Small Column Ion Exchange Testing of SuperLig ${ }^{\circledR} 644$ for Removing ${ }^{137} \mathrm{C}_{\mathrm{s}}$ from Hanford Waste Tank
 241-AN-102 Supernate (Envelope C) Mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions

S. K. Fiskum
S. T. Arm
D. L. Blanchard, Jr

January 2003

Prepared for Bechtel National, Inc. under Contract No. 24590-101-TSA-W0000-0004

LEGAL NOTICE

This report was prepared by Battelle Pacific Northwest Division (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Small Column Ion Exchange Testing of SuperLig ${ }^{\circledR} 644$ for Removing ${ }^{137}$ Cs from Hanford Waste Tank 241-AN-102 Supernate (Envelope C) Mixed with 241-C-104 Solids (Envelope D) Wash and Permeate Solutions

SK Fiskum
ST Arm
DL Blanchard, Jr

January 2003

Test specification: TSP-W375-00-00028, Rev. 1
Test plan: TP-RPP-WTP-013, Rev. 0
Test exceptions: None
R\&T focus area: Pretreatment
Test Scoping Statement(s): B-46

Battelle, Pacific Northwest Division
Richland, Washington, 99352

Completeness of Testing

This report describes the results of work and testing specified by TSP-W375-00-00028, Rev. 1 and TP-RPP-WTP-013, Rev. 0. The work and any associated testing followed the quality assurance requirements outlined in the Test Specification/Plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

Gordon H. Beeman, Manager
Date
WTP R\&T Support Project
G. Todd Wright, Manager

Date
Research and Technology

Summary

The River Protection Project-Waste Treatment Plant (RPP-WTP) baseline process for ${ }^{137} \mathrm{Cs}$ removal from Hanford high-level tank waste is ion exchange. The current flowsheet includes the use of Csselective, organic ion exchanger SuperLig ${ }^{\circledR} 644$ (SL-644) material for Cs removal from the aqueous waste fraction. This material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. The RPP-WTP Development Requirements Document (DRD) ${ }^{(\text {a) }}$ Task 8.2.6 and the RPP-WTP Research and Technology schedule identify Cs and Tc ion exchange process verification tests [WTP Request for Proposal reference Standard 2 Item (a)(3)(ii)].

Battelle, Pacific Northwest Division (PNWD) was contracted to perform Cs ion exchange studies under Contract 24590-101-TSA-W000-0004 and work breakdown structure BN.02.08.05. The Cs ion exchange activities are further defined in Technical Scoping Statement B-46, which is included in Appendix C of the Research and Technology Plan. ${ }^{(\mathrm{b})}$ These studies are to verify design and operating parameters for plant-scale ion exchange systems. Test results will also be used to validate ion exchange models.

Objectives

The Cs ion exchange test objectives were to develop load and elution breakthrough profiles using a combination of Hanford tank waste 241-AN-102 supernatant (Envelope C) mixed with wash and permeate solutions from Hanford tank waste $241-\mathrm{C}-104$ solids (AN-102/C-104); produce and characterize the Cs eluate; remove ${ }^{137} \mathrm{Cs}$ from the AN-102/C-104 to meet low-activity waste (LAW) vitrification criteria; and develop batch-distribution coefficients for AN-102/C-104. The final effluent was to contain $<1.75 \mathrm{E}-5 \mathrm{Ci}^{137} \mathrm{Cs}$ per mole Na, equivalent to $<0.087 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mL}$, based on a $20 \mathrm{wt} \%$ waste $\mathrm{Na}_{2} \mathrm{O}$ loading in the waste glass. Direction from Bechtel National, Inc. (BNI) for calculating $\mathrm{Na}_{2} \mathrm{O}$ loading was later reduced to $10 \mathrm{wt} \%$. All testing objectives were met.

Conduct of Test

This report summarizes testing of the SL-644 in batch-contact studies and in a dual small-column system. The test matrix was AN-102/C-104 evaporated to nominally 4.8 M Na and $161 \mu \mathrm{Ci} / \mathrm{mL}^{137} \mathrm{Cs}$. Batch contacts were performed with the waste at three Cs concentrations at a phase ratio of 100 (liquid volume to exchanger mass) with SL-644. Crystalline silicotitanate (IE-911, an alternative Cs ion exchanger) was also tested similarly to the SL-644; however, the contact solution was AN-102 tank waste supernatant diluted to nominally $6 \mathrm{M} \mathrm{Na}^{+}$. Ion exchange processing was conducted with two small columns in series with resin bed volumes (BVs) of $10.4 \mathrm{~mL}\left(\mathrm{~L} / \mathrm{D}^{(\mathrm{c})}=4.2\right)$ during the conditioning phase with 0.25 M NaOH , and $9.9 \mathrm{~mL}(\mathrm{~L} / \mathrm{D}=4.0)$ during the $\mathrm{AN}-102 / \mathrm{C}-104$ loading phase. Proper functioning
(a) PL-W375-TE00002, Rev. 1, River Protection Project Waste Treatment Plant Development Requirements Document, October 31, 2000, M. E., Johnson and T. W. Crawford, CH2MHill Hanford Group, Inc., Richland, WA. DRAFT.
(b) Barnes, S., R. Roosa, and R. Peterson. 2002. 'Research and Technology Plan.', 24590-WTP-PL-RT-01-002, Rev. 1, RPP-WTP project.
(c) L / D, equal to length over diameter, is the resin bed aspect ratio.
of the ion exchange apparatus and resin beds had initially been tested with an AW-101 (Envelope A) simulant. The resin beds had then been used to process 1.2 L of AP-101 diluted feed, an Envelope A waste feed. The AN-102/C-104 waste sample processed was approximately 753 mL , corresponding to 72 BVs. All ion exchange process steps were tested, including resin-bed preparation, loading, feed displacement, water rinse, elution, eluant rinse, and resin regeneration.

Results and Performance Against Objectives

The batch-contact performance data are summarized in Table S.1. The K_{d} values for SL-644 and IE911 are shown for the feed condition at the $\mathrm{Na} / \mathrm{Cs}$ mole ratio of $8 \mathrm{E}+4$. The calculated $\mathrm{Cs} \lambda$ value (column-distribution ratio) is the predicted BVs required to reach $50 \% \mathrm{Cs}$ breakthrough. It is a function of the equilibrium K_{d} value and bed density.

Table S.1. Summary of Performance Measures

Flow rate (BV/h)	Extrapolated 50\% Cs breakthrough, BV		$\underset{\text { DF }^{(2)}}{\text { Composite }}$	$\underset{\mathbf{D F}^{(3)}}{\operatorname{Maximum}}$	$\begin{gathered} \mathrm{K}_{\mathrm{d}}, \mathrm{~mL} / \mathrm{g} \\ \text { (feed condition) } \end{gathered}$		$\begin{gathered} \text { Cs } \lambda, \text { BV } \\ \text { (feed condition) } \end{gathered}$	
	Lead column	$\begin{gathered} \text { Lag } \\ \text { column } \end{gathered}$			SL-644	IE-911	SL-644	IE-91
2.7	$\mathrm{NM}^{(1)}$	NM ${ }^{(1)}$	$1.13 \mathrm{E}+4$	$7.7 \mathrm{E}+5$	950	1100	250	1100
(1) $\mathrm{NM}=$ not measured; AN-102/C-104 feed volume was insufficient to establish a breakthrough curve. (2) The decontamination factor (DF) is calculated by dividing the feed Cs concentration by the composite effluent Cs concentration, based on the total of 67 BVs of feed. This does not necessarily reflect the DF that could be obtained with an estimated loading of 250 BV s to reach $50 \% \mathrm{C} / \mathrm{C}_{\mathrm{o}}$. (3) The maximum DF is obtained by dividing the feed Cs concentration by the lowest lead column sample Cs concentration.								

The column performance data are also summarized in Table S.1. The 50% Cs breakthrough value from column testing could not be determined; no measurable Cs broke through the lead column. The decontamination factor (DF) for ${ }^{137} \mathrm{Cs}$ was based on ${ }^{137} \mathrm{Cs}$ concentration in the feed divided by the ${ }^{137} \mathrm{Cs}$ concentration in the composite effluent sample. The composite effluent ${ }^{137} \mathrm{Cs}$ concentration was $1.4 \mathrm{E}-02$ $\mu \mathrm{Ci} / \mathrm{mL}$ and was equivalent to a DF of $1.13 \mathrm{E}+4$. The maximum $\mathrm{DF}, 7.7 \mathrm{E}+5$, measured the best performance that could be expected from this column system. It was calculated relative to the sample containing the lowest ${ }^{137} \mathrm{Cs}$ concentration, i.e., the eighth sample from the lead column. The low-activity vitrified waste form must be no greater than $0.3 \mathrm{Ci} / \mathrm{m}^{3}$; this limit can be converted to ${ }^{137} \mathrm{Cs}$ concentration in the ion exchange effluent (contract limit). The composite effluent ${ }^{137} \mathrm{Cs}$ concentration was an order of magnitude below the minimum waste loading contract limit $\left(0.168 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mL}\right) .{ }^{(d)}$

The lead column was eluted with $0.5 \mathrm{M} \mathrm{HNO}_{3}$ reaching a $\mathrm{C} / \mathrm{C}_{0}$ of 1% in 11 BVs with $>99 \%$ of the ${ }^{137} \mathrm{Cs}$ contained in 3 BVs of eluate. The peak ${ }^{137} \mathrm{Cs} \mathrm{C/C}$ value was 53 (based on 1-BV collection increments of nominally $10-\mathrm{mL}$). The ${ }^{137} \mathrm{Cs}$ concentration in the composite eluate was $6.65 \mathrm{E}+2 \mu \mathrm{Ci} / \mathrm{mL}$, corresponding to a $\mathrm{C} / \mathrm{C}_{0}$ of 4.13 .

[^0]
Quality Requirements

This work was designated as QL-3 per the RPP-WTP Quality Assurance (QA) Program, BNFL-5193-QAP-01, Rev. 6. PNWD implemented the RPP-WTP quality requirements by performing work in accordance with the QA plan, CHG-QAPjP, Rev. 0 . The Cs eluate was analyzed at the time in accordance with PNWD's Nuclear Quality Assurance Requirements and Description (NQARD) manual, which implemented the requirements of DOE/RW-0333P, Quality Assurance Requirements and Description (QARD), and to the approved Test Plan, TP-RPP-WTP-013.

PNWD addressed verification activities by conducting an Independent Technical Review of the final data report in accordance with Procedure QA-RPP-WTP-604. This review verified that the reported results were traceable, that inferences and conclusions were soundly based, and that the reported work satisfied the Test Plan objectives.

Issue

The lag column effluent ${ }^{137} \mathrm{Cs}$ concentration was higher than the lead column ${ }^{137} \mathrm{Cs}$ effluent concentration. The lag column had previously been in the lead column position for processing AP-101 diluted feed. The ${ }^{137} \mathrm{Cs}$ coming off the lag column was attributed to inadequacy of the baseline elution (i.e., elution to $\mathrm{C} / \mathrm{C}_{0}=1 \%$) to sufficiently elute Cs from the resin during AP-101 processing.

Terms and Abbreviations

AP-101DF	Hanford tank waste AP-101 diluted feed to 5 M Na
AN-102/C-104	Hanford tank waste AN-102 supernatant mixed with wash and permeate solutions from Hanford tank waste C-104 solids
AV	apparatus volume
BNI	Bechtel National, Incorporated
BV	bed volume
C/C ${ }_{\text {o }}$	analyte concentration in column effluent divided by analyte concentration in feed
CMC	chemical measurement center
CST	crystalline silicotitanate
DF	decontamination factor
DI	deionized
DOE	U.S. Department of Energy
DRD	Development Requirements Document
EQL	estimated quantitation level
F-factor	mass of dry ion exchanger divided by mass of wet exchanger
FMI	Fluid Metering, Inc., Syosset, NY
GEA	gamma energy analysis
HLW	high level waste
IBC	IBC Advanced Technologies, Inc., American Fork, Utah
IC	ion chromatography
ICP AES	inductively coupled plasma/atomic emission spectrometry
ICP MS	inductively coupled plasma/mass spectrometry
IDL	instrument detection limit
KPA	kinetic phosphorescence analysis
λ	column distribution ratio
LAW	low activity waste
L/D	length over diameter ratio
M	molarity, moles/liter
Meq	milli-equivalent
MRQ	minimum reportable quantity

NA	not analyzed
NMRQ	no minimum reportable quantity
NPT	National Pipe Thread
NQARD	Nuclear Quality Assurance Requirements and Description (manual)
OH	hydroxide
PNWD	Battelle, Pacific Northwest Division
QA	quality assurance
QARD	Quality Assurance Requirements and Description
RPL	Radiochemical Processing Laboratory
RPP-WTP	River Protection Project-Waste Treatment Plant
SL-644	SuperLig ${ }^{\circledR} 644$
SRTC	Savannah River Technology Center
TC	total carbon
TIC	total inorganic carbon
TIMS	thermal ionization mass spectrometry
TOC	total organic carbon
TRU	transuranic
wt\%	weight percent
WTP	Waste Treatment Plant

Contents

Summary iii
Terms and Abbreviations vii
1.0 Introduction 1.1
2.0 Experimental 2.1
2.1 SL-644 Resin 2.1
2.2 Crystalline Silicotitanate 2.2
2.3 AN102/C-104 and AN-102 Feeds 2.2
2.4 Batch Contacts 2.4
2.5 Experimental Conditions for SL-644 Column Ion Exchange Test 2.6
2.6 Column Sampling 2.10
2.7 Sample Analysis 2.11
3.0 Results and Discussion. 3.1
3.1 Batch Contact Results 3.1
3.2 Column Test with SL-644 3.3
3.2.1 Loading, Feed Displacement, and Rinse. 3.3
3.2.2 Elution and Eluant Rinse 3.7
3.2.3 Regeneration 3.10
3.2.4 Activity Balance for ${ }^{137} \mathrm{Cs}$. 3.10
3.2.5 SL-644 Resin Volume Changes. 3.11
4.0 Conclusions 4.1
5.0 References 5.1
Appendix A: General Calculations A. 1
Appendix B: Batch Contact Calculations B. 1
Appendix C: Column Testing Calculations C. 1
Appendix D: Analytical Data D. 1
Appendix E: Cesium Ion Exchange and Batch Contacts Testing Personnel E. 1

Figures

Figure 2.1. Cesium Ion Exchange Column System 2.7
Figure 3.1. ${ }^{137}$ Cs Distribution Coefficients $\left(\mathrm{K}_{\mathrm{d}}\right)$ for SL-644 (AN-102/C-104) and IE-911 (AN-102) ($\mathrm{T}=27^{\circ} \mathrm{C}$) 3.1
Figure 3.2. Estimated ${ }^{137} \mathrm{Cs} \lambda$ Values for SL-644 (AN-102/C-104) and IE-911 (AN-102) $\left(\mathrm{T}=26^{\circ} \mathrm{C}\right)$ 3.3
Figure 3.3. ${ }^{137}$ Cs Breakthrough Curves for AN-102/C-104 Sample 3.4
Figure 3.4. ${ }^{137}$ Cs Elution and Eluant Rinse of the Lead Column 3.7
Figure 3.5. Comparison of Bed Volumes of the Lead and Lag Columns 3.13
Tables
Table S.1. Summary of Performance Measures iv
Table 2.1. Dry Particle-Size Weight-Percent Distribution of Two Batches of As-Received SL-644 2.1
Table 2.2. SL-644 Properties 2.2
Table 2.3. Compositions of AN-102/C-104 and AN-102 (Envelope C). 2.3
Table 2.4. Initial Cs Concentrations in the AN-102/C-104 Solutions Used for the Batch K_{d} Tests 2.4
Table 2.5. Experimental Conditions for AN-102/C-104 Ion Exchange 2.9
Table 2.6. Sampling Interval and Analyses 2.10
Table 3.1. SL-644 Dry Bed Density 3.2
Table 3.2. Decontamination Factors for ${ }^{137} \mathrm{Cs}$ from AN-102/C-104 3.5
Table 3.3. AN-102/C-104 Cs-Decontaminated Effluent 3.6
Table 3.4. Inorganic and Organic Analytes in the Lead Column Eluate Composite 3.8
Table 3.5. Radionuclides in the Lead Column Eluate Composite 3.9
Table 3.6. Select Analyte Recoveries in Eluate 3.9
Table 3.7. Composition of Regeneration Solution 3.10
Table 3.8. Activity Balance for ${ }^{137} \mathrm{Cs}$ 3.10
Table 3.9. SL-644 Bed Volumes. 3.12

1.0 Introduction

The U. S. Department of Energy plans to vitrify tank wastes at the Hanford Site in preparation for permanent disposal. Before vitrification, tank wastes will be divided into low-activity and high-activity fractions through specific pretreatment processes. The Waste Treatment Plant (WTP) pretreatment flowsheet for the Hanford high-level tank wastes includes the use of SuperLig ${ }^{\circledR} 644$ (SL-644) material for ${ }^{137} \mathrm{Cs}$ removal from the aqueous waste fraction. The SL-644 is a cesium-selective ion exchanger and has been shown to be effective in removing Cs from a variety of Hanford tank wastes (Hassan, McCabe, and King 2000; Hassan et al. 2000; Hassan et al. 2001; King, Hassan, and McCabe 2001; Kurath, Blanchard, and Bontha 2000a; Kurath, Blanchard, and Bontha 2000b; Fiskum, Blanchard, and Arm 2002; Fiskum et al. 2002). The SL-644 has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT.

The Cs ion exchange testing was conducted to support the River Protection Project-Waste Treatment Plant (RPP-WTP) Development Requirements Document (DRD) ${ }^{(\text {a) }}$ Task 8.2.6, and the RPP-WTP Research and Technology (Barnes et al., 2002) schedule identify the need for Cs and Tc ion exchange process verification tests [WTP Request for Proposal reference Standard 2 item (a)(3)(ii)]. The testing requirements were communicated to Battelle, Pacific Northwest Division (PNWD) according to Test Specification Tank 241-AN-102 and 241-AP-101 Ion Exchange, TSP-W375-00-00028, Rev. 1 (M. E. Johnson, CH2M Hill Hanford Group, Dec. 11, 2000). Testing was conducted according to PNWD Test Plan Actual Waste Ion Exchange Testing for the RPP-WTP Project, CHG-TP-41500-013, Rev. 0 (D. L. Blanchard, Jan. 24, 2000) and AP-101 and AN-102/C-104 Actual Waste Ion Exchange Testing, TP-RPP-WTP-013, Rev. 0 (D. L. Blanchard Jr., August 2001).

This report summarizes batch-contact studies of SL-644 and crystalline silicotitanate ${ }^{(\mathrm{b})}$ (IE-911 provided by UOP LLC, Des Plaines IL), and dual small-column testing of the SL-644 ion exchange material. The test matrix for the small-column ion exchange and SL-644 batch-contact tests was 241-AN-102 Hanford tank waste supernatant, mixed with caustic leaching and wash solutions from the pretreatment of Tank 241-C-104 solids, and evaporated to nominally 5 M Na (hereafter referred to as AN-102/C-104). The test matrix for the IE-911 batch contact was $241-\mathrm{AN}-102$ supernatant diluted to nominally 6 M Na (hereafter called AN-102). Approximately 753 mL of AN-102/C-104 were processed through the ion exchange column system. The ion exchange process steps tested include resin-bed preparation, loading, feed displacement, water rinse, elution, and resin regeneration.

The objectives of this work were to

- determine distribution coefficients as a function of $\mathrm{Na} / \mathrm{Cs}$ molar concentration for SL-644 in the AN-102/C-104 matrix and for IE-911 in the AN-102 matrix
- demonstrate the ${ }^{137}$ Cs decontamination of Envelope C tank waste sample AN-102/C-104 and provide a Cs-decontaminated sample for downstream process testing (i.e., ${ }^{99} \mathrm{Tc}$ removal)

[^1]- develop Cs loading and elution profiles
- produce and characterize a Cs-eluate solution for use in evaporation tests and high-level waste (HLW) vitrification
- demonstrate the effectiveness of all SL-644 ion exchange process steps, including loading, feed displacement, deionized (DI) water washing, elution, and resin regeneration.

2.0 Experimental

This section describes materials, experimental approach to batch-contact tests and column tests, sample analyses, and calculations. Experimental data were recorded in specific test instructions (as identified) and analytical reports. All raw data are maintained in the Project File 42365.

2.1 SL-644 Resin

The SL-644 was obtained from IBC production batch number 010319SMC-IV-73. This batch exhibited a black-red appearance peppered with light-brown specks. It was received from the vendor as a dry, granular, free-flowing material in a 1-L polyethylene bottle with an approximately 32% gaseous head space. There was no indication that this head space was filled with nitrogen or other inert gas, and no attempt was made to exclude air during storage. The as-received resin form was not identified by the vendor; it was found to contain potassium salts (Fiskum, Blanchard and Arm 2002). The dry-sieved particle-size distribution for this material is shown in Table 2.1. The 212- to $425-\mu \mathrm{m}$ particle-size drysieved fraction of the as-received material was used. This fraction represents $22 \mathrm{wt} \%$ of the as-received material. The average particle size of the $212-$ to $425-\mu \mathrm{m}$ fraction corresponds to $540-\mu \mathrm{m}$ diameter when expanded in a solution of $3 \mathrm{M} \mathrm{NaOH}-2 \mathrm{M} \mathrm{NaNO}_{3}-0.1 \mathrm{M} \mathrm{KOH}$ (Fiskum, Blanchard, and Arm 2002). As a general rule, the column diameter should be 20 times greater than the resin particle diameter to minimize wall effects (Korkish 1989, p. 39). Given the diameter of the column at 1.46 cm , the column diameter is 27 times the average diameter of the expanded form of $212-$ to $425-\mu \mathrm{m}$ diameter dry-sieved resin. For comparison, the SL-644 particle-size distribution used for AN-102 testing at Savannah River Technology Center (SRTC) (Hassan et al. 2000) is also shown in Table 2.1.

Table 2.1. Dry Particle-Size Weight-Percent Distribution of Two Batches of As-Received SL-644

Sieve Size $^{(\mathbf{1})}$	Particle Size $(\boldsymbol{\mu \mathbf { m })}$	$\mathbf{0 1 0 3 1 9 S M C - I V - 7 3}$ $\mathbf{w t} \%$	$\mathbf{9 8 1 0 2 0 m b 4 8 - 5 6 3}$ (SRTC) $\mathbf{w t} \%$
18	>1000	0.06	
30	$600-1000$	37.27	57.33
40	$425-600$	38.23	23.73
50	$300-425$	18.01	13.71
70	$212-300$	6.08	5.12
100	$150-212$	0.26	0.11
140	$106-150$	0.06	
>140	<106	0.03	
(1) U. S. standard sieve size corresponds to ASTM E-11 specification.			

Properties of the 212- to $425-\mu \mathrm{m}$ 010319SMC-IV-73 SL-644 resin have been previously reported (Fiskum, Blanchard, and Arm 2002), and selected properties are reproduced in Table 2.2. The F-factor is the ratio of the dry mass of exchanger to the initial mass of the exchanger and was determined at the same time the batch contact samples and column resin fractions were weighed. The F-factor was obtained by drying approximately 0.5 g resin, under vacuum, at $50^{\circ} \mathrm{C}$ to constant mass. The F-factor was determined on the H -form and the as-received form of the resin. The F -factor for the Na -form of the resin was performed differently because of stability problems observed in prior tests on the Na-form of resin (Steimke et al. 2001). Drying to constant mass under vacuum at ambient temperature was considered
adequate for removing water from the Na-form resin. ${ }^{(a)}$ The L-factor represents the fractional mass remaining after washing the as-received resin form with $0.5 \mathrm{M} \mathrm{HNO}_{3}$ and DI water, and correcting for residual water content as described above. The I_{Na} represents the fractional mass gain upon conversion from the H -form to the Na -form, correcting for water content as described above.

Table 2.2. SL-644 Properties

Property	010319SMC-IV-73
Bulk density, g/mL (as-received)	0.74
F-factor, as-received	0.877
L-factor, conversion to H-form, fractional mass remaining	0.538
F-factor, H-form	0.932
$\mathrm{I}_{\mathrm{N},}$, fractional mass gain from H-form to Na-form	1.25

2.2 Crystalline Silicotitanate

Crystalline silicotitanate (CST) IE-911, Lot 2081000009, was obtained from UOP LLC, Des Plaines, IL. The UOP particle-size specification of this material was 30 to 60 mesh. The material was provided in the hydrogen form. A $5-\mathrm{g}$ aliquot was converted to the Na form by soaking in 40 mL of 1 M NaOH for two days. The NaOH solution was then decanted, and the CST was rinsed with five successive volumes of DI water. The resin was then dried at $95^{\circ} \mathrm{C}$ overnight. The F-factor, 0.9708 , was determined at the same time the batch-contact samples were weighed. This was obtained by drying approximately 0.5 g at $105^{\circ} \mathrm{C}$ to constant mass.

