Small Column Ion Exchange Testing of SuperLig® 644 for Removing ¹³⁷Cs from Hanford Waste Tank 241-AN-102 Supernate (Envelope C) Mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions

S. K. Fiskum S. T. Arm D. L. Blanchard, Jr

February 2004

Prepared for Bechtel National, Inc. under Contract No. 24590-101-TSA-W0000-0004

LEGAL NOTICE

This report was prepared by Battelle Pacific Northwest Division (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

WTP-RPT-033, Rev 1

Small Column Ion Exchange Testing of SuperLig® 644 for Removing ¹³⁷Cs from Hanford Waste Tank 241-AN-102 Supernate (Envelope C) Mixed with 241-C-104 Solids (Envelope D) Wash and Permeate Solutions

SK Fiskum ST Arm DL Blanchard, Jr

Litte for W.L. Tomoseitis 4/14/04

ACCEPTED FOR Project use

February 2004

Test specification: TSP-W375-00-00028, Rev. 1 Test plan: TP-RPP-WTP-013, Rev. 0 Test exceptions: None R&T focus area: Pretreatment Test Scoping Statement(s): B-46

Battelle, Pacific Northwest Division Richland, Washington, 99352

Completeness of Testing

This report describes the results of work and testing specified by TSP-W375-00-00028, Rev. 1 and TP-RPP-WTP-013, Rev. 0. The work and any associated testing followed the quality assurance requirements outlined in the Test Specification/Plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

Gordon H. Beeman, Manager WTP R&T Support Project

<u>2/24/04</u> Date

	History Sheet					
Rev	Date	Reason for revision	Revised by			
0	January 2003	New Document	SK Fiskum			
1	February 2004	Noted higher uncertainty in the total ⁹⁹ Tc values in Tables 2.3 and 3.3 as footnotes. Replaced the following ICP-MS report with Revision 2 version: multi-element narrative report for ASR 6107. Added Revision 2 ICP-MS report for ASR 6281, Cs and Tc-99 analysis.	SK Fiskum			

Summary

The River Protection Project-Waste Treatment Plant (RPP-WTP) baseline process for ¹³⁷Cs removal from Hanford high-level tank waste is ion exchange. The current flowsheet includes the use of Cs-selective, organic ion exchanger SuperLig[®] 644 (SL-644) material for Cs removal from the aqueous waste fraction. This material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. The RPP-WTP Development Requirements Document (DRD)^(a) Task 8.2.6 and the RPP-WTP Research and Technology schedule identify Cs and Tc ion exchange process verification tests [WTP Request for Proposal reference Standard 2 Item (a)(3)(ii)].

Battelle, Pacific Northwest Division (PNWD) was contracted to perform Cs ion exchange studies under Contract 24590-101-TSA-W000-0004 and work breakdown structure BN.02.08.05. The Cs ion exchange activities are further defined in Technical Scoping Statement B-46, which is included in Appendix C of the *Research and Technology Plan*.^(b) These studies are to verify design and operating parameters for plant-scale ion exchange systems. Test results will also be used to validate ion exchange models.

Objectives

The Cs ion exchange test objectives were to develop load and elution breakthrough profiles using a combination of Hanford tank waste 241-AN-102 supernatant (Envelope C) mixed with wash and permeate solutions from Hanford tank waste 241-C-104 solids (AN-102/C-104); produce and characterize the Cs eluate; remove ¹³⁷Cs from the AN-102/C-104 to meet low-activity waste (LAW) vitrification criteria; and develop batch-distribution coefficients for AN-102/C-104. The final effluent was to contain <1.75E-5 Ci ¹³⁷Cs per mole Na, equivalent to < 0.087 μ Ci ¹³⁷Cs/mL, based on a 20 wt% waste Na₂O loading in the waste glass. Direction from Bechtel National, Inc. (BNI) for calculating Na₂O loading was later reduced to 10 wt%. All testing objectives were met.

Conduct of Test

This report summarizes testing of the SL-644 in batch-contact studies and in a dual small-column system. The test matrix was AN-102/C-104 evaporated to nominally 4.8 M Na and 161 μ Ci/mL ¹³⁷Cs. Batch contacts were performed with the waste at three Cs concentrations at a phase ratio of 100 (liquid volume to exchanger mass) with SL-644. Crystalline silicotitanate (IE-911, an alternative Cs ion exchanger) was also tested similarly to the SL-644; however, the contact solution was AN-102 tank waste supernatant diluted to nominally 6 M Na⁺. Ion exchange processing was conducted with two small columns in series with resin bed volumes (BVs) of 10.4 mL (L/D^(c) = 4.2) during the conditioning phase with 0.25 M NaOH, and 9.9 mL (L/D = 4.0) during the AN-102/C-104 loading phase. Proper functioning

⁽a) PL-W375-TE00002, Rev. 1, River Protection Project Waste Treatment Plant Development Requirements Document, October 31, 2000, M. E., Johnson and T. W. Crawford, CH2MHill Hanford Group, Inc., Richland, WA. DRAFT.

⁽b) Barnes, S., R. Roosa, and R. Peterson. 2002. '*Research and Technology Plan.*', 24590-WTP-PL-RT-01-002, Rev. 1, RPP-WTP project.

⁽c) L/D, equal to length over diameter, is the resin bed aspect ratio.

of the ion exchange apparatus and resin beds had initially been tested with an AW-101 (Envelope A) simulant. The resin beds had then been used to process 1.2 L of AP-101 diluted feed, an Envelope A waste feed. The AN-102/C-104 waste sample processed was approximately 753 mL, corresponding to 72 BVs. All ion exchange process steps were tested, including resin-bed preparation, loading, feed displacement, water rinse, elution, eluant rinse, and resin regeneration.

Results and Performance Against Objectives

The batch-contact performance data are summarized in Table S.1. The K_d values for SL-644 and IE-911 are shown for the feed condition at the Na/Cs mole ratio of 8E+4. The calculated Cs λ value (column-distribution ratio) is the predicted BVs required to reach 50% Cs breakthrough. It is a function of the equilibrium K_d value and bed density.

Flow	Extrapolated 50% Cs breakthrough, BV				K _d , mL/g (feed condition)		Cs λ, BV (feed condition)	
rate (BV/h)	Lead column	Lag column	Composite DF ⁽²⁾	Maximum DF ⁽³⁾	SL-644	IE-911	SL-644	IE-911
2.7	NM ⁽¹⁾	NM ⁽¹⁾	1.13 E+4	7.7 E+5	950	1100	250	1100
 (1) NM = not measured; AN-102/C-104 feed volume was insufficient to establish a breakthrough curve. (2) The decontamination factor (DF) is calculated by dividing the feed Cs concentration by the composite effluent Cs concentration, based on the total of 67 BVs of feed. This does not necessarily reflect the DF that could be obtained with an estimated loading of 250 BVs to reach 50% C/C_o. (3) The maximum DF is obtained by dividing the feed Cs concentration by the lowest lead column 								

Table S.1. Summary of Performance Measures

The column performance data are also summarized in Table S.1. The 50% Cs breakthrough value from column testing could not be determined; no measurable Cs broke through the lead column. The decontamination factor (DF) for ¹³⁷Cs was based on ¹³⁷Cs concentration in the feed divided by the ¹³⁷Cs concentration in the composite effluent sample. The composite effluent ¹³⁷Cs concentration was 1.4E-02 μ Ci/mL and was equivalent to a DF of 1.13 E+4. The maximum DF, 7.7 E+5, measured the best performance that could be expected from this column system. It was calculated relative to the sample containing the lowest ¹³⁷Cs concentration, i.e., the eighth sample from the lead column. The low-activity vitrified waste form must be no greater than 0.3 Ci/m³; this limit can be converted to ¹³⁷Cs concentration in the ion exchange effluent (contract limit). The composite effluent ¹³⁷Cs concentration was an order of magnitude below the minimum waste loading contract limit (0.168 μ Ci ¹³⁷Cs/mL).^(d)

The lead column was eluted with 0.5 M HNO₃ reaching a C/C_o of 1% in 11 BVs with >99% of the ¹³⁷Cs contained in 3 BVs of eluate. The peak ¹³⁷Cs C/C_o value was 53 (based on 1-BV collection increments of nominally 10-mL). The ¹³⁷Cs concentration in the composite eluate was 6.65E+2 μ Ci/mL, corresponding to a C/C_o of 4.13.

⁽d) The conversion requires the following assumptions: Envelope C LAW will contain a minimum of 10 wt% Na₂O, all Na comes from the tank waste, the glass density is 2.66 g/mL, and the waste Na concentration is 4.8 M. For the maximum 14 wt% Na₂O waste loading, the Cs ion exchange effluent must be less than 0.120 μ Ci/mL.

Quality Requirements

This work was designated as QL-3 per the RPP-WTP Quality Assurance (QA) Program, BNFL-5193-QAP-01, Rev. 6. PNWD implemented the RPP-WTP quality requirements by performing work in accordance with the QA plan, CHG-QAPjP, Rev. 0. The Cs eluate was analyzed at the time in accordance with PNWD's *Nuclear Quality Assurance Requirements and Description (NQARD)* manual, which implemented the requirements of DOE/RW-0333P, *Quality Assurance Requirements and Description (QARD)*, and to the approved Test Plan, TP-RPP-WTP-013.

PNWD addressed verification activities by conducting an Independent Technical Review of the final data report in accordance with Procedure QA-RPP-WTP-604. This review verified that the reported results were traceable, that inferences and conclusions were soundly based, and that the reported work satisfied the Test Plan objectives.

Issue

The lag column effluent ¹³⁷Cs concentration was higher than the lead column ¹³⁷Cs effluent concentration. The lag column had previously been in the lead column position for processing AP-101 diluted feed. The ¹³⁷Cs coming off the lag column was attributed to inadequacy of the baseline elution (i.e., elution to $C/C_0=1\%$) to sufficiently elute Cs from the resin during AP-101 processing.

Terms and Abbreviations

AP-101DF	Hanford tank waste AP-101 diluted feed to 5 M Na
AN-102/C-104	Hanford tank waste AN-102 supernatant mixed with wash and permeate solutions from Hanford tank waste C-104 solids
AV	apparatus volume
BNI	Bechtel National, Incorporated
BV	bed volume
C/C _o	analyte concentration in column effluent divided by analyte concentration in feed
CMC	chemical measurement center
CST	crystalline silicotitanate
DF	decontamination factor
DI	deionized
DOE	U.S. Department of Energy
DRD	Development Requirements Document
EQL	estimated quantitation level
F-factor	mass of dry ion exchanger divided by mass of wet exchanger
FMI	Fluid Metering, Inc., Syosset, NY
GEA	gamma energy analysis
HLW	high level waste
IBC	IBC Advanced Technologies, Inc., American Fork, Utah
IC	ion chromatography
ICP AES	inductively coupled plasma/atomic emission spectrometry
ICP MS	inductively coupled plasma/mass spectrometry
IDL	instrument detection limit
KPA	kinetic phosphorescence analysis
λ	column distribution ratio
LAW	low activity waste
L/D	length over diameter ratio
Μ	molarity, moles/liter
Meq	milli-equivalent
MRQ	minimum reportable quantity

NA	not analyzed
NMRQ	no minimum reportable quantity
NPT	National Pipe Thread
NQARD	Nuclear Quality Assurance Requirements and Description (manual)
OH	hydroxide
PNWD	Battelle, Pacific Northwest Division
QA	quality assurance
QARD	Quality Assurance Requirements and Description
RPL	Radiochemical Processing Laboratory
RPP-WTP	River Protection Project-Waste Treatment Plant
SL-644	SuperLig [®] 644
SRTC	Savannah River Technology Center
TC	total carbon
TIC	total inorganic carbon
TIMS	thermal ionization mass spectrometry
TOC	total organic carbon
TRU	transuranic
wt%	weight percent
WTP	Waste Treatment Plant

Contents

Sum	nmary	iii			
Terr	ms and Abbreviations	vii			
1.0	Introduction	1.1			
2.0	Experimental	2.1			
	2.1 SL-644 Resin	2.1			
	2.2 Crystalline Silicotitanate	2.2			
	2.3 AN102/C-104 and AN-102 Feeds				
	2.4 Batch Contacts	2.4			
	2.5 Experimental Conditions for SL-644 Column Ion Exchange Test				
	2.6 Column Sampling				
	2.7 Sample Analysis				
3.0	Results and Discussion				
	3.1 Batch Contact Results				
	 3.2 Column Test with SL-644				
4.0	Conclusions	4.1			
5.0	References	5.1			
App	pendix A: General Calculations	A.1			
App	pendix B: Batch Contact Calculations	B.1			
App	pendix C: Column Testing Calculations	C.1			
App	ppendix D: Analytical DataD.1				
App	pendix E: Cesium Ion Exchange and Batch Contacts Testing Personnel	E.1			

Figures

Figure 2.1. Cesium	Ion Exchange Column System	2.7
Figure 3.1. 137 Cs Dis (T = 27 $^{\circ}$ C)	stribution Coefficients (K _d) for SL-644 (AN-102/C-104) and IE-911 (AN-	-102) 3.1
Figure 3.2. Estimate	d 137 Cs λ Values for SL-644 (AN-102/C-104) and IE-911 (AN-102) (T =	26°C)3.3
Figure 3.3. ¹³⁷ Cs Bro	eakthrough Curves for AN-102/C-104 Sample	
Figure 3.4. ¹³⁷ Cs Elu	ation and Eluant Rinse of the Lead Column	
Figure 3.5. Compari	son of Bed Volumes of the Lead and Lag Columns	

Tables

Table S.1.	Summary of Performance Measuresiv
Table 2.1.	Dry Particle-Size Weight-Percent Distribution of Two Batches of As-Received SL-644 2.1
Table 2.2.	SL-644 Properties
Table 2.3.	Compositions of AN-102/C-104 and AN-102 (Envelope C)
Table 2.4.	Initial Cs Concentrations in the AN-102/C-104 Solutions Used for the Batch K_d Tests2.4
Table 2.5.	Experimental Conditions for AN-102/C-104 Ion Exchange
Table 2.6.	Sampling Interval and Analyses
Table 3.1.	SL-644 Dry Bed Density
Table 3.2.	Decontamination Factors for ¹³⁷ Cs from AN-102/C-104
Table 3.3.	AN-102/C-104 Cs-Decontaminated Effluent
Table 3.4.	Inorganic and Organic Analytes in the Lead Column Eluate Composite
Table 3.5.	Radionuclides in the Lead Column Eluate Composite
Table 3.6.	Select Analyte Recoveries in Eluate
Table 3.7.	Composition of Regeneration Solution
Table 3.8.	Activity Balance for ¹³⁷ Cs
Table 3.9.	SL-644 Bed Volumes

1.0 Introduction

The U. S. Department of Energy plans to vitrify tank wastes at the Hanford Site in preparation for permanent disposal. Before vitrification, tank wastes will be divided into low-activity and high-activity fractions through specific pretreatment processes. The Waste Treatment Plant (WTP) pretreatment flowsheet for the Hanford high-level tank wastes includes the use of SuperLig[®] 644 (SL-644) material for ¹³⁷Cs removal from the aqueous waste fraction. The SL-644 is a cesium-selective ion exchanger and has been shown to be effective in removing Cs from a variety of Hanford tank wastes (Hassan, McCabe, and King 2000; Hassan et al. 2000; Hassan et al. 2001; King, Hassan, and McCabe 2001; Kurath, Blanchard, and Bontha 2000a; Kurath, Blanchard, and Bontha 2000b; Fiskum, Blanchard, and Arm 2002; Fiskum et al. 2002). The SL-644 has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT.

The Cs ion exchange testing was conducted to support the River Protection Project-Waste Treatment Plant (RPP-WTP) Development Requirements Document (DRD)^(a) Task 8.2.6, and the RPP-WTP Research and Technology (Barnes et al., 2002) schedule identify the need for Cs and Tc ion exchange process verification tests [WTP Request for Proposal reference Standard 2 item (a)(3)(ii)]. The testing requirements were communicated to Battelle, Pacific Northwest Division (PNWD) according to Test Specification *Tank 241-AN-102 and 241-AP-101 Ion Exchange*, TSP-W375-00-00028, Rev. 1 (M. E. Johnson, CH2M Hill Hanford Group, Dec. 11, 2000). Testing was conducted according to PNWD Test Plan *Actual Waste Ion Exchange Testing for the RPP-WTP Project*, CHG-TP-41500-013, Rev. 0 (D. L. Blanchard, Jan. 24, 2000) and *AP-101 and AN-102/C-104 Actual Waste Ion Exchange Testing*, TP-RPP-WTP-013, Rev. 0 (D. L. Blanchard Jr., August 2001).

This report summarizes batch-contact studies of SL-644 and crystalline silicotitanate^(b) (IE-911 provided by UOP LLC, Des Plaines IL), and dual small-column testing of the SL-644 ion exchange material. The test matrix for the small-column ion exchange and SL-644 batch-contact tests was 241-AN-102 Hanford tank waste supernatant, mixed with caustic leaching and wash solutions from the pretreatment of Tank 241-C-104 solids, and evaporated to nominally 5 M Na (hereafter referred to as AN-102/C-104). The test matrix for the IE-911 batch contact was 241-AN-102 supernatant diluted to nominally 6 M Na (hereafter called AN-102). Approximately 753 mL of AN-102/C-104 were processed through the ion exchange column system. The ion exchange process steps tested include resin-bed preparation, loading, feed displacement, water rinse, elution, and resin regeneration.

The objectives of this work were to

- determine distribution coefficients as a function of Na/Cs molar concentration for SL-644 in the AN-102/C-104 matrix and for IE-911 in the AN-102 matrix
- demonstrate the ¹³⁷Cs decontamination of Envelope C tank waste sample AN-102/C-104 and provide a Cs-decontaminated sample for downstream process testing (i.e., ⁹⁹Tc removal)

⁽a) PL-W375-TE00002, Rev. 1, River Protection Project Waste Treatment Plant Development Requirements Document, October 31, 2000, M. E., Johnson and T. W. Crawford, CH2MHill Hanford Group, Inc., Richland, WA. DRAFT.

⁽b) IE-911 is an alternative Cs ion exchanger and is being tested in parallel to SL-644 only with batch contacts. The IE-911 was developed and supplied by UOP LLC, Des Plaines, IL.

- develop Cs loading and elution profiles
- produce and characterize a Cs-eluate solution for use in evaporation tests and high-level waste (HLW) vitrification
- demonstrate the effectiveness of all SL-644 ion exchange process steps, including loading, feed displacement, deionized (DI) water washing, elution, and resin regeneration.

2.0 Experimental

This section describes materials, experimental approach to batch-contact tests and column tests, sample analyses, and calculations. Experimental data were recorded in specific test instructions (as identified) and analytical reports. All raw data are maintained in the Project File 42365.

2.1 SL-644 Resin

The SL-644 was obtained from IBC production batch number 010319SMC-IV-73. This batch exhibited a black-red appearance peppered with light-brown specks. It was received from the vendor as a dry, granular, free-flowing material in a 1-L polyethylene bottle with an approximately 32% gaseous head space. There was no indication that this head space was filled with nitrogen or other inert gas, and no attempt was made to exclude air during storage. The as-received resin form was not identified by the vendor; it was found to contain potassium salts (Fiskum, Blanchard and Arm 2002). The dry-sieved particle-size distribution for this material is shown in Table 2.1. The 212- to 425-µm particle-size dry-sieved fraction of the as-received material was used. This fraction represents 22 wt% of the as-received material. The average particle size of the 212- to 425-µm fraction corresponds to 540-µm diameter when expanded in a solution of 3 M NaOH–2 M NaNO₃–0.1M KOH (Fiskum, Blanchard, and Arm 2002). As a general rule, the column diameter should be 20 times greater than the resin particle diameter to minimize wall effects (Korkish 1989, p. 39). Given the diameter of the column at 1.46 cm, the column diameter is 27 times the average diameter of the expanded form of 212- to 425-µm diameter dry-sieved resin. For comparison, the SL-644 particle-size distribution used for AN-102 testing at Savannah River Technology Center (SRTC) (Hassan et al. 2000) is also shown in Table 2.1.

	Particle Size	010319SMC-IV-73	981020mb48-563
Sieve Size ⁽¹⁾	(µm)	wt %	(SRTC) wt %
18	>1000	0.06	
30	600-1000	37.27	57.33
40	425-600	38.23	23.73
50	300-425	18.01	13.71
70	212-300	6.08	5.12
100	150-212	0.26	0.11
140	106–150	0.06	
>140	<106	0.03	
(1) U. S. standar	d sieve size corres	oonds to ASTM E-11 specifi	ication.

Table 2.1. Dry Particle-Size Weight-Percent Distribution of Two Batches of As-Received SL-644

Properties of the 212- to 425-µm 010319SMC-IV-73 SL-644 resin have been previously reported (Fiskum, Blanchard, and Arm 2002), and selected properties are reproduced in Table 2.2. The F-factor is the ratio of the dry mass of exchanger to the initial mass of the exchanger and was determined at the same time the batch contact samples and column resin fractions were weighed. The F-factor was obtained by drying approximately 0.5 g resin, under vacuum, at 50°C to constant mass. The F-factor was determined on the H-form and the as-received form of the resin. The F-factor for the Na-form of the resin was performed differently because of stability problems observed in prior tests on the Na-form of resin (Steimke et al. 2001). Drying to constant mass under vacuum at ambient temperature was considered

adequate for removing water from the Na-form resin.^(a) The L-factor represents the fractional mass remaining after washing the as-received resin form with 0.5 M HNO₃ and DI water, and correcting for residual water content as described above. The I_{Na} represents the fractional mass gain upon conversion from the H-form to the Na-form, correcting for water content as described above.

Property	010319SMC-IV-73
Bulk density, g/mL (as-received)	0.74
F-factor, as-received	0.877
L-factor, conversion to H-form, fractional mass remaining	0.538
F-factor, H-form	0.932
I _{Na} , fractional mass gain from H-form to Na-form	1.25

Table 2.2.SL-644 Properties

2.2 Crystalline Silicotitanate

Crystalline silicotitanate (CST) IE-911, Lot 2081000009, was obtained from UOP LLC, Des Plaines, IL. The UOP particle-size specification of this material was 30 to 60 mesh. The material was provided in the hydrogen form. A 5-g aliquot was converted to the Na form by soaking in 40 mL of 1 M NaOH for two days. The NaOH solution was then decanted, and the CST was rinsed with five successive volumes of DI water. The resin was then dried at 95°C overnight. The F-factor, 0.9708, was determined at the same time the batch-contact samples were weighed. This was obtained by drying approximately 0.5 g at 105° C to constant mass.

2.3 AN102/C-104 and AN-102 Feeds

The AN-102 sample receipt, homogenization, phase separation, subsampling, mixing with C-104 wash and permeate solutions, and analysis have been previously reported (Urie et al. 2002a). This material was then evaporated to nominally 5 M Na (Lumetta et al. 2002) and underwent $Sr/TRU^{(b)}$ precipitation and removal by filtration (Hallen et al. 2002). The total volume of AN-102/C-104 available for Cs ion exchange and batch-contact processing was about 788 mL. To conserve the AN-102/C-104 material for follow-on work, the IE-911 batch contacts were conducted with AN-102. The total volume of AN-102 available for batch contacts was 34 mL. Both feeds, AN-102/C-104 and AN-102, were analyzed, and the results are summarized in Table 2.3 (analytical details are provided in Appendix D). Generally, the AN-102 feed analytes were about a factor of 1.2 more concentrated than the AN102/C104 analytes. An exception is the ⁹⁰Sr that was removed from the AN-102/C104 combined feed before Cs ion exchange.

⁽a) After initial drying at ambient temperature under vacuum to constant mass, the resin was heated to 50° C. The heated product appeared (visual inspection) to have degraded, thus potentially nullifying subsequent mass measurements.

⁽b) TRU = transuranic

Solution density, g/mL 1.244 1.301 Cations, M Na* 4.8 E+0 6.1 E+0 K' [2.4 E-2] [2.8 E-2] Cs* ⁽¹⁾ 5.99 E-5 7.70 E-5 Ca ²⁺ [3.7 E-3] [4.7 E-3] Cd ²⁺ 2.31 E-4 2.86 E-4 Cu ²⁺ [1.6 E-4] [1.3 E-4] Ni ⁺⁺ 3.20 E-3 4.06 E-3 Pb ²⁺ [3.2 E-4] [4.2 E-4] Sr ²⁺ 9.87 E-4 6.98 E-4 Sr ²⁺ 9.87 E-4 6.98 E-4 Na/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 8.0 E+1 2.46 E-1 CT 5.39 E-2 NA F <2.3 E-1 ⁽³⁾ NA CO3 ^{2+ (1)} 3.04 E-1 NA CO3 ^{2+ (1)} 2.08 E-3 2.31 E-3 NO2 9.23 E-1 NA NO3 1.66 E+0 NA OQ2 ^{- (2)} 2.08 E-3 2.31	Analyte	AN-102/C-104	AN-102			
Cations, M Na ⁱ 4.8 E40 6.1 E40 K ⁱ [2.4 E-2] [2.8 E-2] Ca ²⁺ [3.7 E-3] [4.7 E-3] Cd ²⁺ 2.31 E-4 2.86 E-4 Cu ²⁺ [1.6 E-4] [1.3 E-4] Na ²⁺ 3.20 E-3 4.06 E-3 Pb ²⁺ [3.2 E-4] [4.2 E-4] Sr ³⁺ 9.87 E-4 6.98 E-4 Sr ³⁺ 9.87 E-4 6.98 E-4 Sr ³⁺ 9.87 E-4 6.98 E-4 K/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 8.0 E+2 3.6 E+2 Ma/Cs mole ratio 8.0 E+1 2.46 E-1 CT 5.39 E-2 NA F C2.3 E-1 NA CO ₃ ²⁺ (furnace method) 6.94 E-1	Solution density, g/mL	1.244	1.301			
Na ⁺ 4.8 E+0 6.1 E+0 K ⁺ [2.4 E-2] [2.8 E-2] Cs ⁺⁽¹⁾ 5.99 E-5 7.70 E-5 Cd ²⁺ [3.7 E-3] [4.7 E-3] Cd ²⁺ 2.31 E-4 2.86 E-4 Cu ²⁺ [1.6 E-4] [1.3 E-4] Ni ²⁺ 3.20 E-3 4.06 E-3 Pb ²⁺ [3.2 E-4] 6.98 E-4 Store 9.87 E-4 6.98 E-4 Store 9.87 E-4 6.98 E-4 K/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 4.0 E-4 7.9 E+4 K/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 8.0 E+1 NA CO ₂ ² IA Clo ²⁺¹⁰ <td< td=""><td colspan="6">Cations, M</td></td<>	Cations, M					
K* [2.4 E-2] [2.8 E-2] $Cs^{+(1)}$ 5.99 E-5 7.70 E-5 Ca^{2+} [3.7 E-3] [4.7 E-3] Cd^{2+} 2.31 E-4 2.86 E-4 Cu^{2+} [1.6 E-4] [1.3 E-4] Ni^{2+} 3.20 E-3 4.06 E-3 Pb^{2+} [3.2 E-4] [4.2 E-4] Sr^{2+} 9.87 E-4 6.98 E-4 Sr^{2+} 9.87 E-4 6.98 E-4 Na/Cs mole ratio 8.0 E+4 7.9 E+4 $K'Cs$ mole ratio 4.0 E+2 3.6 E+2 Na/Cs mole ratio 4.0 E+1 2.46 E-1 Cl 5.39 E-2 NA F <2.3 E-1 ⁽³⁾ NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA Ord -2 0.23 E-1 NA NA Ord -2 0.23 E-1 NA NA <td>Na⁺</td> <td>4.8 E+0</td> <td>6.1 E+0</td>	Na ⁺	4.8 E+0	6.1 E+0			
$\begin{array}{c c} Cs^{2(i)} & 5.99 E-5 & 7.70 E-5 \\ Ca^{2i} & [3.7 E-3] & [4.7 E-3] \\ Cd^{2i} & 2.31 E-4 & 2.86 E-4 \\ Cu^{2i} & [1.6 E-4] & [1.3 E-4] \\ Ni^{2i} & 3.20 E-3 & 4.06 E-3 \\ Pb^{2i} & [3.2 E-4] & [4.2 E-4] \\ Sr^{2i} & 9.87 E-4 & 6.98 E-4 \\ \hline & Mole Ratios \\ \hline & Mole Ratiomethod \\ \hline & 1.19 E+1 \\ \hline & Mol \\ \hline & Mole Ratios \\ \hline & Mole Ra$	\mathbf{K}^+	[2.4 E-2]	[2.8 E-2]			
$\begin{array}{c cccc} Ca^{2^{\circ}} & [3.7 \ E-3] & [4.7 \ E-3] \\ Cd^{2^{\circ}} & 2.31 \ E-4 & 2.86 \ E-4 \\ Cu^{2^{\circ}} & [1.6 \ E-4] & [1.3 \ E-4] \\ Ni^{2^{\circ}} & 3.20 \ E-3 & 4.06 \ E-3 \\ Pb^{2^{\circ}} & [3.2 \ E-4] & [4.2 \ E-4] \\ Sr^{2^{\circ}} & 9.87 \ E-4 & 6.98 \ E-4 \\ \hline & Mole Ratios \\ \hline & Mole Rat$	$Cs^{+(1)}$	5.99 E-5	7.70 E-5			
$Cd^{2^{\circ}}$ 2.31 E-4 2.86 E-4 $Cu^{2^{\circ}}$ [1.6 E-4] [1.3 E-4] $Ni^{2^{\circ}}$ 3.20 E-3 4.06 E-3 $Pb^{2^{\circ}}$ [3.2 E-4] [4.2 E-4] $Sr^{2^{\circ}}$ 9.87 E-4 6.98 E-4 Mole Ratios Mole Ratios Marcs mole ratio 8.0 E+4 7.9 E+4 $A'Cs$ mole ratio 4.0 E+2 3.6 E+2 Anions, M $AlO_2^{-(2)}$ 3.04 E-1 2.46 E-1 Cl Cl 5.39 E-2 NA F <2.3 E-1 ⁽³⁾ NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA CrO ₄ ^{-2 (1)} 2.08 E-3 2.31 E-3 NO ₂ 9.23 E-1 NA NO ₃ 1.66 E+0 NA OH 2.0 E-1 NA NO ₄ ⁻¹ (2) (CP-AES) 2.41 E-2 NA NO ₄ ⁻¹ (2) (3.63 E-2 NA NA Oxalate 3.4 E-2 NA TOC, g/L (hot persulfate method	Ca ²⁺	[3.7 E-3]	[4.7 E-3]			
Cu ²⁺ [1.6 E-4] [1.3 E-4] Ni ²⁺ 3.20 E-3 4.06 E-3 Pb ²⁺ $[3.2$ E-4] $[4.2$ E-4] Sr ²⁺ 9.87 E-4 6.98 E-4 Mole Ratios Mole Ratios Na/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 4.0 E+2 3.6 E+2 AlO ₂ ⁻⁽²⁾ 3.04 E-1 2.46 E-1 CI 5.39 E-2 NA F <2.3 E-1 ⁽³⁾ NA CO ₃ ²⁻ (hot persulfate method) 6.94 E-1 NA CO ₃ ²⁻ (furnace method) 4.75 E-1 NA Co ₃ ²⁻ (intrace method) 4.75 E-1 NA Obj 9.23 E-1 NA Ord ₂ ⁻⁽²⁾ 2.0 E-1 NA OH 2.0 E-1 NA OP ₄ ³⁻⁽¹⁾ (ICP-AES) 2.41 E-2 1.47 E-2 PO ₄ ³⁻⁽²⁾ (ICP-AES) 2.41 E-2 NA Outale 3.4 E-2 NA OCO 6.84 E-2 NA OCO 7.6 E-2	Cd^{2+}	2.31 E-4	2.86 E-4			
Ni^{2+} $3.20 E-3$ $4.06 E-3$ Pb^{2+} $[3.2 E-4]$ $[4.2 E-4]$ Sr^{2+} $9.87 E-4$ $6.98 E-4$ $Mole Ratios$ $Mole Ratios$ Na/Cs mole ratio $8.0 E+4$ $7.9 E+4$ K/Cs mole ratio $4.0 E+2$ $3.6 E+2$ $Molog^{(2)}$ $3.04 E-1$ $2.46 E-1$ $Clog^{(2)}$ $3.04 E-1$ $2.46 E-1$ $Clog^{(2)}$ $3.04 E-1$ $2.46 E-1$ $Clog^{(2)}$ $3.04 E-1$ NA Co_3^{-2} (hot persulfate method) $6.94 E-1$ NA $Co_3^{(2)}$ (bot persulfate method) $4.75 E-1$ NA $Co_3^{(2)}$ (bot persulfate method) $4.75 E-1$ NA $Co_3^{(2)}$ (corpace method) $4.75 E-1$ NA $Oro_4^{(3)}$ (C) $3.63 E-2$ NA OH $2.0 E-1$ NA $OPo_4^{3-(2)}$ (IC) $3.63 E-2$ NA $OSQ_4^{(2)}$ $6.84 E-2$ NA $Orow gas 6.84 E-2 NA Orow gas $	Cu ²⁺	[1.6 E-4]	[1.3 E-4]			
Pb ²⁺ [$3.2 E-4$] [$4.2 E-4$] Sr ²⁺ 9.87 E-4 6.98 E-4 Mole Ratios Mole Ratios Na/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 4.0 E+2 3.6 E+2 Anions, M Anions, M AlO2 ⁻⁽²⁾ $3.04 E-1$ $2.46 E-1$ CI $5.39 E-2$ NA F $<2.3 E-1^{(3)}$ NA CO ₃ ⁻² (hot persulfate method) $6.94 E-1$ NA CO ₃ ²⁻² (hot persulfate method) $6.94 E-1$ NA CrO ₄ ²⁻⁽²⁾ $2.08 E-3$ $2.31 E-3$ NO2 ⁻¹ $9.23 E-1$ NA NO2 ⁻¹ $0.66 E+0$ NA OH $2.0 E-1$ NA OH $2.0 E-1$ NA OQ ²⁻¹ $6.84 E-2$ NA Oda ³⁻¹ (1CP-AES) $2.41 E-2$ $1.47 E-2$ PO4 ³⁻¹⁰ (1CP-AES) $2.41 E-2$ NA OXalate $3.4 E-2$ NA OXalate $3.4 E-2$ NA O	Ni ²⁺	3.20 E-3	4.06 E-3			
Sr^{2+} 9.87 E-4 6.98 E-4 Mole Ratios Mole Ratios Na/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 4.0 E+2 3.6 E+2 AlO2 (2) 3.04 E-1 2.46 E-1 Cl Cl 5.39 E-2 NA Second Second F <2.3 E-1 ⁽³⁾ NA Second	Pb ²⁺	[3.2 E-4]	[4.2 E-4]			
Mole RatiosNa/Cs mole ratio 8.0 E+4 7.9 E+4K/Cs mole ratio 4.0 E+2 3.6 E+2K/Cs mole ratio 4.0 E+2 3.6 E+2Allo2 ^{- (2)} 3.04 E-1 2.46 E-1Cl ⁻ 5.39 E-2NAF <2.3 E-1 ⁽³⁾ NACO $_3^{2-}$ (hot persulfate method) 6.94 E-1NACO $_3^{2-}$ (hot persulfate method) 4.75 E-1NACO $_3^{2-}$ (furnace method) 4.75 E-1NACO $_3^{2-}$ (lot persulfate method) 4.75 E-1NACO $_3^{2-}$ (furnace method) 4.75 E-1NAOQ $_3^{2-}$ (furnace method) 4.75 E-1NAOQ $_3^{2-}$ (lot persulfate method) 4.75 E-1NAOQ $_3^{2-}$ (furnace method) 4.75 E-1NAOQ $_3^{2-}$ (furnace method) 4.75 E-1NAOQ $_3^{2-}$ (furnace method) 1.166 E+0NAOH 2.0 E-1NAOG $_3^{-1/2}$ (ICP-AES) 2.41 E-2 1.47 E-2PO $_4^{3-(2)}$ (ICP-AES) 2.41 E-2NAOuranyl 1.15 E-4NAOxalate 3.4 E-2NAOxalate 3.4 E-2NATotal alpha 1.26 E-2NA 60 Co 4.06 E-2 5.48 E-2 90 Sr 1.70 E+0 1.40 E+1 90 Sr 1.70 E+0 1.40 E+1 90 Sr 1.70 E+0 1.40 E+1 137 Cs 6.6 E-2 <2 E-1	Sr^{2+}	9.87 E-4	6.98 E-4			
Na/Cs mole ratio 8.0 E+4 7.9 E+4 K/Cs mole ratio 4.0 E+2 3.6 E+2 Allog ^{- (2)} 3.04 E-1 2.46 E-1 Cl ⁻ 5.39 E-2 NA F < 2.3 E-1 ⁽³⁾ NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA CO ₃ ⁻² (hot persulfate method) 6.94 E-1 NA CO ₃ ⁻² (hot persulfate method) 4.75 E-1 NA NO ₂ ⁻¹ 2.08 E-3 2.31 E-3 NO ₂ ⁻¹ 9.23 E-1 NA NA OH 2.0 E-1 NA NA OH 2.0 E-1 NA NA OH 2.0 E-1 NA NA OL ² 1.66 E+0 NA NA <tr< td=""><td></td><td>Mole Ratios</td><td></td></tr<>		Mole Ratios				
K/Cs mole ratio 4.0 E+2 3.6 E+2 Anions, M AlO2 ^{+ (2)} 3.04 E-1 2.46 E-1 CI 5.39 E-2 NA F <2.3 E-1 ⁽³⁾ NA CO3 ²⁺ (hot persulfate method) 6.94 E-1 NA CO3 ²⁺ (hot persulfate method) 4.75 E-1 NA CrO4 ²⁺⁽²⁾ 2.08 E-3 2.31 E-3 NO2 ⁺ 9.23 E-1 NA NO2 ⁺ 9.23 E-1 NA NO2 ⁺ 9.23 E-1 NA NO3 ⁻ 1.66 E+0 NA OH 2.0 E-1 NA PO4 ^{3+ (1)} (ICP-AES) 2.41 E-2 1.47 E-2 PO4 ^{3+ (1)} (IC) 3.63 E-2 NA SO4 ²⁺ 6.84 E-2 NA Uranyl 1.15 E-4 NA Oxalate 3.4 E-2 NA TOC, g/L (hot persulfate method) 1.19 E+1 NA TOC, g/L (hot persulfate method) 1.89 E+1 NA OCo 4.06 E-2 5.48 E-2	Na/Cs mole ratio	8.0 E+4	7.9 E+4			
Anions, MAlO2 $^{(2)}$ 3.04 E-1 2.46 E-1 Cl 5.39 E-2 NAF $< 2.3 \text{ E-1}^{(3)}$ NA CO_3^2 (hot persulfate method) 6.94 E-1 NA CO_3^2 (furnace method) 4.75 E-1 NA $CO_3^{2^*(2)}$ 2.08 E-3 2.31 E-3 $NO_2^{(2)}$ 9.23 E-1 NA $NO_3^{(3)}$ 1.66 E+0 NAOH 2.0 E-1 NA $OH_3^{(2)}$ (ICP-AES) 2.41 E-2 1.47 E-2 $PO_4^{3^*(2)}$ (ICP-AES) 2.41 E-2 NASO $_4^{2^*}$ 6.84 E-2 NAUranyl 1.15 E-4 NAOxalate 3.4 E-2 NATOC, g/L (hot persulfate method) 1.19 E+1 NATOC, g/L (furnace method) 1.26 E-2 NARadionuclides, µCl/mLTotal alpha 1.26 E-2 NA ^{60}Co 4.06 E-2 5.48 E-2 ^{90}Sr 1.70 E+0 1.40 E+1 ^{99}Tc $[7.71 \text{ E-2}]^{(4)}$ NA ^{137}Cs 1.61 E+2 2.07 E+2	K/Cs mole ratio	4.0 E+2	3.6 E+2			
AlO2 ^{- (2)} 3.04 E-1 2.46 E-1 CI 5.39 E-2 NA F $< 2.3 \text{ E-1}^{(3)}$ NA CO_3^2 (hot persulfate method) 6.94 E-1 NA CO_3^2 (furnace method) 4.75 E-1 NA $CO_3^{2^-(2)}$ 2.08 E-3 2.31 E-3 NO2 ⁻ 9.23 E-1 NA NO3 ⁻ 1.66 E+0 NA OH 2.0 E-1 NA OG ⁻ 0.923 E-1 NA Od ⁻ 9.23 E-1 NA Od ⁻ 0.66 E+0 NA Od ⁻ 2.0 E-1 NA Od ⁻ 2.0 E-1 NA Od ⁻ 2.0 E-1 NA Od ⁻ 3.63 E-2 NA Od ⁻ 3.63 E-2 NA Uranyl 1.15 E-4 NA Oxalate 3.4 E-2 NA TOC, g/L (hot persulfate method) 1.19 E+1 NA TOC, g/L (furnace method)		Anions, M				
Cľ 5.39 E-2 NA F $< 2.3 \text{ E-1}^{(3)}$ NA $CO_3^{2^\circ}$ (hot persulfate method) 6.94 E-1 NA $CO_3^{2^\circ}$ (furnace method) 4.75 E-1 NA $CO_4^{2^\circ (2)}$ 2.08 E-3 2.31 E-3 NO_2° 9.23 E-1 NA NO_3° 1.66 E+0 NA OH' 2.0 E-1 NA $PO_4^{3^\circ (2)}$ (ICP-AES) 2.41 E-2 1.47 E-2 $PO_4^{3^\circ (2)}$ (ICP-AES) 2.41 E-2 NA $SO_4^{2^\circ}$ 6.84 E-2 NA Uranyl 1.15 E-4 NA Oxalate 3.4 E-2 NA TOC, g/L (hot persulfate method) 1.19 E+1 NA TOC, g/L (furnace method) 1.89 E+1 NA ^{60}Co 4.06 E-2 5.48 E-2 ^{90}Sr 1.70 E+0 1.40 E+1 ^{99}Tc $[7.71 \text{ E-2]^{(4)}$ NA ^{137}Cs $1.61 \text{ E+2$ 2.07 E+2 <td>$AlO_2^{-(2)}$</td> <td>3.04 E-1</td> <td>2.46 E-1</td>	$AlO_2^{-(2)}$	3.04 E-1	2.46 E-1			
F $< 2.3 E-1^{(3)}$ NA $CO_3^{2^\circ}$ (hot persulfate method) $6.94 E-1$ NA $CO_3^{2^\circ}$ (furnace method) $4.75 E-1$ NA $CO_4^{2^\circ (2)}$ $2.08 E-3$ $2.31 E-3$ NO_2° $9.23 E-1$ NA NO_3° $1.66 E+0$ NA OH° $2.0 E-1$ NA $OH_4^{3^\circ (2)}$ (ICP-AES) $2.41 E-2$ $1.47 E-2$ $PO_4^{3^\circ (2)}$ (ICP-AES) $2.41 E-2$ NA $SO_4^{2^\circ}$ $6.84 E-2$ NA $Varanyl$ $1.15 E-4$ NA $Oxalate$ $3.4 E-2$ NA $Oxellate$ $3.4 E-2$ NA $TOC, g/L$ (hot persulfate method) $1.19 E+1$ NA $TOC, g/L$ (furnace method) $1.89 E+1$ NA $TOC, g/L$ (furnace method) $1.26 E-2$ NA ^{60}Co $4.06 E-2$ $5.48 E-2$ ^{90}Sr $1.70 E+0$ $1.40 E+1$ ^{99}Tc $[7.71 E-2]^{(4)}$ NA ^{137}Cs $1.61 E+2$	Cl	5.39 E-2	NA			
$\begin{array}{cccc} {\rm CO_3}^{2^\circ} ({\rm hot persulfate method}) & 6.94 {\rm E-1} & {\rm NA} \\ \hline {\rm CO_3}^{2^\circ} ({\rm furnace method}) & 4.75 {\rm E-1} & {\rm NA} \\ \hline {\rm CrO_4}^{2^\circ (2)} & 2.08 {\rm E-3} & 2.31 {\rm E-3} \\ \hline {\rm NO_2} & 9.23 {\rm E-1} & {\rm NA} \\ \hline {\rm NO_3} & 1.66 {\rm E+0} & {\rm NA} \\ \hline {\rm OH}^\circ & 2.0 {\rm E-1} & {\rm NA} \\ \hline {\rm OH}^\circ & 2.0 {\rm E-1} & {\rm NA} \\ \hline {\rm OH}^{3^\circ (2)} ({\rm ICP} {\rm -AES}) & 2.41 {\rm E-2} & 1.47 {\rm E-2} \\ \hline {\rm PO_4}^{3^\circ (2)} ({\rm ICP} {\rm -AES}) & 2.41 {\rm E-2} & {\rm NA} \\ \hline {\rm SO_4}^{2^\circ} & 6.84 {\rm E-2} & {\rm NA} \\ \hline {\rm Uranyl} & 1.15 {\rm E-4} & {\rm NA} \\ \hline {\rm Uranyl} & 1.15 {\rm E-4} & {\rm NA} \\ \hline {\rm OC, g/L} ({\rm hot persulfate method}) & 1.19 {\rm E+1} & {\rm NA} \\ \hline {\rm TOC, g/L} ({\rm hot persulfate method}) & 1.89 {\rm E+1} & {\rm NA} \\ \hline {\rm Total alpha} & 1.26 {\rm E-2} & {\rm NA} \\ \hline {} {} {} {} {} {} {} {} {} {} {} {} {} $	F	<2.3 E-1 ⁽³⁾	NA			
$\begin{array}{cccc} {\rm CO_3}^{2^\circ} ({\rm furnace method}) & 4.75 \ {\rm E}{-1} & {\rm NA} \\ \hline {\rm CrO_4}^{2^\circ (2)} & 2.08 \ {\rm E}{-3} & 2.31 \ {\rm E}{-3} \\ \hline {\rm NO_2}^\circ & 9.23 \ {\rm E}{-1} & {\rm NA} \\ \hline {\rm NO_3}^\circ & 1.66 \ {\rm E}{+0} & {\rm NA} \\ \hline {\rm OH}^\circ & 2.0 \ {\rm E}{-1} & {\rm NA} \\ \hline {\rm OH}^\circ & 2.0 \ {\rm E}{-1} & {\rm NA} \\ \hline {\rm OH}^{3^\circ (2)} ({\rm ICP}{-\rm AES}) & 2.41 \ {\rm E}{-2} & 1.47 \ {\rm E}{-2} \\ \hline {\rm PO_4}^{3^\circ (2)} ({\rm ICP}{-\rm AES}) & 2.41 \ {\rm E}{-2} & {\rm NA} \\ \hline {\rm SO_4}^{2^\circ} & 6.84 \ {\rm E}{-2} & {\rm NA} \\ \hline {\rm Uranyl} & 1.15 \ {\rm E}{-4} & {\rm NA} \\ \hline {\rm Uranyl} & 1.15 \ {\rm E}{-4} & {\rm NA} \\ \hline {\rm Oxalate} & 3.4 \ {\rm E}{-2} & {\rm NA} \\ \hline {\rm TOC}, \ g/L \ ({\rm hot \ persulfate \ method}) & 1.19 \ {\rm E}{+1} & {\rm NA} \\ \hline {\rm TOC}, \ g/L \ ({\rm hot \ persulfate \ method}) & 1.89 \ {\rm E}{+1} & {\rm NA} \\ \hline \hline {\rm Total \ alpha} & 1.26 \ {\rm E}{-2} & {\rm NA} \\ \hline {}^{60}{\rm Co} & 4.06 \ {\rm E}{-2} & 5.48 \ {\rm E}{-2} \\ \hline {}^{90}{\rm Sr} & 1.70 \ {\rm E}{+0} & 1.40 \ {\rm E}{+1} \\ \hline {}^{90}{\rm Tc} & [7.71 \ {\rm E}{-2}]^{(4)} & {\rm NA} \\ \hline {}^{137}{\rm Cs} & 1.61 \ {\rm E}{+2} & 2.07 \ {\rm E}{+2} \\ \hline {}^{154}{\rm Eu} & <6 \ {\rm E}{-2} & <2 \ {\rm E}{-1} \\ \end{array}$	CO_3^{2-} (hot persulfate method)	6.94 E-1	NA			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	CO_3^{2-} (furnace method)	4.75 E-1	NA			
$\begin{array}{c c c c c c c c c } \hline & 9.23 \ E-1 & NA \\ \hline NO_3^{-} & 1.66 \ E+0 & NA \\ \hline OH^{-} & 2.0 \ E-1 & NA \\ \hline PO_4^{3-(2)} (ICP-AES) & 2.41 \ E-2 & 1.47 \ E-2 \\ \hline PO_4^{3-(1C)} & 3.63 \ E-2 & NA \\ \hline SO_4^{2-} & 6.84 \ E-2 & NA \\ \hline Uranyl & 1.15 \ E-4 & NA \\ \hline Uranyl & 1.15 \ E-4 & NA \\ \hline Oxalate & 3.4 \ E-2 & NA \\ \hline TOC, g/L (hot persulfate method) & 1.19 \ E+1 & NA \\ \hline TOC, g/L (furnace method) & 1.89 \ E+1 & NA \\ \hline TOC, g/L (furnace method) & 1.26 \ E-2 & NA \\ \hline \hline Total alpha & 1.26 \ E-2 & NA \\ \hline ^{60}Co & 4.06 \ E-2 & 5.48 \ E-2 \\ \hline ^{90}Sr & 1.70 \ E+0 & 1.40 \ E+1 \\ \hline ^{99}Tc & [7.71 \ E-2]^{(4)} & NA \\ \hline ^{137}Cs & 1.61 \ E+2 & 2.07 \ E+2 \\ \hline ^{154}Eu & <6 \ E-2 & <2 \ E-1 \\ \hline \end{array}$	$CrO_4^{2-(2)}$	2.08 E-3	2.31 E-3			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	NO_2^-	9.23 E-1	NA			
OH 2.0 E-1 NA $PO_4^{3-(2)}$ (ICP-AES) 2.41 E-2 1.47 E-2 PO_4^{3-} (IC) 3.63 E-2 NA SO_4^{2-} 6.84 E-2 NA Uranyl 1.15 E-4 NA Oxalate 3.4 E-2 NA TOC, g/L (hot persulfate method) 1.19 E+1 NA TOC, g/L (furnace method) 1.89 E+1 NA Total alpha 1.26 E-2 NA 60 Co 4.06 E-2 5.48 E-2 90 Sr 1.70 E+0 1.40 E+1 99 Tc [7.71 E-2]^{(4)} NA 137 Cs 1.61 E+2 2.07 E+2 154 Eu < 6 E-2	NO ₃ ⁻	1.66 E+0	NA			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	OH	2.0 E-1	NA			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$PO_4^{3-(2)}$ (ICP-AES)	2.41 E-2	1.47 E-2			
$\begin{tabular}{ c c c c c c } \hline SO_4^{2-} & 6.84 \ E-2 & NA \\ \hline Uranyl & 1.15 \ E-4 & NA \\ \hline Oxalate & 3.4 \ E-2 & NA \\ \hline Oxalate & 3.4 \ E-2 & NA \\ \hline TOC, g/L (hot persulfate method) & 1.19 \ E+1 & NA \\ \hline TOC, g/L (furnace method) & 1.89 \ E+1 & NA \\ \hline \hline TOC, g/L (furnace method) & 1.89 \ E+1 & NA \\ \hline \hline Total alpha & 1.26 \ E-2 & NA \\ \hline \hline Co & 4.06 \ E-2 & 5.48 \ E-2 \\ \hline {}^{90}Sr & 1.70 \ E+0 & 1.40 \ E+1 \\ \hline {}^{99}Tc & [7.71 \ E-2]^{(4)} & NA \\ \hline {}^{137}Cs & 1.61 \ E+2 & 2.07 \ E+2 \\ \hline {}^{154}Eu & < 6 \ E-2 & < 2 \ E-1 \\ \hline \end{tabular}$	PO_4^{3-} (IC)	3.63 E-2	NA			
Uranyl 1.15 E-4 NA Oxalate 3.4 E-2 NA TOC, g/L (hot persulfate method) 1.19 E+1 NA TOC, g/L (furnace method) 1.89 E+1 NA Radionuclides, µCi/mL Total alpha 1.26 E-2 NA ⁶⁰ Co 4.06 E-2 5.48 E-2 ⁹⁰ Sr 1.70 E+0 1.40 E+1 ⁹⁹ Tc $[7.71 \text{ E-2]^{(4)}$ NA ¹³⁷ Cs 1.61 E+2 2.07 E+2 ¹⁵⁴ Eu $< 6 \text{ E-2}$ $< 2 \text{ E-1}$	SO_4^{2-}	6.84 E-2	NA			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Uranyl	1.15 E-4	NA			
TOC, g/L (hot persulfate method) $1.19 \text{ E}+1$ NA TOC, g/L (furnace method) $1.89 \text{ E}+1$ NA Radionuclides, μ Ci/mL Radionuclides, μ Ci/mL NA Total alpha $1.26 \text{ E}-2$ NA 60 Co $4.06 \text{ E}-2$ $5.48 \text{ E}-2$ 90 Sr $1.70 \text{ E}+0$ $1.40 \text{ E}+1$ 99 Tc $[7.71 \text{ E}-2]^{(4)}$ NA 137 Cs $1.61 \text{ E}+2$ $2.07 \text{ E}+2$ 154 Eu $< 6 \text{ E}-2$ $< 2 \text{ E}-1$	Oxalate	3.4 E-2	NA			
TOC, g/L (furnace method) $1.89 \text{ E}+1$ NARadionuclides, μ Ci/mLTotal alpha $1.26 \text{ E}-2$ NA 60 Co $4.06 \text{ E}-2$ $5.48 \text{ E}-2$ 90 Sr $1.70 \text{ E}+0$ $1.40 \text{ E}+1$ 99 Tc $[7.71 \text{ E}-2]^{(4)}$ NA 137 Cs $1.61 \text{ E}+2$ $2.07 \text{ E}+2$ 154 Eu $< 6 \text{ E}-2$ $< 2 \text{ E}-1$	TOC, g/L (hot persulfate method)	1.19 E+1	NA			
Radionuclides, μ Ci/mLTotal alpha1.26 E-2NA 60 Co4.06 E-25.48 E-2 90 Sr1.70 E+01.40 E+1 99 Tc[7.71 E-2] ⁽⁴⁾ NA 137 Cs1.61 E+22.07 E+2 154 Eu< 6 E-2	TOC, g/L (furnace method)	1.89 E+1	NA			
Total alpha $1.26 ext{ E-2}$ NA ^{60}Co $4.06 ext{ E-2}$ $5.48 ext{ E-2}$ ^{90}Sr $1.70 ext{ E+0}$ $1.40 ext{ E+1}$ ^{99}Tc $[7.71 ext{ E-2}]^{(4)}$ NA ^{137}Cs $1.61 ext{ E+2}$ $2.07 ext{ E+2}$ ^{154}Eu $< 6 ext{ E-2}$ $< 2 ext{ E-1}$	Radionuclides, µCi/mL					
60 Co 4.06 E-2 5.48 E-2 90 Sr 1.70 E+0 1.40 E+1 99 Tc [7.71 E-2] ⁽⁴⁾ NA 137 Cs 1.61 E+2 2.07 E+2 154 Eu < 6 E-2	Total alpha	1.26 E-2	NA			
90 Sr 1.70 E+0 1.40 E+1 99 Tc [7.71 E-2] ⁽⁴⁾ NA 137 Cs 1.61 E+2 2.07 E+2 154 Eu < 6 E-2 < 2 E-1	⁶⁰ Co	4.06 E-2	5.48 E-2			
99 Tc[7.71 E-2]^{(4)}NA 137 Cs1.61 E+22.07 E+2 154 Eu< 6 E-2	⁹⁰ Sr	1.70 E+0	1.40 E+1			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	⁹⁹ Tc	[7.71 E-2] ⁽⁴⁾	NA			
¹⁵⁴ Eu < 6 E-2 < 2 E-1	¹³⁷ Cs	1.61 E+2	2.07 E+2			
	¹⁵⁴ Eu	< 6 E-2	< 2 E-1			

