coefficient (K_d) of 160 mL/g in the feed condition (Na/Cs mole ratio of 8.8 E+3). Using a bed density of 0.241 g/mL in the 0.25 M NaOH regeneration condition, the Cs λ value is predicted to be 38 BVs.

Flow	Interpola Breakth	ted Cs 50% rough, BV			K _d , mL/g	
rate, BV/h	Lead Column	Lag Column	Composite DF ⁽²⁾	Maximum DF ⁽³⁾	(feed condition)	Predicted Cs λ, BV
1.37	93	NM ⁽¹⁾	1.04 E+5	3.7 E+5	160	38
 NM = not measured; the AZ-102C feed did not break through the lag column. The DF was calculated by dividing the feed Cs concentration by the composite effluent Cs concentration, based on the total of 105 BVs of feed. The maximum DF was obtained by dividing the feed Cs concentration by the lowest sample Cs concentration (in this case, this was from the lead column; the lag column samples were slightly 						

 Table S.1.
 Summary of Performance Measures

The ion exchange column performance of SL-644 with AZ-102 waste feed was much better than previously observed in a similar test of SL-644 with AZ-102 at the Savannah River Technology Center.^(b) The improved performance may be a result of the concentration of AZ-102 (during which solids were observed to precipitate), differences in the resin batches, storage/process histories, or a combination of these factors. The 50% Cs breakthrough from column testing was measured for the lead column at 93 BVs. No breakthrough was observed from the lag column. The decontamination factor (DF) for ¹³⁷Cs was based on the ¹³⁷Cs concentration in the feed relative to the ¹³⁷Cs concentration in the composite effluent sample. The composite DF for ¹³⁷Cs was 1.04 E+5. The maximum DF, 3.7 E+5, measured the best performance that could be expected from this column system. It was calculated relative to the sample containing the lowest ¹³⁷Cs concentration, i.e., the third sample from the lead column taken after loading 14.9 BVs. The effluent ¹³⁷Cs concentration was 1.92 E-2 μ Ci/mL. The LAW vitrified waste

⁽a) L/D, equal to length over diameter, is the resin-bed aspect ratio.

⁽b) Hassan NM, WD King, DJ McCabe, and ML Crowder. 2001. Small-Scale Ion Exchange Removal of Cesium and Technetium from Envelope B Hanford Tank 241-AZ-102, WSRC-TR-2000-00419, SRT-RPP-2000-00036, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

form must be no greater than 0.3 Ci/m³; this limit can be converted to a ¹³⁷Cs maximum concentration of 0.32 μ Ci ¹³⁷Cs/mL in the ion exchange effluent.^(a) The composite effluent ¹³⁷Cs concentration was below the contract limit.

The lead column was eluted with 0.5 M HNO₃ to C/C_o of 1% in 11 BVs with >94% of the ¹³⁷Cs contained in 4 BVs of eluant. The peak ¹³⁷Cs C/C_o value was 71 (based on 1-BV collection increments of nominally 10-mL). The ¹³⁷Cs concentration in the composite eluate was 1.45 E+4 μ Ci/mL, corresponding to a C/C_o of 7.23.

QA Requirements

PNWD implemented the RPP-WTP quality requirements by performing work in accordance with the quality assurance project plan (QAPjP) approved by the RPP-WTP Quality Assurance (QA) organization. This work was conducted to the quality requirements of NQA-1-1989 and NQA-2a-1990, Part 2.7 as instituted through PNWD's *Waste Treatment Plant Support Project Quality Assurance Requirements and Description* (WTPSP) Manual, and to the approved Test Plan, TP-RPP-WTP-111.

PNWD addressed verification activities by conducting an Independent Technical Review of the final data report in accordance with Procedure QA-RPP-WTP-604. This review verified that the reported results were traceable, that inferences and conclusions were soundly based, and that the reported work satisfied the Test Plan objectives.

Issues

The composite regeneration effluent solution was slightly acidic. As such, it would be inadequate for recycle as a feed-displacement solution.

⁽a) The conversion requires the following assumptions: Envelope B LAW will contain 5 wt% Na₂O, all Na comes from the tank waste, the glass density is 2.66 g/mL, and the waste Na concentration is 4.6 M. For maximum waste loading, 5.5 wt% Na₂O, the maximum ¹³⁷Cs concentration is 0.29 μCi/mL.

Terms and Abbreviations

AP-101DF	AP-101 tank waste diluted to 5 M Na
AN-102/C-104	AN-102 tank waste mixed with wash and leachate solutions from C-104 solids
AZ-102C	AZ-102 tank waste supernate concentrated to 4.6 M Na
ASR	analytical service request
AV	apparatus volume
BV	bed volume
C/C _o	analyte concentration in column effluent divided by analyte concentration in feed
СМС	chemical measurement center
DF	decontamination factor
DI	deionized
F-factor	mass of dry ion exchanger divided by mass of wet exchanger
FMI	Fluid Metering, Inc., Syosset, NY
GEA	gamma energy analysis
HP	hot persulfate
IBC	IBC Advanced Technologies, Inc., American Fork, Utah
IC	ion chromatography
ICP-AES	inductively coupled plasma-atomic emission spectrometry
ICP-MS	inductively coupled plasma-mass spectrometry
IDL	instrument detection limit
λ	column distribution ratio
LAW	low-activity waste
L/D	length over diameter ratio
М	molarity, moles/liter
meq	milli-equivalents
MRQ	minimum reportable quantity
NMRQ	no minimum reportable quantity
NPT	national pipe thread
PNWD	Battelle—Pacific Northwest Division

1 SD particle size distribution	
ρ dry bed density	
RPL Radiochemical Processing Laboratory	r
RPP-WTP River Protection Project-Waste Treatm	nent Plant
SRTC Savannah River Technology Center	
TC total carbon	
TIC total inorganic carbon	
TIMS thermal ionization mass spectrometry	
TOC total organic carbon	

Contents

Sum	mary	·	iii
Tern	ns and	d Abbreviations	vii
1.0	Intro	oduction	1.1
2.0	Expe	erimental	2.1
	2.1	SL-644 Resin	2.1
	2.2	AZ-102 Feed	2.2
	2.3	Batch Contacts	2.4
	2.4	Column Run Experimental Conditions	2.6
	2.5	Column Sampling	2.10
	2.6	Sample Analysis	2.10
3.0	Resi	ults and Discussion	3.1
	3.1	Confirmation of SL-644 Efficacy for Batch Contacts Using AW-101 Simulant	3.1
	3.2	AZ-102C Batch-Contact Results	3.1
	3.3	Column Test	3.4 3.4 3.9
		3.3.3 Regeneration	3.13
		3.3.4 Activity Balance for ¹⁵ Cs	3.14
40	Con	clusions	4 1
5.0	Refe	erences	5 1
5.0 Ann	andiv	A: General Calculations	J. I
лрр	1.		A.1
App	endix	B: Batch-Contact Calculations	B.1
App	endix	C: Column-Testing Calculations	C.1
App	endix	D: Analytical Data	D.1
App	endix	E: Cesium Ion Exchange and Batch Contacts Testing Personnel	E.1

Figures

Figure 2.1. Cesium Ion Exchange Column System	2.7
Figure 3.1. ¹³⁷ Cs Distribution Coefficients (K _d) for SL-644 (010319SMC-IV-73 212- to 425- μ m Particle-Size Distribution [PSD]) New Resin and One-Year Aged Resin in AW-101 Simulant (T = 23°C)	3.2
Figure 3.2. ¹³⁷ Cs Distribution Coefficients (K_d) for SL-644 (AZ-102C) (T = 23 to 27°C)	3.3
Figure 3.3. Estimated ¹³⁷ Cs λ Values for SL-644 (AZ-102C) (T = 23 to 27°C)	3.4
Figure 3.4. ¹³⁷ Cs Breakthrough Curves for AZ-102C Tank Waste, Probability Plot	3.6
Figure 3.5. AZ-102C ¹³⁷ Cs Elution and Eluant Rinse of the Lead Column	3.10
Figure 3.6. Relative BVs For AZ-102C Processing (relative to regeneration condition, 10.2 mL)	3.17
Figure 3.7. Comparison of BVs of the Lead and Lag Columns for all Test Cycles (SL-644 Batch 010319SMC-IV-73, 212- to 425-µm; solid points indicate Column 1, hollow points indicate	
Column 2)	3.18

Tables

Table S.1. Summary of Performance Measures	iv
Table 2.1. Dry Particle-Size Weight-Percent Distribution of Various Batches of As-Received SL-644	2.1
Table 2.2. SL-644 Properties	
Table 2.3. Composition of AZ-102C (Envelope B)	
Table 2.4. Initial Cs Concentrations in the AZ-102C Solutions Used for the Batch K_d Tests	
Table 2.5. Experimental Conditions for AZ-102C Ion Exchange	
Table 2.6. Sampling Interval and Analyses	2.10
Table 3.1. Dry Bed Density	
Table 3.2. Selected Decontamination Factors for ¹³⁷ Cs from AZ-102C	
Table 3.3. AZ-102C Cs-Decontaminated Product	
Table 3.4. Inorganic and Organic Analytes in the Lead Column Eluate Composite	3.11
Table 3.5. Select Analyte Recoveries in Eluate	3.12
Table 3.6. Composition of Regeneration Solution	3.13
Table 3.7. Activity Balance for ¹³⁷ Cs	3.14
Table 3.8. SL-644 BVs	3.15

1.0 Introduction

The U. S. Department of Energy plans to vitrify tank wastes at the Hanford Site in preparation for permanent disposal. Before vitrification, tank wastes will be divided into low-activity and high-level fractions through specific pretreatment processes. The pretreatment flowsheet for the Hanford tank wastes includes the use of SuperLig[®] 644 (SL-644) material for ¹³⁷Cs removal from the aqueous waste fraction. The SL-644 is a Cs-selective, organic ion exchanger and has been shown to be effective in removing Cs from a variety of Hanford tank wastes (Hassan, McCabe, and King 2000; Hassan et al. 2000; Hassan et al. 2001; King, Hassan, and McCabe 2001; Kurath, Blanchard, and Bontha 2000a; Kurath, Blanchard, and Bontha 2000b; Fiskum, Blanchard, and Arm 2002a and b; Fiskum et al. 2002a). The SL-644 has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT.

Previous testing conducted at Savannah River Technology Center (SRTC) with Hanford tank 241-AZ-102 (AZ-102) waste resulted in poor ion exchange performance. The poor load performance was attributed to the possibility of *in situ* precipitation of metal hydroxides on the ion exchanger and/or the low ionic strength of the supernatant combined with the high Cs concentration. Because the low ionic strength (Na molarity equal to 2.77) of the AZ-102 supernatant was suspected to contribute to the poor Cs ion exchange performance, the AZ-102 was concentrated to nominally 5 M Na for performance testing.

This report summarizes batch-contact studies of SL-644 and dual small-column testing of the SL-644 ion exchange material. The test matrix for the small-column ion exchange and SL-644 batch contact was AZ-102 Hanford tank waste, concentrated to 4.6 M Na by evaporation (hereafter referred to as AZ-102C). Approximately 1.07 L of AZ-102C was processed through the ion exchange column system. The ion exchange process steps tested include resin-bed preparation, loading, feed displacement, water rinse, elution, and resin regeneration.

The objectives of this work were to:

- develop distribution coefficient (K_d) values as a function of Na/Cs molar concentration for SL-644 in the AZ-102C matrix
- demonstrate the ¹³⁷Cs decontamination of Envelope B tank waste sample AZ-102C and provide a Cs-decontaminated sample for downstream process testing (i.e., batch-contact studies for ⁹⁹Tc removal and ⁹⁹Tc measurements using a prototype Tc monitor)
- develop Cs load and elution profiles
- demonstrate the effectiveness of all SL-644 ion exchange process steps, including loading, feed displacement, deionized water (DI) washing, elution, and resin regeneration.^(a)

⁽a) Test Specification: "Tank 241-AZ-101 and 241-AZ-102 Ion Exchange Test Specification," 24590-PTF-TSP-RT-01-002, Rev. 1, James Toth, Bechtel National Inc., October, 2001 and Test Plan "Tank 241-AZ-101 and 241-AZ-102 Waste Sample Ion Exchange Testing," TP-RPP-WTP-111, Rev. 0, D. L. Blanchard, November 5, 2001.

2.0 Experimental

This section describes materials, experimental approach to batch-contact tests and column tests, sample analyses, and calculations. Experimental data were recorded in specific test instructions (as identified) and analytical reports. All raw data are maintained in the Project File 42365.

2.1 SL-644 Resin

The SL-644 was obtained from IBC production batch number 010319SMC-IV-73 prepared at IBC on 3/19/01. This material batch exhibited a black-red appearance peppered with light-brown specks. It was received from the vendor as a dry, granular, free-flowing material in a 1-L polyethylene bottle with an approximately 32% gaseous headspace. There was no indication that this headspace was filled with nitrogen or other inert gas, and no attempt was made to exclude air during storage. The as-received resin form was not identified by the vendor; it was found to contain potassium salts (Fiskum, Blanchard, and Arm 2002a). Before sampling SL-644 from the IBC-supplied plastic bottle, the bulk resin bottle was turned several times to produce a well-mixed material. Sub-samples were removed immediately after mixing. The sieve results of the resin batch were previously reported (Fiskum, Blanchard, and Arm 2002a) and are reproduced in Table 2.1. The dry-sieved fraction incorporating the 212- to 425-µm particle sizes was used in the ion exchange columns.^(a) This fraction represents 22 wt% of the as-received material. The average particle size corresponded to 540-µm in diameter, expanded in 3 M NaOH-2 M NaNO₃-0.1 M KNO₃ (Fiskum, Blanchard, and Arm 2002a). As a general rule, the column diameter should be 20 times greater than the resin particle diameter to minimize wall effects (Korkisch 1989, p. 39). Given the diameter of the column at 1.46 cm, the column diameter was 27 times the average diameter of the 212- to 425-µm dry-sieved resin particles expanded in caustic solution. For comparison with previous reports, the SL-644 dry-sieved particle-size distribution used for AZ-102 testing at SRTC (Hassan et al. 2001) is also shown in Table 2.1.

	Particle Size	010319SMC-IV-73	981020mb48-563				
Sieve Size ⁽¹⁾	(µm)	Wt% (PNWD)	Wt% (SRTC)				
18	>1000	0.06	not analyzed				
30	600-1000	37.27	57.33				
40	425-600	38.23	23.73				
50	300–425	18.01	13.71				
70	212-300	6.08	5.12				
100	150-212	0.26	0.11				
140	106–150	0.06	not analyzed				
>140	<106	0.03	not analyzed				
(1) U. S. standar	(1) U. S. standard sieve size corresponds to ASTM E-11 specification.						

Table 2.1. Dry Particle-Size Weight-Percent Distribution of Various Batches of As-Received SL-644

⁽a) This particle size distribution (PSD) was used successfully in AW-101 simulant testing. It is not representative of the PSD that will be used in the plant.

Properties of the 212- to 425-µm 010319SMC-IV-73 SL-644 resin have been previously reported (Fiskum, Blanchard, Arm 2002a), and selected properties are reproduced in Table 2.2. The F-factor is the ratio of the dry mass of exchanger to the initial mass of the exchanger and was determined at the same time the batch-contact samples and column resin fractions were weighed. The F-factor was obtained by drying approximately 0.5 g resin, under vacuum, at 50°C to constant mass. The F-factor was determined on the H-form (for batch-contact studies) and the as-received form (for column testing) of the resin. The F-factor for the Na-form of the resin was performed differently because of stability problems observed in prior tests on the Na-form of resin (Steimke et al. 2001). Drying to constant mass under vacuum at ambient temperature was considered adequate for removing water from the Na-form resin.^(a) The L-factor represents the fractional mass remaining after washing the as-received resin form with 0.5 M HNO₃ and DI water and correcting for residual water content as described above. The I_{Na}-factor represents the fractional mass gain upon conversion from the H-form to the Na-form, correcting for water content as described above.

Property	010319SMC-IV-73				
Bulk density of as-received form resin, g/mL	0.74				
F-factor, as-received	0.877				
L, conversion to H-form, fractional mass remaining	0.538				
F-factor, H-form ^(a)	0.762				
I _{Na} , fractional mass gain from H-form to Na-form	1.25				
(a) SL-644 was stored for 1 year in the H-form before sampling for batch contacts. The					
H-form F-factor was used in batch-contact calculations.					

Table 2.2. SL-644 Properties

2.2 AZ-102 Feed

The AZ-102 sample receipt, phase separation, mixing, subsampling, evaporative concentration, and analysis were reported separately (Fiskum et al. 2002b). Solids were observed to precipitate during the evaporative concentration. The major components and estimated weight percentages in the solids (based on anion, metals, and XRD analysis) were: sodium fluorosulfate (Na₃FSO₄), 57%; sodium oxalate (Na₂C₂O₄), 28%; and sodium nitrite (NaNO₂), 7%. Sodium nitrate (NaNO₃) was also believed to be present in the solids (4wt%), and the remaining material (4wt%) was not identified. The total volume of concentrated AZ-102 (AZ-102C) available for Cs ion exchange and batch-contact processing was about 1.8 L. The AZ-102C feed composition is summarized in Table 2.3. The AZ-102C composition generally agreed with the AZ-102 composition reported by Hassan et al. (2001), allowing for evaporative concentration, with the exception of oxalate and OH⁻. The OH⁻ concentration in the AZ-102C feed was 5 times higher than previously reported, after correcting for the concentration factor. The oxalate concentration was generally unchanged at 3.6E-2 M.^(b)

⁽a) After initial drying at ambient temperature under vacuum to constant mass, the resin was heated to 50°C. The heated product appeared (visual inspection) to have degraded, thus potentially nullifying subsequent mass measurements.

⁽b) Solids formed upon evaporative concentration of the AZ-102 contained significant oxalate.