2.3 AN102/C-104 and AN-102 Feeds

The AN-102 sample receipt, homogenization, phase separation, subsampling, mixing with C-104 wash and permeate solutions, and analysis have been previously reported (Urie et al. 2002a). This material was then evaporated to nominally 5 M Na (Lumetta et al. 2002) and underwent $\mathrm{Sr} / \mathrm{TRU}^{(\mathrm{b})}$ precipitation and removal by filtration (Hallen et al. 2002). The total volume of AN-102/C-104 available for Cs ion exchange and batch-contact processing was about 788 mL . To conserve the AN-102/C-104 material for follow-on work, the IE-911 batch contacts were conducted with AN-102. The total volume of AN-102 available for batch contacts was 34 mL . Both feeds, AN-102/C-104 and AN-102, were analyzed, and the results are summarized in Table 2.3 (analytical details are provided in Appendix D). Generally, the AN-102 feed analytes were about a factor of 1.2 more concentrated than the AN102/C104 analytes. An exception is the ${ }^{90} \mathrm{Sr}$ that was removed from the AN-102/C104 combined feed before Cs ion exchange.
(a) After initial drying at ambient temperature under vacuum to constant mass, the resin was heated to $50^{\circ} \mathrm{C}$. The heated product appeared (visual inspection) to have degraded, thus potentially nullifying subsequent mass measurements.
(b) $\mathrm{TRU}=$ transuranic

Table 2.3. Compositions of AN-102/C-104 and AN-102 (Envelope C)

Analyte	AN-102/C-104	AN-102
Solution density, g/mL	1.244	1.301
Cations, M		
Na^{+}	$4.8 \mathrm{E}+0$	$6.1 \mathrm{E}+0$
K^{+}	[2.4 E-2]	$\left[\begin{array}{ll}2.8 & \mathrm{E}-2\end{array}\right]$
$\mathrm{Cs}^{+(1)}$	$5.99 \mathrm{E}-5$	$7.70 \mathrm{E}-5$
Ca^{2+}	[3.7 E-3]	[4.7 E-3]
Cd^{2+}	2.31 E-4	$2.86 \mathrm{E}-4$
Cu^{2+}	[1.6 E-4]	$\left[\begin{array}{ll}1.3 & \mathrm{E}-4]\end{array}\right.$
Ni^{2+}	$3.20 \mathrm{E}-3$	$4.06 \mathrm{E}-3$
Pb^{2+}	[3.2 E-4]	$\left[\begin{array}{ll}4.2 & \mathrm{E}-4\end{array}\right]$
Sr^{2+}	$9.87 \mathrm{E}-4$	$6.98 \mathrm{E}-4$
Mole Ratios		
$\mathrm{Na} / \mathrm{Cs}$ mole ratio	8.0 E+4	$7.9 \mathrm{E}+4$
K/Cs mole ratio	4.0 E+2	$3.6 \mathrm{E}+2$
Anions, M		
$\mathrm{AlO}_{2}{ }^{-(2)}$	3.04 E-1	$2.46 \mathrm{E}-1$
Cl^{-}	$5.39 \mathrm{E}-2$	NA
F^{-}	<2.3 E-1(3)	NA
$\mathrm{CO}_{3}{ }^{2-}$ (hot persulfate method)	$6.94 \mathrm{E}-1$	NA
$\mathrm{CO}_{3}{ }^{2-}$ (furnace method)	$4.75 \mathrm{E}-1$	NA
$\mathrm{CrO}_{4}{ }^{2-(2)}$	$2.08 \mathrm{E}-3$	$2.31 \mathrm{E}-3$
$\mathrm{NO}_{2}{ }^{-}$	$9.23 \mathrm{E}-1$	NA
$\mathrm{NO}_{3}{ }^{-}$	$1.66 \mathrm{E}+0$	NA
OH^{-}	2.0 E-1	NA
$\mathrm{PO}_{4}{ }^{3-(2)}$ (ICP-AES)	$2.41 \mathrm{E}-2$	$1.47 \mathrm{E}-2$
$\mathrm{PO}_{4}{ }^{3-}$ (IC)	3.63 E-2	NA
$\mathrm{SO}_{4}{ }^{2-}$	$6.84 \mathrm{E}-2$	NA
Uranyl	$1.15 \mathrm{E}-4$	NA
Oxalate	$3.4 \mathrm{E}-2$	NA
TOC, g/L (hot persulfate method)	$1.19 \mathrm{E}+1$	NA
TOC, g/L (furnace method)	$1.89 \mathrm{E}+1$	NA
Radionuclides, $\mu \mathrm{Ci} / \mathrm{mL}$		
Total alpha	$1.26 \mathrm{E}-2$	NA
${ }^{60} \mathrm{Co}$	$4.06 \mathrm{E}-2$	$5.48 \mathrm{E}-2$
${ }^{90} \mathrm{Sr}$	$1.70 \mathrm{E}+0$	$1.40 \mathrm{E}+1$
${ }^{99} \mathrm{Tc}$	7.71 E-2	NA
${ }^{137} \mathrm{Cs}$	$1.61 \mathrm{E}+2$	$2.07 \mathrm{E}+2$
${ }^{154} \mathrm{Eu}$	$<6 \mathrm{E}-2$	$<2 \mathrm{E}-1$

(1) The Cs concentration was calculated from the ${ }^{137} \mathrm{Cs}$ concentration measured by gamma energy analysis (GEA), and the isotopic ratio was measured by thermal ionization mass spectrometry (TIMS).
(2) Al, Cr, and P were determined by inductively-coupled plasma atomic emission spectrometry (ICP-AES). The anionic form was assumed on the basis of waste chemistry.
(3) F concentration is an upper bound; coeluting anions positively interfered with peak integration. NA = not analyzed
Bracketed results indicate that the analyte concentration uncertainty exceeded 15%.

The aluminum concentration was higher in the AN-102/C-104 feed than in the AN-102 feed, most probably from caustic leaching of the $\mathrm{C}-104$ solids. The measured AN-102 feed composition generally agreed within 10% of the AN-102 composition previously reported (Hassan et al. 2000); the AN-102/C-104 composition generally agreed within 30% with the published composition, with the exception of OH . Hassan et al. reported 1.69 M OH , eight times the OH concentration found in AN-102/C-104.

Carbonate and total organic carbon (TOC) are reported here and elsewhere for two different analytical methods: hot persulfate oxidation and furnace oxidation. The differences in results of the two methods reflect the ease or difficulty with which various organic constituents oxidize in the given method.

2.4 Batch Contacts

The batch contacts were performed with the H-form of SL-644 batch 010319SMC-IV-73, 212- to $425-\mu \mathrm{m}$ dry particle size. ${ }^{(\mathrm{c})}$ The Na-form of IE-911 was tested in parallel with the SL-644. Batch contacts were performed using feed at three different Cs concentrations. Aliquots of tank-waste samples were tested without spiking, and additional aliquots were spiked with $0.75 \mathrm{M} \mathrm{CsNO}_{3}$ to obtain stock solutions of nominally $1 \mathrm{E}-3 \mathrm{M}$ and $5 \mathrm{E}-3 \mathrm{M} \mathrm{Cs}$. The initial Cs concentrations in the stock contact solutions and the corresponding $\mathrm{Na} / \mathrm{Cs}$ and K / Cs mole ratios are given in Table 2.4.

Table 2.4. Initial Cs Concentrations in the AN-102/C-104 Solutions Used for the Batch K_{d} Tests

Solution	Target Initial Cs Conc. [M]	Target Nominal $\mathrm{Na} / \mathrm{Cs}^{(1)}$ mole ratio	Target Nominal K/Cs ${ }^{(1)}$ mole ratio
SL-644 Batch Contact with AN-102/C-104			
Un-spiked	$6.0 \mathrm{E}-5$	$8.0 \mathrm{E}+4$	$4.0 \mathrm{E}+2$
Cs Spike 1	$1.0 \mathrm{E}-3$	$5.0 \mathrm{E}+3$	$2.4 \mathrm{E}+1$
Cs Spike 2	5.0 E-3	$1.0 \mathrm{E}+3$	$4.8 \mathrm{E}+0$
IE-911 Batch Contact with AN-102			
Un-spiked	$7.7 \mathrm{E}-5$	$7.9 \mathrm{E}+4$	3.6 E+2
Cs Spike 1	$1.0 \mathrm{E}-3$	$6.0 \mathrm{E}+3$	$2.8 \mathrm{E}+1$
Cs Spike 2	$5.0 \mathrm{E}-3$	$1.2 \mathrm{E}+3$	$5.6 \mathrm{E}+0$
(1) Na^{+}and K^{+}are the primary cations that compete with Cs^{+}for ion exchange with SL-644.			

The batch K_{d} tests were performed in duplicate at a phase ratio of approximately $100 \mathrm{~mL} / \mathrm{g}$ (liquid volume to exchanger mass). Typically, 0.05 g of exchanger was contacted with 5 mL of feed. The exchanger mass was determined to an accuracy of 0.0002 g . The waste volume was transferred by pipet, and the actual volume was determined by mass difference with an accuracy of 0.0002 g and the solution density. An orbital shaker provided agitation for approximately 24 h for SL-644 and 72 h for IE-911. ${ }^{(\mathrm{d})}$ The temperature was not controlled but was generally constant at 25 to $29^{\circ} \mathrm{C}$ during the 3 days of contact.
(c) Batch-contact testing was conducted according to, and documented in, Test Instruction TI-RPP-WTP-082, Rev. 0, Batch Contact of AP-101 and AN-102/C104 Waste with SuperLig 644 (Batch ID 010319SMC-IV-73) and CST, S. K. Fiskum, June 2001.
(d) The 24-h contact time for SL-644 was defined in the test specification. The 72-h contact time for IE-911 was applied based on the results of Brown et al. 1996.

All Cs_{d} measurements were determined by measuring ${ }^{137} \mathrm{Cs}$ on both the stock solution (initial concentration) and the contacted solution (final concentration). Initial ${ }^{133} \mathrm{Cs}$ concentrations were confirmed by inductively-coupled plasma-mass spectrometry (ICP-MS). The IE-911 batch-contact samples were also measured for ${ }^{90} \mathrm{Sr}$ to evaluate $\mathrm{Sr} \mathrm{K}_{\mathrm{d}} \mathrm{S}$.

The batch-distribution coefficient, K_{d} (with units of mL / g), was determined using the following relationship:

$$
\begin{equation*}
K_{d}=\frac{\left(C_{0}-C_{1}\right)}{C_{1}} * \frac{V}{M * F} \tag{1}
\end{equation*}
$$

where $\quad \mathrm{C}_{0}=$ the initial ${ }^{137} \mathrm{Cs}$ concentration
$\mathrm{C}_{1}=$ the final ${ }^{137} \mathrm{Cs}$ concentration
$\mathrm{V}=$ the volume of the liquid sample (mL)
$\mathrm{M}=$ the mass of the ion exchanger (g) (SL-644 H-form mass corrected for the Na-form mass increase or Na-form IE-911 mass)
$\mathrm{F}=$ the dried resin mass divided by the initial resin mass.
For the $\mathrm{Sr} \mathrm{K}_{\mathrm{d}}$ determination, C_{o} and C_{1} are the initial and final ${ }^{90} \mathrm{Sr}$ concentrations.
The SL-644 dry-bed resin density, ρ (g of resin per mL of resin in contact with solution), was obtained according to the following equation:

$$
\begin{equation*}
\rho=\frac{m * L * F * I_{N a}}{B V} \tag{2}
\end{equation*}
$$

where $m=$ resin mass in the ion exchange column, as-received form
$\mathrm{L}=$ fractional mass remaining after washing (0.538)
$\mathrm{F}=$ water-loss factor, as-received form (0.877)
$\mathrm{I}_{\mathrm{Na}}=$ fractional mass gain on conversion from H -form to Na -form (1.25) (this factor is set to 1 when calculating the dry-bed density in the H -form or $0.5 \mathrm{M} \mathrm{HNO}_{3}$ feed)
$\mathrm{BV}=$ resin bed volume (BV) in the feed (discussed in Section 3.2.5).

The dry-bed density for IE-911 was calculated according to the following equation:

$$
\begin{equation*}
\rho=\frac{m * F}{B V} \tag{3}
\end{equation*}
$$

where $\mathrm{m}=$ resin mass
$\mathrm{F}=$ water loss factor
$\mathrm{BV}=$ resin BV in $\mathrm{AW}-101$ simulant.
The Cs λ value (column-distribution ratio) is a function of the dry-bed density and is obtained as shown in Equation 4.

$$
\begin{equation*}
\lambda=K_{d} * \rho \tag{4}
\end{equation*}
$$

2.5 Experimental Conditions for SL-644 Column Ion Exchange Test

A schematic of the ion exchange column system is shown in Figure 2.1. The system consisted of two small columns containing the SL-644 ion exchange material, a small metering pump, three valves, a pressure gauge, and a pressure relief valve. Valves 1,2 , and 3 were three-way valves that could be turned to the flow position, sample position, or no-flow position. Valve 1 was placed at the outlet of the pump and was used to eliminate air from the system, purge the initial volume of the system, or isolate the columns from the pump. Valves 2 and 3 were primarily used to obtain samples and could also be used to isolate the columns from the rest of the system. The columns were connected in series with the first column referred to as the lead column and the second column referred to as the lag column.

The columns were prepared at the SRTC Glassblowing Laboratory. Each column consisted of a $15-\mathrm{cm}$ glass column with a $24 / 40$ taper ground-glass fitting on top and a threaded fitting on the bottom. A polyethylene bushing was installed in the glass-threaded fitting to accommodate a $\frac{1}{4}$-in stainless steel National Pipe Thread (NPT) fitting. The inside diameter of each column was 1.46 cm , which corresponded to a volume of $1.67 \mathrm{~mL} / \mathrm{cm}$. A stainless steel, $200-\mathrm{mesh}$ screen supported the resin bed. The height of the resin bed (and thus shrinkage and swelling) was measured with a decal millimeter scale affixed to the column. The upper section contained four entry ports and a taper joint with a screw cap that securely fitted the column. The lead column assembly used a pressure relief valve (10 psi trigger), pressure gauge, and sample inlet; the remaining port was plugged. The lag column assembly used one port for sample entry, and the other three ports were plugged. In both columns, the inlet sample lines extended through the port opening to the top of the column. The connecting tubing was $1 / 8$-in. OD, $1 / 16$ - in . ID polyethylene. Valved quick-disconnects (Cole Parmer) were installed in-line to allow for ease of column switching. An FMI QVG50 pump (Fluid Metering, Inc., Syosset, NY) equipped with a ceramic and Kynar ${ }^{\circledR}$ coated low-flow piston pump head was used to introduce all fluids. The flowrate was controlled with a remotely operated FMI stroke-rate controller. The pump was calibrated with the stroke-rate controller and could provide pumping rates from 0.08 to $16 \mathrm{~mL} / \mathrm{min}$. The volume actually pumped was determined using the mass of the fluid and the fluid density. The pressure indicated on the pressure gauge remained below 5 psi during all runs. The total holdup volume of the Cs ion exchange system was the summed volume of all fluid-filled parts and was estimated to be 42 mL .

Before installing the system into the hot cell, both of the resin beds were individually cycled through the acid form. After the resin cycling, the corrected mass of the Na-form SL-644 was calculated to be 2.4 g , on a dry-weight basis, in each column according to the following equation:

$$
\begin{equation*}
\mathrm{M}_{\mathrm{bed}}=\mathrm{M}_{\mathrm{AR}} * \mathrm{~F}_{\mathrm{AR}} * \mathrm{~L}^{*} * \mathrm{I}_{\mathrm{Na}} \tag{5}
\end{equation*}
$$

where $\quad \mathrm{M}_{\mathrm{bed}}=$ the resin bed mass in the Na-form on a dry-weight basis
$\mathrm{M}_{\mathrm{AR}}=$ the resin mass loaded in the column, as-received form
$\mathrm{F}_{\mathrm{AR}}=$ the F -factor for the as-received resin (0.877)
$\mathrm{L} \quad=$ the fractional mass remaining after conversion to the H -form (0.538)
$\mathrm{I}_{\mathrm{Na}}=$ the fractional mass gain on conversion from the H -form to the Na -form (1.25).
The entire ion exchange system was then used for a full shakedown experiment with AW-101 simulant (Fiskum, Blanchard, and Arm 2002). Both columns were individually eluted, rinsed, and regenerated. The ion exchange system was then used to process AP-101 diluted feed (AP-101DF) tank waste (Fiskum et al. 2002). Only the lead column was eluted to a ${ }^{137} \mathrm{Cs}$ concentration $\mathrm{C} / \mathrm{C}_{0}$ of $4 \mathrm{E}-3$, which was equivalent to a ${ }^{137} \mathrm{Cs}$ concentration of $0.5 \mu \mathrm{Ci} / \mathrm{mL}$. The lead column was then rinsed with DI water, regenerated with 0.25 M NaOH , and again rinsed with DI water. The lag column contained an estimated $35 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs}$ from the lead column Cs breakthrough (Fiskum et al. 2002). The beds had been stored approximately 8 weeks in the Na -form in DI water since the end of the AP-101DF column run.

The lead and lag columns were switched, and the apparatus volume (AV) of DI water was displaced with 0.25 M NaOH before introducing AN-102/C-104 feed. All subsequent processing ${ }^{(a)}$ was performed in the hot cells at temperatures ranging from 25 to $29^{\circ} \mathrm{C}$. The experimental conditions for each process step are shown in Table 2.5, where one BV is the volume in $0.25 \mathrm{M} \mathrm{NaOH}, 10.4 \mathrm{~mL}$. The bed conditioning, AN-102/C-104 loading, feed displacement, and DI water-rinse steps were conducted by passing these solutions through both resin beds connected in series. The AN-102/C-104 effluent was collected in two effluent bottles. The first bottle collected 41 mL , nominally one AV, and consisted primarily of the displaced regeneration solution. The remaining effluent was collected as one fraction. The initial $43-\mathrm{mL}(1 \mathrm{AV})$ of feed-displacement solution was collected in the AN-102/C-104 effluent composite bottle. This allowed maximum recovery of the AN-102/C-104 feed and minimized loss associated with feed-displacement sampling. Sampling of the feed-displacement solution began immediately after the $1-\mathrm{AV}$ displacement. The elution was conducted on the lead column only, continuing until 16.8 BV had been processed through the column. The ion exchange system was idled at this point overnight for 13.5 h in $0.5 \mathrm{M} \mathrm{HNO}_{3}$. Then two additional BVs of $0.5 \mathrm{M} \mathrm{HNO}_{3}$ were passed through the column. The resin bed was then rinsed, regenerated, and rinsed again as shown in Table 2.5.

[^2]Table 2.5. Experimental Conditions for AN-102/C-104 Ion Exchange

Process step	Solution	Total Volume			Flowrate		$\begin{array}{\|c\|} \hline \text { Time, } \\ \hline \mathrm{h} \\ \hline \end{array}$	T, ${ }^{\circ} \mathrm{C}$
		$\mathbf{B V}^{(1)}$	$\mathbf{A V}^{(2)}$	mL	BV/h	mL/min		
Two columns in series								
DI water displacement	0.25 M NaOH	8.0	2.0	83	2.7	0.47	2.9	27
Loading Lead column ${ }^{(3)}$	$\begin{aligned} & \hline \text { AN-102/ } \\ & \text { C-104 Feed } \end{aligned}$	72.4	-	753	2.7	0.47	27.2	28
Loading Lag column ${ }^{(4)}$	$\begin{array}{\|l\|} \hline \text { AN-102/ } \\ \text { C-104 Feed } \\ \hline \end{array}$	70.8	-	736	2.7	0.47	27.2	28
Feed displacement	0.1 M NaOH	11.6	2.9	121	2.8	0.48	4.6	28
DI water rinse	DI water	8.2	2.0	86	2.7	0.47	3.2	28
Lead column only								
Elution	$0.5 \mathrm{M} \mathrm{HNO}_{3}$	18.9	-	197	0.95	0.16	$33.7{ }^{(5)}$	28
Eluant rinse	DI water	5.9	2.7	62	2.8	0.49	2.1	28
Regeneration	0.25 M NaOH	4.9	2.2	51	0.92	0.16	5.5	32
Rinse	DI water	4.6	2.1	48	2.6	0.45	2.0	32

(1) $\mathrm{BV}=$ bed volume (10.4 mL in 0.25 M NaOH regeneration condition)
(2) $\mathrm{AV}=$ apparatus volume (42 mL for columns in series; 23 mL for lead column and 21 mL for lag column)
(3) Ion exchange run began on $6 / 26 / 01$.
(4) The feed volume through the lag column is reduced because of sampling from the lead column.
(5) The elution time includes 13.5 h when the system was idled in $0.5 \mathrm{M} \mathrm{HNO}_{3}$ overnight.

2.6 Column Sampling

The sampling and analysis protocol is shown in Table 2.6. During the loading phase, small samples (about 2 mL) were collected from the lead and lag columns starting at 5 BVs , then at 13 BVs and continuing in nominal 10-BV increments of feed. The flowrate varied between 2.6 and $2.9 \mathrm{BV} / \mathrm{h}$. The flowrate doubled during sample collection from the lead column because of the strong siphoning effect at the sample port. Thus, for the eight samples collected from the lead column and for 2 min for each sample, AN-102/C-104 fed at a nominal flowrate of $6 \mathrm{BV} / \mathrm{h}$. The feed displacement, DI water rinse, elution, and elution-rinse samples were taken at 1-BV increments at flowrates shown in Table 2.5.

Table 2.6. Sampling Interval and Analyses

Process Step	Frequency		Approximate Lead Column BV	Lag Column BV
	Every 10 BV	Every 10 BV		Analyses

2.7 Sample Analysis

The ${ }^{137} \mathrm{Cs}$ concentration was determined using a benchtop GEA spectrometer, which allowed for rapid sample analysis. Selected sample results were later confirmed by GEA analysis in the Chemical Measurements Center (CMC) analytical laboratory. The effluent composite sample was submitted for various analyses: GEA, ICP-AES, TOC/TIC, IC, ${ }^{99} \mathrm{Tc}$, pertechnetate, U , and OH^{-}. The eluate samples required dilution before removal from the hot cell to reduce the dose rate from ${ }^{137} \mathrm{Cs}$. The extent of dilution was determined by mass difference. Once the GEA results were confirmed for the eluate samples, the eluate samples were composited, ${ }^{(b)}$ and a sample of the composite was submitted for various analyses: GEA, ICP-AES, TOC, IC, $\mathrm{U},{ }^{90} \mathrm{Sr}$, total alpha, and thermal ionization mass spectrometry (TIMS) for Cs isotopic distribution. A sample of the regeneration solution was taken for ICP-AES and OH^{-}determination.

The Na and other metal concentrations were determined with ICP-AES. The OH^{-}concentration was determined by potentiometric titration with standardized HCl . Uranium was determined using kinetic phosphorescence. The total Tc concentration was determined by ICP-MS, and the pertechnetate concentration was determined using radiochemical separations specific for pertechnetate followed by beta counting. Anions were determined using ion chromatography. TOC and TIC were determined by silvercatalyzed hot-persulfate oxidation and furnace oxidation methods.

[^3]
3.0 Results and Discussion

This section describes the results from batch-contact tests and the column test with SL-644.

3.1 Batch Contact Results

The K_{d} values were calculated using Equation 1 and are based on ${ }^{137} \mathrm{Cs}$ concentrations as measured by GEA. The $\mathrm{Na} /$ Cs mole ratios were calculated based on the measured Na and total Cs concentrations in the uncontacted AN-102/C-104 and AN-102. The equilibrium Cs concentration was based on the ${ }^{137} \mathrm{Cs}$ concentrations and the ratio of ${ }^{137} \mathrm{Cs}$:total Cs determined for the unspiked and spiked solutions. The Na concentration was assumed to be constant for the batch contacts. Since the quantity of H^{+}added with the resin was small relative to the moles of Na^{+}and OH^{-}in the contact solution (phase ratio of 100 mL of solution:gram of exchanger), this was a reasonable assumption. In these experiments the waste solutions were estimated to have 1 meq of OH^{-}and 24 meq of Na^{+}, while the resin contained 0.1 meq of H^{+}for the 0.05 g resin used in the batch distribution tests. ${ }^{(a)}$

The calculated ${ }^{137} \mathrm{Cs}$ distribution coefficients $\left(\mathrm{K}_{\mathrm{d}} \mathrm{s}\right)$ are plotted in Figure 3.1 for SL-644 in contact with AN-102/C-104 and IE-911 in contact with AN-102. At the nominal feed condition of $8 \mathrm{E}+4 \mathrm{Na} / \mathrm{Cs}$ mole ratio, the SL-644 and IE-911 have nearly equivalent K_{d} values of 950 and $1100 \mathrm{~mL} / \mathrm{g}$, respectively.

Figure 3.1. ${ }^{137} \mathrm{Cs}$ Distribution Coefficients $\left(\mathrm{K}_{\mathrm{d}}\right)$ for SL-644 (AN-102/C-104) and IE-911 (AN-102) ($\mathrm{T}=27^{\circ} \mathrm{C}$)
(a) The resin contained 2.2 meq H^{+}per gram of H -form resin (Rapko et al. 2002).

The calculated dry-bed densities determined using the resin masses and volumes in the ion exchange column system (discussed in Section 3.2.5) are given in Table 3.1. The Na-form resin mass was corrected as defined in Equation 5. Good agreements of the dry-bed densities were obtained between the lead and lag columns. The AN-102/C-104 form dry-bed density was approximately equivalent to the $0.5 \mathrm{M} \mathrm{HNO}_{3}$ form dry-bed density. In this case, the decrease in mass associated with the change from the Na -form to the H -form was approximately equivalent to the decrease in volume upon contracting from the Na -form to the H -form.

Table 3.1. SL-644 Dry Bed Density

Property	0010319SMC-IV-73, Lead Column	010319SMC-IV-73, Lag Column
Column resin mass, $\mathrm{g}^{(1)}$	4.20	4.17
Corrected column Na-form resin mass, g	2.48	2.46
Bed volume, $0.25 \mathrm{M} \mathrm{NaOH}, \mathrm{mL}$	10.4	10.5
Bed volume, AN-102/C-104, mL	9.9	9.9
Bed volume, 0.5 M HNO 3	7.7	not performed
Dry bed density, ρ_{b}, in given matrix		
Na-form resin		
$0.25 \mathrm{M} \mathrm{NaOH}, \mathrm{g} / \mathrm{mL}$	0.238	0.234
AN-102/C-104, g/mL	0.250	0.248
H-form resin		
$0.5 \mathrm{M} \mathrm{HNO}_{3}, \mathrm{~g} / \mathrm{mL}$	0.258	not performed
(1) The 212- to $425-\mu \mathrm{m}$ particle-size resin mass measured in the as-received form.		

The Cs λ value for SL- 644 was calculated according to Equation 4 to be 250 BVs in the AN-102/C-104 feed condition, and 240 BVs in the 0.25 M NaOH regeneration condition. This value is the approximate point at which the Cs breakthrough curve is predicted to pass through $C / C_{o}=50 \%$ if sufficient feed were available for processing. There was insufficient AN-102/C-104 available to determine the IE-911 bed density in the feed. The dry-bed density was determined in AW-101 simulant to be $1.04 \mathrm{~g} / \mathrm{mL}$. Assuming that the bed density of IE- 911 is constant in these matrices, the Cs λ value for IE-911 was estimated to be 1100 BVs . Figure 3.2 shows the $\mathrm{Cs} \lambda$ values as a function of $\mathrm{Na} / \mathrm{Cs}$ mole ratio for the IE-911 (assumed bed density of $1.04 \mathrm{~g} / \mathrm{mL}$, dried to $105^{\circ} \mathrm{C}$) and the SL-644 (calculated bed density in 0.25 M NaOH of $0.25 \mathrm{~g} / \mathrm{mL}$, dried at ambient temperature under vacuum).

Strontium-90 was also measured in the IE-911 batch-contacted AN-102 aqueous fractions to evaluate $\mathrm{Sr} \mathrm{K}_{\mathrm{d}} \mathrm{S}$. The ${ }^{90} \mathrm{Sr} \mathrm{K}_{\mathrm{d}}$ S were fairly constant, ranging from 35 to $53 \mathrm{~mL} / \mathrm{g}$ for the range of $\mathrm{Na} / \mathrm{Cs}$ mole ratios tested. These results were much lower than previously reported results for IE-911 (Brown et al. 1996), where $\mathrm{Sr} \mathrm{K}_{\mathrm{d}} \mathrm{S}>1 \mathrm{E}+6 \mathrm{~mL} / \mathrm{g}$ were obtained using an AW-101 simulant (no added complexants). The difference was probably due to the presence of complexants in the AN-102/C-104 waste (Urie et al. 2002b) that may bind with the Sr and inhibit the ion exchange process.

3.2 Column Test with SL-644

The column system and resin beds used for AN-102/C-104 processing were also used for processing the AW-101 simulant and the AP-101DF actual waste. This test represented the third complete cycle using these resin beds. No resin fouling was observed through all ion exchange processing.

3.2.1 Loading, Feed Displacement, and Rinse

The loading phase was initiated with AN-102/C-104. Approximately 1 AV (41 mL) of effluent was initially collected in a separate collection bottle. Most of this effluent was 0.25 M NaOH from the regeneration step mixed with some AN-102/C-104 in the ion exchange apparatus. This solution was maintained separately and not mixed with the final Cs-decontaminated AN-102/C-104 effluent composite; thus, most of the apparatus 0.25 M NaOH solution was prevented from mixing with the AN-102/C104 effluent. The resin beds shrank an average 5.6% to 9.9 mL as they converted from the regeneration solution to the AN-102/C-104 feed.

The effluent Cs concentrations are shown in Figure 3.3 as $\% \mathrm{C} / \mathrm{C}_{\mathrm{o}}$ vs. the BVs of feed processed through each column. The abscissa reflects BVs as a function of the resin in the expanded regeneration condition of 10.4 mL . The C_{o} value for ${ }^{137} \mathrm{Cs}$ was determined to be $161 \mu \mathrm{Ci} / \mathrm{mL}$. The $\% \mathrm{C} / \mathrm{C}_{0}$ is plotted on a probability scale as this scale tends to provide a straight-line breakthrough curve. The $\mathrm{C} / \mathrm{C}_{\mathrm{o}}$ values, determined using an in-house GEA spectrometer, were generally in good agreement with selected samples independently analyzed by the CMC analytical laboratory. Raw analytical results and calculations are located Appendix C.