Table 2.3. Compositions of AN-102/C-104 and AN-102 (Envelope C)

 The Cs concentration was calculated from the ¹³⁷Cs concentration measured by gamma energy analysis (GEA), and the isotopic ratio was measured by thermal ionization mass spectrometry (TIMS).

(2) Al, Cr, and P were determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES). The anionic form was assumed on the basis of waste chemistry.

(3) F concentration is an upper bound; coeluting anions positively interfered with peak integration.

(4) Uncertainty, including standards bias, ranged from -10% to +30%.

NA = not analyzed

Bracketed results indicate that the analyte concentration uncertainty exceeded 15%.

The aluminum concentration was higher in the AN-102/C-104 feed than in the AN-102 feed, most probably from caustic leaching of the C-104 solids. The measured AN-102 feed composition generally agreed within 10% of the AN-102 composition previously reported (Hassan et al. 2000); the AN-102/C-104 composition generally agreed within 30% with the published composition, with the exception of OH. Hassan et al. reported 1.69 M OH, eight times the OH concentration found in AN-102/C-104.

Carbonate and total organic carbon (TOC) are reported here and elsewhere for two different analytical methods: hot persulfate oxidation and furnace oxidation. The differences in results of the two methods reflect the ease or difficulty with which various organic constituents oxidize in the given method.

2.4 Batch Contacts

The batch contacts were performed with the H-form of SL-644 batch 010319SMC-IV-73, 212- to 425-µm dry particle size.^(c) The Na-form of IE-911 was tested in parallel with the SL-644. Batch contacts were performed using feed at three different Cs concentrations. Aliquots of tank-waste samples were tested without spiking, and additional aliquots were spiked with 0.75 M CsNO₃ to obtain stock solutions of nominally 1 E-3 M and 5 E-3 M Cs. The initial Cs concentrations in the stock contact solutions and the corresponding Na/Cs and K/Cs mole ratios are given in Table 2.4.

Solution	Target Initial Cs Conc. [M]	Target Nominal Na/Cs ⁽¹⁾ mole ratio	Target Nominal K/Cs ⁽¹⁾ mole ratio	
	SL-644 Batch C	ontact with AN-102/C-104	4	
Un-spiked	6.0 E-5	8.0 E+4	4.0 E+2	
Cs Spike 1	1.0 E-3	5.0 E+3	2.4 E+1	
Cs Spike 2	5.0 E-3	1.0 E+3	4.8 E+0	
	IE-911 Batcl	n Contact with AN-102		
Un-spiked	7.7 E-5	7.9 E+4	3.6 E+2	
Cs Spike 1	1.0 E-3	6.0 E+3	2.8 E+1	
Cs Spike 2	5.0 E-3	1.2 E+3	5.6 E+0	
(1) Na^+ and K	⁺ are the primary cations th	at compete with Cs ⁺ for ion	exchange with SL-644.	

Table 2.4. Initial Cs Concentrations in the AN-102/C-104 Solutions Used for the Batch K_d Tests

The batch K_d tests were performed in duplicate at a phase ratio of approximately 100 mL/g (liquid volume to exchanger mass). Typically, 0.05 g of exchanger was contacted with 5 mL of feed. The exchanger mass was determined to an accuracy of 0.0002 g. The waste volume was transferred by pipet, and the actual volume was determined by mass difference with an accuracy of 0.0002 g and the solution density. An orbital shaker provided agitation for approximately 24 h for SL-644 and 72 h for IE-911.^(d) The temperature was not controlled but was generally constant at 25 to 29°C during the 3 days of contact.

⁽c) Batch-contact testing was conducted according to, and documented in, Test Instruction TI-RPP-WTP-082, Rev. 0, *Batch Contact of AP-101 and AN-102/C104 Waste with SuperLig 644 (Batch ID 010319SMC-IV-73) and CST*, S. K. Fiskum, June 2001.

⁽d) The 24-h contact time for SL-644 was defined in the test specification. The 72-h contact time for IE-911 was applied based on the results of Brown et al. 1996.

All Cs K_d measurements were determined by measuring ¹³⁷Cs on both the stock solution (initial concentration) and the contacted solution (final concentration). Initial ¹³³Cs concentrations were confirmed by inductively-coupled plasma-mass spectrometry (ICP-MS). The IE-911 batch-contact samples were also measured for ⁹⁰Sr to evaluate Sr K_ds.

The batch-distribution coefficient, K_d (with units of mL/g), was determined using the following relationship:

$$K_{d} = \frac{(C_{0} - C_{1})}{C_{1}} * \frac{V}{M * F}$$
(1)

where C_0 = the initial ¹³⁷Cs concentration

- C_1 = the final ¹³⁷Cs concentration
- V = the volume of the liquid sample (mL)
- M = the mass of the ion exchanger (g) (SL-644 H-form mass corrected for the Na-form mass increase or Na-form IE-911 mass)
- F = the dried resin mass divided by the initial resin mass.

For the Sr K_d determination, C_o and C_1 are the initial and final ⁹⁰Sr concentrations.

The SL-644 dry-bed resin density, ρ (g of resin per mL of resin in contact with solution), was obtained according to the following equation:

$$\rho = \frac{m * L * F * I_{Na}}{BV} \tag{2}$$

where m = resin mass in the ion exchange column, as-received form

L = fractional mass remaining after washing (0.538)

- F = water-loss factor, as-received form (0.877)
- I_{Na} = fractional mass gain on conversion from H-form to Na-form (1.25) (this factor is set to 1 when calculating the dry-bed density in the H-form or 0.5 M HNO₃ feed)
- BV = resin bed volume (BV) in the feed (discussed in Section 3.2.5).

The dry-bed density for IE-911 was calculated according to the following equation:

$$\rho = \frac{m * F}{BV} \tag{3}$$

where m = resin mass

F = water loss factor

BV = resin BV in AW-101 simulant.

The Cs λ value (column-distribution ratio) is a function of the dry-bed density and is obtained as shown in Equation 4.

$$\lambda = K_d * \rho \tag{4}$$

2.5 Experimental Conditions for SL-644 Column Ion Exchange Test

A schematic of the ion exchange column system is shown in Figure 2.1. The system consisted of two small columns containing the SL-644 ion exchange material, a small metering pump, three valves, a pressure gauge, and a pressure relief valve. Valves 1, 2, and 3 were three-way valves that could be turned to the flow position, sample position, or no-flow position. Valve 1 was placed at the outlet of the pump and was used to eliminate air from the system, purge the initial volume of the system, or isolate the columns from the pump. Valves 2 and 3 were primarily used to obtain samples and could also be used to isolate the columns from the rest of the system. The columns were connected in series with the first column referred to as the lead column and the second column referred to as the lag column.

The columns were prepared at the SRTC Glassblowing Laboratory. Each column consisted of a 15-cm glass column with a 24/40 taper ground-glass fitting on top and a threaded fitting on the bottom. A polyethylene bushing was installed in the glass-threaded fitting to accommodate a ¹/₄-in stainless steel National Pipe Thread (NPT) fitting. The inside diameter of each column was 1.46 cm, which corresponded to a volume of 1.67 mL/cm. A stainless steel, 200-mesh screen supported the resin bed. The height of the resin bed (and thus shrinkage and swelling) was measured with a decal millimeter scale affixed to the column. The upper section contained four entry ports and a taper joint with a screw cap that securely fitted the column. The lead column assembly used a pressure relief valve (10 psi trigger), pressure gauge, and sample inlet; the remaining port was plugged. The lag column assembly used one port for sample entry, and the other three ports were plugged. In both columns, the inlet sample lines extended through the port opening to the top of the column. The connecting tubing was $\frac{1}{8}$ -in. OD, $\frac{1}{16}$ -in. ID polyethylene. Valved quick-disconnects (Cole Parmer) were installed in-line to allow for ease of column switching. An FMI QVG50 pump (Fluid Metering, Inc., Syosset, NY) equipped with a ceramic and Kynar[®] coated low-flow piston pump head was used to introduce all fluids. The flowrate was controlled with a remotely operated FMI stroke-rate controller. The pump was calibrated with the stroke-rate controller and could provide pumping rates from 0.08 to 16 mL/min. The volume actually pumped was determined using the mass of the fluid and the fluid density. The pressure indicated on the pressure gauge remained below 5 psi during all runs. The total holdup volume of the Cs ion exchange system was the summed volume of all fluid-filled parts and was estimated to be 42 mL.

Figure 2.1. Cesium Ion Exchange Column System

Before installing the system into the hot cell, both of the resin beds were individually cycled through the acid form. After the resin cycling, the corrected mass of the Na-form SL-644 was calculated to be 2.4 g, on a dry-weight basis, in each column according to the following equation:

$$\mathbf{M}_{\text{bed}} = \mathbf{M}_{\text{AR}} * \mathbf{F}_{\text{AR}} * \mathbf{L} * \mathbf{I}_{\text{Na}}$$
(5)

where M_{bed} = the resin bed mass in the Na-form on a dry-weight basis

 M_{AR} = the resin mass loaded in the column, as-received form

 F_{AR} = the F-factor for the as-received resin (0.877)

L = the fractional mass remaining after conversion to the H-form (0.538)

 I_{Na} = the fractional mass gain on conversion from the H-form to the Na-form (1.25).

The entire ion exchange system was then used for a full shakedown experiment with AW-101 simulant (Fiskum, Blanchard, and Arm 2002). Both columns were individually eluted, rinsed, and regenerated. The ion exchange system was then used to process AP-101 diluted feed (AP-101DF) tank waste (Fiskum et al. 2002). Only the lead column was eluted to a ¹³⁷Cs concentration C/C_o of 4 E-3, which was equivalent to a ¹³⁷Cs concentration of 0.5 μ Ci/mL. The lead column was then rinsed with DI water, regenerated with 0.25 M NaOH, and again rinsed with DI water. The lag column contained an estimated 35 μ Ci ¹³⁷Cs from the lead column Cs breakthrough (Fiskum et al. 2002). The beds had been stored approximately 8 weeks in the Na-form in DI water since the end of the AP-101DF column run.

The lead and lag columns were switched, and the apparatus volume (AV) of DI water was displaced with 0.25 M NaOH before introducing AN-102/C-104 feed. All subsequent processing^(a) was performed in the hot cells at temperatures ranging from 25 to 29°C. The experimental conditions for each process step are shown in Table 2.5, where one BV is the volume in 0.25 M NaOH, 10.4 mL. The bed conditioning, AN-102/C-104 loading, feed displacement, and DI water-rinse steps were conducted by passing these solutions through both resin beds connected in series. The AN-102/C-104 effluent was collected in two effluent bottles. The first bottle collected 41 mL, nominally one AV, and consisted primarily of the displaced regeneration solution. The remaining effluent was collected as one fraction. The initial 43-mL (1 AV) of feed-displacement solution was collected in the AN-102/C-104 effluent composite bottle. This allowed maximum recovery of the AN-102/C-104 feed and minimized loss associated with feed-displacement sampling. Sampling of the feed-displacement solution began immediately after the 1-AV displacement. The elution was conducted on the lead column only, continuing until 16.8 BV had been processed through the column. The ion exchange system was idled at this point overnight for 13.5 h in 0.5 M HNO₃. Then two additional BVs of 0.5 M HNO₃ were passed through the column. The resin bed was then rinsed, regenerated, and rinsed again as shown in Table 2.5.

⁽a) Processing and data collection were recorded in Test Instruction TI-PNNL-WTP-080, Rev. 0, "Separation of Cesium from Hanford Tank Waste AN-102/C-104 Wash Solution Integrated Test Sample Using the Dual Small-Column SuperLig 644 Cesium Ion Exchange System," SK Fiskum, 6/21/02.

		Tota	al Volur	ne	Flov	wrate	Time,	
Process step	Solution	BV ⁽¹⁾	AV ⁽²⁾	mL	BV/h	mL/min	h	T, ⁰C
Two columns in series								
DI water displacement	0.25 M NaOH	8.0	2.0	83	2.7	0.47	2.9	27
Loading Lead column ⁽³⁾	AN-102/ C-104 Feed	72.4	-	753	2.7	0.47	27.2	28
Loading Lag column ⁽⁴⁾	AN-102/ C-104 Feed	70.8	_	736	2.7	0.47	27.2	28
Feed displacement	0.1 M NaOH	11.6	2.9	121	2.8	0.48	4.6	28
DI water rinse	DI water	8.2	2.0	86	2.7	0.47	3.2	28
Lead column only								
Elution	0.5 M HNO ₃	18.9	-	197	0.95	0.16	33.7 ⁽⁵⁾	28
Eluant rinse	DI water	5.9	2.7	62	2.8	0.49	2.1	28
Regeneration	0.25 M NaOH	4.9	2.2	51	0.92	0.16	5.5	32
Rinse	DI water	4.6	2.1	48	2.6	0.45	2.0	32

Table 2.5. Experimental Conditions for AN-102/C-104 Ion Exchange

(1) BV = bed volume (10.4 mL in 0.25 M NaOH regeneration condition)

(2) AV = apparatus volume (42 mL for columns in series; 23 mL for lead column and 21 mL for lag column)

(3) Ion exchange run began on 6/26/01.

(4) The feed volume through the lag column is reduced because of sampling from the lead column.

(5) The elution time includes 13.5 h when the system was idled in 0.5 M HNO_3 overnight.

2.6 Column Sampling

The sampling and analysis protocol is shown in Table 2.6. During the loading phase, small samples (about 2 mL) were collected from the lead and lag columns starting at 5 BVs, then at 13 BVs and continuing in nominal 10-BV increments of feed. The flowrate varied between 2.6 and 2.9 BV/h. The flowrate doubled during sample collection from the lead column because of the strong siphoning effect at the sample port. Thus, for the eight samples collected from the lead column and for 2 min for each sample, AN-102/C-104 fed at a nominal flowrate of 6 BV/h. The feed displacement, DI water rinse, elution, and elution-rinse samples were taken at 1-BV increments at flowrates shown in Table 2.5.

	Frequency					
D	Lead Column	Lag Column	Approximate			
Process Step	BV	BV	Sample Size (mL)	Analyses		
Loading	Every 10 BV	Every 10 BV	2	GEA		
Feed						
displacement		Every 1 BV	10	GEA		
DI water rinse		Every 1 BV	10	GEA		
Elution	Every 1 BV		10	GEA		
Eluant rinse	Every 1 BV		10	GEA		
		Composite S	amples			
Effluent – 1			2	GEA		
				GEA, ICP-AES, IC, U,		
				ICP-MS (Tc),		
Effluent				pertechnetate, OH,		
composite			10	TOC/TIC		
Regeneration	1 composite		10	ICP-AES, GEA, OH-		
				ICP-AES, GEA, TOC,		
				IC, U,		
				TIMS, and various		
Eluate	1 composite		10	radioisotopes		
GEA = gamma ene	rgy analysis					
ICP-AES = inducti	vely coupled plasm	na atomic energy	spectrometry			
IC = ion chromatography						
ICP-MS = inductively coupled plasma mass spectrometry						
OH = hydroxide						
TOC = total organic carbon						
TIC = total inorganic carbon						
TIMS = thermal ion	nization mass spec	trometry				

Table 2.6. Sampling Interval and Analyses

2.7 Sample Analysis

The ¹³⁷Cs concentration was determined using a benchtop GEA spectrometer, which allowed for rapid sample analysis. Selected sample results were later confirmed by GEA analysis in the Chemical Measurements Center (CMC) analytical laboratory. The effluent composite sample was submitted for various analyses: GEA, ICP-AES, TOC/TIC, IC, ⁹⁹Tc, pertechnetate, U, and OH⁻. The eluate samples required dilution before removal from the hot cell to reduce the dose rate from ¹³⁷Cs. The extent of dilution was determined by mass difference. Once the GEA results were confirmed for the eluate samples, the eluate samples were composited,^(b) and a sample of the composite was submitted for various analyses: GEA, ICP-AES, TOC, IC, U, ⁹⁰Sr, total alpha, and thermal ionization mass spectrometry (TIMS) for Cs isotopic distribution. A sample of the regeneration solution was taken for ICP-AES and OH⁻ determination.

The Na and other metal concentrations were determined with ICP-AES. The OH⁻ concentration was determined by potentiometric titration with standardized HCl. Uranium was determined using kinetic phosphorescence. The total Tc concentration was determined by ICP-MS, and the pertechnetate concentration was determined using radiochemical separations specific for pertechnetate followed by beta counting. Anions were determined using ion chromatography. TOC and TIC were determined by silver-catalyzed hot-persulfate oxidation and furnace oxidation methods.

⁽b) Compositing was conducted according to Test Instruction TI-RPP-WTP-106, Rev. 0, "Preparing a Composite Solution of the Acid Eluate Samples from AN-102/C-104 Cs Ion Exchange Column 1," SK Fiskum, 9/4/01.

3.0 Results and Discussion

This section describes the results from batch-contact tests and the column test with SL-644.

3.1 Batch Contact Results

The K_d values were calculated using Equation 1 and are based on ¹³⁷Cs concentrations as measured by GEA. The Na/Cs mole ratios were calculated based on the measured Na and total Cs concentrations in the uncontacted AN-102/C-104 and AN-102. The equilibrium Cs concentration was based on the ¹³⁷Cs concentrations and the ratio of ¹³⁷Cs:total Cs determined for the unspiked and spiked solutions. The Na concentration was assumed to be constant for the batch contacts. Since the quantity of H⁺ added with the resin was small relative to the moles of Na⁺ and OH⁻ in the contact solution (phase ratio of 100 mL of solution:gram of exchanger), this was a reasonable assumption. In these experiments the waste solutions were estimated to have 1 meq of OH⁻ and 24 meq of Na⁺, while the resin contained 0.1 meq of H⁺ for the 0.05 g resin used in the batch distribution tests.^(a)

The calculated ¹³⁷Cs distribution coefficients (K_ds) are plotted in Figure 3.1 for SL-644 in contact with AN-102/C-104 and IE-911 in contact with AN-102. At the nominal feed condition of 8 E+4 Na/Cs mole ratio, the SL-644 and IE-911 have nearly equivalent K_d values of 950 and 1100 mL/g, respectively.

Figure 3.1. 137 Cs Distribution Coefficients (K_d) for SL-644 (AN-102/C-104) and IE-911 (AN-102) (T = 27 °C)

⁽a) The resin contained 2.2 meq H^+ per gram of H-form resin (Rapko et al. 2002).

The calculated dry-bed densities determined using the resin masses and volumes in the ion exchange column system (discussed in Section 3.2.5) are given in Table 3.1. The Na-form resin mass was corrected as defined in Equation 5. Good agreements of the dry-bed densities were obtained between the lead and lag columns. The AN-102/C-104 form dry-bed density was approximately equivalent to the 0.5 M HNO₃ form dry-bed density. In this case, the decrease in mass associated with the change from the Na-form to the H-form was approximately equivalent to the decrease in volume upon contracting from the Na-form to the H-form.

	010319SMC-IV-73,	010319SMC-IV-73,
Property	Lead Column	Lag Column
Column resin mass, g ⁽¹⁾	4.20	4.17
Corrected column Na-form resin mass, g	2.48	2.46
Bed volume, 0.25 M NaOH, mL	10.4	10.5
Bed volume, AN-102/C-104, mL	9.9	9.9
Bed volume, 0.5M HNO ₃	7.7	not performed
Dry bed density, ρ_b , in given matrix		
Na-form resin		
0.25 M NaOH, g/mL	0.238	0.234
AN-102/C-104, g/mL	0.250	0.248
H-form resin		
0.5 M HNO ₃ , g/mL	0.258	not performed
(1) The 212- to 425-um particle-size resin mass	measured in the as-received	form.

 Table 3.1.
 SL-644 Dry Bed Density

The Cs λ value for SL-644 was calculated according to Equation 4 to be 250 BVs in the AN-102/C-104 feed condition, and 240 BVs in the 0.25 M NaOH regeneration condition. This value is the approximate point at which the Cs breakthrough curve is predicted to pass through C/C_o = 50% if sufficient feed were available for processing. There was insufficient AN-102/C-104 available to determine the IE-911 bed density in the feed. The dry-bed density was determined in AW-101 simulant to be 1.04 g/mL. Assuming that the bed density of IE-911 is constant in these matrices, the Cs λ value for IE-911 was estimated to be 1100 BVs. Figure 3.2 shows the Cs λ values as a function of Na/Cs mole ratio for the IE-911 (assumed bed density of 1.04 g/mL, dried to 105 °C) and the SL-644 (calculated bed density in 0.25 M NaOH of 0.25 g/mL, dried at ambient temperature under vacuum).

Strontium-90 was also measured in the IE-911 batch-contacted AN-102 aqueous fractions to evaluate Sr K_ds. The ⁹⁰Sr K_ds were fairly constant, ranging from 35 to 53 mL/g for the range of Na/Cs mole ratios tested. These results were much lower than previously reported results for IE-911 (Brown et al. 1996), where Sr K_ds >1E+6 mL/g were obtained using an AW-101 simulant (no added complexants). The difference was probably due to the presence of complexants in the AN-102/C-104 waste (Urie et al. 2002b) that may bind with the Sr and inhibit the ion exchange process.

Figure 3.2. Estimated ¹³⁷Cs λ Values for SL-644 (AN-102/C-104) and IE-911 (AN-102) (T = 26°C)

3.2 Column Test with SL-644

The column system and resin beds used for AN-102/C-104 processing were also used for processing the AW-101 simulant and the AP-101DF actual waste. This test represented the third complete cycle using these resin beds. No resin fouling was observed through all ion exchange processing.

3.2.1 Loading, Feed Displacement, and Rinse

The loading phase was initiated with AN-102/C-104. Approximately 1 AV (41 mL) of effluent was initially collected in a separate collection bottle. Most of this effluent was 0.25 M NaOH from the regeneration step mixed with some AN-102/C-104 in the ion exchange apparatus. This solution was maintained separately and not mixed with the final Cs-decontaminated AN-102/C-104 effluent composite; thus, most of the apparatus 0.25 M NaOH solution was prevented from mixing with the AN-102/C104 effluent. The resin beds shrank an average 5.6% to 9.9 mL as they converted from the regeneration solution to the AN-102/C-104 feed.

The effluent Cs concentrations are shown in Figure 3.3 as % C/C_o vs. the BVs of feed processed through each column. The abscissa reflects BVs as a function of the resin in the expanded regeneration condition of 10.4 mL. The C_o value for ¹³⁷Cs was determined to be 161 μ Ci/mL. The % C/C_o is plotted on a probability scale as this scale tends to provide a straight-line breakthrough curve. The C/C_o values, determined using an in-house GEA spectrometer, were generally in good agreement with selected samples independently analyzed by the CMC analytical laboratory. Raw analytical results and calculations are located Appendix C.

Conditions: SL-644 batch number 010319SMC-IV073 212- to 425- μ m dry particle size Process temperature = 27 °C Bed volume in 0.25 M NaOH feed condition = 10.4 mL Flowrate = 2.7 BV/h ¹³⁷Cs C_o = 161 μ Ci/mL Na concentration = 4.8 M.

Figure 3.3. ¹³⁷Cs Breakthrough Curves for AN-102/C-104 Sample

There was insufficient feed available to result in any Cs breakthrough from the lead column.^(b) Thus the Cs λ value (the point at which the C/C_o value is 50%) could not be estimated or compared with the Cs λ value predicted from batch-contact studies. This load profile is different than that reported by Hassan et al. (2000), where breakthrough was found within 5 BV, and at 60-BV loading they observed 4.5% breakthrough on the lead column. Differences in the load profiles may be attributable in part to the differences in feed composition, the differences in resin particle-size distributions, differences in specific characteristics of the two SL-644 production batches, and differences in the storage and process history of the resins.

⁽b) Only 753-mL or 72.4 BVs AN-102/C-104 were available; an estimated 2500 mL or 240 BVs were necessary to reach 50% C/C_o.

The ¹³⁷Cs concentrations in the lag column samples were clearly higher (by a factor of 50) in activity than those of the lead column. This was consistent with ¹³⁷Cs "bleed-off" from the previous AP-101DF ion exchange processing where the Cs elution ended at a ¹³⁷Cs concentration of 0.5 μ Ci/mL. The effluent ¹³⁷Cs concentration averaged 1.4 E-2 μ Ci/mL over the entire AN-102/C-104 processing period. Thus a total of 10.3 μ Ci ¹³⁷Cs were removed from the lag column as bleed-off and collected in the 736-mL AN-102/C-104 effluent. This is equivalent to 0.007 % of the total ¹³⁷Cs loaded during the AP-101DF processing, where AP-101DF loading continued through 112 BV and a lead column C/C_o of 0.27 %. The plant-design loading was expected to continue to about 190 BV to a C/C_o of 50 %. The possibility exists that Cs bleed-off during AN-102/C-104 processing could be higher if more AP-101DF feed could have been processed. With plant-design operation continuing through only 74-BV processing, the possibility exists that the subsequent Cs bleed-off during subsequent waste processing could be lower than observed.

The bleed-off was constant over the course of the loading phase, dropping sharply with the introduction of the feed displacement and DI water rinse. The drop in Cs bleed-off is related to the drop in Na concentration in the feed, which acts as a competing ion to the Cs on the ion exchanger.

The contract ¹³⁷Cs removal limit is also shown in Figure 3.3. The C/C_o value of 0.104% corresponds to the contract limit of 0.3 Ci/m³ for ¹³⁷Cs in the LAW glass. The C/C_o value corresponding to this limit was determined using the Na concentration of 4.8 M in the AN-102/C-104, the ¹³⁷Cs feed concentration of 161 μ Ci/mL, a 10 wt% total Na₂O loading in the glass, and a glass-product density of 2.66 g/mL.^(c) Despite the ¹³⁷Cs bleed-off from the lag column, the effluent ¹³⁷Cs concentration remained below the contract limit.

The decontamination factors (DFs) were calculated on selected effluent samples and the composite effluent, and are summarized in Table 3.2. These may be compared to the contract limit of $C/C_0 = 0.104\%$ (DF = 960). Sufficient Cs was removed so that the contract limit was met.

Sample	volume, BV (mL)	¹³⁷ Cs Concentration µCi/mL ⁽¹⁾	C/C ₀ , %	DF	
Second lead column sample	13.2 (137)	2.95 E-4	1.83 E-4	5.5 E+5	
Final lead column sample	67.1 (697)	2.10 E-4	1.30 E-4	7.7 E+5	
Second lag column sample	13.0 (135)	1.40 E-2	8.70 E-3	1.2 E+4	
Final lag column sample	65.6 (682)	1.21 E-2	7.52 E-3	1.3 E+4	
Composite effluent	72.4 (753)	1.42 E-2	8.82 E-3	1.1 E+4	
(1) The ¹³⁷ Cs uncertainty ranges from 3% to 8% relative error, $1-\sigma$.					

Table 3.2. Decontamination Factors for ¹³⁷Cs from AN-102/C-104

The Cs-decontaminated effluent was characterized, and the results are summarized in Table 3.3. Major analyte concentrations were equivalent to the feed concentrations within the experimental error of the method (typically $\pm 15\%$). Uranyl and Cu have been notably removed from the tank waste along with the Cs. Oxalate, Ni, PO₄, and ⁶⁰Co concentrations were also lower in the LAW product than the feed.

⁽c) The maximum Envelope C waste Na₂O loading is 14 wt%, corresponding to a C/C_o of 0.074%.

Analyte	AN-102/C-104, Effluent M	% Change from Feed			
Solution density, g/mL	1.237 T=24°C	-0.6			
Cations, M					
Na ⁺	4.78 E+0	-1.0			
\mathbf{K}^+	2.76 E-2	13.6			
Cs ⁺	5.28 E-9	>-99			
Ca ²⁺	3.72 E-3	0.5			
Cd^{2+}	2.15 E-4	-13.0			
Cu ²⁺	< 1 E-5	[>-95]			
Ni ²⁺	2.47 E-3	-22.8			
Pb ²⁺	3.33 E-4	6.1			
Sr ²⁺	9.92 E-4	0.5			
	Anions, M				
$AlO_2^{-(1)}$	2.91 E-1	-4.3			
Cl	5.08 E-2	-5.8			
F ⁻⁽²⁾	< 3.3 E-1	NA			
CO_3^{2-} (hot persulfate method)	7.6 E-1	9.2			
CO_3^{2-} (furnace method)	Indeterminate ⁽³⁾	NA ⁽³⁾			
$CrO_4^{2-(1)}$	1.89 E-3	-9.1			
NO ₂ ⁻	9.00 E-1	-2.2			
NO ₃ ⁻	1.73 E+1	4.0			
OH	1.80 E-1	-10.0			
$PO_4^{3-(1)}$ (ICP-AES)	1.81 E-2	-25.2			
$PO_4^{3-(1)}$ (IC)	2.32 E-2	-36.1			
SO ₄ ²⁻	6.97 E-2	1.9			
Uranyl	3.45 E-6	-97.0			
Oxalate	1.59 E-2	-53.2			
TOC, g/L (hot persulfate method)	12.3	3.4			
TOC, g/L (furnace method)	21.2	12.2			
Radionuclides, µCi/mL					
Total alpha	1.10 E-2	-12.7			
⁶⁰ Co	3.41 E-2	-16.0			
⁹⁰ Sr	1.52 E+0	-10.6			
⁹⁹ Tc	[7.95 E-2] ⁽⁴⁾	3.1			
¹³⁷ Cs	1.40 E-2	>-99			
¹⁵⁴ Eu	2.20 E-2	NA			

Table 3.3. AN-102/C-104 Cs-Decontaminated Effluent

(1) Al, Cr, and P determined by ICP-AES. The anionic form is assumed on the basis of waste chemistry.

(2) F concentration is an upper bound; coeluting anions positively interfered with peak integration.

(3) The furnace method TIC could not be determined. The total carbon (TC) was equivalent to the TOC and TIC = TC-TOC.

(4) Uncertainty, including standards bias, ranged from -10% to +30%.

NA = not analyzed

Bracketed results indicate the analyte concentration uncertainty exceeds 15%. Less-than results indicate that the analyte concentration was below the instrument detection limit (IDL); the dilution-corrected IDL is given.