Cations,	Μ	Anions, M			
Na ⁺	4.61 E+0	AlO ₂ ^{- (b)}	3.44 E-02		
K ⁺	1.70 E-1	Cl	< 3.95 E-3		
Cs^+	5.21 E-4 ^(a)	CO_{3}^{2-} (HP)	1.21 E+0		
Ca ⁺⁺	<9 E-4	$CO_3^{2-}(F)$	<1E-1 ^(c)		
Cd ⁺⁺	<2 E-5	CrO ₄ -2 (b)	2.90 E-2		
U (Uranyl) ^(b)	6.37 E-5	F	9.29 E-2 ^(d)		
Мо	1.14E-3	NO ₂	1.69 E+0		
Ni ⁺⁺	<6.8E-5	NO ₃	6.08 E-1		
Pb ⁺⁺	<6.3E-5	OH.	1.11 E+0		
Mole rat	ios	PO ₄ ^{-3 (b)} (ICP)	9.25 E-3		
Na/Cs mole ratio	8.85 E+3	PO_{4}^{-3} (IC)	1.42 E-2		
K/Cs mole ratio	3.26 E+2	SO ₄ ⁻²	3.68 E-1		
Radionuclides,	µCi/mL	Oxalate	1.90 E-2 ^(e)		
⁶⁰ Co	<3 E-2	TOC (HP)	8.33 E-2		
¹³⁴ Cs	1.26 E+0	TOC (F)	1.16 E+0 ^(c)		
¹³⁷ Cs	2.00 E+3	TC (HP)	1.29		
154 F 1	<1 F 1	TC (F)	1.24		
Eu	<1 L-1	Solution Density, g/mL	$1.246 (T = 26^{\circ}C)$		

Table 2.3. Composition of AZ-102C (Envelope B)

(a) The Cs isotopic distribution ratio determined by thermal ionization mass spectrometry (TIMS) is 52.3 wt% ¹³³Cs, 14.9 wt% ¹³⁵Cs, and 32.8 wt% ¹³⁷Cs.

(b) Al, Cr, and P determined by ICP-AES; U determined by KPA. The ionic form is assumed on the basis of waste chemistry.

(c) The furnace method determined total carbon (TC) and TOC; the TIC was calculated by difference TIC = TC-TOC. The hot persulfate method (HP) was considered more accurate for TIC and the furnace method more accurate for TC.

(d) The F results should be considered the upper-bound concentration since the F peak shape and retention time suggests the presence of co-eluting anion(s), possibly formate or acetate.

(e) Duplicate oxalate analysis resulted in 1900 and 1450 μ g/mL RPD = 27%.

HP = hot-persulfate method; F = furnace method

Bracketed results indicate that the analyte concentration uncertainty exceeds 15%. Less-than results indicate that the analyte concentration was below the instrument detection limit (IDL); the dilution-corrected IDL is given.

Analytical details are provided with Analytical Service Request (ASR) 6280, sample ID 02-0751.

Total carbon (TC), total inorganic carbon (TIC or carbonate), and total organic carbon (TOC) are reported here and elsewhere for two different analytical methods: hot-persulfate (HP) oxidation and furnace (F) oxidation. The differences in the two methods were reflective of the ease with which various organic constituents oxidize in the given method. For these analyses, the furnace oxidation method historically provided more accurate results for TC on tank waste matrices and the hot-persulfate method provided more accurate TIC results on tank waste matrices. The most accurate TOC was therefore the difference TC/F – TIC/HP. The TIC concentration was further evaluated relative to the third equivalency

point (considered to be the HCO_3^- neutralization) on the OH⁻ titration curve. The reported HCO_3^- concentration of 1.12 M was in good agreement with the TIC determined by the hot-persulfate (1.21 M). Phosphate was reported based on P determination by inductively coupled plasma atomic emission spectrometry (ICP-AES) and on PO₄ determination by ion chromatography (IC).

The anionic charge sum (6.85 M) was not in balance with the cationic charge sum (4.78 M). Therefore one or more anions were positively biased. In comparison with the characterization data reported by Hay and Bronikowski (2000), the carbonate concentration was most likely biased high.

2.3 Batch Contacts

The batch contacts were performed with the H-form of SL-644 batch 010319SMC-IV-73, 212- to 425-µm dry-particle-size resin. The sieved resin fraction was washed on 3/24/01 by contacting three times with 0.5 M HNO₃ followed by four contacts with DI water. The resin was then air-dried and stored in a polyethylene bottle for nearly 1 year. Resin for all subsequent batch contacts was used directly from the storage bottle with no additional conditioning. The F-factor, 0.762, was determined on the stored H-form of SL-644 at the same time aliquots were taken for the batch-contact test. The F-factor represents the ratio of resin mass dried under vacuum at 50°C to the initial resin mass.

The efficacy of the 1-year aged resin was tested before use on the actual tank waste sample. An AW-101 simulant was prepared as described by Golcar et al. (2000). Batch contacts were performed in duplicate at three Cs concentrations, similarly to previously reported AW-101 simulant batch-contact work (Fiskum, Blanchard, and Arm 2002a). The liquid volume to solids mass ratio was 100, the batch contact time was 24 h, and the contact temperature was nominally 24°C. The Cs equilibrium concentration was determined using a ¹³⁷Cs tracer and counting by gamma energy analysis (GEA).

After determining that the SL-644 was adequate for the purpose, the resin was used for AZ-102C batch-contact testing.^(a) Batch contacts were performed using feed at three different Cs concentrations. Aliquots of the AZ-102C tank waste samples were tested without spiking, and additional aliquots were spiked with 0.5 M CsNO₃ to obtain stock solutions of nominally 4 E-3 M and 7 E-3 M Cs. The initial Cs concentrations in the stock contact solutions and the corresponding Na/Cs and K/Cs mole ratios are given in Table 2.4.

Solution	Target initial Cs conc. [M]	Target nominal Na/Cs ^(a) mole ratio	Target nominal K/Cs ^(a) mole ratio				
Un-spiked	5.2 E-4	8.9 E+3	3.3 E+2				
Cs Spike 1	4.0 E-3	1.2 E+3	4.2 E+1				
Cs Spike 2	7.0 E-3	6.6 E+2	2.4 E+1				
(a) Na^+ and K^-	(a) Na^+ and K^+ are the primary cations that compete with Cs^+ for ion exchange with SL-644.						

Table 2.4. Initial Cs Concentrations in the AZ-102C Solutions Used for the Batch K_d Tests

⁽a) Batch contact tests for the AW-101 simulant and AZ-102C actual waste were conducted according to Test Instruction TI-RPP-WTP-164, Rev. 0 Batch Contact of AZ-101 and AZ-102 Concentrate Tank Waste with SuperLig 644 (Batch ID 010319SMC-IV-73), S. K. Fiskum, February 2002.

The batch K_d tests were performed in duplicate at a phase ratio of approximately 100 mL/g (liquid volume to exchanger mass). Typically, 0.07 g of exchanger were contacted with 7 mL of feed. The exchanger mass was determined to an accuracy of 0.0002 g. The waste volume was transferred by pipet, and the actual volume was determined by mass difference with an accuracy of 0.0002 g and the solution density. Samples were agitated with an orbital shaker for approximately 48 h at ambient hot cell temperatures ranging from 23 to 27°C during the two days of contact.

The SL-644 resin generally appeared to float when initially contacted with AZ-102C. Attempts to swirl the vial to pull resin into better solution contact were not successful, and in some cases appeared to be counter-productive. At the end of the 48-h contact period, a small amount of resin was still evident on the vial walls and floating on the surface. At worst case, approximately 5% of the resin volume was visually estimated to be floating and on vial walls.^(a) At the end of the contact time, the samples were passed through a 0.45 mm nylon syringe filter. Filtrate aliquots were counted for ¹³⁷Cs.

All Cs K_d measurements were determined by measuring 137 Cs on both the stock solution (initial concentration), and the contacted solution (final concentration). Initial 133 Cs concentrations were confirmed by inductively coupled plasma-mass spectrometry (ICP-MS).

The batch-distribution coefficients, K_d (with units of mL/g), were determined using the following relationship:

$$K_{d} = \frac{(C_{o} - C_{eq})}{C_{eq}} * \frac{V}{m * F * I_{Na}}$$
(2.1)

where $C_o = initial^{137}Cs$ concentration

 C_{eq} = equilibrium ¹³⁷Cs concentration

V = volume of the liquid sample (mL)

m = SL-644 ion exchanger H-form mass (g)

F = water loss factor, H-form resin (0.762)

 I_{Na} = mass correction factor for conversion of SL-644 from H-form to Na-form mass (1.25).

The Cs λ value (column distribution ratio) is a function of the dry-bed density (ρ) and feed-condition equilibrium-distribution coefficient, and was obtained as shown in Equation 2.2.

$$\lambda = K_d * \rho \tag{2.2}$$

⁽a) AZ-101 batch contacts were conducted in parallel to the AZ-102C batch contacts. The SL-644 contacted with the AZ-101 did not float and behaved well. The AZ-101 density was 1.224 g/mL.

The SL-644 dry-bed resin density was determined from the ion exchange processing. It was calculated from the column dry-bed resin mass (M_c) and the resin bed volume (BV) according to Equation 2.3.

$$\rho = \frac{M_c}{BV} \tag{2.3}$$

where $M_c =$ corrected dry bed resin mass (discussed in Section 2.4) BV = resin-bed volume in AZ-102C or 0.25 M NaOH (discussed in Section 3.3.5).

2.4 Column Run Experimental Conditions

Figure 2.1 shows a schematic of the ion exchange-column system. The system consisted of two small serial columns containing the SL-644 ion exchange material, a small metering pump, three valves, a pressure gauge, and a pressure-relief valve. Valves 1, 2, and 3 were three-way valves that could be turned to the flow position, sample position, or no-flow position. Valve 1 was placed at the outlet of the pump and was used to eliminate air from the system, purge the initial volume of the system, or isolate the columns from the pump. Valves 2 and 3 were primarily used to obtain samples and could also be used to isolate the columns from the rest of the system. The columns were connected in series with the first column referred to as the lead column and the second column referred to as the lag column.

The columns were prepared at the SRTC Glassblowing Laboratory. Each column consisted of a 15cm glass column with a 24/40 taper ground-glass fitting on top and a threaded fitting on the bottom. A polyethylene bushing was installed in the glass-threaded fitting to accommodate ¹/₄-in. stainless steel national pipe thread (NPT) fitting. The inside diameter of each column was 1.46 cm, which corresponded to a volume of 1.67 mL/cm. A stainless steel, 200-mesh screen supported the resin bed. The height of the resin bed (and thus shrinkage and swelling) was measured with a decal millimeter scale affixed to the column. The upper section contained four entry ports and a taper joint with screw cap that securely fitted the column. The lead column assembly used a pressure relief valve (10 psi trigger), pressure gauge, and sample inlet; the remaining port was plugged. The lag column assembly used one port for sample entry, and the other three ports were plugged. In both columns, the inlet sample lines extended through the port opening to the top of the column. The connecting tubing was ¹/₈-in. OD, 1/16-in. ID polyethylene. Valved quick-disconnects (Cole Parmer, Vernon Hills, IL) were installed in-line to allow for ease of column switching. An FMI OVG50 pump (Fluid Metering, Inc., Syosset, NY) equipped with a ceramic and Kynar[®] coated low-flow piston pump head was used to introduce all fluids. The flow rate was controlled with a remotely operated FMI stroke-rate controller. The pump was set up to deliver flowrates from 0.08- to 16-mL/min. The volume actually pumped was determined using the mass of the fluid and the fluid density. The pressure indicated on the pressure gauge remained below 5 psi during all runs. The total holdup volume of the Cs ion exchange system was the summed volume of all fluid-filled parts, and was estimated to be 42 mL.

Figure 2.1. Cesium Ion Exchange Column System

Before installing the system into the hot cell, both of the resin beds were individually cycled through the acid form. After the resin cycling, the mass of the washed Na-form SL-644 (M_c) was calculated to be 2.4 g, on a dry-weight basis, in each column according to Equation 2.4.

$$M_c = M * L * F * I_{Na} \tag{2.4}$$

where $M_c = Na$ -form SL-644 mass in the resin bed

- M = SL-644 as-received resin mass
- L = fractional mass remaining after washing (0.538)
- F = water-loss factor, as-received form (0.877)
- I_{Na} = fractional mass gain on conversion from H-form to Na-form (1.25) (this factor is set to 1 when calculating the dry-bed density in the H-form or 0.5 M HNO₃).

The entire ion exchange system was then used for a full shakedown experiment with AW-101 simulant (Fiskum, Blanchard, Arm 2002a). Both columns were individually eluted, rinsed, and regenerated. The ion exchange system was then transferred to the hot cell and used to process AP-101DF tank waste (Fiskum et al. 2002a). Only the lead column was eluted to a ¹³⁷Cs concentration C/C_o of 4 E-3, which was equivalent to a ¹³⁷Cs concentration of 0.5 µCi/mL. The lead column was then rinsed with DI water, regenerated with 0.25 M NaOH, and again rinsed with DI water. The lag column contained an estimated 35-µCi ¹³⁷Cs from the lead column Cs breakthrough. After an 8-week storage period (resin as Na form in DI water), the lead and lag column positions were switched, and 0.75 L of AN-102/C-104 was processed (Fiskum, Blanchard, and Arm 2002b). Again, only the lead column was eluted to a ¹³⁷Cs concentration C/C_o of 6 E-3, which was equivalent to a ¹³⁷Cs concentration of 0.25 M NaOH, and again rinsed with 0.25 M NaOH. The lead column contained an estimated 35-µCi ¹³⁷Cs from the lead and lag column positions were switched, and 0.75 L of AN-102/C-104 was processed (Fiskum, Blanchard, and Arm 2002b). Again, only the lead column was eluted to a ¹³⁷Cs concentration C/C_o of 6 E-3, which was equivalent to a ¹³⁷Cs concentration of 1 µCi/mL. The lead column was then rinsed with DI water, regenerated with 0.25 M NaOH, and again rinsed with DI water. The lag column contained an estimated 0.22-µCi ¹³⁷Cs based on the integration of the lead column Cs breakthrough.

The system was stored for 118 days since the end of the AN-102/C-104 column run. The lead and lag columns were switched, and the apparatus volume (AV) of DI water was displaced with 0.25 M NaOH before introducing AZ-102C feed. All subsequent processing was performed in the hot cells at temperatures ranging from 25 to 27°C. Table 2.5 shows the experimental conditions for each process step, where one bed volume (BV) is the volume in 0.25 M NaOH (10.2 mL). The bed conditioning, AZ-102C loading, feed displacement, and DI water-rinse steps were conducted by passing these solutions through both resin beds connected in series.^(a) The AZ-102C effluent was collected in twelve effluent bottles. The first bottle collected 41 mL, nominally one AV, and consisted primarily of the displaced regeneration solution. The remaining effluent was collected in nominally 10-BV fractions. After ascertaining that the ¹³⁷Cs concentration met product specifications, the individual effluent fractions were combined (excluding the initial effluent bottle).^(b) Sampling of the feed displacement solution began

⁽a) The ion exchange processing of the AZ-102C actual waste was conducted according to Test Instruction TI-PNNL-WTP-132, Rev. 0, Separation of Cesium from Hanford Tank Waste 241-AZ-102 Using the Dual Small-Column SuperLig® 644 Cesium Ion Exchange System, S. K. Fiskum, November 2001.

⁽b) Compositing the Cs-decontaminated effluent was conducted according to Test Instruction TI-RPP-WTP-145, Rev. 0, Compositing AZ-102C Cesium Ion Exchange Effluent and Subsequent Sub-Sampling for Analysis, S. K. Fiskum, November, 2001.

immediately after switching the feed line into the 0.1 M NaOH solution. The elution was conducted on the lead column only, continuing until 14.8 BV had been processed through the column. The resin bed was then rinsed, regenerated, and rinsed again as shown in Table 2.5. Because initial test results indicated low Cs recovery in the eluate, the lead column was re-eluted 16 days later.^(a) The re-elution process was halted when it was apparent that little additional Cs was removed. Only the initial 14.8 BVs of Cs eluate samples were composited^(b) and sampled for analysis.

		Total Volume		Flow rate		Time	Т	
Process Step	Solution	BV ^(a)	AV ^(b)	mL	BV/h	mL/min	h	°C
Two Columns in Series ^(c)								
DI water displacement	0.25 M NaOH	8.9	2.2	91	2.4	0.42	3.6	25
Loading Lead column	AZ-102C Feed	105	25.5	1071	1.4	0.23	80.2	26
Loading Lag column ^(d)	AZ-102C Feed	100	24.3	1022	1.4	0.23	80.2	26
Feed displacement	0.1 M NaOH	10.5	2.6	107	2.6	0.44	4.0	25
DI water rinse	DI water	9.2	2.2	94	2.6	0.44	3.2	25
Lead Column Only								
Elution	0.5 M HNO ₃	14.8	6.6	151	0.74	0.13	20.2	25
Eluant rinse	DI water	4.4	2.0	45	2.6	0.45	1.75	25
Regeneration (e)	0.25 M NaOH	4.4	2.0	45	0.95	0.16	4.75	26
Rinse	DI water	4.6	2.0	47	2.7	0.45	1.75	26-27
Second Elution Cycle								
Elution ^(f)	0.5 M HNO ₃	6.5	2.9	66	2.8	0.48	2.5	25
Eluant rinse	DI water	4.8	2.1	49	2.6	0.44	1.9	25
Regeneration ^(g)	0.25 M NaOH	4.9	2.2	50	0.83	0.14	5.9	25
Rinse	DI water	4.1	1.8	41	2.5	0.42	1.7	25

Table 2.5. Experimental Conditions for AZ-102C Ion Exchange

(a) BV = bed volume (10.2 mL in 0.25 M NaOH regeneration condition).

(b) AV = apparatus volume (42 mL for columns in series; 23 mL for lead column, and 21 mL for lag column).

(c) Run date began on 11/5/01.

(d) The feed volume through the lag column was reduced because of sampling from the lead column.

(e) The eluant rinse ended on 11/10/01; regeneration began 3 days later on 11/13/01.

(f) The second elution began 16 days after the regeneration rinse on 11/29/01.

(g) Regeneration was initiated 11/30/01, $\frac{1}{2}$ day following the eluant rinse.

⁽a) The continued elution was conducted according to Test Instruction TI-PNNL-WTP-147, Rev. 0, Continued Cesium Elution Following Cs Removal from Hanford Tank Waste 241-AZ-102 Using the Dual Small-Column SuperLig® 644 Cesium Ion Exchange System, S. K. Fiskum, November, 2001.

⁽b) The Cs eluate samples were composited according to Test Instruction TI-RPP-WTP-151, Rev. 0, Preparing a Composite Solution of the Acid Eluant Samples from AZ-102C Cs Ion Exchange Lead Column, S. K. Fiskum, January 2001.

2.5 Column Sampling

The sampling and analysis protocol is shown in Table 2.6. During the loading phase, small samples (about 2 mL) were collected from the lead and lag columns at nominal 5-BV increments. The flow rate averaged 1.4 BV/h. The flow rate increased slightly during sample collection from the lead column because of the siphoning effect at the sample port. The feed displacement, DI water rinse, elution, and elution rinse samples were taken at 1-BV increments at flow rates shown in Table 2.5.