Conditions: SL-644 batch number 010319SMC-IV073 212- to $425-\mu \mathrm{m}$ dry particle size Process temperature $=27^{\circ} \mathrm{C}$
Bed volume in 0.25 M NaOH feed condition $=10.4 \mathrm{~mL}$
Flowrate $=2.7 \mathrm{BV} / \mathrm{h}$
${ }^{137} \mathrm{Cs} \mathrm{C}_{\mathrm{o}}=161 \mu \mathrm{Ci} / \mathrm{mL}$
Na concentration $=4.8 \mathrm{M}$.

Figure 3.3. ${ }^{137}$ Cs Breakthrough Curves for AN-102/C-104 Sample

There was insufficient feed available to result in any Cs breakthrough from the lead column. ${ }^{(b)}$ Thus the Cs λ value (the point at which the $\mathrm{C} / \mathrm{C}_{0}$ value is 50%) could not be estimated or compared with the Cs λ value predicted from batch-contact studies. This load profile is different than that reported by Hassan et al. (2000), where breakthrough was found within 5 BV , and at 60 -BV loading they observed 4.5% breakthrough on the lead column. Differences in the load profiles may be attributable in part to the differences in feed composition, the differences in resin particle-size distributions, differences in specific characteristics of the two SL-644 production batches, and differences in the storage and process history of the resins.
(b) Only $753-\mathrm{mL}$ or 72.4 BVs AN-102/C-104 were available; an estimated 2500 mL or 240 BVs were necessary to reach $50 \% \mathrm{C} / \mathrm{C}_{\mathrm{o}}$.

The ${ }^{137}$ Cs concentrations in the lag column samples were clearly higher (by a factor of 50) in activity than those of the lead column. This was consistent with ${ }^{137} \mathrm{Cs}$ "bleed-off" from the previous AP-101DF ion exchange processing where the Cs elution ended at a ${ }^{137} \mathrm{Cs}$ concentration of $0.5 \mu \mathrm{Ci} / \mathrm{mL}$. The effluent ${ }^{137} \mathrm{Cs}$ concentration averaged $1.4 \mathrm{E}-2 \mu \mathrm{Ci} / \mathrm{mL}$ over the entire $\mathrm{AN}-102 / \mathrm{C}-104$ processing period. Thus a total of $10.3 \mu \mathrm{Ci}^{137} \mathrm{Cs}$ were removed from the lag column as bleed-off and collected in the $736-\mathrm{mL}$ AN-102/C-104 effluent. This is equivalent to 0.007% of the total ${ }^{137} \mathrm{Cs}$ loaded during the AP-101DF processing, where AP-101DF loading continued through 112 BV and a lead column $\mathrm{C}^{2} / \mathrm{C}_{0}$ of 0.27%. The plant-design loading was expected to continue to about 190 BV to a $\mathrm{C} / \mathrm{C}_{0}$ of 50%. The possibility exists that Cs bleed-off during AN-102/C-104 processing could be higher if more AP-101DF feed could have been processed. With plant-design operation continuing through only $74-\mathrm{BV}$ processing, the possibility exists that the subsequent Cs bleed-off during subsequent waste processing could be lower than observed.

The bleed-off was constant over the course of the loading phase, dropping sharply with the introduction of the feed displacement and DI water rinse. The drop in Cs bleed-off is related to the drop in Na concentration in the feed, which acts as a competing ion to the Cs on the ion exchanger.

The contract ${ }^{137} \mathrm{Cs}$ removal limit is also shown in Figure 3.3. The $\mathrm{C} / \mathrm{C}_{\mathrm{o}}$ value of 0.104% corresponds to the contract limit of $0.3 \mathrm{Ci} / \mathrm{m}^{3}$ for ${ }^{137} \mathrm{Cs}$ in the LAW glass. The $\mathrm{C} / \mathrm{C}_{\mathrm{o}}$ value corresponding to this limit was determined using the Na concentration of 4.8 M in the $\mathrm{AN}-102 / \mathrm{C}-104$, the ${ }^{137} \mathrm{Cs}$ feed concentration of $161 \mu \mathrm{Ci} / \mathrm{mL}$, a $10 \mathrm{wt} \%$ total $\mathrm{Na}_{2} \mathrm{O}$ loading in the glass, and a glass-product density of $2.66 \mathrm{~g} / \mathrm{mL}$. ${ }^{\text {(c) }}$ Despite the ${ }^{137} \mathrm{Cs}$ bleed-off from the lag column, the effluent ${ }^{137} \mathrm{Cs}$ concentration remained below the contract limit.

The decontamination factors (DFs) were calculated on selected effluent samples and the composite effluent, and are summarized in Table 3.2. These may be compared to the contract limit of $\mathrm{C} / \mathrm{C}_{\mathrm{o}}=$ 0.104% ($\mathrm{DF}=960$). Sufficient Cs was removed so that the contract limit was met.

Table 3.2. Decontamination Factors for ${ }^{137} \mathrm{Cs}$ from AN-102/C-104

Sample	volume, $\mathbf{B V}(\mathbf{m L})$	${ }^{\mathbf{1 3 7}} \mathbf{C s}$ Concentration $\boldsymbol{\mu \mathbf { C i } / \mathbf { m L }}{ }^{(1)}$	$\mathbf{C / C}_{\mathbf{0}} \mathbf{9} \%$	$\mathbf{D F}$
Second lead column sample	$13.2(137)$	$2.95 \mathrm{E}-4$	$1.83 \mathrm{E}-4$	$5.5 \mathrm{E}+5$
Final lead column sample	$67.1(697)$	$2.10 \mathrm{E}-4$	$1.30 \mathrm{E}-4$	$7.7 \mathrm{E}+5$
Second lag column sample	$13.0(135)$	$1.40 \mathrm{E}-2$	$8.70 \mathrm{E}-3$	$1.2 \mathrm{E}+4$
Final lag column sample	$65.6(682)$	$1.21 \mathrm{E}-2$	$7.52 \mathrm{E}-3$	$1.3 \mathrm{E}+4$
Composite effluent	$72.4(753)$	$1.42 \mathrm{E}-2$	$8.82 \mathrm{E}-3$	$1.1 \mathrm{E}+4$

(1) The ${ }^{137}$ Cs uncertainty ranges from 3% to 8% relative error, $1-\sigma$.

The Cs-decontaminated effluent was characterized, and the results are summarized in Table 3.3. Major analyte concentrations were equivalent to the feed concentrations within the experimental error of the method (typically $\pm 15 \%$). Uranyl and Cu have been notably removed from the tank waste along with the Cs. Oxalate, $\mathrm{Ni}, \mathrm{PO}_{4}$, and ${ }^{60} \mathrm{Co}$ concentrations were also lower in the LAW product than the feed.
(c) The maximum Envelope C waste $\mathrm{Na}_{2} \mathrm{O}$ loading is $14 \mathrm{wt} \%$, corresponding to a $\mathrm{C} / \mathrm{C}_{\mathrm{o}}$ of 0.074%.

Table 3.3. AN-102/C-104 Cs-Decontaminated Effluent

Analyte	AN-102/C-104, Effluent M	\% Change from Feed
Solution density, g / mL	$1.237 \mathrm{~T}=24^{\circ} \mathrm{C}$	-0.6
Cations, M		
Na^{+}	$4.78 \mathrm{E}+0$	-1.0
K^{+}	2.76 E-2	13.6
Cs^{+}	5.28 E-9	>-99
Ca^{2+}	$3.72 \mathrm{E}-3$	0.5
Cd^{2+}	2.15 E-4	-13.0
Cu^{2+}	<1 E-5	[>-95]
Ni^{2+}	2.47 E-3	-22.8
Pb^{2+}	$3.33 \mathrm{E}-4$	6.1
Sr^{2+}	$9.92 \mathrm{E}-4$	0.5
Anions, M		
$\mathrm{AlO}_{2}{ }^{-(1)}$	2.91 E-1	-4.3
Cl^{-}	5.08 E-2	-5.8
$\mathrm{F}^{-(2)}$	<3.3 E-1	NA
$\mathrm{CO}_{3}{ }^{2-}$ (hot persulfate method)	7.6 E-1	9.2
$\mathrm{CO}_{3}{ }^{2-}$ (furnace method)	Indeterminate ${ }^{(3)}$	$\mathrm{NA}^{(3)}$
$\mathrm{CrO}_{4}{ }^{2-(1)}$	$1.89 \mathrm{E}-3$	-9.1
$\mathrm{NO}_{2}{ }^{-}$	$9.00 \mathrm{E}-1$	-2.2
$\mathrm{NO}_{3}{ }^{-}$	$1.73 \mathrm{E}+1$	4.0
OH^{-}	$1.80 \mathrm{E}-1$	-10.0
$\mathrm{PO}_{4}{ }^{3-(1)}$ (ICP-AES)	$1.81 \mathrm{E}-2$	-25.2
$\mathrm{PO}_{4}{ }^{3-(1)}$ (IC)	$2.32 \mathrm{E}-2$	-36.1
$\mathrm{SO}_{4}{ }^{2-}$	$6.97 \mathrm{E}-2$	1.9
Uranyl	3.45 E-6	-97.0
Oxalate	$1.59 \mathrm{E}-2$	-53.2
TOC, g/L (hot persulfate method)	12.3	3.4
TOC, g/L (furnace method)	21.2	12.2
Radionuclides, $\mu \mathrm{Ci} / \mathrm{mL}$		
Total alpha	$1.10 \mathrm{E}-2$	-12.7
${ }^{60} \mathrm{Co}$	$3.41 \mathrm{E}-2$	-16.0
${ }^{90} \mathrm{Sr}$	$1.52 \mathrm{E}+0$	-10.6
${ }^{99} \mathrm{Tc}$	$7.95 \mathrm{E}-2$	3.1
${ }^{137} \mathrm{Cs}$	$1.40 \mathrm{E}-2$	>-99
${ }^{154} \mathrm{Eu}$	2.20 E-2	NA

(1) Al, Cr, and P determined by ICP-AES. The anionic form is assumed on the basis of waste chemistry.
(2) F concentration is an upper bound; coeluting anions positively interfered with peak integration.
(3) The furnace method TIC could not be determined. The total carbon (TC) was equivalent to the TOC and $\mathrm{TIC}=\mathrm{TC}-\mathrm{TOC}$.
NA $=$ not analyzed
Bracketed results indicate the analyte concentration uncertainty exceeds 15%. Less-than results indicate that the analyte concentration was below the instrument detection limit (IDL); the dilution-corrected IDL is given.

3.2.2 Elution and Eluant Rinse

The lead column elution and eluant rinse steps ${ }^{137} \mathrm{Cs} \mathrm{C/C} \mathrm{C}_{\mathrm{o}}{ }^{(\mathrm{d})}$ values are shown in Figure 3.4. The ordinate is a logarithmic scale to clearly show the large range of $\mathrm{C} / \mathrm{C}_{\mathrm{o}}$ values obtained. The abscissa is given in BVs relative to the regeneration condition. Most of the ${ }^{137} \mathrm{Cs}$ was contained in elution BVs 3 to 5. The peak value of $\mathrm{C} / \mathrm{C}_{\mathrm{o}}$ was found to be 53 . The elution cutoff of $\mathrm{C} / \mathrm{C}_{0}=0.01$ was reached at 11 BVs but elution was continued beyond this because of the lag between sample collection and the determination of the Cs concentration. The relative $\mathrm{C} / \mathrm{C}_{0}$ increased at 18 BVs . The ion exchange system was idled at this point overnight for 13.5 h in $0.5 \mathrm{M} \mathrm{HNO}_{3}$. During this time, additional Cs exchanged out of the SL-644, indicating that previous eluate samples from the elution curve tail were not in equilibrium with the Cs still loaded on the resin. Thus, the increase in $\mathrm{C} / \mathrm{C}_{\mathrm{o}}$ is attributed to a slight non-equilibrium condition during the elution process, not a change in elution kinetics. The $\mathrm{C} / \mathrm{C}_{0}$ values for the eluant rinse with DI water drop rapidly in ${ }^{137} \mathrm{Cs}$ concentration, indicating that DI water does not continue Cs elution.

Conditions: SL-644 batch \# 010319 SMC-IV-073 212- to $425-\mu \mathrm{m}$ dry particle size Bed volume in the 0.25 M NaOH regeneration condition $=10.4 \mathrm{~mL}$
Flowrate $=0.95 \mathrm{BV} / \mathrm{h} \quad$ Process temperature $=28{ }^{\circ} \mathrm{C}$
${ }^{137} \mathrm{Cs} \mathrm{C}_{0}=161 \mu \mathrm{Ci} / \mathrm{mL} \quad$ Eluant $=0.5 \mathrm{M} \mathrm{HNO}_{3}$.
Figure 3.4. ${ }^{137} \mathrm{Cs}$ Elution and Eluant Rinse of the Lead Column

[^4]The eluate samples from the lead column were composited, and a sub-sample was taken for analysis. The analytical results are shown in Tables 3.4 and 3.5. Sodium was the dominant component detected using ICP-AES with some $\mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Ni}, \mathrm{Pb}$, and U eluting as well. A summary of these analyte

Table 3.4. Inorganic and Organic Analytes in the Lead Column Eluate Composite

Analyte	Method	$\begin{gathered} \hline \mathbf{M R Q}^{(1)} \\ \mu \mathrm{g} / \mathrm{mL} \end{gathered}$	$\begin{gathered} \hline \text { Cs eluate }{ }^{(2)} \\ \mu \mathrm{g} / \mathrm{mL} \\ \hline \end{gathered}$	Analyte	Method	$\begin{gathered} \hline \mathbf{M R Q}^{(1)} \\ \mu \mathrm{g} / \mathrm{mL} \end{gathered}$	$\begin{gathered} \hline \text { Cs eluate }{ }^{(2)} \\ \mu \mathrm{g} / \mathrm{mL} \\ \hline \end{gathered}$
Al	ICP-AES	75	[5.8]	U	KPA	600	167
Ba	ICP-AES	2.3	[0.18]	Zn	ICP-AES	17	[2.8]
Ca	ICP-AES	150	<3	Cl^{-}	IC	3	22
Cd	ICP-AES	8	2.35	F-	IC	150	<13
Co	ICP-AES	30	<0.5	$\mathrm{NO}_{3}{ }^{-}$	IC	3000	27,800
Cr	ICP-AES	15	23	$\mathrm{PO}_{4}{ }^{-3}$	IC	2500	<25
$\mathrm{Cs}^{(4)}$	GEA	1.5	33.2	SO_{4}^{-2}	IC	2300	<25
Cu	ICP-AES	17	[31]	TOC	Hot Pers.	1500	130
Fe	ICP-AES	150	[6.4]	TOC	Furnace	1500	< 100
K	ICP-AES	75	<20	Glycolate	Organic IC	1500	<150
La	ICP-AES	35	<0.5	Acetate	Organic IC	1500	<120
Mg	ICP-AES	300	< 1	Formate	Organic IC	1500	<200
Mn	ICP-AES	150	<0.5	Oxalate	Organic IC	1500	<260
Mo	ICP-AES	150	<0.5	Citrate	Organic IC	1500	<510
Na	ICP-AES	75	790	EDTA	GC/FID	1500	<5
Ni	ICP-AES	30	68	HEDTA	GC/FID	1500	<9
Pb	ICP-AES	300	25	ED3A	GC/FID	1500	<5
Si	ICP-AES	170	[20]	NTA	GC/FID	1500	<6
Sn	ICP-AES	1500	< 15	NIDA/IDA ${ }^{(5)}$	GC/FID	1500	<11
Sr	ICP-AES	NMRQ ${ }^{(3)}$	[1.1]	Citric acid	GC/FID	1500	<6
Ti	ICP-AES	17	<0.3	Succinic acid	GC/FID	1500	19
U	ICP-AES	600	[175]				
EDTA = ethylenediaminetetraacetic acid; HEDTA = N-(2-hydroxyethyl ethylenediaminetriacetic acid ED3A = ethylenediaminetriacetic acid; NTA $=$ nitrilotriacetic acid; IDA $=$ iminodiactic acid NIDA $=$ nitrosoiminodiacetic acid (1) MRQ is minimum reportable quantity requested by Bechtel. (2) The overall error is estimated to be within $\pm 15 \%$. Values in brackets are within 10 -times the detection limit, and errors are likely to exceed $\pm 15 \%$. Less-than values indicate that the analyte was not detected by the instrument, and the reported value represents the IDL multiplied by the sample dilution factor. (3) NMRQ is no minimum reportable quantity requested. (4) The total Cs concentration was calculated based on the ${ }^{137} \mathrm{Cs}$ concentration and the isotopic distribution ratio. (5) The IDA was completely converted to NIDA in the presence of nitrite in tank waste.							

Table 3.5. Radionuclides in the Lead Column Eluate Composite

Analyte	Method	$\mathbf{M R Q}^{(1)}$ $\mu \mathbf{C i} / \mathbf{m L}$	Cs eluate $\mu \mathbf{C i} / \mathbf{m L}^{(3)}$	Error $\mathbf{\%}$	Analyte	Method	MRQ $\mu \mathbf{C i} / \mathbf{m L}$	Cs eluate $\mu \mathbf{C i} / \mathbf{m L}$	Error $\mathbf{\%}$
${ }^{60} \mathrm{Co}$	GEA	NMRQ ${ }^{(2)}$	$<7 \mathrm{E}-3$	-	${ }^{152} \mathrm{Eu}$	GEA	NMRQ	$<9 \mathrm{E}-3$	-
${ }^{90} \mathrm{Sr}$	Radchem	$1.50 \mathrm{E}-1$	$7.8 \mathrm{E}-2$	50	${ }^{154} \mathrm{Eu}$	GEA	$2.00 \mathrm{E}-3$	$<8 \mathrm{E}-3$	-
${ }^{126} \mathrm{Sn} / \mathrm{Sb}$	GEA	NMRQ	$<7 \mathrm{E}-2$	-	${ }^{155} \mathrm{Eu}$	GEA	$9.00 \mathrm{E}-2$	$<3 \mathrm{E}-1$	-
${ }^{134} \mathrm{Cs}$	GEA	NMRQ	$<7 \mathrm{E}-3$	-	${ }^{241} \mathrm{Am}$	Radchem	$7.20 \mathrm{E}-04$	$1.18 \mathrm{E}-3$	3
${ }^{137} \mathrm{Cs}$	GEA	$5.00 \mathrm{E}-2$	$6.65 \mathrm{E}+2$	3	Total alpha	Radchem	$2.30 \mathrm{E}-01$	$<2 \mathrm{E}-2$	-

(1) MRQ is minimum reportable quantity requested by Bechtel.
(2) NMRQ is no minimum reportable quantity requested.
(3) Less-than values indicate that the analyte was not detected by the instrument, and the reported value represents the IDL multiplied by the sample dilution factor.
recoveries is presented in Table 3.6. The U recovered in the eluate ($\sim 33 \mathrm{mg}$) represented 160% of the U present in the AN-102/C-104 feed (21 mg). The AP-101DF processing apparently loaded some U on the lag column. The total U loaded with the AP-101DF was 48 mg , and the amount recovered in the eluate was 42 mg . The difference of $6 \mathrm{mg} U$ was applied to the lag column U loading. Switching this column into the lead position for AN102/C-104 processing resulted in a partially U-loaded lead column. Thus, the total U recovered in the eluate (33 mg) represented 123% of the total U loaded on the lead column (6 mg from AP-101DF processing plus 21 mg from $\mathrm{AN}-102 / \mathrm{C}-104$ processing). The apparent Cu loading was surprising with 80% recovered in the eluate. Despite the larger uncertainty in the Cu result (exceeded $\pm 15 \%$), the total calculated mass was supported by the apparent mass loss of Cu in the AN-102/C-104 effluent (Table 3.3). As expected, ${ }^{137} \mathrm{Cs}$ was the dominant radionuclide detected. The only significant anion detected was nitrate, which was not surprising since the eluant was $0.5 \mathrm{M} \mathrm{HNO}_{3}$.

Table 3.6. Select Analyte Recoveries in Eluate

Analyte	AN102/C-104 feed, total mg	Estimated remaining from AP-101DF processing, mg	Amount recovered in eluate, $\mathbf{m g}$	Amount recovered in eluate, mmoles	Recovery in Eluate, \%
U	20.7	6	32.9	0.138	123
Al	$6.18 \mathrm{E}+3$	-	$[1.13]$	0.042	$[0.02]$
Cd	19.6	-	0.46	0.0041	2.3
Cr	81.3	-	4.5	0.087	5.6
Cu	$[7.5]$	-	6.0	0.094	$[80]$
Fe	$[7.1]$	-	1.3	0.023	$[18]$
Na	$8.36 \mathrm{E}+4$	-	156	6.78	0.19
Ni	142	-	13.3	0.227	9.4
Pb	50.5	-	4.9	0.024	9.8
Values in brackets are based on results reported within 10 exceed $+/-15 \%$.					

The minimum reportable quantity (MRQ) specified by the client is provided in Table 3.4 for information along with the actual analytical result. In cases where a result was below the instrument detection limit (IDL), the dilution-corrected IDL is provided as a "less-than" value. Most of the MRQ levels were met with some exceptions. The large amount of ${ }^{137} \mathrm{Cs}$ prevented the detection limits for ${ }^{154} \mathrm{Eu}$, and ${ }^{155} \mathrm{Eu}$ from meeting the MRQ levels. Relatively high ${ }^{137} \mathrm{Cs}$ activity increases the gamma background level in the detectors because of Compton scattering, thereby making it difficult to detect lower
concentrations of other gamma emitters. The large nitrate concentration required large sample dilutions and prevented the estimated quantitation limit (EQL) for $\mathrm{Cl}(13 \mu \mathrm{~g} / \mathrm{mL})$ from meeting the MRQ level. However, Cl was found above the EQL at $22 \mu \mathrm{~g} / \mathrm{mL}$. The total inorganic carbon (TIC) analysis was not completed because carbonate is known to evolve as CO_{2} in acidic solutions.

3.2.3 Regeneration

The composition of the regeneration solution is shown in Table 3.7. Sodium was the only cation found above the blank concentration. The charge balance between Na and OH was not equal. The counter-ion for the extra Na is predicted to be residual NO_{3} from the elution step. The regeneration solution ${ }^{137} \mathrm{Cs} \mathrm{C/C} \mathrm{C}_{0}$ was $4.68 \mathrm{E}-4$.

Table 3.7. Composition of Regeneration Solution

Analyte	Concentration, $\mathbf{\mu g} / \mathbf{m L}$	Concentration, M
Na^{+}	301	$1.32 \mathrm{E}-2$
$\mathrm{~K}^{+}$	<40	$<1 \mathrm{E}-3$
OH^{-}	60	$3.6 \mathrm{E}-3$
Total Cs	$3.77 \mathrm{E}-3$	$2.8 \mathrm{E}-8$
$1{ }^{137} \mathrm{Cs}$	$7.54 \mathrm{E}-2 \mu \mathrm{Ci} / \mathrm{mL}$	-
Density, g / mL	$0.998\left(\mathrm{~T}=24^{\circ} \mathrm{C}\right)$	

3.2.4 Activity Balance for ${ }^{137} \mathrm{Cs}$

An activity balance for ${ }^{137} \mathrm{Cs}$ was completed to compare the ${ }^{137} \mathrm{Cs}$ recovered in various process streams to the ${ }^{137} \mathrm{Cs}$ present in the feed sample (Table 3.8). As expected, virtually all ${ }^{137} \mathrm{Cs}$ was found in the eluate stream, recovering $>99 \%$ of the ${ }^{137} \mathrm{Cs}$ present in the initial AN-102/C-104 feed. The eluate resulted in 108% Cs recovery; this high recovery is attributed to analytical error and is most likely closer to 100%. The other processing effluent Cs recoveries were several orders of magnitude below the eluate Cs recovery.

Table 3.8. Activity Balance for ${ }^{137} \mathrm{Cs}$

Solution	${ }^{137} \mathbf{C s}, \mu \mathrm{Ci}$	${ }^{137}$ Cs Relative to Feed Sample, \%
Feed Sample (AN-102/C-104)	$1.21 \mathrm{E}+5$	1.0 E+2
Initial AP-101DF loading	$3.5 \mathrm{E}+1$	2.9 E-2
Effluent	1.0 E+1	8.5 E-3
Load samples	3.8 E-1	3.1 E-4
Feed displacement	8.4 E-1	6.6 E-4
DI Water Rinse	3.4 E-1	2.8 E-4
Column \#1 Eluate	$1.31 \mathrm{E}+5$	$1.08 \mathrm{E}+2$
Column \#1 DI water rinse	$6.0 \quad \mathrm{E}+0$	5.0 E-3
Column \#1 regeneration	$3.8 \mathrm{E}+0$	3.2 E-3
Lag column Cs loading	2.2 E-1	1.8 E-4
Total ${ }^{137}$ Cs Recovery	1.31 E+5	$1.08 \mathrm{E}+2$

3.2.5 SL-644 Resin Volume Changes

The SL-644 resin is known to change in volume as a function of the solution pH and ionic strength (Hassan, King, and McCabe 1999). The resin BV change history is shown in Table 3.9. The columns are labeled 1 and 2. Column 1 was the lead column for the AW-101 simulant test and the AP-101DF test; Column 2 was the lag column for these tests. Results from both tests have been previously reported (Fiskum, Blanchard, and Arm 2002; Fiskum et al. 2002). These columns were switched for the AN102/C104 ion exchange test. Thus Column 1 was placed in the lag position, and Column 2 was placed in the lead position.

The volume contraction after each subsequent $0.5 \mathrm{M} \mathrm{HNO}_{3}$ elution step became more pronounced with cycling. The first volume contraction stabilized at 9.2 mL ; the final measured volume contraction stabilized at 7.7 mL . The variation in BV as a function of the process steps for both columns is shown in Figure 3.5a and b. In Figure 3.5a, the BVs are normalized to the volume in the 0.25 M NaOH regeneration condition just before AN-102/C-104 loading. Each process step is denoted with a number corresponding to the step number in Table 3.9. In Figure 3.5b, the observed volume changes show clearly the greater contraction and slightly reduced expansion observed over time with repeated cycling. Fluidizing the bed in the H -form (process Step 10) resulted in tighter resin packing, yet the subsequent expansion in the Na-form appeared to have been largely unaffected in that the regeneration volume was equivalent to that obtained before fluidization. There appeared to have been a stepwise decline in resin volume in both the H -form and the Na-form from AW-101 simulant processing and AP-101DF processing. The AN-102/C-104 process-step resin volumes appeared similar to those found for AP-101DF.