3.2.2 Elution and Eluant Rinse

The lead column elution and eluant rinse steps ¹³⁷Cs C/C_o^(d) values are shown in Figure 3.4. The ordinate is a logarithmic scale to clearly show the large range of C/C_o values obtained. The abscissa is given in BVs relative to the regeneration condition. Most of the ¹³⁷Cs was contained in elution BVs 3 to 5. The peak value of C/C_o was found to be 53. The elution cutoff of C/C_o = 0.01 was reached at 11 BVs but elution was continued beyond this because of the lag between sample collection and the determination of the Cs concentration. The relative C/C_o increased at 18 BVs. The ion exchange system was idled at this point overnight for 13.5 h in 0.5 M HNO₃. During this time, additional Cs exchanged out of the SL-644, indicating that previous eluate samples from the elution curve tail were not in equilibrium with the Cs still loaded on the resin. Thus, the increase in C/C_o is attributed to a slight non-equilibrium condition during the elution process, not a change in elution kinetics. The C/C_o values for the eluant rinse with DI water drop rapidly in ¹³⁷Cs concentration, indicating that DI water does not continue Cs elution.

Conditions: SL-644 batch # 010319SMC-IV-073 212- to 425- μ m dry particle size Bed volume in the 0.25M NaOH regeneration condition = 10.4 mL Flowrate = 0.95 BV/h Process temperature = 28 °C ¹³⁷Cs C_o = 161 μ Ci/mL Eluant = 0.5 M HNO₃.

Figure 3.4. ¹³⁷Cs Elution and Eluant Rinse of the Lead Column

⁽d) The C_o refers to the ¹³⁷Cs concentration in the AN-102/C-104 sample fed to the lead column. For elution, the C/C_o value is an indication of the extent to which ¹³⁷Cs is concentrated relative to the feed. It is an indirect measure of the extent to which the resin is actually eluted.

The eluate samples from the lead column were composited, and a sub-sample was taken for analysis. The analytical results are shown in Tables 3.4 and 3.5. Sodium was the dominant component detected using ICP-AES with some Cd, Cr, Cu, Fe, Ni, Pb, and U eluting as well. A summary of these analyte

Analyte	Method	MRQ ⁽¹⁾ µg/mL	Cs eluate ⁽²⁾ µg/mL	Analyte	Method	MRQ ⁽¹⁾ µg/mL	Cs eluate ⁽²⁾ µg/mL
Al	ICP-AES	75	[5.8]	U	KPA	600	167
Ва	ICP-AES	2.3	[0.18]	Zn	ICP-AES	17	[2.8]
Ca	ICP-AES	150	< 3	Cl	IC	3	22
Cd	ICP-AES	8	2.35	F	IC	150	< 13
Со	ICP-AES	30	< 0.5	NO ₃ ⁻	IC	3000	27,800
Cr	ICP-AES	15	23	PO_4^{-3}	IC	2500	< 25
Cs ⁽⁴⁾	GEA	1.5	33.2	SO_4^{-2}	IC	2300	< 25
Cu	ICP-AES	17	[31]	TOC	Hot Pers.	1500	130
Fe	ICP-AES	150	[6.4]	TOC	Furnace	1500	< 100
K	ICP-AES	75	< 20	Glycolate	Organic IC	1500	<150
La	ICP-AES	35	< 0.5	Acetate	Organic IC	1500	<120
Mg	ICP-AES	300	< 1	Formate	Organic IC	1500	<200
Mn	ICP-AES	150	< 0.5	Oxalate	Organic IC	1500	<260
Мо	ICP-AES	150	< 0.5	Citrate	Organic IC	1500	<510
Na	ICP-AES	75	790	EDTA	GC/FID	1500	<5
Ni	ICP-AES	30	68	HEDTA	GC/FID	1500	<9
Pb	ICP-AES	300	25	ED3A	GC/FID	1500	<5
Si	ICP-AES	170	[20]	NTA	GC/FID	1500	<6
Sn	ICP-AES	1500	< 15	NIDA/IDA ⁽⁵⁾	GC/FID	1500	<11
Sr	ICP-AES	NMRQ ⁽³⁾	[1.1]	Citric acid	GC/FID	1500	<6
Ti	ICP-AES	17	< 0.3	Succinic acid	GC/FID	1500	19
U	ICP-AES	600	[175]				

Table 3.4. Inorganic and Organic Analytes in the Lead Column Eluate Composite

EDTA = ethylenediaminetetraacetic acid; HEDTA = N-(2-hydroxyethyl ethylenediaminetriacetic acid ED3A = ethylenediaminetriacetic acid; NTA = nitrilotriacetic acid; IDA = iminodiactic acid

NIDA = nitrosoiminodiacetic acid

(1) MRQ is minimum reportable quantity requested by Bechtel.

(2) The overall error is estimated to be within ± 15%. Values in brackets are within 10-times the detection limit, and errors are likely to exceed ± 15%. Less-than values indicate that the analyte was not detected by the instrument, and the reported value represents the IDL multiplied by the sample dilution factor.

(3) NMRQ is no minimum reportable quantity requested.

(4) The total Cs concentration was calculated based on the ¹³⁷Cs concentration and the isotopic distribution ratio.

(5) The IDA was completely converted to NIDA in the presence of nitrite in tank waste.

Analyte	Method	MRQ ⁽¹⁾ µCi/mL	Cs eluate µCi/mL ⁽³⁾	Error %	Analyte	Method	MRQ ⁽¹⁾ µCi/mL	Cs eluate µCi/mL	Error %
⁶⁰ Co	GEA	NMRQ ⁽²⁾	<7 E-3	_	¹⁵² Eu	GEA	NMRQ	< 9 E-3	_
⁹⁰ Sr	Radchem	1.50 E-1	7.8 E-2	50	¹⁵⁴ Eu	GEA	2.00 E-3	< 8 E-3	_
¹²⁶ Sn/Sb	GEA	NMRQ	<7 E-2	_	¹⁵⁵ Eu	GEA	9.00 E-2	< 3 E-1	_
¹³⁴ Cs	GEA	NMRQ	<7 E-3	_	²⁴¹ Am	Radchem	7.20E-04	1.18 E-3	3
¹³⁷ Cs	GEA	5.00 E-2	6.65 E+2	3	Total alpha	Radchem	2.30E-01	< 2 E-2	_
(1) MRQ is minimum reportable quantity requested by Bechtel.									
(2) NMRQ is no minimum reportable quantity requested.									
(3) Less-than values indicate that the analyte was not detected by the instrument, and the reported value represents									

the IDL multiplied by the sample dilution factor.

Table 3.5. Radionuclides in the Lead Column Eluate Composite

recoveries is presented in Table 3.6. The U recovered in the eluate (~33 mg) represented 160% of the U present in the AN-102/C-104 feed (21 mg). The AP-101DF processing apparently loaded some U on the lag column. The total U loaded with the AP-101DF was 48 mg, and the amount recovered in the eluate was 42 mg. The difference of 6 mg U was applied to the lag column U loading. Switching this column into the lead position for AN102/C-104 processing resulted in a partially U-loaded lead column. Thus, the total U recovered in the eluate (33 mg) represented 123% of the total U loaded on the lead column (6 mg from AP-101DF processing plus 21 mg from AN-102/C-104 processing). The apparent Cu loading was surprising with 80% recovered in the eluate. Despite the larger uncertainty in the Cu result (exceeded \pm 15%), the total calculated mass was supported by the apparent mass loss of Cu in the AN-102/C-104 effluent (Table 3.3). As expected, ¹³⁷Cs was the dominant radionuclide detected. The only significant anion detected was nitrate, which was not surprising since the eluant was 0.5 M HNO₃.

Analyte	AN102/C-104 feed, total mg	Estimated remaining from AP-101DF processing, mg	Amount recovered in eluate, mg	Amount recovered in eluate, mmoles	Recovery in Eluate, %
U	20.7	6	32.9	0.138	123
Al	6.18 E+3		[1.13]	0.042	[0.02]
Cd	19.6		0.46	0.0041	2.3
Cr	81.3		4.5	0.087	5.6
Cu	[7.5]	—	6.0	0.094	[80]
Fe	[7.1]	—	1.3	0.023	[18]
Na	8.36 E+4	—	156	6.78	0.19
Ni	142	—	13.3	0.227	9.4
Pb	50.5	—	4.9	0.024	9.8
Values in brackets are based on results reported within 10 times the detection limit, and errors are likely to exceed +/-15%.					

Table 3.6. Select Analyte Recoveries in Eluate

The minimum reportable quantity (MRQ) specified by the client is provided in Table 3.4 for information along with the actual analytical result. In cases where a result was below the instrument detection limit (IDL), the dilution-corrected IDL is provided as a "less-than" value. Most of the MRQ levels were met with some exceptions. The large amount of ¹³⁷Cs prevented the detection limits for ¹⁵⁴Eu, and ¹⁵⁵Eu from meeting the MRQ levels. Relatively high ¹³⁷Cs activity increases the gamma background level in the detectors because of Compton scattering, thereby making it difficult to detect lower

concentrations of other gamma emitters. The large nitrate concentration required large sample dilutions and prevented the estimated quantitation limit (EQL) for Cl (13 μ g/mL) from meeting the MRQ level. However, Cl was found above the EQL at 22 μ g/mL. The total inorganic carbon (TIC) analysis was not completed because carbonate is known to evolve as CO₂ in acidic solutions.

3.2.3 Regeneration

The composition of the regeneration solution is shown in Table 3.7. Sodium was the only cation found above the blank concentration. The charge balance between Na and OH was not equal. The counter-ion for the extra Na is predicted to be residual NO₃ from the elution step. The regeneration solution ¹³⁷Cs C/C₀ was 4.68E-4.

Analyte	Concentration, µg/mL	Concentration, M	
Na ⁺	301	1.32 E-2	
\mathbf{K}^+	< 40	<1 E-3	
OH	60	3.6 E-3	
Total Cs	3.77 E-3	2.8 E-8	
¹³⁷ Cs	7.54E-2 µCi/mL		
Density, g/mL	0.998 (T=24°C)		

Table 3.7. Composition of Regeneration Solution

3.2.4 Activity Balance for ¹³⁷Cs

An activity balance for ¹³⁷Cs was completed to compare the ¹³⁷Cs recovered in various process streams to the ¹³⁷Cs present in the feed sample (Table 3.8). As expected, virtually all ¹³⁷Cs was found in the eluate stream, recovering >99% of the ¹³⁷Cs present in the initial AN-102/C-104 feed. The eluate resulted in 108% Cs recovery; this high recovery is attributed to analytical error and is most likely closer to 100%. The other processing effluent Cs recoveries were several orders of magnitude below the eluate Cs recovery.

		¹³⁷ Cs Relative to
Solution	¹³⁷ Cs, μCi	Feed Sample, %
Feed Sample (AN-102/C-104)	1.21 E+5	1.0 E+2
Initial AP-101DF loading	3.5 E+1	2.9 E-2
Effluent	1.0 E+1	8.5 E-3
Load samples	3.8 E-1	3.1 E-4
Feed displacement	8.4 E-1	6.6 E-4
DI Water Rinse	3.4 E-1	2.8 E-4
Column #1 Eluate	1.31 E+5	1.08 E+2
Column #1 DI water rinse	6.0 E+0	5.0 E-3
Column #1 regeneration	3.8 E+0	3.2 E-3
Lag column Cs loading	2.2 E-1	1.8 E-4
Total ¹³⁷ Cs Recovery	1.31 E+5	1.08 E+2

Table 3.8. Activity Balance for ¹³⁷Cs
3.2.5 SL-644 Resin Volume Changes

The SL-644 resin is known to change in volume as a function of the solution pH and ionic strength (Hassan, King, and McCabe 1999). The resin BV change history is shown in Table 3.9. The columns are labeled 1 and 2. Column 1 was the lead column for the AW-101 simulant test and the AP-101DF test; Column 2 was the lag column for these tests. Results from both tests have been previously reported (Fiskum, Blanchard, and Arm 2002; Fiskum et al. 2002). These columns were switched for the AN102/C104 ion exchange test. Thus Column 1 was placed in the lag position, and Column 2 was placed in the lead position.

The volume contraction after each subsequent 0.5 M HNO₃ elution step became more pronounced with cycling. The first volume contraction stabilized at 9.2 mL; the final measured volume contraction stabilized at 7.7 mL. The variation in BV as a function of the process steps for both columns is shown in Figure 3.5a and b. In Figure 3.5a, the BVs are normalized to the volume in the 0.25 M NaOH regeneration condition just before AN-102/C-104 loading. Each process step is denoted with a number corresponding to the step number in Table 3.9. In Figure 3.5b, the observed volume changes show clearly the greater contraction and slightly reduced expansion observed over time with repeated cycling. Fluidizing the bed in the H-form (process Step 10) resulted in tighter resin packing, yet the subsequent expansion in the Na-form appeared to have been largely unaffected in that the regeneration volume was equivalent to that obtained before fluidization. There appeared to have been a stepwise decline in resin volume in both the H-form and the Na-form from AW-101 simulant processing and AP-101DF processing. The AN-102/C-104 process-step resin volumes appeared similar to those found for AP-101DF.

			010319SM	C-IV-73
		Process	212- to 425-µm	particle size
Feed	Symbol	Step	Column 1	Column 2
Initial column positio	ns		Lead column, mL	Lag column, mL
Initial packing	Р	1	10.9	10.9
0.5 M HNO ₃	Е	2	9.2	8.9
DI water	W	3	9.2	8.9
0.25 M NaOH	R	4	11.2	10.8
AW-101 simulant	F	5	10.2	10.0
0.1 M NaOH	FD	6	10.9	10.7
DI water	W	7	10.9	10.9
0.5 M HNO ₃	Е	8	8.9	8.9
DI water	W	9	8.9	8.7
Re-fluidize bed	RP	10	7.5	7.5
0.25 M NaOH	R	11	11.0	10.9
DI water	W	12	10.5	11.0
0.5 M HNO ₃	Е	13	7.9	7.7
DI water	W	14	7.9	7.7
0.25 M NaOH	R	15	10.7	10.5
AP-101DF	F	16	9.7	9.7
0.1 M NaOH	FD	17	10.5	10.4
DI water	W	18	10.4	10.5
0.5 M HNO ₃	Е	19	7.7	
DI water	W	20	7.7	
0.25 M NaOH	R	21	10.5	_
DI water	W	22	10.2	
Switch column position	ons		Lag column, mL	Lead column, mL
0.25 M NaOH	R	23	10.5	10.4
AN-102/C-104	F	24	9.9	9.9
0.1 M NaOH	FD	25	10.7	10.4
DI water	W	26	10.7	10.4
0.5 M HNO ₃	Е	27		7.7
DI water	W	28		7.5
0.25 M NaOH	R	29		10.2
DI water	W	30		10.4

Table 3.9. SL-644 Bed Volumes

b)

a)

- a) Relative BV for AN-102/C-104 testing cycle; baseline BV = 10.4 mL in 0.25 M NaOH regeneration condition.
- b) Actual BVs for all tested cycles, including simulant AW-101, AP-101DF, and AN-102/C-104 cycles.

Figure 3.5. Comparison of Bed Volumes of the Lead and Lag Columns (SL-644 Batch 010319SMC-IV-73, 212- to 425-µm)

4.0 Conclusions

The objectives of the testing were met.

Batch-distribution coefficients (K_ds) were developed as a function of Na/Cs mole ratios for both SL-644 and IE-911 in AN-102/C-104.

- The SL-644 feed condition equilibrium data resulted in a K_d of 950 mL/g, corresponding to a predicted Cs λ of 240 BVs (0.25 M NaOH condition) at a Na/Cs mole ratio of 8 E+4, 27°C.
- The IE-911 CST feed condition equilibrium data resulted in a K_d value of 1100 mL/g, corresponding to a predicted Cs λ of 1100 BVs at a Na/Cs mole ratio of 8 E+4, 27°C.

Cs decontamination from AN-102/C-104 (Envelope C) was successfully demonstrated.

• An overall DF of 1.13 E+4 was obtained, providing a Cs-decontaminated effluent with 1.42 E-2 μ Ci/mL ¹³⁷Cs. This corresponded to 8.1% of the contract limit of 1.68 E-1 μ Ci/mL in the treated effluent (based on 10% Na₂O loading).^(a)

Cs load and elution breakthrough profiles were developed.

- Only 72-BVs (753-mL) of feed were available for processing. The Cs λ value from column testing could not be determined because insufficient feed was available for processing relative to the 10-mL resin bed. The load profile through 72 BVs resulted in no Cs breakthrough.
- The partially Cs-loaded lead column was efficiently eluted with 0.5 M HNO₃. Over 99% of the ¹³⁷Cs was eluted from the column in 2.5 BVs of eluate, although a total of 11 BVs of eluant were required to reach the elution end point of a C/Co = 0.01. The peak C/Co value for ¹³⁷Cs was 53. Virtually 100% of the ¹³⁷Cs present in the feed sample was recovered in the eluate fraction, which had a ¹³⁷Cs concentration of 6.675 E+2 μ Ci/mL in 197 mL.

The Cs eluate solution was composited and characterized.^(b)

• Along with Cs, U and Cu were recovered in the eluate.

The effectiveness of all SL-644 ion exchange process steps including loading, feed displacement, DI water washing, elution, elution rinse, and resin regeneration were demonstrated.

• Lag column bleed-off, from previous ion exchange waste processing, affected the effluent product with ¹³⁷Cs contamination. Lag-column samples were a factor of 50 times higher in ¹³⁷Cs concentration than lead column samples, but were still <10% of the contract ¹³⁷Cs limit. The elution protocol may have to be revised to avoid subsequent ¹³⁷Cs contamination in processed tank waste effluent.

⁽a) The effluent ¹³⁷Cs concentration was 12 % of the contract limit of 1.2 E-1 μ Ci/mL based on the maximum loading of 14 wt% waste Na₂O.

⁽b) Full characterization was not necessary because eluate vitrification was cancelled.

- The SL-644 was adequately regenerated with 4.9 BVs or 2.2 AVs (51 mL) of 0.25 M NaOH. The average ¹³⁷Cs concentration in the regeneration solution was 7.5 E-2 μ Ci/mL, equivalent to C/C_o of 4.7 E-4.
- An activity balance for ¹³⁷Cs indicated that 100% of the ¹³⁷Cs present in the feed sample was accounted for in the samples and process streams (mostly in the eluate), which is indicative of good experimental integrity.

5.0 References

Barnes, S., R. Roosa, and R. Peterson. 2002. '*Research and Technology Plan.*', 24590-WTP-PL-RT-01-002, Rev. 1, RPP-WTP project.

Brown GN, LA Bray, CD Carlson, KJ Carson, JR DesChane, RJ Elovich, FV Hoopes, DE Kurath, LL Nenninger, and PK Tanaka. 1996. *Comparison of Organic and Inorganic Ion Exchangers for Removal of Cesium and Strontium from Simulated and Actual Hanford 241-AW-101 DSSF Tank Waste*, PNL-10920, Pacific Northwest National Laboratory, Richland, WA.

Fiskum SK, DL Blanchard, and ST Arm. 2002. Aging Study and Small Column Ion Exchange Testing of SuperLig® 644 for Removal of ¹³⁷Cs from Simulated AW-101 Hanford Tank Waste, WTP-RPT-015, Battelle Pacific Northwest Division, Richland, WA.

Fiskum SK, ST Arm, DL Blanchard, and BM Rapko. 2002. *Small Column Ion Exchange Testing of Superlig® 644 for Removal of ¹³⁷Cs from Hanford Waste Tank 241-AP-101 Diluted Feed (Envelope A)*, WTP-RPT-016, Battelle Pacific Northwest Division, Richland, WA.

Hallen RT, JGH Geeting, DR Jackson, DR Wier. 2002. *Combined Entrained Solids and Sr/TRU Removal from AN-102/C-104 Waste* Blend, WTP-RPT-044, Battelle, Pacific Northwest Division, Richland, WA.

Hassan NM, WD King, DJ McCabe, and ML Crowder. 2001. *Small-Scale Ion Exchange Removal of Cesium and Technetium from Envelope B Hanford Tank 241-AZ-102*, January, 2001, WSRC-TR-2000-00419, SRT-RPP-2000-00036, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Hassan NM, DJ McCabe, and WD King. 2000. *Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103, Revision 1*, April, 2000, BNF-003-98-0146, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Hassan NM, DJ McCabe, WD King, and ML Crowder. 2000. *Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102*, March 2000, BNF-003-98-0219, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Hassan NM, WD King, and DJ McCabe. 1999. *Superlig*® *Ion Exchange Resin Swelling and Buoyancy Study* (*U*), Savannah River Technology Center, Westinghouse Savannah River Co., Aiken, SC.

King WD, NM Hassan, and DJ McCabe. 2001. *Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tanks 241-AN-102*, August, 2001, WSRC-TR-2000-00420, SRT-RPP-2000-00014, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Korkisch J. 1989. *Handbook of Ion Exchange Resins: Their Application of Inorganic Analytical Chemistry*, Vol. 1, CRC Press, Boca Raton, FL.

Kurath DE, DL Blanchard, Jr., and JR. Bontha. 2000a. *Small Column Ion Exchange Testing of Superlig* 644 for *Removal of 137Cs from Hanford Tank Waste Envelope C (Tank 241-AN-107)*, BNFL-RPT-024 Rev. 0, PNWD-3039, Battelle Pacific Northwest Division, Richland, WA.

Kurath DE, DL Blanchard, Jr., and JR Bontha. 2000b. *Small Column Ion Exchange Testing of Superlig* 644 for Removal of ¹³⁷Cs from Hanford Tank Waste Envelope A (Tank 241-AW-101), BNFL-RPT-014 Rev. 0, PNWD-3001, Battelle Pacific Northwest Division, Richland, WA.

Lumetta GJ, JP Bramson, IE Burgeson, OT Farmer III, LR Greenwood, RT Hallen, SD Halstead, ED Jenson, RL Sell, MJ Steele, MW Urie. 2002. *Evaporation of a Mixture of Tank AN-102 Low Activity Waste and C-104 Washing and Leaching Solution*, WTP-RPT-017, Battelle Pacific Northwest Division, Richland, WA.

Rapko, BM, DL Blanchard, Jr., KJ Carson, JR DesChane, RL Sell, RG Swoboda. 2002. *Batch Contact Testing of SuperLig*®-644. WTP-RPT-037, Battelle Pacific Northwest Division, Richland, WA.

Steimke JL, MA Norato, TJ Steeper, and DJ McCabe. 2001. *Summary of Initial Testing of SuperLig*® 644 at the TFL Ion Exchange Facility, February, 2001, SRR-RPP-2000-00054, WSRC-TR-2000-00505, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Urie MW, PR Bredt, JA Campbell, OT Farmer III, LR Greenwood, LK Jagoda, GM Mong, AP Poloski, LL Reed, RD Scheele, CZ Soderquist, RG Swoboda, MP Thomas, JJ Wagner. 2002a. *Chemical and Physical Properties Testing of 241-AN-102 Tank Waste Blended with 241-C-104 Wash/Leachate Solutions*, PNWD-3172, Battelle Pacific Northwest Division, Richland, WA.

Urie MW, PR Bredt, JA Campbell, OT Farmer III, SK Fiskum, LR Greenwood, EW Hoppe, GM Mong, RG Swoboda, MP Thomas, JJ Wagner. 2002b. *Chemical Anaylsis and Physical Property Testing of 241-AN-102 Tank Waste – Supernatant and Centrifuged Solid*, PNWD-3173, Battelle Pacific Northwest Division, Richland, WA.

Appendix A

General Calculations

Appendix A: General Calculations

¹³⁷Cs Contractual Limit and Design Basis Limit in AN-102/C-104 Env. C Vitrification Feed

Assumptions-minimum waste loading

- 1) Concentration of Na₂O in Env. C glass = 10% (= $10 \text{ g Na}_2\text{O}/100 \text{ g glass}$)
- 2) For maximum ¹³⁷Cs concentration in glass, assume that all Na comes from the feed. If some Na is added to the vitrification feed, multiply the maximum ¹³⁷Cs value determined below by ratio of total Na:feed Na.
- 3) Glass density = 2.66 MT/m^3 (= 2.66 g/mL)
- 4) Maximum ¹³⁷Cs in glass = 0.3 Ci/m^3 (= 0.3 Ci/1 E+6 mL = 3 E-7 Ci/mL)
- 5) AN-102/C-104 actual waste Na concentration = 4.8 M
- 6) AN-102/C-104 actual waste ¹³⁷Cs concentration = 161 μ Ci/mL/4.8 M Na

Na Loading in Glass

10 g Na₂O/100g glass * 1 mole Na₂O/62 g Na₂O) * (2 mole Na/ mole Na₂O)* (23 g Na/mole Na) * (2.66 g glass/mL glass) = 0.197 g Na/mL glass

Maximum ¹³⁷Cs:Na in glass

 $(3.0E-7 \text{ Ci}^{137}\text{Cs/mL glass})/(0.197 \text{ g Na/mL glass}) = 1.52 \text{ E-6 Ci}^{137}\text{Cs/g Na}$

 $(1.52 \text{ E-6 Ci}^{137}\text{Cs/g Na}) * (23 \text{ g Na/mole}) = 3.50\text{E-5 Ci}^{137}\text{Cs/mole Na}$

Maximum ¹³⁷Cs:Na in feed

 $(3.50\text{E-5 Ci}^{137}\text{Cs/mole Na}) * (4.8 \text{ mole Na/L feed}) = 1.68 \text{ E-4 Ci}^{137}\text{Cs/L} = 1.68 \text{ E+2 } \mu\text{Ci}^{137}\text{Cs/L} = 1.68 \text{ E-1 } \mu\text{Ci}^{137}\text{Cs/L}$

<u>AN-102/C-104 actual waste Cs fraction remaining (C/Co) Contractual and Design Limit</u> (1.68 E-1 μ Ci ¹³⁷Cs/mL)/(161 μ Ci ¹³⁷Cs/mL)= 1.04 E-3 C/C₀; DF = 958 = 0.104 % C/C₀

¹³⁷Cs Contractual Limit and Design Basis Limit in AN-102/C-104 Env. C Vitrification Feed

Assumptions-maximum waste loading

- 1) Concentration of Na₂O in Env. C glass = 14% (= $14 \text{ g Na}_2\text{O}/100 \text{ g glass}$)
- 2) For maximum ¹³⁷Cs concentration in glass, assume that all Na comes from the feed. If some Na is added to the vitrification feed, multiply the maximum ¹³⁷Cs value determined below by ratio of total Na:feed Na.
- 3) Glass density = 2.66 MT/m^3 (= 2.66 g/mL)
- 4) Maximum ¹³⁷Cs in glass = 0.3 Ci/m^3 (= 0.3 Ci/1 E+6 mL = 3 E-7 Ci/mL)
- 5) AN-102/C-104 actual waste Na concentration = 4.8 M
- 6) AN-102/C-104 actual waste ¹³⁷Cs concentration = 161 μ Ci/mL/4.8 M Na

Na Loading in Glass

14 g Na₂O/100g glass * 1 mole Na₂O/62 g Na₂O) * (2 mole Na/ mole Na₂O)* (23 g Na/mole Na) * (2.66 g glass/mL glass) = 0.276 g Na/mL glass

Maximum ¹³⁷Cs:Na in glass

 $(3.0E-7 \text{ Ci}^{137}\text{Cs/mL glass})/(0.276 \text{ g Na/mL glass}) = 1.09 \text{ E-6 Ci}^{137}\text{Cs/g Na}$

 $(1.09 \text{ E-6 Ci}^{137} \text{Cs/g Na}) * (23 \text{ g Na/mole}) = 2.50 \text{E-5 Ci}^{137} \text{Cs/mole Na}$

Maximum ¹³⁷Cs:Na in feed

 $(2.50\text{E-5 Ci}^{137}\text{Cs/mole Na}) * (4.8 \text{ mole Na/L feed}) = 1.20 \text{ E-4 Ci}^{137}\text{Cs/L} = 1.20 \text{ E+2 } \mu\text{Ci}^{137}\text{Cs/L} = 1.20 \text{ E-1 } \mu\text{Ci}^{137}\text{Cs/LL}$

AN-102/C-104 actual waste Cs fraction remain	ning (C/Co) Contractual and Design Limit
(1.20 E-1 µCi ¹³⁷ Cs/ mL)/(161 µCi ¹³⁷ Cs/n	mL) = 7.45 E-4 C/C_{o} ; DF = 1343
	= 0.0745 % C/C _o

			AN102/C104	eed volume			AN102/C104	Effluent volume				
			753	mL			753	mL				
			AN102/C104	eed compositio	n		AN102/C104	Effluent compos	ition		-	
			ASR 6130	ASR-6130			ASR 6281	ASR 6281	ASR 6281			
	Multiplier=		100.0	100.0			24.9	24.9	124.7			
	RPL/LAB #=		PB-1338	01-1345			PB-776	02-0777	02-0777@5			
									<u>AN102/</u>			
Det Limit	Client ID=	FW	process blank	<u>ANC102/104-</u> C-F/A	Molarity	ua total	blank	AN102/C104 Cs removed	removed	Molarity	ua total	<u>% recoverea</u>
(ug/ml.)	(Analyte)	<u></u>	(ug/ml)	(ug/ml.)	includy	ugtota	(ug/ml)	(ug/ml.)	(ug/ml.)	<u>inolai ky</u>	ugtota	
0.150	Na	22.99	1010	111000	4.83E+0	83583000		over range	110000	4.78E+0	82830000	99.1
2.000	к	39.0983		[950]	[2.43E-2]	[715350]		1080		2.76E-2	813240	[114]
0.060	AI	26.98	84.10	8210	3.04E-1	6182130		7840		2.91E-1	5903520	95.5
0.010	Ва	137.33	[1.3]	[1.6]	high blank	NA				<1.8E-6		
0.250	Ca	40.08		[150]	[3.74E-3]	[112950]		149		3.72E-3	112197	[99]
0.015	Cd	112.41		26.0	2.31E-4	19578		24.2		2.15E-4	18223	93.1
0.050	Co	58.9332			<8.5E-5			[1.9]		[3.22E-5]	[1431]	
0.020	Cr	51.996		108	2.08E-3	81324		98		1.89E-3	73945	90.9
0.025	Cu	63.546		[10.0]	[1.57E-4]	[7530]				<9.8E-6		
0.025	Fe	55.847	[5.7]	[9.4]	[6.63E-5]	[2786]		[2.0]		[3.58E-5]	[1506]	[54]
0.100	Mg	24.305			<4.1E-4					<1.0E-4		
0.050	IVIN Ni:	54.938			<9.1E-0	141564				<2.3E-0	100105	
0.030	NI Ph	30.7 207.2		100	3.20E-3	141304		145		2.4/E-3	52022	[102]
0.100	FD 7n	65 38		[07]	[3.23E-4]	[50451]		[4 0]		5.55L-4	[3012]	[103]
Other Analyte		03.30		[0.0]	[1.526-4]	[0470]		[4:0]		[0.12E-5]	[3012]	[*/]
0.025	Aq											
0.250	As											
0.050	В	10.81	750	624	high blank	NA		86		7.99E-3	65059	NA
0.010	Be											
0.100	Bi			-								
0.200	Ce			-								
0.050	Dy											
0.100	Eu											
0.050	La											
0.030	Li			-								-
0.050	Мо	95.94		[22]	[2.29E-4]	[16566]		23		2.41E-4	17394	[105]
0.100	Nd	144.24						[3.6]		[2.50E-5]	[2711]	
0.100	P	30.974		748	2.41E-2	563244		562		1.81E-2	423186	75.1
0.750	Pa Ph											
1 100	Ru Ru											-
0.500	Sh		-	-								-
0.250	Se											
0.500	Si	28.0855	973	1110	3.95E-2	835830		179		6.37E-3	134787	16.1
1.500	Sn			-								-
0.015	Sr	87.62		86.5	9.87E-4	65135		86.9		9.92E-4	65436	100.5
1.500	Те			-								
1.000	Th											
0.025	Ti											
0.500	ТІ			-								
2.000	U	238										
	U(KPA)	238	0.11	27.49	1.15E-4	20698	0.03	0.82		3.45E-6	619	3.0
0.050	v											
2.000	W											
0.050	Y											
0.050	Zr											

Table A.1. AN-102/C-104 Feed and Effluent Composition

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

4) The Fe value for ASR 6130 was blank-subtracted

5) The feed sample was also analyzed per ASR 6107

Table A.2. AN-102/C-104 Eluate Composition

AN102/C104 Cs Eluate volume

197 mL AN102/C104 Cs Eluate composition

			AN102/0104 03								•
			ASR 6281	ASR 6281	ASR 6281						
	Multiplier=		1.0	10.0	10.0						
	RPL/LAB #=		02-00779-DB	02-00779	02-00779 DUP						
Det. Limit	Client ID=	<u>FW</u>	<u>Diluent Blank</u>	<u>AN102/C104-</u> <u>CsE-Comp 1</u>	<u>AN102/C104-</u> <u>CsE-Comp 1-</u> <u>Dup</u>	<u>Average</u>	<u>M</u>	<u>ug total</u>	<u>estimated ug</u> <u>from AP-101</u> <u>processing</u>	<u>%</u> recovered in eluate	
(ug/mL)	(Analyte)		(ug/mL)	(ug/mL)	(ug/mL)						
0.150	Na	22.99		775	810	792.50	3.45E-02	156123		0.19	
2.000	к	39.0983									
0.060	AI	26.98		[5.7]	[5.8]	[5.8]	[2.13E-4]	[1133]		[0.02]	
0.010	Ba	137.33		[0.16]	[0.19]	[0.18]	[1.27E-6]	[34]		NA	high blank in feed
0.250	Ca	40.08				<2.5E+0					
0.015	Cd	112.41		2.31	2.38	2.35	2.09E-05	462		2.36	
0.050	Co	58.9332		-		<5.0E-1					
0.020	Cr	51.996		22.5	23.3	22.9	4.40E-04	4511		5.55	
0.025	Cu	63.546		30.1	31.1	30.6	4.82E-04	6028		[80]	
0.025	Fe	55.847		6.16	6.56	6.36	1.14E-04	1253		[45]	
0.100	Mg	24.305		-		<1.0E+0					
0.050	Mn	54.938				<5.0E-1					
0.030	Ni	58.7		66.6	68.9	67.8	1.15E-03	13347		9.43	
0.100	Pb	207.2		24.8	25.4	25.1	1.21E-04	4945		9.80	
0.050	Zn	65.38		[2.7]	[2.8]	[2.8]	[4.21E-5]	[542]		[8.37]	
Other Analyte	es										
0.025	Ag										
0.250	As										
0.050	В	10.81		7.28	7.47	7.38	6.82E-04	1453		NA	high blank in feed
0.010	Be										
0.100	Bi										
0.200	Ce										
0.050	Dy										
0.100	Eu										
0.050	La										
0.030	Li										
0.050	Мо	95.94				<5.0E-1					
0.100	Nd	144.24									
0.100	Р	30.974				<1.0E+0					
0.750	Pd										
0.300	Rh										
1.100	Ru			-						-	
0.500	Sb										
0.250	Se										
0.500	Si	28.0855		[20]	[20]	[20]	[7.12E-4]	[3940]		[0.47]	
1.500	Sn										
0.015	Sr	87.62		[1.0]	[1.1]	[1.1]	[1.20E-5]	[207]		[0.32]	
1.500	Te										
1.000	Th			-							
0.025	Ti Ti			-							
0.500	n	0.00				14	17 AFT 15	104	00000		
2.000	U	238		[170]	[180]	[175]	[7.35E-4]	[34475]	6000	NA	not detected in feed by ICP
0.050	U(KPA)	238	0.16	169	165	167	7.02E-04	32899	6000	123.22	
0.050	V			-							
2.000	Ŵ			-							
0.050	Y			-							
0.050	∠r]

Note: 1) ONote: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values 2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indi 3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying multiplying "det. limit" (far left column) by "multiplier" (top of each column).

4) The Fe value for ASR 6130 was blank-subtracted

5) The feed sample was also analyzed per ASR 6107

			AN102 Feed	composition				
		ASR=	6130	6130	6130			
		Multiplier=	100.0	200.0	200.0			
		RPL/LAB #=	PB-1338	01-1354	01-2354D	average	average	
Det Limit		Client ID-	process blank	AN102 CS1- C-E/A	AN102CS1- C-E/A			
(ug/mL)	EW/	(Analyte)	(ua/ml.)	(ua/ml.)	(un/ml)	(ug/ml)	м	
(ug/iii) 0.150	22 000	(Analyte)	(ug/IIIL) 1010	(ug/IIIL) 136000	(ug/iii) 1/6000	(ug/IIIL)	6 13E+0	
2 000	39 098	ĸ		[1100]	[1100]	[1100]	[2 8F-2]	
2.000	00.000				[1100]	0	[2:02 2]	
0.060	26,980	AI	84.10	6520	6,730	6625	2.46F-1	
0.010	137.330	Ba	[1.3]	[2.5]				
0.250	40.080	Ca		[190]	[190]	[190]	[4.7E-3]	
0.015	112.410	Cd		32.1	32.3	32	2.86E-4	
0.050	58.930	Co		-				
0.020	51.996	Cr		119	121	120	2.31E-3	
0.025	63.546	Cu		[8,4]	[7.5]	[8.0]	[1.3E-4]	
0.025	55.847	Fe	[5.7]	[9.1]	[8.8]	[9.0]	[5.8E-5]	blank subtracted
0.100	24.305	Ma						
0.050	54.938	Mn						
0.030	58.700	Ni		237	240	239	4.06E-3	
0.100	207.200	Pb		[88]	[84]	[86]	[4.2E-4]	
0.050	65.380	Zn						
Other Analyte	es							
0.025		Ag	-					
0.250		As						
0.050	10.810	В	750	815	755	785	high blank	
0.010		Be						
0.100		Bi						
0.200		Ce						
0.050		Dy						
0.100		Eu						
0.050		La						
0.030		Li						
0.050	95.940	Мо		[26]	[27]	[27]	[2.8E-4]	
0.100		Nd						
0.100	30.970	Р		457	455	456	1.47E-2	
0.750		Pd						
0.300		Rh						
1.100		Ru						
0.500		Sb						
0.250		Se						
0.500	28.086	Si	973	1250	1240	1245	high blank	
1.500		Sn				_		
0.015	87.620	Sr		60.3	62.1	61	6.98E-4	
1.500		Te						
1.000		Th						
0.025		Ti						
0.500								
2.000	238.000	U						
0.050		V V						
2.000		W V						
0.050		Y 7-						
0.050		<u>Zr</u>						l

Table A.3. AN-102 Feed Composition

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Appendix B

Batch-Contact Calculations

Appendix B: Batch Contact Calculations

Table B.1. Cs and Sr Kd Determinations

g/mL AN-102/C-104 feed density 1.2438 AN-102 density 1.3012

		m	F	I _{Na}			V	Co		C ₁					
					corrected									dry bed	
				I _{Na}	resin			Starting	Fraction of	Equilibrium		Na:Cs mole	K _d ,	density,	
	Sample ID	Resin, g	F-factor	factor	mass, g	waste, g	waste, mL	[Cs], M	original ¹³⁷ Cs	[Cs], M	[Na], M	ratio	mL/g	g/mL	λ
	ANC102/104-644	0.0507	0.9321	1.25	0.0591	6.1606	4.9530	5.99E-5	3.43E-2	2.05E-6	4.8	2.34E+6	2327	0.25	582
	ANC102/104-644 D	0.0518	0.9321	1.25	0.0604	6.1457	4.9411	5.99E-5	3.30E-2	1.98E-6	4.8	2.43E+6	2360	0.25	590
	ANC102/104-S1-644	0.0505	0.9321	1.25	0.0588	6.1557	4.9491	9.98E-4	9.59E-2	9.57E-5	4.8	5.01E+4	764	0.25	191
	ANC102/104-S1-644 D	0.0499	0.9321	1.25	0.0581	6.124	4.9236	9.98E-4	1.11E-1	1.11E-4	4.8	4.33E+4	653	0.25	163
в	ANC102/104-S2-644	0.0508	0.9321	1.25	0.0592	6.1045	4.9079	5.10E-3	3.22E-1	1.64E-3	4.8	2.92E+3	187	0.25	47
÷	ANC102/104-S2-644 D	0.0501	0.9321	1.25	0.0584	6.1428	4.9387	5.10E-3	3.39E-1	1.73E-3	4.8	2.77E+3	177	0.25	44
	ANC102/104-C	0	NA	NA	0.0000	2.5239	2.0292	5.99E-5	9.85E-1	5.90E-5	4.8	8.13E+4	NA	NA	NA
	ANC102/104-S1-C	0	NA	NA	0.0000	2.5845	2.0779	9.98E-4	9.67E-1	9.65E-4	4.8	4.97E+3	NA	NA	NA
	ANC102/104-S2-C	0	NA	NA	0.0000	2.6942	2.1661	5.10E-3	1.05E+0	5.35E-3	4.8	8.97E+2	NA	NA	NA
	AN-102-CST	0.0507	0.9708	NA	0.0492	6.3992	4.9179	7.70E-5	9.10E-2	7.01E-6	6.1	8.71E+5	992	1.04	1032
	AN-102-CST D	0.0507	0.9708	NA	0.0492	3.7533	2.8845	7.70E-5	5.55E-2	4.27E-6	6.1	1.43E+6	992	1.04	1031
	AN-102-S3-CST	0.0506	0.9708	NA	0.0491	6.3929	4.9131	1.01E-3	8.29E-2	8.39E-5	6.1	7.27E+4	1112	1.04	1156
	AN-102-S3-CST D	0.0507	0.9708	NA	0.0492	6.3359	4.8693	1.01E-3	8.08E-2	8.18E-5	6.1	7.45E+4	1130	1.04	1176
	AN-102-S4-CST	0.0488	0.9708	NA	0.0474	6.4947	4.9913	5.12E-3	3.18E-1	1.63E-3	6.1	3.75E+3	227	1.04	236
	AN-102-S4-CST D	0.0505	0.9708	NA	0.0490	6.3438	4.8753	5.12E-3	2.97E-1	1.52E-3	6.1	4.01E+3	235	1.04	245
	AN-102CST-C	0	NA	NA	0.0000	2.6172	2.0114	7.70E-5	9.94E-1	7.66E-5	6.1	7.97E+4	NA	NA	NA
	AN-102CST-S3-C	0	NA	NA	0.0000	2.691	2.0681	1.01E-3	1.00E+0	1.02E-3	6.1	6.00E+3	NA	NA	NA
	AN102CST-S4-C	0	NA	NA	0.0000	2.7569	2.1187	5.12E-3	1.00E+0	5.12E-3	6.1	1.19E+3	NA	NA	NA

 $K_d = (C_o-C_1)/C_1 \ge V/(m*I_{Na}*F)$

Table B.1 contd

Batch Contact of AN-102/C-104 Waste with SuperLig 644 and IE-911 Superlig 644 batch 010319SMC-IV-73, 212-425 um particle size, weighed in the H form AN-102/C-104 Batch Contact and AN/102 Batch Contact Continued