	Frequency		Approximate Sample			
Process Step	Lead Column	Lag Column	Size (mL)	Analyses		
Loading	Every 5 BV	Every 5 BV	2	GEA		
Feed displacement	none	Every 1 BV	10	GEA		
DI water rinse	none	Every 1 BV	10	GEA		
Elution	Every 1 BV	NA	10	GEA		
Eluant rinse	Every 1 BV	NA	10	GEA		
Composite Samples						
Effluent – 1	NA	NA	2	GEA		
Effluent composite				GEA, ICP-AES, IC, U,		
(bottles 2-12)	NA	NA	10	OH, TOC/TIC		
Regeneration	1 composite	NA	10	ICP-AES, GEA, OH-		
				ICP-AES, GEA, TIMS,		
Eluate	1 composite	NA	10	TOC, IC, U,		
GEA = gamma energ	y analysis		OH = hydroxide			
ICP-AES = inductive	ly-coupled plasma a	tomic energy	TOC = total organic	TOC = total organic carbon		
spectrometry			TIC = total inorganic carbon			
IC = ion chromatogra	iphy	TIMS = thermal ionization mass spectrometry				
ICP-MS = inductively-coupled plasma mass spectrometry NA = not applicable						

Table 2.6. Sampling Interval and Analyses

2.6 Sample Analysis

The ¹³⁷Cs concentration was determined using a bench-top GEA spectrometer. This allowed for rapid sample analysis. Selected sample results were later confirmed by GEA analysis in the Chemical Measurements Center (CMC) analytical laboratory. The effluent composite sample was submitted for various analyses: GEA, ICP-AES, TOC/TIC, IC, U, and OH⁻. The eluate samples required dilution before removal from the hot cell to reduce the dose rate from ¹³⁷Cs. The extent of dilution was determined by mass difference. Once the GEA results were confirmed for the eluate samples, the eluate samples were composited, and a sample of the composite was submitted for various analyses: GEA, ICP-AES, TOC, IC, Cs isotopic distribution, and U. A sample of the regeneration solution was taken for ICP-AES analysis and OH⁻ determination.

The Na and other metal concentrations were determined with ICP-AES. The OH⁻ concentration was determined by potentiometric titration with standardized HCl. Uranium was determined using kinetic phosphorescence. Anions were determined using IC. TOC and TIC were determined by silver-catalyzed

hot-persulfate oxidation and furnace oxidation methods. The Cs isotopic distribution was determined by thermal ionization mass spectrometry (TIMS) directly on the eluate.

3.0 Results and Discussion

This section describes the results from batch-contact and column testing of AZ-102C with SL-644.

3.1 Confirmation of SL-644 Efficacy for Batch Contacts Using AW-101 Simulant

The aging of SL-644 resin has been a concern. Even short storage times of the resin in the Na or K form have shown signs of degradation in terms of color and Cs-removal effectiveness. The resin used for the batch contacts was stored for about 1 year in a polyethylene bottle in the dry H-form. No effort was made to diminish its contact with air. The efficacy of using this 1-year aged resin for batch contacts was first tested with AW-101 simulant, and its performance was compared to the performance obtained about 1 year before.

The AW-101 simulant K_d values from the 1-year aged H-form SL-644 were calculated using Equation 2.1 and were based on the ¹³⁷Cs tracer concentrations as measured by GEA. The Na/Cs mole ratios were calculated based on the as-prepared simulant composition. The equilibrium Cs concentrations were based on the ¹³⁷Cs concentrations and the ratio of ¹³⁷Cs: total Cs as-prepared for the unspiked and spiked solutions. The Na concentration was assumed to be constant for the batch contacts.

The calculated ¹³⁷Cs K_d values for AW-101 simulant are plotted as a function of the equilibrium Na:total Cs mole ratio in Figure 3.1. The current test results are plotted with the previous test results (Fiskum, Blanchard, and Arm 2002a) for comparison. The K_d of the aged H-form SL-644 resin appeared degraded about 20% relative to the initial testing one year ago, as evidenced by the decreased slope and intercept. The resin degradation suggested by the drop in the resin batch-contact performance is expected to be very different than the degradation of the resin in the columns due to the very different storage and processing histories.

3.2 AZ-102C Batch-Contact Results

The K_d values were calculated using Equation 2.1 and were based on ¹³⁷Cs concentrations as measured by GEA. The Na/Cs mole ratios were calculated based on the measured Na and total Cs concentrations in the uncontacted AZ-102C. The equilibrium Cs concentrations were based on the ¹³⁷Cs concentrations and the ratio of ¹³⁷Cs: total Cs determined for the unspiked and spiked solutions. The Na concentration was assumed to be constant for the batch contacts. Since the quantity of H⁺ added with the resin was small relative to the moles of Na⁺ and OH⁻ in the contact solution (phase ratio of 100 mL of solution: gram of exchanger), this was a reasonable assumption. In these batch-contact experiments, the 7-mL waste-solution volumes were estimated to contain 7.8 meq of OH⁻ and 32 meq of Na⁺, while the 0.07 g resin mass contained 0.12 meq of H⁺.^(a)

⁽a) The SL-644 contains 2.2 meq H⁺ per gram of H-form resin (Rapko et al. 2002).

Figure 3.1. ¹³⁷Cs Distribution Coefficients (K_d) for SL-644 (010319SMC-IV-73 212- to 425-µm Particle-Size Distribution [PSD]) New Resin and One-Year Aged Resin in AW-101 Simulant ($T = 23^{\circ}C$)

The calculated ¹³⁷Cs K_ds for AZ-102C are plotted as a function of the equilibrium Na:total Cs mole ratios in Figure 3.2. The best-fit logarithmic regression is shown where

$$K_d = 52.6 * Ln \left(\frac{[Na]}{[Cs]} \right) - 318$$
, and $r^2 = 0.98$. (3.1)

At the nominal feed condition of 8.84 E+3 Na:Cs mole ratio, the SL-644 K_d value was 160 mL/g.

For comparison, the K_d values obtained at the lower Na:Cs mole ratios for AP-101DF (Fiskum et al. 2002a) and AN-102/C-104 (Fiskum, Blanchard, and Arm 2002b) are also shown. The AZ-102C feed condition K_d values clearly resulted in a lower slope than similar values generated with AP-101DF and AN-102/C-104. The decreased slope may be attributed, in part, to insufficient contact with the exchanger. Part of the exchanger tended to float in the AZ-102C matrix.

Equilibrium Na:Cs mole ratio

Figure 3.2. ¹³⁷Cs Distribution Coefficients (K_d) for SL-644 (AZ-102C) (T = 23 to 27° C)

The calculated dry-bed densities calculated according to Equation 2.3 using the resin masses and volumes in the ion exchange column system (discussed in Section 3.3.5) are given in Table 3.1. Good agreements of the dry-bed densities were obtained between the lead and lag columns.

	010319SMC-IV-73,	010319SMC-IV-73,					
Property	Lead Column	Lag Column					
Column resin mass, g, as-received ^(a)	4.17	4.20					
Corrected resin mass, M _c , in column, g	2.46	2.48					
BV, 0.25 M NaOH, mL	10.2	10.0					
BV, AZ-102C, mL	9.5 ^(b)	9.4					
BV, 0.5 M HNO ₃ , mL	8.1	not performed					
Dry bed density, ρ_b , in feed	•						
Na-form							
0.25 M NaOH, g/mL	0.241	0.248					
AZ-102C, g/mL	0.259 ^(c)	0.264					
H-form							
0.5 M HNO ₃ , g/mL	0.243	not performed					
(a) The 212- to 425-µm particles size resin mass wa	(a) The 212- to 425-µm particles size resin mass was measured in the as-received form.						
(b) The resin BV in the lead column increased to 10.4 mL after processing 45 to 50 BVs.							

Table 3.1.	Dry Bed Density
------------	-----------------

(c) The dry-bed density decreased to 0.236 g/mL when the resin bed expanded to 10.4 mL after processing 45 to 50 BVs.

The predicted Cs λ value was calculated according to Equation 2.4 to be 41 BVs in the AZ-102C feed condition, and 38 BVs in the 0.25 M NaOH regeneration condition. These values are the approximate points at which the Cs breakthrough curve is predicted to pass through C/C_o = 50%. Figure 3.3 shows the Cs λ values as a function of the Na:Cs mole ratio for the SL-644 (calculated bed density in 0.25 M NaOH of 0.24 g/mL).

Equilibrium Na:Cs mole ratio

Figure 3.3. Estimated ¹³⁷Cs λ Values for SL-644 (AZ-102C) (T = 23 to 27°C)

3.3 Column Test

The column system used for AZ-102C processing was the same system used for processing the AW-101 simulant, AP-101DF actual waste, and AN-102/C-104 actual waste. No resin fouling was observed through all ion exchange processing steps.

3.3.1 Loading, Feed Displacement, and Rinse

The loading phase was initiated with AZ-102C waste. Approximately 1.0 AV (41 mL) of effluent was initially collected in a separate collection bottle. Most of this effluent was 0.25 M NaOH from the regeneration step mixed with some AZ-102C in the ion exchange apparatus. This solution was maintained separately and not mixed with the final Cs-decontaminated AZ-102C effluent composite; thus, most of the apparatus 0.25 M NaOH solution was prevented from mixing with the AZ-102C effluent. The resin beds shrank an average 6.6% to 9.5 mL as they converted from the regeneration solution to the AZ-102C feed. The lead column resin-BV inexplicably increased in volume to 10.4 mL after processing 45 to 50 BVs of feed.

Figure 3.4 shows the ¹³⁷Cs effluent concentrations from the columns as % C/C_o vs. the BVs of feed processed through each column. The abscissa reflects BVs as a function of the resin in the expanded regeneration condition of 10.2 mL. The C_o value for ¹³⁷Cs was determined to be 2005 μ Ci/mL. The C/C_o is plotted on a probability scale as this scale results in a straight line if the resin performs according to ideal ion exchange theory. The C/C_o values, determined using the bench-top GEA spectrometer, were generally in good agreement with selected samples independently analyzed by the CMC analytical laboratory. Analytical results and calculations are located in the Appendices C and D.

The load profile shows excellent removal of Cs from the feed where breakthrough begins at 68 BVs. The breakthrough increased rapidly, culminating with a 50% Cs breakthrough at approximately 93 BVs. This value is over twice the Cs λ value predicted from batch-contact studies (38 BVs). The load characteristics of this waste agreed with modeling predictions (Hamm, Smith, and McCabe 2000) where higher Cs concentrations result in steep breakthrough profiles. Cs capacity for this resin was high. A total of 66 mg (0.49 mmoles) Cs was loaded on the 2.46 g Na-form resin (1.97 g resin H-form resin) lead column at a 50% breakthrough of 93 BVs.

The ¹³⁷Cs concentrations in the lag-column effluent samples were relatively constant over the course of the loading phase and were only slightly (factor of 1.5) higher in ¹³⁷Cs concentration than those obtained from the first 68-BVs from the lead column. This observation was different than that of AN-102/C-104 processing where ¹³⁷Cs concentration in the lag-column samples were found to be 50 times higher than the lead-column samples, a result of ¹³⁷Cs "bleed-off" from previous waste processing (Fiskum, Blanchard and Arm, 2002b). Two major factors masked this effect for the AZ-102C processing. The previous feed (AN-102/C-104) loading was minimal in that only 0.75 L was processed loading a total of 6 mg Cs. Furthermore, the ¹³⁷Cs concentration in AZ-102C (2005 μ Ci/mL) was over an order of magnitude greater than the previous AN-102/C-104 feed (161 μ Ci/mL). Thus, the relative proportion of the ¹³⁷Cs bleed-off from the AN-102/C-104 processing would appear to be an order of magnitude lower (measured as C/C_o).

The total quantity of ¹³⁷Cs processed through the ion exchange system was 2220 mCi (26 mg ¹³⁷Cs, 78 mg total Cs). The breakthrough to the lag column was not certain. Integrating the ¹³⁷Cs activity in the lead-column samples resulted in a calculated 10% Cs breakthrough. Integration of the individual lead-column eluate samples resulted in 94.6% ¹³⁷Cs recovery, indicating 5.4% Cs breakthrough. The composite eluate analysis resulted in 98.9% ¹³⁷Cs recovery, indicating 1.1% Cs breakthrough. The estimated Cs breakthrough was assigned the median value of 5.4%, which was equivalent to 120 mCi ¹³⁷Cs and 4.2 mg Cs. Thus the total ¹³⁷Cs loaded onto the lead column was calculated to be 2100 mCi (24 mg ¹³⁷Cs or 74 mg total Cs). The total lag-column effluent contained 1.92E-2 μ Ci ¹³⁷Cs/mL corresponding to 0.00078% (i.e., 1.92E-2 μ Ci/mL x 897 mL / 2.22E+6 μ Ci x 100) of the total ¹³⁷Cs processed through the columns.

Figure 3.4. ¹³⁷Cs Breakthrough Curves for AZ-102C Tank Waste, Probability Plot

3.6

The contract ¹³⁷Cs removal limit, 0.0162% or 0.322 μ Ci/mL ¹³⁷Cs, is also shown in Figure 3.4. The contract limit was derived from a maximum of 0.3 Ci/m³ for ¹³⁷Cs in the low-activity waste (LAW) glass, a Na concentration of 4.61 M in the AZ-102C, a ¹³⁷Cs feed concentration of 2.00 E+3 μ Ci/mL, a minimum 5 wt% total Na₂O loading in the glass (where all Na is assumed to come from the waste itself), and a glass product density of 2.66 g/mL. The maximum loading for AZ-102C in glass is 5.5 wt% waste Na₂O and corresponds to 0.292 μ Ci/mL, C/C₀ of 0.0146%, and a decontamination factor (DF) of 6870. The lag-column effluent remained an order of magnitude below the maximum waste loading contract limit. The DFs were calculated on selected effluent samples and the composite effluent, and are summarized in Table 3.2.

	Volume Processed,	¹³⁷ Cs Concentration		
Sample	BV (mL)	μCi/mL ^(a)	C/C ₀ , %	DF ^(b)
Third lead column sample	14.9 (152)	5.43E-3	2.71E-4	3.69E+5
Final lead column sample	105 (1071)	1.57E+3	78.1	1.28
Fourth lag column sample	17.3 (176)	2.55E-2	1.27E-3	7.86E+4
Final lag column sample	100 (1022)	1.40E-2	6.98E-4	1.43E+5
Composite effluent	87.9 (897) ^(c)	1.92E-2	9.55E-4	1.05E+5
137~				

 Table 3.2.
 Selected Decontamination Factors for ¹³⁷Cs from AZ-102C

(a) The ¹³⁷Cs uncertainty ranged from 3% to 4% relative error, 1- σ .

(b) The maximum waste Na_2O loading DF requirement was 6870.

(c) The composite volume represents the effluent volume collected, as opposed to the volume processed. This volume is lower than the process volume because samples were taken during the processing run.

This performance is significantly better than observed in the previous column test of SL-644 with AZ-102 (Hassen et al 2001). The authors of that study indicated that the "evidence is strong, but not conclusive" that Al and Ca species precipitated in the resin beds during their test, which used unconcentrated AZ-102 feed. As noted in Sec. 2.2, solids precipitated during concentration of the AZ-102 feed prior to the ion exchange test represented in Figure 3.4. However, almost all (at least 96wt%) of the solids that formed during the evaporation did not contain Al or Ca. The reason for the different results is unclear, but the results presented here clearly show that SL-644 can meet the baseline requirements for removing Cs from AZ-102 supernate concentrated to approximately 5 M Na.

The Cs-decontaminated effluent was characterized, and the results are summarized in Table 3.3. Most analyte concentrations were equivalent to the feed concentration within the experimental error of the method (typically $\pm 15\%$). The anionic charge is higher than the cationic charge, as was found in the feed. Again, one or more of the anions is biased high. Previous testing showed U was removed by SL-644 processing. The effluent analysis results for AZ-102C were different indicating only 27% U was removed.

The ¹³⁷Cs bleed-off continued through the first 5 BVs of the feed displacement (Figure 3.4). The lagcolumn flow rate seemed to slow down after collecting the third feed-displacement sample. This was evidenced by fluid filling the space above the resin bed. The flow corrected itself during collection of the seventh feed-displacement sample. It was also apparent that the sixth feed-displacement sample (6.2 BVs or 1.5 AVs of feed displacement) had significant coloration clearly evident through the cell window. This was accompanied by a slight rise in C/C_{o} .

The introduction of water caused a sharp drop in $%C/C_o$ after 4 BVs (1 AV) were passed through the system. The slight rise in $%C/C_o$ during feed displacement may be caused by the decrease in ionic strength and/or decrease in hydroxide concentration (Rapko et al. 2002) of the rinse solution. The subsequent drop in Cs bleed-off was related to the drop in feed Na concentration, which acted as a competitor to Cs on the ion exchanger.

	T				0/ Channel
Cations	м	% Change	Anione	м	% Change
Cations	171	Ifom recu	Anions	IVI	Ifom recu
Na ⁺	4.57 E+0	-0.9	AlO ₂ ^{- (a)}	3.43 E-2	-0.3
K^+	1.67 E-1	-1.8	Cl	<3.6 E-3	NA
Cs ⁺	4.99 E-9	>>-99	CO_3^{2-} (HP)	1.15 E+0	-5.0
Ca ⁺⁺	<9 E-4	NA	$CO_3^{2-}(F)$	6.9 E-1 ^(c)	>590 ^(c)
Cd ⁺⁺	<2 E-5	NA	CrO ₄ -2 (a)	2.83 E-2	-2.4
Мо	1.12E-3	-1.8	F ⁻	8.84 E-2	-4.8
Ni	<6.8E-5	NA	NO ₂	1.63 E+0	-3.6
Pb	<6.5E-5	NA	NO ₃ -	5.83 E-1	-4.1
U (Uranyl) ^(a)	4.64 E-4	-27	OH-	1.14 E+0	3.2
Radionuclides	µCi/mL		PO ₄ ^{-3 (a)} (ICP)	9.14 E-3	-1.2
⁶⁰ Co	<2 E-5	NA	PO_{4}^{-3} (IC)	1.34 E-2	-5.6
¹³⁴ Cs	<2 E-5	NA	SO ₄ ⁻²	3.52 E-1	-4.3
¹³⁷ Cs	1.92 E-2	>>-99	Oxalate	1.53 E-2	-19
¹⁵⁴ Eu	<5E-5	NA	TOC (HP)	4.37 E-2 ^(b)	-48 ^(b)
Solution Density	g/mL		TOC (F)	4.9 E-1 ^(c)	-58 ^(c)
Density	$1.241 \text{ T} = 27^{\circ}\text{C}$	-0.4	TC (HP)	1.19 E+0	-7.8
Density	1.241 1 - 27 C	-0.4	TC (F)	1.18 E+0	-4.8

Table 3.3. AZ-102C Cs-Decontaminated Product

(a) Al, Cr, and P determined by ICP-AES. Uranyl determined by KPA. The ionic form is assumed on the basis of waste chemistry.

(b) The TOC determination for the feed had high uncertainty; one sample resulted in <4.2E-2 M, and the duplicate resulted in 8.3E-2 M. The comparison was made with the single measured value 8.3E-2 M.