Table 3.9. SL-644 Bed Volumes

Feed	Symbol	Process Step	010319SMC-IV-73212- to 425- $\mu \mathrm{m}$ particle size	
			Column 1	Column 2
Initial column positions			Lead column, mL	Lag column, mL
Initial packing	P	1	10.9	10.9
$0.5 \mathrm{M} \mathrm{HNO}_{3}$	E	2	9.2	8.9
DI water	W	3	9.2	8.9
0.25 M NaOH	R	4	11.2	10.8
AW-101 simulant	F	5	10.2	10.0
0.1 M NaOH	FD	6	10.9	10.7
DI water	W	7	10.9	10.9
$0.5 \mathrm{M} \mathrm{HNO}_{3}$	E	8	8.9	8.9
DI water	W	9	8.9	8.7
Re-fluidize bed	RP	10	7.5	7.5
0.25 M NaOH	R	11	11.0	10.9
DI water	W	12	10.5	11.0
$0.5 \mathrm{M} \mathrm{HNO}_{3}$	E	13	7.9	7.7
DI water	W	14	7.9	7.7
0.25 M NaOH	R	15	10.7	10.5
AP-101DF	F	16	9.7	9.7
0.1 M NaOH	FD	17	10.5	10.4
DI water	W	18	10.4	10.5
$0.5 \mathrm{M} \mathrm{HNO}_{3}$	E	19	7.7	-
DI water	W	20	7.7	-
0.25 M NaOH	R	21	10.5	-
DI water	W	22	10.2	-
Switch column positions			Lag column, mL	Lead column, mL
0.25 M NaOH	R	23	10.5	10.4
AN-102/C-104	F	24	9.9	9.9
0.1 M NaOH	FD	25	10.7	10.4
DI water	W	26	10.7	10.4
$0.5 \mathrm{M} \mathrm{HNO}_{3}$	E	27	-	7.7
DI water	W	28	-	7.5
0.25 M NaOH	R	29	-	10.2
DI water	W	30	-	10.4

a)

b)

Step Number
a) Relative BV for $\mathrm{AN}-102 / \mathrm{C}-104$ testing cycle; baseline $\mathrm{BV}=10.4 \mathrm{~mL}$ in 0.25 M NaOH regeneration condition.
b) Actual BVs for all tested cycles, including simulant AW-101, AP-101DF, and AN-102/C-104 cycles.

Figure 3.5. Comparison of Bed Volumes of the Lead and Lag Columns
(SL-644 Batch 010319SMC-IV-73, 212- to $425-\mu \mathrm{m}$)

4.0 Conclusions

The objectives of the testing were met.
Batch-distribution coefficients $\left(\mathrm{K}_{\mathrm{d}} \mathrm{s}\right)$ were developed as a function of $\mathrm{Na} / \mathrm{Cs}$ mole ratios for both SL644 and IE-911 in AN-102/C-104.

- The SL-644 feed condition equilibrium data resulted in a K_{d} of $950 \mathrm{~mL} / \mathrm{g}$, corresponding to a predicted Cs λ of $240 \mathrm{BVs}\left(0.25 \mathrm{M} \mathrm{NaOH}\right.$ condition) at a $\mathrm{Na} / \mathrm{Cs}$ mole ratio of $8 \mathrm{E}+4,27^{\circ} \mathrm{C}$.
- The IE-911 CST feed condition equilibrium data resulted in a K_{d} value of $1100 \mathrm{~mL} / \mathrm{g}$, corresponding to a predicted Cs λ of 1100 BVs at a $\mathrm{Na} / \mathrm{Cs}$ mole ratio of $8 \mathrm{E}+4,27^{\circ} \mathrm{C}$.

Cs decontamination from AN-102/C-104 (Envelope C) was successfully demonstrated.

- An overall DF of $1.13 \mathrm{E}+4$ was obtained, providing a Cs-decontaminated effluent with $1.42 \mathrm{E}-2 \mu \mathrm{Ci} / \mathrm{mL}{ }^{137} \mathrm{Cs}$. This corresponded to 8.1% of the contract limit of $1.68 \mathrm{E}-1 \mu \mathrm{Ci} / \mathrm{mL}$ in the treated effluent (based on $10 \% \mathrm{Na}_{2} \mathrm{O}$ loading). ${ }^{\text {(a) }}$

Cs load and elution breakthrough profiles were developed.

- Only 72-BVs ($753-\mathrm{mL}$) of feed were available for processing. The Cs λ value from column testing could not be determined because insufficient feed was available for processing relative to the $10-\mathrm{mL}$ resin bed. The load profile through 72 BVs resulted in no Cs breakthrough.
- The partially Cs-loaded lead column was efficiently eluted with $0.5 \mathrm{M} \mathrm{HNO}_{3}$. Over 99% of the ${ }^{137} \mathrm{Cs}$ was eluted from the column in 2.5 BVs of eluate, although a total of 11 BVs of eluant were required to reach the elution end point of a $\mathrm{C} / \mathrm{Co}=0.01$. The peak C / Co value for ${ }^{137} \mathrm{Cs}$ was 53 . Virtually 100% of the ${ }^{137} \mathrm{Cs}$ present in the feed sample was recovered in the eluate fraction, which had a ${ }^{137} \mathrm{Cs}$ concentration of $6.675 \mathrm{E}+2 \mu \mathrm{Ci} / \mathrm{mL}$ in 197 mL .

The Cs eluate solution was composited and characterized. ${ }^{(b)}$

- Along with Cs, U and Cu were recovered in the eluate.

The effectiveness of all SL-644 ion exchange process steps including loading, feed displacement, DI water washing, elution, elution rinse, and resin regeneration were demonstrated.

- Lag column bleed-off, from previous ion exchange waste processing, affected the effluent product with ${ }^{137} \mathrm{Cs}$ contamination. Lag-column samples were a factor of 50 times higher in ${ }^{137} \mathrm{Cs}$ concentration than lead column samples, but were still $<10 \%$ of the contract ${ }^{137} \mathrm{Cs}$ limit. The elution protocol may have to be revised to avoid subsequent ${ }^{137} \mathrm{Cs}$ contamination in processed tank waste effluent.
(a) The effluent ${ }^{137} \mathrm{Cs}$ concentration was 12% of the contract limit of $1.2 \mathrm{E}-1 \mu \mathrm{Ci} / \mathrm{mL}$ based on the maximum loading of $14 \mathrm{wt} \%$ waste $\mathrm{Na}_{2} \mathrm{O}$.
(b) Full characterization was not necessary because eluate vitrification was cancelled.
- The SL-644 was adequately regenerated with 4.9 BVs or $2.2 \mathrm{AVs}(51 \mathrm{~mL})$ of 0.25 M NaOH . The average ${ }^{137} \mathrm{Cs}$ concentration in the regeneration solution was $7.5 \mathrm{E}-2 \mu \mathrm{Ci} / \mathrm{mL}$, equivalent to $\mathrm{C} / \mathrm{C}_{0}$ of 4.7 E-4.
- An activity balance for ${ }^{137} \mathrm{Cs}$ indicated that 100% of the ${ }^{137} \mathrm{Cs}$ present in the feed sample was accounted for in the samples and process streams (mostly in the eluate), which is indicative of good experimental integrity.

5.0 References

Barnes, S., R. Roosa, and R. Peterson. 2002. 'Research and Technology Plan.', 24590-WTP-PL-RT-01002, Rev. 1, RPP-WTP project.

Brown GN, LA Bray, CD Carlson, KJ Carson, JR DesChane, RJ Elovich, FV Hoopes, DE Kurath, LL Nenninger, and PK Tanaka. 1996. Comparison of Organic and Inorganic Ion Exchangers for Removal of Cesium and Strontium from Simulated and Actual Hanford 241-AW-101 DSSF Tank Waste, PNL10920, Pacific Northwest National Laboratory, Richland, WA.

Fiskum SK, DL Blanchard, and ST Arm. 2002. Aging Study and Small Column Ion Exchange Testing of SuperLig ${ }^{\circledR} 644$ for Removal of ${ }^{137}$ Cs from Simulated AW-101 Hanford Tank Waste, WTP-RPT-015, Battelle Pacific Northwest Division, Richland, WA.

Fiskum SK, ST Arm, DL Blanchard, and BM Rapko. 2002. Small Column Ion Exchange Testing of Superlig ${ }^{\circledR} 644$ for Removal of ${ }^{137}$ Cs from Hanford Waste Tank 241-AP-101 Diluted Feed (Envelope A), WTP-RPT-016, Battelle Pacific Northwest Division, Richland, WA.

Hallen RT, JGH Geeting, DR Jackson, DR Wier. 2002. Combined Entrained Solids and Sr/TRU Removal from AN-102/C-104 Waste Blend, WTP-RPT-044, Battelle, Pacific Northwest Division, Richland, WA.

Hassan NM, WD King, DJ McCabe, and ML Crowder. 2001. Small-Scale Ion Exchange Removal of Cesium and Technetium from Envelope B Hanford Tank 241-AZ-102, January, 2001, WSRC-TR-200000419, SRT-RPP-2000-00036, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Hassan NM, DJ McCabe, and WD King. 2000. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-103, Revision 1, April, 2000, BNF-003-98-0146, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Hassan NM, DJ McCabe, WD King, and ML Crowder. 2000. Small-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tank 241-AN-102, March 2000, BNF-003-98-0219, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Hassan NM, WD King, and DJ McCabe. 1999. Superlig ${ }^{\circledR}$ Ion Exchange Resin Swelling and Buoyancy Study (U), Savannah River Technology Center, Westinghouse Savannah River Co., Aiken, SC.

King WD, NM Hassan, and DJ McCabe. 2001. Intermediate-Scale Ion Exchange Removal of Cesium and Technetium from Hanford Tanks 241-AN-102, August, 2001, WSRC-TR-2000-00420,
SRT-RPP-2000-00014, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Korkisch J. 1989. Handbook of Ion Exchange Resins: Their Application of Inorganic Analytical Chemistry, Vol. 1, CRC Press, Boca Raton, FL.

Kurath DE, DL Blanchard, Jr., and JR. Bontha. 2000a. Small Column Ion Exchange Testing of Superlig 644 for Removal of 137Cs from Hanford Tank Waste Envelope C (Tank 241-AN-107), BNFL-RPT-024 Rev. 0, PNWD-3039, Battelle Pacific Northwest Division, Richland, WA.

Kurath DE, DL Blanchard, Jr., and JR Bontha. 2000b. Small Column Ion Exchange Testing of Superlig 644 for Removal of ${ }^{137}$ Cs from Hanford Tank Waste Envelope A (Tank 241-AW-101), BNFL-RPT-014 Rev. 0, PNWD-3001, Battelle Pacific Northwest Division, Richland, WA.

Lumetta GJ, JP Bramson, IE Burgeson, OT Farmer III, LR Greenwood, RT Hallen, SD Halstead, ED Jenson, RL Sell, MJ Steele, MW Urie. 2002. Evaporation of a Mixture of Tank AN-102 Low Activity Waste and C-104 Washing and Leaching Solution, WTP-RPT-017, Battelle Pacific Northwest Division, Richland, WA.

Rapko, BM, DL Blanchard, Jr., KJ Carson, JR DesChane, RL Sell, RG Swoboda. 2002. Batch Contact Testing of SuperLig ${ }^{\circledR}$-644. WTP-RPT-037, Battelle Pacific Northwest Division, Richland, WA.

Steimke JL, MA Norato, TJ Steeper, and DJ McCabe. 2001. Summary of Initial Testing of SuperLig® 644 at the TFL Ion Exchange Facility, February, 2001, SRR-RPP-2000-00054, WSRC-TR-2000-00505, Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, SC.

Urie MW, PR Bredt, JA Campbell, OT Farmer III, LR Greenwood, LK Jagoda, GM Mong, AP Poloski, LL Reed, RD Scheele, CZ Soderquist, RG Swoboda, MP Thomas, JJ Wagner. 2002a. Chemical and Physical Properties Testing of 241-AN-102 Tank Waste Blended with 241-C-104 Wash/Leachate Solutions, PNWD-3172, Battelle Pacific Northwest Division, Richland, WA.

Urie MW, PR Bredt, JA Campbell, OT Farmer III, SK Fiskum, LR Greenwood, EW Hoppe, GM Mong, RG Swoboda, MP Thomas, JJ Wagner. 2002b. Chemical Anaylsis and Physical Property Testing of 241-AN-102 Tank Waste - Supernatant and Centrifuged Solid, PNWD-3173, Battelle Pacific Northwest Division, Richland, WA.

Appendix A

General Calculations

Appendix A: General Calculations

${ }^{137}$ Cs Contractual Limit and Design Basis Limit in AN-102/C-104 Env. C Vitrification Feed

Assumptions-minimum waste loading

1) Concentration of $\mathrm{Na}_{2} \mathrm{O}$ in Env. C glass $=10 \%\left(=10 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O} / 100 \mathrm{~g}\right.$ glass $)$
2) For maximum ${ }^{137} \mathrm{Cs}$ concentration in glass, assume that all Na comes from the feed. If some Na is added to the vitrification feed, multiply the maximum ${ }^{137} \mathrm{Cs}$ value determined below by ratio of total Na :feed Na .
3) Glass density $=2.66 \mathrm{MT} / \mathrm{m}^{3}(=2.66 \mathrm{~g} / \mathrm{mL})$
4) Maximum ${ }^{137} \mathrm{Cs}$ in glass $=0.3 \mathrm{Ci} / \mathrm{m}^{3}(=0.3 \mathrm{Ci} / 1 \mathrm{E}+6 \mathrm{~mL}=3 \mathrm{E}-7 \mathrm{Ci} / \mathrm{mL})$
5) $\mathrm{AN}-102 / \mathrm{C}-104$ actual waste Na concentration $=4.8 \mathrm{M}$
6) $\mathrm{AN}-102 / \mathrm{C}-104$ actual waste ${ }^{137} \mathrm{Cs}$ concentration $=161 \mu \mathrm{Ci} / \mathrm{mL} / 4.8 \mathrm{M} \mathrm{Na}$

Na Loading in Glass

$10 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O} / 100 \mathrm{~g}$ glass $* 1$ mole $\left.\mathrm{Na}_{2} \mathrm{O} / 62 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}\right) *\left(2\right.$ mole $\mathrm{Na} /$ mole $\left.\mathrm{Na}_{2} \mathrm{O}\right)$ * $(23 \mathrm{~g} \mathrm{Na} /$ mole Na$) *(2.66 \mathrm{~g}$ glass $/ \mathrm{mL}$ glass $)=0.197 \mathrm{~g} \mathrm{Na} / \mathrm{mL}$ glass

Maximum ${ }^{137} \mathrm{Cs}: \mathrm{Na}$ in glass
(3.0E-7 $\mathrm{Ci}^{137} \mathrm{Cs} / \mathrm{mL}$ glass $) /(0.197 \mathrm{~g} \mathrm{Na} / \mathrm{mL}$ glass $)=1.52 \mathrm{E}-6 \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{g} \mathrm{Na}$
$\left(1.52 \mathrm{E}-6 \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{g} \mathrm{Na}\right) *(23 \mathrm{~g} \mathrm{Na} /$ mole $)=3.50 \mathrm{E}-5 \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mole} \mathrm{Na}$
Maximum ${ }^{137} \mathrm{Cs}$:Na in feed
(3.50E-5 Ci ${ }^{137} \mathrm{Cs} /$ mole Na) $*(4.8$ mole Na / L feed $)=1.68 \mathrm{E}-4 \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{L}$

$$
=1.68 \mathrm{E}+2 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{L}
$$

$$
=1.68 \mathrm{E}-1 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mL}
$$

AN-102/C-104 actual waste Cs fraction remaining $(\mathrm{C} / \mathrm{Co})$ Contractual and Design Limit
$\left(1.68 \mathrm{E}-1 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mL}\right) /\left(161 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mL}\right)=1.04 \mathrm{E}-3 \mathrm{C} / \mathrm{C}_{0} ; \mathrm{DF}=958$

$$
=0.104 \% \mathrm{C} / \mathrm{C}_{\mathrm{o}}
$$

${ }^{137}$ Cs Contractual Limit and Design Basis Limit in AN-102/C-104 Env. C Vitrification Feed

Assumptions-maximum waste loading

1) Concentration of $\mathrm{Na}_{2} \mathrm{O}$ in Env. C glass $=14 \%\left(=14 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O} / 100 \mathrm{~g}\right.$ glass $)$
2) For maximum ${ }^{137} \mathrm{Cs}$ concentration in glass, assume that all Na comes from the feed. If some Na is added to the vitrification feed, multiply the maximum ${ }^{137} \mathrm{Cs}$ value determined below by ratio of total Na:feed Na.
3) Glass density $=2.66 \mathrm{MT} / \mathrm{m}^{3}(=2.66 \mathrm{~g} / \mathrm{mL})$
4) Maximum ${ }^{137} \mathrm{Cs}$ in glass $=0.3 \mathrm{Ci} / \mathrm{m}^{3}(=0.3 \mathrm{Ci} / 1 \mathrm{E}+6 \mathrm{~mL}=3 \mathrm{E}-7 \mathrm{Ci} / \mathrm{mL})$
5) $\mathrm{AN}-102 / \mathrm{C}-104$ actual waste Na concentration $=4.8 \mathrm{M}$
6) $\mathrm{AN}-102 / \mathrm{C}-104$ actual waste ${ }^{137} \mathrm{Cs}$ concentration $=161 \mu \mathrm{Ci} / \mathrm{mL} / 4.8 \mathrm{M} \mathrm{Na}$

Na Loading in Glass

$14 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O} / 100 \mathrm{~g}$ glass * 1 mole $\left.\mathrm{Na}_{2} \mathrm{O} / 62 \mathrm{~g} \mathrm{Na}_{2} \mathrm{O}\right)$ * ($2 \mathrm{~mole} \mathrm{Na} / \mathrm{mole} \mathrm{Na}_{2} \mathrm{O}$) ${ }^{*}$ $(23 \mathrm{~g} \mathrm{Na} / \mathrm{mole} \mathrm{Na}) *(2.66 \mathrm{~g}$ glass $/ \mathrm{mL}$ glass $)=0.276 \mathrm{~g} \mathrm{Na} / \mathrm{mL}$ glass

Maximum ${ }^{137} \mathrm{Cs}: \mathrm{Na}$ in glass
(3.0E-7 Ci ${ }^{137} \mathrm{Cs} / \mathrm{mL}$ glass) $/(0.276 \mathrm{~g} \mathrm{Na} / \mathrm{mL}$ glass $)=1.09 \mathrm{E}-6 \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{g} \mathrm{Na}$
$\left(1.09 \mathrm{E}-6 \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{g} \mathrm{Na}\right) *(23 \mathrm{~g} \mathrm{Na} / \mathrm{mole})=2.50 \mathrm{E}-5 \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mole} \mathrm{Na}$
Maximum ${ }^{137} \mathrm{Cs}: \mathrm{Na}$ in feed
$\left(2.50 \mathrm{E}-5 \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mole} \mathrm{Na}\right) *(4.8 \mathrm{~mole} \mathrm{Na} / \mathrm{L}$ feed $)=1.20 \mathrm{E}-4 \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{L}$

$$
=1.20 \mathrm{E}+2 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{L}
$$

$$
=1.20 \mathrm{E}-1 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mL}
$$

AN-102/C-104 actual waste Cs fraction remaining (C/Co) Contractual and Design Limit
$\left(1.20 \mathrm{E}-1 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mL}\right) /\left(161 \mu \mathrm{Ci}{ }^{137} \mathrm{Cs} / \mathrm{mL}\right) \quad=7.45 \mathrm{E}-4 \mathrm{C} / \mathrm{C}_{0} ; \mathrm{DF}=1343$

$$
=0.0745 \% \mathrm{C} / \mathrm{C}_{0}
$$

Table A.1. AN-102/C-104 Feed and Effluent Composition

	AN102/C104 Feed volume $753 \text { mL }$ AN102/C104 Feed composition						$\begin{aligned} & \text { AN102/C104 Effluent volume } \\ & 753 \mathrm{~mL} \\ & \text { AN102/C104 Effluent composition } \\ & \hline \end{aligned}$					
			ASR 6130	ASR-6130			ASR 6281	ASR 6281	ASR 6281			
	Multiplier=		100.0	100.0			24.9	24.9	124.7			
	RPL/LAB \#=		PB-1338	01-1345			PB-776	02-0777	02-0777@5			
Det. Limit	Client ID=	FW	$\begin{aligned} & \text { process } \\ & \text { blank } \end{aligned}$	$\frac{A N C 102 / 104-}{C-F / A}$	Molarity	$\underline{u g}$ total	$\frac{\text { process }}{\text { blank }}$	$\frac{\text { AN102/C104 }}{\text { Cs removed }}$	$\begin{aligned} & \frac{\text { AN102/ }}{\text { C104 Cs }} \\ & \frac{\text { removed }}{} \\ & \hline \end{aligned}$	Molarity	$\underline{u g}$ total	$\frac{\% \text { recovered }}{\text { in effluent }}$
(ug/mL)	(Analyte)		(ug/mL)	(ug/mL)			(ug/mL)	(ug/mL)	(ug/mL)			
0.150	Na	22.99	1010	111000	$4.83 \mathrm{E}+0$	83583000	--	over range	110000	$4.78 \mathrm{E}+0$	82830000	99.1
2.000	K	39.0983	--	[950]	[2.43E-2]	[715350]	--	1080		$2.76 \mathrm{E}-2$	813240	[114]
0.060	AI	26.98	84.10	8210	3.04E-1	6182130	--	7840		$2.91 \mathrm{E}-1$	5903520	95.5
0.010	Ba	137.33	[1.3]	[1.6]	high blank	NA	--	--		<1.8E-6		--
0.250	Ca	40.08	--	[150]	[3.74E-3]	[112950]	--	149		3.72E-3	112197	[99]
0.015	Cd	112.41	--	26.0	2.31E-4	19578	--	24.2		2.15E-4	18223	93.1
0.050	Co	58.9332	--	--	<8.5E-5		--	[1.9]		[3.22E-5]	[1431]	--
0.020	Cr	51.996	--	108	2.08E-3	81324	--	98		1.89E-3	73945	90.9
0.025	Cu	63.546	--	[10.0]	[1.57E-4]	[7530]	--	--		<9.8E-6		--
0.025	Fe	55.847	[5.7]	[9.4]	[6.63E-5]	[2786]	--	[2.0]		[3.58E-5]	[1506]	[54]
0.100	Mg	24.305	--	--	<4.1E-4		--	--		<1.0E-4		--
0.050	Mn	54.938	--	--	<9.1E-5		--	--		<2.3E-5		--
0.030	Ni	58.7	--	188	3.20E-3	141564	--	145		$2.47 \mathrm{E}-3$	109185	77.1
0.100	Pb	207.2	--	[67]	[3.23E-4]	[50451]	--	69		3.33E-4	52032	[103]
0.050	Zn	65.38	--	[8.6]	[1.32E-4]	[6476]	--	[4.0]		[6.12E-5]	[3012]	[47]
Other Analytes												
0.025	Ag		--	--			--	--				--
0.250	As		--	--			--	--				--
0.050	B	10.81	750	624	high blank	NA	--	86		7.99E-3	65059	NA
0.010	Be		--	--			--	--				--
0.100	Bi		--	--			--	--				--
0.200	Ce		--	--			--	--				--
0.050	Dy		--	--			--	--				--
0.100	Eu		--	--			--	--				--
0.050	La		--	--			--	--				--
0.030	Li		--	--			--	--				--
0.050	Mo	95.94	--	[22]	[2.29E-4]	[16566]	--	23		$2.41 \mathrm{E}-4$	17394	[105]
0.100	Nd	144.24	--	--			--	[3.6]		[2.50E-5]	[2711]	--
0.100	P	30.974	--	748	2.41E-2	563244	--	562		1.81E-2	423186	75.1
0.750	Pd		--	--			--	--				--
0.300	Rh		--	--			--	--				--
1.100	Ru		--	--			--	--				--
0.500	Sb		--	--			--	--				--
0.250	Se		--	--			--	--				--
0.500	Si	28.0855	973	1110	3.95E-2	835830	--	179		6.37E-3	134787	16.1
1.500	Sn		--	--			--	--				--
0.015	Sr	87.62	--	86.5	9.87E-4	65135	--	86.9		9.92E-4	65436	100.5
1.500	Te		--	--			--	--				--
1.000	Th		--	--			--	--				--
0.025	Ti		--	--			--	--				--
0.500	TI		--	--			--	--				--
2.000	U	238	--	--			--	--				--
	U(KPA)	238	0.11	27.49	1.15E-4	20698	0.03	0.82		3.45E-6	619	3.0
0.050	V		--	--			--	--				--
2.000	W		--	--			--	--				--
0.050	Y		--	--			--	--				--
0.050	Zr						--	--				--
Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%. 2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%. 3) "--" indicate measurement is below detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column). 4) The Fe value for ASR 6130 was blank-subtracted 5) The feed sample was also analyzed per ASR 6107												

Table A.2. AN-102/C-104 Eluate Composition

Table A.3. AN-102 Feed Composition

Note: 1) Overall error greater than 10 -times detection limit is estimated to be within $+/-15 \%$.
2) Values in brackets $\bar{\square}$ are within 10 -times detection limit with errors likely to exceed 15%.
3) "--" indicate measurement is below detection. Sample detection limit may be found by
multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Appendix B

Batch-Contact Calculations

Appendix B: Batch Contact Calculations
Table B.1. Cs and Sr Kd Determinations
-

Table B. 1 contd

> Batch Contact of AN-102/C-104 Waste with SuperLig 644 and IE-911
Superlig 644 batch 010319 SMC-IV-73, 212-425 um particle size, weighed in the H form AN-102/C-104 Batch Contact and AN/102 Batch Contact

Sample ID	CMC ID	Net Cs-137 $\mu \mathrm{Ci} / \mathrm{mL}$	Equilibrium [Cs], M	$\mathrm{Na}: \mathrm{Cs}$ mole ratio	$\begin{gathered} \mathrm{K}_{\mathrm{d}}, \\ \mathrm{~mL} / \mathrm{g} \end{gathered}$	λ						
ANC102/104-644	01-1341	$5.16 \mathrm{E}+0$	$1.92 \mathrm{E}-6$	$2.50 \mathrm{E}+6$	2532	633						
ANC102/104-644 D	-	-	-	-	-	-						
ANC102/104-S1-644	01-1342	$1.50 \mathrm{E}+1$	$9.30 \mathrm{E}-5$	$5.16 \mathrm{E}+4$	819	205						
ANC102/104-S1-644 D	01-1343	$1.45 \mathrm{E}+1$	$8.99 \mathrm{E}-5$	$5.34 \mathrm{E}+4$	856	214						
ANC102/104-S2-644	01-1344	$5.14 \mathrm{E}+1$	$1.63 \mathrm{E}-3$	$2.95 \mathrm{E}+3$	177	44						
ANC102/104-S2-644 D	-	-	-	-	-	-						
ANC102/104-C	01-1345	$1.61 \mathrm{E}+2$	-	-	-	-						
ANC102/104-S1-C	01-1346	$1.62 \mathrm{E}+2$	-	-	-	-						
ANC102/104-S2-C	01-1347	$1.60 \mathrm{E}+2$	-	-	-	-						
	CMC ID	Net Cs-137 $\mu \mathrm{Ci} / \mathrm{mL}$	$\begin{aligned} & \text { Equilibrium } \\ & \text { [Cs], M } \end{aligned}$	$\mathrm{Na}: \mathrm{Cs}$ mole ratio	$\begin{gathered} \mathrm{K}_{\mathrm{d}}, \\ \mathrm{~mL} / \mathrm{g} \\ \hline \end{gathered}$	λ	$\begin{aligned} & \text { Starting } \\ & \text { [Sr], M } \end{aligned}$	Equilibrium ${ }^{90} \mathrm{Sr} \mu \mathrm{Ci} / \mathrm{mL}$	Fraction of original ${ }^{90} \mathrm{Sr}$	$\begin{gathered} \text { Equilibrium } \\ {[\mathrm{Sr}], \mathrm{M}} \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{d}}, \\ \mathrm{~mL} / \mathrm{g} \\ \hline \end{gathered}$	λ
AN-102-CST	01-1348	$1.84 \mathrm{E}+1$	6.86E-6	$8.90 \mathrm{E}+5$	1022	1063	$6.98 \mathrm{E}-4$	$9.14 \mathrm{E}+0$	$6.55 \mathrm{E}-1$	$4.57 \mathrm{E}-4$	53	55
AN-102-CST D	01-1349	-	-	-	-	-	$6.98 \mathrm{E}-4$	$8.22 \mathrm{E}+0$	$5.89 \mathrm{E}-1$	$4.11 \mathrm{E}-4$	41	42
AN-102-S3-CST	01-1350	$1.76 \mathrm{E}+1$	$8.62 \mathrm{E}-5$	$7.08 \mathrm{E}+4$	1074	1117	$6.98 \mathrm{E}-4$	$1.07 \mathrm{E}+1$	$7.67 \mathrm{E}-1$	5.35E-4	30	32
AN-102-S3-CST D	01-1351	-	-	-	-	-	6.98E-4	$1.02 \mathrm{E}+1$	$7.31 \mathrm{E}-1$	$5.10 \mathrm{E}-4$	36	38
AN-102-S4-CST	01-1352	$6.59 \mathrm{E}+1$	$1.63 \mathrm{E}-3$	$3.74 \mathrm{E}+3$	225	234	$6.98 \mathrm{E}-4$	$1.05 \mathrm{E}+1$	$7.53 \mathrm{E}-1$	$5.25 \mathrm{E}-4$	35	36
AN-102-S4-CST D	01-1353	-	-	-	-	-	6.98E-4	$1.03 \mathrm{E}+1$	$7.38 \mathrm{E}-1$	5.15E-4	35	37
AN-102CST-C	01-1354	$2.05 \mathrm{E}+2$	-	-	-	-	$6.98 \mathrm{E}-4$	$1.40 \mathrm{E}+1$				
AN-102CST-S3-C	01-1355	$2.10 \mathrm{E}+2$	-	-	-	-						
AN102CST-S4-C	01-1356	$2.05 \mathrm{E}+2$	-	-	-	-						