		C	MC Analysis									
Sample ID	CMC ID	Net Cs-137 µCi/mL	Equilibrium [Cs], M	Na:Cs mole ratio	K _d , mL/g	λ						
ANC102/104-644	01-1341	5.16E+0	1.92E-6	2.50E+6	2532	633						
ANC102/104-644 D	-	-	-	-	_	-						
ANC102/104-S1-644	01-1342	1.50E+1	9.30E-5	5.16E+4	819	205						
ANC102/104-S1-644 D	01-1343	1.45E+1	8.99E-5	5.34E+4	856	214						
ANC102/104-S2-644	01-1344	5.14E+1	1.63E-3	2.95E+3	177	44						
ANC102/104-S2-644 D	-	_	-	-	-	-						
ANC102/104-C	01-1345	1.61E+2	-	-	-	-						
ANC102/104-S1-C	01-1346	1.62E+2	-	-	-	-						
ANC102/104-S2-C	01-1347	1.60E+2	-	-	-	-						
		Net Cs-137	Equilibrium	Na:Cs	K _d ,		Starting	Equilibrium	Fraction of	Equilibrium	K _d ,	
	CMC ID	µCi/mL	[Cs], M	mole ratio	mL/g	λ	[Sr], M	⁹⁰ Sr µCi/mL	original ⁹⁰ Sr	[Sr], M	mL/g	λ
AN-102-CST	01-1348	1.84E+1	6.86E-6	8.90E+5	1022	1063	6.98E-4	9.14E+0	6.55E-1	4.57E-4	53	55
AN-102-CST D	01-1349	-	-	-	-	-	6.98E-4	8.22E+0	5.89E-1	4.11E-4	41	42
AN-102-S3-CST	01-1350	1.76E+1	8.62E-5	7.08E+4	1074	1117	6.98E-4	1.07E+1	7.67E-1	5.35E-4	30	32
AN-102-S3-CST D	01-1351	-	-	-	-	-	6.98E-4	1.02E+1	7.31E-1	5.10E-4	36	38
AN-102-S4-CST	01-1352	6.59E+1	1.63E-3	3.74E+3	225	234	6.98E-4	1.05E+1	7.53E-1	5.25E-4	35	36
AN-102-S4-CST D	01-1353	-	-	-	-	-	6.98E-4	1.03E+1	7.38E-1	5.15E-4	35	37
AN-102CST-C	01-1354	2.05E+2	-	-	-	-	6.98E-4	1.40E+1				
AN-102CST-S3-C	01-1355	2.10E+2	-	_	-	-						
AN102CST-S4-C	01-1356	2.05E+2	-	-	-	-						

Appendix C

Column Testing Calculations

Appendix C: Column Testing Calculations

Table C.1. Column Flow Calculations

Test Runs												
Column Preparation												
SL-644 batch 0103108	SMC-IV-73 2	12-425 u	m particle	size								
Bed volume in AN102	/C104 feed		10.4	mL		Densities		:	apparatus vo	lume		
Apparatus volume			42 1	mL	HNO3	1.012	g/mL	total system	42			
					0.1M NaOH	0.999		column 1	23			
				().25M NaOH	1.006		column 2	21			
				AN102	2/C104 waste	1.2438						
Conditioning 6/25/01												
Lead column + Lag co	lumn				mI /min							
Lead column + Lag co	1011111			volume	111L/ 11111							
start	end	Δt	mass, g	mL	flow rate	BV/hr	BV	AV				
0.25M NaOH wash												
6/25/01 8:55	11:50	2:55	83.2	82.7	0.47	2.73	8.0	1.97				
AN102/C104 actual w	aste loading s	tarting or	n 6/25/01									
X 1.1 001 . 11												
Initial effluent collection	on			1								
1 apparatus volume of	feed			cumul.	a .							
	4			volume,	flow rate,	DV/I.	apparatus					
6/25/01 11:57	12:27	<u></u>	mass, g	40.8	0.452	B V/nr	volume					
0/23/01 11.37	13.27	1.50	41	40.8	0.455	2.01	1.0					
Feed flow				cumul.				Lead column sa	mpling			
				volume,	flow rate,		cumulative		sample	volume,	total vol.,	
start	end	Δt	mass	mL	mL/min	BV/hr	BV	Sample ID	mass, g	mL	mL	BV
6/25/01 13:31	13:47	0:16	7.1	46.5	0.357	2.06	4.5	AN102L-F1	2.351	1.890	48.354	4.6
13:57	17:00	3:03	111.5	130.4	0.459	2.65	12.5	AN102L-F2	2.941	2.365	137.026	13.2
17:10	20:20	3:10	222.4	219.6	0.469	2.71	21.1	AN102L-F3	2.621	2.107	230.551	22.2
20:29	23:40	3:11	342.7	316.3	0.506	2.92	30.4	AN102L-F4	2.492	2.004	330.928	31.8
6/25/01 23:52	3:00	3:08	456.1	407.5	0.485	2.80	39.2	AN102L-F5	3.858	3.102	425.867	40.9
3:14	6:20	3:06	565.2	495.2	0.472	2.72	47.6	AN102L-F6	2.475	1.989	516.720	49.7
6:23	9:40	3:17	671.8	580.9	0.435	2.51	55.9	AN102L-F7	2.368	1.904	607.091	58.4
9:51	13:01	3:10	779.4	667.4	0.455	2.63	64.2	AN102L-F8	2.395	1.926	697.375	67.1
6/26/01 13:12	15:10	1:58	846.0	720.9	0.454	2.62	69.3					
				average	0.467	2.69					tot	al volume
ΔT , total	27:13:00			-								

total sample vol, mL 1.8903 4.2549 6.3619 8.3654 11.4675 13.4570 15.3610 17.2865

753.0

Table C.1 contd

			Lag column sam	pling				total
				sample	volume,	total vol.,		sample
			Sample ID	mass, g	mL	mL	BV	vol, mL
			AN102P-F1	2.949	2.371	48.84	4.70	2.371
total volume	752.95 mL	effluent measure	AN102P-F2	2.269	2.255	135.03	12.98	4.626
mass processed	937.20 g	net feed bottle measure	AN102P-F3	2.058	1.654	225.84	21.72	6.281
volume processed	753.50 mL		AN102P-F4	0.826	0.664	323.23	31.08	6.945
	72.40 bed vol	umes total	AN102P-F5	1.429	1.149	415.55	39.96	8.094
			AN102P-F6	3.434	2.761	506.02	48.66	10.855
			AN102P-F7	2.300	1.849	593.58	57.07	12.704
			AN102P-F8	2.527	2.032	682.12	65.59	14.736
						tota	al volume	735.7
0.1M NaOH feed displacement								

				Sample	Sample						
Sample ID	Start	End	Δt	mass, g	volume, mL	mL/min	BV/hr	BV cu	ımul. BV	AV C	umul. AV
	15:20	16:48	1:28	43.4	34.9	0.40	2.29	3.36	3.36	0.83	0.83 The initial rinse was collected in the
AN102-FD-1	16:51	17:12	0:21	10.1	8.1	0.39	2.23	0.78	4.14	0.19	1.02 AN102/C104 effluent bottle.
AN102-FD-2	17:13	17:26	0:13	9.1	9.1	0.70	4.02	0.87	5.01	0.22	1.24
AN102-FD-3	17:27	17:46	0:19	8.9	8.9	0.47	2.69	0.85	5.86	0.21	1.45
AN102-FD-4	17:47	18:07	0:20	11.0	11.0	0.55	3.16	1.05	6.91	0.26	1.71
AN102-FD-5	18:08	18:29	0:21	10.4	10.4	0.50	2.87	1.00	7.92	0.25	1.96
AN102-FD-6	18:30	18:50	0:20	9.1	9.1	0.46	2.63	0.88	8.79	0.22	2.18
AN102-FD-7	18:51	19:11	0:20	8.8	8.8	0.44	2.54	0.85	9.64	0.21	2.39
AN102-FD-8	19:12	19:32	0:20	9.2	9.2	0.46	2.64	0.88	10.52	0.22	2.61
AN102-FD-9	19:32	19:57	0:25	11.4	11.4	0.46	2.63	1.10	11.62	0.27	2.88
	ΔT , total	4:37			average	0.48	2.77				
				sum	120.8 ml	Ĺ					

DI water rinse

				Sample	Sample						
Sample ID	Start	End	Δt	mass, g	volume, mL	mL/min	BV/hr	BV cu	mul. BV	AV	Cumul. AV
AN102-FDI-1	20:03	20:23	0:20	10.000	10.000	0.50	2.88	0.96	0.96	0.24	0.24
AN102-FDI-2	20:24	20:44	0:20	9.311	9.311	0.47	2.69	0.90	1.86	0.22	0.46
AN102-FDI-3	20:45	21:05	0:20	9.447	9.447	0.47	2.72	0.91	2.77	0.22	0.68
AN102-FDI-4	21:05	21:25	0:20	9.147	9.147	0.46	2.64	0.88	3.64	0.22	0.90
AN102-FDI-5	21:26	21:46	0:20	9.254	9.254	0.46	2.67	0.89	4.53	0.22	1.12
AN102-FDI-6	21:47	22:07	0:20	9.385	9.385	0.47	2.71	0.90	5.44	0.22	1.35
AN102-FDI-7	22:08	22:28	0:20	9.695	9.695	0.48	2.80	0.93	6.37	0.23	1.58
AN102-FDI-8	22:30	22:50	0:20	9.716	9.716	0.49	2.80	0.93	7.30	0.23	1.81
AN102-FDI-9	22:53	23:12	0:19	9.861	9.861	0.52	2.99	0.95	8.25	0.23	2.04
	ΔT , total	3:09			average	0.48	2.77				
				sum	85.8 m	L					

C.2

					mass				
Cs elution from lead column,	Sample			(colleccted,		flow rate,		cumul.
Separate columns	ID	start	end	Δt	g	volume, mL	mL/min	BV/hr	BV
		HNO3 was	shlead column						
	AN102L-E1	23:23	0:23	1:00	8.3300	8.23	0.14	0.79	0.79
	AN102L-E2	0:24	1:23	0:59	7.7229	7.63	0.13	0.75	1.53
	AN102L-E3	1:24	2:23	0:59	10.3513	10.23	0.17	1.00	2.51
	AN102L-E4	2:24	3:23	0:59	9.6517	9.54	0.16	0.93	3.43
	AN102L-E5	3:24	4:24	1:00	10.3193	10.20	0.17	0.98	4.41
	AN102L-E6	4:26	5:26	1:00	10.2201	10.10	0.17	0.97	5.38
	AN102L-E7	5:28	6:28	1:00	10.8062	10.68	0.18	1.03	6.40
	AN102L-E8	6:29	7:28	0:59	10.0951	9.98	0.17	0.98	7.36
	AN102L-E9	7:30	8:30	1:00	10.1534	10.03	0.17	0.96	8.33
	AN102L-E10	8:31	9:30	0:59	9.7621	9.65	0.16	0.94	9.26
	AN102L-E11	9:31	10:30	0:59	9.9411	9.82	0.17	0.96	10.20
	AN102L-E12	10:31	11:30	0:59	9.8147	9.70	0.16	0.95	11.13
	AN102L-E13	11:30	12:30	1:00	10.0791	9.96	0.17	0.96	12.09
	AN102L-E14	12:31	13:30	0:59	10.0347	9.92	0.17	0.97	13.04
	AN102L-E15	13:30	14:31	1:01	10.3327	10.21	0.17	0.97	14.03
	AN102L-E16	14:32	15:25	0:53	9.2188	9.11	0.17	0.99	14.90
	AN102L-E17	15:26	16:24	0:58	9.7495	9.63	0.17	0.96	15.83
	AN102L-E18	16:25	17:28	1:03	10.3382	10.22	0.16	0.94	16.81
	AN102L-E19	6:54	8:01	1:07	12.1664	12.02	0.18	1.04	17.97
	AN102L-E20	8:02	9:03	1:01	10.1879	10.07	0.17	0.95	18.93
		ΔT , total	33:40:00	sum	199.28	196.91			
						average	0.16	0.95	

Tab	le	C.1	contd	
-----	----	------------	-------	--

DI water											
				Sample	Sample				Cumul.		
Sample ID	Start	End	Δt	mass, g	volume, mL	mL/min	BV/hr	BV	BV	AV	Cumul. AV
AN102-EDI-1	9:10	9:21	0:11	9.837	9.837	0.89	5.16	0.9	0.9	0.43	0.43
AN102-EDI-2	9:23	9:49	0:26	12.944	12.944	0.50	2.87	1.2	2.2	0.56	0.99
AN102-EDI-3	9:50	10:12	0:22	10.938	10.938	0.50	2.87	1.1	3.2	0.48	1.47
AN102-EDI-4	10:13	10:33	0:20	9.910	9.910	0.50	2.86	1.0	4.2	0.43	1.90
AN102-EDI-5	10:34	10:53	0:19	9.352	9.352	0.49	2.84	0.9	5.1	0.41	2.30
AN102-EDI-6	10:55	11:14	0:19	8.881	8.881	0.47	2.70	0.9	5.9	0.39	2.69
	1	∆T, total	2:04		average	0.49	2.83				
				sum	61.9 m	ıL					

Table C.1 contd

Regeneration with 0.25M NaOH

				Sample	Sample				Cumul.		
Sample ID	Start	End	Δt	mass, g	volume, mL	mL/min	BV/hr	BV	BV	AV	Cumul. AV
AN102L-RGN	7:51	9:35	1:44	16.0	16.0	0.15	0.89	1.5	1.5	0.70	0.70
	9:42	11:32	1:50	17.7	17.7	0.16	0.93	1.7	3.2	0.77	1.47
	11:34	13:19	1:45	17.0	17.0	0.16	0.93	1.6	4.9	0.74	2.20
	ΔT , total	5:28		sum	50.7	average	0.92				

Rinse with DI water

				Sample	Sample				Cumul.		
Sample ID	Start	End	Δt	mass, g	volume, mL	mL/min	BV/hr	BV	BV	AV Cu	umul. AV
AN102-DIRinse-											
Final	13:25	14:05	0:40	17.0	17.0	0.43	2.45	1.6	1.6	0.74	0.74 Lost about 0.5 mL on transfer
	14:14	14:50	0:36	17.2	17.2	0.48	2.76	1.7	3.3	0.75	1.49
	14:51	15:21	0:30	13.6	13.6	0.45	2.62	1.3	4.6	0.59	2.08 Lost about 2 mL on transfer
	ΔT , total	1:56	S	um	47.8	average	2.61				

Table C.2. Column Sample Counting

Counting Data for TI-RPP-WTP-080, Rev. 0

0.00980 g in counting geometry

Background Counts

		Time		
Net counts	Error	(sec)	cpm ur	ncertainty
12	6	3000	0.24	50%
21	6	6000	0.21	29%
18	5	6000	0.18	28%
8	2	3000	0.16	25%
13	3	3000	0.26	23%
		average	0.21	

AN102/C104Comparitor Standarddensity1.2438 g/mL0.1020g AP101 brought to 2.0047 g then 0.1 g pipetted into a 2-mL geometry (diluent is 0.1 M NaOH).

Count

		Time						
Net counts	Error	(sec)	cpm	net cpm	mass	net cpm/g	mL	cpm/mL
43790	287	300	8758	8758	0.0098	8.94E+5	0.0079	1.11E+6
42959	278	300	8592	8592	0.0098	8.77E+5	0.0079	1.09E+6
42361	275	300	8472	8472	0.0098	8.64E+5	0.0079	1.08E+6
42948	278	300	8590	8589	0.0098	8.76E+5	0.0079	1.09E+6
41367	270	300	8273	8273	0.0098	8.44E+5	0.0079	1.05E+6
41229	274	300	8246	8246	0.0098	8.41E+5	0.0079	1.05E+6
40814	269	300	8163	8163	0.0098	8.33E+5	0.0079	1.04E+6
40727	270	300	8145	8145	0.0098	8.31E+5	0.0079	1.03E+6

Average	8.58E+5	1.07E+6
standard deviation	2.34E+4	2.91E+4
% standard deviation	2.7	2.7

AN-102/C104 run starting 6/25/01

Lead column, loading phase

	Net		time										
Sample ID	counts	Error	(sec)	net cpm	mass, g	mL	net cpm/g	net cpm/mL	C/Co	BV	% C/Co	DF	total uCi
AN102L-F1	-94	451	3000	-2.09	2.2688	1.8241	-0.92	-1.15	-1.07E-6	4.6	-1.07E-4	6.12E+6	-3.15E-4
AN102L-F2	155	483	3000	2.89	2.8326	2.2774	1.02	1.27	1.19E-6	13.2	1.19E-4	8.41E+5	4.36E-4
AN102L-F3	380	469	3000	7.39	2.5156	2.0225	2.94	3.65	3.43E-6	22.2	3.43E-4	2.92E+5	1.12E-3
AN102L-F4	144	474	3000	2.67	2.4079	1.9359	1.11	1.38	1.29E-6	31.8	1.29E-4	7.73E+5	4.03E-4
AN102L-F5	881	520	3000	17.41	3.7413	3.0080	4.65	5.79	5.43E-6	40.9	5.43E-4	1.84E+5	2.63E-3
AN102L-F6	52	490	3000	0.83	2.375	1.9095	0.35	0.43	4.07E-7	49.7	4.07E-5	2.45E+6	1.25E-4
AN102L-F7	347	461	3000	6.73	2.3008	1.8498	2.93	3.64	3.41E-6	58.4	3.41E-4	2.93E+5	1.02E-3
AN102L-F8	14	678	6000	-0.07	2.2771	1.8308	-0.03	-0.04	-3.58E-8	67.1	-3.58E-6	6.12E+6	-1.06E-5

Table C.2 contd

AN-102/C104 run starting 6/25/01 Lag column, loading phase

0 ,	••												
			Count										
	Net		time										
Sample ID	counts	Error	(sec)	net cpm	mass, g	mL	net cpm/g	net cpm/mL	C/Co	BV	C/Co, %	DF	total uCi
AN102P-F1	23425	414	3000	468.290	2.8383	2.2820	164.99	205.21	1.92E-4	4.7	1.92E-2	5198	7.07E-2
AN102P-F2	14534	485	3000	290.470	2.1202	1.7046	137.00	170.40	1.60E-4	13.0	1.60E-2	6260	4.38E-2
AN102P-F3	14803	488	3000	295.850	1.9924	1.6019	148.49	184.69	1.73E-4	21.7	1.73E-2	5776	4.47E-2
AN102P-F4	7288	364	3000	145.550	0.7763	0.6241	187.49	233.20	2.19E-4	31.1	2.19E-2	4574	2.20E-2
AN102P-F5	10973	444	3000	219.250	1.3375	1.0753	163.93	203.89	1.91E-4	40.0	1.91E-2	5232	3.31E-2
AN102P-F6	22884	547	3000	457.470	3.3434	2.6881	136.83	170.19	1.60E-4	48.7	1.60E-2	6268	6.90E-2
AN102P-F7	13867	479	3000	277.130	2.2121	1.7785	125.28	155.82	1.46E-4	57.1	1.46E-2	6846	4.18E-2
AN102P-F8	15181	505	3000	303.410	2.0266	1.6294	149.71	186.21	1.75E-4	65.6	1.75E-2	5728	4.58E-2
AN102FEcomp1	4789	101	3000	95.570	2.0507	2	46.60	47.79	5.43E-5		5.43E-3	18402	
AN102FEcomp2	14925	506	3000	298.290	2.4982	2.0085	119.40	148.51	1.39E-4		1.39E-2	7183	

sample activity sum 3.77E-1 uCi

Feed Displacement

			Count											
	Net		time											
Sample ID	counts	Error	(sec)	net cpm	mass, g	mL	net cpm/g	net cpm/mL	C/Co	BV	C/Co, %	BV	total uCi	_
AN102-FD-1	21577	508	3000	431.33	2.414	2.4136	178.71	178.71	2.08E-4	4.1	2.08E-2	69.7	2.72E-1	
AN102-FD-2	10894	356	3000	217.67	2.150	2.1498	101.25	101.25	1.18E-4	5.0	1.18E-2	70.6	1.72E-1	
AN102-FD-3	5412	230	3000	108.03	2.058	2.0582	52.49	52.49	6.12E-5	5.9	6.12E-3	71.4	8.73E-2	
AN102-FD-4	3454	161	3000	68.87	1.989	1.9892	34.62	34.62	4.04E-5	6.9	4.04E-3	72.5	7.12E-2	
AN102-FD-5	2671	121	3000	53.21	2.013	2.0133	26.43	26.43	3.08E-5	7.9	3.08E-3	73.5	5.18E-2	
AN102-FD-6	2765	101	3000	55.09	1.974	1.9744	27.90	27.90	3.25E-5	8.8	3.25E-3	74.4	4.77E-2	
AN102-FD-7	2500	98	3000	49.79	1.982	1.9818	25.12	25.12	2.93E-5	9.6	2.93E-3	75.2	4.16E-2	
AN102-FD-8	2659	83	3000	52.97	1.993	1.9932	26.58	26.58	3.10E-5	10.5	3.10E-3	76.1	4.57E-2	
AN102-FD-9	2442	81	3000	48.63	2.002	2.0018	24.29	24.29	2.83E-5	11.6	2.83E-3	77.2	5.21E-2	
											sample a	activity sum	8.42E-1	uCi

DI Rinse

Seconda ID	Net	E	Count time					not one (mT	0/0-	ΒV		DV	tatal a Ci
Sample ID	counts	EIIOI	(SEC)	net cpm	mass, g	IIIL	net cpm/g	net cpin/mL	C/C0	D٧	C/C0, %	DV	total uCl
AN102-FDI-1	2624	75	3000	52.27	1.982	1.9818	26.38	26.38	3.08E-5	1.0	3.08E-3	78.2	4.95E-2
AN102-FDI-2	2744	74	3000	54.67	1.981	1.9805	27.60	27.60	3.22E-5	1.9	3.22E-3	79.1	4.83E-2
AN102-FDI-3	3001	77	3000	59.81	1.940	1.9396	30.84	30.84	3.60E-5	2.8	3.60E-3	80.0	5.47E-2
AN102-FDI-4	3038	74	3000	60.55	2.006	2.0063	30.18	30.18	3.52E-5	3.6	3.52E-3	80.9	5.18E-2
AN102-FDI-5	2229	67	3000	44.37	2.015	2.0147	22.02	22.02	2.57E-5	4.5	2.57E-3	81.7	3.83E-2
AN102-FDI-6	1079	44	1800	35.76	1.971	1.9707	18.14	18.14	2.12E-5	5.4	2.12E-3	82.6	3.20E-2
AN102-FDI-7	874	41	1800	28.92	1.989	1.9893	14.54	14.54	1.70E-5	6.4	1.70E-3	83.6	2.65E-2
AN102-FDI-8	764	38	1800	25.26	1.997	1.9968	12.65	12.65	1.47E-5	7.3	1.47E-3	84.5	2.31E-2
AN102-FDI-9	995	53	3000	19.69	1.972	1.9724	9.98	9.98	1.16E-5	8.3	1.16E-3	85.5	1.85E-2
											sample a	ctivity sum	3.43E-1 uCi

Table C.2 contd

AN-102/C104 run starting 6/25/01.

Lead column, eluting phase

			Count														
	Net		time		Mass to		Mass to		mass for	counted						C/Co	
Sample ID	counts	Error	(sec)	net cpm	dilute, g	Final mass, g	dilute, g	Final mass, g	counting, g	mass, g	mL	net cpm/g	net cpm/mL	C/Co	BV	Average	% dev
AN102L-E1-d	33	6	3000	0.45	0.0849	5.0535	1	1	2.0341	3.42E-2	3.38E-2	1.32E+1	1.33E+1	1.25E-5	0.8	5.43E-5	-76.97
AN102L-E2-d	23	6	1800	0.6	0.0459	10.0329	1	1	2.0402	9.33E-3	9.22E-3	5.96E+1	6.04E+1	5.66E-5	1.5	6.01E-5	-5.80
AN102L-E3-d	11	3	3000	0.0	0.0915	10.1184	0.0943	10.103	1.9943	1.68E-4	1.66E-4	5.94E+1	6.01E+1	5.64E-5	2.5		
AN102L-E4-dd	41554	274	300	8311	0.0594	10.069	0.0956	10.1168	2.0128	1.12E-4	1.11E-4	7.41E+7	7.50E+7	7.03E+1	3.4	6.06E+1	15.86
AN102L-E5-dd	89493	547	300	17898	0.0954	10.1062	0.0923	10.0961	1.9884	1.72E-4	1.70E-4	1.04E+8	1.06E+8	9.90E+1	4.4		
AN102L-E6-dd	11816	118	300	2363	0.088	10.0969	0.0824	10.0991	1.9891	1.41E-4	1.40E-4	1.67E+7	1.69E+7	1.58E+1	5.4		
AN102L-E7-d	95507	545	300	19101	0.0798	10.0976	1	1	2.0368	1.61E-2	1.59E-2	1.19E+6	1.20E+6	1.13E+0	6.4	9.08E-1	23.93
AN102L-E8-d	11120	115	300	2224	0.0821	10.0916	1	1	2.0271	1.65E-2	1.63E-2	1.35E+5	1.36E+5	1.28E-1	7.4		
AN102L-E9-d	12291	120	500	1475	0.0631	5.0379	1	1	2.0502	2.57E-2	2.54E-2	5.74E+4	5.81E+4	5.45E-2	8.3	5.20E-2	4.84
AN102L-E10-d	7824	91	500	939	0.0481	5.0165	1	1	2.0513	0.0197	1.94E-2	4.77E+4	4.83E+4	4.53E-2	9.3	3.58E-2	26.51
AN102L-E11-d	5177	75	500	621	0.0932	5.0592	1	1	2.0445	0.0377	3.72E-2	16489	1.67E+4	1.56E-2	10.2		
AN102L-E12-d	5738	77	900	382	0.0846	5.0542	1	1	2.0517	0.0343	0.0339	11133	11266	1.06E-2	11.1		
AN102L-E13-d	8885	97	1800	296	0.0707	5.0325	1	1	2.0287	0.0285	0.0282	10384	10509	9.85E-3	12.1	8.63E-3	14.18
AN102L-E14-d	7105	86	1800	237	0.0933	5.0611	1	1	2.0398	0.0376	0.0372	6293	6368	5.97E-3	13.0		
AN102L-E15-d	5938	79	1800	198	0.073	5.0329	1	1	2.033	0.0295	0.0291	6705	6786	6.36E-3	14.0	5.73E-3	11.09
AN102L-E16-d	4910	70	1800	163	0.0897	5.0518	1	1	2.0278	0.0360	0.0356	4540	4594	4.31E-3	14.9		
AN102L-E17-d	4507	68	1800	150	0.091	5.0999	1	1	1.9974	0.0356	0.0352	4209	4260	3.99E-3	15.8	3.97E-3	0.60
AN102L-E18-dr	Samples w	ere taken	during re-	preparation	aliquoting	g	_	_	_	-	-	-	_	_	16.8		
AN102L-E19-dr	Samples w	ere taken	during re-	preparation	aliquoting	ş	-	_	-	-	-	-	_	-	18.0		
AN102L-E20-d	6850	84	1800	228	0.0853	4.993	1	1	2.0199	0.0345	0.0341	6611	6690	6.27E-3	18.9		

C.7

Selected Re-preps

			Count												
	Net		time		Mass to		Mass to		mass for	counted					
Sample ID	counts	Error	(sec)	net cpm	dilute, g	Final mass, g	dilute, g	Final mass, g	counting, g	mass, g	mL	net cpm/g	net cpm/mL	C/Co	BV
AN102L-E1-dr	89	10	1800	2.76	0.0699	5.0799	1	1	1.9794	2.72E-2	2.69E-2	1.01E+2	1.02E+2	9.60E-5	0.8
AN102L-E2-dr	62	8	3000	1.0	0.0782	10.17	1	1	1.9997	1.54E-2	1.52E-2	6.70E+1	6.78E+1	6.36E-5	1.5
AN102L-E4-ddr	14528	161	100	8717	0.0843	10.1655	0.0993	10.212	2.0098	1.62E-4	1.60E-4	5.38E+7	5.44E+7	5.10E+1	3.4
AN102L-E7-dr	20196	291	100	12117	0.0836	10.1564	1	1	2.0211	1.66E-2	1.64E-2	7.28E+5	7.37E+5	6.91E-1	6.4
AN102L-E9-dr	3286	59	100	1971	0.0951	5.0912	1	1	2.0245	3.78E-2	3.74E-2	5.21E+4	5.28E+4	4.95E-2	8.3
AN102L-E10-dr	3378	59	200	1013	0.0909	5.0363	1	1	2.025	0.0365	3.61E-2	2.77E+4	2.81E+4	2.63E-2	9.3
AN102L-E13-dr	4491	69	900	299	0.0966	5.1019	1	1	2.0244	0.0383	0.0379	7806	7899	7.41E-3	12.1
AN102L-E15-dr	6167	80	1800	205	0.097	5.1037	1	1	2.0133	0.0383	0.0378	5367	5431	5.09E-3	14.0
AN102L-E17-dr	4507	68	1800	150	0.091	5.0999	1	1	2.0214	0.0361	0.0356	4159	4209	3.95E-3	15.8
AN102L-E18-dr	2294	47	1000	137	0.0903	5.1065	1	1	2.0151	0.0356	0.0352	3857	3903	3.66E-3	16.8
AN102L-E19-dr	21536	155	1800	718	0.0957	5.0961	1	1	2.0006	0.0376	0.0371	19102	19331	1.81E-2	18.0

Table C.2 contd

Deionized water rinse following elution

			Count									
	Net		time								BV post	
Sample ID	counts	Error	(sec)	net cpm	mass, g	mL	net cpm/g	net cpm/mL	C/Co	BV	Elution	uCi, total
AN102-EDI-1	46715	243	1000	2803	1.9978	2.0000	1403	1401	1.31E-3	0.9	19.9	2.0805795
AN102-EDI-2	26890	176	1000	1613	2.0194	2.0000	799	807	7.56E-4	2.2	21.1	1.5758021
AN102-EDI-3	16050	136	1000	963	1.9944	2.0000	483	481	4.51E-4	3.2	22.2	0.7947607
AN102-EDI-4	12914	120	1000	775	2.0012	2.0000	387	387	3.63E-4	4.2	23.1	0.5793206
AN102-EDI-5	12197	117	1000	732	1.9976	2.0000	366	366	3.43E-4	5.1	24.0	0.5163613
AN102-EDI-6	11843	114	1000	710	1.9855	2.0000	358	355	3.33E-4	5.9	24.9	0.47611
										sample	activity sum	6.0229341

Regeneration with 0.25 M NaOH

	Net		Time							
Sample ID	counts	Error	(sec)	net cpm	mass	mL	net cpm/g	net cpm/mL	C/Co	-
AN102-RGN	52014	262	1000	3121	2.0012	1.9893	1559	1569	1.47E-3	

Regeneration with 0.25 M NaOH Analytical Lab Data

Sample ID	CMC ID	Cs-137, µCi/mL	error, %	C/Co	BV	µCi total
AN102-RGN	01-1732	7.54E-02	3	4.68E-04	25.9	3.82

Table C.3. AN-102/C-104 Column Samples CMC Analytical Results Summary

AN-102/C-104 column run CMC Analytical data

Lead column, loading	phase							
Sample ID	CMC ID	Cs-137, uCi/mL	error, %	C/Co	% C/Co	BV	DF	
AN102/C104L-F0		161	3	1.00E+0				From ASR 6174
AN102/C104L-F2	01-01714	2.95E-04	5	1.83E-6	1.83E-04	13.2	5.46E+5	
AN102/C104L-F5	01-01715	2.55E-04	8	1.58E-6	1.58E-04	40.9	6.31E+5	
AN102/C104L-F8	01-01716	2.10E-04	6	1.30E-6	1.30E-04	67.1	7.67E+5	Maximum
AN102/C104P-F2	01-01717	1.40E-02	3	8.70E-5	8.70E-03	13.0	1.15E+4	
AN102/C104P-F6	01-01718	1.55E-02	2	9.63E-5	9.63E-03	48.7	1.04E+4	
AN102/C104P-F8	01-01719	1.21E-02	3	7.52E-5	7.52E-03	65.6	1.33E+4	
AN102/C104 comp	01-1733	1.42E-02	4.84	8.82E-5	8.82E-03		1.13E+4	composite
Feed Displacement								
Sample ID	CMC ID	Cs-137, uCi/mL	error, %	C/Co	% C/Co			
AN102/C104-FD-1	01-1721	1.73E-2	2	1.07E-4	1.07E-2			
AN102/C104-FD-5	01-1722	1.76E-3	2	1.09E-5	1.09E-3			
AN102/C104-FD-9	01-1723	1.81E-3	3	1.12E-5	1.12E-3			
AN102/C104-FDI-4	01-1724	1.88E-3	3	1.17E-5	1.17E-3			
AN102/C104-FDI-8	01-1725	7.03E-4	3	4.37E-6	4.37E-4			
Lead column, eluting	ohase							
Sample ID	CMC ID	Cs-137, µCi/mL	error, %	C/Co	BV			
AN102/C104LE-4DR	01-1726	4.63E+3	2	2.88E+1	3.43E+0			
AN102/C104LE-5DD	01-1727	8.52E+3	2	5.29E+1	4.41E+0			
AN102/C104LE-6DD	01-1728	1.13E+3	3	7.02E+0	5.38E+0			
AN102/C104LE-9DR	01-1729	3.43E+0	2	2.13E-2	8.33E+0			
AN102/C104LE-12D	01-1730	7.21E-1	3	4.48E-3	1.11E+1			
AN102/C104L-EDI2	01-1731	5.64E-02	2	3.50E-4				

AN-102/C-104	Cs IX Lead Colu	mn Breakt	hrough Curve	e Integratio	on			
Lead Col Bed V Lead Col Bed V Activity of Cs-1	/olume in AN102 /olume in 0.25 M 137 in Feed	2/C104 Fee I NaOH	d	= = =	9.9 10.4 161	mL mL uCi/mL		
								0 127
			Co 127			Midnoint		Cs-13/
	Processed Vol	Co 127	Conc	A Vol	C/C_{2}	Cone		$(\mu CI/IIL)$
Sampla	(mI)	C/Co	(uCi/mL)	(mL)	C/C0 Midnoint	(uCi/mL)	Aron (uCi)	Apolycic
AN102L-F1	48.4	-1.07E-6	-1 73E-4	(IIIL) 48.4	-1 07E-6	-1 73E-4	-8 36E-3	Allalysis
AN102L-F1	137.0	1 19E-6	-1.73E-4 1.92E-4	40.4 88 7	-1.07E-0 5 78E-8	9 30E-6	-8.50E-5 8.25E-4	2 95E-4
AN102L-F3	230.6	3 43E-6	5.51E-4	93.5	2.31E-6	3.72E-4	3.47E-2	2.751-4
AN102L-F4	330.9	1.29E-6	2.08E-4	100.4	2.36E-6	3.80E-4	3.81E-2	
AN102L-F5	425.9	5.43E-6	8.74E-4	94.9	3.36E-6	5.41E-4	5.14E-2	2.55E-4
AN102L-F6	516.7	4.07E-7	6.56E-5	90.9	2.92E-6	4.70E-4	4.27E-2	
AN102L-F7	607.1	3.41E-6	5.49E-4	90.4	1.91E-6	3.07E-4	2.78E-2	
AN102L-F8	697.4	-3.58E-8	-5.77E-6	90.3	1.69E-6	2.72E-4	2.45E-2	2.10E-4
AN-102/C-104 Cs IX Lag Column Breakthrough Curve Integration Lag Col Bed Volume in AN-102/C-104 Feed = 9.9 mL Lag Col Bed Volume in 0.25 M NaOH = 10.5 mL								
Activity of Cs-1	37 in Feed			=	= 161	uCi/mL		
			Cs-137			Midpoint		
	Processed Vol	Cs-137	Conc	Δ Vol	C/Co	Conc		
Sample	(mL)	C/Co	(µCi/mL)	(mL)	Midpoint	(µCi/mL)	Area (µCi)	
AN102P-F1	48.8	1.92E-4	3.10E-2	48.8	1.92E-4	3.10E-2	1.51E+0	
AN102P-F2	135.0	1.60E-4	2.57E-2	86.2	1.76E-4	2.83E-2	2.44E+0	
AN102P-F3	225.8	1.73E-4	2.79E-2	90.8	1.66E-4	2.68E-2	2.43E+0	
AN102P-F4	323.2	2.19E-4	3.52E-2	97.4	1.96E-4	3.15E-2	3.07E+0	
AN102P-F5	415.5	1.91E-4	3.08E-2	92.3	2.05E-4	3.30E-2	3.05E+0	
AN102P-F6	506.0	1.60E-4	2.57E-2	90.5	1.75E-4	2.82E-2	2.55E+0	
AN102P-F7	593.6	1.46E-4	2.35E-2	87.6	1.53E-4	2.46E-2	2.15E+0	
AN102P-F8	682.1	1.75E-4	2.81E-2	88.5	1.60E-4	2.58E-2	2.29E+0	
					sum throug	gh 67 BV	1.95E+1	μCi Cs-137

Table C.4. Integration Column Breakthrough

Table C.5. Cs Recovery in Eluate

AN-102 / C-104 Cs-137 Recovery in Eluate

Cs-137 loaded:	753 mL load volume
	161 uCi/mL Cs-137 concentration
	35 uCi left on column from AP-101DF run
	1.21E+5 uCi total loaded on the lead column

red peak

Eluate composite 02-0779

Effluent composite 02-0777

Ω	Isotope	µCi/mL	SpA, uCi/µg	µg/mL		Isotope	µCi/mL	SpA, uCi/µg	µg/mL	
11	Cs-134	<4.E-3	2194	<2.E-6	197 mL total eluate	Cs-134	<4.E-3	2194	<2.E-6	753 mL effluent volume
	Cs-137	665	87	7.644	131005 µCi total recovered	Cs-137	1.42E-02	87	1.63E-04	1.07E+1 µCi total recovered
					108% recovered Cs-137				:	8.8E-5% recovered Cs-137
					measured in					measured in effluent
					eluate composite					composite
	Thermal ioniz	ation mass s	pectrometry wei	ght percent d	listribution ratio					
	Sample #	02-0779	Cs eluate			Sample #	02-0779	Cs isotopic dist	ribution is	constant
		Cs-133	Cs-135	Cs-137		_	Cs-133	Cs-135	Cs-137	
	02-779	0.6040	0.1667	0.2293		02-779	0.6040	0.1667	0.2293	
	02-779 dup	0.6016	0.1674	0.2310		02-779 dup	0.6016	0.1674	0.2310	
	avg	0.6028	0.1671	0.2302		avg	0.6028	0.1671	0.2302	
	std	0.0017	0.00049	0.0012		std	0.0017	0.00049	0.0012	
	rpd	0.398	0.419	0.739	Sum	rpd	0.398	0.419	0.739	Sum
	Sample #	02-779	Cs eluate	—		Sample #	02-777	Cs effluent	-	
	µg/mL Cs	20.016	5.547	7.642	3.32E+1	µg∕mL Cs	4.27E-4	1.18E-4	1.63E-4	7.09E-4
	M Cs	1.50E-4	4.11E-5	5.58E-5	2.47E-4	M Cs	3.21E-9	8.78E-10	1.19E-9	5.28E-9

Appendix D

Analytical Data

Appendix D: Analytical Data

Sample Description	ASR	RPL ID	Sample Identification	Extended Sample Description
Batch Contact Testing				
Batch contact with	6130	01-1341	AN102/104-644-F/A	Batch contact with SL-644, no spike
SL-644 010319SMC-IV-73		01-1342 - 01-1343	AN102/104S-S1-644-F/A and duplicate	Batch contact with SL-644, 1E-3 M Cs spike
212-425 µm particle size		01-1342	AN102/104-S2-644-F/A	Batch contact with SL-6444, 5E-3 M Cs spike
H form resin		01-1345	ANC102/104-C-F/A	Batch contact control (no exchanger) unspiked
		01-1346	ANC102/104-S1C-F/A	Batch contact control (no exchanger) 1E-3M Cs
		01-1347	ANC102/104-S2C-F/A	Batch contact control (no exchanger) 5E-3 M Cs
Batch contact with IE-911		01-1348 - 01-1349	AN102-CST-F/A and duplicate	Batch contact with CST no spike
Na form resin		01-1350 - 01-1351	AN102-S3-CST-F/A and duplicate	Batch contact with CST, 1E-3M Cs spike
		01-1352 - 01-1353	AN102-S4-CST-F/A and duplicate	Batch contact with CST, 5E-3M Cs spike
		01-1354	AN102CST-C-F/A	Batch contact CST control, no spike
		01-1355	AN102CST-S3C-F/A	Batch contact CST control, 1E-3 M Cs spike
		01-1356	AN102CST-S4C-F/A	Batch contact with CST, 5E-3 M Cs spike
Column Run				
Initial Feed Sample, AN-102/C-104	6107	01-1014 01-1015	LS-12 and LS-13	AN102/C-104 filtrate composite/Cs IX feed
Initial Feed Sample, AN-102/C-104	6130	01-1345	ANC102/104-C-F/A	AN102/C-104 filtrate composite/Cs IX feed
Load - Elution samples	6174	01 - 1714 - 01 - 1716	AN102/C104L-F2, -F5, -F8	Lead column load samples
		01-1717 - 01-1719	AN102/C104P-F2, -F6, -F8	Lag column load samples
		01-1720	AN102/C104-F0	Feed sample
		01-1721 - 01-1723	AN102/C104-FD1, FD5, FD9	Feed displacement samples
		01-1724 - 01-1725	AN102/C104-FDI-4, FDI-8	Water rinse samples
		01 - 1726 - 01 - 1730	AN102/C104-LE-4-DR, -5D, -6D, -9DR, -12D	Lead column elution analytical samples
		01-1731	AN102/C104-EDI-2	Elution rinse sample
		01-1732	AN102/C104-RGN	Regeneration solution analytical sample
AN-102/C-104 effluent composite		01-1733	Fcomp#2	AN-102/C-104 Cs IX effluent composite (GEA)
AN-102/C-104 effluent composite	6281	02-0777	AN2-Tc-0-C	AN-102/C-104 Cs IX effluent composite
AN-102/C-104 Cs eluate	6281	02-0779	AN-102/C-104-CsE-Comp1	AN-102/C-104 Cs eluate analytical sample

Table D.1. Sample Identification

This page intentionally left blank

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report PO Box 999, Richland, Washington 99352

Project / WP#:	42365 / W57984
ASR#:	6107
Client:	R. Hallen
Total Samples:	14 liquids

RPL#:	01-01003	01-01016						
Client ID:	"LS-01"	"LS-14"						
Sample Preparation: PNL-ALO-128 (1mL/26mL or 1.2g/26mL)								

Procedure: <u>PNNL-ALO-211</u> , "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).							
Analyst: <u>D.R. Sande</u>	<u>tš</u>						
Analysis Date (File):	$\begin{array}{c} \underline{05-25-2001} & (A0676) \\ \underline{06-15-2001} & (A0682) \\ \underline{06-19-2001} & (A0684) \\ \underline{06-20-2001} & (A0885) \\ \end{array}$						
See Chemical Measurement Center 98620 file: <u>ICP-325-405-1</u> (Calibration and Maintenance Records)							
M&TE Number:	WB73520 (ICPAES instrument) 360-06-01-029 (Mettler AT400 Balance)						

9-20-01

Reviewed by

9-25-01 Conchr

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report

Fourteen liquid samples from Analytical Service Request (ASR) 6107 were prepared by acid digestion per PNL-ALO-128 in the Shielded Analytical Laboratory (SAL). The samples were prepared by using nominal 1.0 mL of sample and diluting to a final volume of about 26 mL. The final volume was calculated by using the mass and density of the resulting digestate.

In the ASR, Al, Ba, Ca, Cd, Cr, Fe, K, La, Mg, Mn, Na, Ni, P, Pb, and Sr were identified as analytes of interest for this work. The quality control (QC) results for each of these analytes have been evaluated and are presented below. Analytes other than those detected as part of the ICPAES analysis are reported, but have concentrations less than the method detection limit (MDL) and have not been fully evaluated for QC performance.