(c) The furnace method determined total carbon (TC) and TOC; the TIC was calculated by difference TIC = TC-TOC. The hot persulfate method (HP) is considered more accurate for TIC and the furnace method more accurate for TC.

NA = not applicable; concentration was less than the instrument detection limit; HP = hot-persulfate method; F = furnace method.

Less-than results indicate that the analyte concentration was below the method detection limit; the method detection limit is given.

Analytical details are provided with Analytical Service Request (ASR) 6280, sample ID 02-0752.

3.3.2 Elution and Eluant Rinse

Figure 3.5 shows the lead column elution and eluant rinse profiles. The ordinate shows the ¹³⁷Cs $C/C_o^{(a)}$ values on a logarithmic scale to clearly show the large range of C/C_o values obtained. The abscissa is given in BVs relative to the regeneration condition. Most of the ¹³⁷Cs was contained in elution BVs 3 through 6. The peak value of C/C_o was found to be 71. Integrating the elution peak resulted in 95% ¹³⁷Cs recovery in the eluate; analyzing the composited eluate resulted in 98.9% ¹³⁷Cs recovery. This indicated that only 1 to 5% Cs breakthrough from the lead column onto the lag column was obtained. The elution cutoff of $C/C_o = 0.01$ was reached at 8.3 BV, but elution was continued beyond this because of the lag between sample collection and the determination of the Cs concentration. A C/C_0 of 0.001 was reached within an additional 6 BVs.

The lead column was rinsed, regenerated, rinsed, and briefly eluted again.^(b) The second elution resulted in little additional Cs removal from the resin bed. The second elution peak C/C_o was found to be 0.002, higher than the last eluate sample from the first elution process. The integrated peak represented 4.6E-3% of the loaded Cs. The C/C_o values for the eluant rinse with DI water dropped rapidly in ¹³⁷Cs concentration, indicating that DI water did not continue Cs elution.

Also shown in Figure 3.5 are the composite regeneration solution C/C_o values. The regeneration effluent volume swere 4.4 and 4.9 BVs; the point at 24 BVs represents the regeneration effluent volume collected from 19 to 24 BVs, and the point at 39 BVs represents the composite regeneration effluent volume collected from 35 to 39 BVs. The regeneration solution was expected to result in higher C/C_o values than obtained with the last DI water sample because the solution contains the competing Na ion. It is interesting to note that the initial regeneration effluent resulted in nominally $0.1\% C/C_o$, nearly an order of magnitude higher than the final DI water rinse sample and nearly equivalent to the last elution sample. The second re-generation solution resulted in a *significantly* lower C/C_o of 0.003%, about half an order of magnitude higher than the final rinse sample.

⁽a) The C_o refers to the ¹³⁷Cs concentration in the AZ-102C sample fed to the lead column. For elution, the C/C_o value is an indication of the extent to which ¹³⁷Cs is concentrated relative to the feed. It is an indirect measure of the extent to which the resin is actually eluted.

⁽b) Initial results indicated significant Cs remained on the column.

Figure 3.5. AZ-102C ¹³⁷Cs Elution and Eluant Rinse of the Lead Column

The eluate samples from the lead column first elution were composited, and a sub-sample was taken for analysis. Table 3.4 shows the analytical results. Sodium was the dominant component detected using ICP-AES with some Cd, Cr, Cu, Fe, Ni, Pb, Zn, and U eluting as well. Table 3.5 summarizes these analyte recoveries on a mass and molar basis. The U recovered in the eluate (5.5 mg) represented 34% of the U loaded in the AZ-102C feed (16.2 mg). The remaining U was recovered in the LAW effluent (the calculated LAW U recovery was 73%, Table 3.3). Although a smaller fractional recovery of Cr was obtained (0.70 %) in the eluate, the mole fraction in the eluate was higher than that found for U. The fractional recoveries for Cu, Fe, Ni, Pb, and Zn were calculated to one significant figure because the elements were not detected in the feed. The high Ni recovery (>300 %) was probably a result of Ni loading on the lag column during the previous AN-102/C-104 processing (the lag column for this test was not eluted). The total mmoles of Na (8.1) dominated the eluate composition followed by Ni and Cr at 0.24 and 0.22 mmoles, respectively. As expected, ¹³⁷Cs was the only radionuclide detected by GEA.

		MRQ ^(a)	Cs eluate ^(b)	e ^(b) %		MRQ	Cs eluate ^(b)	%	
Analyte	Method	µg/mL	µg/mL	Recovered	Analyte	Method	µg/mL	µg/mL	Recovered
Al	ICP-AES	NMRQ ^(c)	[12]	[0.17]	Ni	ICP-AES	NMRQ	95.1	>300
В	ICP-AES	NMRQ	[15]	[2.7]	Pb	ICP-AES	NMRQ	[36]	[>40]
Ba	ICP-AES	NMRQ	[4.0]	[>27]	Si	ICP-AES	NMRQ	<52	<3
Ca	ICP-AES	NMRQ	<27	NM	Sn	ICP-AES	NMRQ	<160	NM
Cd	ICP-AES	NMRQ	[8.3]	[>60]	Sr	ICP-AES	NMRQ	<2	NM
Co	ICP-AES	NMRQ	<5	NM	Ti	ICP-AES	NMRQ	<3	NM
Cr	ICP-AES	NMRQ	74.8	0.68	U	KPA	NMRQ	36.5	34
Cs ^(d)	GEA/TIMS	NMRQ	508	98.9	Zn	ICP-AES	NMRQ	[13]	[>20]
¹³⁴ Cs µCi/mL	GEA	NMRQ	8.30E+0	90.4	TOC	Hot Pers.	1500	<2500	<1.4
¹³⁷ Cs µCi/mL	GEA	1.00E-02	1.45E+4	98.9	TOC	Furnace	1500	6,300 ^(e)	6.2
Cu	ICP-AES	NMRQ	[13]	[>40]	Cl	IC	10	75	>7
Fe	ICP-AES	NMRQ	[12]	[>40]	F ⁻	IC	NMRQ	42	0.33
К	ICP-AES	75	<210	<0.4	NO ₃ -	IC	3000	29,200	(f)
La	ICP-AES	NMRQ	<5	NM	PO_4^{-3}	IC	NMRQ	<26	<0.3
Mg	ICP-AES	NMRQ	<10	NM	SO_4^{-2}	IC	NMRQ	250	0.10
Mn	ICP-AES	NMRQ	<5	NM	$C_2O_4^{-2}$	IC	NMRQ	200	1.63
Мо	ICP-AES	NMRQ	<5	<2	Solution	Density	MRQ	g/ı	nL
Na	ICP-AES	75	1220	0.16	Den	sity	NMRQ	1.010 g/m	L, T= $25^{\circ}C$

Table 3.4. Inorganic and Organic Analytes in the Lead Column Eluate Composite

Table 3.4 (cont'd)

		MRQ ^(a)	Cs eluate ^(b)	%			MRQ	Cs eluate ^(b)	%
Analyte	Method	µg/mL	µg/mL	Recovered	Analyte	Method	µg/mL	µg/mL	Recovered
(a) MRQ is m	inimum repo	ortable qua	ntity.						
(b) The overal	l error is est	timated to	be within ±15	5%. Values i	in brackets a	are within	10 times t	he detection	limit, and
errors are	likely to exc	eed ±15%.	Less-than v	alues indicat	e that the a	nalyte was	not detect	ted by the ins	strument,
and the rep	ported value	represents	the IDL mul	tiplied by the	e sample dil	lution facto	or.		
(c) NMRQ is	no minimun	n reportabl	e quantity rea	quested. Ana	alytes are re	ported opp	ortunistic	ally.	
(d) The total C	Cs concentra	tion was c	alculated bas	ed on the ¹³⁷	Cs concentr	ation and t	he isotopi	c distribution	n ratio.
(e) The TOC	result was w	rithin 4X th	ne MDL and	therefore had	l high uncer	tainty.			
(f) The eluate	f) The eluate matrix is 0.5 M HNO_3 .								
NM = analyte not detected in the feed and/or eluate.									
Analytical deta	ils are provi	ided with A	Analytical Ser	rvice Reques	t (ASR) 637	74, sample	ID 02-16	98.	

The major anion detected was NO₃⁻, which was not surprising since the eluant was 0.5 M HNO₃. However, in addition to NO₃⁻, anions of SO₄²⁻, C₂O₄²⁻, Cl⁻, and F⁻ were also detected. The molar concentrations of F⁻ and SO₄²⁻ are equivalent in the eluate, but the molar concentration of F⁻ is almost a factor of four lower than SO₄²⁻ in both the feed (Table 2.3) and the Cs-decontaminated effluent (Table 3.3). Therefore, it seems likely that the F⁻ and SO₄²⁻ were from continued precipitation of Na₃FSO₄, a major solid phase formed during the AZ-102 concentration process (Fiskum et al. 2002b). Similarly, the C₂O₄²⁻ may be from continued precipitation of Na₂C₂O₄, the second most abundant solid phase from AZ-102 concentration. Alternatively, some residual feed ion pairs may have remained on the resin bed then eluted with the 0.5 M HNO₃. The presence of Cl cannot be explained.

The minimum reportable quantity (MRQ) is provided in Table 3.4 for information along with the actual analytical result. In cases where a result was below the instrument detection limit (IDL), then the dilution-corrected IDL is provided as a "less-than" value. In most cases, the analyte concentrations were higher than the requested MRQs. The MRQ was not met in only two cases (K and TOC). Because of the high radiation sample dose, large dilutions were required to remove subsamples from the hot cell to the analytical workstation. The TIC analysis was not completed because carbonate is known to evolve as CO_2 in acidic solutions. The total and free hydroxide analysis was not completed because the eluate was acidic.

				Recovery in
	AZ-102C feed,	Amount recovered	Recovery in	eluate, total
Analyte	total mg	in eluate, mg	Eluate, %	mmoles
U	16.2	5.53	34.0	0.0232
Cd	<2	[1.3]	[>60]	[0.011]
Cr	1,620	11.3	0.70	0.22
Cu	<4.3	[2.0]	[>40]	[0.031]
Fe	<4.3	[1.8]	[>40]	[0.032]
Na	114,000	185	0.16	8.07 ^(a)
Ni	<4.3	14.4	>300	0.24
Pb	<14	[5.4]	[>40]	[0.026]
Zn	<7.5	[2.0]	[>20]	[0.030]

Table 3.5. Select Analyte Recoveries in Eluate

Table 3.5 (cont'd)

				Recovery in			
	AZ-102C feed,	Amount recovered	Recovery in	eluate, total			
Analyte	total mg	in eluate, mg	Eluate, %	mmoles			
(a) An estimated 1.8 mmoles of Na were anticipated to be associated with the measured F , $SO_4^{2^2}$,							
and $C_2 O_4^{2-}$ as N	a ₃ FSO ₄ and Na ₂ C ₂ O ₄	. The mmoles Na excha	anged onto the column	n can be			
estimated by difference $(8.1 - 1.8 = 6.3)$.							
Values in brackets are based on results reported within 10 times the detection limit, and errors are							
likely to exceed	±15%.						

3.3.3 Regeneration

Table 3.6 shows the composition of the regeneration solution. Sodium was the only cation found above the blank concentration; however, its concentration was far smaller than expected. The regeneration solution was found to still be slightly acidic; therefore, the OH⁻ concentration could not be determined. The volume of regeneration solution processed was 2.0 AVs, which represented 4.4 BVs. A volume larger than 2.0 AVs (4.4 BVs) 0.25 M NaOH will be required to neutralize the resin bed and system apparatus.

Analyte	Concentration, µg/mL	Concentration, M				
Na ⁺	[10]	[4.3 E-4]				
K ⁺	< 20	< 5 E-4				
В	[0.72]	[6.7E-5]				
Cr	[0.22]	[4.2E-6]				
OH-	NM	NM				
¹³⁷ Cs	1.64E+0 μCi/mL	NA				
Total cesium	5.74E-2 4.3E-7					
NM: the composite solution was slightly acidic, $pH = 4$. NA = not applicable						
Results in brackets indicate that the analyte concentration was less than the estimated quantitation limit but greater than the detection limit. Less-than values are less than the instrument detection limit corrected for sample						
dilution.						

 Table 3.6.
 Composition of Regeneration Solution

The total mmoles of Na exchanged onto the resin was calculated to be 5.5 mmoles per 2.46 g dry Na-form resin according to the Equation 3.2. This result is lower than the calculated 6.3 mmoles Na (8.1 mmoles total Na minus 1.8 mmoles Na associated with the precipitates) obtained during elution of the ion exchange column (see Table 3.5). This indicated the resin was ~90% (5.5/6.3) converted to the Na form.

$$\left(V - V_H\right) * C - \left(C_E * V_E\right) \tag{3.2}$$

where: V = volume of 0.25 M NaOH processed, 45 mL

 $V_{\rm H}$ = holdup volume (volume of 0.25 M NaOH remaining in system), 23 mL

- С = NaOH concentration, 0.25 M
- C_E = Na concentration in regeneration effluent, [4.3E-4]M
- regeneration effluent volume, 45 mL $V_E =$

The current design basis utilizes spent regeneration solution as feed displacement for follow-on processing. For this to be effective, the spent regeneration solution must be caustic. The acidic nature of the composite regeneration solution precludes this follow-on use. The acidity may be a result of mixing of rinse solutions in the system apparatus, reducing the efficiency of the rinse process. In this column system, the largest mixing areas were both above and below the resin beds. Regeneration effluent acidity may be reduced by minimizing all mixing areas in the column apparatus, utilizing a larger DI water wash volume after elution, and using a larger regeneration solution volume.

Activity Balance for ¹³⁷Cs 3.3.4

An activity balance for ¹³⁷Cs was completed to compare the ¹³⁷Cs recovered in various process streams to the ¹³⁷Cs present in the feed sample (Table 3.7). A 1 to 5% fraction of the Cs broke through the lead column to the lag column. As expected, virtually all ¹³⁷Cs loaded on the lead column was found in the eluate stream, recovering 98.9% of the ¹³⁷Cs present in the initial AZ-102C feed. The total Cs recovery, calculated from summation of all process streams, was 104%. The high bias is largely attributed to analytical errors associated with the large dilutions performed remotely in the hot cells required for analysis.

		¹³⁷ Cs Relative to				
Solution	¹³⁷ Cs, µCi	Feed Sample, %				
Initial loading						
Feed Sample (AZ-102C)	2.22 E6	100				
Initial AN-102/C-104 loading	2.22 E-4	1E-8				
Process streams						
AZ-102C Effluent	1.7E+1	8.1E-4				
Load samples (lead and lag columns)	1.0E+2	4.5E-3				
Feed displacement	2.0E+0	9.0E-5				
DI Water Rinse	5.0E-1	2.3E-5				
Column #1 Eluate	2.19E+6	9.89E+1 ^(a)				
Column #1 DI water rinse	2.3E+1	1.0E-3				
Column #1 regeneration	7.4E+1	3.3E-3				
Column #1 Eluate (repeat)	9.2E+1	4.1E-3				
Column #1 DI water rinse	4.0E+0	1.8E-4				
Column #1 regeneration	2.8E+0	1.3E-4				
Lag column Cs loading	1.2E+5	5.4E+0 ^(b)				
Total ¹³⁷ Cs Recovery	2.43E+6	1.04E+2				
(a) Integration of the lead column eluate sample results indicated the eluate recovery was 94.6%						

Table 3.7. Activity Balance for ¹³⁷Cs

(b) Integration of the lead column load samples indicated breakthrough was at 10%; integration of the lead column eluate samples resulted in 94.6 % recovery indicating the breakthrough was 5.4%, the composite eluate recovery of 98.9% indicated the breakthrough was 1.1%. The median value is reported.

3.3.5 SL-644 Resin Volume Changes

The SL-644 resin is known to change in volume as a function of the solution pH and ionic strength (Hassan, King, and McCabe 1999). The resin BV change history is shown in Table 3.8. The columns are labeled 1 and 2. Column 1 was the lead column for the AW-101 simulant test and the AP-101DF test; Column 2 was the lag column for these tests. Results from both tests have been previously reported (Fiskum, Blanchard, Arm 2002a; Fiskum et al. 2002a). These columns were switched for the AN-102/C-104 ion exchange test. Thus Column 1 was placed in the lag position, and Column 2 was placed in the lead position (Fiskum, Blanchard, and Arm 2002b). The column positions were switched again for the AZ-102C ion exchange test, where Column 1 was placed back into the lead position and Column 2 back to the lag position.

The variation in BV as a function of the process steps for both columns is shown in Figure 3.6 and Figure 3.7. In Figure 3.6, the BVs are normalized to the volume in the 0.25 M NaOH regeneration condition just before AZ-102C loading. Each process step is denoted with a number corresponding to the number in Table 3.8. An anomalous behavior was observed during the load phase of AZ-102C (Step 32). The lead column resin bed expanded after loading 508 mL AZ-102C in a 3-h time frame from 9.5 mL to 10.4 mL.

			010319SMC-IV-73 212- to 425-µm particle size		
Feed	Symbol	Process Step	Column 1	Column 2	
Initial column positions			Lead column, mL	Lag column, mL	
Initial packing	Р	1	10.9	10.9	
0.5 M HNO ₃	Е	2	9.2	8.9	
DI water	W	3	9.2	8.9	
0.25 M NaOH	R	4	11.2	10.8	
AW-101 simulant	F	5	10.2	10.0	
0.1 M NaOH	FD	6	10.9	10.7	
DI water	W	7	10.9	10.9	
0.5 M HNO ₃	Е	8	8.9	8.9	
DI water	W	9	8.9	8.7	
Re-fluidize bed	RP	10	7.5	7.5	
0.25 M NaOH	R	11	11.0	10.9	
DI water	W	12	10.5	11.0	
0.5 M HNO ₃	Е	13	7.9	7.7	
DI water	W	14	7.9	7.7	
0.25 M NaOH	R	15	10.7	10.5	
AP-101DF	F	16	9.7	9.7	
0.1 M NaOH	FD	17	10.5	10.4	
DI water	W	18	10.4	10.5	
0.5 M HNO ₃	Е	19	7.7	—	
DI water	W	20	7.7	—	
0.25 M NaOH	R	21	10.5	—	
DI water	W	22	10.2	—	
Switch column positions			Lag column, mL	Lead column, mL	
0.25 M NaOH	R	23	10.5	10.4	

Table 3.8. SL-644 BVs

			010319SMC-IV-73 212- to 425-µm particle size	
Feed	Symbol	Process Step	Column 1	Column 2
AN-102/C-104	F	24	9.9	9.9
0.1 M NaOH	FD	25	10.7	10.4
DI water	W	26	10.7	10.4
0.5 M HNO ₃	Е	27	—	7.7
DI water	W	28	—	7.5
0.25 M NaOH	R	29	—	10.2
DI water	W	30		10.4
Switch column positions			Lead column, mL	Lag column, mL
0.25 M NaOH	R	31	10.2	10.0
AZ-102C	F	32	9.5 (jumped to 10.4)	9.4
0.1 M NaOH	FD	33	10.7	10.0
DI water	W	34	10.9	10.3
0.5 M HNO ₃	Е	35	8.1	—
DI water	W	36	8.2	—
0.25 M NaOH	R	37	10.4	—
DI water	W	38	10.7	—
0.5 M HNO ₃	Е	39	7.9	—
DI water	W	40	7.8	—
0.25 M NaOH	R	41	10.5	—
DI water	W	42	10.7	

Table 3.8 (cont'd)

In Figure 3.7, the observed volume changes show clearly the resin bed history with respect to expansion and contraction observed with repeated cycling. The volume contraction after the initial 0.5 M HNO₃ conditioning and AW-101 processing became more pronounced with cycling. The first volume contraction stabilized at 9.2 mL; subsequent volume contractions stabilized at around 7.8 mL. After initial cycling, the resin beds appeared to remain fairly consistent with respect to swelling and shrinking. The AZ-102C processing distinctly showed continued resin bed expansion from the feed displacement to the DI water rinse (Steps 33 and 34), whereas these volumes in other cycles remained essentially constant.