B. 2

Appendix C

Column Testing Calculations

Appendix C: Column Testing Calculations

Table C.1. Column Flow Calculations

C. 1
Table C. 1 contd

Table C. 1 contd

Table C. 1 contd

Regeneration with 0.25 M NaOH											
Sample ID	Start	End	$\Delta \mathrm{t}$	Sample mass, g	Sample volume mL	$\mathrm{mL} / \mathrm{min}$	BV/hr	BV	Cumul. BV	AV	Cumul. AV
AN102L-RGN	7:51	9:35	1:44	16.0	16.0	0.15	0.89	1.5	1.5	0.70	0.70
	9:42	11:32	1:50	17.7	17.7	0.16	0.93	1.7	3.2	0.77	1.47
	11:34	13:19	1:45	17.0	17.0	0.16	0.93	1.6	4.9	0.74	2.20
	$\Delta \mathrm{T}$, total	5:28		sum	50.7	average	0.92				
Rinse with DI water											
				Sample	Sample				Cumul.		
Sample ID	Start	End	$\Delta \mathrm{t}$	mass, g	volume, mL	$\mathrm{mL} / \mathrm{min}$	BV/hr	BV	BV	AV	Cumul. AV
AN102-DIRinse-											
Final	13:25	14:05	0:40	17.0	17.0	0.43	2.45	1.6	1.6	0.74	0.74 Lost about 0.5 mL on transfer
	14:14	14:50	0:36	17.2	17.2	0.48	2.76	1.7	3.3	0.75	1.49
	14:51	15:21	0:30	13.6	13.6	0.45	2.62	1.3	4.6	0.59	2.08 Lost about 2 mL on transfer
	$\Delta \mathrm{T}$, total	1:56	sum		47.8	average	2.61				

Table C.2. Column Sample Counting

Background Counts				
		Time		
Net counts	Error	(sec)	cpm	rtainty
12	6	3000	0.24	50\%
21	6	6000	0.21	29\%
18	5	6000	0.18	28\%
8	2	3000	0.16	25\%
13	3	3000	0.26	23\%
		average	0.21	

AN102/C104Comparitor Standard density
0.1020 g AP 101 brought to 2.0047 g then 0.1 g pipetted into 3000 sec MDL
0.35 cpm
$1.63 \mathrm{E}-07 \mathrm{C} / \mathrm{Co}$
$0.140 \mathrm{cpm} / \mathrm{g}$

AN-102/C104 run starting 6/25/01 Lead column, loading phase													
Sample ID	$\begin{gathered} \text { Net } \\ \text { counts } \end{gathered}$	Error	$\begin{gathered} \text { Count } \\ \text { time } \\ (\mathrm{sec}) \\ \hline \end{gathered}$	net cpm	mass, g	mL	net $\mathrm{cpm} / \mathrm{g}$	net cpm/mL	C/Co	BV	\% C/Co	DF	total uCi
AN102L-F1	-94	451	3000	-2.09	2.2688	1.8241	-0.92	-1.15	-1.07E-6	4.6	-1.07E-4	$6.12 \mathrm{E}+6$	-3.15E-4
AN102L-F2	155	483	3000	2.89	2.8326	2.2774	1.02	1.27	$1.19 \mathrm{E}-6$	13.2	1.19E-4	$8.41 \mathrm{E}+5$	4.36E-4
AN102L-F3	380	469	3000	7.39	2.5156	2.0225	2.94	3.65	$3.43 \mathrm{E}-6$	22.2	$3.43 \mathrm{E}-4$	$2.92 \mathrm{E}+5$	$1.12 \mathrm{E}-3$
AN102L-F4	144	474	3000	2.67	2.4079	1.9359	1.11	1.38	$1.29 \mathrm{E}-6$	31.8	$1.29 \mathrm{E}-4$	$7.73 \mathrm{E}+5$	$4.03 \mathrm{E}-4$
AN102L-F5	881	520	3000	17.41	3.7413	3.0080	4.65	5.79	$5.43 \mathrm{E}-6$	40.9	$5.43 \mathrm{E}-4$	$1.84 \mathrm{E}+5$	$2.63 \mathrm{E}-3$
AN102L-F6	52	490	3000	0.83	2.375	1.9095	0.35	0.43	$4.07 \mathrm{E}-7$	49.7	4.07E-5	$2.45 \mathrm{E}+6$	$1.25 \mathrm{E}-4$
AN102L-F7	347	461	3000	6.73	2.3008	1.8498	2.93	3.64	$3.41 \mathrm{E}-6$	58.4	$3.41 \mathrm{E}-4$	$2.93 \mathrm{E}+5$	$1.02 \mathrm{E}-3$
AN102L-F8	14	678	6000	-0.07	2.2771	1.8308	-0.03	-0.04	-3.58E-8	67.1	-3.58E-6	$6.12 \mathrm{E}+6$	-1.06E-5

AN-102/C104 run starting 6/2501Lag column, loading phase													
Sut	Net		Count time					neteme					
AN102P-Fl	23425	414	3000	468.290	2.8383	2.2820	164.99	205.21	$1.92 \mathrm{E}-4$	4.7	1.92E-2	5198	$7.07 \mathrm{E}-2$
AN102P-F2	14534	485	3000	290.470	2.1202	1.7046	137.00	170.40	$1.60 \mathrm{E}-4$	13.0	$1.60 \mathrm{E}-2$	6260	$4.38 \mathrm{E}-2$
AN102P-F3	14803	488	3000	295.850	1.9924	1.6019	148.49	184.69	$1.73 \mathrm{E}-4$	21.7	$1.73 \mathrm{E}-2$	5776	4.47E-2
AN102P-F4	7288	364	3000	145.550	0.7763	0.6241	187.49	233.20	2.19E-4	31.1	$2.19 \mathrm{E}-2$	4574	2.20E-2
AN102P-F5	10973	444	3000	219.250	1.3375	1.0753	163.93	203.89	$1.91 \mathrm{E}-4$	40.0	$1.91 \mathrm{E}-2$	5232	$3.31 \mathrm{E}-2$
AN102P-F6	22884	547	3000	457.470	3.3434	2.6881	136.83	170.19	$1.60 \mathrm{E}-4$	48.7	$1.60 \mathrm{E}-2$	6268	$6.90 \mathrm{E}-2$
AN102P-F7	13867	479	3000	277.130	2.2121	1.7785	125.28	155.82	$1.46 \mathrm{E}-4$	57.1	$1.46 \mathrm{E}-2$	6846	$4.18 \mathrm{E}-2$
AN102P-F8	15181	505	3000	303.410	2.2266	1.6294	149.71	186.21	1.75E-4	65.6	$1.75 \mathrm{E}-2$	5728	4.58E-2
AN102FEcomp 1	4789	101	3000	95.570	2.5507	2	46.00	47.79	5.43E-5		5.43E-3	18402	
AN102FEcomp2	14925	506	3000	298.290	2.4982	2.0085	119.40	148.51	$1.39 \mathrm{E}-4$		$1.39 \mathrm{E}-2$	7183	

sample activity sum $\quad 3.77 \mathrm{E}-1 \mathrm{uCi}$

Table C. 2 contd
C. 7
Table C. 2 contd
Deionized water rinse following elution

Deionized water rinse following elution												
Sample ID	$\begin{gathered} \text { Net } \\ \text { counts } \end{gathered}$	Error	$\begin{gathered} \text { Count } \\ \text { time } \\ (\mathrm{sec}) \\ \hline \end{gathered}$	net cpm	mass, g	mL	net cpm/g	net $\mathrm{cpm} / \mathrm{mL}$	C/Co	BV	BV post Elution	uCi , total
AN102-EDI-1	46715	243	1000	2803	1.9978	2.0000	1403	1401	$1.31 \mathrm{E}-3$	0.9	19.9	2.0805795
AN102-EDI-2	26890	176	1000	1613	2.0194	2.0000	799	807	$7.56 \mathrm{E}-4$	2.2	21.1	1.5758021
AN102-EDI-3	16050	136	1000	963	1.9944	2.0000	483	481	$4.51 \mathrm{E}-4$	3.2	22.2	0.7947607
AN102-EDI-4	12914	120	1000	775	2.0012	2.0000	387	387	$3.63 \mathrm{E}-4$	4.2	23.1	0.5793206
AN102-EDI-5	12197	117	1000	732	1.9976	2.0000	366	366	$3.43 \mathrm{E}-4$	5.1	24.0	0.5163613
AN102-EDI-6	11843	114	1000	710	1.9855	2.0000	358	355	$3.33 \mathrm{E}-4$	5.9	24.9	0.47611
											ctivity sum	6.0229341

\footnotetext{

Regeneration with $\mathbf{0 . 2 5 ~ M ~ N a O H ~}$
Sample ID
Net
counts

Sample ID	counts	Error	(sec)	net cpm	mass	mL	net $\mathrm{cpm} / \mathrm{g}$	net $\mathrm{cpm} / \mathrm{mL}$	C / Co
AN102-RGN	52014	262	1000	3121	2.0012	1.9893	1559	1569	$1.47 \mathrm{E}-3$

C. 8

Table C.3. AN-102/C-104 Column Samples CMC Analytical Results Summary

AN-102/C-104 column run CMC Analytical data

Lead column, loading phase

Sample ID	CMC ID	Cs-137, $\mu \mathrm{Ci} / \mathrm{mL}$	error, $\%$	C / Co	$\% \mathrm{C} / \mathrm{Co}$	BV	DF
AN102/C104L-F0		161	3	$1.00 \mathrm{E}+0$			
AN102/C104L-F2	$01-01714$	$2.95 \mathrm{E}-04$	5	$1.83 \mathrm{E}-6$	$1.83 \mathrm{E}-04$	13.2	$5.46 \mathrm{E}+5$
AN102/C104L-F5	$01-01715$	$2.55 \mathrm{E}-04$	8	$1.58 \mathrm{E}-6$	$1.58 \mathrm{E}-04$	40.9	$6.31 \mathrm{E}+5$
AN102/C104L-F8	$01-01716$	$2.10 \mathrm{E}-04$	6	$1.30 \mathrm{E}-6$	$1.30 \mathrm{E}-04$	67.1	$\mathbf{7 . 6 7 E}+\mathbf{5}$ Maximum
AN102/C104P-F2	$01-01717$	$1.40 \mathrm{E}-02$	3	$8.70 \mathrm{E}-5$	$8.70 \mathrm{E}-03$	13.0	$1.15 \mathrm{E}+4$
AN102/C104P-F6	$01-01718$	$1.55 \mathrm{E}-02$	2	$9.63 \mathrm{E}-5$	$9.63 \mathrm{E}-03$	48.7	$1.04 \mathrm{E}+4$
AN102/C104P-F8	$01-01719$	$1.21 \mathrm{E}-02$	3	$7.52 \mathrm{E}-5$	$7.52 \mathrm{E}-03$	65.6	$1.33 \mathrm{E}+4$
AN102/C104 comp	$01-1733$	$1.42 \mathrm{E}-02$	4.84	$8.82 \mathrm{E}-5$	$8.82 \mathrm{E}-03$		$\mathbf{1 . 1 3 E}+\mathbf{4}$ composite

Feed Displacement

Sample ID	CMC ID	Cs-137, $\mu \mathrm{Ci} / \mathrm{mL}$	error, $\%$	C/Co	$\% \mathrm{C} / \mathrm{Co}$
AN102/C104-FD-1	$01-1721$	$1.73 \mathrm{E}-2$	2	$1.07 \mathrm{E}-4$	$1.07 \mathrm{E}-2$
AN102/C104-FD-5	$01-1722$	$1.76 \mathrm{E}-3$	2	$1.09 \mathrm{E}-5$	$1.09 \mathrm{E}-3$
AN102/C104-FD-9	$01-1723$	$1.81 \mathrm{E}-3$	3	$1.12 \mathrm{E}-5$	$1.12 \mathrm{E}-3$
AN102/C104-FDI-4	$01-1724$	$1.88 \mathrm{E}-3$	3	$1.17 \mathrm{E}-5$	$1.17 \mathrm{E}-3$
AN102/C104-FDI-8	$01-1725$	$7.03 \mathrm{E}-4$	3	$4.37 \mathrm{E}-6$	$4.37 \mathrm{E}-4$

Lead column, eluting phase

Sample ID	CMC ID	Cs-137, $\mu \mathrm{Ci} / \mathrm{mL}$	error, $\%$	C/Co	BV
AN102/C104LE-4DR	$01-1726$	$4.63 \mathrm{E}+3$	2	$2.88 \mathrm{E}+1$	$3.43 \mathrm{E}+0$
AN102/C104LE-5DD	$01-1727$	$8.52 \mathrm{E}+3$	2	$5.29 \mathrm{E}+1$	$4.41 \mathrm{E}+0$
AN102/C104LE-6DD	$01-1728$	$1.13 \mathrm{E}+3$	3	$7.02 \mathrm{E}+0$	$5.38 \mathrm{E}+0$
AN102/C104LE-9DR	$01-1729$	$3.43 \mathrm{E}+0$	2	$2.13 \mathrm{E}-2$	$8.33 \mathrm{E}+0$
AN102/C104LE-12D	$01-1730$	$7.21 \mathrm{E}-1$	3	$4.48 \mathrm{E}-3$	$1.11 \mathrm{E}+1$
AN102/C104L-EDI2	$01-1731$	$5.64 \mathrm{E}-02$		2	$3.50 \mathrm{E}-4$

Table C.4. Integration Column Breakthrough
AN-102/C-104 Cs IX Lead Column Breakthrough Curve Integration

Lead Col Bed Volume in AN102/C104 Feed	$=$	9.9 mL
Lead Col Bed Volume in 0.25 M NaOH	$=$	10.4 mL
Activity of Cs-137 in Feed	$=$	$161 \mathrm{uCi} / \mathrm{mL}$

Sample	$\begin{aligned} & \text { Processed Vol } \\ & (\mathrm{mL}) \end{aligned}$	$\begin{gathered} \mathrm{Cs}-137 \\ \mathrm{C} / \mathrm{Co} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cs}-137 \\ \mathrm{Conc} \\ (\mu \mathrm{Ci} / \mathrm{mL}) \\ \hline \end{gathered}$	$\begin{aligned} & \Delta \mathrm{Vol} \\ & (\mathrm{~mL}) \end{aligned}$	C/Co Midpoint	$\begin{aligned} & \text { Midpoint } \\ & \text { Conc } \\ & (\mu \mathrm{Ci} / \mathrm{mL}) \\ & \hline \end{aligned}$	Area ($\mu \mathrm{Ci}$)	$\begin{gathered} \mathrm{Cs}-137 \\ (\mu \mathrm{Ci} / \mathrm{mL}) \\ \mathrm{CMC} \\ \text { Analysis } \\ \hline \end{gathered}$
AN102L-F1	48.4	-1.07E-6	-1.73E-4	48.4	-1.07E-6	-1.73E-4	-8.36E-3	
AN102L-F2	137.0	$1.19 \mathrm{E}-6$	$1.92 \mathrm{E}-4$	88.7	$5.78 \mathrm{E}-8$	$9.30 \mathrm{E}-6$	$8.25 \mathrm{E}-4$	$2.95 \mathrm{E}-4$
AN102L-F3	230.6	$3.43 \mathrm{E}-6$	$5.51 \mathrm{E}-4$	93.5	$2.31 \mathrm{E}-6$	$3.72 \mathrm{E}-4$	$3.47 \mathrm{E}-2$	
AN102L-F4	330.9	$1.29 \mathrm{E}-6$	$2.08 \mathrm{E}-4$	100.4	$2.36 \mathrm{E}-6$	$3.80 \mathrm{E}-4$	$3.81 \mathrm{E}-2$	
AN102L-F5	425.9	$5.43 \mathrm{E}-6$	$8.74 \mathrm{E}-4$	94.9	$3.36 \mathrm{E}-6$	$5.41 \mathrm{E}-4$	$5.14 \mathrm{E}-2$	$2.55 \mathrm{E}-4$
AN102L-F6	516.7	$4.07 \mathrm{E}-7$	$6.56 \mathrm{E}-5$	90.9	$2.92 \mathrm{E}-6$	$4.70 \mathrm{E}-4$	$4.27 \mathrm{E}-2$	
AN102L-F7	607.1	$3.41 \mathrm{E}-6$	$5.49 \mathrm{E}-4$	90.4	$1.91 \mathrm{E}-6$	$3.07 \mathrm{E}-4$	$2.78 \mathrm{E}-2$	
AN102L-F8	697.4	-3.58E-8	-5.77E-6	90.3	$1.69 \mathrm{E}-6$	$2.72 \mathrm{E}-4$	$2.45 \mathrm{E}-2$	$2.10 \mathrm{E}-4$

sum through 67 BV $\quad 2.20 \mathrm{E}-1 \mu \mathrm{Ci} \mathrm{Cs}-137$

AN-102/C-104 Cs IX Lag Column Breakthrough Curve Integration

Lag Col Bed Volume in AN-102/C-104 Feed	$=$	9.9 mL
Lag Col Bed Volume in 0.25 M NaOH	$=$	10.5 mL
Activity of Cs-137 in Feed	$=$	$161 \mathrm{uCi} / \mathrm{mL}$

Sample	$\begin{gathered} \text { Processed Vol } \\ (\mathrm{mL}) \end{gathered}$	$\begin{gathered} \text { Cs-137 } \\ \text { C/Co } \\ \hline \end{gathered}$	Cs-137 Conc $(\mu \mathrm{Ci} / \mathrm{mL})$	$\begin{aligned} & \Delta \mathrm{Vol} \\ & (\mathrm{~mL}) \end{aligned}$	C/Co Midpoint	Midpoint Conc ($\mu \mathrm{Ci} / \mathrm{mL}$)	Area ($\mu \mathrm{Ci}$)
AN102P-F1	48.8	$1.92 \mathrm{E}-4$	$3.10 \mathrm{E}-2$	48.8	$1.92 \mathrm{E}-4$	$3.10 \mathrm{E}-2$	$1.51 \mathrm{E}+0$
AN102P-F2	135.0	$1.60 \mathrm{E}-4$	$2.57 \mathrm{E}-2$	86.2	$1.76 \mathrm{E}-4$	$2.83 \mathrm{E}-2$	$2.44 \mathrm{E}+0$
AN102P-F3	225.8	$1.73 \mathrm{E}-4$	$2.79 \mathrm{E}-2$	90.8	$1.66 \mathrm{E}-4$	$2.68 \mathrm{E}-2$	$2.43 \mathrm{E}+0$
AN102P-F4	323.2	$2.19 \mathrm{E}-4$	$3.52 \mathrm{E}-2$	97.4	$1.96 \mathrm{E}-4$	$3.15 \mathrm{E}-2$	$3.07 \mathrm{E}+0$
AN102P-F5	415.5	$1.91 \mathrm{E}-4$	$3.08 \mathrm{E}-2$	92.3	$2.05 \mathrm{E}-4$	$3.30 \mathrm{E}-2$	$3.05 \mathrm{E}+0$
AN102P-F6	506.0	$1.60 \mathrm{E}-4$	$2.57 \mathrm{E}-2$	90.5	$1.75 \mathrm{E}-4$	$2.82 \mathrm{E}-2$	$2.55 \mathrm{E}+0$
AN102P-F7	593.6	$1.46 \mathrm{E}-4$	$2.35 \mathrm{E}-2$	87.6	$1.53 \mathrm{E}-4$	$2.46 \mathrm{E}-2$	$2.15 \mathrm{E}+0$
AN102P-F8	682.1	$1.75 \mathrm{E}-4$	$2.81 \mathrm{E}-2$	88.5	$1.60 \mathrm{E}-4$	$2.58 \mathrm{E}-2$	$2.29 \mathrm{E}+0$
					sum through 67 BV		$1.95 \mathrm{E}+$

Table C.5. Cs Recovery in Eluate
AN-102 / C-104 Cs-137 Recovery in Eluate
Cs-137 loaded: 753 mL load volume
$161 \mathrm{uCi} / \mathrm{mL} \mathrm{Cs}-137$ concentration
35 uCi left on column from AP-101DF run
$1.21 \mathrm{E}+5 \mathrm{uCi}$ total loaded on the lead column
$\mathbf{1 . 4 4 E}+5 \mu \mathrm{Ci}$ from just the CMC measured peak
$\mathbf{1 1 9 \%}$ recovery

Eluate composite 02-0779			Effluent composite 02-0777						
Isotope	$\mu \mathrm{Ci} / \mathrm{mL}$	SpA, uCi/ $/ \mathrm{g}$	$\mu \mathrm{g} / \mathrm{mL}$		Isotope	$\mu \mathrm{Ci} / \mathrm{mL}$	SpA, uCi/ $/ \mathrm{g}$	$\mu \mathrm{g} / \mathrm{mL}$	
Cs-134	<4.E-3	2194	<2.E-6	197 mL total eluate	Cs-134	<4.E-3	2194	<2.E-6	753 mL effluent volume
Cs-137	665	87	7.644	$131005 \mu \mathrm{Ci}$ total recovered 108\% recovered Cs-137 measured in eluate composite	Cs-137	$1.42 \mathrm{E}-02$	87	$1.63 \mathrm{E}-04$	$1.07 \mathrm{E}+1 \mu \mathrm{Ci}$ total recovered 8.8E-5\% recovered Cs-137 measured in effluent composite
Thermal ionization mass spectrometry weight percent distribution ratio									
Sample \#	02-0779 Cs eluate		Cs-137		Sample \#	02-0779 Cs isotopic distribution is constant			
	Cs-133	Cs-135				Cs-133	Cs-135	Cs-137	
02-779	0.6040	0.1667	0.2293		02-779	0.6040	0.1667	0.2293	
02-779 dup	0.6016	0.1674	0.2310		02-779 dup	0.6016	0.1674	0.2310	
avg	0.6028	0.1671	0.2302		avg	0.6028	0.1671	0.2302	
std	0.0017	0.00049	0.0012		std	0.0017	0.00049	0.0012	
rpd	0.398	0.419	0.739	Sum	rpd	0.398	0.419	0.739	Sum
Sample \#	02-779	Cs eluate			Sample \#	02-777	Cs effluent		
$\mu \mathrm{g} / \mathrm{mL} \mathrm{Cs}$	20.016	5.547	7.642	$3.32 \mathrm{E}+1$	$\mu \mathrm{g} / \mathrm{mL} \mathrm{Cs}$	$4.27 \mathrm{E}-4$	$1.18 \mathrm{E}-4$	$1.63 \mathrm{E}-4$	$7.09 \mathrm{E}-4$
M Cs	$1.50 \mathrm{E}-4$	$4.11 \mathrm{E}-5$	$5.58 \mathrm{E}-5$	$2.47 \mathrm{E}-4$	M Cs	$3.21 \mathrm{E}-9$	$8.78 \mathrm{E}-10$	$1.19 \mathrm{E}-9$	$5.28 \mathrm{E}-9$

C. 11

Appendix D

Analytical Data

Appendix D: Analytical Data
Table D.1. Sample Identification

Sample Description	ASR	RPL ID	Sample Identification	Extended Sample Description
Batch Contact Testing				
Batch contact with SL-644 010319SMC-IV-73 212-425 $\mu \mathrm{m}$ particle size H form resin	6130	01-1341	AN102/104-644-F/A	Batch contact with SL-644, no spike
		01-1342-01-1343	AN102/104S-S1-644-F/A and duplicate	Batch contact with SL-644, 1E-3 M Cs spike
		01-1342	AN102/104-S2-644-F/A	Batch contact with SL-6444, 5E-3 M Cs spike
		01-1345	ANC102/104-C-F/A	Batch contact control (no exchanger) unspiked
		01-1346	ANC102/104-S1C-F/A	Batch contact control (no exchanger) 1E-3M Cs
		01-1347	ANC102/104-S2C-F/A	Batch contact control (no exchanger) 5E-3 M Cs
Batch contact with IE-911 Na form resin		01-1348-01-1349	AN102-CST-F/A and duplicate	Batch contact with CST no spike
		01-1350-01-1351	AN102-S3-CST-F/A and duplicate	Batch contact with CST, 1E-3M Cs spike
		01-1352-01-1353	AN102-S4-CST-F/A and duplicate	Batch contact with CST, 5E-3M Cs spike
		01-1354	AN102CST-C-F/A	Batch contact CST control, no spike
		01-1355	AN102CST-S3C-F/A	Batch contact CST control, 1E-3 M Cs spike
		01-1356	AN102CST-S4C-F/A	Batch contact with CST, 5E-3 M Cs spike
Column Run				
Initial Feed Sample, AN-102/C-104	6107	01-1014-- 01-1015	LS-12 and LS-13	AN102/C-104 filtrate composite/Cs IX feed
Initial Feed Sample, AN-102/C-104	6130	01-1345	ANC102/104-C-F/A	AN102/C-104 filtrate composite/Cs IX feed
Load - Elution samples	6174	01-1714-01-1716	AN102/C104L-F2, -F5, -F8	Lead column load samples
		01-1717-01-1719	AN102/C104P-F2, -F6, -F8	Lag column load samples
		01-1720	AN102/C104-F0	Feed sample
		01-1721-01-1723	AN102/C104-FD1, FD5, FD9	Feed displacement samples
		01-1724-01-1725	AN102/C104-FDI-4, FDI-8	Water rinse samples
		01-1726-01-1730	AN102/C104-LE-4-DR, -5D, -6D, -9DR, -12D	Lead column elution analytical samples
		01-1731	AN102/C104-EDI-2	Elution rinse sample
		01-1732	AN102/C104-RGN	Regeneration solution analytical sample
AN-102/C-104 effluent composite		01-1733	Fcomp\#2	AN-102/C-104 Cs IX effluent composite (GEA)
AN-102/C-104 effluent composite	6281	02-0777	AN2-Tc-0-C	AN-102/C-104 Cs IX effluent composite
AN-102/C-104 Cs eluate	6281	02-0779	AN-102/C-104-CsE-Comp1	AN-102/C-104 Cs eluate analytical sample

D. 1
Notes: 1) The suffix letter "F" indicates the sample was filtered; "A" indicates that the sample was loaded out of the hot cell into a clean analytical vial; the
suffix letter "D" indicates the sample was diluted prior to submission for analysis. Sample results not identified with the above samples are associated with other tests unrelated to this work.
D. 2

Project / WP\#: 42365 / W57984
ESR\#: 6107
Client: R. Halle
Total Samples: 14 liquids

RPLA:	$01-01003$	"LS-01"
Client ID:	$01-01016$	
LS -14"		

Sample Preparation: PNL-ALO-128 ($1 \mathrm{~mL} / 26 \mathrm{~mL}$ or $1.2 \mathrm{~g} / 26 \mathrm{~mL}$)

Procedure: PNNL-AY.O-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).