The attached ICPAES Results (9 pages; 2 pages from each of the analysis runs on 5-25, 6-19, and 6-20, and 3 pages from analysis run on 6-15) presents the final results. Results are from the direct measurement of the digestates, except for Na which required an additional 5x dilution to bring the Na concentration within the ICPAES linear range. The ICPAES measurement results are reported in $\mu g/g$ of liquid sample (as requested by the ASR) and have been corrected for all dilutions resulting from sample processing. It should be noted that the preliminary results reported were presented on a $\mu g/mL$ basis.

The following is a list of quality control measurement results relative to ICPAES analysis requirements of the controlling QA plan. A digestion processing blank, laboratory control sample (blank spike), matrix spike, and duplicate were prepared with the sample for each processing batch. The blank spikes was prepared by using 3 mL of a custom multi-element solutions "010514i901 and 010514i902" per 26 mL digestate volume, and the matrix spikes were prepared by using 1 mL of the same multi-element solutions.

Process Blank:

Concentration of analytes of interest measured in the three process blanks were all within acceptance criteria of \leq EQL (estimated quantitation level) or less than \leq 5% of the concentration in the sample.

Blank Spike (laboratory control sample):

The blank spike recovery for analytes of interest was within the acceptance criteria of 80% to 120%, except for Na for the 6-19-2001 analysis which recovered slightly high at 121%.

Duplicate RPD (Relative Percent Difference):

For those analytes of interest measured above the EQL, the RPDs were within the acceptance criteria of less than 20%. Even for analytes with concentration between the method detection limit (MDL) and the EQL, the RPDs are quite good, with only the Mg for LS-06 exceeding the 20% criteria.

Matrix Spiked Sample:

Matrix spike were prepared for LS-02, LS-06, LS-10, and LS-12. Except for Al and Na, which had spike concentration less than 20% of the sample concentration, the analytes of interest meet the matrix spike recovery criteria of 75% to 125%. Post spiking or serial dilution is required for the Al and Na.

Post-Spiked Samples (Spike A Elements):

Post spiking was performed on LS-02, LS-06 and LS-10. All post-spiked analytes of interest in samples tested were recovered within tolerance of 75% to 125%, except Al and Na. The post spike analysis uses a general spiking solution intended to be usable on the majority of sample analyzed by ICPAES. However, for the sample selected for post spiking, the spike concentration for Al and Na was less than 20% of the sample concentration and the recovery results are considered meaningless. For these analytes, the use of serial dilution results is required to evaluate potential matrix interferences.

Post-Spiked Samples (Spike B Elements):

The post spike recovery for La, which is the only Spike B analyte of interest, were within tolerance of 75% to 125%.

Serial dilution:

Serial dilution was required for Al, Na, Sr, since for these analytes the post spike concentrations were less than 20% of the sample concentration (i.e., recoveries could not be evaluated). These analytes demonstrated a percent difference (%D) within the acceptance criteria of $\pm 10\%$ after correcting for dilution for all the serial dilutions measured. In some case the samples were not have enough serial dilutions to be able to calculate the Na %Diff (i.e., at all dilutions except for the highest dilution, the Na was over range).

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- Detection limits (Det. Limit) shown are for acidified water. Detection limits for other matrices may be determined if requested. Method detection limits (MDL) can be estimated by multiplying the 'Multiplier' times the Detection Limit.
- 3) Routine precision and bias is typically \pm 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight). Note that bracketed values listed in the data report are within ten times instrument detection limit (adjusted for processing factors and laboratory dilutions) and have a potential uncertainty much greater than 15%.
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

Battelle PNNL/RSE/Inorganic Analysis... ICPAES Results

	Run Date=	5/25/2001	5/25/2001	5/25/2001	5/25/2001	5/25/2001	5/25/2001	5/25/2001
	Multiplier=	20.6	103.6	512.8	103.4	103.9	102.8	24.3
	RPL#=	01-1014-PB	01-1003	01-1003-D	01-1014	01-1014-D	01-1015	01-1016
								! !
	Client ID=	Process						
		Blank (ALO-						
Det. Limit		128)	LS-01	LS-01-Dup	LS-12	LS-12-Dup	LS-13	LS-14
ug/mL	Analytes	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g
0.060	A1	[4.0]	7,230	7,320	5,960	6,930	6,800	1,180
0.010	Ba	-						
0.250	Ca		[160]	[150]	[130]	[120]	[120]	[34]
0.015	Cd		22.7	[23]	22.9	22.2	22.1	3.96
0.020	Cr		89.2	[89]	94.0	93.2	91.2	15.8
0.025	Fe		[7.3]		[3.2]	[3.2]	[3.3]	[1.3]
2.000	ĸ		[720]		[710]	[680]	[690]	[130]
0.050	La							
0.100	Mg							
0.050	Mn							
0.150	Na	48.2	95,700	99,400	91,100	91,400	90,200	22,900
0.030	Ni		165	167	163	162	158	27.8
0 100	p		685	670	667	656	638	99.3
0.100	Ph		(61)		(55)	1521	[51]	[13]
0.015	Sr.				74.5	74.5	73.0	15.2
0.015	Other Analytes			l	1 14.5	14.0		1 13.2
0.005	Other Analytes	r · · · · · · · · · · · · · · · · · · ·	r	T	1	T	r	· · · · ·
0.025	Ag							
0.250	As							
0.050	<u> </u>	39.4	63.1	[60]	58.8	59.3	57.5	87.0
0,010	8e							
0.100	Bi							
0.200	Ce							
0.050	Co							
0.025	Cu		[3.7]		[6.7]	[6.1]	[6.0]	[0.94]
0.050	Dy							
0.100	Eu							
0.030	Li							
0.050	Mo		[19]		[20]	[19]	[19]	[5.0]
0.100	Nd							
0.750	Pd							
0.300	Rh							
1.100	Ru							
0.500	Sb							
0.250	Se							
0.500	Si	[81]	[160]		[160]	[160]	[160]	669
1.500	Sn							
1,500	Te							
1 000	ТЬ				<u> </u>			
0.025	<u>+</u> ті	+						
0.023	TI							
0.500	+						+	
2.000							+	
0.050	V		+	+				<u> </u>
2.000	W							
0.050	Y				15 51		15 E1	
0.050	Zn				[5.5]	[D.4]	[5.5]	+ <u>.</u> [2.2]
1 0.050	Zr	- +-	1	· · ·	I		1	· · · · · · · · · · · · · · · · · · ·

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (tcp of each column). D,0

QC Performance 5/25/2001

				75%-	75%-	75%-			-	
Criteria>	<20%	<20%	80% - 120%	125%	125%	125%	< +/-10%	< +/-10%	< +/-10%	< +/-10%
									_	
QC ID=			010514i901		01-1014 +	01-1014 +	01-1003	01-1014	01-1015	01-1016
	01-1003 &	01-1014 8	0105141902	01-1014 MS	Post Sniko A	Post Spike B	erial Dil	@9/@25 Serial Dil	Serial Dil	Serial Dil
A			203/63 9/ Ref	W 200	W Doc	%Pac	%Diff	%Diff	%Diff	%Diff
Analytes	RPD (76)	RPD (%)	70 REC		nr		-0.5	-0.2	-0.9	2.0
AI Ra	3.4	0.0	90.7	98.8	102.8	ļ	-0.0	<u> </u>		
	11	0.4	95.6	102.2	104.1	·	<u>†</u>		-··	<u> </u>
C4	21	27	95.2	102.2	103.1					
<u> </u>	23	0.5	96.0	101.8	105.4					
 	<u></u>	1.8	98.5	104.0	108.1		1	<u> </u>		
<u>к</u>	h	4.0	93.3	98.5	97.9					·
,	<u> </u>		92.7	98.4	1	98.4		1	· · · · · · · · · · · · · · · · · · ·	
Ma		<u></u>	98.2	106.6	111.3			1		
Mn	<u> </u>	1	98.8	106.9	109.7		<u>+</u>		· · · ·	1
Na	6.0	0.9	97.4	n.r.	n.r.	<u> </u>	-2.4	-1.7	-2.8	4.1
Ni	3.3	0.3	97.6	106 3	108.4		1			
P	0.1	1.3	95.0	101.9	102.1	· · · ·	1			
Pb		3.4	97.7	103.1	105.8					
Sr		0.5	95.7	105.3	103.0					
Other Ana	lytes		<u></u>			···				
Ag			91.2	97.3	100.4					
As					105.3			·		ļ
В	3.3	1.2			106.5					
Be					104.0			<u> </u>	<u> </u>	<u> </u>
Bi			95.4	100.1	103.6			· .		
Ce						99.1		ļ		<u> </u>
Co				<u> </u>	109.5	<u> </u>	1			4
Cu		8.3	97.7	100.9	107.4	<u> </u>			·	ļ
Dy			<u> </u>	ļ		101.7		<u> </u>		
Eu	l			<u> </u>		109.0	<u> </u>		∔	·
Li			··	<u> </u>	102.2	- 				
Mo	ļ	1.0		ļ	105.2				<u> </u>	
Nd	1		92.5	96.1		98.2		<u> </u>	+	
Pd			93.9	93.0	.	89.7		-}		
Rh		<u> </u>	94.7	93.3		97.4	·			+
Ru	<u> </u>	<u></u>	91.5	.						
Sb		<u> </u>			102.5			+		-+
Se				105.0	108.4			- <u></u>	+	
<u>Si</u>		- 41	124.5	105.8	121.4			· · · · · -	+	-
Sn -								<u> </u>		
Te				-		1023	- 			
Th Th				06.2	101.1	102.0				
			92.9	90.2	104.0		- <u> </u>			-
F			62.4	63.0	104.0	0.60	+	+	· _ · _	1
			92.9						•	
V								+		<u> </u>
					100 7		-			-
7		1.8	96.6	192.0	105.8	-		-		
7.		1.0	96.2	102.0	105.2					
1 41	4		00.2	1					<u> </u>	

n.r. = not recovered; spike is less than 20% of sample concentration.
Battelle PNNL/RSE/Inorganic Analysis.... ICPAES Results

Page	1	of	3	
------	---	----	---	--

_	Run Date≖	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001
			19.6	20.3	20.1	20.3	20.0	20.1	19.9	19.1
	Multiplier=	1.0	(Na98.2)	(Na101.7)	(Na100.3)	(Na101.3)	(Na100.0)	(Na100.6)	(Na99.6)	(Na95.6)
	RPL#=	01-1004-B	01-1004	01-1004-D	01-1005	01-1005-D	01-1006	01-1006-D	01-1007	01-1007-D
		Process								1
Dot Limit	Client ID≃	128)	1.5-02	I S-02 Dup	1.9-03	1 S-03 Dup	1 5.04	LS-04 Dup	I S-05	LS-05 Duo
Det. Chint	Analytes	voto	10.02	unia			unla	ua/a	ua/a	ua/a
0.060	Analytes	17.5	6710	6750	6 500	6.570	6,800	6.640	6.750	6.830
0.000	Ba		0,710		0,000		0,000			
0.010	Ca	(5.9)	119	121	105	108	117	113	114	116
0.015		[0.0]	20.9	21.0	20.1	20.3	21.0	20.7	20.9	21.1
0.015			76.7	77.5	80.4	80.8	84.0	82.3	83.9	85.0
0.025	Fe	[1 1]	[4 7]	[4.6]	[2,6]	[2.4]	[2,6]	f2.61	[2.6]	[2,4]
2 000	ĸ		814	824	809	816	841	815	817	828
0.050	1.2		[2 2]	(2.3)						
0.000	Ma	···				[2.2]	[2.3]			
0.050	Mg Mg									
0.150	Na	61.1	89.900	90.900	86.200	87.600	91.000	90,200	91,500	92,000
0.030	Ni		145	147	143	143	148	145	148	149
0,100	P		631	638	624	628	647	634	641	648
0.100	Ph		57.5	58.4	42.5	42.2	46.2	45.3	46.0	46.4
0.015	Sr		161	168	100	102	95.5	91.0	84.9	83.5
0.010	Other Analyte	<u> </u>	101		1				<u>.</u>	•
0.025										
0.025	Δs									
0.050	B	27.9	64.4	75.5	60.1	93.5	95.3	58.7	53.5	65.1
0.000	Be									
0.100	81		[2,4]	[2,2]						
0.200	Ce									
0.050	<u> </u>		[1.5]	[1.5]	[1.5]	[1.5]		[1.5]	[1.5]	[1.5]
0.030	Cu		[4 3]	[4.3]	[4.2]	[4.2]	[4,4]	[4.2]	[4.3]	[4.3]
0.050					· · · ·					
0.000	Fu									
0.030	11									
0.050	Mo		17.6	17.7	17.3	17.4	18.1	17,7	18.1	18.2
0.100	Nd		(6.8)	[7.0]	[3.5]	[3.4]	[3.2]	[3.1]	[2.9]	[2.9]
0.750	Pd									
0.300	Rh									
1 100										
0.500	Sb.									
0.250	Se									
0.500	Si	103	243	259	217	295	372	228	192	213
1 500	Sn Sn									
1 500	TP									
1.000	Th									
0.025	<u>ті</u>									
0.520	<u>т</u>									
2 000				<u> </u>						
0.050	<u> </u>									
2 000	w									
0.050				<u> </u>						
0.050	70	[1 1]	[2.2]	[2.0]	[1.4]	[1.1]	[1.1]	[1.5]	[1,4]	[1.3]
0.050	Zr		[2.0]	[2 0]		<u> </u>				

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

QC Performance 6/15/2001 - RPDs and LCS/BS Recovery

Criteria>	<20%	<20%	<20%	<20%	80% - 120%
					010514i901
QC ID=	01-1004 &	01-1005& 01	01-1006 &	01-1007 &	010514i902
	01-1004D	1005D	01-1006D	01-1007D	LCS/BS
Analytes	RPD (%)	RPD (%)	RPD (%)	RPD (%)	%Rec
AI	3.9	1.0	1.0	2.8	112.0
Ba					99.0
Ca	2.7	3.3	2.2	3.8	99.7
Cd	3.9	0.8	0.1	2.5	99.2
Cr	3.5	0.6	0.6	2.9	99.2
Fe	7.3	4.9	2.9	8.0	101.2
к	3.4	0.9	1.8	3.0	101.7
La	0.5		<u></u>		98.4
Ma					101.2
Ma		······			102.4
Na	11	1.6	0.9	0.5	119.2
Ni Ni	34	0.6	0.5	2.5	99.5
	3.4	0.7	0.0	2.6	98.0
Dh	20	0.7	0.0	2.0	100.6
	2.9	1.0	2.0	0.1	00.0
Sr	0.6	1.9	3.4	0.1	99.0
Other Analyt	es	T	1	T	500 (81)
Ag				¦	59.3
As					
В	11.4	43.5	46.2	21.2	
Be	l				
Bi	13.9	ļ	 	ļ	98.9
Ce		1		1	L
Co	0.5	2.0	0.2	1.6	
Cu	4.2	0.7	2.5	3.5	100.0
Dy					
Eu					
Li		1			
Mo	3.5	0.4	0.8	2.6	
Nd	2.0	3.6	0.0	0.1	
Pd			· · · · ·		99.5
Rh	1	1	1	1	100.2
Ru	<u> </u>	<u> </u>	1	+	96.4
Sh	+			1	
<u> </u>					-
e:	20	30.5	46.8	12.2	159.1
51	2.0			1	
		+			+
10		- <u> </u>			<u> </u>
	<u> </u>				05.0
					90.9
TI					
ļ	ļ				
<u> </u>					_{
W				l	. <u> </u>
Y					
Zn	16.3	22.9	30.7	0.9	98.2
Zr	2.0				98.7

Shaded results exceed acceptance criteria

Bold and unshaded RPDs indicate one or both results <EQL.

QC Performance 6/15/2001- MS & PS Recovery and %Diff

Criteria>	75%-125%	75%-125%	75%-125%	< +/-10%	< +/-10%	< +/-10%	< +/-10%
		01-1004 +	01-1004 +	01-1004	01-1005	01-1006	01-1007
QC ID=		Post Spike	Post Spike	@1/@5	@1/@5	@1/@5	@1/@5
	01-1004 MS	A	В	Serial Dil	Serial Dil	Serial Dit	Serial Dil
Analytes	%Rec	%Rec	%Rec	%Diff	%Diff	%Diff	%Diff
AI	n.r.	n.r.		3.7	1.4	2.2	2.7
Ba	93.0	95.3					
Ca	98.5	97.7					
Cd	96.7	99.6			ļ	! 	
Cr	91.5	99.1			1		
Fe	97.2	99.3					
<u>к</u>	96.1	96.0					
La	95.6		97.0			ļ	
Mg	99.3	103.4			ļ.,		
Мл	103.4	103.3					
Na	n.r.	n.r.		. n.m.	n.m .	n.m.	n.m.
Ni	88.5	99.0					
Р	95.5	96.4	l			 .	
Pb	97.8	100.3			ļ		
Sr	n.r,	99.3			<u> </u>		
Other Analyt	tes						
Ag	95.7	96.1					
As		100.2					
8		99.6	l				
Be		97.6					
Bi	96.6	97.7					
Ce			98.7				
Ço		101.1				· · ·	
Cu	96.8	100.0				İ	
Dy			98.5				
Eu			105.7	İ		<u> </u>	
Li		98.2					
Mo	1	98.0					
Nd			99.8				
Pd	103.0		91.1				
Rh	101.6		96.2				
Ru	105.0						
Sb		97.8	<u> </u>				.
Se		99.9					ļ
Si	120.1	107.2			ļ	ļ	
Sn					1		
Те							
Th			98.1	ļ			<u> </u>
Ti	91.1	93.2			<u> </u>		
TI		95.4			<u> </u>		
Ų	95.9		96.6				<u> </u>
V		94.4					
W							
Y		96.0					
Zn	98.6	102.1			ļ		
Zr	97.4	97.6		1	1		

Shaded results exceed acceptance criteria

n.r. = not recovered; spike concentration less than 20% of sample concentration

n.m. = not measured; insufficient dilutions prepared to evaluate %Diff.

Battelle PNNL/RSE/Inorganic Analysis.... ICPAES Results

[Run Date≕	6/19/2001	6/19/2001	6/19/2001	6/19/2001	6/19/2001	6/19/2001	6/19/2001	6/19/2001	5/19/2001
			20.1	20.1	21.1	20.5	20.8	20.5	19.9	19.4
	Multiplier=	20.3	(Na100.3)	{Na100.6}	(Na105.4)	(Na102.6)	(Na103.9)	(Na102.3)	(Na99.4)	(Na97.2)
		Î								
	RPL#=	01-1008-B	01-1008	01-1008-D	01-1009	01-1009-D	01-1010	01-1010-D	01-1011	01-1011-D
	Client ID=									
Det. Limit		Proc. Blk	LS-06	LS-06	LS-07	LS-07	LS-08	LS-08	LS-09	LS-09
ug/mL	Analytes	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g
0.060	AI	[4.6]	7,180	5,990	6,640	6.670	6,840	6,960	6.610	6,600
0.010	Ba	[0.22]	[0.23]			[0.22]		[0.23]		[0.27]
0.250	Са		127	122	120	123	122	125	122	120
0.015	Cd		22.4	21.8	21.1	20.9	21.4	22.0	20.8	20.6
0.020	Cr		90.3	88.5	85.2	84.3	87.0	88.6	84.5	84.2
0.025	Fe	[0.65]	[3.2]	[2.7]	[4.6]	[4.7]	[5.0]	5.83	[4.8]	[4.8]
2.000	ĸ		895	864	817	794	798	812	769	768
0.050	La				[1.2]					
0.100	Mg		[2.7]	[2.1]		[2.1]			12.11	
0.050	Mn									
0.150	Na	46.5	98,700	97,200	92,500	92,500	94,500	97,600	93,800	94,200
0.030	Ni		159	156	149	147	152	154	147	147
0.100	P		665	649	629	622	610	614	622	620
0,100	<u>р</u> ь		49.4	493	46.5	43.7	45.8	46.4	44.4	44.2
0.015	<u> </u>		976	40.3	40.5	43.7	45.0	43.4	150	161
0.013	Other Applutes		07.0	003	103	100	174	170	100	101
0.025		, Г	···	T	1	ı	r	I	1	
0.025	Ag									
0.250	AS				-					
0.050	8	36.7	104	52.4	43.5	88.0	43.4		70.7	65.0
0.010	Be									
0.100	<u>8i</u>		[2.9]	[2.6]	[2.6]					
0.200	Ce									
0.050	Co		[1.7]	[1.7]	[1.6]	[1.4]	[1.5]	[1.5]	[1.4]	[1.4]
0.025	Cu		[4.7]	[4.5]	[4.4]	[4.2]	[4.4]	[4.5]	[4.3]	[4.3]
0.050	Dy									
0.100	Eu									
0.030	Li		[0.61]	[0.63]						
0.050	Mo		19.0	18.8	17.9	17.5	18.1	18.5	17.6	17.6
0.100	Nd		[4.4]	[4.5]	[4.8]	[3.4]	[3.4]	[3.5]	[3.2]	[3.1]
0.750	Pđ									
0.300	Rh									
1.100	Ru									
0.500	Sb									
0.250	Se								-	
0.500	Si	[86]	385	206	199	317	220	268	300	245
1,500	Sn									
1 500	Te									
1 000	<u>ть</u>							t		
0.025	Ti			<u>+</u>						
0.023	T t			+·····································						
2 000			+	I INO						
2.000					<u> </u>	+				
0.050	V									
2.000	V									+·
0.050	¥					10.41	 [[()]	[4.2]		14 51
0.050	Zn	[1.1]	[1.6]	[1.7]	[3.9]	[3.4]	[4.2]	[4.Z]	<u> </u>	[+.0]
0.050	Zr	i	[1.2]	[1.1]	[1.1]					

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column). D.11

QC Performance 6/19/2001

				T	I	759/	769/	75%	
Criteria>	<20%	<20%	<20%	<20%	80% - 120%	/ 5%- 125%	125%	/ 5%- 125%	< +/-10%
					010514i901		01-1008 +	01-1008 +	01-1008
QC ID=	01-1008 &	01-1009 &	01-1010 &	01-1011 &	010514i902	01-1008	Post	Post	@1/@5
	01-1008D	01-1009D	01-1010D	01-1011D	LCS/BS	MS	Spike A	Spike B	Serial Dil
Analytes	RPD (%)	RPD (%)	RPD (%)	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Diff
AI	2.8	0.5	1.7	0.1	111.0	n.r.	n.r.		2.8
Ba	1				99.2	92.6	101.9		
Ca	4.3	2.0	2.6	1.3	99.7	96.7	102.5		
Cd	2.5	0.7	2.4	0.8	97.9	95.1	103.3		
Cr	2.0	1.1	1.8	0.3	97.8	89.8	104.5		
Fe	17.6	1.9	14.9	0.5	101.3	96.6	105.0		
ĸ	3.6	2.5	1.8	0.0	99.6	95.4	100.6		
La		· · · · · · · · · · · · · · · · · · ·	1		98.2	97.6		100.5	
Mg	25,1		· · · · · · · · · · · · · · · · · · ·		100.9	97.5	108.4		
Mn					100.9	101.1	107.4		
Na	1.5	0.0	3.2	0.4	121.1 3	n.r.	n.r.		່ ຄ.m.
Ni	1.9	1.4	1.5	0.1	99.9	84.2	109.4		
P	2.4	1.1	0.6	0.4	96.1	91.7	102.0		
Pb	2.3	6.2	1.3	0.5	102.3	99.4	107.8		
Sr	1.5	0.1	2.0	0.4	99.4	94.1	104.3		
Other Analyt	tes				,	1	1		· · · · · ·
Aq	1			I	55.3	94.1	991		
As		1		[103.6	·	
B	66.2	67.7	45.5	8.3	<u> </u>		105.3		
Be					-	·	100.9		<u> </u>
Bi	10.3				96.0	93.4	99.8		
Ce	10.0		·}					102.7	
<u> </u>	0.3	12.6	0.7	0.7			107.6		
<u> </u>	5.6	4.5	17	0.3	99.4	95.8	105.3	-	
		· · · ·	····					102.0	
<u> </u>		<u> </u>	<u> </u>		+	<u>+</u> · · · ·		109.7	
<u> </u>	10.8						102.3		· ····
Mo	14	2.5	1.9	0.3	1		103.8		
Nd	3.0	33.6	12	1.7	1			102.9	
Pd					97.0	97.6		88.2	<u> </u>
					97.8	99.8	1	100.8	<u> </u>
Ru	+	+		1	96.0	104.6	+		
Sh			· · · · · · · · · · · · · · · · · · ·				101.5		
<u> </u>	+	+			1	+	104.4	<u> </u>	1
<u>3e</u>	60.5	45.8	19.6	20.0	154.8	96.9	114.4		· · · · · · · · · · · · · · · · · · ·
 		+					1	-	1
		+				• • •	•		<u> </u>
<u>ть</u>				-			+	103.1	·
<u></u> τ;		+			96.0	91.4	99.0		1
TI			+	<u> </u>		1	101.2		
			- <u> </u>		96.9	94.4		99.0	
				+•	+		98.7	1	- <u>+</u>
V		+		·		-	1		- <u> </u>
				+			98.5		
	70	42.0	0.4	2.8	99.5	100.4	108.4	+	
	3.0	13.0		2.0	98.0	98.1	103.6		<u> </u>
į Zr	3.4	1	1	1		1 20.1	100.0	1	<u> </u>

Shaded results do not meet QC acceptance criteria.

n.r. = not recovered; spike is less than 20% of sample concentration.

Bold and unshaded RPDs indicate one or both results <EQL.

n m. = not measured; insufficient dilutions prepared to evaluate %Diff

D.12

Battelle PNNL/RSE/Inorganic Analysis... ICPAES Report

	Run Date=	6/20/2001	6/20/2001	6/20/2001	6/20/2001	6/20/2001
			21.3	20.3	21.1	21.2
	Multiplier=	1.0	(Na106.7)	(Na101.4)	(Na105.5)	(Na105.8)
	RPL#=	01-1012-B	01-1012	01-1012-D	01-1013	01-1013-D
	Client ID=					···· · ·······························
Det. Limit	Uncirt in-		LS-10	LS-10	LS-11	LS-11
ug/mL	Analytes	ug/g	ug/g	ug/g	ug/g	uq/q
0.060	AI	[0.17]	6,580	6,540	6.590	6.600
0.010	Ba	[0.011]			[0.21]	
0.250	Ca		118	117	120	120
0.015	Cd	[0.016]	21.2	21.1	21.2	21.2
0.020	Cr		85.1	85.1	88.1	88.7
0.025	Fe	[0.028]	4.81	[4,9]	[4.6]	[4.7]
2.000	ĸ		795	789	784	780
0.050	La					
0.100	Ma					
0.050	Mn					
0.150	Na	2.23	90,100	88,500	90,600	90,700
0.030	Ni		147	146	149	149
0.100	Р		616	614	586	587
0.100	Pb		46.9	46.2	47.2	47.3
0.015	Sr		129	128	113	113
	Other Analytes			1		
0.025	Ag					
0.250	As					
0.050	B	1.68	54.8	52.6	58.5	52.9
0.010	Be	1.00				
0.100	8i	10.151	[3.5]	[2 3]	[2 3]	
0.200	Ce		[0:0]	(2.0)		
0.050	Co		[1.5]	(16)	[1.6]	[1.5]
0.025	Cu		5.51	5.40	6.46	6.39
0.050	Dv					
0 100	 F1					
0.030	<u> </u>					
0.050	Mo		17.6	17.4	17.6	17.8
0.100	Nd	· · ·	[3.9]	[4 1]	13.81	13.91
0,750	Pd					
0.300	Rh					
1 100	Ru					
0.500	Sh					
0.250	Se Se					
0.500	Si	[3 1]	208	189	202	185
1,500	Sn Sn					
1.500	Te					
1.000	Th			<u> </u>		
0.025	† τi					
0.500	ТІ					
2.000			· · · ·	·	-	
0.050	v v					
2,000	w					
0.050	+					_
0.050	Zn	[0.054]	15.01	[5.0]	[5.3]	[5.2]
0.050	Zr		[1,1]	[1.1]	[1.1]	[1.1]

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

QC Performance 6/20/2001

		1			1	
Criteria>	<20%	80% - 120%	75%-125%	75%-125%	75%-125%	< +/-10%
QC ID=	01-1013 & 01-1013 D	01-1012-BS	01-1012 MS	none + Post Spike A	none + Post Spike B	01-1013 @1/@5 Serial Dil
Analytes	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Diff
AI	0.0	106.3	n.r.			2.8
Ba		110.1	86.7		·····	
Ca	0.0	111.7	90.3			
Cd	0.1	111.4	87.8			
Cr	0.2	112.6	79.9			
Fe	7.3	115.6	90.5			
к	3.5	111.2	87.3			
La			90.1			
Mg		118.7	92.5			
Mn		116.1	93 0			
Na	0.2	101.7	n.r,			n.m,
Ni	0.1	117.7	78.1			
Р	0.1	110.0	80.4			
Pb	2.8	116.0	89.6			
Sr	0.0	111.3	n.r.			3.7
Other Analyt	es					
Ag		107.1	88.4	.		
As		109.2				
В	59	n.r.				3.4
Be		108.5				
Bi		111.0	87.5			
Ce						
Co		114.5				
Cu	2.7	114.0	88.5			· • ·· ·
Dy						
Eu				ļ		
Li		114.9				
Mo	07	<u> </u>				4.7
Nd						
Pd	<u> </u>	 	90.6		·	
Rn R	}		92.2			
Ru eL	<u></u>	<u> · · · · · · · · · · · · · · · · · · ·</u>	90.0			
50		100.4	4			
<u>se</u>	6.2	1094	077	1		<u> </u>
<u> </u>	0.0					
<u>ть</u>			<u> </u>			
Th				···		
Ti	· · · · · · · · ·	<u> </u>	85.0	+		
TI		108.8			<u>+</u>	
			893		<u> </u>	
V v		105.8	00.0		· · · · · · · · · · · · · · · · · · ·	:
w			+ • · · · · · · · • • • •		-	
		106.4		<u> </u>		
Zn	0.5	119.0	91.6		· · · · · · · · · · · · · · · · · · ·	
Zr		· · · · · · · · · · · · · · · · · · ·	91.6		ļ · · ·	
L	A	<u> </u>	·	4		

Shaded results exceed acceptance criteria

Bold results for information only; LCS or Serical Dilution concentration less than EQL.

n.r. = not recovered; spike concentration less than 20% of sample concentration

n/a = not applicable; KOH flux and Ni crucible used for preparing samples.

.

Battelle PNWD

PO Box 999, Richland WA 99352

Analytical Chemistry Group (ACG)

ICP/MS Data Analysis Report

Revision 2

Project / WP#:	42365 / W57984
ASR#:	6107
Client:	Rich Hallen
Total Samples:	4

RPL #	Client ID
01-1014	LS-12 -
01-1015	LS-13
01-1016	LS-14
01-1017	LS-16

Procedure: PNL-ALO-280 Rev. 1, Inductively-Coupled Plasma Mass Spectrometric (ICP-MS) Analysis

M&TE Number:	WB36913 512-06-01-014	ICP/MS, VG Elemental Mettler AJ100 Balance
Analyst:	James P Bramson	
Analysis Dates:	9/12/01, 9/25/01, 9/2	6/01, 9/28/01, 10/1/01
Analysis Files:	Experiment - 12SEP(01OCT01 Procedure - 010912a Element Menu - CsT	01, 25SEP01, 25SEP01b, 26SEP01, 28SEP01, , 010925a, 010925b, 010926a, 010928a, 011001a cRb, UNp, Uiso Pu, multi, Tc

Revised Report Date: 3 February 2004

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

by <u>3 Atbo4</u> Date By By <u>Alomas</u> Revised By Quell'I on Reviewed By

ASR6107 Narrative Rev2

2.1

Page 1 of 4

Revision 1	Effective Date January 2004	Description of Change Text has been added in the appropriate narrative section(s) to address issues surrounding the use of biased standards prepared and provided by the RPL Standards Laboratory to the ICP-MS analytical laboratory (reference: project #98620, memo KN Pool to GH Beeman, 9/15/03).
2	February 2004	Text has been added in the appropriate narrative section to include Pu-240 when addressing issues surrounding the use of biased standards (reference: project #98620, memo KN Pool to GH Beeman, 9/15/03).

1. Analysis

Four samples, 2 filtrates, 1 wash composite, and 1 solid prepared by the RPG, were submitted for analysis and analyzed on a radioactive material-contained ICP/MS. The filtrates and wash composite were analyzed for Tc-99. The solids were analyzed for total U, U isotopes, Pu-239 and 240, Np-237, and Ru, Rh, and Pd.

See attached ICP/MS data reports for final results and run order for the analytical batch. The final results have been corrected for all client dilutions and laboratory dilutions performed on the sample during analysis. A process blank, blank spike, duplicate, and matrix spike were also submitted and analyzed with the samples. In addition, replicate and post spike analyses were also performed.

The analysis for Ru, Rh, and Pd was difficult due to the isobaric interferences of SrO isotopes and masses common to both Ru and Pd, and the potential mixture of natural and fission yield isotopic abundances. Some of the sample concentrations were also very near detection limit.

2. Quality Control

<u>Duplicate (DUP)</u>. The RPDs for all analyses (duplicate and replicate) were < 15%, with the exception of the solids duplicate analysis for Ru, Pd, and Tc-99. The problem with the Ru and Pd was most likely due to the difficulties mentioned above. The Tc-99 concentrations were very near the detection limit.

<u>Matrix Spike (MS)</u>. The MS recoveries for all post spike analyses were within 75% to 125% with the exception of Ru. The analytical lab only had MS information for Ru, Rh, and Pd to calculate recovery, none of which met the QC criteria. The reason for the MS failure is suspected to be due to insufficient spiking level, that is, the MS concentration was less than the EQL (10XMDL).

<u>Process Blank (PB) and Blank Spike (BS).</u> The PBs were all below or near detection. The recovery of the blank spikes met the QC criteria for LCS recovery of 80% to 120%.

<u>Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB).</u> The ICB and CCB standards are a 1% high purity nitric acid solution used as the diluent for the samples, except for the Pu analysis, where the eluent for the Pu separation was used. The ICB and CCB standards were at or below the instrument detection level except for the Pu analysis, where the standards were above detection level but 2 to 7 orders of magnitude below the sample concentrations.

<u>Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV)</u>. Recoveries of the ICV and CCV standards were within 90% to 110%.

Internal Standard (IS). The ISs were within the range of 30% to 120%.

Analytical results generated were influenced by an identified bias in the calibration and calibration verification standards. The effect on the results, based on the observed bias, will widen the error band for these results:

- The bias in the standards caused results for Tc-99 to be biased low for this report. The error band that should be applied to these results is -10% to +30%.
- The bias in the standards caused results for Np-237 to be biased high for this report. The error band that should be applied to these results is -20% to +10%.
- The bias in the standards caused results for Pu-239 to be biased low for this report. The error band that should be applied to these results is -10% to +20%.
- The bias in the Pu-239 standards, which were used to quantify Pu-240, caused results for Pu-240 to be similarly biased (low) for this report. The error band that should be applied to these results is approximately -10% to +20%.

*. .

Battelle, PNNL, AIAL ICP/MS Analysis Data Report

۰.

Client: R.Hallen WP/Project: W57984 / 42365 ASR/Log-In: 6107, 01-01014 to 01-01016 Report Date: 2/9/02

Analyst: Albrown 2/25/02 Reviewed by: mip 2/4/02

Unless otherwise specified; the results are reported in µCi analyte/g of original sample.

RPL Log-In #	Sample ID	ICP/MS ID	MÐL	To	: 99)	Rec/RPD
-			µCi/g	μCi/g	±.	1SD	%
	1%HNO3 `	ICB		2.05E-09			
	1%HNO3	CCB1		2.80E-09			
	1%HNO3	CCB2		2.35E-09			
	1 % HNO3	CCB3		3.48E-09			
	1%HNO3	CCB4		3.51E-09			
•	· · · · · · · · · · · · · · · · · · ·	معرين بيفعونا					
	True Value			1.70E-06	<u>ا</u>	0.405.00	0.5.0/
				1.62E-06	±	3.43E-08	95%
				1.625-06	* 	4.016-08	33%
				1.002-00	- -	4.230-03	107%
		CCV3		1.675-06	⊥ +	3 745.08	98%
	UUV4	CC V4	÷	1.072-00	÷	5.742-00	5070
01-01014-PB	PROCESS BLANK	Sample14	7.16E-07	3.19E-06	土	1.69E-07	
01-01014-PB	PROCESS BLANK post spike	Sample15	8.46E-07	4,70E-04	±	9.08E-06	
Post Spike Concer	ntration expected			4.12E-04			113%
01-01014-BS-2	BLANK SPIKE	Sample16	1,66E-06	5.16E-04	±	9.12E-06	
01-01014	LS-12	Sample17	1.50E-05	6.29E-02	±	2.09E-03	
01-01014	LS-12 replicate	Sample18	1.52E-05	6.30E-02	±	4.24E-04	0.2%
01-01014-Dup	LS-12-Dup	Sample19	1.53E-05	6.26E-02	±	1.94E-04	0.3%
01-01015	LS-13	Sample20	1,54E-05	6.03E-02	±	9.02E-04	
01-01015	LS-13 post spike	Sample22	1.56E-05	6.59E-02	±	2.76E-04	
Post Spike Concer	ntration		-	6.97E-03			80%
01-01015-MS-2	LS-13 ICP/MS MS	Sample23	1.55E-05	6.10E-02	±	7.72E-04	
01-01016	LS-14	Sample21	8.95 <u>E-0</u> 6	1.20E-02	±	3.08E-04	

MTE: ICP/MS VG (WB36913), Mettler 512-06-01-014 Procedure: PNL-ALO-280 Rev. 1 Analysis Date: 9/12/01 Instrument Filenames: Experiment (12SEP01), Procedure (010912a), Element Menu (CsTcRb) D.19

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Client:	R. Hallen	Charge Code/Project:	W57984 / 42365
RPL Numbers:	01-01014 to 01-01017	ASR Number:	6107
Analyst:	MJ Steele	Analysis Date:	July 19/20/31, 2001

Procedure: PNL-ALO-381, "Direct Determination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method"
 M&TE: Carbon System (WA92040); Balance (360-06-01-023)

	Liquid	TIC	TIC	тос	тос	TC	TC
RPL #	Sample ID	ugC/mL	RPD	ugC/mL	RPD	ugC/mL	RPD
01-01014	LS-12	8,540		12,000	1	20,500	
01-01014 Dup	LS-12	8,550	0%	12,200	2%	20,700	1%
01-01015	LS-13	7,930		11,500	1	19,400	
01-01015 Dup	LS-13	7,680	3%	11,400	1%	19,100	2%
01-01015 Trip	LS-13	8,700	· · · · · · · · · · · · · · · · · · ·	12,100		20,800	
01-01016	LS-14	1,500		3,140	ĺ	4,640	
01-01016 Dup	LS-14	1,500	0%	3,030	3%	4,540	2%
01-01016 MS	Recovery	101%		99%	 	100%	
BS-LCS (07-19-01)	Recovery	102%		106%		i	
BS LCS (07-20-01)	Recovery	103%		102%		<u> </u>	; ;
	Solid	TIC	TIC	тос	тос	тс	тс
RPL #	Sample ID	ugC/g	RPD	ugC/g	RPD	ugC/g	RPD
01-01017	LS-16	18,500		6,190		24,700	
01-01017 Dup	LS-16	17,700	4%	6,960	12%	24,700	0%
01-01017 MS	Recovery	104%		90%	·	97%	
BS/LCS (07-31-01)	Recovery	101%		102%			

Analysis Results

The TOC/TIC analyses of the samples submitted under ASRs 6107 are to be performed by both the hot persulfate and furnace methods. This report presents the results from the hot persulfate wet oxidation method. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92-95°C for TOC, all on the same sample, with TC being the sum of the TIC and TOC.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-381.

Q.C. Comments:

The standards for TIC and TOC supernatant analysis are liquid carbon standards from VWR. The lot numbers and Chemical Management System (CMS) numbers for the standards are included on the raw data benchsheets.

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

For TIC and TOC solids analysis pure chemical compounds are used as the calibration, as well as matrix spiking, standards. The TIC analysis uses calcium carbonate and the TOC uses α -Glucose (JT Baker, Aldrich, Sigma, and Mallinckrodt lot numbers and CMS numbers are provided on the raw data benchsheets).

The QC for the methods involves calibration blanks, sample duplicates, laboratory control sample, and matrix spikes. The ASR indicates that the analyses are to be performed to "Conducting Analytical Work in Support of Regulatory Programs". The performance of the QC samples is compared to this QA Plan.

Laboratory Control Sample (LCS)/Blank Spike(BS): A LCS/BS was analyze each day that the samples were analyzed. The LCS/BSs for both the liquid analysis and the solids analysis were within acceptance criteria of 80% to 120%.

<u>Matrix Spike</u>: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The matrix spikes for the LS-14 liquid sample and the LS-16 solids sample demonstrate recoveries well within the acceptance criteria of 75% to 125% recovery.

<u>Duplicates</u>: The precision between the duplicates (replicates), as demonstrated by the Relative Percent Difference (RPD) between sample and duplicate. The TIC and TOC RPD results are well within the acceptance criteria of <20% RPD.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- Routine precision and bias are typically ±15% or better for non-complex samples that are free of interferences.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and RPDs are not calculated for any results less than 5 times the MDL. The analysis MDLs (total ug C) are based on 3 times the standard deviation of a set of historical data. The sample MDLs (in ug C/ml or ug C/g) are calculated by using the analysis MDL adjusted for the sample volume or weight.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is
 the system MDL adjusted for the volume of sample used for the analysis. The system MDL is based on the attached pooled historical blank
 data. The evaluation and calculation of the system MDL is included in the data package.

Report Prepared by:

Review/Approval by:

Excel Archive File: ASR 6014L 6031L 6107L&S 6121L.xls

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

Client	R. Hallen	Charge Code/Project:	W57984 / 42365
RPL Numbers:	01-1014 to 01-1017	ASR Number:	6107
Analyst:	MJ Steele	Analysis Date:	8/22, & 8/23 2001

Procedure: PNL-ALO-380, "Determination of Carbon in Solids Using the Coulometrics Carbon Dioxide Coulometer"

M&TE: Carbon System (WD13071); Balance (360-06-01-023).

· · ·		. *	TIC (a)	TIC (b)	TOC	тос	тс	TC
		· . :	MDL	Results	MDL	Results	MDL	Results
RPL Number	Sample ID		ugC/mL	ugC/mL	ugC/mL	ugC/mL	ugC/mL	ugC/mL
01-01014	LS-12		220	5,700	180	15,500	220	21,200
01-01014 Dup	LS-12	-					220	21,200
		RPD						0%
01-01015	LS-13		220	nd	180	22,300	220	19,000
01-01016	LS-14		90	850	180	3,550	90	4,400
01-01016 Dup	LS-14		90	900	180	3,370	90	4,270
		RPD				5%	1	3%
01-01015 MS	LS-13			<u> </u>				107%
01-01016 MS	LS-14			··· —		105%		
BS/LCS	Blank Spike/LCS					96%		94%
RPL Number	Sample ID		ugC/g	ugC/g	ugC/g	ugC/g	ugC/g	ugC/g
01-01017	LS-16 Washed Solids		190	nd	400	22,700	190	28,000
01-01017 Dup	LS-16 Washed Solids		129	5,400	240	23,100	130	28,500
		RPD				2%		2%
01-01017MS	LS-16 Washed Solids				1	100%		111%
BS/LCS	Blank Spike/LCS	· · · · ·		i		99%		104%

TOC/TIC/TC Results

nd = not detected (i.e., TC results > TOC results)

(a) TIC MDL set to TC MDL

(b) TIC is determined by difference (TC - TOC)

The TOC/TIC analyses of the samples submitted under ASRs 6107 were to be performed by both the hot persulfate and furnace methods. This report presents the results from the furnace oxidation method and the results are compared to the results obtained from the hot persulfate method. Determination of total organic carbon (TOC) is performed by combusting an aliquot of the sample (solids or liquid) in oxygen at 750 °C for 30 minutes. The total carbon is determined on another aliquot of the sample by combusting at 1000 °C for 30 minutes. The total inorganic carbon is obtained by difference.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-380.