Figure 3.6. Relative BVs For AZ-102C Processing (relative to regeneration condition, 10.2 mL)

Figure 3.7. Comparison of BVs of the Lead and Lag Columns for all Test Cycles

3.18

4.0 Conclusions

Good column performance of Envelope B tank waste sample AZ-102C was demonstrated. Decontamination of ¹³⁷Cs from AZ-102C was demonstrated and a Cs-decontaminated sample was provided for downstream process testing.

- An overall DF of 1.05E+5 was obtained providing a Cs-decontaminated effluent with a ¹³⁷Cs concentration of 1.92E-2 μCi/mL. This is 5.9% of the contract limit of 3.22E-1 μCi/mL in the treated effluent (based on minimum 5.0 wt% waste Na₂O loading) and 6.6% of the contract limit 2.92E-1 μCi/mL (based on maximum 5.5 wt% waste Na₂O loading).
- The AZ-102C effluent was forwarded for down-stream process testing (i.e., batch-contact studies for ⁹⁹Tc removal and ⁹⁹Tc measurements using a prototype Tc monitor).

Cs load and elution profiles were developed.

- The AZ-102C feed loading continued through 79% Cs breakthrough on the lead column. The 50% Cs breakthrough point was interpolated to be 93 BVs from the lead column breakthrough profile. No Cs breakthrough was observed from the lag column.
- The Cs-loaded lead column was efficiently eluted with 0.5 M HNO₃. The majority of the ¹³⁷Cs was eluted from the column in 2.5 BVs of eluate (2.5 to 5.0 BV fraction), although 8 BVs of eluant were required to reach the elution end point of a $C/C_0 = 0.01$. The peak ¹³⁷Cs C/C_0 value was 71 (lead column). Nearly 99% of the ¹³⁷Cs present in the feed sample was recovered in the composite eluate fraction.

The effectiveness of SL-644 ion exchange process steps was demonstrated, including loading, feed displacement, DI water washing, and elution; the resin regeneration may not have been sufficient.

- An activity balance for ¹³⁷Cs indicated that 104% of the ¹³⁷Cs present in the feed sample was accounted for in the samples and process streams (mostly in the eluate), which is indicative of good experimental integrity.
- The regeneration solution effluent was slightly acidic; however, the calculated Na uptake appeared to be adequate.

Distribution coefficient (K_d) values were determined as a function of Na/Cs mole ratio for SL-644 in the AZ-102C matrix.

- The batch-contact equilibrium data resulted a feed condition K_d of 160 mL/g, corresponding to a predicted Cs λ of 38 BVs (0.25 M NaOH condition) at a Na/Cs mole ratio of 8.84 E+3, 25 to 26°C.
- Performance degradation was demonstrated on the dry H-form resin, stored for nominally 1 year, where a 20% drop was observed in the AW-101 simulant feed condition K_d .

5.0 References

Fiskum SK, DL Blanchard, and ST Arm. 2002a. *Aging Study and Small Column Ion Exchange Testing of SuperLig*® 644 for Removal of ¹³⁷Cs from Simulated AW-101 Hanford Tank Waste, PNWD-3195, Battelle—Pacific Northwest Division, Richland, WA.

Fiskum SK, DL Blanchard, and ST Arm. 2002b. Small Column Ion Exchange Testing of SuperLig® 644 for Removing ¹³⁷Cs from Hanford Waste Tank 241-AN-102 Supernate (Envelope C) Mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions, PNWD-3240, Battelle—Pacific Northwest Division, Richland, WA.

Fiskum SK, ST Arm, DL Blanchard, and BM Rapko. 2002a. *Small Column Ion Exchange Testing of Superlig® 644 for Removal of*¹³⁷Cs from Hanford Waste Tank 241-AP-101 Diluted Feed (Envelope A), PNWD-3198, Battelle—Pacific Northwest Division, Richland, WA.

Fiskum SK, OT Farmer, LR Greenwood, ED Jenson, BM Oliver, RL Russell, CZ Soderquist, MJ Steele, RG Swoboda, MW Urie, JJ Wagner. 2002b. *Hanford Tank 241-AZ-102 Waste Concentration and Composition*, PNWD-3235, Battelle—Pacific Northwest Division, Richland, WA.

Golcar GR, NG Colton, JG Darab, and HD Smith. 2000. *Hanford Tank Waste Simulants Specification and Their Applicability for the Retrieval, Pretreatment, and Vitrification Processes*, PNWD-2455, Battelle - Pacific Northwest Division, Richland, WA.

Hamm LR, FG Smith, and DJ McCabe. 2000. *Preliminary Ion Exchange Modeling for Removal of Cesium from Hanford Waste Using SuperLig*[®] 644 Resin. BNF-003-98-0220, Rev. 0, Savannah River Technology Center, Westinghouse Savannah River Co., Aiken SC.

Hassan NM, WD King, and DJ McCabe. 1999. *Superlig*® *Ion Exchange Resin Swelling and Buoyancy Study (U)*, Savannah River Technology Center, Westinghouse Savannah River Co., Aiken, SC.

Hassan NM, WD King, DJ McCabe, and ML Crowder. 2001. *Small-Scale Ion Exchange Removal of Cesium and Technetium from Envelope B Hanford Tank 241-AZ-102*, WSRC-TR-2000-00419, SRT-RPP-2000-00036, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Hassan NM, DJ McCabe, and WD King. 2000. *Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103, Revision 1*, BNF-003-98-0146, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Hassan NM, DJ McCabe, WD King, and ML Crowder. 2000. *Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102*, BNF-003-98-0219, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Hay MS, and MG Bronikowski. 2000. *Chemical Characterization of an Envelope B/D Sample from Hanford Tank 241-AZ-102*, BNF-003-98-0249, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

King WD, NM Hassan, and DJ McCabe. 2001. *Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tanks 241-AN-102*, WSRC-TR-2000-00420, SRT-RPP-2000-00014, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Korkisch J. 1989. *Handbook of Ion Exchange Resins: Their Application to Inorganic Analytical Chemistry*, Vol. 1, CRC Press, Boca Raton, FL.

Kurath DE, DL Blanchard, Jr., and JR. Bontha. 2000a. *Small Column Ion Exchange Testing of Superlig* 644 for Removal of 137Cs from Hanford Tank Waste Envelope C (Tank 241-AN-107), PNWD-3039, Battelle—Pacific Northwest Division, Richland, WA.

Kurath DE, DL Blanchard, Jr., and JR Bontha. 2000b. *Small Column Ion Exchange Testing of Superlig* 644 for Removal of ¹³⁷Cs from Hanford Tank Waste Envelope A (Tank 241-AW-101), PNWD-3001, Battelle—Pacific Northwest Division, Richland, WA.

Rapko BM, DL Blanchard, Jr., KJ Carson, JR DesChane, RL Sell, and RG Swoboda. 2002. *Batch Contact Testing of SuperLig*®-644, PNWD-3265, Battelle—Pacific Northwest Division, Richland, WA.

Steimke JL, MA Norato, TJ Steeper, and DJ McCabe. 2001. *Summary of Initial Testing of SuperLig*® 644 at the TFL Ion Exchange Facility, SRR-RPP-2000-00054, WSRC-TR-2000-00505, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Appendix A

General Calculations

Appendix A: General Calculations

¹³⁷Cs Concentration Contractual Limit in AZ-102 Concentrate Envelope B Vitrification Feed

Assumptions, Minimum Waste Loading

- 1) Concentration of Na₂O in Env. B glass = 5% (= 5 g Na₂O/100 g glass)
- For maximum ¹³⁷Cs concentration in glass, assume that all Na comes from the feed. If some Na is added to Vit feed, multiply the maximum ¹³⁷Cs value determined below by the ratio of total Na:feed Na.
- 3) Glass density = 2.66 MT/m^3 (=2.66 g/mL)
- 4) Maximum ¹³⁷Cs in glass = 0.3 Ci/m^3 (=0.3 Ci/1E+6 mL = 3E-7 Ci/mL)
- 5) AZ-102C (C = concentrate) actual waste Na concentration = 4.61 M
- 6) AZ-102 actual waste ¹³⁷Cs concentration = $2.005E3 \mu Ci/mL/4.61 M Na$

Na Loading in Glass

5 g Na₂O/100g glass * 1 mole Na₂O/62 g Na₂O) * (2 mole Na/ mole Na₂O)* (23 g Na/mole Na) * (2.66 g glass/mL glass) = 0.0987 g Na/mL glass

Maximum ¹³⁷Cs:Na in glass

 $(3.0E-7 \text{ Ci}^{137}\text{Cs/mL glass})/(0.0987 \text{ g Na/mL glass}) = 3.04 \text{ E-6 Ci}^{137}\text{Cs/g Na}$

 $(3.04 \text{ E-6 Ci}^{137}\text{Cs/g Na}) * (23 \text{ g Na/mole}) = 6.99\text{E-5 Ci}^{137}\text{Cs/mole Na}$

Maximum ¹³⁷Cs:Na in feed

 $(6.99E-5 \text{ Ci} {}^{137}\text{Cs/mole Na}) * (4.61 \text{ mole Na/L feed}) = 3.22 \text{ E-4 Ci} {}^{137}\text{Cs/L} = 3.22 \text{ E+2 } \mu\text{Ci} {}^{137}\text{Cs/L} = 0.322 \mu\text{Ci} {}^{137}\text{Cs/mL}$

AZ-102C actual waste Cs fraction remaining (C/Co) Co	ontractual Limit
(0.322 µCi ¹³⁷ Cs/ mL)/(2.005E3 µCi ¹³⁷ Cs/mL)	$= 1.61 \text{ E-4 C/C}_{o}$
	$= 0.0161 \% C/C_{o}$

$DF = C_0/$	С
21 00	-

 $(2.005E3 \ \mu Ci^{137}Cs/mL)/(0.321 \ \mu Ci^{137}Cs/mL) = 6250$

¹³⁷Cs Concentration Contractual Limit in AZ-102 Concentrate Envelope B Vitrification Feed

Assumptions, Maximum Waste Loading

- 1) Concentration of Na₂O in Env. B glass = 5.5% (= 5.5 g Na₂O/100 g glass)
- For maximum ¹³⁷Cs concentration in glass, assume that all Na comes from the feed. If some Na is added to Vit feed, multiply the maximum ¹³⁷Cs value determined below by the ratio of total Na:feed Na.
- 3) Glass density = 2.66 MT/m^3 (=2.66 g/mL)
- 4) Maximum ¹³⁷Cs in glass = 0.3 Ci/m^3 (=0.3 Ci/1E+6 mL = 3E-7 Ci/mL)
- 5) AZ-102C (C = concentrate) actual waste Na concentration = 4.61 M
- 6) AZ-102 actual waste ¹³⁷Cs concentration = $2.005E3 \mu Ci/mL/4.61 M Na$

Na Loading in Glass

5.5 g Na₂O/100g glass * 1 mole Na₂O/62 g Na₂O) * (2 mole Na/ mole Na₂O)* (23 g Na/mole Na) * (2.66 g glass/mL glass) = 0.109 g Na/mL glass

Maximum ¹³⁷Cs:Na in glass

 $(3.0E-7 \text{ Ci}^{137}\text{Cs/mL glass})/(0.109 \text{ g Na/mL glass}) = 2.75 \text{ E-6 Ci}^{137}\text{Cs/g Na}$

 $(2.75 \text{ E-6 Ci}^{137}\text{Cs/g Na}) * (23 \text{ g Na/mole}) = 6.33\text{E-5 Ci}^{137}\text{Cs/mole Na}$

Maximum ¹³⁷Cs:Na in feed

 $(6.33\text{E-5 Ci}^{137}\text{Cs/mole Na}) * (4.61 \text{ mole Na/L feed}) = 2.92 \text{ E-4 Ci}^{137}\text{Cs/L}$ $= 2.92 \text{ E+2 } \mu\text{Ci}^{137}\text{Cs/L}$ $= 0.292 \ \mu\text{Ci}^{137}\text{Cs/mL}$

 $\frac{\text{AZ-102C actual waste Cs fraction remaining (C/C_o) Contractual Limit}}{(0.292 \ \mu\text{Ci}^{137}\text{Cs/mL})/(2.005\text{E3} \ \mu\text{Ci}^{137}\text{Cs/mL})} = 1.46 \ \text{E-4 C/C}_o = 0.0146\% \ \text{C/C}_o$

$DF = C_o/C$

 $(2.005E3 \ \mu Ci^{137}Cs/mL)/(0.292 \ \mu Ci^{137}Cs/mL) = 6866$

Appendix B

Batch-Contact Calculations

Appendix B: Batch-Contact Calculations

TI-PNNL-WTP-164, Rev. 0

Batch Contact of AW-101Simulant with SL-644

	m	F	Ina			V			C ₀ & Ca	Average Co						
	H-form	F-factor	Na form	Corrected	Net	Simulant	Analytical	Analytical	- eq	average			Fraction	Eq. Cs	Ea Cs	Na/Cs
	resin	(water	mass gain	resin	simulant	volume*.	sample.	sample.		comp.			Cs	conc.,	conc.	mole
Sample ID	mass, g	loss)	factor	mass, g	mass, g	mL	g	mL	cpm/mL	cpm/mL	K _d	K _d '	remaining	µg/mL**	M**	ratio
S-TI164-S0	none	1	1	0	12.3703	9.9760	6.2345	5.0278	140.5	140.4	NIA	NT A	1.0	1.20	2 2015 5	1.5(E).5
S-TI164-S0-D	none	1	1	0	12.367	9.9734	6.2298	5.0240	140.3	140.4	NA	NA	1.0	4.26	3.20E-5	1.36E+5
S-TI164-S0-73	0.104	0.7619	1.25	0.0991	12.3604	9.9681	6.2025	5.0020	9.9	NA	1650	1320	0.071	0.30	2.27E-6	2.20E+6
S-TI164-S0-73-D	0.1023	0.7619	1.25	0.0974	12.3714	9.9769	6.1891	4.9912	10.2	NA	1638	1310	0.072	0.31	2.32E-6	2.15E+6
S-TI164-S1	none	1	1	0	12.3753	9.9801	6.237	5.0298	144.0	144.1	NIA	NT A	1.0	127	1.02E.2	4.9(E+2
S-TI164-S1-D	none	1	1	0	12.3778	9.9821	6.2497	5.0401	144.3	144.1	NA	NA	1.0	157	1.03E-3	4.80E+3
S-TI164-S1-73	0.1048	0.7619	1.29	0.1030	12.346	9.9565	6.2554	5.0447	23.7	NA	634	491	0.164	22.5	1.69E-4	2.95E+4
S-TI164-S1-73-D	0.1044	0.7619	1.29	0.1026	12.3734	9.9785	6.2516	5.0416	23.8	NA	634	491	0.170	23.2	1.75E-4	2.86E+4
S-TI164-S2	none	1	1	0	12.3976	9.9981	6.2408	5.0329	142.0	142.5		NT A	1.0	((1	4.07E.2	1.01E+2
S-TI164-S2-D	none	1	1	0	12.3561	9.9646	6.2348	5.0281	142.9	142.5	NA	NA	1.0	001	4.9/E-3	1.01E+3
S-TI164-S2-73	0.1043	0.7619	1.25	0.0993	12.3659	9.9725	6.2193	5.0156	61.3	NA	166	133	0.431	284	2.14E-3	2.34E+3
S-TI164-S2-73-D	0.1039	0.7619	1.25	0.0990	12.3586	9.9666	6.2294	5.0237	59.1	NA	178	142	0.415	274	2.06E-3	2.42E+3

*AW101 Simulant volume was determined based on mass delivered and the solution density of 1.24 g/mL. The slight dilution attributed to spiking was considered inconsequential.

**Equilibrium Cs concentration is based on the ¹³⁷Cs tracer recovery.

Na concentration was prepared to 5 M.

NA = not applicable

 $K_d = (C_o - C_{eq})/C_{eq} \times V/(m*F)$

 $K_{d}' = (C_{o}-C_{eq})/C_{eq} \ge V/(m*F*I_{Na})$ where m is mass of SL-644 in H-form

F = F-factor for water loss

and I_{Na} = Na form mass gain factor from H-form to Na form.