Analyst: D.R. Sanders
Analysis Date (File): 05-25-2001 (A0676)
06-15-2001 (A0682)
$\frac{06-19-2001 .(\mathrm{A} 0684)}{06-20-2001\left(\mathrm{~A} 0 \mathrm{~S}^{8} 5 \mathrm{5}\right)}$
e
Sec Chemical Measurement Center 98620 file: ICP-325-405-1
(Calibration and Maintenance Records)
M\&TE Number:
$\begin{array}{ll}107373520 & \text { (ICPAES instrument) } \\ \underline{360-06-01-029} & \text { (Settler } A T 400 \text { Balance) }\end{array}$
\qquad
\qquad
\qquad

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report

Fourteen liquid samples from Analytical Service Request (ASR) 6107 were prepared by acid digestion per PNL-ALO-128 in the Shielded Analytical Laboratory (SAL). The samples were prepared by using nominal 1.0 mL of sample and diluting to a final volume of about 26 mL . The final volume was calculated by using the mass and density of the resulting digestate.

In the $\mathrm{ASR}, \mathrm{Al}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Fe}, \mathrm{K}, \mathrm{La}, \mathrm{Mg}, \mathrm{Mn}, \mathrm{Na}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}$, and Sr were identified as analytes of interest for this work. The quality control (QC) results for each of these analytes hare been evaluated and are presented below. Analytes other than those detected as part of the ICPAES analysis are reported, but have concentrations less than the method detection limit (ADD) and have not been fully evaluated for QC performance.

The attached ICPAES Results (9 pages; 2 pages from each of the analysis runs on 5-25, 6-19, and 6-20, and 3 pages from analysis run on 6-15) presents the firal results. Results are from the direct measurement of the digestates, except for Na which required an additional 5 x dilution to bring the Na concentration within the ICPAES linear range. The ICPAES measurement results are reported in $\mu \mathrm{g} / \mathrm{g}$ of liquid sample (as requested by the ASR) and have been corrected for all dilutions resulting from sample processing. It should be noted that the preliminary results reported were presented on a $\mu \mathrm{g} / \mathrm{mL}$ basis.

The following is a list of quality control measurement results relative to ICPAES analysis requirements of the controlling QA plan. A digestion processing blank, labotatory control sample (blank spike), matrix spike, and duplicate were prepared with the sample for each processing batch. The blank spikes was prepared by using 3 mL of a custom multi-element solutions " 010514 i 901 and 010514902 " per 26 mL digestate volume, and the matrix spikes were prepared by using 1 mL of the same multi-element solutions.

Process Blank:

Concentration of analytes of interest measured in the three process blanks were all within acceptance criteria of $\leq \mathrm{EQL}$ (estimated quantitation level) or less than $\leq 5 \%$ of the concentration in the sample.

Blank Spike (laboratory control sample):
The blank spike recovery for analytes of interest was within the acceptance criteria of 80% to 120%, except for Na for the 6-19-2001 analysis which recovered slighty high at 121%.

Duplicate RPD (Relative Percent Difference):
For those analytes of interest measured above the EQL, the RPDs wete within the acceptance criteria of less than 20%. Even for analytes with concentration between the method detection limit (MDL) and the EQL, the RPDs are quite good, with only the Mg for LS-06 exceeding the 20% criteria.

Matrix Spiked Sample:
Matrix spike were prepared for LS-02, LS-06, LS-10, and LS-12. Except for Al and Na , which had spike concentration less than 20% of the sample concentration, the analytes of interest meet the matrix spike recovery criteria of 75% to 125%. Post spiking or serial dilution is required for the Al and Na .

Post-Spiked Samples (Spike A Elements):

Post spiking was performed on LS-02, LS-06 and LS-10. All post-spiked analytes of interest in samples tested were recovered within tolerance of 75% to 125%, except Al and Na . The post spike analysis uses a general spiking solution intended to be usable on the majority of sample analyzed by ICPAES. However, for the sample selected for post spiking, the spike concentration for Al and Na was less than 20% of the sample concentration and the recovery results are considered meaningless. For these analytes, the use of serial dilution results is required to evaluate potential matrix interferences.

Post-Spiked Samples (Spike B Elements):

The post spike recovery for La, which is the only Spike B analyte of interest, were within tolerance of 75% to 125%.

Serial dilution:

Serial dilution was required for $\mathrm{Al}, \mathrm{Na}, \mathrm{Sr}$, since for these analytes the post spike concentrations were less than 20% of the sample concentration (i.e., recoveries could not be evaluated). These analytes demonstrated a percent difference (\%D) within the acceptance criteria of $\pm 10 \%$ after correcting for dilution for all the serial dilutions measured. In some case the samples were not have enough serial dilutions to be able to calculate the Na \%Diff (i.e., at all dilutions except for the highest dilution, the Na was over range).

Comments:

1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
2) Detection limits (Det. Limit) shown are for acidified water. Detection limits for other matrices may be determined if requested. Method deteccion limits (NDL) can be estimated by multiplying the 'MIUliplier' times the Detection Limit.
3) Routine precision and bias is typically $\pm 15 \%$ or better for samples in dilute, acidified water (e.g. $2 \% \mathrm{v} / \mathrm{v} \mathrm{HCO}$, or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presurnes that the total dissolved solids concentration in the sample is less than $5000 \mathrm{\mu g} / \mathrm{mL}$ (0.5 per cent br weight). Note that bracketed values listed in the data report are within ren times instrament detection linut (adjusted for processing factors and laboratory dilutions) and have a potential uncertainet much greater than 15%.
f) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
4) The maximum number of significant figures for all ICP measurements is 2.

Det. Limit ugimL	Run Date=	20.6$01-1014-\mathrm{PB}$	5/25/2001	5/25/2009	5/25/2001	5/25/200t	5/25/2001	5/25/2001
	Multiplier=		$\begin{array}{r} 103.6 \\ 01-1003 \end{array}$	$\begin{gathered} 512.8 \\ 01-1003-D \end{gathered}$	103.4$09-1014$	103.9$01-1014-D$	102.8$04-4015$	24.3$01-1016$
	RPL\#=							
	Client $10=$	Process Blank (ALO- 128)	LS.01	LS-01-Dup	LS-12	LS-12-Dup	LS. 13	LS-14
	Analytes	ug/g						
0.060	Al	[4.0]	7,230	7,320	6,960	6,930	6.800	1,180
0.010	Ba	-	.-	-	--	--	-.	--
0.250	Ca	.	[160]	[150]	[130]	(120)	(120)	[34]
0.015	Cd	-	22.7	[23]	22.9	22.2	22.1	3.96
0.020	Cr	-	89.2	[89]	94.0	93.2	91.2	15.8
0.025	Fe	\cdots	[7.3]	.-	[3.2]	[3.2]	[3.3]	[1.3]
2.000	K	-	[720]	--	[710]	[680]	[690]	[130]
0.050	La	--	-	.-	--	-.	-.	-.
0.100	Mg	-	--	--	--	-	--	--
0.050	Mn	--	--	--	--	-	\cdots	--
0.150	Na	48.2	95,700	99,400	91,100	91,400	90,200	22,900
0.030	Ni	--	165	167	163	162	158	27.8
0.100	P	--	685	670	667	656	638	99.3
0.100	Pb	--	[61]	-	[55]	[52]	[51]	[13]
0.015	Sr	--	--	-	74.5	74.5	73.0	15.2
Other Analytes								
0.025	Ag	--	-	--	--	--	--	--
0.250	As	..	.	--	--	--	--	\cdots
0.050	B	39.4	63.1	[60]	58.8	59.3	57.5	87.0
0.010	8 e	-.	.-	--	--	--	\because	..
0.100	Bi	.-	.-	--	--	--	-	--
0.200	Ce	--	--	\cdots	--	--	-r	--
0.050	Co	--	--	--	\because	\cdots	\cdots	\cdots
0.025	Cu	--	[3.7]	--	[6.7]	[6.1]	[6.0]	[0.94]
0.050	Dy	--	--	-	--	--	--	..
0.100	Eu	..	-	--	-	--	--	--
0.030	Li	-	--	--	-	.-	-	\cdots
0.050	Mo	.	[19]	\cdots	[20]	[19]	[19]	[5.0]
0.100	Nd	--	--	--	\cdots	\cdots	-	-
0.750	Pd	--	--	--	..	--	\cdots	--
0.300	Rh	--	--	--	--	-	-	.
1.100	Ru	--	-	--	.-	--	--	\cdots
0.500	Sb	--	\because	--	--	\cdots	--	--
0.250	Se	--	--	\cdots	\cdots	\cdots	\cdots	--
0.500	Si	[81]	[160]	\cdots	[160]	[160]	[160]	669
1.500	Sn	--	-	\because	.-	\cdots	..	-
1.500	Te	--	\because	\cdots	\cdots	--	-	-
1.000	Th	\cdots	--	.-	--	\cdots	--	--
0.025	Ti	--	\cdots	--	--	\cdots	-	\cdots
0.500	TI	-	.-	--	--	\because	\because	--
2.000	\cup	-	--	\because	--	--	\cdots	--
0.050	V	-	--	-	--	\cdots	--	\because
2.000	W	\cdots	--	-	--	--	-	--
0.050	Y	--	\cdots	--	\cdots	--	..	--
0.050	2 n	\cdots	\cdots	--	[5.5]	[5.4]	[5.5]	[2.2]
0.050	Zr	\cdots	--	--	--	.	.-	\cdots

Note: 1) Overall error greater than 10-times detection limit is estimated to be within $+/-15 \%$
2) Values in brackets II are within 10-times detection limit with emors likely to exceed 15%
3) "--" indicate measurement is below detection. Sample detection limit may be found by
multiplying "det. limit" (far left column) by "multiplier" (tcp of each column).

QC Performance 5/25/2001

Criteria>	<20\%	<20\%	80\% - 120\%	$\begin{aligned} & 75 \%- \\ & 125 \% \end{aligned}$	$\begin{aligned} & 75 \% \\ & 125 \% \end{aligned}$	$\begin{aligned} & 75 \%- \\ & 125 \% \end{aligned}$	$<+/-10 \%$	$<+/ .10 \%$	$<+1.10 \%$	$<+1-10 \%$
QCID $=$ Analytes	$\begin{gathered} 01-1003 \mathrm{~B} \\ 01-1003 \mathrm{D} \\ \text { RPD (\%) } \end{gathered}$	$\begin{gathered} 01-10148 \\ 01-1014 \mathrm{D} \\ \operatorname{RPD}(\%) \end{gathered}$	$010514 i 901$ 010514 i 902 LCS/BS \%Rec	$\begin{gathered} 01-1014 \\ \text { MS } \\ \% \operatorname{Rec} \end{gathered}$	$01-1014+$ Post Spike A \%Rec	$01.1014+$ Post Spike B $\%$ Rec	$\begin{gathered} \text { 01-1003 } \\ \text { @5/@25 } \\ \text { Serial Dil } \\ \text { \%Diff } \\ \hline \end{gathered}$	01.1014 @5/@25 Serial Dil \%Diff	01.1015 @5!@25 Serial Dil \%Diff	$01-1016$ @1/05 Serial Dil $\%$ Diff
AI	3.4	0.0	96.7	$n \mathrm{r}$.	n.r.		-0.5	-0.2	-09	2.0
Ba			95.6	988	102.8					
Ca	1.1	0.4	95.6	102.2	104.1					
Cd	2.1	2.7	95.2	100.2	103.1					
Cr	2.3	0.5	96.0	$10^{4} .8$	105.4					
Fe		1.8	98.5	104.0	108.1					
K		4.0	93.3	98.5	97.9					
La			92.7	984		98.4				
Mg			98.2	106.6	111.3					
Mn			98.8	106.9	109.7					
Na	6.0	0.9	97.4	n.r.	ก.r.		-2.4	-1.7	-2.8	4.1
Ni	3.3	0.3	97.6	1063	108.4					
P	0.1	1.3	95.0	101.9	102.1					
Pb		3.4	97.7	103.1	105.8					
Sr		0.5	95.7	105.3	103.0					
Other Analytes										
Ag			91.2	97.3	100.4					
As					105.3					
B	3.3	1.2			106.5					
Be					104.0					
Bi			95.4	100.1	103.6					
Ce						99.1				
Co					109.5					
Cu		8.3	97.7	100.9	107.4					
Dy						104.7				
Eu						109.0				
Li					102.2					
Mo		1.0			105.2					
Nd			92.5	95.1		98.2				
Pd			93.9	930		89.7				
Rh			94.7	933		97.4				
Ru			91.5							
Sb					102.5					
Se					108.4					
Si		41	124.5	105.8	121.4					
5 n										
Te										
Th						102.3				
Ti			92.9	56.2	101.1					
TI					104.0					
\cup			92.4	¢39		96.0				
V					99.5					
W										
Y					100.7					
Zn		1.8	96.6	132.0	105.8					
Zr			96.2	1020	105.2					

[^5]Battelle PNNL/RSE/Inorganic Analysis.... ICPAES Results

Det. Limit ugimL	Run Date=	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001	6/15/2001
	Multiplier	1.0	$\begin{gathered} 19.6 \\ (\mathrm{Na98.2}) \\ \hline \end{gathered}$	$\begin{gathered} 20.3 \\ (\mathrm{Na} 101.7) \\ \hline \end{gathered}$	$\begin{gathered} 20.1 \\ (\mathrm{Na} 100.3) \\ \hline \end{gathered}$	$\begin{gathered} 20.3 \\ (\mathrm{Na} 101.3) \end{gathered}$	$\begin{gathered} 20.0 \\ (\mathrm{Na} 100.0) \end{gathered}$	$\begin{gathered} 20.1 \\ (\mathrm{Na} 100.6) \end{gathered}$	$\begin{gathered} 19.9 \\ \text { (Na99.6) } \\ \hline \end{gathered}$	$\begin{gathered} 19.1 \\ \text { (Na95.6) } \\ \hline \end{gathered}$
	RPL.\#=	01-1004-B	01.1004	01-1004-D	01-1005	01-1005-D	01-1006	01-1006-D	01-1007	01-1007-D
	Client ID $=$	Process Blank (ALO- 128) ug/g 11	$\begin{array}{\|c\|c\|c\|} \hline \text { LS-02 } \\ \mathrm{ug} / \mathrm{g} \\ \hline \end{array}$	$\begin{gathered} \text { LS. } 02 \text { Dup } \\ u g / g \end{gathered}$	$\begin{array}{r} \mathrm{LS}-03 \\ \mathrm{ug} / \mathrm{g} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { LS-03 Dup } \\ \mathrm{ug} / \mathrm{g} \\ \hline \end{array}$	$\begin{array}{\|c} \mathrm{LS}-04 \\ \mathrm{ug} / \mathrm{g} \\ \hline \end{array}$	$\begin{gathered} \text { LS-04 Dup } \\ \mathrm{ug} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{array}{r} \text { LS-05 } \\ \quad \mathrm{ug} / \mathrm{g} \\ \hline \end{array}$	$\begin{gathered} \text { LS-05 Dup } \\ \quad \mathrm{ug} f \mathrm{~g} \\ \hline \end{gathered}$
0.060	Al	17.5	6.710	6.750	6,500	6,570	6.800	6,640	6,750	6.830
0.010	Ba	--	+-	..	--	-	--	.	--	--
0.250	Ca	[5.9]	119	121	105	108	117	113	114	115
0.015	Cd	--	20.9	21.0	20.1	20.3	21.0	20.7	20.9	21.1
0.020	Cr	--	76.7	77.5	80.4	80.8	84.0	82.3	83.9	85.0
0.025	Fe	[1.1]	[4.7]	[4.5:	[2.6]	[2.4]	[2.6]	[2.6]	[2.6]	[2.4]
2.000	K	--	814	824	809	816	841	815	817	828
0.050	La	--	[2.2]	[2.3)	--	--	\cdots	--	--	..
0.100	Mg	..	-.	\cdots	--	[2.2]	[2.3]	-.	--	-
0.050	Mn	--	-	--	-	--	.-	-.	--	-
0.150	Na	61.1	89,900	90,960	86.200	87,600	91,000	90,200	91,500	92.000
0.030	Ni	-.	145	147	143	143	148	145	148	149
0.100	P	-.	631	638	624	628	647	634	641	648
0.100	Pb	--	57.5	58.4	42.5	42.2	46.2	45.3	46.0	46.4
0.015	Sr	--	161	168	100	102	95.5	91.0	84.9	83.5
Other Analytes										
0.025	Ag	--	..	--	--	-	--	--	--	--
0.250	As	--	*	..	\cdots	--	--	..	--	--
0.050	B	27.9	64.4	75.5	80.1	93.5	95.3	58.7	53.5	65.1
0.010	Be	--	.-	--	..	-r	--	..	--	\cdots
0.100	Bi	-	[2.4]	[2.2]	-	--	-.	-	--	..
0.200	Ce	\cdots	--	--	-	-	--
0.050	Co	..	[1.5]	[1.5]	[1.5]	[1.5]	[1.5]	[1.5]	(1.5)	[1.5]
0.025	Cu	-	[4.3]	[4.3]	[4.2]	[4.2]	[4.4]	[4.2]	[4.3]	[4.3]
0.050	Dy	\cdots	--	-	.-	--	--	-	-	--
0.100	Eu	-	.-	.	-	-	--	-	--	-
0.030	Li	-.-	-	--	.-	-.	-
0.050	Mo	..	17.6	17.7	17.3	17.4	18.1	17.7	18.1	12.2
0.100	Nd	.-	[6.8]	[7.C]	[3.5]	[3.4]	[3.2]	[3.1]	[2.9]	[2.9]
0.750	Pd	--	--	..	--	--	-.	-.	--	.-
0.300	Rn	--	-.	\cdots	--	-	--	-.	-	--
1.100	Ru	--	..	--	-.	..	--	--	--	..
0.500	Sb	..	--	.	-	-.	--	-	\cdots	--
0.250	Se	.	--	--	--	-.	-.	-	\cdots	\cdots
0.500	Si	103	243	259	217	295	372	228	192	213
1.500	Sn	.-	.-	.-	--	--	\cdots	-	-	--
1.500	Te	--	.-	\cdots	-	-	-.	-	-	-
1.000	Th	--	-	.	--	--	--	-	--	--
0.025	Ti	--	--	--	--	--	--	\cdots	-	\cdots
0.500	TI	--	--	..	--	--	.-	-.	-	--
2.000	\cup	-	-.	--	-.	-	--	--	--	\cdots
0.050	V	--	.-	-	--	--	--	\cdots	\cdots	.
2.000	W	\because	--	\cdots	\because	\cdots	\cdots	-	-.	\cdots
0.050	Y	-	--	*	--	--	--	-.	--	\cdots
0.050	Zn	[1.1]	[2.2]	[2.0]	[1.4]	[1.1]	[1.1]	[1.5]	[1.4]	[1.3]
0.050	Zr	-	[2.0]	[20]	..	--	--	--	.-	-.

[^6]QC Performance 6/15/2001 - RPDs and LCS/BS Recovery

Criteria>	<20\%	<20\%	<20\%	<20\%	80\% - 120\%
QC ID $=$	$\begin{aligned} & 01-1004 \& \\ & 01-1004 \mathrm{D} \end{aligned}$	$\begin{gathered} 01-1005801 \\ 1005 \mathrm{D} \end{gathered}$	$\begin{gathered} 01-1006 \& \\ 01-1006 \mathrm{D} \end{gathered}$	$\begin{aligned} & 01-1007 \& \\ & 01-10070 \end{aligned}$	$\begin{gathered} 010514 i 901 \\ 010514 i 902 \\ \text { LCS/BS } \end{gathered}$
Analytes	RPD (\%)	RPD (\%)	RPD (\%)	RPD (\%)	\%Rec
A!	3.9	1.0	1.0	2.8	112.0
Ba					99.0
Ca	2.7	3.3	2.2	3.8	99.7
Cd	3.9	0.8	0.1	2.5	99.2
Cr	3.5	0.6	0.6	2.9	99.2
Fe	7.3	4.9	2.9	8.0	101.2
K	3.4	0.9	1.8	3.0	101.7
La	0.5				98.4
Mg					101.2
Mn					102.4
Na	1.1	1.6	0.9	0.5	119.2
Ni	3.4	0.6	0.5	2.5	99.5
P	3.4	0.7	0.6	2.6	98.0
Pb	2.9	0.6	0.6	2.6	100.6
Sr	0.6	1.9	3.4	0.1	99.0

Ag					59.3
As					
B	11.4	43.5	40.2	21.2	
Be					
Bi	13.9				98.9
Ce					
Co	0.5	2.0	0.2	1.6	
Cu	4.2	0.7	2.5	3.5	100.0
Dy					
Eu					
Li					
Mo	3.5	0.4	0.8	2.6	
Nd	2.0	3.6	0.0	0.1	
Pd					99.5
Rh					100.2
Ru					96.4
Sb					
Se					
Si	2.0	30.5	40.8	12.2	159.1
Sn					
Te					
Th					
Ti					
Tl					
U					
V					
W					
Y					
Zn	16.3	22.9			98.9
Zr	2.0				

Shaded results exceed acceptance criteria
Bold and unshaced RPDs indicate one or both results $<E Q L$.

QC Performance 6/15/2001-MS \& PS Recovery and \%Diff

Criteria>	75\%-125\%	75\%-125\%	75\%.125\%	< +i-10\%	< $+1-10 \%$	< + + -10\%	< $+1.10 \%$
QC ID $=$	$\begin{gathered} 01-1004 \mathrm{MS} \\ \% \operatorname{Rec} \\ \hline \end{gathered}$	$\begin{gathered} \hline 01-1004+ \\ \text { Post Spike } \\ \text { A } \\ \text { \%Rec } \\ \hline \end{gathered}$	$\begin{gathered} \hline 01-1004+ \\ \text { Post Spike } \\ \text { B } \\ \% \text { Rec } \\ \hline \end{gathered}$	01.1004 ©1/@S Serial Dil \%Diff	$\begin{gathered} 01 \cdot 1005 \\ \text { @1@5 } \\ \text { Serial Dil } \\ \% \text { Diff } \end{gathered}$	$\begin{gathered} 01-1006 \\ \text { @1@5 } \\ \text { Serial Dit } \\ \text { \%Diff } \end{gathered}$	01-1007 @1/@5 Serial Dil \%Diff
Analytes							
Al	n.r.	n.r.		3.7	1.4	2.2	2.7
Ba	93.0	95.3					
Ca	98.5	97.7					
Cd	96.7	99.6					
Cr	91.5	99.1					
Fe	97.2	99.3					
K	96.1	96.0					
La	95.6		97.0				
Mg	99.3	103.4					
Mn	103.4	103.3					
Na	n.r.	ก.r.		n.n.m.	\therefore n.m.	n.m.	n.m. ${ }^{\text {a }}$
Ni	88.5	99.0					
P	95.5	96.4					
Pb	97.8	100.3					
Sr	n.r.	99.3					
Other Analytes							
Ag	95.7	96.1					
As		100.2					
8		99.6					
Be		97.6					
Bi	96.6	97.7					
Ce			98.7				
Co		101.1					
Cu	96.8	100.0					
Dy			98.5				
Eu			105.7				
Li		98.2					
Mo		98.0					
Nd			99.8				
Pd	103.0		91.1				
Rh	101.6		96.2				
Ru	105.0						
Sb		97.8					
Se		99.9					
Si	120.1	107.2					
Sn							
Te							
Th			98.1				
Ti	91.1	93.2					
11		95.4					
U	95.9		96.6				
V		94.4					
W							
Y		96.0					
Zn	98.6	102.1					
Zr	97.4	97.6					

Shaded results exceed acceptance criteria
n.f. $=$ not recovered; spike concentration less than 20% of sample concentration
n.m. = not measured; insufficient difutions prepared to evaluate \%iff.