Q.C. Comments:

The calibration and QC standards for TC and TOC analysis are liquid or solid carbon standards or pure chemicals from JT Baker, Aldrich, Sigma, and Mallinckrodt. The identification of the standards and their Chemical Management System (CMS) numbers are included on the raw data benchsheets.

The coulometer analysis system calibration is checked by analyzing calibration standards at the beginning, middle, and end of each day's run. The average recovery from these calibration check standards is applied as a correction factor to the 'raw data' results obtained for the samples. The average recovery for the two analysis days was 100%, and 98%.

System blanks were analyzed similarly to the calibration check, averaged, and subtracted from the sample 'raw data' results prior to calculating the final reported result. The TOC determination produced an average blank of 15 μ gC. The TC determination produced an average blank of 54 μ gC. The 54 μ gC blank level is unusually high; however, the reproducibility of the blank was reasonably

good (i.e., 49 to 59 µgC).

For each days analysis run, the QC for the analyses include sample duplicates, blank spikes (as a laboratory control sample), and matrix spikes.

<u>Blank Spike/Laboratory Control Sample</u>: The BS/LCS was within acceptance criteria of 80% to 120% required by the governing QA Plan for both the TC and TOC analysis of the liquid and solids samples.

<u>Duplicates</u>: The precision between the duplicates (replicates), as demonstrated by the Relative Percent Difference (RPD), is within the acceptance criteria of the governing QA Plan (i.e., <20%).

<u>Matrix Spike</u>: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The TOC and TC matrix spike for both the liquids and solids samples demonstrates recoveries between 100% and 111%, which are within the acceptance criteria of 75% to 125%.

		TIC HP	TIC Furn	тос нр	TOC Furn	ТС НР	TC Furn
· .		Results	Results ^(a)	Results	Results	Results ^(b)	Results
RPL Number	Sample ID	ugC/mL	ugC/mL	ugC/mL	ugC/mL	ugC/mL	ugC/mL
01-01014	LS-12	8,540	5,700	12,000	15,500	20,500	21,200
01-01015	LS-13	7,930	nd	11,500	22,300	19,400	19,000
01-01016	LS-14	1,500	850	3,140	3,550	4,640	4,400
		TIC HP	TIC Furn	TOC HP	TOC Furn	TC HP	TC Furn
		Results	Results ⁽²⁾	Results	Results	Results ^(b)	Results
RPL Number	Sample ID	ugC/g	ugC/g	ugC/g	ugC/g	ugC/g	ugC/g
01-01017	LS-16 Washed Solids	18,500	130	6.190	22.700	24.700	28.000

Furnace Results Compared to Hot Persulfate Results

nd = not detected (i.e., TOC result > TC result)

(a) TIC Furn is determined by difference (TC - TOC)

(b) TC HP is determined by sum (TIC + TOC)

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

The two method appear to produce comparable results for TC, with the furnace producing slightly higher results. However, there are significant differences between the TIC and TOC results reported by each method. The reason for the discrepancy between the hot persulfate method and furnace method is unknown, but it appears that the inorganic carbon, perhaps in the form of easily oxidized metal carbonates, is being combusted at 750 °C (as TOC) with the furnace method. Typically, the furnace method provides the best TC results and the hot persulfate the best TIC results, thus the TOC would be the difference between these measurements. Based on the furnace TC result for sample LS-16, the TOC result from the hot persulfate method may be about 30% low.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- Routine precision and bias are typically ±15% or better for non-complex samples that are free of interferences.
- For both the TC and TOC, the analysis Method Detection Limit (MDL) is based on the standard deviation calculated from the number (n) of system blanks analyzed with the batch of samples. The standard deviation is multiplied by the Student's *t* values for n-1 degrees of freedom to establish the daily MDL. The sample MDL (in ug C/ml or ug C/g) are calculated by using the analysis MDL adjusted for the sample volume or weight.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and RPDs are not calculated for any results less than 5 times the MDL.

Report Prepared by:

Review/Approval by:

Date 2-19-0,

Raw Data Calculation/Archive Information: ASR 6019L&S 6025L 6031L 6107S.xls ASR 6014 6104 5105 6106 6107 6155 6162 6192.xls

Date: 6/20/01

Subject:Hydroxide Analyses for:R. HallenASR:6107

To: R. Hallen

From: L. Greenwood

Samples of the filtrate composite and wash composite from the Sr/TRU Project AN-102/C-104 blend were analyzed for the hydroxide content following procedure PNL-ALO-228. Direct sample aliquots were analyzed in duplicate using a Brinkman 636 Auto-Titrator. A 0.1186 N NaOH solution was prepared for use as a standard and sample spike and the titrant was a 0.2040 M HCI prepared solution. Three inflection points were observed for each sample generally corresponding to hydroxide, carbonate, and bicarbonate. The standard hydroxide recovery averaged 95% and a sample spike recovered at 96%. No hydroxide was detected in a reagent blank. The titration curves are included with the report.

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center

Hydroxide and Alkalinity Determination

ALO-228 Equip # WB76843 Analyst: Low Anall 4-21-01 Procedure: PNL-ALO-228 Reviewer: LR Lucence == 16-20-01

Summary Report

				Concentration, moles	
RPG #	Client 1D		First Point	Second Point	Third Point
01-1014	LS-12		0.21	1.29	0.93
01-1014	LS-12	Rep	0.19	1.28	0.96
		RPD	7%	1 %	4%
01-1015	LS-13		0.21	1.26	0.87
01-1015	1.S-13	Rep	0.18	1.28	0.89
		RPD	18%	1%	2%
01-1016	LS-14		0.057	0.24	0.18
01-1016	LS-14	Rep	0.053	0.22	0.12
		RPD	6%	6%	41%
Standard 1			95%		
Standard 2			95%		
MS-1015	Matrix spike		96%		
Blank			nd		

Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

ASR # 6107

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Client:	R. Hallen	Charge Code/Project:	W57984/42365
ASR Number:	6107 Liquids	Sample Receipt Date:	
Sample Prep Date:	N/A MI Steele	Sample Analysis Date:	06/13-14/2001

Preparation Procedure: N/A

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography"

M&TE: IC system (WD25214); Balance (360-06-01-031) --- See Chemical Measurement Center 98620 RIDS IC File for Calibration, Standards Preparations, and Maintenance Records.\\

The final ion chromatography results ASR 6107 Liquid Samples (01-01014 through 01-01016) are presented in Table 1. Table 1 includes the samples, duplicates, processing blank (dilution liquid), low level standard, and laboratory control standard results.

		F	CI	NO,	Br	NO ₃	PO,	SO,	C,O,
RPL Number	Sample ID	μg/ml	⊥_µg/ml	μg/ml	µg/m}	μg/ml	µg/ml	µg/ml	μg/ml
a star the star star star	<u> </u>	· · · · ·	1						
	EQL	0.13	0.13	0.25	0.13	0.25	0.25	0.25	0.25
01-01014 Dilution Blank		< 0.13	< 0.13	< 0.25	< 0.13	< 0.25	< 0.25	< 0.25	< 0.25
	· · · · ·	· ·	<u>, , , , , , , , , , , , , , , , , , , </u>					a the gate of a	ly haart
	EQL	625	125	625	125	1250	250	250	250
01-01014	LS-12	4,300	1.960	43,600	< 125	106,000	3.260	6.710	1,530
01-01014 DUP	LS-12 Dup	4,500	1,920	43,900	< 125	107,000	3,280	6,710	1,530
	RPD	4%	2%	1%	n/a	1%	1%	0%	0%
01-01015	LS-13	4,400	1.880	41,200	< 125	99,500	3,620	6,430	1,460
01-01015 MS %Rec	LS-13 MS %Rec	114%	104%	106%	106%	110%	97%	100%	107%
					·	e det cou			1
	EQL	125	25	250	25	250	250	50	50
01-01016	LS-14	4.800	380	7.290	< 25	16,900	340	1.060	2,770
01-01016 MS %Rec	LS-14 MS %Rec	111%6	104%	108%	107%	110%	100%	101%	109%
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·							· · · · · ·	· · · · · · · · · · · · · · · · · · ·
LLS %Rec		106%	111%	102%	101%	98%	98%	98%	108%
LCS %Rec		97 %6	100%	97%	98%	93%	91%	91%	100%
Fluoride exhibits signifier	int interference from i	unknown a	nions maki	ng quantita	tion difficu	lt. Fluoride	results are	- maximum	i value.
EQL = Estimate quantitat.	ion limt; based on lov he EOL are reported	vest calibra	ation standa	rd times all	l dilution fa	ctors used to	calculate	the reporte	d results.

Table 1: Anion Analysis Results – ASR 6107 Liquids

The sample was prepared for ion chromatography anion analysis by dilution at 200-fold to 5000-fold in order to ensure that the anions were measured within the calibration range. Column overloading prohibited analysis of the sample as dilutions less than 200-fold. The estimated quantitation limits which are based on the lowest calibration standard and the dilutions used for reporting the results are provided in Table 1.

Q.C. Comments:

<u>Duplicates</u>: No duplicate was provided. However, one sample was split and analyzed in duplicate. The duplicate relative percent difference (RPD) meets the acceptance criteria of <20%.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

<u>Matrix Spike (HCV 010328)</u>: A matrix spike was prepared from two samples all anion recoveries were within the 75% to 125% recovery acceptance criteria, as shown in Table 1.

<u>Laboratory Control Sample-LSC/BS (HCV 010328 @4x)</u>: A Blank Spike (i.e., the spike solution used to prepare the matrix spike samples) was prepared and measured at the same time as the Matrix Spike sample and demonstrated recoveries within the 90% to 110% acceptance criteria.

Low Level Standard (LLS/LCV 010328): As shown in Table 1, the LLS meets the acceptance criteria of 75% to 125% recovery.

<u>System Blank/Processing Blanks:</u> Ten system blanks were processed during the analysis of the liquid sample. No anions were detected in the system blanks above the estimate quantitation level.

<u>Quality Control Calibration Verification Check Standards (ICV 010328):</u> Ten mid-range verification standards were analyzed throughout the analysis runs. Except for four oxalate measurements, all anions recoveries were within the acceptance criteria from 90% to 110% for the verification standard. The oxalate measurements that failed produced a recovery from 111% to 112%.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- Routine precision and bias are typically ±15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

Report Prepared by:

nu

Review/Approval:

Archive Information:

Files: ASR 6107 Hallen.doc

ASR 6104, 6106, 6107 REP.xls

Date 7-18-05 Date 7-19-01

Internal Distribution File/LB

Date August 13, 2001

To M. W. Urie

From L. R. Greenwood

JR Icemered

Reviewed C sodirgue 8-13-01

Subject <u>Radiochemical Analyses for AN-102/C-104 Blend</u> – <u>ASR 6107</u>

Samples of the filtrates from tanks AN-102/C-104 blend were analyzed for gamma emitters, ⁹⁰Sr, alpha/AEA, U, and Am/Cm according to ASR 6107. The samples were acid digested or fused in the hot cells according to procedures PNL-ALO-128 or --115 and aliquots were delivered to the laboratory for analysis. The acid digestions were performed in four different batches in the hot cells, each batch having a separate process blank. The one solid sample, LS-16, was prepared in the hot cells by KOH-KNO₃ fusion. The attached reports list measured analyte activities in the original sample material in units of uCi/g. The reported errors $(1-\sigma)$ represent the total propagated error including counting, dilution, yield, and calibration errors, as appropriate. Laboratory and process blank values given with each analysis are the best indicators of the method detection limits, taking into account the actual sample sizes and counting times used for each analysis.

Gamma Spectrometry

Sample aliquots were directly counted for gamma emitters according to procedure PNL-ALO-450. Since no sample preparation was involved, no laboratory blanks or spikes were prepared for these analyses other than the standard laboratory control samples and background counts. In order to meet the requested detection limits, diluted aliquots of the hot cell preparations were counted for periods of 3 to 14 hours. All of the samples showed the presence of significant ¹³⁷Cs activity. Some of the samples also showed the presence of ⁶⁰Co, ¹⁵⁴Eu, ¹⁵⁵Eu, and ²⁴¹Am. The MRQ values for extended counting time GEA were met in all cases. Detection limits are listed in the tables. The hot cell process blanks showed the presence of ¹³⁷Cs. However, the activities in the blanks were negligible with respect to the samples. Sample duplicates showed good repeatability for sample LS-12. However, agreement for the hot cell preparation duplicates was marginal for sample LS-16 with RPD values of 8% to 15% for all of the isotopes except for ⁶⁰Co, where the RPD value was 37%, well outside of the expected range. The reason for the large disagreement for this one isotope is not known, but may suggest contamination or heterogeneity in the sampling in the hot cells. The activities measured for ²⁴¹Am are in good agreement with the Am/AEA results reported below for sample LS-17.

Strontium-90

The Sr separation was performed according to PNL-ALO-476 and radiochemical yields were traced with ⁸⁵Sr. The separated fractions were then beta-counted according to RPG-CMC-408 and gamma

M. W. Urie August 13, 2001 Page 2

counted according to PNL-ALO-450 (for ⁸⁵Sr determination and ¹³⁷Cs impurity assessment). Some of the separated Sr fractions contained a small amount of ¹³⁷Cs and a correction to the beta count rate was applied for these samples in addition to the small beta correction from ⁸⁵Sr. In all cases, the ¹³⁷Cs correction was small compared to the activity in the samples. The samples were analyzed in two batches in the laboratory. The laboratory blank for the first batch showed significant ¹³⁷Cs contamination in the gamma count for ⁸¹Sr. After correction for the ¹³⁷Cs beta contribution, the resultant ⁹⁰Sr value in the lab blank was about 15% of the activity in the samples; however, the uncertainty is very high due to the large correction. The lab blank for the second batch and the hot cell process blanks did not show any significant ⁹⁰Sr contamination. Sample duplicates showed good repeatability in all cases. The blank spike and matrix spike yields ranged from 97% to 104%. All of the samples showed the presence of ⁹⁰Sr at levels that were significantly less than the requested MRQ values.

Total Uranium

Total uranium was measured in samples LS-12 to LS-16 according to procedure PNNL-ALO-4014 using Kinetic Phösphoresence Analysis (KPA). Uranium was detected in both the hot cell preparation blanks; however, the levels were not significant relative to the samples. Sample duplicates and a lab replicate showed good repeatability. Since the analyses were performed on the samples as received from the hot cells, no sample spikes were required. LCS samples gave uranium results at 99% and 102% of the expected values. All of the measured uranium values were well below the requested MRQ values.

Total Alpha with Alpha Energy Analysis

The total alpha activity was determined by direct-plating small aliquots of the acid-digested samples onto planchets according to RPG-CMC-4001. The samples were then counted on Ludlum ZnS scintillation detectors according to RPG-CMC-408. Alpha energy analyses were performed on all samples according to procedure RPG-CMC-422. Peaks were observed due to $^{234}U+^{237}Np$, $^{239}Pu+^{240}Pu$, $^{238}Pu+^{241}Am$, $^{234}Cm+^{244}Cm$, and ^{242}Cm . The sums of the individual alpha emitters are generally in reasonable agreement with the total alpha data indicating minimal losses due to alpha self-absorption.

Most of the hot cell preparation blanks and the laboratory blank did not show any significant alpha contamination. However, for the hot cell acid digestion batch containing samples LS-01, LS-12, LS-13, and LS-14, the process blank contained high alpha contamination. The blank activity is small compared to sample LS-01, but it is significant compared to the other samples. The alpha activity in the blank is 16% of that in sample LS-12, 23% of LS-13, and 115% of sample LS-14. These activities are well below the requested MRQ value of 0.23 uCi/ml, but the samples may need to be reprepared to meet the project reporting requirements. The total alpha and alpha/AEA data are also not in good agreement for this hot cell blank. On this blank, the alpha/AEA result is probably more reliable than the total alpha result. We re-prepped the alpha/AEA from a fresh aliquot, and its counting data agreed with the original alpha/AEA data.

Duplicate samples generally showed acceptable agreement taking into account the statistical uncertainties. The only exception is for ^{243/244}Cm for sample LS-05 where the RPD value is 34%.

M. W. Urie August 13, 2001 Page 3

The reason for this difference is not known. The LCS and matrix spike recoveries were 102% and 105%, respectively.

Americium and Curium

The Am/Cm separations were performed for samples LS-12 to LS-16 according to PNL-ALO-417. The separated fractions were precipitation plated according to PNL-ALO-496 and the samples were counted by alpha spectrometry according to PNL-ALO-422. The curium is known to follow the americium and both these isotopes were traced with ²⁴³Am. As discussed above for the total alpha, the hot cell process blank with samples LS-12 to LS-14 was contaminated with alpha activity. There was no significant contamination of the hot cell process blank for the solids sample LS-16. The Am/Cm AEA results are generally in good agreement with the total alpha AEA results indicating that there is little ²³⁸Pu in these samples. The only exception is for the contaminated hot cell process blank (01-1014 PB), which clearly has a different isotopic mix than the samples. The LCS and matrix spike recoveries were 99% and 100%, respectively. RPD values were acceptable taking into account the statistical uncertainties. Most of the sample activities were well below the requested MRQ values.

⁹⁹Tc

The technetium in the solids sample LS-16 was chemically separated for analysis according to procedure PNL-ALO-432. The separated fractions were then counted according to procedure RPG-CMC-408. No activity was detected in either the hot cell process blank or the laboratory blank. The RPD value was 23% suggesting some heterogeneity in the sample duplicates. The matrix spike recovery was low at 79%, probably due to the high salt content from the fusion preparation. The LCS recovery was 95%. The ⁹⁹Tc activities were well below the requested MRQ values.

Battelle Pacific Radiochemical F Radioanalytical	Northwes Processing Applicatior	st Laboratc J Group-32t ns Team	ory 5 Building											0 0)1-1003)6/22/01	
Client: Urie					-											
Cognizant Scien	tist:	12 C	green	- 4	-								-	Date :	0-27-9	-}
Cor			rang	کا ۔									-	Date : 🦉	07270	_
					_	Measure	d Activitíe	s (uCi/g) v	with 1-sign	na error						
ALO ID Client ID	Cr-51 Error %	Fe-59 Error %	Co-60 Error %	Nb-95 Error %	Ru-103 Error %	Ru-106 Error %	Sn-113 Error %	Sb-125 5 Error %	SnSb-126 Error %	Cs-134 Error %	Cs-137 (Error % I	Ce-144 Error %	Eu-152 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
01-1014PB Process Blank	<6.E-4	<9.E-5	<5.E-5	<5.E-5	<6.E-5	<5.E-4	<8.E-5	<2.E-4	<5.E-5	<6.E-5	6.99E-3 3%	<5.E-4	<2.E-4	<2,E-4	<3.E-4	<8.E-4
01-1014 LS-12	<9.E-2	<3.E-3	3.15E-2 2%	<2.E-3	<1.E-2	<7.E-2	<4.E-3	<4.E-2	<3.E-2	<2.E-3	1.27E+2 2%	<4.E-2	<1.E-3	1.90E-2 6%	<2.E-2	<2.E-2
01-1014 DUP LS-12 DUP	<9.E-2	<3,E-3	3.14E-2 2%	<2.E-3	<1.E-2	<7.E-2	<4.E-3	<4.E-2	<3.E-2	<2.E-3	1.27E+2 2%	<5.E-2	<1.E-3	1.84E-2 6%	<2.E-2	<2.E-2
RPD			%0								%0			3%		
01-1015 LS-13	<6.E-2	<2.E-3	3.22E-2 2%	<1.E-3	<8.E-3	<5.E-2	<3.E-3	<3.E-2	<2.E-2	<1.E-3	1.32E+2 2%	<3.E-2	<9.E-4	2.01E-2 4%	<1.E-2	<1.E-2
01-1016 LS-14	<2.E-2	<3.E-4	5.07E-3 2%	<2.E-4	<2.E-3	<1.E-2	<4.E-4	<7.E-3	<7.E-4	<2.E-4	2.42E+1 3%	<1.E-2	<3.E-4	2.25E-3 7%	<6.E-3	<2.E-2
01-1017PB Process Blank	<2.E-2	<2.E-3	<2.E-3	<1.E-3	<2.E-3	<1.E-2	<3.E-3	<5.E-3	<2.E-3	<2.E-3	8.64E-2 3%	<1.E-2	<7.E-3	<4.E-3	<8.E-3	<1.E-2
01-1017 LS-16	<4.E-1	<2.E-2	4.88E-2 7%	<1.E-2	<5.E-2	<3.E-1	<3.E-2	<2.E-1	<6.E-2	<2.E-2	1.37E+2 3%	<4.E-1	<5.E-2	4.46E+0 3 2%	2.52E+0 5%	3.82E+0 5%
01-1017 DUP LS-16 DUP	<4.E-1	<2.E-2	7.07E-2 5%	<1.E-2	<5.E-2	<3.E-1	<2.E-2	<2.E-1	<6.E-2	<1.E-2	1.48E+2 3%	<3.E-1	<4.E-2	3.84E+0 ; 2%	2.23E+0 5%	3.42E+0 6%
RPD			37%								8%			15%	12%	11%

01-1003

Page 1

: : (
Hallen Cognizant S	Jcientist:	d J	R. Y.	lêner) ser		Date :	8-13-	10			
0	Concur:	2	Sudery	8			Date :	3-(3-6				
			~	Measured	Activities (I	rCi/g) with	1-sigma error					
			1	Alpha Ener	gy Analysis				Americium/C	urium Analy	sis	
	Total Alpha ±1s	U-234+ Np-237 ±1s	Pu-239+ Pu-240 ±1s	Pu-238+ Am-241 ± 1s	Cm-243+ Cm-244 ±1s	Cm-242 ± 1s	Sum of individual alpha emitters	Am-241 ± 1s	Cm-243+ Cm-244 ± 1s	Cm-242 ±1s	Sum of Am + Cm	Uranìum µg/g ± 1s
	5.90E-2 ± 6%	3.23E-4 ± 16%	2.02E-3 ±6%	5.02E-2 ± 2%	2.43E-3 ±6%	2.16E-4 ± 19%	5.52E-2 ± 2%					
DUP 5	5.73E-2 ±6%	3.58E-4 ± 12%	1.93E-3 ± 5%	4.73E-2 ± 2%	2.36E-3 ±5%	1.70E-4 ± 17%	5.21E-2 ± 2%					
a	3%	10%	5%	6%	3%	24%	6%					
PB 3 Blank	8.41E-4 ± 7%	7.82E-7 ± 28%	3.42E-5 ± 4%	2.05E-4 ± 2%	9.81E-5 ± 2%	<4.E-7	3.38E-4 ± 1%					
¢,	3.57E-2 ± 7%	2.17E-4 ± 16%	1.87E-3 ± 6%	3.38E-2 ± 2%	1.93E-3 ± 5%	9.69E-5 ± 25%	3.79E-2 ± 2%					
DUP 4	L03E-2 ± 7%	2.47E-4 ± 16%	1.56E-3 ± 6%	3.28E-2 ± 2%	1.69E-3 ±6%	1.47E-4 ± 20%	3.64E-2 ± 2%					
D	12%	13%	18%	3%	13%	41%	4%					
~- ··	.16E-2 ± 13%	1.66E-4 ± 8%	7.57E-4 ± 4%	9.51E-3 ± 2%	8.04E-4 ± 4%	5.87E-5 ± 14%	1.13E-2 ± 2%					
	.13E-2 ± 15%	1.75E-4 ± 8%	8.55E-4 ± 4%	9.80E-3 ± 2%	7.93E-4 ± 4%	7.11E-5 ± 13%	1.17E-2 ± 2%					
Q	3%	5%	12%	3%	1%	19%	3%					
α, .,	1.92E-3 ± 16%	1.78E-4 ± 8%	7.54E-4 ± 4%	8.10E-3 ± 2%	6.54E-4 ± 4%	4.45E-5 ± 16%	9.73E-3 ± 2%					
	44E-2 ± 12%	1.49E-4 ± 10%	6,40E-4 ± 5%	8.46E-3 ± 2%	6.97E-4 ± 5%	3.73E-5 ± 21%	9.98E-3 ± 2%					
D	47%	18%	16%	4%	%9	18%	3%					

File: 01-1003.xls

D.33

Page 1 of 4

				Measured	Activities ()	JCi/g) with	1-sigma error				-	FIIE: U I- LUUJ.XIS
				Alpha Enerç	jy Analysis				Americium/C	urium Analy	sis	
ALO ID Client ID	Total Alpha ± 1s	U-234+ Np-237 ±1s	Pu-239+ Pu-240 ±1s	Pu-238+ Am-241 ± 1s	Cm-243+ Cm-244 ± 1s	Cm-242 ± 1s	Sum of individual alpha emitters	Am-241 ± 1s	Cm-243+ Cm-244 ±1s	Cm-242 ±1s	Sum of Am + Cm	Uranium µg/g ± 1s
01-1006 Lab DUP LS-04		2.15E-4 ± 9%	7.27E-4 ±5%	8.99E-3 ± 2%	7.25E-4 ± 5%	6.83E-5 ± 16%	1.07E-2 ± 2%					
01-1007 LS-05	1.12E-2 ± 14%	1.62E-4 ± 8%	7.64E-4 ± 4%	9.06E-3 ± 2%	1.07E-3 ± 3%	5.22E-5 ± 15%	1.11E2 ± 2%					
01-1007 DUP LS-05 DUP	9.83E-3 ± 16%	1.38E-4 ± 13%	6.28E-4 ± 6%	8.84E-3 ± 2%	7.57E-4 ± 5%	4.90E-5 ± 22%	1.04E-2 ± 2%					
, RPD	13%	16%	20%	2%	34%	2%	6%					
01-1008 PB Process Blank	2.63E-4 ± 9%	<4.E-7	2.83E-5 ± 5%	1.68E-4 ± 2%	7.30E-5 ± 3%	<4.E-7	2.70E-4 ± 2%					
01-1008 LS-06	1.87E-2 ± 11%	1.93E-4 ± 11%	9.50€-4 ± 5%	1.30E-2 ± 2%	9.65Ê-4 ± 5%	7.27E-5 ± 19%	1.52E-2 ± 2%					
01-1008 DUP LS-06 DUP	1.24E-2 ± 12%	1.92E- 4 ± 11%	8.66E-4 ± 5%	1.14E-2 ± 2%	8.26E-4 ± 5%	7.26E-5 ± 18%	1.34E-2 ± 2%					
RPD	41%	1%	%6	13%	16%	%0	13%					
01-1009 LS-07	1.43E-2 ± 14%	1.81E-4 ± 12%	1.03E-3 ±5%	1.34E-2 ± 2%	1.18E-3 ± 5%	8.09E-5 ±18%	1.59E-2 ± 2%					
01-1009 DUP LS-07 DUP	1.41E-2 ± 12%	1.70E-4 ± 12%	1.00E-3 ± 5%	1.25E-2 ± 2%	9.82E-4 ± 5%	4.54E-5 ± 24%	1,47E-2 ± 2%					
RPD	1%	6%	3%	7%	18%	56%	8%					
01-1010 LS-08	1.82E-2 ± 11%	2.41E-4 ± 11%	1.10E-3 ± 5%	1.32E-2 ± 2%	9.65E-4 ± 6%	1.09Ĕ-4 ± 17%	1.56E-2 ± 2%					
01-1010 DUP LS-08 DUP	1.29E-2 ± 13%	1.98E-4 ± 13%	9.70E-4 ± 6%	1.29E-2 ± 2%	1.00E-3 ± 6%	9.26E-5 ± 19%	1.52E-2 ± 2%					
RPD	34%	20%	13%	2%	4%	16%	3%					
01-1011 LS-09	1.35E-2 ± 13%	1.86E-4 ± 11%	9.00E-4 ± 5%	1.13E-2 ± 2%	8.53E-4 ± 5%	8.06E-5 ± 17%	1.33E-2 ± 2%					
01-1011 DUP LS-09 DUP	1.55E-2 ± 11%	1.83E-4 ± 8%	1.07E-3 ± 3%	1.17E-2 ± 2%	8.70E-4 ± 4%	5.32E-5 ± 15%	1.39E-2 ± 2%					
RPD	14%	2%	17%	3%	2%	41%	4%					

File: 01-1003.xts

D.34

Page 2 of 4

				Alpha Ener	av Analysis				Americium/C	urium Analv	sis	
ALO ID	Total Alpha	U-234+ Np-237	Pu-239+ Pu-240	Pu-238+ Am-241	Cm-243+ Cm-244	Cm-242	Sum of individual alpha	Am-241	Cm-243+ Cm-244	Cm-242	Sum of	Uranium µg/g
Client ID 01-1012 PB Process Blank	± 1s 2.25E-4 ± 9%	± 1s <5.E-7	± 1s 2.61E-5 ± 5%	± 1s 1.67E-4 ± 2%	± 1s 6.17E-5 ± 3%	± 1s <5.E-7	emitters 2.56E-4 ± 2%	+ 1s	±1s	+ 1s	Am + Cm	± 1s
01-1012 LS-10	1.94E-2 ± 10%	2.43E-4 ± 11%	1.05E-3 ± 5%	1.19E-2 ± 2%	1.02E-3 ± 5%	6.90E-5 ± 21%	1.43E-2 ± 2%					
01-1012 DUP LS-10 DUP	1.51E-2 ± 13%	2.02E-4 ± 11%	1.12E-3 ± 5%	1.31E-2 ± 2%	9.36E-4 ± 5%	7.84E-5 ± 18%	1.54E-2 ± 2%					
RPD	25%	18%	6%	10%	%6	13%	8%					
01-1012 Lab Dup LS-10 DUP		2.11E-4 ± 11%	1.07E-3 ± 5%	1.22E-2 ± 2%	9.69E-4 ± 5%	6.62E-5 ± 20%	1.45E-2 ± 2%					
01-1013 LS-11	1.44E-2 ± 12%	1.87E-4 ± 11%	1.01E-3 ± 5%	1.13E-2 ± 2%	8.70E-4 ± 5%	5.53E-5 ± 21%	1.34E-2 ± 2%					
01-1013 DUP LS-11 DUP	1.63E-2 ± 12%	1.89E-4 ± 10%	1.07É-3 ± 4%	1.17E-2 ± 2%	8.82E-4 ± 5%	7.23E-5 ± 17%	1.39E-2 ± 2%					
КРD	12%	1%	6%	3%	1%	27%	4%					
01-1014 PB Process Blank	1.78E-3 ± 3%	<1.E-6	3,41E-4 ±2%	2.23E-3 ± 2%	2.01E-3 ±2%	2.79E-6 ± 24%	4.58E-3 ±1%	3.07€-4 ± 3%	7.72E-4 ± 2%	<8.E-7	1.08E-3 ± 2%	1.06E-1 2%
01-1014 LS-12	1.18E-2 ± 15%	1.71E-4 ± 11%	6.64E-4 ± 6%	8.68E-3 ± 2%	5.29E-4 ± 6%	3.54E-5 ± 25%	1,01E-2 ± 2%	8.49E-3 ± 2%	5.48E-4 ± 7%	5.06E-5 ± 21%	9.09E-3 ± 2%	2.20E+1 4%
01-1014 Dup LS-12 DUP	1.03E-2 ± 15%	1.79E-4 ± 11%	7.56E-4 ± 5%	8.54E-3 ± 2%	5.47E-4 ± 6%	3.17E-5 ± 27%	1.01E-2 ± 2%	8.39E-3 ± 2%	5.42E-4 ±6%	6.23E-5 ± 18%	8.99E-3 ± 2%	2.17E+1 4%
RPD	14%	5%	13%	2%	3%	11%	0%	1%	1%	21%		1%
01-1014 Lab DUP LS-12								8.18E-3 ± 3%	5.32E-4 ± 8%	5.95E-5 ± 24%	8.77E-3 ± 3%	
01-1015 LS-13	7.90E-3 ± 17%	1.88E-4 ± 11%	7.32E-4 ± 5%	8.48E-3 ± 2%	6.10E-4 ± 6%	3.93E-5 ± 24%	1.00E-2 ± 2%	8.30E-3 ± 2%	5.57E-4 ±6%	3.59E-5 ± 25%	8.89E-3 ± 2%	2.23E+1 4%
01-1016 LS-14	<4.E-3	3.69É-5 ± 24%	1.20E-4 ± 13%	1.32E-3 ± 4%	1.07E-4 ± 14%	<2.E-5	1.60E-3 ± 4%	1.17E-3 ± 3%	8.36E-5 ± 9%	6.69E-6 ± 33%	1.26E-3 ± 3%	3,15E+0 2%
01-1016 Rep LS-14												3.20E+0 2%
RPD								•				2%

File: 01-1003.xls

Measured Activities (µCi/g) with 1-sigma error

D.35

Page 3 of 4

1-sigma error
with
(hCi/g)
Activities
Measured

				Aipha Ener	gy Analysis	,-			Americíum/C	urium Analy	sis	
ALO ID Client ID	Total Alpha ± 1s	U-234+ Np-237 ± 1s	Pu-239+ Pu-240 ±1s	Рu-238+ Аm-241 ± 1s	Cm-243+ Cm-244 ± 1s	Cm-242 ±1s	Sum of individual alpha emitters	Am-241 ± 1s	Cm-243+ Cm-244 ±1s	Cm-242 ±1s	Sum of Am + Cm	Uranium µg/g ±1s
01-1017 PB Process Blank	6.31E-3 ± 9%	<2.E-5	9.48E-4 ±5%	4.82E-3 ± 2%	1.75E-3 ± 3%	<2.E-5	7.56E-3 ± 2%	2.84E-3 ± 4%	1.84E-3 ± 5%	<3.E-5	4.71E-3 ± 3%	1.82E+0 2%
01-1017 LS-16	4.70E+0 ± 3%	<1.E-3	2.52E-1 ± 3%	4.37E+0 ± 2%	1.70E-1 ± 3%	1.58E-2 ± 10%	4.81E+0 ± 2%	3.99E+0 ± 2%	1.64E-1 ± 6%	1.09E-2 ± 21%	4.16E+0 ± 2%	3.25E+2 3%
01-1017 DUP LS-16 DUP	4.16E+0 ± 3%	8.33E-3 ± 28%	2.25E-1 ± 5%	3.70E+0 ± 2%	1.52E-1 ±6%	1.31E-2 ± 22%	4.10E+0 ± 2%	3.45E+0 ± 3%	1.37E-1 ± 7%	1.08E-2 ± 24%	3.60E+0 ± 3%	2.97E+2 3%
RPD	12%		11%	17%	11%	19%	16%	15%	18%	1%		%6
MS-1003 MS-1006 MS-1012 MS-1014	105%		95% 104%					100%				
BS-1003	102%		113% 116%					%66				102% 99%
BLK-1003	<4.E-3	<2.E-5 <2.E-5	<2.E-5 <2.E-5	<3.E-5 <2.E-5	<2.E-5 <9.E-6	<2.E-5 <9.E-6		<2.E-5	<2.E-5	<7.E-6		<2.E-5

File: 01-1003.xls

Page 4 of 4

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

8/1/01

Client : Urie

Cognizant Scientist: X, R. Mucenurezzi concur: C. Sorterayus

Date : <u>9-13-6/</u>

Measured Activities (uCi/g) with 1-sigma error

-90 Tc-99 or +/- Error +/-	1E+1 %	3E+1 }%	%	8E-2 !%	7E+0 %	1E+0 %	6%	BE+0 5%	3E+0 5%	%{	3E+0 5%	2E+0 5%	5%
S E	2.0	50	~	<u>ب</u> ۲	3.0	3.6	4	1.8	с. С.		1.7	С 8. 2.	.,
ALO ID Client ID	01-1003 LS-01	01-1003 DUR LS-01 DUP	RPD	01-1004 PB Process Blar	01-1004 LS-02	01-1004 DUI LS-02 DUP	RPD	01-1005 LS-03	01-1005 DUI LS-03 DUP	RPD	01-1006 LS-04	01-1006 DUI LS-04 DUP	RPD

D.37

0 0	Measured Activities (uCi/g) with 1 Sr-90 Tc-99	1-sigma er <i>r</i> or
D6 Lab DUP	Error +/- Error +/- 1.65E+0	
20 20	4.% 1.75E+0 5%	
07 DUP 5 DUP	1.79E+0 5%	
	2%	
008 PB sss Blank	1.88E-2 3%	
008 S	1.68E+0 5%	
008 DUP 5 DUP	1.56E+0 6%	
	7%	
600	3.33E+0 4%	
09 DUP 7 DUP	3.14E+0 4%	
	6%	
10	2.92E+0 4%	
10 DUP 3 DUP	3.06E+0 4%	
	5%	
)11 9	2.67E+0 3%	
011 DUP 9 DUP	2.71E+0 3%	
	1%	

Page 2

Measured Activities (uCi/g) with 1-sigma error

Tc-99 rror +/-															:4,E-4
Sr-90 Sreor +/- Etror +/- Etror	6.26E-2 3%	2.18E+0 3%	2.55E+0 3%	16%	2.19E+0 3%	1.99E+0 3%	2.04E+0 3%	2%	6.52E-2 3%	1.28E+0 3%	1.40E+0 3%	3%	1.40E+0 3%	3.26E-1 5%	1.44E-1 < 4%
ALO ID Client ID	01-1012 PB Process Blank	01-1012 LS-10	01-1012 DUP LS-10 DUP	RPD	01-1012 Lab Dup LS-10 DUP	01-1013 LS-11	01-1013 DUP LS-11 DUP	RPD	01-1014 PB Process Blank	01-1014 LS-12	01-1014 Dup LS-12 DUP	RPD	01-1015 LS-13	01-1016 LS-14	01-1017 PB Process Blank

.....

File: 01-1003.xls

Measured Activities (uCi/g) with 1-sigma error

Tc-99 Error +/-	1.03E-1 4%	8.17E-2 4%	23%	%67		95%	<6.E-7		
Sr-90 Error +/-	1.75E+3 3%	1.40E+3 3%	22%		104% 97%	101% 103%		2.38E-1 33%	<9.E-2
ALO ID Client ID	01-1017 LS-16	01-1017 DUP LS-16 DUP	RPD	MS-1203	MS-1006 MS-1012	BS-1003 BS-1010	Blk-1017	Blk-1006	Blk-1010
								D.40	0

.

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report PO Box 999, Richland, Washington 99352

Project / WP#:	42365 / W58166
ASR#:	6130
Client:	S. Fiskum
Total Samples:	2

[· •	
RPL#:	01-01345	01-01354
Client ID:	"ANC102/104-C-F/A"	"AN102CST-C-F/A"
Sample Prepa	ration: PNL-ALO-106 (0.2mL/	/20mL)

Procedure: PNI Induct	<u>NL-ALO-211</u> , "Determination of Elements by tively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).
Analyst: <u>D.R. Sande</u>	<u>ers</u>
Analysis Date (File):	<u>07-18-2001</u> (A0700)
See Chemical Measureme (Calib	ent Center 98620 file: <u>ICP-325-405-1</u> pration and Maintenance Records)
M&TE Number:	WB73520(ICPAES instrument)360-06-01-029(Mettler AT400 Balance)

MD Mue 9-14-01 Reviewed by Lerry Dayme 9-1E-01 Concur

Concur

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report

Two liquid samples (ANC 102/104-C F/A and AN102CST-C F/A) from Analytical Service Request 6130 were prepared by acid digestion per PNL-ALO-106. The samples were digesting in the laboratory (i.e., not in the Shielded Analytical Laboratory) by using 0.2 mL of sample and diluting to a final volume of 20 mL.

In the Analytical Service Request (ASR), Na and K were identified as analytes of interest for this work along with 'minors as found'. Therefore, any analyte detected in the samples besides Na and K was considered an analyte of interest; i.e., Al, B, Ba, Ca, Cd, Cr, Cu, Fe, Mo, Ni, P, Pb, Si, Sr, and Zn. The quality control (QC) results for each of these analytes has been evaluated and is presented below. Analytes other than those detected part of the ICPAES analysis are reported, but have concentrations less than the method detection limit (MDL) and have not been fully evaluated for QC performance.

The attached ICPAES Results (2 pages) presents the final results. Results are from the direct measurement of the digestates, except for the AN102CST-C F/A duplicate which was measured following an additional 2x dilution at the ICPAES. The ICPAES measurement results are reported in μ g/mL of liquid sample and have been corrected for all dilutions resulting from sample processing.

The following is a list of quality control measurement results relative to ICPAES analysis requirements of the controlling QA plan A digestion processing blank, laboratory control sample (blank spike), and duplicate were prepared with the sample. Through a mix up in the processing laboratory, no matrix spike was prepared from either of the samples analyzed by ICPAES; therefore, post spike were used to assess matrix interferences. The blank spike was prepared by using 1 ml of a custom multi-element solution "INT-QC-MCVA-1B" per 20 mL digestate volume.

Process Blank:

Concentration of analytes of interest measured in the process blank were all within tolerance limit of \leq EQL or less than \leq 5% of the concentration in the sample, except for B, Ba, Fe, and Si. The sample concentration for B, Ba, Fe, and Si are essentially the same as the processing blank concentrations, suggesting that there is little, if any, B, Ba, Fe, or Si in the samples.

Blank Spike (laboratory control sample):

The blank spike recovery for analytes of interest was within the acceptance criteria of 80% to 120%, except for B, Mo, and Si. For B the high recovery (i.e., 210%) is attributed to digesting the BS in glass vials. Silicon and Mo were not included in the BS since the only analytes identified as required were Na and K.

Duplicate RPD (Relative Percent Difference):

For those analytes of interest measured above the estimated Method Detection Limit (MDL), the RPDs were within the acceptance criteria of less than 20%.

Matrix Spiked Sample:

No matrix spike was analyzed with this batch of samples.

Post-Spiked Samples (Group A; all analytes of interest):

All post-spiked analytes of interest in samples tested were recovered within tolerance of 75% to 125%, except Al and Na. The post spike analysis uses a general spiking solution intended to be usable on the majority of sample analyzed by ICPAES. However, for the sample selected for post spiking, the spike concentration for Al and Na was less than 20% of the sample concentration and the recovery results are considered meaningless. For these analytes, the use of serial dilution results is required to evaluate potential matrix interferences.

Post-Spiked Samples (Group B; other analytes):

The post spiked analytes (i.e., analytes other than those identified as analytes of interest) were within tolerance of 75% to 125%.