B.1

TI-PNNL-WTP-164, Rev. 0 Batch Contact of AZ-102 Concentrate Tank Waste with SuperLig 644

AZ-102C feed density 1.246 g/mL

		m	F	I _{Na}			V	Co					C _{eq}				
		H-form			corrected							Fraction of		Equilibrium		Na-form	
		SL-644			resin	AZ-102C,	AZ-102C,	Starting			Net Cs-137	original Cs-	Equilibrium	Na:Cs mole	K _d ,	dry bed	λ,
	Sample ID	Resin, g	F-factor	I _{Na} factor	mass, g	g	mL	[Cs], M	[Na], M	CMC ID	µCi/mL	137	[Cs], M	ratio	mL/g	density*	BVs
	AZ102-TI-164-S0	none	1	1	0	3.6982	2.9681	5.21E-4	4.61	022300	2.18E+3	1.0	5.21E-4	8.84E+3	NA	NA	NA
	AZ102-TI-164-S0-D	none	1	1	0	3.6908	2.9621	5.21E-4	4.61	022301	2.25E+3	1.0	5.21E-4	8.84E+3	NA	NA	NA
	AZ102-TI-164-S0-73	0.0735	0.7619	1.25	0.0700	8.7749	7.0425	5.21E-4	4.61	022302	7.35E+2	3.32E-1	1.73E-4	2.66E+4	203	0.24	49
	AZ102-TI-164-S0-73D	0.0703	0.7619	1.25	0.0670	8.7887	7.0535	5.21E-4	4.61	022303	6.77E+2	3.06E-1	1.59E-4	2.89E+4	239	0.24	57
B	AZ102-TI-164-S1	none	1	1	0	3.6967	2.9669	4.58E-3	4.61	022304	2.36E+3	1.0	4.58E-3	1.01E+3	NA	NA	NA
l,	AZ102-TI-164-S1-D	none	1	1	0	3.3406	2.6811	4.58E-3	4.61	022305	2.34E+3	1.0	4.58E-3	1.01E+3	NA	NA	NA
	AZ102-TI-164-S1-73	0.0723	0.7619	1.25	0.0689	8.764	7.0337	4.58E-3	4.61	022306	1.48E+3	6.30E-1	2.88E-3	1.60E+3	60	0.24	14
	AZ102-TI-164-S1-73D	0.0727	0.7619	1.25	0.0692	8.7684	7.0372	4.58E-3	4.61	022307	1.42E+3	6.04E-1	2.77E-3	1.67E+3	67	0.24	16
	AZ102-TI-164-S2	none	1	1	0	3.7031	2.9720	7.38E-3	4.61	022308	2.32E+3	1.0	7.38E-3	6.25E+2	NA	NA	NA
	AZ102-TI-164-S2-D	none	1	1	0	3.0783	2.4705	7.38E-3	4.61	022309	2.28E+3	1.0	7.38E-3	6.25E+2	NA	NA	NA
	AZ102-TI-164-82-73	0.0745	0.7619	1.25	0.0710	8.7856	7.0510	7.38E-3	4.61	022310	1.53E+3	6.65E-1	4.91E-3	9.39E+2	50	0.24	12
	AZ102-TI-164-S2-73D	0.0735	0.7619	1.25	0.0700	8.749	7.0217	7.38E-3	4.61	022311	1.60E+3	6.96E-1	5.14E-3	8.98E+2	44	0.24	10

*dry-bed density in the 0.25 M NaOH matrix

NA = not analyzed

 $\begin{array}{l} K_{d} = (C_{o} - C_{eq}) / C_{eq} \; x \; V / (m^{*} F^{*} I_{Na}) \\ \mbox{Average Cs-137} & 2.22E + 3Cs - 137 \; \mu Ci/mL \; S0 \\ \mbox{Average Cs-137} & 2.35E + 3Cs - 137 \; \mu Ci/mL \; S1 \\ \mbox{Average Cs-137} & 2.30E + 3Cs - 137 \; \mu Ci/mL \; S2 \\ \end{array}$

Appendix C

Column-Testing Calculations

Appendix C: Column-Testing Calculations

AZ-102C Test Run

SL-644 batch 010310SM Bed volume in 0.25M Nat AN-102/C-014 finish date 7/10/2001	C-IV-73 212 OH e 118.62 c	- to 425-μm part days system was	ticle size 10.2 r idled	nL	0.11 0.251	HNO3 M NaOH M NaOH AZ-102C	Densities 1.012 0.999 1.006 1.2462	g/mL		a total system column 1 column 2	pparatus volu 42 ml 23 21	me L			
Conditioning 11/5/01		5													
Lead column + Lag colum	nn		σ	mL	mI /min										
start	end	Δt	mass	volume	flow rate	BV/hr	BV	AV							
0.25M NaOH wash									-						
11/5/2001 14:57 11/5/	2001 18:36	3:39	91.7	91.2	0.42	2.45	8.9	2.17							
AZ-102C actual waste lo	oading starti	ng on 11/5/01													
Initial effluent collection															
1 apparatus volume of fee	ed			cumul.		a	pparatus								
start	end	Δt	mass	volume	flow rate	BV/hr	volume								
11/5/2001 18:46 11/5/	2001 21:40	2:54	41.2	41.0	0.235	1.38	1.0								
															Running
Feed flow				cumul.			cumulat.		Lead colur	nn sampling					total
start	end	Δt	mass	volume	flow rate	BV/hr	BV	Sample ID	Vial tare	Vial + smpl	mass	volume	total vol.	BV	sample vol
11/5/2001 21:40 11/5/	2001 22:00	0:20	3.9	44.1	0.156	0.92	4.5	AZ102L-F1	17.1337	19.3829	2.2492	1.805	45.889	4.5	1.8048
11/5/2001 22:1/ 11/5/.	2001 23:42	5:14	20.7	140.4	0.195	1.15	6.0	AZ102L-F2	17.1230	19.8664	2.7434	2.201	00.088	0.5	4.0063
6:22	8.40	2:08	22.7	140.4	0.234	1.49	15.0	AZ102L-F3	17.1545	19.0000	2.5001	2.011	182 880	14.9	8.0796
8.52	11:00	2:08	33.7	107.4	0.211	1.24	10.4	AZ102L-F4	17.1369	19.7290	2.3701	1.062	216 241	21.2	10 0422
11.18	14.20	3:02	51.0	238.1	0.234	1.38	23.3	AZ102L-F5	17.1636	19.6733	2.4439	1.903	260.653	21.2	12 0164
15:43	17:01	1:18	25.1	258.3	0.258	1.52	25.3	AZ102L-F7	17 2084	20.0611	2.8527	2 289	285 745	28.0	14 3055
17:22	20.27	3:05	38.2	288.9	0.166	0.97	28.3	AZ102L-F8	17.0871	20.8494	3 7623	3 019	322.016	31.6	17 3245
11/6/2001 21:46 11/7	7/2001 1:07	3.21	52.6	331.1	0.210	1.24	32.5	AZ102L-F9	17 1750	23 4078	6 2328	5 001	374 291	36.7	22 3260
11/7/2001 1:28 11/7	7/2001 4:20	2:52	49.8	371.1	0.232	1.37	36.4	AZ102L-F10	17.1872	19.1315	1.9443	1.560	419.186	41.1	23.8861
4:43	7:40	2:57	48.3	409.8	0.219	1.29	40.2	AZ102L-F11	17.3173	19.9686	2.6513	2.128	463.072	45.4	26.0136
8:02	11:00	2:58	50.3	450.2	0.227	1.33	44.1	AZ102L-F12	17.2127	19.8050	2.5923	2.080	507.971	49.8	28.0938
11:26	14:20	2:54	49.9	490.2	0.230	1.35	48.1	AZ102L-F13	17.2647	19.7327	2.4680	1.980	553.200	54.2	30.0742
14:42	17:40	2:58	52.8	532.6	0.238	1.40	52.2	AZ102L-F14	17.1680	19.1680	2.0000	1.605	599.608	58.8	31.6791
18:01	21:00	2:59	50.4	573.1	0.226	1.33	56.2	AZ102L-F15	17.1600	19.3483	2.1883	1.756	644.193	63.2	33.4351
11/7/2001 21:20 11/8	3/2001 0:21	3:01	50.8	613.8	0.225	1.32	60.2	AZ102L-F16	17.1604	20.0594	2.8990	2.326	690.506	67.7	35.7614
11/8/2001 1:51 11/8	3/2001 3:41	1:50	32.0	639.5	0.233	1.37	62.7	AZ102L-F17	17.1384	19.5853	2.4469	1.963	721.783	70.8	37.7248
4:15	6:58	2:43	48.3	678.3	0.238	1.40	66.5	AZ102L-F18	17.2588	19.9166	2.6578	2.133	765.463	75.0	39.8576
7:22	10:20	2:58	55.4	722.7	0.250	1.4/	70.9	AZ102L-F19	17.3043	20.1190	2.8147	2.259	814.69/	79.9	42.1162
10:43	13:45	3:02	59.6	770.5	0.263	1.55	75.5	AZ102L-F20	17.2551	20.3027	3.0476	2.446	867.724	85.1	44.5617
14:05	1/:00	2:55	587	810.0	0.263	1.55	80.1	AZ102L-F21	17.17/5	19.9230	2.7455	2.203	918.495	90.0	40./048
11/8/2001 20:28 11/9/	20.20	3.00	57.4	000.7	0.202	1.54	04./ 80.2	AZ102L-F22	17.0484	19.3044	2.5500	1.0/4	1010 021	95.1 100 0	40.0393
11/9/2001 20:38 11/8/	2001 23.40	2.57	58.0	956.3	0.255	1.49	93.8	A7102L-F23	17.0902	19 3116	2 1684	1 740	1071 102	105.0	52 8397
ΔT. total	80:14:00	4.31	50.0	verage	0.234	1.37	15.0	11021-124	17.1752	17.5110	2.1004	1.740	10/1.1/2	105.0	52.0571

	Lag column sam	pling							
					Vial +	sample			
Date	Sample ID	start	end	Vial tare	sample	mass	volume	total vol.	BV
11/5/2001	AZ-102P-F1	22:10	22:15	17.0901	19.5669	2.477	1.987	46.07	4.52
	AZ-102P-F2	23:53	0:01	17.2804	20.6728	3.392	3.372	66.05	6.48
11/6/2001	AZ-102P-F3	6:27	6:32	17.2270	19.7576	2.531	2.031	147.77	14.49
	AZ-102P-F4	8:48	8:53	17.1340	19.2764	2.142	1.719	176.53	17.31
	AZ-102P-F5	11:08	11:18	17.1821	18.9437	1.762	1.414	207.71	20.36
	AZ-102P-F6	14:29	15:41	17.2051	20.5224	3.317	2.662	251.30	24.64
	AZ-102P-F7	17:12	17:21	17.1880	20.4258	3.238	2.598	274.04	26.87
	AZ-102P-F8	21:36	21:46	17.2298	23.5426	6.313	5.066	309.76	30.37
11/7/2001	AZ-102P-F9	1:20	1:28	17.2697	21.4740	4.204	3.374	355.34	34.84
	AZ-102P-F10	4:26	4:43	17.2258	20.9653	3.740	3.001	398.30	39.05
	AZ-102P-F11	7:50	8:00	17.3229	20.3830	3.060	2.456	439.51	43.09
	AZ-102P-F12	11:13	11:26	17.2472	21.2433	3.996	3.207	483.08	47.36
	AZ-102P-F13	14:29	14:38	17.3132	20.3468	3.034	2.434	525.56	51.53
	AZ-102P-F14	17:50	18:00	17.3260	20.3006	2.975	2.387	570.32	55.91
	AZ-102P-F15	21:08	21:19	17.1173	21.1335	4.016	3.223	613.98	60.19
11/8/2001	AZ-102P-F16	1:41	1:51	17.2322	21.7617	4.530	3.635	658.38	64.55
	AZ-102P-F17	4:05	4:15	17.1648	20.6418	3.477	2.790	686.85	67.34
	AZ-102P-F18	7:13	7:21	17.1201	20.2604	3.140	2.520	728.13	71.38
	AZ-102P-F19	10:31	10:42	17.2389	20.6738	3.435	2.756	775.34	76.01
	AZ-102P-F20	13:57	14:05	17.3165	20.4420	3.126	2.508	825.67	80.95
	AZ-102P-F21	17:11	17:19	17.0888	19.6770	2.588	2.077	873.81	85.67
	AZ-102P-F22	20:28	20:36	17.0358	19.3541	2.318	1.860	922.77	90.47
	AZ-102P-F23	23:51	0:01	17.0639	20.7771	3.713	2.980	971.81	95.28
11/9/2001	AZ-102P-F24	3:15	3:26	17.1059	21.8949	4.789	3.843	1022.19	100.22

0.1M NaOH feed displacement

						Sample	Sample						Cumul.		Sample
Sample ID	Start	End	Δt	Vial tare	Vial + sample	mass	Volume	mL/min	BV/hr	BV c	umul. BV	AV	AV	C/Co	density
AZ102-FD-1	3:36	3:59	0:23	17.1770	29.5637	12.39	9.94	0.43	2.54	0.97	0.97	0.24	0.24	7.91E-6	1.246
AZ102-FD-2	3:59	4:21	0:22	17.0785	28.5703	11.49	9.22	0.42	2.47	0.90	1.88	0.22	0.46	7.93E-6	1.246
AZ102-FD-3	4:21	4:42	0:21	17.2852	28.1550	10.87	8.72	0.42	2.44	0.86	2.73	0.21	0.66	8.96E-6	1.246
AZ102-FD-4	4:42	5:04	0:22	17.2425	28.0201	10.78	8.65	0.39	2.31	0.85	3.58	0.21	0.87	8.24E-6	1.246
AZ102-FD-5	5:04	5:30	0:26	17.1590	28.4221	11.26	9.54	0.37	2.16	0.94	4.52	0.23	1.10	9.82E-6	1.18
AZ102-FD-6	5:30	5:51	0:21	17.2066	28.3515	11.14	10.60	0.50	2.97	1.04	5.56	0.25	1.35	2.00E-5	1.05
AZ102-FD-7	5:51	6:13	0:22	17.0996	28.5422	11.44	11.68	0.53	3.12	1.15	6.70	0.28	1.63	1.13E-5	0.98
AZ102-FD-8	6:13	6:36	0:23	17.1557	27.4960	10.34	10.68	0.46	2.73	1.05	7.75	0.25	1.88	7.38E-6	0.97
AZ102-FD-9	6:36	6:57	0:21	17.1717	26.1073	8.94	9.30	0.44	2.60	0.91	8.66	0.22	2.10	4.85E-6	0.96
AZ102-FD-10	6:57	7:18	0:21	17.1484	26.1150	8.97	9.31	0.44	2.61	0.91	9.57	0.22	2.32	4.24E-6	0.96
AZ102-FD-11	7:18	7:39	0:21	17.0842	26.2388	9.2	9.76	0.46	2.73	0.96	10.53	0.23	2.56	3.94E-6	0.94
	ΔT , total	4:03					average	0.44	2.61						
					t	otal vol	107.40								

C.2

DI water rinse

Di water inise						Sampla	Samula						Cumul
						Sample	Sample						Cumui.
Sample ID	Start	End	Δt	Vial tare	Vial + sample	mass	Volume	mL/min	BV/hr	BV cu	mul. BV	AV	AV
AZ102-Fdi-1	7:43	8:03	0:20	17.1278	25.7211	8.593	8.593	0.43	2.53	0.84	0.84	0.20	0.20
AZ102-Fdi-2	8:03	8:24	0:21	17.2036	26.3510	9.147	9.147	0.44	2.56	0.90	1.74	0.22	0.42
AZ102-Fdi-3	8:24	8:48	0:24	17.2011	27.3354	10.134	10.134	0.42	2.48	0.99	2.73	0.24	0.66
AZ102-Fdi-4	8:48	9:10	0:22	17.0834	26.5651	9.482	9.482	0.43	2.54	0.93	3.66	0.23	0.89
AZ102-Fdi-5	9:10	9:31	0:21	17.2487	26.7820	9.533	9.533	0.45	2.67	0.93	4.60	0.23	1.12
AZ102-Fdi-6	9:31	9:53	0:22	17.1846	26.4675	9.283	9.283	0.42	2.48	0.91	5.51	0.22	1.34
AZ102-Fdi-7	9:53	10:15	0:22	17.1827	26.7614	9.579	9.579	0.44	2.56	0.94	6.45	0.23	1.57
AZ102-Fdi-8	10:15	10:35	0:20	17.1587	26.3988	9.240	9.240	0.46	2.72	0.91	7.35	0.22	1.79
AZ102-Fdi-9	10:35	10:55	0:20	17.1869	25.6666	8.480	8.480	0.42	2.49	0.83	8.18	0.20	1.99
AZ102-Fdi-10	10:56	11:19	0:23	17.2026	27.6091	10.407	10.407	0.45	2.66	1.02	9.20	0.25	2.24
	ΔT , total	3:12					average	0.44	2.57				
					t	otal vol	93.9 mL						

Cs elution from lead column,						Vial +	mass				
Separate columns	Sample ID	start	end	Δt	Vial tare	sample	colleccted	volume	flow rate	BV/hr	cumul. BV
	Н	INO3 was	hlead column								
	AZ102L-E1	11:47	13:00	1:13	17.1585	26.2693	9.1108	9.00	0.12	0.73	0.88
	AZ102L-E2	13:01	14:00	0:59	17.1099	24.2582	7.1483	7.06	0.12	0.70	1.58
	AZ102L-E3	14:01	15:00	0:59	17.0984	24.1358	7.0374	6.95	0.12	0.69	2.26
	AZ102L-E4	15:01	16:00	0:59	17.1169	26.6698	9.5529	9.44	0.16	0.94	3.18
	AZ102L-E5	16:01	17:00	0:59	17.1069	24.6126	7.5057	7.42	0.13	0.74	3.91
	AZ102L-E6	17:01	18:00	0:59	17.1140	24.3592	7.2452	7.16	0.12	0.71	4.61
	AZ102L-E7	18:01	19:00	0:59	17.2610	25.0439	7.7829	7.69	0.13	0.77	5.37
	AZ102L-E8	19:01	20:00	0:59	17.1653	24.5191	7.3538	7.27	0.12	0.72	6.08
	AZ102L-E9	20:01	21:00	0:59	17.1112	24.7442	7.6330	7.54	0.13	0.75	6.82
	AZ102L-E10	21:02	22:00	0:58	17.1685	24.4314	7.2629	7.18	0.12	0.73	7.52
	AZ102L-E11	22:00	23:00	1:00	17.1470	24.7331	7.5861	7.50	0.12	0.73	8.26
	AZ102L-E12	23:01	0:00	0:59	17.2168	25.9274	8.7106	8.61	0.15	0.86	9.10
	AZ102L-E13	0:00	1:00	1:00	17.2652	24.7709	7.5057	7.42	0.12	0.73	9.83
	AZ102L-E14	1:00	2:00	1:00	17.1810	24.6294	7.4484	7.36	0.12	0.72	10.55
	AZ102L-E15	2:00	3:00	1:00	17.1751	24.7030	7.5279	7.44	0.12	0.73	11.28
	AZ102L-E16	3:01	4:00	0:59	17.1953	24.7538	7.5585	7.47	0.13	0.74	12.01
	AZ102L-E17	4:01	5:00	0:59	17.1458	24.3407	7.1949	7.11	0.12	0.71	12.71
	AZ102L-E18	5:00	6:00	1:00	17.2034	23.7136	6.5102	6.43	0.11	0.63	13.34
	AZ102L-E19	6:00	7:06	1:06	17.1556	25.1342	7.9786	7.88	0.12	0.70	14.11
	AZ102L-E20	7:08	8:00	0:52	17.1630	24.6927	7.5297	7.44	0.14	0.84	14.84
	ΔT , total		20:13:00					average	0.13	0.74	
						sum	153.18	151.37 mI	Ĺ		