Det. Limit ug $/ \mathrm{mL}$	Run Date=	6/19/2001	6/19/2001	6/19/2001	6/19/2001	6/19/2001	6/19/2001	6/19/2001	6/19/2001	6/19/2001
	Multiplier=	20.3	$\begin{gathered} 20.1 \\ (\mathrm{Na} 100.3) \\ \hline \end{gathered}$	$\begin{gathered} 20.1 \\ \text { (Na100.6) } \end{gathered}$	$\begin{gathered} 21.1 \\ (\mathrm{Na} 105.4) \end{gathered}$	$\begin{gathered} 20.5 \\ \text { (Na102.6) } \\ \hline \end{gathered}$	$\begin{gathered} 20.8 \\ \text { (Na103.9) } \\ \hline \end{gathered}$	$\begin{gathered} 20.5 \\ (\mathrm{Na} 02.3) \\ \hline \end{gathered}$	$\begin{gathered} 19.9 \\ (\mathrm{Na99.4)} \\ \hline \end{gathered}$	$\begin{gathered} 19.4 \\ \text { (Na97.2) } \\ \hline \end{gathered}$
	RPL\#=	01-1008-B	01-1008	01-1008-0	01.1009	01-1009-D	01-1010	01-1010-0	01-1011	01-1011.D
	Client ID=	$\begin{gathered} \text { Proc. Blk } \\ \text { ug/g } \\ \hline \end{gathered}$	LS-06	LS.06	LS-07	LS-07	LS-08	LS-08	LS-09	L.S-09
	Analytes		ug/g	ugig	ug/g	ugig	ug/g	ug/g	ug/g	ug/g
0.060	AI	[4.6]	7,180	6,990	6.640	6.670	6.840	6,960	6.610	6.600
0.010	Ba	[0.22]	[0.23]	-	-	(0.22]	--	[0.23]	-	[0.27]
0.250	Ca	--	127	122	120	123	122	125	122	120
0.015	Cd	-	22.4	21.8	21.1	20.9	21.4	22.0	20.8	20.6
0.020	Cr	\because	90.3	88.5	85.2	84.3	87.0	88.6	84.5	84.2
0.025	Fe	[0.65]	[3.2]	12.7)	[4.6]	[4.7]	[5.0]	5.83	[4.8]	[4.8]
2.000	K	.-	895	864	817	794	798	812	769	768
0.050	La	--	--	-	[1.2]	--	--	-.	--	--
0.100	Mg	--	[2.7]	[2.1]	.-	[2.1]	--	-.	[2.1]	--
0.050	Mn	-	\cdots	-	--	--	--	--	-	--
0.150	Na	46.5	98.700	97,200	92,500	92,500	94,500	97,600	93,800	94.200
0.030	Ni	--	159	156	149	147	152	154	147	147
0.100	P	--	665	649	629	622	610	614	622	620
0.100	Pb	--	49.4	48.3	40.5	43.7	45.8	46.4	44.4	44.2
0.015	S r	-.	87.6	862	185	185	174	178	160	161
	Other Analyte									
0.025	Ag	..	--	..	--	--	--	--	--	--
0.250	As	--	-	-	-	--	--	\cdots	--	--
0.050	B	36.7	104	52.4	43.5	88.0	43.4	69.0	70.7	65.0
0.010	Be	-	-.	--	\because	-.	..	--	--	..
0.100	81	\cdots	[2.9)	(2.6:	[2.6]	--	--	.-	--	--
0.200	Ce	--	--	-	--	-.	.-	-	--	\because
0.050	Co	-	[1.7]	[1.7)	[1.6]	[1.4]	[1.5]	[1.5]	[1.4]	[1.4]
0.025	Cu	.	[4.7]	[4.5]	[4.4]	[4.2]	[4.4]	[4.5]	[4.3]	[4.3]
0.050	Dy	.-	..	.-	..	--	--	.-	..	--
0.100	Eu	--	--	--	--	--	--	--
0.030	Li	\because	[0.61]	[0.63]	.-	--	--	-.	-	--
0.050	Mo	--	19.0	18.3	17.9	17.5	18.1	18.5	17.6	17.6
0.100	Nd	--	[4.4]	[4.5]	[4.8]	[3.4]	[3.4]	[3.5]	[3.2]	[3.1]
0.750	Pd	\cdots	.-	..	--	--	-	--	..	--
0.300	Rh.	\cdots	--	--	\because	\because	\cdots	\cdots	--	--
1.100	Ru	--	\because	..	.-	--	..	--	-.	--
0.500	Sb	--	.-	..	--	--	--	--	--	--
0.250	Se	\cdots	--	--	--	..	\cdots	\cdots	\because	--
0.500	Si	[86]	385	206	199	317	220	268	300	245
1.500	Sn	..	.-	-.	.-	--	..	.	-	--
1.500	Te	--	..	--	--	-	-	-.	..	--
1.000	Th	--	--	-	--	--	--	\cdots
0.025	Ti	-.	--	--	..	--	..	--	--	--
0.500	Ti	--	-	.	--	-	-	--	-	-.
2.000	U	-	\cdots	[40]	\because	\cdots	--	--	--	--
0.050	V	-	\cdots	--	\cdots	--	\cdots	--	--	--
2.000	W	\cdots	\sim	-.	.-	--	-.	\cdots
0.050	Y	..	--	\cdots	\cdots	\because	\because	-	--	--
0.050	Zn	[1.1]	[1.6]	[1.7]	[3.9]	(3.4)	[4.2]	[4.2]	[4.3]	[4.5]
0.050	Zr	--	[1.2]	[1.1]	[1.1]	..	--	.-	--	--

Note: 1) Overall emor greater than 10 -times detection timit is estimated to be within $+1.15 \%$.
2) Values in brackets (l are within 10 -times detection limit with errors likely to exceed 15%.
3) "--"indicate measurement is below detection. Sample detection imit may be found by
muthplying "det. fimit" (far teft column) by "muttiplier" (top of each column)

QC Performance 6/19/2001

Criteria>	<20\%	<20\%	<20\%	<20\%	80\% - 120\%	$\begin{aligned} & 75 \%- \\ & 125 \% \end{aligned}$	$\begin{aligned} & \hline 75 \%- \\ & 125 \% \end{aligned}$	$\begin{aligned} & \hline 75 \%- \\ & 125 \% \end{aligned}$	< $+1.10 \%$
$\underbrace{\text { QC } i D}_{\text {Analytes }}$	$\begin{gathered} 01-1008 \& \\ 01-1008 \mathrm{D} \\ \text { RPD (\%) } \end{gathered}$	$\begin{gathered} 01-1009 \& \\ 01-1009 D \\ \text { RPD }(\%) \end{gathered}$	$\begin{aligned} & 01-10108 \\ & 01-10100 \\ & \text { RPD (\%) } \end{aligned}$	$\begin{aligned} & 01-1011 \& \\ & 01-10110 \\ & \operatorname{RPD}(\%) \end{aligned}$	$\begin{array}{\|c\|} \hline 010514 i 901 \\ 010514 i 902 \\ \text { LCS/BS } \\ \% \text { Rec } \\ \hline \end{array}$	$\begin{gathered} 01-1008 \\ \text { MS } \\ \text { \%Rec } \end{gathered}$	$\begin{array}{\|c\|} \hline 07-1008+ \\ \text { Post } \\ \text { Spike A } \\ \% \text { Rec } \\ \hline \end{array}$	$\begin{gathered} 01-1008+ \\ \text { Post } \\ \text { Spike B } \\ \% \text { Rec } \end{gathered}$	$\begin{gathered} \hline 01-1008 \\ \text { @11@5 } \\ \text { Serial Dil } \\ \text { \% Diff } \end{gathered}$
Al	2.8	0.5	1.7	0.1	111.0	ก.r.	n.r.		2.8
Ba					99.2	92.6	101.9		
Ca	4.3	2.0	2.6	1.3	99.7	96.7	102.5		
Cd	2.5	0.7	2.4	0.8	97.9	95.1	103.3		
Cr	2.0	1.1	1.8	0.3	97.8	89.8	104.5		
Fe	17.6	1.9	14.9	0.5	101.3	96.6	105.0		
K	3.6	2.8	1.8	0.0	99.6	95.4	100.6		
La					98.2	97.6		100.5	
Mg	25.1				100.9	97.5	108.4		
Mn					100.9	101.1	107.4		
Na	1.5	0.0	3.2	0.4	121.1)	n.r.	n.r.		n.m.
Ni	1.9	1.4	1.5	0.1	99.9	84.2	109.4		
P	2.4	1.1	0.6	0.4	96.1	91.7	102.0		
Pb	2.3	6.2	1.3	0.5	102.3	99.4	107.8		
Sr	1.5	0.1	2.0	0.4	99.4	94.1	104.3		
Other Analytes									
Ag					55.3 \%	94.1	991		
As							103.6		
B	66.2	67.7	45.5	8.3			105.3		
Be							100.9		
Bi	10.3				96.0	93.4	99.8		
Ce								102.7	
Co	0.3	12.6	0.7	0.7			107.6		
Cu	5.6	4.5	1.7	0.3	99.4	95.8	105.3		
Dy								102.0	
Eu								109.7	
Li	10.8						102.3		
Mo	1.4	2.5	1.9	0.3			103.8		
Nd	3.0	33.6	1.2	1.7				102.9	
Pd					97.0	97.6		88.2	
Rh					97.8	99.8		100.8	
Ru					95.0	104.6			
Sb							101.5		
Se							1044		
Si	60.5	45.8	19.6	20.0	154.8	96.9	1144		
Sn									
Te									
Th								103.1	
Ti					96.0	91.4	99.0		
T							101.2		
\cup					96.9	94.4		99.0	
V							98.7		
W									
Y							98.5		
Zn	3.8	13.8	0.4	2.8	99.5	100.4	108.4		
Zr	3.4				98.9	98.1	103.6		

[^7]$n . r$. not recovered: spike is less than 20% of sample concentration.
Eold and unshaded RPDs indicale one or both results $<E Q L$
$n \mathrm{~m} .=$ not measured; insufficient difutions prepared to evaluate \%Diff

Det. Limit ug $/ \mathrm{mL}$	Run Date=	6/20/2001	6/20/2001	6/20/2001	6/20/2004	6/20/2009
	Multiplier=	1.0	$\begin{gathered} 21.3 \\ \text { (Nat06.7) } \end{gathered}$	$\begin{gathered} 20.3 \\ (\mathrm{Na} 101.4) \end{gathered}$	21.1 (Na 105.5)	$\begin{gathered} 21.2 \\ (\mathrm{~N} a 105.8) \end{gathered}$
	RPL.\#=	01-1012-B	01.1012	01-1012-D	01-1013	01-1013-D
	Client $10=$ Analytes	ug/g	$\begin{gathered} \text { LS-10 } \\ \text { ug/g } \end{gathered}$	$\begin{gathered} \mathrm{LS}-10 \\ \mathrm{ug} / \mathrm{g} \end{gathered}$	$\begin{aligned} & \mathrm{LS}+11 \\ & \mathrm{ug} / \mathrm{g} \end{aligned}$	$\begin{array}{r} \text { LS-11 } \\ \text { ug/g } \end{array}$
0.060	AI	[0.17]	6.580	6.540	6,590	6,600
0.010	Ba	[0.011]	--	-	[0.21)	--
0.250	Ca	-	118	117	120	120
0.015	Cd	[0.016]	21.2	21.1	21.2	21.2
0.020	Cr	-	85.1	85.1	88.1	88.7
0.025	Fe	[0.028]	[4.8]	[4.9]	[4.6]	[4.7]
2.000	K	..	795	789	784	780
0.050	La	--	--	\cdots	.-	.-
0.100	Mg	--	--	--	-	-
0.050	Mn	.-	..	.-	--	--
0.150	Na	2.23	90,100	88,500	90,600	90.700
0.030	Ni	.-	147	146	149	149
0.100	P	--	616	614	585	587
0.100	Pb	--	46.9	46.2	47.2	47.3
0.015	Sr	--	129	128	113	113
Other Analytes						
0.025	Ag	-	--	\cdots	--	--
0.250	As	--	--	--	-.	--
0.050	B	1.68	54.8	52.6	56.5	52.9
0.010	Be	.-	..	--	--	--
0.100	8 i	[0.15]	[3.5]	[2.3]	[2.3]	--
0.200	Ce	--	-	--	.-	--
0.050	Co	--	[1.5]	[1.6]	[1.6]	[1.6]
0.025	Cu	--	5.51	5.40	6.46	6.39
0.050	Dy	--	.	--
0.100	Eu	--	--	\cdots	-	--
0.030	Li	..	--	--	..	-
0.050	Mo	--	17.6	17.4	17.6	17.8
0.100	Nd	--	[39]	[4.1]	[3.8]	[3.9]
0.750	Pd	-	--	--	-	--
0.300	Rh	--	--	--	--	..
1.100	Ru	--	--	-	--	--
0.500	Sb	--	--	-
0.250	Se	--	--	--	--	--
0.500	Si	[3.1]	208	189	202	185
1.500	Sn	--	--	.-	--	.-
1.500	Te	..	--	-	--	--
1.000	Th	--	--	.-	--	-
0.025	ri	--	..	--	--	--
0.500	TI	-.	--	.	..	\because
2.000	U	--	-	\cdots
0.050	v	--	-	--	--	\cdots
2.000	W	--	.-	-	--	-
0.050	Y	.-	--	\because	--	-
0.050	Zn	[0.054]	[5.0]	[5.0]	[5.3]	[5.2]
0.050	Zr	--	[1.1]	[1.1]	[1.1]	[1.1]

Note 1) Overall error greater than 10 -times detection timn tis estimated to be within $+/-15 \%$
2) Values in brackets [l are within 10-times detection timi: with errors tikely to exceed 15%.
3) ".-* indicate measurement is below detection. Sample detection timit may be found by
multiplying "det. imit" (far left column) by "multiplier" (top of each column).

QC Performance 6/20/2001

Criteria>	<20\%	80\% • 120\%	75\%-125\%	75\%-125\%	75\%-125\%	< + $/$-10\%
QC ID=	$\begin{gathered} 01-10138 \\ 01+1013 \mathrm{D} \\ \text { RPD (\%) } \end{gathered}$	$\begin{gathered} 01-1012-\mathrm{BS} \\ \% \operatorname{Rec} \end{gathered}$	$\begin{gathered} 01-1012 \mathrm{MS} \\ \% \mathrm{Rec} \end{gathered}$	none + Post Spike A \%Rec	none + Post Spike B \%Rec	$01-1013$ @1@5 Serial Dil \%Diff
AI	0.0	106.3	n.r.			2.8
Ba		110.1	86.7			
Ca	0.0	111.7	90.3			
Cd	0.1	111.4	87.8			
Cr	0.2	112.5	79.9			
Fe	7.3	115.6	90.5			
K	3.5	111.2	87.3			
La			90.1			
Mg		118.7	92.5			
Mn		116.1	930			
Na	0.2	101.7	n.r.			n.m.
Ni	0.1	117.7	78.1			
P	0.1	110.0	80.4			
Pb	2.8	116.0	89.6			
Sr	0.0	111.3	ก.t.			3.7
Other Analytes						
Ag		107.1	88.4			
As		109.2				
B	59	п.r.				3.4
Be		108.5				
Bi		111.0	87.5			
Ce						
Co		114.5				
Cu	2.7	114.0	88.5			
Dy						
Eu						
Li		114.9				
Mo	07					4.7
Na						
Pd			90.6			
Rh			92.2			
Ru			96.0			
Sb						
Se		1094				
Si	6.3		97.7			
Sn						
Te						
Th						
Ti			85.0			
TI		108.8				
U			89.3			
V		105.8				
W						
Y		1054				
Zn	0.5	119.0	91.6			
Zr			91.6			

Shaded results exceed acceptance criterta
Bold results for information onfy; LCS or Serical Dilution concentration less than EQL.
n.r. $=$ not recovered; spike concentration less than 20% of sample concentration
$n / a=$ not applicable; KOH flux and Ni crucible used for preparing samples.

Battelle, PNNL / AIAL
 Inorganic Analysis / ICP-MS Data Report

Project/XVP\#:	$42365 /$ W57984
ASR\#:	6107
Client:	Rich Hallen
Total Samples:	4

RPL \#	Client ID
$01-1014$	LS-12
$01-1015$	LS-13
$01-1016$	LS-14
$01-1017$	LS-16

Procedure: PNL-ALO-280 Rev. 1, Inductively-Coupled Plasma Mass Spectrometric (ICPMS) Analysis

M\&TE Number: WB36913
ICP/MS, VG Elemental
512-06-01-014 Mettler AJ100 Balance
Analyst: James P Bramson
Analysis Dates: $\quad 9 / 12 / 01,9 / 25 / 01,9 / 26 / 01,9 / 28 / 01,10 / 1 / 01$
Analysis Files: Experiment - 12SEP01,25SEP01, 25SEP01b, 26SEP01, 28SEP01, 010CT01
Procedure - 010912a, 010925a, 010925b, 010926a, 010928a, 011001a
Element Menu - CsTcRb, UNp, Uiso Pu, multi, Tc
For Calibration and Maintenance Records; see ICPMS Service Center 98038 RIDS

—unhe hhemas 2.24.02 Reviewed By

1. Analysis

Four samples, 2 filtrates, 1 wash composite, and 1 solid prepared by the RPG, were submitted for analysis and analyzed on a radioactive material-contained ICP/MS. The filtrates and wash composite were analyzed for Tc-99. The solids were analyzed for total U, U isotopes, $\mathrm{Pu}-239$ and 240, Np-237, and Ru, Rh, and Pd.

See attached 1 CP/MS data reports for final results and rin order for the analytical batch. The final results have been corrected for all client dilutions and laboratory dilutions performed on the sample during analysis. A process blank, blank spike, duplicate, and matrix spike were also submitted and analyzed with the samples. In addition, replicate and post spike analyses were also performed.

The analysis for Ru, Rh, and Pd was difficult due to the isobaric interferences of SrO isotopes and masses common to both Ru and Pd, and the potential mixture of natural and fission yield isotopic abundances. Some of the sample concentrations were also very near detection limit.

2. Quality Control

Duplicate (D)UP). The RPDs for all analyses (duplicate and replicate) were $<15 \%$, with the exception of the solids duplicate analysis for Ru, Pd, and $\mathrm{Tc}-99$. The problem with the Ru and Pd was most likely due to the difficulties mentioned above. The Tc-99 concentrations were very near the detection limit.

Matrix Spike (MS). The MS recoveries for all post spike analyses were within 75% to 125% with the exception of Ru. The analytical lab only had MS information for Ru, Rh, and Pd to calculate recovery, none of which met the QC criteria.

Process Blank (PB) and Blank Spike (BS). The PBs were all below or near detection. The recovery of the blank spikes met the QC criteria for LCS recovery of 80% to 120%.
Initial Calibration Blank (ICB) and Continuing Calibration Blank (CCB). The ICB and CCB standards are a 1% high purity nitric acid solution used as the diluent for the samples, except for the Pu analysis, where the eluent for the Pu separation was used. The ICB and CCB standards were at or below the instrument detection level except for the Pu analysis, where the standards were above detection level but 2 to 7 orders of magnitude below the sample concentrations.

Inifal Calibration Verification (ICV) and Continuing Caibration Verification (CCV).
Recoveries of the ICV and CCV standards were within 90% to 110%.
Internal Standard (IS). The ISs were within the range of 30% to 120%.
1.

Battelle, PNNL, AIAL ICP/MS Analysis Data Report
Client: R.Hallen
WP/Project: W57984 / 42365

ASR/Log-In: 6107, 01-01014 to 01-01016
Reviewed by: sinp $22 / 4 / 02$
Report Date: 2/9/02

Unless otherwise specified; the results are reported in $\mu \mathrm{Ci}$ analyte/g of original sample.

MTE: ICP/MS VG (WB36913), Mettler 512-06-01-014
Procedure: PNL-ALO-280 Rev. 1
Analysis Date: 9/12/01
Instrument Filenames: Experiment (12SEP01), Procedure (010912a), Element Menu (CsTcRb)

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Client:	R. Hallen
RPL Numbers:	01-01014 to 01-01017
Analyst:	MJ Steele

Charge Code/Project: W57984/42365
ASR Number: 6107
Analysis Date: July 19/20/31,2001
Procedure: PNL-ALO-381, "Direct Ditermination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method"
M\&TE: Carbon System (WA92040); Balance (360-06-01-023)

Analysis Results

RPL. $\#$	Liquid Sample ID	$\begin{gathered} \text { TIC } \\ \log C / m L \end{gathered}$	$\begin{aligned} & \text { TIC } \\ & \text { RPD } \end{aligned}$	$\begin{gathered} \mathrm{TOC} \\ \mathrm{ugC} / \mathrm{mL} \end{gathered}$	$\begin{aligned} & \text { TOC } \\ & \text { RPD } \end{aligned}$	$\begin{gathered} \mathrm{TC} \\ \mathrm{ugC} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{TC} \\ \mathrm{RPD} \end{gathered}$
01-01014	LS-12	8,540		12,000		20,500	
O1-01014 Dup	L.S-12	8,550	0\%	12,200	2\%	20,700	1\%
01.01015	LS-13	7.930		11,500		19,400	
0t-01015 Dup	LS-13	7,680	3\%	11,400	1\%	19,100	2\%
01-01015 Trip	LS. 13	8,700		12,100		20,800	
01-01016	LS-14	1,500		3,140		4,640	
01.01016 Dup	LS-14	1,500	0\%	3,030	3\%	4,540	2\%
01.01016 MS	Recovery	101\%		99\%		100\%	
BS LCS (07-19-01)	Recovery	102\%		106\%			
BS LCS (07.20-01)	Recovery	103\%		102\%			
RPL	Solid Sample ID	$\begin{gathered} \mathrm{TIC} \\ \mathrm{ugC} / \mathrm{g} \\ \hline \end{gathered}$	$\begin{aligned} & \text { TIC } \\ & \text { RPD } \end{aligned}$	$\begin{aligned} & \mathrm{TOC} \\ & \mathrm{ugC} / \mathrm{g} \end{aligned}$	$\begin{aligned} & \text { TOC } \\ & \text { RPD } \end{aligned}$	$\begin{gathered} \mathrm{TC} \\ \mathrm{ugC} / \mathrm{g} \end{gathered}$	$\begin{gathered} \mathrm{TC} \\ \mathrm{RPD} \end{gathered}$
01-01017	LS-16	18,500		6,190		24,700	
01-01017 Dup	I.S-16	17,700	4\%	6,960	12\%	24,700	0\%
01-01017 MS	Recovery	104\%		90\%		97\%	
BS I.CS (07-31-01)	Recovery	101\%		102\%			

The TOC/TIC analyses of the samples submitted under ASRs 6107 are to be performed by both the hot persulfate and furnace methods. This report presents the results from the hot persulfate wet oxidation method. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at $92-95^{\circ} \mathrm{C}$ for TOC , all on the same sample, with TC being the sum of the TIC and TOC.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-381.

Q.C. Comments:

The standards for TIC and TOC supernatant analysis are liquid carbon standards from VWR. The lot numbers and Chemical Management System (CMS) numbers for the standards are included on the raw data benchsheets.

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

For TIC and TOC solids analysis pure chemical compounds are used as the calibration, as well as matrix spiking, standards. The TIC analysis uses calcium carbonate and the TOC uses α-Glucose (JT Baker, Aldrich, Sigma, and Mallinckrodt lot numbers and CMS numbers are provided on the raw data benchsheets).

The QC for the methods involves calibration blanks, sample duplicates, laboratory control sample, and matrix spikes. The ASR indicates that the analyses are to be performed to "Conducting Analytical Work in Support of Regulatory Programs". The performance of the QC samples is compared to this QA Plan.

Laboratory Control Sample (LCS)'Blank Spike(BS): A LCS/BS was analyze each day that the samples were analyzed. The LCS/BSs for both the liquid analysis and the solids analysis were within acceptance criteria of 80% to 120%.
Matrix Spike: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The matrix spikes for the LS-14 liquid sample and the LS-16 solids sample demonstrate recoveries well within the acceptance criteria of 75% to 125% recovery.
Duplicates: The precision between the duplicates (replicates), as demonstrated by the Relative Percent Difference (RPD) between sample and duplicate. The TIC and TOC RPD results are well within the acceptance criteria of $<20 \% \mathrm{RPD}$.

General Comments:

- The reported "Final Results" have been corected for all dilution perfortred on the sample during processing or anaiysis
- Routine preeision and bias are typicaily $\pm 15 \%$ or becier for non-complex samples that are free of interferences
- The estimated quanti:ation limit (FQl.) is detined as stines the MDL. Results less than 5 times the MDL have higher uncertainties, ard RPDs are not calculated for any results less than 5 times the $\$ 1 \mathrm{DL}$. The analysis MDLs (total ug C) are based on 3 tirres the standaed deviation of a
 weight.
* Some resuts may be repored as less than ("<") watus. These less than values represent the sample MDl. (nethod actection limit), whith is the systean WDi. adjusted for the volume of sample deed for the analysis. The sjstens MDL is based on the atached pooled historical blank data. The evatuation and calctition of the system alDe is inciuded in the data package.

Excel Archive File: ASR 6014L 6031L6107L\&S 6121L.xls

Battelle PNNL/RPG/Inorganic Analysis -.. TOC/TIC Report PO Box 999, Richland, WA 99352

Client
R. Hallen
RPL Numbers: 01-1014 to 01-1017
Analyst:
MJ Steele

Charge Code/Project:
ASR Number:
Analysis Date:

W57984/42365
6107
8/22, \& 8/23 2001

Procedure: PNL-ALO-380, "Determination of Carbon in Solids Using the Coulometrics Carbon Dioxide Coulometer"
M\&TE: Carbon System (WD13071); Balance (360-06-01-023).

TOC/TIC/TC Results

RPL Number	Sample ID	$\begin{gathered} \text { TIC (a) } \\ \text { MDL } \\ \mathrm{ugC} / \mathrm{mL} \end{gathered}$	TIC (b) Results $\mathrm{ugC} / \mathrm{mL}$	$\begin{gathered} \text { TOC } \\ \mathrm{MDL} \\ \mathrm{ugC} / \mathrm{mL} \end{gathered}$	TOC Results ugC/mL	$\begin{array}{\|c\|} \hline \mathrm{TC} \\ \mathrm{MDL} \\ \mathrm{ugC} / \mathrm{mL} \\ \hline \end{array}$	TC Results $\mathrm{ugC} / \mathrm{mL}$
01-01014	LS-12	220	5,700	180	15,500	220	21,200
01-01014 Dup	LS-12					220	21,200
	RPD						0\%
01-01015	LS-13	220	nd	180	22,300	220	19,000
01-01016	LS-14	90	850	180	3,550	90	4,400
01-01016 Dup	LS-14	90	900	180	3,370	90	4,270
	RPD				5\%		3\%
01.01015 MS	LS-13						107\%
01-01016 MS	LS-14				105\%		
BS/LCS	Blank Spike/LCS				96\%		94\%
RPL Number	Sample ID	ugC/g	ugC/g	ugC/g	ugC/g	ugC/g	ugC/g
01-01017	LS-16 Washed Solids	190	nd	400	22,700	190	28,000
01-01017 Dup	LS-16 Washed Solids	129	5,400	240	23,100	130	28,500
	RPD				2\%		2\%
01-01017.VS	LS-16 Washed Solids				100\%		111\%
BS/LCS	Blank Spike/LCS				99\%		104\%

nd $=$ not detected (i.e., TC results $>$ TOC results)
(a) TIC MDL set to TC MDL
(b) TIC is determined by difference (TC - TOC)

The TOC/TIC analyses of the samples submitted under ASRs 6107 were to be performed by both the hot persulfate and furnace methods. This report presents the results from the furnace oxidation method and the results are compared to the results obtained from the hot persulfate method. Determination of total organic carbon (TOC) is performed by combusting an aliquot of the sample (solids or liquid) in oxygen at $750^{\circ} \mathrm{C}$ for 30 minutes. The total carbon is determined on another aliquot of the sample by combusting at $1000^{\circ} \mathrm{C}$ for 30 minutes. The total inorganic carbon is obtained by difference.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-380.

Q.C. Comments:

The calibration and QC standards for TC and TOC analysis are liquid or solid carbon standards or pure chemicals from JT Baker, Aldrich, Sigma, and Mallinckrodt. The identification of the standards and their Chemical Management System (CMS) numbers are included on the raw data benchsheets.

The coulometer analysis system calibration is checked by analyzing calibration standards at the beginning, middle, and end of each day`s run. The average recovery from these calibration check standards is applied as a correction factor to the 'raw data' results obtained for the samples. The average recovery for the two analysis days was 100%, and 98%.
System blanks were analyzed similarly to the calibration check, averaged, and subtracted from the sample 'raw data' results prior to calculating the final reported result. The TOC determination produced an average blank of $15 \mu \mathrm{gC}$. The TC determination produced an average blank of $54 \mu \mathrm{gC}$. The $54 \mu \mathrm{gC}$ blank level is unusually high; however, the reproducibility of the blank was reasonably good (i.e., 49 to $59 \mu \mathrm{gC}$).

For each days analysis run, the QC for the analyses include sample duplicates, blank spikes (as a laboratory control sample), and matrix spikes.
Blank Spike/Laboratory Control Sample: The BS/LCS was within acceptance criteria of 80% to 120% required by the governing QA Plan for both the TC and TOC analysis of the liquid and solids samples.
Duplicates: The precision between the duplicates (replicates), as demonstrated by the Relative Percent Difference (RPD), is within the acceptance criteria of the governing QA Plan (i.e., $<20 \%$).
Matrix Spike: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The TOC and TC matrix spike for both the liquids and solids samples demonstrates recoveries between 100% and 111%, which are within the acceptance criteria of 75% to 125%.