Serial dilution:

Serial dilution was required for Al and Na, since both the post spike concentrations were less than 20% of the sample concentration (i.e., recoveries could not be evaluated). These analytes demonstrated a percent difference (%D) within the acceptance criteria of $\pm 10\%$ after correcting for dilution.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- Detection limits (Det. Limit) shown are for acidified water. Detection limits for other matrices may be determined if requested. Method detection limits (MDL) can be estimated by multiplying the 'Multiplier' times the Detection Limit.
- 3) Routine precision and bias is typically \pm 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight). Note that bracketed values listed in the data report are within ten times instrument detection limit (adjusted for processing factors and laboratory dilutions) and have a potential uncertainty much greater than 15%.
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.
Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Results

RPL#= 01-1338 PB 01-1345 01-1354 01-1354 D Client ID= Process Blank ANC 102 /104-C-F/A AN102 CST- C-F/A C-F/A ug/mL ug/mL ug/mL ug/mL ug/mL ug/mL 0.150 Na 1,010 111,000 136,000 146,000 2.000 K [950] [1,100] [1,100] Other Analyte Detected - [950] [1,100] [1,100] Other Analyte Detected - [950] [1,100] [1,100] [1,100] 0.050 B 750 624 815 755 0.010 Ba [1,3] [1,6] [2,5] 0.250 Ca - [150] [190] [190] 0.015 Cd - 26.0 32.1 32.3 0.020 Cr - 108 [191] [8.8] 0.025 Cu - [101] [8.4] [7.5] <td< th=""><th></th><th>Multiplier=</th><th>100</th><th>100</th><th>200</th><th>200</th></td<>		Multiplier=	100	100	200	200
Client ID= Process Blank ANC 102 /104-C-F/A AN102 CST- C-F/A AN102 CST- C-F/A ug/mL Analytes ug/mL ug/mL ug/mL ug/mL 0.150 Na 1,010 111,000 136,000 146,000 2.000 K [950] [1,100] [1,100] Other Analyte Detected [950] [1,100] [1,100] 0.050 B 750 624 815 755 0.010 Ba [1:3] [1.6] [2:5] 0.250 Ca - [150] [190] [190] 0.015 Cd - 26.0 32.1 32.3 0.020 Cr - 108 119 121 0.025 Cu - [10] [8.4] [7.5] 0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.025 Mo - [22] [26] [27] 0.030 Ni <td></td> <td>RPL#=</td> <td>01-1338 PB</td> <td>01-1345</td> <td>01-1354</td> <td>01-1354 D</td>		RPL#=	01-1338 PB	01-1345	01-1354	01-1354 D
Det. Limit Blank /104-C-F/A C-F/A C-F/A ug/mL Analytes ug/mL ug/mL ug/mL ug/mL 0.150 Na 1,010 111,000 136,000 146,000 2.000 K [950] [1,100] [1,100] Other Analyte Detected [950] [1,100] [1,100] 0.050 B 750 624 815 755 0.010 Ba [1.3] [1.6] [2.5] 0.250 Ca - [150] [190] [190] 0.010 Ba [1.3] [1.6] [2.5] 0.250 Ca - [150] [190] [190] 0.015 Cd - 26.0 32.1 32.3 0.020 Cr 108 119 121 0.025 Cu [10] [8.4] [7.5] 0.025 Fe [5.7] <t< td=""><td></td><td>Client ID=</td><td>Process</td><td>ANC 102</td><td>AN102 CST-</td><td>AN102 CST-</td></t<>		Client ID=	Process	ANC 102	AN102 CST-	AN102 CST-
ug/mL Analytes ug/mL ug/mL ug/mL ug/mL ug/mL 0.150 Na 1,010 111,000 136,000 146,000 2.000 K [950] [1,100] [1,100] Other Analyte Detected [950] [1,100] [1,100] Other Analyte Detected [950] 624 815 755 0.010 Ba [1,3] [1,6] [2,5] 0.250 Ca - [150] [190] [190] 0.015 Cd - 26.0 32.1 32.3 0.020 Cr [10] [8.4] [7.5] 0.025 Cu [10] [8.4] [7.5] 0.025 Fe [5.7] [9.4] [9.1] [8.8] 0.050 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100	Det. Limit		Blank	/104-C-F/A	C-F/A	C-F/A
0.150 Na 1,010 111,000 136,000 146,000 2.000 K [950] [1,100] [1,100] Other Analyte Detected 0.050 A1 84.1 8.210 6,520 6,730 0.050 B 750 624 815 755 0.010 Ba {1.3} [1.6] [2.5] 0.250 Ca - [150] [190] [190] 0.010 Ba {1.3} [1.6] [2.5] 0.250 Ca - [150] [190] [190] 0.015 Cd 26.0 32.1 32.3 0.020 Cr 108 119 121 0.025 Cu [10] [8.4] [7.5] 0.025 Fe [5.7] [9.4] [9.1] [8.8] 0.030 Ni 188 237 240 0.100 Pb </td <td>ug/mL</td> <td>Analytes</td> <td>ug/mL</td> <td>սց/ուէ</td> <td>ug/mL</td> <td>ug/mL</td>	ug/mL	Analytes	ug/mL	սց/ուէ	ug/mL	ug/mL
2.000 K [950] [1,100] [1,100] Other Analyte Detected 0.050 A1 84.1 8.210 6.520 6.730 0.050 B 750 624 815 755 0.010 Ba {1.3} [1.6] [2.5] 0.250 Ca - [150] [190] (190] 0.010 Ba {1.3} [1.6] [2.5] 0.250 Ca - [150] [190] (190] 0.015 Cd 26.0 32.1 32.3 0.020 Cr 108 119 121 0.025 Cu [10] [8.4] [7.5] 0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.050 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100 Pb	0.150	Na	1,010	111,000	136,000	146,000
Other Analyte Detected 0.050 Al 84.1 8.210 6,520 6,730 0.050 B 750 624 815 755 0.010 Ba {1.3} [1.6] [2.5] 0.250 Ca - [150] [190] [190] 0.010 Ba {1.3} [1.6] [2.5] 0.250 Ca - [150] [190] [190] 0.015 Cd 26.0 32.1 32.3 0.020 Cr 108 119 121 0.025 Cu [10] (8.4] [7.5] 0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.025 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100 Pb [67] [88] [84] 0.500 Si<	2.000	к		[950]	[1,100]	[1,100]
0.050 A! 84.1 8.210 6,520 6,730 0.050 B 750 624 815 755 0.010 Ba (1.3) [1.6] [2.5] 0.250 Ca - [150] [190] [190] 0.015 Cd 26.0 32.1 32.3 0.020 Cr 108 119 121 0.025 Cu [10] (8.4] [7.5] 0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.030 Ni 138 237 240 0.100 P [67] [88] [84] 0.500 Si 973 1,110 1,250 1,240 0.015 Sr 86.5	··· •	Other Analyte	Detected			
0.050 B 750 624 815 755 0.010 Ba {1.3} [1.6] [2.5] 0.250 Ca - (150] [190] (190] 0.015 Cd 26.0 32.1 32.3 0.020 Cr 108 119 121 0.025 Cu [10] (8.4] [7.5] 0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.050 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100 P [67] [88] [84] 0.500 Si 973 1.110 1.250 1.240 0.015 Sr 86.5 60.3 62.1 0.050 Zn 0.155 Ag	0.050	AI	84.1	8,210	6,520	6,730
0.010 Ba [1.3] [1.6] [2.5] 0.250 Ca - [150] [190] [190] 0.015 Cd 26.0 32.1 32.3 0.020 Cr 108 119 121 0.025 Cu [10] [8.4] [7.5] 0.025 Fe [5.7] [9.4] [9.1] [8.8] 0.050 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100 P [67] [88] [84] 0.500 Si 973 1.110 1.250 1.240 0.1010 Pb [67] [88] [84] 0.500 Si 973 1.110 1.250 1.240 0.015 Sr 86.5 60.3 62.1 0.050 Zn -	0.050	В	750	624	815	755
0.250 Ca - [150] [190] [190] 0.015 Cd 26.0 32.1 32.3 0.020 Cr 108 119 121 0.025 Cu [10] [8.4] [7.5] 0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.050 Mo [22] [26] [27] 0.030 Ni 138 237 240 0.100 P 748 457 455 0.100 P [67] [88] [84] 0.500 Si 973 1,110 1,250 1,240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] 0.050 Zn 0.100 Ba	0.010	Ba	[1.3]	[1.6]	[2.5]	
0.015 Cd 26.0 32.1 32.3 0.020 Cr 108 119 121 0.025 Cu [10] [8.4] [7.5] 0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.050 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100 P 748 457 455 0.100 P [67] [88] [84] 0.500 Si 973 1,110 1,250 1,240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] 0.050 Zn [8.6] 0.050 Zn 0.050 As	0.250	Ca	_	[150]	[190]	[190]
0.020 Cr 108 119 121 0.025 Cu [10] [8.4] [7.5] 0.025 Fe [5.7] [9.4] [9.1] [8.8] 0.050 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100 P 748 457 455 0.100 Pb [67] [88] [84] 0.500 Si 973 1,110 1,250 1,240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] 0.050 Zn [8.6] 0.025 Ag 0.010 Be 0.010 Be	0.015	Cd		26.0	32.1	32.3
0.025 Cu [10] [8.4] [7.5] 0.025 Fe [5.7] [9.4] [9.1] [8.8] 0.050 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100 P 748 457 455 0.100 Pb [67] [88] [84] 0.500 Si 973 1.110 1.250 1.240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] 0.050 Zn [8.6] 0.025 Ag 0.250 As 0.250 As 0.100 Bi	0.020	Cr		108	119	121
0.025 Fe [5.7] [9.4] (9.1] [8.8] 0.050 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100 P 748 457 455 0.100 P 748 457 455 0.100 Pb [67] [88] [84] 0.500 Si 973 1,110 1,250 1,240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] Other Analytes Measured but Not Detected 0.025 Ag 0.100 Be 0.100 Bi 0.200	0.025	Cu		[10]	[8.4]	[7.5]
0.050 Mo [22] [26] [27] 0.030 Ni 188 237 240 0.100 P 188 237 240 0.100 P 748 457 455 0.100 Pb [67] [88] [84] 0.500 Si 973 1,110 1,250 1,240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] Other Analytes Measured but Not Detected 0.025 Ag 0.100 Ba 0.100 Bi 0.200 Ce <	0.025	Fe	[5.7]	[9.4]	(9.11	[8.8]
0.030 Ni 188 237 240 0.100 P 748 457 455 0.100 Pb [67] [88] [84] 0.500 Si 973 1,110 1,250 1,240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] Other Analytes Measured but Not Detected 0.025 Ag 0.100 Be 0.010 Be 0.100 Bi 0.200 Ce 0.050 Co	0.050	Mo		[22]	[26]	[27]
0.100 P 748 457 455 0.100 Pb [67] [88] [84] 0.500 Si 973 1,110 1,250 1,240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] Other Analytes Measured but Not Detected 0.025 Ag 0.250 As 0.010 Be 0.100 Bi 0.200 Ce 0.050 Co	0.030	Ni		188	237	240
0.100 Pb [67] [88] [84] 0.500 Si 973 1,110 1,250 1,240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] Other Analytes Measured but Not Detected 0.025 Ag 0.250 As 0.100 Be 0.100 Bi 0.200 Ce 0.050 Co	0.100	Р		748	457	455
0.500 Si 973 1.110 1.250 1.240 0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] Other Analytes Measured but Not Detected 0.025 Ag 0.250 As 0.010 Be 0.100 Bi 0.200 Ce 0.050 Co	0.100	Pb		[67]	[88]	[84]
0.015 Sr 86.5 60.3 62.1 0.050 Zn [8.6] Other Analytes Measured but Not Detected 0.025 Ag 0.250 As 0.010 Be 0.100 Bi 0.200 Ce 0.050 Co	0.500	Si	973	1,110	1,250	1.240
0.050 Zn [8.6] Other Analytes Measured but Not Detected 0.025 Ag 0.025 Ag 0.025 As 0.010 Be 0.010 Bi 0.010 Bi 0.010 Bi 0.010 Distribute 0.010 Distribute 0.010 Distribute	0.015	Sr		86.5	60.3	62.1
Other Analytes Measured but Not Detected 0.025 Ag 0.250 As 0.010 Be 0.100 Bi 0.200 Ce 0.050 Co	0.050	Zn		[8.6]		
0.025 Ag		Other Analytes	Measured bu	ut Not Detecte	ed	·
0.250 As 0.0 0 Bi 0.0 0 Ce 0.0 0 Co	0.025	Ag				-
0.010 Be 0.0 0.000 Ce 0.0 0.000 Ce	0.250	As				
0.100 Bi 0.200 Ce 0.000 Co 0.000 Co	0.010	Be				
0.200 Ce 0.050 Co	0.100	Bi			_	
0.050 Co	0.200	Ce			_	
	0.050	Co				
0.050 Dy	0.050	Dy				
0.100 Eu	0.100	Eu				
0.050 La	0.050	La				
0.030 Li	0.030	Li				
0.100 Mg	0.100	Mg				
0.050 Mn	0.050	Mn				
0.100 Nd	0.100	Nd				
0.750 Pd	0,750	Pd	**			
0.300 Rh	0.300	Rh				
1.100 Ru	1.100	Ru				
0.500 Sb	0.500	Sb				
0.250 Se	0.250	Se				
1.500 Sn	1.500	Sn	••			
1.500 Te	1.500	Te				
1.000 Th	1.000	Th				
0.025 Ti	0.025	Ti				
0.500 TI	0.500	TI				_
2.000 U	2.000	U				
0.050 V	0.050	v				
2.000 W	2.000	w				
0.050 Y	0.050	Y				
0.050 Zr	0.050	Zr				

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

6130 Final - ASR 6106 6130 Fiskum 6140 Bryan - A0700.XLS

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Results

.. _..

QC Performa	nce					
		80% -		75%-		
Criteria>	<20%	120%	75%-125%	125%	75%-125%	< +/-10%
00.00-	04 4354 9	01-1388-		01-1345 +	01-1345 +	01-1354
	01 1254 8	AES-		Post Saika A	Post Seike B	@2/@3
A	DDD (W)		NOTE NOTE	opike A	аріке б	Senar Di
Analytes	RPD (%)	%Rec	%Rec	%Rec	%Rec	%DIN
Na	7.1	93.5		n.r.		0.7
K	5.2	103.4		93.6		
Other Analyti	e Detected		r	í		
AI	3.2	97.6		n,r.		-0.2
<u> </u>	7.6	209.8		102.0		
Ва		110.3		95.5		· · · ·
Ca	1.0	105.6		97.5		
Cd	0.5	106.7		98.1		
Сг	2.2	105.9		98.4		
Cu I	11.2	107.9		99.2		
Fe	2.3	109.0		100.5		
Mo	1.3			97.0		
Ni	1.3	109.0		100.5		
P	0.5	105.3		93.8		
РЬ	4.6	109.7		100.3		
Si	0.8			106.7		
Sr	2.9	105.4		99.1		
Žn		114.2		101.9		
Other Analyt	es Measured	but Not D	etected			
Ag		101.2	i i	93.2		
As		103.6		98.7		
Be		102.2		95.1		
Bi		104.1		95.9		
Ce					94.0	
Co		108.9		101.7		
Dv					94.0	
Eu					101.1	
La					91.9	
Li	,	106.6		97.7		
Ma		112.3	<u> </u>	103.6	· · · ·	
Mn		109.8		102 1	Ì	
Nd					92.2	
Pd		i		ł	85.4	
Rh Rh	· ···· ·		<u> </u>	+	94.3	
			 			·····
сь. С.	···			06.0		
		105.0		0.00	<u> </u>	
		105.0	·	30.4		<u> </u>
- Sri To	}	· ·				
TL 18		<u>+</u>			05.1	
	ļ			04.2	30.1	<u> </u>
		101.0		94.2	.	
		101.9	<u> </u>	93.7	000	<u>├</u> ~
	 			0.0.7	90.3	
V		99.8		92.7	h	
W			<u> </u>			
¥		99.4	<u> </u>	93.2		ļ
Zr		1	1	99.0		

n.r. = not recovered; spike at <20% of sample concentration

Battelle, PNNL / AIAL Inorganic Analysis / ICP-MS Data Report

Project / WP#:	42365 / W58168
ASR#:	6130
Client:	Sandy Fiskum
Total Samples:	8

	<u> </u>
RPL#	Client ID
01-01338	AP101-S3C-F/A
01-01339	AP101-S2a
01-01340	AP101-S1a
01-01345	ANC 102/104-C-F/A
01-01346	ANC 102/104-S1C-F/A
01-01354	AN102 CST-C-F/A
01-01355	AN102 CST-S3C
01-01356	AN102 CST-S4C

Procedure: PNL-ALO-280 Rev. 1, Inductively-Coupled Plasma Mass Spectrometric (ICP-MS) Analysis

M&TE Number:	WB36913	ICP/MS, VG Elemental
	512-06-01-014	Mettler AJ100 Balance

- Analyst: James P Bramson
- Analysis Date: 9/12/01, 9/17/01, 9/18/01
- Analysis Files: Experiment 12SEP01b, 17SEP01b, 18SEP01b Procedure - 010912b, 010917b, 010918b Element Menu - CsTcRb, Multi

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Prepared By

Eight samples, a process blank, and a blank spike submitted for analysis were analyzed on a radioactive-material-contained ICP/MS for the requested analyte, Cs¹³³.

1. Analysis

See attached ICP/MS data reports for final results and run order for the analytical batch. The final results have been corrected for all client and laboratory dilutions performed on the sample during analysis.

2. Quality Control

<u>Duplicate (DUP)</u>. In addition to the duplicate sample submitted (AN102 CST-C-F/A), a replicate analysis on sample AP101-S3C-F/A, was also performed. The RPD for both duplicate and replicate analyses met the QC criteria of < 20%.

<u>Matrix Spike (MS)</u>. In addition to the matrix spike samples submitted, a post spike was also performed on AN1102 CST-C-F/A. The spike recovery for both the ANC 102/104-S1C-F/A matrix spike and AN1102 CST-C-F/A post spike met the QC criteria of 75% – 125%. However, the AN102 CST-C-F/A matrix spike recovery was above this range (129%).

<u>Process Blank (PB), Blank Spike (BS)</u>. The PB concentration was near detection limit and below the MRQ. A post spike of the PB met the spike recovery QC criteria of 75% – 125%. However, the BS spike recovery (132%) was above the QC criteria of 80% - 120%.

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB). The ICB/CCB standards are 1% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than the estimated quantitation limit (EQL, taken to be the lowest calibration standard), was met.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV). The ICV/CCV standards met the QC criteria of 90-110%.

Client: Sandy Fiskum WP/Project: W58166742365 ASB.Log-In: 6130, 01-01333 to 01-01356 Report Date: 11/25/01

Battelle, PNNL, AIAL ICP/MS Analysis Data Report

Reviewed by: <u>Analyst</u> June Departs 11/27/01

Unless otherwise specified, the results are reported in μg analyte/ml of original sample.

Log-In	Sample	ICP/MS	MDL	C*-13	3	Rec/RPD
Number	10	1D 🕺	µg/mi	µg/mi ±	150	%
	1 % HNO3	ICB 🕺	<	1,855.05		
	1%HNO2	CC81 🕴		$2.44E.06 \pm$	2.83E-07	
	1%HNO3	ссв2		2.61E-06 ±	3.295-07	
	1 54 H N O 2	ссвз	<	1.85E-06		
	1%HN0-	ссв4		2.40E-06 ±	3.735-07	
	1%HNO-	CCB5		2.32E-06 ±	7.132-07	
		1				
	1% HNO ₃	ICB 🕴	<	1.54E-06		
	1 % HNO ₃	ссвз 💈	<	2.132-06		
	1%HNO3	ССВ4	<	2.172-06		
	1%HNO3	ICB	<pre></pre>	8.002-06		
	1%HNO3	CC81	{ <	8.426.05	• • •	
	1%HNO ₃	CC82 {	<	1.09E-05	-	
	0.1ppb Cs	ICV	c L	9.85E-05 ±	1,255-06	99%
	0.1ppb Cs	CCV1 🚦		1.03E-04 ±	1,10E-06	103%
	0.1pp5 Cs	CCV2		1.04E-04 ±	1.902-06	104%
	0.1ppb Cs	CCV3		1.02E-04 ±	1.67E-06	102%
	0.1ppb Cs	CCV4	0 9 2	1.01E-04 ±	3.67E-07	101%
	0.1ppb Cs	CCV5		1.03E-04 ±	9.08E-07	103%
	loop Cs	ICV		9.758-04 ±	3.40E-06	95%
	1ppb Cs	CCV3		9.42E-04 ±	4.75E-06	94%
	1ppt Cs	ccv4		9.73E-04 ±	5.32E-06	97%
						4007
	1ppb Cs	ICV		1.03E-03 ±	3.592-06	103%
	1ppb Cs			1.035-03 =	1.992-05	10376
				1,046-03 =	1.172-03	10473
01-01338 PB	PROCESS BLANK	Sample 1	1.872.03	7.55E-03 ±	4.935-04	
01-01338 PB	PROCESS BLANK post spike	Sample 4	1.915-03	1,035-01 ±	5.496-04	0.6%
Post Spike Concentra	tion expected			1.005-01		30 %
01-01338 MS-LCS/8:	S BLANK SPIKE	Sample10	1.94E-01	6.60E+01 ±	9.072-01	
Matrix Spike Concent	ration expected			5,005 + 011		132%
01-01338	AP101-S3C-F/A	Sample21	4.41E-01	1,20±+02 ±	0.225.01	6.05/
01-01338	AP101-S3C-F/A replicate	Sample22 §	3 4.41E-UI	1.276+02 ±	9.30E-01	0.0%
01-01339	AP101-52a	Sample26	1.856-01	4,54E+01 ±	4.84E-01	
01-01340	AP101-S1a	Sample27	1.82E-01	9,335÷00 ±	1,598-01	
01-01345	ANC 102/104-C-F/A	Sample28	1,862-01	5.10E+00 ±	1.305-01	
01-01346	ANC 102/104-S1C-F/A	Sample5	2,116+00	1.30€+02 ±	1.695+00	
01-01346 MS-MS	ANC 102/104-S1C-F/A	Sample 25	2 4.31E-01	1.695+02 ±	2.132+00	
Matrix Spike Concent	tration expected		á T	5.00E+01		79%
01-01354	AN102 CST-C-F/A	Sample30	1.86E-01	9.77E+00 ±	8.755-01	0.5%
01-01354 DUP	AN102 CST-C-F/A	Sample31	1,91E-01	8.97E+00 ±	5.61E-02	8.5%
01 01054	AN102 CST.C.F/A nast sails	Samole34	1.885-01	1,92E+01 ±	5.412-01	
- Post Soike Concentra	ition expected	Compiler 1		1.005+01		95%
i çaç opiça çoncentre						
01-01354 MS	AN102 CST-C-F/A	Sample36	1.845-01	7.45E+01 ±	3.59E-01	
Matrix Spike Concent	tration expected			5.00E + 01		129%
				1 105 - 03 -	1 275 - 00	
01-01355	AN102 CST-S3C-F/A	Sample24	4.28E-01	1.192+02 ±	E 165 -00	
01-01356	AN102 CST-S4C-F/A	Sample33	S 1.852+00	0.900 +02 =	0.102700	

MT5: ICP/MS VG [WB36913], Mettler 512-06-01-014 Procedure: PNL-ALO-280 Rev. 1

8/10/01

Battelle Pacific Northwest Laboratory

Radiochemical Processing Group-325 Building Chemical Measurement Center

Client : S. Fiskum

Cognizant Scientist:

IR ficenced 13/01 Date : 8 Trang-le 0 Date :

PNL-ALO-476 (Sr-90)

Concur :

Measured Activities (uCi/ml) with 1-sigma error

ALO ID	Sr-90
Client ID	Error %
01-1348 PB Process Blank	<7.E-3
01-1348 AN-102-CST-F/A	9.14E+0 3%
01-1349 AN-102-CSTD-F/A	8.22E+0 3%
RPD	11%
01-1350 AN-102-S3-CST-F/A	1.07E+1 7%
01-1351 AN-102-S3-CSTD-F/A	1.02E+1 7%
RPD	5%
01-1352 AN-102-S4-CST-F/A	1.05E+1 7%
01-1353 AN-102-S4-CSTD-F/A	1.03E+1 8%
RPD	2%
01-1354 AN-102CST-C-F/A	1.34E+1 7%
01-1354 DUP AN-102CST-C-F/A	1.45E+1 7%
RPD	8%
Blank Spike	108%
Matrix Spike	126%
Blank	1.03E-2 36%

Battelle Pacific Northwest Laboratory

Radiochemical Processing Group-325 Building Chemical Measurement Center

Client : S. Fiskum

•

Cognizant Scientist:

Concur :

Date :	7/25/01
Date :	7/25/01

PNL-ALO-450 (GEA)

Measured Activities (uCi/ml) with 1-sigma error

ALO ID	Co-60	Cs-134	Cs-137	Eu-154	Eu-155	Am-241
Client ID	Error %	Error %	Error %	Error %	Error %	Error %
01-1336 AP101-S3-644- F/A	2.23E-3 12%	4.45E-3 10%	2.18E+1 2%	<2.E-3	<2.E-2	<2.E-2
01-1337 AP101-S3-644D-F/A	2.44E-3 11%	5.46E-3 11%	2.34E+1 2%	<2.E-3	<3.E-2	<3.E-2
01-1338 AP101-S3-C-F/A	2.39E-3 14%	3.26E-2 5%	1.38E+2 2%	<4.E-3	<4.E-2	<4.Ë - 2
01-1341	3.57E-2	<4.E-4	5.16E+0	2.32E-2	1.31E-2	9.76E-3
ANC102/104-644- F/A	2%		2%	2%	7%	13%
01-1342	3.51E-2	<5.E-4	1.50E+1	2.29E-2	1.27E-2	6.80E-3
ANC102/104-S1-644- F/A	2%		2%	2%	9%	26%
01-1343	3.65E-2	<7.E-4	1.45E+1	2.26E-2	1.24E-2	1.17E-2
ANC102/104 S1-644D- F/A	2%		2%	3%	14%	23%
01-1344 ANC102/104- S2-644- F/A	3.50E-2 3%	<2.E-3	5.14E+1 2%	2.36E-2 6%	<3.E-2	<3.E-2
01-1345 ANC102/104-C- F/A	4.09E-2 3%	<5.E-3	1.61E+2 2%	<9.E-3	<6.E-2	<6.E-2
01-1346 ANC102/104- S1-C- F/A	4.05E-2 3%	<5. E-3	1.62E+2 2%	<1.E-2	<7, E-2	<7. E-2
01-1347 ANC102/104-S2C-F/A	4.04E-2 3%	<4.E-3	1.60E+2 2%	<8.E-3	<6.E-2	<6.E-2
01-1348	5.28E-2	<3.E-3	1.84E+1	8.19E-2	4.77E-2	5.31E-2
AN-102-CST-F/A	3%		2%	3%	12%	17%
01-1350	5.18E-2	<3.E-3	1.76E+1	7.84E-2	3.84E-2	2.77E-2
AN-102-S3-CST- F/A	3%		2%	3%	14%	28%
01-1352	5.28E-2	<2.E-3	6.59E+1	7.85E-2	3.51E-2	3.87E-2
AN-102-S4-CST-F/A	2%		2%	3%	17%	26%

7/25/01

,

ALO ID Client ID	Co-60 Error %	Cs-134 Error %	Cs-137 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
01-1354 AN-102CST-C- F/A	5.46E-2 6%	<1. E-2	2.05E+2 2%	<4 E-2	<3.E-1	<3.E-1
01-1355 AN-102CST-S3-C- F/A	5.52E-2 8%	<2.E-2	2.10E+2 2%	<6.E-2	<4.E-1	<4.E-1
01-1356 AN102CST-S4-C- F/A	5.46E-2 5%	<8.E-3	2.05E+2 2%	<3.E-2	<2.E-1	<2.E-1

Measured Activities (uCi/ml) with 1-sigma error

AN-102 / C-104 Column Run Analytical Results

Project / WP#:	42365/ W58166
ASR#:	6174
Client:	S. Fiskum
Total Samples:	1

RPL#:	01-01732						
Client ID:	AN102/C104-RGN						
Sample Preparation: Sample prepared by PNL-ALO-106							
(0.5mL/10mL). AOI: Na.							

Procedure: <u>PNNI</u> Inducti	<u>-ALO-211</u> , "Devely Coupled Ar Spectrom	etermination of Elements by gon Plasma Atomic Emission etry" (ICPAES).
Analyst: <u>D.R. Sande</u>	<u>15</u>	
Analysis Date (File):	<u>10-22-01</u> (A07)	31)
See Chemical Measurement (Calibra	Center 98620 file ation and Mainte	e: <u>ICP-325-405-1</u> enance Records)
M&TE Number:	<u>WB73520</u> <u>360-06-01-029</u>	(ICPAES instrument) (Mettler AT400 Balance)

Reviewed by Reviewed by Rene's Rubbell 3-14-02-Concur

One liquid sample (RPL# 01-01732) submitted under Analytical Service Request (ASR) 6174 was prepared by acid digestion per PNL-ALO-106. The sample was digested by using 0.5 mL of sample and diluting to a final volume of 10 mL. Analytes of interest (AOI) were specified on the ASR as Na. All other analytes that were not requested are reported, but have not been fully evaluated for QC performance.

A summary of the ICPAES analyses of the sample, including QC performance, is given in the attached ICPAES Data Report (2 pages). ICPAES measurement results are reported in μ g/mL and have been corrected for dilution resulting from sample processing.

The process blank had detectable amounts of Ag, Al, B, Ba, Dy, and Na present. The Ag, Al, B, Ba, and Dy were below estimated quantitation limits (EQL) and were not AOIs. The Na present in the process blank was at a concentration greater than the estimated EQL and greater than 5% of the sample concentration. The Na concentration in the process blank is approximately 30% of that found in the AN102/C104-RGN sample. This is outside of the tolerance limit, and most likely results from processing the samples by method PNL-ALO-106 as per the ASR. This method uses glass digestion vessels and high Na and B values are not uncommon.

Quality control standard results met tolerance requirements for the specific AOI's except as noted below. Following is a list of quality control measurement results relative to ICPAES analysis tolerance requirements of the controlling QA plan. Blank spikes, Matrix-spikes and duplicates were prepared with the sample and analyzed. Blank-spike and matrix-spike samples were prepared using 1.0 mL of multi-element solution "INT-QC-MCVA-1B" per 10 mL of digestate volume.

Process Blanks:

The concentration of sodium (the AOI) measured in the process blank was outside the tolerance limit of \leq EQL or less than \leq 5% of the sample. One Na blank concentration is approximately 30% of the sample concentration. The other analytes detected in the process blank meet the \leq EQL acceptance criteria.

Duplicate RPD (Relative Percent Difference):

The original and duplicate sample (RPL# 01-01732) were outside the tolerance limit of $\leq 3.5\%$ RPD for Na. This indicates poor precision. The process blank had very high and variable levels of Na, which leads to poor precision.

Blank Spike:

Blank-Spike recoveries for the analyte of interest were within tolerance of 80% to 120%. However, the blank spike recovery for B was outside the tolerance limit at 63% and 51%; most likely due to high B in the sample blanks.

Matrix Spiked Sample:

Matrix-Spike recovery for the analyte of interest was within tolerance of 75% to 125%. However, the matrix spike recovery for B was outside the tolerance limit at 61%; most likely due to high and variable B in the sample blanks.

Post-Spiked Samples (Group A):

No post-spike A was analyzed with this batch of samples.

Post-Spiked Samples (Group B):

No post-spike A was analyzed with this batch of samples.

Five fold serial dilution:

All analytes above EQL in the sample tested were within tolerance limit of 10% after correcting for dilution.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- 2) Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically \pm 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight).
- Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

	Run Date=	10/22/2002	10/22/2002	10/22/2002
	Multiplier=	20.0	20.0	20.0
	RPL/LAB #=	01-01732-BLK	01-01732	01-01732-DUP
Det. Limit	Client ID=	process blank	<u>AN102/C104-</u> RGN	<u>AN102/C104-</u> RGN-DUP
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)
0.150	Na	99.1	275	326
Other Analyt	es			
0.025	Ag	[0.60]		
0.060	A	[10]	[6.5]	<u> </u>
0.250	As			
0.050	в	[8,3]	[3,6]	[4 5]
0.010	Ba	[0.21]		
0.010	Be			
0.100	Bí			
0.250	Ca			
0.015	Cd			4 20
0.200	Ce			
0.050	Co			
0.020	Cr			
0.025	Cu			
0.050	Dv	[6 R]		
0.100		[0:0]	10.0	
0.025	Eo			
2.000				[0.71]
0.050				
0.030				
0.000	LI			
0.050	Mo			••
0.050	Mo			
0.030				
0.100				
0.030	N			
0.100	P			
0.750	PD			
0.750	<u>Pa</u>			
0.300	<u>кл</u>			
1.100	Ru			
0.500	Sb			
0.250	Se	···-		
0.500	Si			
1.500	Sn			+ ··
0.015	Sr		[2.4]	
1.500	Te			
1.000	Th	+-	**	**
0.025	Ti		•-	
0.500	TI			
2.000	U			
0.050	V		[2.4]	
2.000	W			
0.050	Y .			
0.050	Zn			••
0.050	Zr]

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/-15%

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be

found by multiplying "det, limit" (far left column) by "multiplier" (top of each column).

QC Performa	ance 10/22/200	1					
Criteria>	<20% ^(a)	80% -	120%	75%-125%	75%-125%	75%-125%	< +/-10%
QC ID=	01-01732 & 01-01732-D	LCS	5/B\$	01-01732 & 01-01732-MS	Post Spike A (none)	Post Spike B (none)	01-01732 @1/@5 Serial Dil
Analytes	RPD (%)	%	Rec	%Rec	%Rec	%Rec	%Diff
Na	16.9	101	100	109			2.6
Other Analyt	es			· · · · · · · · · · · · · · · · · · ·			
Ag	· · ·	92	93	100			
AI		100	99	103			
As		102	101	103			
В		63	51	61			
Вa		98	96	100			
Be	1	100	99	100			
Bi		101	100	102	···		
Ca		102	99	103			
Cd		103	102	104	· · ·		
Ce					· · · ·		
Co		104	102	104			
Cr		102	100	102			
Cu		101	100	103	· · ·		
Dy							
Eu				·•			
Fe		102	102	103	<u> </u>		
к		105	106	111			
La					····		
Li		103	103	108			
Mg		105	102	106			
Mn		104	103	105			
Mo							
Nd							
Ni		106	103	103			
Р		102	101	103			
Pb		103	102	104			
₽d							
Rh							
Ru							
Sb							
Se		102	102	104			
Si							
Sn							
\$r		98	86	76			
Te		· · · · ·					
Th							
Tì							
TI		99	96	99			
U			ļ				
V		97	96	86			
W				-			
Y	ļļ	97	96	98			
Zn		104	104	104	L		
Zr	1		1				

Shaded results exceed acceptance criteria

Bold results for information only; LCS, MS, or Serial Dilution concentration less than EQL (a) Na RPD Criteria ≤3.5%.

Date: 9/21/01

Subject:	Hydroxide Analyses	for:	AN-102/C104 - RGN (0.025M NaOH)
A\$R:	6174	RPL #	01-1732

To: Sandy Fiskum

From: Bob Swoboda

1/21/01

A 0.025M NaOH fraction of **AN-102/C104-RGN tank waste** was analyzed in duplicate for the hydroxide content following procedure PNL-ALO-228. Direct sample aliquots were analyzed using a Brinkman 636 Auto Titrator. A 0.0103 N NaOH (ChemRec_72), solution was used as a standard and for the sample spike and the titrant was a 0.0051 M HCl prepared solution for all the samples. The attached Report Summary shows average OH molarity (1st inflection point) of 0.0036M on the sample and replicate results with an RPD of 11%, which is good considering the very weak base concentration of the sample being titrated. The hydroxide ug/ml results averaged 61+/- 4.6 ug/ml and was above the required MRQ value of 17 ug/mL which is equivalent to 0.01M NaOH. The hydroxide recoveries averaged 100% for the standards and the matrix spike recovery on 01-1732 was 102%. No hydroxide was detected in the reagent blank. The second inflection point frequently associated with carbonate, showed an RPD of 13%. There wasn't a third inflection point recorded for this sample. All of the results meet the QC acceptance criteria for spike recovery and RSD of duplicate measurements. The titration curves are included with the report.

Remember Alexand 9/21/01

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center ASR 6174

WP# W58166

Hydroxide and Alkalinity Determination
Procedure: PNL-ALO-228 Equip #

WB76843

6174

Report Summary for ASR # --

					C0	ncentration, n	noles		_
RPG #	Client ID			First Point	_	Second Point	_	Third Point	
01-1732 01-1732	AN-102/C104 -RGN AN-102/C104 -RGN	Rep	OH conc ug/mL 5.7E+01 6.4E+01	0.0034 0.0038	RPD	0.0029 0.0026	RPD 13%	none none	RPD
		Ave std de	6.1E+01 4.6E+00	3.6E-03 2.7E-04		2.8E-03 2.5E-04			
Reag. Blk.1 Standard 3	·			0 99%					
Standard 4 MS 01-1732	Matrix spike			100% 102%					

Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

Jueenuceol 9/21/01 Analyst:_ Reviewer:

8/2/01

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurement Center

Client: Fiskum

Measured Activities (uCi/ml) with 1-sigma error

ALO ID	Be-7	Co-60	Eu-152	Sb-125	SnSb-126	Cs-137	Eu-154	Eu-155	Am-241
Client ID	Error %	Error %	Error %	Error %	Error %	Error %	Error %	Error %	Error %
01-1714	4.75E-4	3.55E-2	4.18E-4	5.49E-5	4.54E-4	2.95E-4	2.22E-2	1.28E-2	9.98E-3
AN102/C104L- F2	16%	2%	4%	34%	3%	5%	2%	5%	4%
01-1715	4.58E-4	3.79E-2	4.88E-4	8.83E-5	4.62E-4	2.55E-4	2.37E-2	1.44E-2	1.14E-2
AN102/C104L-F5	19%	2%	6%	33%	2%	8%	2%	3%	4%
01-1716	6.03E-4	4.01E-2	4.52E-4	9.03E-5	4.82E-4	2.10E-4	2.47E-2	1.54E-2	1.21E-2
AN102/C104L-F8	12%	2%	4%	26%	2%	6%	2%	4%	4%
01-1717	4.00E-4	3.34Ĕ-2	4.39E-4	<2.E-4	4.67E-4	1.40E-2	2.25E-2	1.39E-2	1.06E-2
AN102/C104P-F2	39%	2%	8%		3%	3%	2%	4%	4%
01-1718 AN102/C104P-F6	<2.E-3	3.68E-2 2%	<4.E-4	<5.E-4	4.36E-4 8%	1.55E-2 2%	2.37E-2 2%	1.46E-2 3%	1.17E-2 5%
01-1719 AN102/C104P-F8	<4.E-4	3.58E-2 2%	∧ 1.⊟ 4	<2.E-4	4.28E-4 4%	1.21E-2 3%	2.26E-2 2%	1.29E-2 5%	1.05E-2 4%
01-1720 AN102/C104 F0	<4.E-1	3.78E-2 5%	<8.E-3	<1.Ē-1	<1.E-2	1.39E+2 3%	<2.E-2	<8.E-2	<2.E-1
01-1721 AN102/C104 FD-1	<7.E-4	4.00E-2 2%	^2.E-4	<3.E-4	3.50E-4 6%	1.73E-2 2%	1.95E-2 2%	1.19E-2 3%	9.53E-3 4%

Measured Activities (uCi/ml) with 1-sigma error

ALO ID Client ID 01-1722 AN102/C104 FD-5	Be-7 Error % <2.E-4	Co-60 Error % 6.27E-3 2%	Eu-152 Error % <3.E-5	Sb-125 Error % <4.E-5	SnSb-126 Error % <2.E-5	Cs-137 Error % 1.76E-3 2%	Eu-154 Error % 3.74E-4 3%	Eu-155 Error % 2.49E-4 5%	Am-241 Error % 2.26E-4 7%
01-1723 AN102/C104 FD-9	<6.E-5	2.43E-3 2%	<2.E-5	<2.E-5	1.28E-5 10%	1.81E-3 3%	1.16E-4 4%	7.45E-5 8%	4.70E-5 27%
01-1724 AN102/C104 FDI-4	<5.E-5	1.35E-3 2%	<2.E-5	<2.E-5	9.00E-6 11%	1.88E-3 3%	5.78E-5 6%	3.10E-5 6%	3.65E-5 41%
01-1725 AN102/C104 FDI-8	<4.E-5	7.02E-4 2%	<2.E-5	<2.E-5	6.96E-6 12%	7.03E-4 3%	3.34E-5 7%	<2.E-5	2.68E-5 27%
01-1726 AN102/C104 LE-4DR	<2.E1	<6.E-2	<2.E-1	<6.E0	<3.E0	4.63E+3 2%	<3.E-1	<4.E0	<4.E0
01-1727 AN102/C104 LE-5DD	<3.E1	<1.E-1	<5.E-1	<7.E0	<4.E0	8.52E+3 2%	<3.E-1	<4.E0	<4.E0
01-1728 AN102/C104 LE-6DD	<4.E0	<4.E-2	<2.E-1	<2.E0	<7.E-1	1.13E+3 3%	<1.E-1	<8.E-1	<2.E0
01-1729 AN102/C104 LE-9DR	<2.E-2	1.20E-3 7%	<2.E-3	<6.E-3	<3.E-3	3.43E+0 2%	<7,E-4	<3.E-3	<3.E-3
01-1730 AN102/C104 LE-12D	<6.E-3	6.91E-4 9%	<7.E-4	<2.E-3	<2.E-4	7.21E-1 3%	<5.E-4	<3.E-2	<2.E-1
01-1731 AN102/C104 EDI-2	<3.E-4	2.13E-4 2%	<2.E-5	<1.E-4	<5.E-5	5.64E-2 2%	<2.E-5	<5.E-5	<5.E-5
01-1732 AN102/C104 RGN	<4.E-4	1.17E-3 2%	<2.E-5	<2.E-4	<9.E-6	7.54E-2 3%	<2.E-5	<1.E-4	<2.E-4
01-1733 AN102/C104 Fcomp#2	<9.E-4	3.50E-2 2%	<3.E-4	<3.E-4	4.92E-4 5%	1.42E-2 2%	2.30E-2 2%	1.38E-2 3%	1.12E-2 4%

Project / WP#:	42365 / W60567
ASR#:	6281
Client:	I. Burgeson
Total Samples:	4

RPL#:	02-00776	02-00779						
Client 1D:	Tc-IX-Eluate	AN102/C104-CsE-						
	Composite	Comp 1						
(AN102/C104)								
Sample Preparation	n: 02-00776 to 02-00778 -	-PNL-ALO-129; 02-						
0077910x dilutio	n (SAL/vh). Not the san	ne analytes of interest for						
each sample. See s	ample Results for analytes	of interest.						

Procedure: <u>PNN</u> Induct	<u>1ALO-211</u> , "Determination of Elements by ively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).						
Analyst: <u>D.R. Sande</u>	ers						
Analysis Date (File):	<u>01-29-02</u> (A0761) & <u>02-19-02</u> (A0771)						
See Chemical Measurement Center 98620 file: <u>ICP-325-405-1</u> (Calibration and Maintenance Records)							
M&TE Number:	WB73520(ICPAES instrument)360-06-01-029(Mettler AT400 Balance)						

MW Jhu 3.28-02 Reviewed by Renée Russell 3/28/02

Concur

Four AN102/C104 ion exchange samples (RPL# 02-00776....02-00779) were received under Analytical Service Request (ASR) 6281. Three of the samples, 02-00776 through 02-00778, were subjected to an acid digestion per PNL-ALO-128. The fourth sample, 02-00779, was simply diluted by 10x with 0.5M HNO₃ solution. Analytes of interest (AOIs) and additional 'opportunistic analytes' for each sample were specified in four individual tables attached to the ASR. Analytes other than those identified as AOIs or opportunistic analytes are included in the results for information only, since these analytes have not been fully evaluated for QC performance.