C.3

DI water

							Sample	Sample						Cumul.
Sample ID		Start	End	Δt	Vial tare	Vial + sample	mass	Volume	mL/min	BV/hr	BV Cu	nul. BV	AV	AV
AZ102-Edi-1		8:03	8:23	0:20	17.2749	26.3946	9.120	9.120	0.46	2.68	0.9	0.9	0.40	0.40
AZ102-Edi-2		8:24	8:44	0:20	17.2678	26.7359	9.468	9.468	0.47	2.78	0.9	1.8	0.41	0.81
AZ102-Edi-3		8:45	9:06	0:21	17.2284	26.4806	9.252	9.252	0.44	2.59	0.9	2.7	0.40	1.21
AZ102-Edi-4		9:07	9:27	0:20	17.1799	25.8171	8.637	8.637	0.43	2.54	0.8	3.6	0.38	1.59
AZ102-Edi-5		9:28	9:48	0:20	17.2415	26.0399	8.798	8.798	0.44	2.59	0.9	4.4	0.38	1.97
		ΔT	, total	1:45				average	0.45	2.64				
						t	otal vol	45.28 mL						
Regeneration with	n 0.25M Na	OH												
						Bottle +	Sample	Sample						Cumul.
Sample ID		Start	End	Δt	Bottle tare	sample	mass	Volume	mL/min	BV/hr	BV Cu	nul. BV	AV	AV
AZ102L-RGN		8:26	10:07	1:41	25.4	39.3	13.9	13.9	0.14	0.81	1.4	1.4	0.60	0.60
		10:08	11:38	1:30		54.5	15.2	15.2	0.17	0.99	1.5	2.9	0.66	1.27
		11:39	13:10	1:31		70.7	16.2	16.2	0.18	1.05	1.6	4.4	0.70	1.97
	ΔT , total		4:44					average	0.16	0.95				
							sum	45.3 mL						
Rinse with DI wat	ter													
							Sample	Sample						Cumul.
Sample ID		Start	End	Δt	Bottle tare	Vial + sample	mass	Volume	mL/min	BV/hr	BV Cu	nul. BV	AV	AV
AZ102-DIRinse-														
Final		13:23	13:50	0:27	14.2	26.0	11.8	11.8	0.44	2.57	1.2	1.2	0.51	0.51
		13:51	14:32	0:41		44.1	18.1	18.1	0.44	2.60	1.8	2.9	0.79	1.30
		14:33	15:08	0:35		60.8	16.7	16.7	0.48	2.81	1.6	4.6	0.73	2.03
	ΔT , total		1:45					average	0.45	2.66				

sum 46.6 mL

Cs elution from lead column, repeat						Vial +	mass					
elution	Sample ID	start	end	Δt	Vial tare	sample	colleccted	volume	flow rate	BV/hr	cumul. BV	C/Co
	Н	INO3 wash	lead column									
	AZ102L-E1-R	8:43	9:04	0:21	17.2068	27.9832	10.7764	10.65	0.51	2.98	1.04	9.99E-5
	AZ102L-E2-R	9:04	9:25	0:21	17.2606	26.1134	8.8528	8.75	0.42	2.45	1.90	5.25E-5
	AZ102L-E3-R	9:25	9:46	0:21	17.247	26.2706	9.0236	8.92	0.42	2.50	2.78	1.14E-5
	AZ102L-E4-R	9:47	10:09	0:22	17.2516	27.2294	9.9778	9.86	0.45	2.64	3.74	1.86E-3
	AZ102L-E5-R	10:10	10:30	0:20	17.2444	26.3900	9.1456	9.04	0.45	2.66	4.63	2.17E-3
	AZ102L-E6-R	10:31	10:52	0:21	17.2281	26.4951	9.2670	9.16	0.44	2.57	5.53	5.00E-4
	AZ102L-E7-R	10:53	11:14	0:21	17.2856	26.6228	9.3372	9.23	0.44	2.58	6.43	1.85E-4
	AZ102L-E8-R	11:15	11:16	0:01	17.24	17.9503	0.7103	0.70	0.70	4.13	6.50	1.83E-4
	ΔT , total			2:33				average	0.48	2.81		
						su	ım	66.30 m	L			

-		
1.11	wator	rinco
1.71	water	THISC
~ .		

DI water rinse														
							Sample	Sample						Cumul.
Sample ID		Start	End	Δt	Vial tare	Vial + sample	mass	Volume	mL/min	BV/hr	BV Cu	mul. BV	AV	AV
AZ102-Edi-1-R		11:20	11:40	0:20	17.1879	25.8448	8.657	8.657	0.43	2.55	0.8	0.8	0.38	0.38
AZ102-Edi-2-R		11:41	12:01	0:20	17.2041	25.9557	8.752	8.752	0.44	2.57	0.9	1.7	0.38	0.76
AZ102-Edi-3-R		12:02	12:22	0:20	17.2151	26.4315	9.216	9.216	0.46	2.71	0.9	2.6	0.40	1.16
AZ102-Edi-4-R		12:22	12:43	0:21	17.1110	26.2132	9.102	9.102	0.43	2.55	0.9	3.5	0.40	1.55
AZ102-Edi-5-R		12:43	13:12	0:29	17.2364	30.1875	12.951	12.951	0.45	2.63	1.3	4.8	0.56	2.12
		Δ٦	, total	1:52				average	0.44	2.60				
						t	otal vol	48.678 mL						
Regeneration with	0.25M Na	OH												
						Bottle +	Sample	Sample						Cumul.
Sample ID		Start	End	Δt	Bottle tare	sample	mass	Volume	mL/min	BV/hr	BV Cu	mul. BV	AV	AV
AZ102L-RGN		8:13	9:34	1:21	14.1	24.9	10.8	10.8	0.13	0.78	1.1	1.1	0.47	0.47
		9:35	11:04	1:29		37.3	12.4	12.4	0.14	0.82	1.2	2.3	0.54	1.01
		11:05	12:48	1:43		52.2	14.9	14.9	0.14	0.85	1.5	3.7	0.65	1.66
		12:49	14:08	1:19		63.7	11.5	11.5	0.15	0.86	1.1	4.9	0.50	2.16
	ΔT , total		5:55					average	0.14	0.83				
							sum	49.6 mL						
Rinse with DI wate	r													
							Sample	Sample						Cumul.
Sample ID		Start	End	Δt	Bottle tare	Vial + sample	mass	Volume	mL/min	BV/hr	BV Cu	mul. BV	AV	AV
AZ102-DIRinse-														
r Final		14:13	14:47	0:34	14.2	28.2	14.0	14.0	0.41	2.42	1.4	1.4	0.61	0.61
		14:48	15:20	0:32		42.0	13.8	13.8	0.43	2.54	1.4	2.7	0.60	1.21
		15:22	15:54	0:32		55.7	13.7	13.7	0.43	2.52	1.3	4.1	0.60	1.80
	ΔT , total		1:41					average	0.42	2.49				
							sum	41.5 mL						

Counting Data for TI-RPP-WTP-132, Rev. 0

Average Background Count R	ate 82.57		
300 sec count time MDL	19.11 cpm		
	3.72E-07 C/Co		
	7.645 cpm/g		
AZ102 Comparitor Standard		density	1.2462 g/mL
Position 1 on counter		net cpm/g	cpm/mL
2.78E-4 g AZ-102C	Average	2.06E+7	2.56E+7
	standard deviation	1.12E+6	1.40E+6
	% standard deviation	5.5	5.5
Position 6 on counter		net cpm/g	cpm/mL
4.889E-3 g AZ-102C	Average	1.07E+6	1.24E+6
-	standard deviation	1.04E+5	2.68E+4
	% standard deviation	9.8	2.2

AZ-102 run starting 11/5/01 Lead column, loading phase

Leau	column,	loading	pnase

	Count							
Sample ID	position	net cpm/g	net cpm/mL	C/Co	BV	% C/Co	DF	μCi Cs-137
AZ102L-F1	P1	381	475	1.86E-5	4.5	1.86E-3	5.4E+4	0.060
AZ102L-F2	P1	291	363	1.42E-5	6.5	1.42E-3	7.1E+4	0.056
AZ102L-F3	P1	70	87	3.40E-6	14.9	3.40E-4	2.9E+5	0.012
AZ102L-F4 D	P1	265	330	1.29E-5	17.9	1.29E-3	7.8E+4	0.013
AZ102L-F5 D	P1	279	348	1.36E-5	21.2	1.36E-3	7.4E+4	0.013
AZ102L-F6	P1	224	280	1.09E-5	25.6	1.09E-3	9.2E+4	0.037
AZ102L-F7	P1	193	240	9.37E-6	28.0	9.37E-4	1.1E+5	0.039
AZ102L-F8	P1	220	275	1.07E-5	31.6	1.07E-3	9.3E+4	0.059
AZ102L-F9	P1	200	250	9.75E-6	36.7	9.75E-4	1.0E+5	0.093
AZ102L-F10	P1	182	227	8.84E-6	41.1	8.84E-4	1.1E+5	0.025
AZ102L-F11	P1	181	226	8.81E-6	45.4	8.81E-4	1.1E+5	0.034
AZ102L-F12	P1	232	289	1.13E-5	49.8	1.13E-3	8.9E+4	0.032
AZ102L-F13	P1	186	231	9.03E-6	54.2	9.03E-4	1.1E+5	0.032
AZ102L-F14	P1	211	263	1.03E-5	58.8	1.03E-3	9.7E+4	0.029
AZ102L-F15	P1	184	230	8.97E-6	63.2	8.97E-4	1.1E+5	0.028
AZ102L-F16	P1	249	310	1.21E-5	67.7	1.21E-3	8.3E+4	0.005
AZ102L-F17	P1	15538	19363	7.56E-4	70.8	7.56E-2	1323	0.293
AZ102L-F18	P1	48700	60690	2.37E-3	75.0	2.37E-1	422	0.938
AZ102L-F19	P6	23804	29664	2.23E-2	79.9	2.23E+0	45	1.55
AZ102L-F20	P6	161013	200654	1.51E-1	85.1	1.51E+1	6.6	8.33
AZ102L-F21dR	P6	368947	459782	3.46E-1	90.0	3.46E+1	2.9	13.02
AZ102L-F22dR	P6	744943	928348	6.99E-1	95.1	6.99E+1	1.4	24.58
AZ102L-F23	P6	736682	918053	6.91E-1	100.0	6.91E+1	1.4	25.53
AZ102L-F24	P6	841966	1049258	7.90E-1	105.0	7.90E+1	1.3	23.51
							sum (µCi)	98.315

AZ-102 run starting 11/5/01

Lag column, loading phase

	Count							
Sample ID	position	net cpm/g	net cpm/mL	C/Co	BV	C/Co, %	DF	μCi Cs-137
AZ102P-F1	P1	244.19	304.31	1.19E-5	4.5	1.19E-3	8.4E+4	0.043
AZ102P-F2	P1	347.87	433.52	1.69E-5	6.5	1.69E-3	5.9E+4	0.083
AZ102P-F3	P1	389.34	485.20	1.89E-5	14.5	1.89E-3	5.3E+4	0.069
AZ102P-F4	P1	422.84	526.95	2.06E-5	17.3	2.06E-3	4.9E+4	0.019
AZ102P-F5	P1	332.03	413.78	1.62E-5	20.4	1.62E-3	6.2E+4	0.015
AZ102P-F6	P1	362.57	451.83	1.76E-5	24.6	1.76E-3	5.7E+4	0.085
AZ102P-F7	P1	296.67	369.70	1.44E-5	26.9	1.44E-3	6.9E+4	0.067
AZ102P-F8	P1	284.4	354.41	1.38E-5	30.4	1.38E-3	7.2E+4	0.132
AZ102P-F9	P1	307.10	382.71	1.49E-5	34.8	1.49E-3	6.7E+4	0.094
AZ102P-F10	P1	373.59	465.56	1.82E-5	39.0	1.82E-3	5.5E+4	0.100
AZ102P-F11	P1	281.07	350.27	1.37E-5	43.1	1.37E-3	7.3E+4	0.062
AZ102P-F12	P1	272.04	339.01	1.32E-5	47.4	1.32E-3	7.6E+4	0.078
AZ102P-F13	P1	268.03	334.02	1.30E-5	51.5	1.30E-3	7.7E+4	0.057
AZ102P-F14	P1	256.79	320.01	1.25E-5	55.9	1.25E-3	8.0E+4	0.054
AZ102P-F15	P1	257.72	321.17	1.25E-5	60.2	1.25E-3	8.0E+4	0.076
AZ102P-F16	P1	177.96	221.77	8.66E-6	64.5	8.66E-4	1.2E+5	0.057
AZ102P-F17	P1	227.54	283.57	1.11E-5	67.3	1.11E-3	9.0E+4	0.055
AZ102P-F18	P1	210.34	262.13	1.02E-5	71.4	1.02E-3	9.8E+4	0.047
AZ102P-F19	P1	224.12	279.30	1.09E-5	76.0	1.09E-3	9.2E+4	0.042
AZ102P-F20	P1	206.17	256.93	1.00E-5	80.9	1.00E-3	1.0E+5	0.038
AZ102P-F21	P1	206.19	256.95	1.00E-5	85.7	1.00E-3	1.0E+5	0.038
AZ102P-F22	P1	186.28	232.14	9.06E-6	90.5	9.06E-4	1.1E+5	0.033
AZ102P-F23	P1	187.65	233.85	9.13E-6	95.3	9.13E-4	1.1E+5	0.035
AZ102P-F24	P1	183.42	228.58	8.92E-6	100.2	8.92E-4	1.1E+5	0.055
							sum (µCi)	1.433
	Count						4	
	position	net cpm/g	net cpm/mL	C/Co	C/Co, %	DF		μCi Cs-137
AZ102FEcomp1	P1	40.12	38.71	1.95E-6	1.95E-4	5.12E+5	_	0.008
AZ102FEcomp2	P1	325.66	405.84	1.58E-5	1.58E-3	6.31E+4		0.057
AZ102FEcomp3	P1	409.40	510.20	1.99E-5	1.99E-3	5.02E+4		0.075
AZ102FEcomp4	P1	339.95	423.64	1.65E-5	1.65E-3	6.05E+4		0.063
AZ102FEcomp5	P1	307.07	382.67	1.49E-5	1.49E-3	6.69E+4		0.057
AZ102FEcomp6	P1	259.64	323.57	1.26E-5	1.26E-3	7.92E+4		0.048
AZ102FEcomp7	P1	259.08	322.86	1.26E-5	1.26E-3	7.93E+4		0.048
AZ102FEcomp8	P1	263.28	328.11	1.28E-5	1.28E-3	7.81E+4		0.049
AZ102FEcomp9	P1	220.11	274.30	1.07E-5	1.07E-3	9.34E+4		0.041
AZ102FEcomp10	P1	214.68	267.53	1.04E-5	1.04E-3	9.57E+4		0.040
AZ102FEcomp11	P1	186.07	231.89	9.05E-6	9.05E-4	1.10E+5		0.035
AZ102FEcomp12	P1	199.73	248.90	9.72E-6	9.72E-4	1.03E+5		0.038
							sum (µCi)	0.56

Feed Displacement

all on position 1

Sample ID	net cpm/g	net cpm/mL	C/Co	BV	C/Co, %	BV+	μCi Cs-137
AZ102-FD-1	162.62	162.62	7.91E-6	1.0	7.91E-4	101.2	0.158
AZ102-FD-2	162.89	162.89	7.93E-6	1.9	7.93E-4	102.1	0.147
AZ102-FD-3	184.17	184.17	8.96E-6	2.9	8.96E-4	103.2	0.195
AZ102-FD-4	169.40	169.40	8.24E-6	4.0	8.24E-4	104.2	0.178
AZ102-FD-5	201.90	201.90	9.82E-6	5.1	9.82E-4	105.3	0.222
AZ102-FD-6	410.89	410.89	2.00E-5	6.2	2.00E-3	106.4	0.447
AZ102-FD-7	231.91	231.91	1.13E-5	7.3	1.13E-3	107.5	0.259
AZ102-FD-8	151.69	151.69	7.38E-6	8.3	7.38E-4	108.6	0.153
AZ102-FD-9	99.61	99.61	4.85E-6	9.2	4.85E-4	109.4	0.087
AZ102-FD-10	87.07	87.07	4.24E-6	10.1	4.24E-4	110.3	0.076
AZ102-FD-11	81.00	81.00	3.94E-6	11.0	3.94E-4	111.2	0.072
						sum (µCi)	2.00

DI Rinse	all on position 1					
Sample ID	net cpm/g net cpm	/mL C/Co	BV	C/Co, %	BV+	μCi Cs-137
AZ102-Fdi-1	75.88 75.83	3.69E-6	0.8	3.69E-4	112.1	0.064
AZ102-Fdi-2	67.79 67.79	9 3.30E-6	1.7	3.30E-4	112.9	0.060
AZ102-Fdi-3	66.82 66.82	2 3.25E-6	2.7	3.25E-4	113.9	0.066
AZ102-Fdi-4	73.38 73.38	3.57E-6	3.7	3.57E-4	114.9	0.068
AZ102-Fdi-5	73.86 73.80	6 3.59E-6	4.6	3.59E-4	115.8	0.069
AZ102-Fdi-6	58.46 58.40	5 2.84E-6	5.5	2.84E-4	116.7	0.053
AZ102-Fdi-7	49.63 49.63	3 2.41E-6	6.4	2.41E-4	117.7	0.046
AZ102-Fdi-8	46.09 46.09	9 2.24E-6	7.4	2.24E-4	118.6	0.042
AZ102-Fdi-9	22.26 22.20	6 1.08E-6	8.2	1.08E-4	119.4	0.018
AZ102-Fdi-10	16.16 16.10	6 7.86E-7	9.2	7.86E-5	120.4	0.016
					sum (µCi)	0.50

AZ-102 run starting 11/5/01.

Lead column, eluting phase

	Count					
Sample ID	position	net cpm/g	net cpm/mL	C/Co	BV	μCi Cs-137
AZ102L-E1-d	P1	6.59E+4	6.67E+4	2.60E-3	0.9	49
AZ102L-E2-d	P1	1.29E+5	1.31E+5	5.10E-3	1.6	97
AZ102L-E3-d	P1	1.19E+6	1.21E+6	4.72E-2	2.3	897
AZ102L-E4-dd	P1	3.57E+7	3.61E+7	1.41E+0	3.2	26808
AZ102L-E5-dd	P6	3.77E+7	3.82E+7	3.09E+1	3.9	587253
AZ102L-E6-dd	P6	5.26E+7	5.32E+7	4.31E+1	4.6	818034
AZ102L-E7-dd	P1	5.07E+7	5.13E+7	2.00E+0	5.4	38076
AZ102L-E8-d	P6	4.00E+5	4.05E+5	3.28E-1	6.1	6228
AZ102L-E9-d	P1	1.81E+6	1.83E+6	7.14E-2	6.8	1357
AZ102L-E10-d	P1	6.39E+5	6.46E+5	2.52E-2	7.5	480
AZ102L-E11-d	P1	2.30E+5	2.33E+5	9.08E-3	8.3	173
AZ102L-E12-d	P1	1.21E+5	1.23E+5	4.78E-3	9.1	91
AZ102L-E13-d	P1	7.21E+4	7.30E+4	2.85E-3	9.8	54
AZ102L-E14-d	P1	5.70E+4	5.77E+4	2.25E-3	10.5	43
AZ102L-E15-d	P1	4.46E+4	4.51E+4	1.76E-3	11.3	33
AZ102L-E16-d	P1	3.30E+4	3.34E+4	1.31E-3	12.0	25
AZ102L-E17-d	P1	2.79E+4	2.82E+4	1.10E-3	12.7	21
AZ102L-E18-d	P1	2.61E+4	2.64E+4	1.03E-3	13.3	20
AZ102L-E19-d	P1	2.33E+4	2.36E+4	9.23E-4	14.1	18
AZ102L-E20-d	P1	1.68E+4	1.70E+4	6.65E-4	14.8	13

Deionized water rinse following elution

	Count						
Sample ID	position	net cpm/g	net cpm/mL	C/Co	BV	μCi Cs-137 B	V + elution BV
AZ102-Edi-1	P1	12596	12596	4.92E-4	0.9	8.99	15.7
AZ102-Edi-2	P1	5623	5623	2.20E-4	1.8	4.17	16.7
AZ102-Edi-3	P1	5889	5889	2.30E-4	2.7	4.27	17.6
AZ102-Edi-4	P1	5013	5013	1.96E-4	3.6	3.39	18.4
AZ102-Edi-5	P1	2876	2876	1.12E-4	4.4	1.98	19.3
					sum (µCi)	22.79	

Regeneration with 0.25 M NaOH

Sample ID	net cpm/g	net cpm/mL	C/Co	μCi Cs-137
AZ102-RGN	25720	25875	1.01E-3	91.8

Position 1

AZ-102 run starting 11/5/01. Lead column, Repeat eluting phase

	Count						
Sample ID	position	net cpm/g	net cpm/mL	C/Co	μCi Cs-137	BV	BV+
AZ102L-E1-Rd	P1	2.53E+3	2.56E+3	9.99E-5	2.13	1.0	25
AZ102L-E2-Rd	P1	1.33E+3	1.34E+3	5.25E-5	0.92	1.9	26
AZ102L-E3-Rd	P1	2.87E+2	2.91E+2	1.14E-5	0.20	2.8	26
AZ102L-E4-Rd	P1	4.70E+4	4.75E+4	1.86E-3	36.67	3.7	27
AZ102L-E5-Rd	P1	5.49E+4	5.56E+4	2.17E-3	39.32	4.6	28
AZ102L-E6-Rd	P1	1.27E+4	1.28E+4	5.00E-4	9.19	5.5	29
AZ102L-E7-Rd	P1	4.69E+3	4.75E+3	1.85E-4	3.43	6.4	30
AZ102L-E8-Rd	P1	4.62E+3	4.68E+3	1.83E-4	0.26	6.5	30
				sum (µCi)	92.12		

Deionized water rinse following elution

	Count						
Sample ID	position	net cpm/g	net cpm/mL	C/Co	μCi Cs-137	BV	BV +
AZ102-Edi-1R	P1	2404	2404	9.38E-5	1.63	0.8	31.1
AZ102-Edi-2R	P1	1473	1473	5.75E-5	1.01	1.7	31.9
AZ102-Edi-3R	P1	957	957	3.74E-5	0.69	2.6	32.8
AZ102-Edi-4R	P1	506	506	1.98E-5	0.36	3.5	33.7
AZ102-Edi-5R	P1	276	276	1.08E-5	0.28	4.8	35.0
				sum (µCi)	3.97		

Regeneration with 0.25 M NaOH Position 1

Sample ID	net cpm/g	net cpm/mL	C/Co	BV+	μCi Cs-137
AZ102-RGN-R	719	723	2.82E-5	39.1	2.81 total

CMC ID Cs-137, µCi/mL % C/Co BV DF Sample ID error, % C/Co AZ-102C (Feed) 02-0751 2005 3 1.00E+0 **2219.9** mCi Cs-137 loaded 3.69E+05 AZ102L-F3 02-0757 5.43E-03 4 2.71E-6 2.71E-4 14.9 AZ102L-F8 3 02-0758 1.73E-02 8.63E-6 8.63E-4 31.6 1.16E+05 AZ102L-F13 02-0759 1.40E-02 3 6.98E-6 6.98E-4 54.2 1.43E+05 AZ102L-F17 02-0760 1.13E+00 3 5.64E-4 5.64E-2 70.8 1.77E+03 AZ102L-F18 02-0902 3.86 3 1.93E-3 1.93E-1 75.0 5.19E+02 47.7 3 2.38E-2 2.38E+0 79.9 4.20E+01 AZ102L-F19 02-0903 AZ102L-F20 02-0761 2.78E+02 4 1.39E-1 1.39E+1 85.1 7.21E+00 AZ102L-F21 02-0904 7.27E+02 3 3.63E-1 3.63E+1 90.0 2.76E+00 AZ102L-F22 3 5.69E+1 95.1 02-0762 1.14E+03 5.69E-1 1.76E+00 AZ102L-F23 02-0763 1.38E+03 3 6.88E-1 6.88E+1 100.0 1.45E+00 02-0905 3 8.28E+1 105.0 1.21E+00 AZ102L-F24 1660 8.28E-1 AZ102L-F24D 02-0905 1470 3 7.33E-1 7.33E+1 105.0 1.36E+00 AZ102L-F24 average 02-0905 1565 1.9 7.81E-1 7.81E+1 105.0 1.28E+00 AZ102P-F4 02-0764 2.55E-02 3 1.27E-5 1.27E-03 17.3 7.86E+04 02-0765 3 1.14E-5 1.14E-03 43.1 8.79E+04 AZ102P-F11 2.28E-02 AZ102P-F18 02-0766 1.68E-02 3 8.38E-6 8.38E-04 71.4 1.19E+05 AZ102P-F24 02-0767 4 6.98E-6 6.98E-04 1.40E-02 100.2 1.43E+05 AZ102C-EC 02-0752 1.92E-02 3 9.55E-6 9.55E-04 1.05E+05 composite effluent 19.5713 uCi total Cs-137 recovered in efluent **Feed Displacement** error, % Sample ID CMC ID Cs-137, µCi/mL C/Co % C/Co BV+ load 1.32E-02 AZ102-FD-2 102.1 02-0753 4 6.58E-6 6.58E-04 AZ102-FD-6 02-0754 2.85E-02 3 1.42E-5 1.42E-03 106.4 DI water rinse BV+load+FD AZ102-Fdi-4 02-0755 4.06E-03 3 2.02E-6 2.02E-04 114.9 AZ102-Fdi-9 02-0756 1.45E-03 4 7.23E-7 7.23E-05 119.4 Lead column, eluting phase total CMC ID Cs-137, µCi/mL Sample ID error, % C/Co BV mCi Cs-137 AZ102L-E4 3 3.88E+0 3.2 7.34E+01 02-0768 7.78E+03 AZ102L-E5 3 3.9 02-0793 1.22E+05 6.08E+1 9.05E+02 AZ102L-E6 02-0769 1.42E+05 3 7.08E+1 4.6 1.02E+03 AZ102L-E7 02-0794 1.30E+04 3 6.48E+0 5.4 1.00E+02 3 02-07704.31E+02 6.1 AZ102L-E8 2.15E-1 3.13E+00 AZ102L-E11 02-0771 1.45E+01 3 7.23E-3 8.3 1.09E-01 AZ102L-E18 02-0772 1.54E+00 3 7.68E-4 13.3 9.91E-03 sum mCi Cs-137 2.10E+03 95% recovery in eluate **DI** water rinse BV+ eluate AZ102L-Edi-1 02-0773 7.65E-01 3 3.82E-4 15.7 AZ102L-Edi-5 02-0774 1.95E-01 3 9.73E-5 19.3 Regeneration with 0.25 M NaOH Analytical Lab Data Sample ID CMC ID Cs-137, µCi/mL error, % C/Co Cs-137, µg/mL total Cs, µg/mL µCi Cs-137 AZ102-RGN 02-0775 1.64E+00 3 8.18E-04 0.0188506 0.0574713 74.3

AZ-102 run starting 11/5/01 Lead column, loading phase, CMC analysis, ASR 6280

Activity of Cs-1	37 in Feed		=	2005	i uCi/mL					
	Processed		Cs-137 Conc			Midpoint Cone		Cs-137 (µCi/mI)	C/Co	Area (uCi
Sample	Vol (mL)	Cs-137 C/Co	(uCi/mL)	A Vol (mL)) C/Co Midpoint	(uCi/mL)	Area (uCi)	CMC Analysis	Midpoint	Cs-137)
AZ102L-F1	45.9	1.86E-05	3.72E-02	45.9	1.86E-05	3.72E-02	1.71E+00			
AZ102L-F2	66.7	1.24E-05	2.48E-02	20.8	1.55E-05	3.10E-02	6.45E-01			
AZ102L-F3	151.8	3.40E-06	6.82E-03	85.1	7.89E-06	1.58E-02	1.35E+00	5.43E-3		
AZ102L-F4	182.9	1.29E-05	2.58E-02	31.1	8.14E-06	1.63E-02	5.08E-01			
AZ102L-F5	216.3	1.36E-05	2.73E-02	33.5	1.32E-05	2.65E-02	8.88E-01			
AZ102L-F6	260.7	1.09E-05	2.19E-02	44.3	1.23E-05	2.46E-02	1.09E+00			
AZ102L-F7	285.7	9.37E-06	1.88E-02	25.1	1.01E-05	2.03E-02	5.10E-01			
AZ102L-F8	322.0	1.07E-05	2.15E-02	36.3	1.00E-05	2.01E-02	7.31E-01	1.73E-2		
AZ102L-F9	374.3	9.75E-06	1.95E-02	52.3	1.02E-05	2.05E-02	1.07E+00			
AZ102L-F10	419.2	8.84E-06	1.77E-02	44.9	9.29E-06	1.86E-02	8.37E-01			
AZ102L-F11	463.1	8.81E-06	1.77E-02	43.9	8.82E-06	1.77E-02	7.77E-01			
AZ102L-F12	508.0	1.13E-05	2.26E-02	44.9	1.00E-05	2.01E-02	9.04E-01			
AZ102L-F13	553.2	9.03E-06	1.81E-02	45.2	1.02E-05	2.04E-02	9.21E-01	1.40E-2		
AZ102L-F14	599.6	1.03E-05	2.06E-02	46.4	9.64E-06	1.93E-02	8.97E-01			
AZ102L-F15	644.2	8.97E-06	1.80E-02	44.6	9.61E-06	1.93E-02	8.60E-01			
AZ102L-F16	690.5	1.21E-05	2.43E-02	46.3	1.05E-05	2.11E-02	9.79E-01			
AZ102L-F17	721.8	7.56E-04	1.52E+00	31.3	3.84E-04	7.70E-01	2.41E+01	1.13E+0	5.72E-1	1.79E+1
AZ102L-F18	765.5	2.37E-03	4.75E+00	43.7	1.56E-03	3.13E+00	1.37E+02	3.86E+0	2.50E+0	1.09E+2
AZ102L-F19	814.7	2.23E-02	4.48E+01	49.2	1.23E-02	2.48E+01	1.22E+03	4.77E+1	2.58E+1	1.27E+3
AZ102L-F20	867.7	1.51E-01	3.03E+02	53.0	8.67E-02	1.74E+02	9.21E+03	2.78E+2	1.63E+2	8.64E+3
AZ102L-F21	918.5	3.46E-01	6.94E+02	50.8	2.49E-01	4.98E+02	2.53E+04	7.27E+2	5.03E+2	2.55E+4
AZ102L-F22	969.5	6.99E-01	1.40E+03	51.1	5.22E-01	1.05E+03	5.35E+04	1.14E+3	9.34E+2	4.77E+4
AZ102L-F23	1019.9	6.91E-01	1.39E+03	50.4	6.95E-01	1.39E+03	7.02E+04	1.38E+3	1.26E+3	6.35E+4
AZ102L-F24	1071.2	7.90E-01	1.58E+03	51.3	7.40E-01	1.48E+03	7.61E+04	1.57E+3	1.47E+3	7.55E+4
Full load:	1107.2	2 mL (obtained	l by mass diffe	rence of fee	d bottle)		2.36E+05	uCi		2.22E+5
				4 () 1 4				(CMC analyses re	sulted in goo	d agreement)
			Amount of Cs	that Broke th	nrough Lead Colu	imn	225620	<i>C</i> :		0.005.5
				=	Amount of Cs on	Lag Column =	235638	uCi		2.22E+5
			4 60		0.1	=	236	mCi		222.16518
			Amount of Cs	Fed to Lead	Column	=	2.22E+06	uCi		
			Dereentege -f	Ca 127 ar I	ag Calumn		10.69/	IIICI		10.00/
			Amount of Ca	127 Londod	ag Colullil on Load Column		10.070	mCi		10.0%
			Amount of Cs-	137 Loaded	on Lead Column	=	22.8	mg Cs-137		23.0
			Amount of tot	al Cs loaded	on lead column =	:	69.5	mg Cs		70.0
			Amount of tota	ii CS ibaueu	on leau coluilli –	-	07.5	ing US		/0.0

AZ-102C Cs IX Lead Column Breakthrough Curve Integration

sum through 67.7 BV

1.47E+01 uCi Cs-137

"---" indicates no data taken

Appendix D

Analytical Data

Appendix D: Analytical Data

Sample Description	ASR	RPL ID	Sample Identification	Extended Sample Description
Batch Contact Testing				
Batch contact with	6413	02-2300	AZ-102-TI164-S0-FA	Batch contact control, unspiked,
SL-644 010319SMC-IV-73		02-2301	AZ-102-TI164-S0-D-FA	Batch contact control, unspiked, duplicate
212- to 425-µm particle size		02-2302	AZ-102-TI164-S0-73-FA	Batch contact with SL-644, unspiked
H form resin		02-2303	AZ-102-TI164-S0-73D-FA	Batch contact with SL-644, unspiked, duplicate
		02-2304	AZ-102-TI164-S1-FA	Batch contact control, 4E-3M Cs
		02-2305	AZ-102-TI164-S1-D-FA	Batch contact control, 4E-3 M Cs, duplicate
		02-2306	AZ-102-TI164-S1-73-FA	Batch contact with SL-644, 4E-3 M Cs
		02-2307	AZ-102-TI164-S1-73D-FA	Batch contact with SL-644, 4E-3 M Cs, duplicate
		02-2308	AZ-102-TI164-S2-FA	Batch contact control, 7E-3 M Cs
		02-2309	AZ-102-TI164-S2-D-FA	Batch contact control, 7E-3 M Cs, duplicate
		02-2310	AZ-102-TI164-S2-73-FA	Batch contact with SL-644, 7E-3
		02-2311	AZ-102-TI164-S2-73D-FA	Batch contact with SL-644, 7E-3 M Cs, duplicate
Column Run				
Initial Feed Sample, AZ-102C and	6280	02-0751	AZ102C	AZ-102C filtrate composite/Cs IX feed
Column processing samples		02-0757-02-0763	AZ102L-F3, -F8, -F13, -F17, -F20, -F22, -F23	Lead column load samples
		02-0764—02-0767	AZ102P-F5, -F11, -F18, -F24	Lag column load samples
		02-0753-02-0754	AZ-102-FD-2 and -6	Feed displacement samples
		02-0755-02-0756	AZ-102-Fdi-4 and -9	Water rinse samples
		02-0768-02-0772	AZ102L-E4, -E6, -E8, -E11, -E18	Lead column elution samples
		02-0773-02-0774	AZ102-Edi-1, -5	Elution rinse samples
		02-0775	AZ102-RGN	Regeneration solution analytical sample
		02-0752	AZ102C-EC-D	Effluent composite
Additional feed and elution samples	6305	02-0902-02-0905	AZ102L-F18, -F19, -F21, -F24	Lead column load samples
		02-0906-02-0908	AZ102L-E3, -E9, -E10	Lead column eluate samples
Additional feed and elution samples	6310	02-0951-02-0954	AZ102-F0DDD3, -F0DDD2, -F24D, -F14	Lead column load and comparator samples
		02-0955-02-0956	AZ102L-E5DD, AZ102L-E10D	Diluted eluate samples
Composite eluate	6374	02-1698	AZ102C-CsE-comp	Composited eluate samples
Notes: 1) The suffix letter "D" indic work. 2) RPL = Radiochemical Proc	ates that the that the cessing La	he sample was diluted j boratory.	prior to submission for analysis. Unidentified sam	ples are associated with other tests unrelated to this

D.1

Table D.1. Sample Identification

Appendix E

Cesium Ion Exchange and Batch Contacts Testing Personnel

Appendix E: Cesium Ion Exchange and Batch Contacts Testing Personnel

Cognizant Scientists

S. K. Fiskum D. L. Blanchard S. A. Arm

Hot Cell Technicians

F. V. HoopesM. A. MannF. H. SteenJ. W. ChenaultD. E. Rinehart

Analytical Support

- S. J. Bos
- J. P. Bramson
- L. P. Darnell
- T. O. Farmer
- S. K. Fiskum
- L. R. Greenwood
- D. R. Sanders
- C. Z. Soderquist
- M. J. Steele
- R. G. Swoboda
- K. K. Thomas
- T. L. Trang-Le
- J. J. Wagner

Distribution

No. of Copies

OFFSITE

7

No. of Copies

ONSITE

Savannah River Technology Center	15	15 Battelle—Pacific Northwest Division		
Russ Eibling		S. T. Arm	P7-28	
Savannah River Technology Center		D. L. Blanchard	P7-25	
Building 999-W		L. A. Bray	P7-25	
Aiken, South Carolina 29808		I. E. Burgeson	P7-25	
		S. K. Fiskum (5)	P7-22	
Larry Hamm		D. E. Kurath	P7-28	
Savannah River Technology Center		B. M. Rapko	P7-25	
Building 773-42A		J. J. Toth	H4-02	
Aiken, South Carolina 29808		Project File	P7-28	
		Information Release (2)	K1-06	
Neguib Hassan				
Savannah River Technology Center	8	Bechtel National, Inc.		
Building 773-A		S. M. Barnes	H4-02	
Aiken, South Carolina 29808		W. L. Graves	H4-02	
		H. Hazen	H4-02	
Jim Marra		R. A.Peterson	H4-02	
Savannah River Technology Center		P. S. Sundar	H4-02	
Building 773-43A		M. R. Thorson	H4-02	
Aiken, South Carolina 29808		W. L. Tamosaitis	H4-02	
		WTP PDC Coordinator	H4-02	

Charles Nash Savannah River Technology Center Building 773-42A Aiken, South Carolina 29808

Robert Pierce Savannah River Technology Center Building 773-A Aiken, South Carolina

Harold Sturm Savannah River Technology Center Building 773-A Aiken, South Carolina 29808