A summary of the ICPAES analysis results for the samples, as well as a summary of the QC performance, is given in the attached ICPAES Report (6 pages). Since the samples have different AOIs, the results for samples 02-00776 and 02-00777, sample 02-00778, and sample 02-00779 are presented in different tables, along with the applicable QC performance. The QC performance was evaluated for two batch runs, since samples 02-00776 through 02-00778 were prepared and analyzed in a single batch, with sample 02-00779 being analyzed in a different batch – ICPAES measurement results are reported in μ g/mL and have been corrected for dilution resulting from sample processing.

Quality control check-standard results met tolerance requirements for the specific AOIs except as noted below. Below is a list of quality control measurement results relative to ICPAES analysis tolerance requirements of the controlling QA plan (applicable to process blank, post spike recoveries, and serial dilution tolerance) and QC parameter tables from the ASR (applicable to blank spike, matrix spike, and duplicate precision.

<u>Analysis Run January 29, 2002 - Samples 02-00776 through 02-00778</u>

Process Blanks:

No AOIs were detected in the process blank at concentrations above the method detection limit, thus meeting the requirement that process blank concentration be \leq EQL.

Duplicate RPD (Relative Percent Difference):

Per the Quality Control Parameter tables included with the ASR, samples 02-00776 and 02-00777 have a precision requirement of <20% RPD and sample 02-00778 has a precision requirement of <15% RSD (<3.5% RSD for Na). As part of the batch processing for these samples, sample 02-00776 was selected for analysis in duplicate, and is used to estimate the precision for all samples processed in the batch. Unfortunately, only Na and B were detected at concentrations above the EQL in sample 02-00776, and are the only results available for accessing precision. It should be noted that no instructions were provided in the ASR to perform replicate analyses for 'each' sample.

Blank Spike:

For the blank spike control sample analyzed with samples 02-00776 through 02-00778, all AOI were within the tolerance limit of 80% to 120% recovery except for K, which had a recovery of 34%. Both the blank spike and matrix spike are from the same spiking solution

3/28/2002

Page 2 of 4

and both demonstrate very low K recoveries. Low K recoveries have been experiences when the blank spiking solution has been transferred to the SAL hot cells in polycarbonate vials. This may be an explanation for the low K recovery. However, this can not be verified since the containers used for transferring the spiking solution were discarded prior to discovering the low K recovery problem. Use of polycarbonate containers has been discontinued.

Matrix Spiked Sample:

A matrix spike was prepared by adding 0.5 ml each of stock multi-element standards 'BPNL-QC part 1' and 'BNPL-QC part 2' to 1.0 mL of sample 02-00777, processing, and diluting to a final volume to 25 mL. All AOI were within the tolerance limit of 75% to 125% recovery except for K, Al, Na, Co, and Sn. K had a recovery of only 35% (See blank spike explanation). Co and Sn were not included in either 'part 1' or 'part 2' of the spiking solution. The matrix spike analysis uses a general multi-element spiking solution intended to be usable on the majority of samples analyzed by ICPAES. However, for the sample selected for matrix spiking, the spike concentration for Al and Na were less than 20% of the sample concentration and the recovery results are not considered valid. For Al and Na, the use of serial dilution results is used to evaluate potential matrix interferences.

Post-Spiked Samples (Group A):

Post spike analysis for 'Group A' analytes was performed on sample 02-00776. All postspiked AOIs and opportunistic analytes in the sample were recovered within tolerance of 75% to 125%.

Post-Spiked Samples (Group B):

Post spike analysis for 'Group B' analytes was performed on sample 02-00776. There are no AOIs in the 'Group B' spiking solution; however, the opportunistic analytes in the sample were recovered within tolerance of 75% to 125%.

Serial Dilution:

Serial dilution was performed on sample 02-00777. All AOIs above EQL were within tolerance limits of 10% after correcting for dilution.

Analysis Run February 19, 2002 - Sample 02-00779

Process Blanks:

No processing, other than dilution with acid, was performed; thus no process blank was prepared. However, the dilution matrix (0.5 M HNO₃) was analyzed and reported. No AOIs were detected in the dilution blank at concentrations above the method detection limit.

Duplicate RPD (Relative Percent Difference):

Per the Quality Control Patameter tables included with the ASR, sample 02-00779 has a precision requirement of <20% RPD. All AOIs measured above the EQL demonstrated good precision, with %RPDs less than 5%.

3/28/2002

Page 3 of 4

Blank Spike:

÷.

No sample processing, other than dilution with acid, was performed on the sample; thus no blank spike sample was prepared.

Matrix Spiked Sample:

No sample processing, other than dilution with acid, was performed on the sample; thus no matrix spike sample was prepared.

Post-Spiked Samples (Group A):

All post-spiked AOIs and opportunistic analytes in the sample were recovered within tolerance of 75% to 125%.

Post-Spiked Samples (Group B):

There are no AOIs in the 'Group B' spiking solution; however, the opportunistic analytes in the sample were recovered within tolerance of 75% to 125%.

Serial Dilution:

All AOIs above EQL were within tolerance limits of 10% after correcting for dilution.

Comments:

- 1) The "Final Results" have been corrected for all laboratory dilutions performed on the sample during processing and analysis unless specifically noted.
- Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically \pm 15% or better for samples in dilute, acidified water (e.g. 2% v/v HNO₃ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight).
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

.

	Run Date=	1/29/2002	1/29/2002	1/29/2002	1/29/2002	1/29/2002
	Multiplier=	24.9	24.9	24.9	24.9	124.7
	RPL/LAB #=	PB-00776	02-00776	02-00776-DUP	02-00777	02-00777 @5
Det. Limit	Client ID=	process <u>blank</u>	<u>Tc-IX-Eluate</u>	<u>Tc-IX-Eluate-</u> <u>Dup</u>	AN102/C	<u>104Cs-Rem</u>
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)	(ug/mL)
0.060	AI		[9.0]	[8.6]	7,840	
0.010	Ba					
0.250	Ca			*-	149	
0.015	Cd				24.2	
0.050	Co				[1.9]	·
0.020	Cr				98.2	
0.025	Cu				•-	
0.025	Fe				[2.0]	<u> </u>
2.000	к				1.080	
0.050	La					
0.100	Mg					
0.050	Mn					
0.050	Mo				23.1	· · · · · · · · · · · · · · · · · · ·
0.150	Na	•••	279	280		110.000
0.030	Ni				145	
0.100	Pb	••			 59 t	<u></u>
0.500	Si	••	[26]	[26]	170	·
1,500	Sn			[20]	175	
0.025	Ti					
0.050	Zn					
Other Analyte	 IS				[4.0]	
0.025	Ag				·	
0.250	As					
0.050	В		20.0	10.0	86.4	
0.010	Be			10,0		·
0,100	Bi					
0,200	Ce					
0.050	Dv Dv				· · · ·	
0.100	E					
0.030						
0.100	Nd					
0 100	P			<u> </u>	[3.6]	
0 750					562	• • • • • • • • •
0 300						
1 100	Ru					
0.500	Sh					
0.250	 &					
0.015	30 Q.F					
1.500					86.9	<u> </u>
1.000						
0.600	<u> </u>					
2000						
2.000	<u>v</u>					
2,000	V					
2.000	V					
0.050			<u> </u>			
0.050	∠r					

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

۰,

QC Performance 1/29/02 -- Applicable to Batch Containing 02-00776, 02-00777, and 02-00778

Criteria>	<20%	80% - 120%	75%-125%	75%-125%	75%-125%	75%-125%	< +/-10%
Batch QC							02-00777
ID=	02-00776 Dun	Lesine	00 00777 000	02-00777 MS	02-00776 +	02-00776 +	@1/@5
Appluton		LUSIBS	02-00777 MS	(@5)	Post Spike A	Post Spike B	Serial Dil
Analytes	RPD (%)	76 Rec	%Rec	%Rec	%Rec	%Rec	%Diff
	······································	100			100		1.8
Ea Co		100	94		99		
		101	101		103		<u> </u>
		101	101		103		-0.5
	<u></u>				105		
		101	109		104		2.9
		103			103		
re K		104	100 สีมารถเราะสมส์หล่าง	· · · ·	105		
		101	AL 9435 SEE	· · · · · ·	97		
		101	98		····	102	
Ma		100	98		108		
Bito (a)	- <u></u> · <u>-</u> -	103			105		
No (a)		103	100	··	102		
Ni I	0.4	102	over range	N	100		3.6 (៦)
Ph		103	105		107		3.3
FD Si(a)		118	117 		120		
Sn (a)		A1480519192684			116		
						98	
7-		98	92		88		
		103	161		104		
A a	>	· · · · · · · · · · · · · · · · · · ·	<u> </u>				
<u>As</u>	<u> </u>	· · · · · ·			99		
R	0.3	104			103		
Be	0.5			<u> </u>	101		1.3
Ri Bi		90	98		101		
<u> </u>		104	105		100		
		100	98			99	
Eu						103	
		103				103	
Nd		103	98		101		
		101	107	— -			
		101	107		103		-0.2
Rh							
Ru						30	
Sb		<u> </u>			103		
Se					103		
Sr I		102	n/	· · · · ·	102		25
Te						110	2.0
Th		99	- GR			101	<u> </u>
T1					100		
u		105			100	105	
v		97	 			105	
w		nr	103				
Y					99	-	
Zr		95	90		101		
· · · · · · · · · · · · · · · · · · ·	·				101	1	

Shaded results did not meet the acceptance criteria

n r. = not recovered; spike concentration less than 20% of sample concentration or sample concentration <EQL.

(a) Opportunistic analytes; no LCS or spiking required.

(b) Value obtained from @5 and @25 dilutions.

ÿ

	Run Date=	1/29/2002	1/29/2002	1/29/2002
	Multiplier=	24.9	24.9	124,7
	RPL/LAB #=	PB-00776	02-00778	02-00778 @5
			}	
Det. Limit	Client ID=	<u>process</u> <u>blank</u>	<u>Tc-IX-</u>	<u>Effluent</u>
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)
0.060	AI		7,890	, <u>, , , , , , , , , , , , , , , , , , </u>
0.010	Ba			
0.250	Ca		146	······································
0.015	Cd		23.4	
0.020	Cr		96.4	
0.025	Fe		[2.0]	
2.000	ĸ		1,060	
0.050	La			
0.100	Mg	•.		
0.150	Na		over range	109.000
0.030	Ní		141	
0.100	Р		618	
0.100	Pb		67.5	
2.000	U	n		··
Other Analyte	es		<u></u>	
0.025	Aq			
0.250	As		— ·	
0.050	В		37.7	
0.010	Be			
0.100	Bi	- · · · · · · · · · · · · · · · · · · ·		·
0.200	Ce			
0.050	Co		[1 9]	
0.025	Cu			···
0.050	Dy			
0.100	Eu			
0.030	Li			··· - · · · · · · · · · · · · · · · · ·
0.050	Mn			
0.050	Mo		22.5	
0.100	Nd		[3.5]	·
0,750	Pd		<u>[</u> 0.0] .	
0.300	Rh			
1.100	Ru			
0,500	Sh			
0.250	Se			
0.500	Si			
1,500			i	
0.015			85.7	
1.500	Te		00.0	
1,000				
0.025	<u> </u>		—··· -	
0.500				
0.050				
2,000	w			
0.050				
0.050				·
0.050	7,		[4.Z]	
0.000	<u>€</u> 1			

Note: 1) Overall error greater than 10-limes detection limit is estimated to be within +/- 15%. 2) Values in brackets [] are within 10-limes detection limit with errors likely to exceed 15%. 3) "--" indicate measurement is below detection. Sample detection limit may be found by multiplying "det-limit" (far left column) by "multiplier" (top of each column).

D.68

.

.

QC Performance 1/29/02 -- Applicable to Batch Containing 02-00776, 02-00777, and 02-00778

	<15%		· · · · · · · · · · · · · · · · · · ·				
Criteria>	(Na <3.5%)	80% - 120%	75%-125%	75%-125%	7 <u>5</u> %-125%	75%-125%	< +/-10%
Batch QC							02-00777
ID=	02-00776	LCEVER		02-00777 MS	02-00776 + Post	02-00776 + Post	@1/@5
Applutor		LUSIDS	02-00777 MS	(@5)	Spike A	Spike B	Serial Dil
Analytes	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Rec	%Diff
	· · ·	100			100		1.8
		100	94		9 9		
		101	101		103		
Cu		101	101		103		-0.5
		101	109	·	104		2.9
	· · · ·	104	100		105		
<u> </u>	· ·	104 2000	1721035.34728		97		
		100	98			102	
No.		100	98		103		
NI NI	0.4	102	over range	nr nr	100		3.6 *
P (2)		103	105		107		3.3
F (4)		101	107		103		-0.2
11		105	117		120		
Other Analyte		105	99			105	
	5	·					
<u>Ag</u>		·			99		
	0.2				103		
8	<u> </u>	104			101		1.3
Be		98	98		101		
		104	105		100		
<u> </u>		100	98			99	
<u> </u>					105		
					103		
Eu	·				<u> </u>	103	
11		102			, ,	103	
Mn		103	98		101		
Mo		103	99		105		
Nd I		103			102		
Pd			97			101	
Rh					— <u>—</u> ·	80	
Ru						98	
Sb				ł		<u> </u>	<u> </u>
Se					103		
Si		1575 0 Store	S. C. N. A. S.		102		
Sn			12 CA 11 TH 11 TH 11 TH				
Sr		102	···	<u> </u>	103	<u> </u>	
Te	 .			<u> </u>	102		2.5
Th		69	GA	<u> </u>			
Ti I		98			02		
TI					100		
		97	93		 GR		
w	——·†	nr l	103				
Y					qq		·
Zn		103	101	· · ·	184		
Zr		95	90		101		

Shaded results did not meet the acceptance criteria

n r. = net recovered, spike concentration less than 20% of sample concentration or measured sample concentration <EQL.

(a) Opportunistic analytes, no LCS or spiking required.

(b) Value obtained from @5 and @25 dilutions.

D.69

.

	Run Date=	2/19/2002	2/19/2002	2/19/2002
	Multiplier=	1.0	10.0	10.0
	RPL/LAB #=	02-00779-DB	02-00779	82-00779 DUP
	1	· · · · · · · · · · · · · · · · · · ·		02.00113.001
			AN102/C104-CsE-	AN102/C104-CsE+
Det. Limit	Client ID=	<u>Diluent Blank</u>	Comp 1	Comp 1-Dup
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)
0.060	Al		[5.7]	[5.8]
0.010	Ba		[0.16]	[0.19]
0.250	Ca			····
0.015	Cd		2.31	2.38
0.050	Co			
0.020	Cr		22.5	23.3
0.025	Cu		30.1	31.1
0.025	Fe		6.16	6 55
2.000	ĸ			<u> </u>
0.050	La			
0.100	Mg		· · · ·	
0.050	Mn			
0.050	Mo			
0.150	Na		775	P10
0.030	NI	· · · · · · · · · · · · · · · · · · ·	66.6	010
0.100	Pb		24.0	00.9
0.500	Si		<u>24.8</u>	
1.500	Sn		[20]	
0.025	<u>ті</u>			
0.050	Zn		(3.71	
Other Analytes				[2.8]
0.025	Ag	·····	1	
0.250	Δς			
0.050	В			
0.010	Ę		7.28	7.47
0.100	Bi			
0 200	<u> </u>		·	
0.050	<u> </u>			
0 100	<u> </u>			
0.030				
0.100	<u></u>	*-		
0 100	NU			
0.750	<u>r</u>			
0.300				
1 100	R_			
0.500	<u></u>	+-	+-	
0.500	<u> </u>			
0.015	<u> </u>	•-		
0.015	<u> </u>		[1.0]	[1,1]
1.500	1e			
0.500	in	·····		
0.500	<u> </u>			
2.000	<u> </u>		[170]	[180]
0.050	<u>v</u>			
2.000	<u></u>			
0.050	Y			
0.050	Zr			

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column).

D.70

5

QC Performance 02/19/02 - Applies to Sample 02-0779

Criteria>	<20%	80% - 120%	75%-125%	75%-125%	75%-125%	< +/-10%
						02-00779
QC ID=	02-00779 &	LCS/BS		02-00779 +	02-00779 +	@1/@5
	02-00779-D	(none)	MS (none)	Post Spike A	Post Spike B	Serial Dil
Analytes	RPD (%)	%Rec	%Rec	%Rec	%Rec	%Diff
A	·			99		
Ba			<u> </u>	98		
Ca				101		
Cd	3.2			102		
Co				105		
Cr	3.7			101		0.2
Cu	3.4			101		0.2
Fe	6.3			101		
К				101		
La (a)					99	
Mg				106		
Mn				104		
Mo(a)				101		
Na	4.4			98		0.3
Ni	3.4			98		0.9
Pb	2.4			104		
Si (a)				106		
Sn (a)					92	
Ti (a)				96		
Zn				102		
Other Analyte	s					
Ag				104		
As				100		
B	2.6			100		
8e				103		
Bi				101		
Ce					98	
Dy					102	
Eu					102	
Li				100		
Nď					100	
Р				100		
Pd		· · · ·			93	
Rh					100	
Ru						
Sb				99		
Se				103		
Sr				100		
Te					100	
Th					99	
<u>ΤΙ</u>				100		
U					104	
V				96		
Y				93		·
Zr				100		

Shaded results exceed acceptance criteria

(a) Opportunistic analytes; no LCS or spiking required.

Battelle PNWD

PO Box 999, Richland WA 99352

Analytical Chemistry Group (ACG)

ICP/MS Data Analysis Report

Revision 2

Project / WP#:	42365 / W58950		
ASR#:	6281		
Client:	Ingrid Burgeson		
Total Samples:	7		

Analysis: Cs and Tc-99

329-OP-SCO1 Rev. 0, Inductively-Coupled Plasma Mass Spectrometry (ICP/MS) **Procedure:** Analysis

M&TE Number:	WB36913	ICP/MS, VG Elemental		
	512-06-01-014	Mettler AJ100 Balance		
Point of Contact:	Orville Thomas Fa	rmer III		
Revised Report Date:	2 February 2004			
Analysis Files:	Experiment – 05fel	b02		
-	Procedure – 020205a, 020201a			
	Element Menu – rb	otc, 1feb02		
un ser an anne ser a filmer a sa an an à coma				

For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS

Analyst(s): **Original Author:**

٦,

James Bramson / Teresa Wilson **Orville Thomas Farmer III**

<u>Amp Alongo 24604</u> Revised By Date <u>Quell Dong Journal</u> 24604 Date Date

Revision 1	Effective Date January 2004	Description of Change Text has been added in the appropriate narrative section(s) to address issues surrounding the use of biased standards prepared and provided by the RPL Standards Laboratory to the ICP-MS analytical laboratory (reference: project #98620,
2	February 2004	memo KN Pool to GH Beeman, 9/15/03). Tc-99 results for the AN102/C104W/Cs Removed (02-777) and Tc-IX Effluent (02-778) samples were inadvertently switched in Rev. 1 of this report. This revision corrects the Tc- 99 result table.

Ь

0

Samples Submitted for Analysis:

RPL #	Client I.D.
PB-776	Reagents Only
02-776	Tc-IX-Eluate
DUP-776	Tc-IX-Eluate-Dup
02-777	AN102/C104W/Cs Removed
02-778	Tc-IX Effluent
PS-776	Reagents Spikes
MS-776	Spiked & AN102/C104/Cs Removed

The samples (AN102/C104) submitted for analysis were analyzed on a radioactive-materialcontained ICP/MS for the requested analyte(s) Tc-99.

1. Analysis

The final results have been corrected for all laboratory preparation and dilutions performed on the sample during analysis.

Instrument Detection Limits (IDL) and Method Detection Limit (MDL) were determined using all the instrument standard blank solutions. The IDL was calculated by multiplying the observed standard deviation of the 7 standard blanks solutions by 3.14. An MDL is determined for each solution analyzed by multiplying the IDL by the internal standard drift ratio and that sample total dilution factor.

2. Results

Sample (+/-) 1 sigma MDL (ug/g) Samples Conc. (ug/g) **PB-776** <1.04E-04 1.04E-04 02-776 <2.85E-02 14 2.85E-02 <2.66E-02 2.66E-02 **DUP-776** 6.21E-04 02-777 1.33E-03 6.77E-04 <2.40E-03 2.40E-03 02-778 1.20E+00 6.92E-03 2.53E-05 **PS-776 MS-776** 3.13E+01 6.49E-02 6.57E-03

Cs-133 Final Results

Tc-99 Final Results

Samples	Sample Conc. (uCi/g)	(+/-) 1 sigma	MDL (uCi/g)
PB-776	6.56E-06	1.07E-06	6.89E-07
02-776	1.86E-01	1.92E-03	1.89E-04
DUP-776	1.74E-01	8.18E-03	1.77E-04
02-777	6.41E-02	2.14E-03	1.94E-05
02-778	3.59E-02	2.83E-04	1.59E-05
PS-776	4.52E-04	3.58E-06	8.22E-07
MS-776	7.79E-02	8.10E-03	2.15E-04

ASR6281 Final Report 128(Cs-Tc) Rev2

3. Quality Control

3.1. Instrument QC Results

Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB). The ICB/CCB standards are 1% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than < 10 X MDL, was met for all analytes.

Initial Calibration Verification (ICV) and Continuing Calibration Verification (CCV). The ICV/CCV standards met the QC criteria of \pm 10% for all analytes.

Dilution Test (DT). The success criteria of $\pm 20\%$ recovery were met for this QC for all analytes.

Instrument Control Solution (ICS). Sample solution (02-777) is a replicate analysis of the original sample that was submitted for analysis and is compared with the ICSD solution (02-777) to determine the instrument solution preparation process.

Instrument Control Solution Duplicate (ICSD). Sample solution ICSD (02-777) is a duplicate preparation of the above sample and is used to determine the RPD between the two solutions as an ICP/MS instrument and preparation QC. The duplicate analysis of the ICS and ICSD (02-777) met the instrument QC success criteria of $\pm 20\%$ RPD for all analytes.

Instrument Control Solution Duplicate Spike (ICSDS). The ICSDS is a post matrix spike of sample (02-777) and is used to provide information on instrument solution preparation and instrument performance. The ICSDS met the QC success criteria of \pm 25% recovery for all analytes.

Post Blank Spike (PBS). An instrument post spike was performed on sample (PB 02-776) and met the QC success criteria of $\pm 20\%$ recovery for all analytes.

Internal Standard (IS). The Internal Standards met the QC criteria of 30% to 120%.

3.2. Sample Preparation QC Results

Preparation Blank (PB). The PB met the success criteria being < 10 X MDL for all analytes.

Laboratory Control Standard / Blank Spike (LCS/BS). The LCS/BS met the QC success criteria is + 20% recovery for Cs. Tc-99 was not spiked in the LCS/BS, however a PBS was analyzed and Tc-99 met the success criteria of +20%.

Duplicate (DUP). All elements met the success criteria of + 20% RPD except Cs which was < 10XMDL. However the ICS and ICSD instrument QC samples met the success criteria of + 20% RPD for all analytes analyzed.

Matrix Spike (MS) and Matrix Spike Duplicate (MSD). No MSD was submitted for analysis. The MS for Cs met the success criteria of + 25%. Tc-99 was not spiked in the MS, however an ICSDS (matrix post spike) was analyzed and Tc-99 and met the success criteria of +25%.

ASR6281 Final Report 128(Cs-Tc) Rev2

Laboratory Control Standard (LCS). No LCS was submitted for analysis.

Analytical results generated were influenced by an identified bias in the calibration and calibration verification standards. The bias in the standards caused results for Tc-99 to be biased low for this report. The effect on the results, based on the observed bias, will widen the error band for these results. The error band that should be applied to these results is -10% to +30%.

attelle ing Technology To Work	

Project No.

Internal Distribution File/LB

Date February 26, 2002

To Sandy Fiskum

Star Bos Stan Bos

Subject <u>Cesium isotopic analysis (RPL # 02-00779)</u>

Sandy

From

Cesium isotopic distribution analyses of samples AN102-C104 and An102-C124 (dup) have been completed. Approximately two micro liters of the sample was plated on a rhenium carbide filament and analyzed on the single stage mass spectrometer (M&TE # WB76849) in accordance with PNNL technical procedure PNNL-98523-264. Since natural cesium in mono-isotopic, a sample of rubidium chloride isotopic standard (NBS 984) was run to standardize the mass spectrometer. Work package W60553 will be charged for the analysis.

In addition to the samples a diluent blank was also analyzed. A small ¹³³Cs signal was detected for about 1 minute before it died away. During that time no ¹³⁷Cs could be detected. Do to the low concentration of cesium no attempt was made to do isotopic distribution analysis.

Please feel free to call me at 376-5384 with any questions you might have.

Sample Id. AN-102 / C104 RPL # 02-00779

	¹³³ Cs	^{1,35} Cs	¹³⁷ Cs
	Weight percent	Weight percent	Weight percent
AN-102 / C104	60.4 ± 0.5	16.7 ± 0.2	22.9 ± 0.2
AN-102 / C104 (dup)	60.2 ± 0.5	16.7 ± 0.2	23.1 ± 0.2
Diluent Blank	Unable to analyze	Not detected	Not detected

Note: ¹³⁴Cs was not detected above the background

11/1 Aleg 2-26-02 Concurrence

D. Fiskum

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Client:	I. Burgeson	Charge Code/Project:	W60567 / 42365
RPL Numbers:	02-00776 to 02-00779	ASR Number:	6281
Analyst:	MJ Steele	Analysis Date:	March 7, 2002

Procedure: PNL-ALO-381, "Direct Determination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method"
 M&TE: Carbon System (WA92040); Balance (360-06-01-023)

RPL Number	Sample ID		TIC		TOC			rc	
		MDL µgC/mL	Results µgC/mL	RPD	MDL µgC/mL	Results	RPD	Results	RPD
02-00776	Tc-IX- Eluate Composite (AN102/C104)	26	110		72	140		250	
02-00777	AN2-Te-O-C	26	9,100		72	12 300		21 400	
02-00779	AN-102/C104-CsE-Comp 1	26	30		72	130		160	
02-00778	Tc-IX- Effluent Composite (AN102/C104)	26	7,800		72	11,200		19,000	.
02-00 7 78 Dup	Tc-IX- Effluent Composite (AN102/C104)	65	7,900	1%	180	11,400	2%	19,300	1%
02-00778 MS	Recovery		104%		- 	110%		107%	
Blank Spike/LCS	Recovery		100%			100%		10770	

Analysis Results

RPD = Relative Percent Difference

The TOC/TIC analyses of the samples submitted under ASRs 6281 are to be performed by the hot persulfate wet oxidation method. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92-95°C for TOC, all on the same sample, with TC being the sum of the TIC and TOC.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-381.

Q.C. Comments:

The TIC analysis uses calcium carbonate and the TOC uses α -D-Glucose as the calibration, laboratory control, and matrix spike standars. (The JT Baker, Aldrich, Sigma, and Mallinckrodt chemical lot numbers and Chemical Measurement System numbers are provided on the raw data benchsheets).

The QC for the methods involves calibration blanks, sample duplicates, laboratory control sample, and matrix spikes per analysis batch. The ASR indicates that the analyses are to be performed per the QA Plan "Conducting Analytical Work in Support of Regulatory Programs" Sections 4 and 5; the performance of the QC samples is compared to this Plan.

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Laboratory Control Sample (LCS)/Blank Spike(BS): At 100% recovery for both TIC and TOC, the LCS/BS samples recovered well within acceptance criteria of 80% to 120%.

Matrix Spike: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The matrix spike recoveries (104% for TIC and 110% for TOC) are within the acceptance criteria of 75% to 125% recovery.

Duplicates: The precision between the duplicates (replicates), as demonstrated by the Relative Percent Difference (RPD) between sample and duplicate. With RPDs less than 2%, the TIC and TOC RPD results are within the QP Plan acceptance criteria of <20% RPD.

MDL/MRQ: Except for the duplicate analysis for the Tc-IX-Effluent sample, all estimated MDLs for the TIC and TOC measurements are less that one-third of the minimum reportable quantities for TIC (150 μ g/mL) and TOC (1500 μ g/mL).

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- Routine precision and bias are typically ±15% or better for non-complex samples that are free of interferences.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and RPDs are not calculated for any results less than 5 times the MDL. The analysis MDLs (total ug C) are based on 3 times the standard deviation of a set of historical data. The sample MDLs (in ug C/ml or ug C/g) are calculated by using the analysis MDL adjusted for the sample volume or weight.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis. The system MDL is based on the attached pooled historical blank data. The evaluation and calculation of the system MDI, is included in the data package.

Report Prepared by:

Review/Approval by:

Date <u>3-8-02</u> Date <u>3-8-82</u>

Excel Archive File: ASR 6281 Burgeson.xls

Client: Ingrid Burgeson

Date: 01/16/02

Subject:Hydroxide Analyses for:ASR:6281

AN2-Tc-O-C

Two samples of **AN-102 / C-104 tank waste** (the first, 02-0777 with Cs removed and the second, 02-0778 with Cs and Tc removed) were analyzed in duplicate for the hydroxide content following procedure PNL-ALO-228. These samples were analyzed using a Brinkman 636 Auto-Titrator. A 0.1186 N NaOH (ChemRec_57) solution was used as a standard and sample spike and the titrant was a 0.2040 M HCl prepared solution for the liquid fraction. The attached Report Summary indicates good RPD on the OH molarity (1st inflection point) on the sample and replicate results. The hydroxide results were all well below the required MRQ value of 7.5E+04 ug/mL. The hydroxide standard recovery was 98% and the matrix spike recovery was 96%. No hydroxide was detected in the reagent blank. The second and third inflection points frequently associated with carbonate and bicarbonate, showed excellent RPD, well below the +/- 20% required. All of the results meet the QC acceptance criteria for spike recovery and RSD of duplicate measurements. Following is the report summary, the sample results calculated from the raw data, and the record file for the standardized acid and base used. Also included in this report are copies of the titration curves.

Prepared by: Date: Reviewed by: Date:

1-17-02

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center ASR 6281

WP# W60567

Hydroxide and Alkalinity Determination Procedure: PNL-ALO-228 Equip #

WB76843

6281

Report Summary for ASR # ---

				—	Сопсе	ntration, mo	oles / Lit	er	_
RPG #	Client ID			First Point	_	Second Poin	nt	Third Point	_
			OH conc ug/mL		RPD		RPD		RPD
02-0777	AN2-Tc-O-C		3.IE+03	0.18		1.29		0.84	
02-0777	AN2-Te-O-C	Rep	2.9E+03	0.17	6%	1.29	0%	0.86	3%
02-778	Tc-IX-Effluent		3.6E+03	0.21		1.21		0.79	
02-778	Tc-IX-Effluent	Rep	3.6E+03	0.21	_ 0%	1.16	4%	0.81	3%

OH cone (ug/mL) = $M (g/L) \cdot 17,000$

Reag. Blk.1		0
Standard 3		98%
MS 02-778	Matrix spike	96%

Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

Analyst: Swalen 1-17-02 1-18-02 Reviewer:

Internal Distribution File/LB

Date March 12, 2002

To I. Burgeson and S. Fiskum

From J., R. Greenwood

Subject <u>Radiochemical Analyses for ASR 6281</u>

Samples of the Tc-IX eluate composite and effluent for tanks AN102 and C104 were analyzed for gamma emitters, ⁹⁰Sr, total alpha, Am/Cm, U and Tc as pertechnetate according to ASR 6281. The analyses were performed on direct sample material prepared by acid digestion in the laboratory. The attached reports list measured analyte activities in units of μ Ci/ml. The reported errors (1- σ) represent the total propagated error including counting, dilution, yield, and calibration errors, as appropriate. Laboratory and process blank values given with each analysis are the best indicators of the method detection limits, taking into account the actual sample sizes and counting times used for each analysis.

Gamma Spectrometry

Sample aliquots were directly counted for gamma emitters according to procedure PNL-ALO-450. Since no sample preparation was involved, no laboratory blanks or spikes were prepared for these analyses other than the standard laboratory control samples and background counts. Measured activities or detection limits generally met the requested MRQ values except for sample 02-779 where the high level of Cs-137 made it impossible to meet the MRQ values after 14 hours of counting. ⁹⁵Tc and ^{95m}Tc dominated the gamma spectrum for sample 02-0776.

Total Alpha

The total alpha activity was determined by evaporating small aliquots of the samples onto planchets according to RPG-CMC-4001. The samples were then counted on Ludlum detectors according to RPG-CMC-408. Alpha activity was detected in all of the samples except for 02-0779; however, the detection limits were well below the requested MRQ value. Blank and matrix spikes gave good recovery and no alpha activity was detected in the reagent blanks.

Americium and Curium

The Am/Cm separations were performed according to PNL-ALO-417 for sample 02-0779 only. This test was cancelled for sample 02-0776 since the GEA detection limit was well below the requested MRQ value, as specified on the ASR. The separated fractions were precipitation plated according to PNL-ALO-496 and the samples were counted by alpha spectrometry according to PNL-ALO-422. The curium is known to follow the americium and both these isotopes were traced with ²⁴³Am. The americium radiochemical yields were acceptable, averaging about 96%. The LCS

M. W. Urie March 12, 2002 Page 2

and matrix spike recoveries were acceptable at 95-98%. No Am or Cm activities were detected in the reagent blanks. The ²⁴¹Am activities measured by alpha energy analysis are in very good agreement with the GEA data.

Strontium-90

The Sr separation was performed according to PNL-ALO-476 and radiochemical yields were traced with ⁸⁵Sr. The separated fractions were then beta-counted according to RPG-CMC-408 and gamma counted according to PNL-ALO-450 (for ⁸⁵Sr determination and ¹³⁷Cs impurity assessment). ¹³⁷C was not observed in the gamma counting, indicating a clean strontium separation. The process blank prepared with the acid digestion in the laboratory was found to have a low level of ⁹⁰Sr contamination that is negligible except for sample 02-0776 where the level in the blank is about 10% of the sample activity. The reagent blank did not show any contamination. The LCS and matrix spike showed good recovery at nearly 100% in both cases. Duplicate analyses showed acceptable agreement with RPD values of about 11-16%. The detection limits as well as many of the measurements were well below the requested MRQ values.

Uranium

Uranium was measured by kinetic phosphorescence analysis (KPA) according to procedure PNL-ALO-4014. Duplicate analyses were in good agreement with RPD values below 3%. LCS and matrix spike recoveries were nearly 100% and laboratory blanks did not show any uranium contamination. The uranium measurements and detection limits were well below the requested MRQ values.

Tc-99 Not done yet.

Battelle Pacific Northwest I Radiochemical Chemical Sci	Vational Labo i ence & Engine	ratory ering -325 Bul	İlding								
Client : I. Burgeson ASR: 6281 Cognizant Scientist:	ZR	Leen	Jare							Date :	03/06/02 3/6/62
Concur :]	Irang	3							Date :	2/1/2
Reference Date: Feb 4, 2002 Reference Date: Feb 22, 200 Procedure: PNL-ALO-450 for	for 02-776 & 7 2 for 02-779 GEA & PNL-A	77, 778 U									
			Measured ,	Activities (u	Ci/ml) with 1	'-sigma erro	5			,	
ALO ID Client ID	Sr-90 Error %	Co-60 Error %	Tc-95 Error %	Tc-95M Error %	SnSb-126 Error %	Cs-134 Error %	Cs-137 Error %	Eu-152 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
02-776 BLK Process Blank	1.16E-4 22%										
02-776 Tc-1X-Eluate Composite AN102/C101	1.02E-3 4%	6.05 E-5 5%	9.24E-5 7%	1.80E-3 2%	<7.E-6	<7.E-6	1.55E-5 34%	<2.E-5	5.00E-5 9%	<3.E-5	<5.E-5
02-776 REP Tc-1X-Eluate Composite AN102/C101	1.14E-3 4%										
RPD	11%										
02-777 AN2-7c-0-C	1.52E+0 3%	3.41E-2 2%			4.34E-4 4%	<4.E-5	1.40E-2 4%	<7.E-5	2.20E-2 2%	1.23E-2 6%	1.04E-2 4%
02-778 Tc-1X-Effluent-Composite AN102/C104 Removed	1.50E+0 3%	3.16E-2 2%			4.49E-4 3%	<6.E-5	1.35E-2 3%	<9. E-5	2.10E-2 2%	1.21E-2 4%	1.03E-2 4%
02-778 DUP Tc-1X-Effluent-Composite AN102/C104 Removed	1.68E+0 3%										
RPD	11%										

ň

Page 1 of 2

D.84

			Measured /	Activities (u	Ci/ml) with 1	-sigma erro	ы				
ALO ID Client ID	Sr-90 Error %	Co-60 Error %	Tc-95 Error %	Tc-95M Error %	SnSb-126 Error %	Cs-134 Error %	Cs-137 Error %	Eu-152 Error %	Eu-154 Error %	Eu-155 Error %	Ат-241 Еггог %
02-779 AN102/C104-CsE-Comp 1	7.19E-2 55%	<7.E-3			<7.E-2	<7.E-3	6.65E+2 3%	<9.E-3	<8.E-3	<3.E-1	<6.E-1
02-779	8.41E-2 47%										
RPD	16%										
Blank Spike Blank Spike 02-779	100% 97%									s `	
Matrix Spike 02-778 Matrix Spike 02-779	102% 99%										
Lab Blank Lab Blank 02-779	<5.E-5 <6.Ĕ-6	,									
Noto: Complee mere and											

5

-

Note: Samples were analyzed for Sr-90 in two batches.

•

۴

Page 2 of 2

Battelle Pacific Northwest National Laboratory Radiochemical Chemical Science & Engineering -325 Building

03/07/02

Client : I. Burgeson ASR: 6281

N

Cognizant Scientist:

Concur :

I.R. Greenwood T.T.Kang-le

Date: $\frac{3/7/02}{3/7/02}$

Procedure: PNL-ALO-417/496/422 Americium Procedure: PNL-ALO-420 & 421 for Alpha

Measured Activities (uCi/ml) with 1-sigma error

			Cm-243+	
ALOID	Alpha	Am-241	Cm-244	Cm-242
Client ID	Error %	Error %	Error %	Error %
02-776	2.40E-5			
Tc-1X-Eluate Composite	26%		-	
AN102/C101				
02-777	1 10E-2			
AN2-Tc-O-C	9%			
00.770				
	1.12E-2			
AN102/C104 Removed	10%			
ARTIOZIO TO4 Membred				
02-778 DUP	1.21E-2			
Ic-1X-Effluent-Composite	9%			
AN102/C104 Removed				
RPD	8%			
02-779	<2 E_2	1 22 - 2	6 10E E	
AN102/C104-CsE-Comn 1	~Z, L-Z	3%	0.125-0	<0.E-6
		070	10.70	
02-779 DUP	<2.E-2	1.13E-3	6.88E-5	<7.E-6
AN102/C104-CSE-Comp 1		4%	13%	
RPD		, 8%	12%	
Blank Spike	109%	·		
Blank Spike 02-779	104%	95%		
Matrix Calka	40704			•
Matrix Spike 02 770	107%	000/		
manix opike vz-779	108%	98%		
Blank	<2.E-5			
Blank 02-779	<2.E-6	<7.E-7	<6 F-7	<3 F_7

Note: Samples were analyzed in two batches.

Battelle, Pacific Northwest National Laboratory Richland, WA Radiochemical Processing Group

filename 02-0776 3/5/2002

Cilent: I. Burgeson ASR 6281

٠,

Report prepared by: <u>Codergan</u> 3-5-02 Concur: JR Stremmed 3-5-02

Procedure RPG-CMC-4014 Rev 1, Uranium Analysis by Kinetic Phosphorescence Chem-Chek Instruments model KPA 11R uranium analyzer

Dec	Lab	Measured uranium		
	ID	µg U per r	<u>nL ± 1s</u>	Detection Limit
Tc IX Eluate Composite,	02-0776	1.77E-3	+ 2%	
AN102/C104	02-0776 Dup	1.80E-3	± 2%	4.E-4 4.E-4
AN2-Tc-0-C	02-0777	8.22E-1	± 2 %	4.E-2
Tc IX Effluent Composite, AN102/C104	02-0778	6.98E-1	± 2%	4.E-2
AN102/C104-CsE-Comp 1	02-779	1.69E+2	± 4%	2 F_1
	02-779 Dup	1.65E+2	± 4%	2.E-1
	Blank 0776	2.27E-4	± 5%	
	Blank 0777	3.15E-2	± 4%	
	Blank 0779	1.55E-1	± 5%	
Matrix	x spike 0776	98%		
Matrix	x spike 0779	103%		
	LCS 0776	102%		
	LCS 0779	103%		

\$

Notes: 1) The suffix letter "F" indicates the sample was filtered; "A" indicates that the sample was loaded out of the hot cell into a clean analytical vial; the suffix letter "D" indicates the sample was diluted prior to submission for analysis. Sample results not identified with the above samples are associated with other tests unrelated to this work.

Appendix E

Cesium Ion Exchange and Batch Contacts Testing Personnel

Appendix E: Cesium Ion Exchange and Batch Contacts Testing Personnel

Cognizant Scientists

S. K. Fiskum D. L. Blanchard S. A. Arm B. M. Rapko

Hot Cell Technicians

F. V. Hoopes M. A. Mann

Analytical Support

S. J. Bos J. P. Bramson L. P. Darnell O. T. Farmer, III S. K. Fiskum L. R. Greenwood D. R. Sanders C. Z. Soderquist M. J. Steele R. G. Swoboda K. K. Thomas T. L. Trang-Le J. J. Wagner M. W. Urie

H4-02

Distribution

No. of Copies

OFFSITE

 Savannah River Technology Center Russ Eibling PO Box 616, Road 1 Building 999-W Aiken, South Carolina 29808

Larry Hamm PO Box 616, Road 1 Building 773-42A Aiken, South Carolina 29808

Neguib Hassan PO Box 616, Road 1 Building 773-A Aiken, South Carolina 29808

Jim Marra PO Box 616, Road 1 Building 773-43A Aiken, South Carolina 29808

Charles Nash PO Box 616, Road 1 Building 773-42A Aiken, South Carolina 29808

Robert Pierce PO Box 616, Road 1 Building 773-A Aiken, South Carolina 29808

Harold Sturm PO Box 616, Road 1 Building 773-A Aiken, South Carolina 29808 No. of Copies

ONSITE

13	Battelle, Pacific Northwest	Division
	S. T. Arm	P7-28
	D. L. Blanchard	P7-25
	I. E. Burgeson	P7-25
	S. K. Fiskum (3)	P7-22
	D. E. Kurath	P7-28
	B. M. Rapko	P7-25
	G. L. Smith	K6-24
	Project File (2)	P7-28
	Information Release (2)	K1-06
4	Bechtel National, Inc.	
	J. F. Doyle	H4-02
	R. A. Peterson	H4-02
	P. S. Sundar	H4-02

M. R. Thorson