Furnace Results Compared to Hot Persulfate Results

RPL Number	Sample ID	TIC HP Results $\mathrm{ug} \mathrm{C} / \mathrm{mL}$	TIC Furn Results ${ }^{\text {(a) }}$ $\mathrm{ugC} / \mathrm{mL}$	$\begin{array}{\|c\|} \text { TOC HP } \\ \text { Results } \\ \text { ugC/mL } \\ \hline \end{array}$	TOC Furn Results ugC/mL	$\begin{array}{\|c\|} \text { TC HP } \\ \text { Results }^{(b)} \\ \text { ugC/mL } \\ \hline \end{array}$	$\begin{aligned} & \text { TC Furn } \\ & \text { Results } \\ & \text { ugC/mL } \\ & \hline \end{aligned}$
01-01014	LS-12	8,540	5,700	12,000	15,500	20,500	21,200
01-01015	L.S-13	7,930	nd	11,500	22,300	19,400	19,000
01-01016	LS-14	1,500	850	3,140	3,550	4,640	4,400
RPL Number	Sample ID	TIC HP Results ugC/g	$\begin{array}{r\|} \text { TIC Furn } \\ \text { Results } \\ \text { (2) } \\ \text { ugC/g } \end{array}$	TOC HP Results ugC/g	TOC Fura Results $\mathrm{ugC} / \mathrm{g}$	$\begin{array}{\|c\|} \hline \text { TC HP } \\ \text { Results }{ }^{(b)} \\ \text { ugC/g } \\ \hline \end{array}$	$\begin{gathered} \text { TC Furn } \\ \text { Results } \\ \text { ugC/g } \end{gathered}$
01-01017	LS-16 Washed Solids	18,500	130	6,190	22,700	24,700	28,000

nd $=$ not detected (i.e., TOC result $>$ TC result)
(a) TIC Furn is determined by difference (TC - TOC)
(b) TC HP is determined by sum (TIC + TOC)

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report PO Box 999, Richland, WA 99352

The two method appear to produce comparable results for TC, with the furnace producing slightly higher results. However, there are significant differences between the TIC and TOC results reported by each method. The reason for the discrepancy between the hot persulfate method and furnace method is unknown, but it appears that the inorganic carbon, perhaps in the form of easily oxidized metal carbonates, is being combusted at $750^{\circ} \mathrm{C}$ (as TOC) with the furnace method. Typically, the furnace method provides the best TC results and the hot persulfate the best TIC results, thus the TOC would be the difference between these measurements. Based on the furnace TC result for sample LS-16, the TOC result from the hot persulfate method may be about 30% low.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- Routine precision and bias are typically $\pm 15 \%$ or better for non-complex samples that are free of interferences.
- For both the TC and TOC, the analysis Method Detection Limit (MDL) :s based on the standard deviation calculated from the number (n) of system blanks analyzed with the batch of samples. The standard deviation is multiplied by the Student's t values for n - 1 degrees of freedom to establish the daily MDL. The sample MDL (in un C/ml or us Cig) are calculated by using the analysis MDL adjusted for the sample volume or weight.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and ReDs are not calculated for any results less the: 5 times the MDL.

Report Prepared by:
 Date $2-19-01$

Date

[^8]Date: $6 / 20101$

Subject: Hydroxide Analyses for: R. Hallen
ASR:
6107
To: R. Halien
From: L. Greenwood ind
Samples of the filtrate composite and wash composite from the Sr/TRU Project AN-102/C-104 blend were analyzed for the hydroxide content following procedure PNL-ALO-228. Direct sample aliquots were analyzed in duplicate using a Brinkman 636 Auto-Titrator. A 0.1186 N NaOH solution was prepared for use as a standard and sample spike and the titrant was a 0.2040 M HCl prepared solution. Three inflection points were observed for each sample generally corresponding to hydroxide, carbonate, and bicarbonate. The standard hydroxide recovery averaged 95% and a sample spike recovered at 96%. No hydroxide was detected in a reagent blank. The titration curves are included with the report.

Radiochemical Processing Group-325 Building
Chemical Measurements Center

Hydroxide and Alkalinity Determination
Procedure: PNL-ALO-228 Eguin WB76843

Summary Report

RPG \#	Client 10		Concentration, moles		
			First Point	Second Point	Third Point
01-1014	LS-12		0.21	1.29	0.93
01-1014	LS-12	Rep	0.19	1.28	0.96
		RPD	7\%	1\%	4\%
01-1015	LS-13		0.21	1.26	0.87
01-1015	1.S-13	Rep	0.18	1.28	0.89
		RPD	18\%	1\%	2\%
01-1016	LS-14		0.057	0.24	0.18
01-1016	1.S-14	Rep	0.053	0.22	0.12
		RPD	6\%	6\%	41\%
Standard 1			95\%		
Standard 2			95\%		
M1S-1015	Satrix spike		96\%		
Blank			nd		

Note: Results are presented for the first, second, and thitd inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Client:

R. Hallen
6107 Liquids
N/A
MJ Steele

ASR Number:
Sample Prep Date:
Analyst:
Preparation Procedure: N/A
Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography"
M\&TE: \quad IC system (WD25214): Balance (360-06-01-031) --- See Chemical Measurement Center 98620 RIDS IC File for Calibration, Standards Preparations, and Maintenance Records. $\ 1$

The final ion chromatography results ASR 6107 Liquid Samples (01-01014 through 01-01016) are presented in Table 1. Table 1 includes the samples, duplicates, processing blank (dilution liquid), low level standard, and laboratory control standard results.

Table 1: Anion Analysis Results - ASR 6107 Liquids

RPL Number	Sample ID	F $\mu \mathrm{g} / \mathrm{m}$!	Cl $\mu \mathrm{g} / \mathrm{ml}$	$\begin{gathered} \mathrm{NO}_{2} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{Br} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$	NO_{3} $\mu \mathrm{g} / \mathrm{ml}$	$\begin{gathered} \mathrm{PO}_{4} \\ \mu \mathrm{~g} / \mathrm{n} \mathrm{l} \end{gathered}$	$\begin{gathered} \mathrm{SO}_{4} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{C}_{2} \mathrm{O}_{4} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$
	EQL	0.13	0.13	0.25	0.13	0.25	0.25	0.25	0.25
01-01014 Dilution Blank		<0.13	<0.13	<0.25	<0.13	<0.25	<0.25	<0.25	<0.25
	EQL	625	125	625	125	1250	250	250	250
01-01014	LS-12	4.300	1.960	43,600	<125	106,000	3.260	6.710	1.530
$01-01014$ DUP	LS-12 Dup	4.500	1,920	43,900	<125	107.000	3.280	6,710	1.530
	RPD	4\%	2\%	1\%	n/a	1\%	1\%	0\%	0\%
$01-01015$	LS-13	4,400	1.880	41,200	<125	99,500	3,620	6.430	1.460
O1-01015 MS \%Rec	1.S-13 MS \%Rec	114\%	104\%	106\%	106\%	110\%	97\%	100\%	107\%
								\therefore	\cdots
	EQL	125	25	250	25	250	250	50	50
01.01016	L.S-14	4.890	380	7.290	<25	16.900	340	1.060	2,770
101-01016 MS \%Rec	L.S-1+ M1S \%Rec	1110	104\%	108\%	107\%	110\%	100\%	101\%	109\%
LLS \%Rec		106\%	111\%	102\%	101\%	98\%	98\%	98\%	108\%
LCS \%Rec		97%	100\%	97\%	98\%	93\%	91\%	91\%	100\%

Fluoride exhibits significant interference from unknown anions making quantitation difficult. Fluoride results are maximum value.
EQL = Estimate quantitation lime; based on lowest calibration standard times all dilution factors used to calculate the reported results.
No results below the EQL are reported.

The sample was prepared for ion chromatography anion analysis by dilution at 200 -fold to 5000 -fold in order to ensure that the anions were measured within the calibration range.
Column overloading prohibited analysis of the sample as dilutions less than 200 -fold. The estimated quantitation limits which are based on the lowest calibration standard and the dilutions used for reporting the results are provided in Table 1.

Q.C. Comments:

Duplicates: No duplicate was provided. However, one sample was split and analyzed in duplicate. The duplicate relative percent difference (RPD) meets the acceptance criteria of $<20 \%$.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Matrix Spike (HCV 010328): A matrix spike was prepared from two samples all anion recoveries were within the 75% to 125% recovery acceptance criteria, as shown in Table 1 .

Laboratorv Control Sample-ISC/BS (HCV 010328 (a4): A Blank Spike (i.e., the spike solution used to prepare the matrix spike samples) was prepared and measured at the same time as the Matrix Spike sample and demonstrated recoveries within the 90% to 110% acceptance criteria.

Low Level Standard (LLS/LCV 010323): As shown in Table 1, the LLS meets the acceptance criteria of 75% to 125% recovery.
System Blank/Processing Blanks: Ten system blanks were processed during the analysis of the liquid sample. No anions were detected in the system blanks above the estimate quantitation level.

Quality Control Calibration Verification Check Standards (ICV 010328): Ten mid-range verification standards were analyzed throughout the analysis runs. Except for four oxalate measurements, all anions recoveries were within the acceptance criteria from 90% to 110% for the verification standard. The oxalate measurements that failed produced a recovery from 111% to 112%.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aquenus matrices. Actual detection limits or quantiation limits for specitic sample matrices may be determined, if requested.
- Routine precision and bits are typically $\pm 15 \%$ or better for non-complex aqueous samples that are free of interference and bave sinsilar

Archive Information:
. . . Putting Technology To Work

Interval Distribution
File/ LB

Date August 13, 2001
To M. W. Erie

From L.R. Greenwood

Subject Radiochemical Analyses for AN-102/C-104 Blend \triangle SR 6107

Samples of the filtrates from tanks AN-102/C-104 blend were analyzed for gamma emitters, ${ }^{\text {, }} \mathrm{Sr}$, alpha/AEA, E , and Am/ Cm according to ASR 6107 . The samples were acid digested or fused in the hot cells according to procedures PNL-ALO-128 or -115 and aliquots were delivered to the laboratory for analysis. The acid digestions were performed in four different batches in the hot cells, each batch having a separate process blank. The one solid sample, LS-16, was prepared in the hot cells by $\mathrm{KOH}-\mathrm{KNO}_{5}$ fusion. The attached reports list measured analyse activities in the original sample material in units of $u \mathrm{Ci} / \mathrm{g}$. The reported errors $(1-\sigma)$ represent the total propagated error including counting, dilution, yield, and calibration errors, as appropriate. Laboratory and process blank values given with each analysis are the best indicators of the method detection limits, taking into account the actual sample sizes and counting times used for each analysis.

Gamma Spectrometry

Sample aliquots were directly counted for gamma emitters according to procedure PNL-ALO-450. Since no sample preparation was involved, no laboratory blanks or spikes were prepared for these analyses other than the standard laboratory control samples and background counts. In order to meet the requested detection limits, diluted aliquots of the hot cell preparations were counted for periods of 3 to 14 hours. All of the samples showed the presence of significant ${ }^{137} \mathrm{C}$ activity: Some of the samples also showed the presence of ${ }^{619} \mathrm{Co},{ }^{154} \mathrm{Eu},{ }^{155} \mathrm{Eu}$, and ${ }^{241} \mathrm{Am}$. The MRQ values for extended counting time GEA were met in all cases. Detection limits are listed in the tables. The bot cell process blanks showed the presence of ${ }^{137} \mathrm{C}$. However, the activities in the blanks were negligible with respect to the samples. Sample duplicates showed good repeatability for sample LS12. However, agreement for the hot cell preparation duplicates was marginal for sample LS-16 with RPD values of 8% to 15% for all of the isotopes except for " ${ }^{\text {si }} \mathrm{Co}$, where the RPD value was 37%, well outside of the expected range. The reason for the large disagreement for this one isotope is not known, but may suggest contamination or heterogeneity in the sampling in the hot cells. The activities measured for ${ }^{2+1} \mathrm{Am}$ are in good agreement with the $\mathrm{Am} / \mathrm{AEA}$ results reported below for sample LS-17.

Strontium-90

The Sr separation was performed according to PNL-ALO-476 and radiochemical yields were traced with ${ }^{\text {si }} \mathrm{Sr}$. The separated fractions were then beta-counted according to RPG-CMC-408 and gamma
M. W. Uric

August 13, 2001
Page 2
counted according to PNL-ALO-450 (for ${ }^{85} \mathrm{Sr}$ determination and ${ }^{133} \mathrm{Cs}$ impurity assessment). Some of the separated Sr fractions contained a small amount of ${ }^{13} \mathrm{Cs}$ and a correction to the beta count rate was applied for these samples in addition to the small beta correction from ${ }^{85} \mathrm{Sr}$. In all cases, the ${ }^{13} \mathrm{C}$ correction was small compared to the activity in the samples. The samples were analyzed in two batches in the laboratory. The laboratory blank for the first batch showed significant ${ }^{i 33} \mathrm{Cs}$ contamination in the gamma count for ${ }^{*} \mathrm{Sr}$. After correction for the ${ }^{13} \mathrm{Cs}$ beta contribution, the resultant ${ }^{\text {" }} \mathrm{Sr}$ value in the lab blank was about 15% of the activity in the samples; however, the uncertainty is very high due to the large correction. The lab blank for the second batch and the hot cell process blanks did not show any significant " Sr contamination. Sample duplicates showed good repeatability in all cases. The blank spike and matrix spike yields ranged from 97% to 104%. All of the samples showed the presence of ${ }^{5 \prime \prime} \mathrm{Sr}$ at levels that were significantly less than the requested MRQ values.

Total Uranium

Total uranium was measured in samples LS-12 to I S-16 according to procedure PNNL-ALO-4014 using Kinetic Phosphoresence Analysis (KPA). Uranium was detected in both the hot cell preparation blanks; however, the levels were not significant relative to the samples. Sample duplicates and a lab replicate showed good repeatability. Since the analyses were performed on the samples as received from the hot cells, no sample spikes were required. LCS samples gave uranium results at 99% and 102% of the expected values. All of the measured uranium valucs were well below the requested MRQ values.

Total Alpha with Alpha Energy Analysis

The total alpha actirity was determined by direct-plating small aliquots of the acid-digested samples onto planchets according to RPG-CMC-4001. The samples were then counted on Iudlum ZnS scintillation detectors according to RPG-CMC-408. Alpha energy analyses were performed on all samples according to procedure RPG-CMC-422. Deaks were observed due to ${ }^{234} \mathrm{C}+{ }^{237} \mathrm{~N} p$, ${ }^{233} \mathrm{Pu}+{ }^{241} \mathrm{Pu},{ }^{234} \mathrm{Pu}+{ }^{241} A \mathrm{~m},{ }^{234} \mathrm{Cm}+{ }^{2+4} \mathrm{Cm}$, and ${ }^{243} \mathrm{Cm}$. The sums of the individual alpha emitters are gencrally in reasonable agreement with the total alpha data indicating minimal losses due to alpha self-absorption.

Most of the hot cell preparation blanks and the laboratory blank did not show any significant alpha contamination. However, for the hot cell acid digestion batch containing samples LS-01, LS-12, LS13 , and LS-14, the process blank contained high alpha contamination. The blank activity is small compared to sample IS-01, but it is significant compated to the other samples. The alpha acrivity in the blank is 16% of that in sample LS-12, 23% of LS- 13 , and 115% of sample IS- 14 . These accivities are well below the requested $M R Q$ value of $0.23 \mathrm{uCi} / \mathrm{ml}$, but the samples may need to be reprepared to meet the project reporting requirements. The total alpha and alpha/AEA data are also not in good agreement for this hot cell blank. On this blank, the alpha/AEA result is probably more reliable than the total alpha result. We re-prepped the alpha/AEA from a fresh aliquot, and its counting data agreed with the original alpha/AEA data.

Duplicate samples generally showed acceptable agreement taking into account the statistical uncertainties. The only exception is for ${ }^{241 / 244} \mathrm{Cm}$ for sample LS-05 where the RPD value is 34%.
M. W. Uric

August 13, 2001
Page 3
The reason for this difference is not known. The LCS and matrix spike recoveries were 102% and 105%, respectively.

Americium and Curium

The Am/Cm separations were performed for samples LS-12 to LS-16 according to PNL-ALO-417. The separated fractions were precipitation plated according to PNL-ALO-496 and the samples were counted by alpha spectrometry according to PNL-ALO-422. The curium is known to follow the americium and both these isotopes were traced with ${ }^{243} \mathrm{Am}$. As discussed above for the total alpha, the hot cell process blank with samples LS-12 to LS-14 was contaminated with alpha activity. There was no significant contamination of the hot cell process blank for the solids sample LS-16. The $\mathrm{Am} / \mathrm{Cm} A E A$ tesults are generally in good agreement with the total alpha $A E A$ results indicating that there is little ${ }^{238} \mathrm{Pu}$ in these samples. The only exception is for the contaminated hot cell process blank (01-1014 PB), which clearly has a different isotopic mix than the samples. The LCS and matrix spike recoveries were 99% and 100%, respectively. RPD values were acceptable taking into account the statistical uncertainties. Most of the sample activities were well below the requested MRQ values.

${ }^{99} \mathrm{Tc}$

The technetium in the solids sample LS- 16 was chemically separated for analysis according to procedure PNL-ALO-432. The separated fractions were then counted according to procedure RPG-CMC-408. No activity was detected in either the hot cell process blank or the laboratory blank. The RPD value was 23% suggesting some heterogeneity in the sample duplicates. The matrix spike recovery was low at 79%, probably due to the high salt content from the fusion preparation. The LCS recovery was 95%. The ${ }^{27} \mathrm{Tc}$ activities were well below the requested MRQ valucs.

Battelte Pacific	Northwe	Laborat													01-1003	
Radiochemical Radioanalytica!	rocessin Applicatio	Group-32 s Team	Building													
Client: Urie																
Cognizant Scie Con	tist: cur :	$\frac{16}{1}$	feen wang	le										Date: Date	$\frac{6-22-0}{6 / 2210}$	
						Measure	d Activit	($\mathrm{uCi} / \mathrm{g}$)	with 1-sigr	ma error						
ALO ID Client ID	$\begin{gathered} \text { Cr. } 51 \\ \text { Error \% } \end{gathered}$	$\begin{aligned} & \text { Fe-59 } \\ & \text { Error \% } \\ & \hline \end{aligned}$	Co-60 Error \%	Nb-95 Error \%	Ru-103 Error \%	Ru-106 Error \%	Sn-113 Error \%	Sb-125 Error \%	$\begin{gathered} \text { SnSb-126 } \\ \text { Error } \% \\ \hline \end{gathered}$	Cs-134 Error \%	Cs-137 Error \%	Ce-144 Error \%	Eu-152 Error \%	$\begin{aligned} & \text { Eu- } 154 \\ & \text { Error } \% \end{aligned}$	$\begin{aligned} & \text { Eu-155 } \\ & \text { Error \% } \end{aligned}$	Am-241 Error \%
$\begin{aligned} & 01-1014 \mathrm{~PB} \\ & \text { Process Blank } \end{aligned}$	<6. E-4	$<9 . \mathrm{E}-5$	$<5 . \mathrm{E}-5$	$<5 . E-5$	$<6 . \mathrm{E}-5$	$<5 . E-4$	<8.E-5	$<2 . E-4$	$<5 . E-5$	<6.E-5	$\begin{gathered} 6.99 E-3 \\ 3 \% \end{gathered}$	$<5 . \mathrm{E}-4$	<2.E-4	$<2 . E-4$	$<3 . E-4$	$<8 . E-4$
$\begin{aligned} & \text { 01-1014 } \\ & \text { LS-12 } \end{aligned}$	<9.E-2	<3.E-3	$\begin{gathered} 3.15 E-2 \\ 2 \% \end{gathered}$	<2.E-3	<1.E-2	$<7 . E-2$	<4.E-3	<4.E-2	<3.E-2	<2.E-3	$\begin{gathered} 1.27 E+2 \\ 2 \% \end{gathered}$	<4.E-2	<1.E-3	$\begin{gathered} 1.90 \mathrm{E}-2 \\ 6 \% \end{gathered}$	$<2 . E-2$	$<2 . E-2$
01-1014 DUP LS-12 DUP	$<9 . \mathrm{E}-2$	<3.E-3	$\begin{gathered} 3.14 \mathrm{E}-2 \\ 2 \% \end{gathered}$	$<2 . E-3$	<1.E-2	<7.E-2	<4.E-3	<4.E-2	$<3 . E-2$	$<2 . E-3$	$\begin{gathered} 1.27 \mathrm{E}+2 \\ 2 \% \end{gathered}$	$<5 . E-2$	<1.E-3	$\begin{gathered} 1.84 \mathrm{E}-2 \\ 6 \% \end{gathered}$	$<2 . \mathrm{E}-2$	$<2 . E-2$
RPD			0\%								0\%			3\%		
$\begin{aligned} & 01-1015 \\ & \text { LS-13 } \end{aligned}$	$<6 . \mathrm{E}-2$	$<2 . E-3$	$\begin{gathered} 3.22 \mathrm{E}-2 \\ 2 \% \end{gathered}$	<1.E-3	<8.E-3	<5.E-2	$<3 . \mathrm{E}-3$	$<3 . \mathrm{E}-2$	$<2 . E-2$	<1.E-3	$\begin{gathered} 1.32 E+2 \\ 2 \% \end{gathered}$	<3.E-2	<9.E-4	$\begin{gathered} 2.01 \mathrm{E}-2 \\ 4 \% \end{gathered}$	$<1 . E-2$	$<1 . \mathrm{E}-2$
$\begin{aligned} & \text { 01-1016 } \\ & \text { LS-14 } \end{aligned}$	<2.E-2	$<3 . E-4$	$\begin{gathered} 5.07 \mathrm{E} \cdot 3 \\ 2 \% \end{gathered}$	<2.E-4	<2.E-3	$<1 . \mathrm{E}-2$	<4.E-4	$<7 . E-3$	$<7 . \mathrm{E}-4$	$<2 . \mathrm{E}-4$	$\begin{gathered} 2.42 \mathrm{E}+1 \\ 3 \% \end{gathered}$	<1, E-2	$<3 . E-4$	$\begin{gathered} 2.25 \mathrm{E}-3 \\ 7 \% \end{gathered}$	<6.E-3	$<2 . \mathrm{E}-2$
01-1017PB Process Blank	<2.E-2	$<2 . E-3$	<2.E-3	<1.E-3	$<2 . \mathrm{E}-3$	<1.E-2	<3.E-3	$<5 . E-3$	$<2 . E-3$	$<2 . E-3$	$\begin{gathered} 8.64 \mathrm{E}-2 \\ 3 \% \end{gathered}$	$<1 . E-2$	<7.E-3	<4.E-3	<8.E-3	<1, E-2
$\begin{aligned} & \text { 01-1017 } \\ & \text { LS-16 } \end{aligned}$	<4.E-1	$<2 . \mathrm{E}-2$	$\begin{gathered} 4.88 \mathrm{E}-2 \\ 7 \% \end{gathered}$	<1.E-2	$<5 . \mathrm{E}-2$	$<3 . E-1$	$<3 . E-2$	<2.E-1	$<6 . E-2$	$<2 . E-2$	$\begin{gathered} 1.37 E+2 \\ 3 \% \end{gathered}$	<4.E-1	$<5 . \mathrm{E}-2$	$\begin{gathered} 4.46 \mathrm{E}+0 \\ 2 \% \end{gathered}$	$\begin{gathered} 2.52 E+0 \\ 5 \% \end{gathered}$	$\begin{gathered} 3.82 \mathrm{E}+0 \\ 5 \% \end{gathered}$
01-1017 DUP LS-16 DUP	<4.E-1	$<2 . E-2$	$\begin{gathered} 7.07 \mathrm{E}-2 \\ 5 \% \end{gathered}$	$<1 . E-2$	$<5 . E-2$	<3.E-1	<2.E-2	<2.E-1	<6.E-2	<1.E-2	$\begin{gathered} 1.48 \mathrm{E}+2 \\ 3 \% \end{gathered}$	$<3 . \mathrm{E}-1$	<4.E-2	$\begin{gathered} 3.84 \mathrm{E}+0 \\ 2 \% \end{gathered}$	$\begin{gathered} 2.23 E+0 \\ 5 \% \end{gathered}$	$\begin{gathered} 3.42 \mathrm{E}+0 \\ 6 \% \end{gathered}$
RPD			37\%								8\%			15\%	12\%	11\%

Battelle Pacific Northwest Laboratory
Radiochemical Processing Group- 325 Building Chemical Measurements Center
Client: R. Hallen
08/13/01

Total Alpha $\pm 1 \mathrm{~s}$	Alpha Energy Analysis ___					
	U-234+ Np-237 $\pm 1 \mathrm{~s}$	$\begin{gathered} \text { Pu-239+ } \\ \text { Pu-240 } \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \text { Pu-238+ } \\ \text { Am-241 } \\ \pm 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{Cm}-243+ \\ \mathrm{Cm}-244 \\ \pm 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{Cm}-242 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	Sum of individual alpha emitters
$\begin{gathered} 5.90 \mathrm{E}-2 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 3.23 \mathrm{E}-4 \\ \pm 16 \% \end{gathered}$	$\begin{gathered} 2.02 \mathrm{E}-3 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 5.02 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 2.43 \mathrm{E}-3 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 2.16 \mathrm{E}-4 \\ \pm 19 \% \end{gathered}$	$\begin{gathered} 5.52 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
$\begin{gathered} 5.73 E-2 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 3.58 E-4 \\ \pm 12 \% \end{gathered}$	$\begin{gathered} 1.93 E-3 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 4.73 E-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 2.36 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$\begin{aligned} & 1.70 \mathrm{E}-4 \\ & \pm 17 \% \end{aligned}$	$\begin{gathered} 5.21 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
3\%	10\%	5\%	6\%	3\%	24\%	6\%
$\begin{gathered} 3.41 \mathrm{E}-4 \\ \pm 7 \% \end{gathered}$	$\begin{gathered} 7.82 \mathrm{E}-7 \\ \pm 28 \% \end{gathered}$	$\begin{gathered} 3.42 \mathrm{E}-5 \\ \pm 4 \% \end{gathered}$	$\begin{gathered} 2.05 \mathrm{E}-4 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 9.81 \mathrm{E}-5 \\ \pm 2 \% \end{gathered}$	<4.E-7	$\begin{gathered} 3.38 \mathrm{E}-4 \\ \pm 1 \% \end{gathered}$
$\begin{gathered} 3.57 \mathrm{E}-2 \\ \pm 7 \% \end{gathered}$	$\begin{gathered} 2.17 \mathrm{E}-4 \\ \pm 16 \% \end{gathered}$	$\begin{gathered} 1.87 \mathrm{E}-3 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 3.38 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 1.93 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 9.69 E-5 \\ \pm 25 \% \end{gathered}$	$\begin{gathered} 3.79 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
$\begin{gathered} 4.03 \mathrm{E}-2 \\ \pm 7 \% \end{gathered}$	$\begin{gathered} 2.47 \mathrm{E}-4 \\ \pm 16 \% \end{gathered}$	$\begin{gathered} 1.56 \mathrm{E}-3 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 3.28 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 1.69 \mathrm{E}-3 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 1.47 \mathrm{E}-4 \\ \pm 20 \% \end{gathered}$	$\begin{gathered} 3.64 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
12\%	13\%	18\%	3\%	13\%	41\%	4\%
$\begin{gathered} 1.16 \mathrm{E}-2 \\ \pm 13 \% \end{gathered}$	$\begin{gathered} 1.66 \mathrm{E}-4 \\ \pm 8 \% \end{gathered}$	$\begin{gathered} 7.57 \mathrm{E}-4 \\ \pm 4 \% \end{gathered}$	$\begin{gathered} 9.51 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 8.04 \mathrm{E}-4 \\ \pm 4 \% \end{gathered}$	$\begin{gathered} 5.87 \mathrm{E}-5 \\ \pm 14 \% \end{gathered}$	$\begin{gathered} 1.13 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
1.13E-2	1.75E-	8.55 E	$9.80 \mathrm{E}-3$	7.93E-4	7.11E-5	1.17E-2
$\pm 15 \%$	$\pm 8 \%$	$\pm 4 \%$	$\pm 2 \%$	$\pm 4 \%$	$\pm 13 \%$	$\pm 2 \%$
3\%	5\%	12\%	3\%	1\%	19\%	3\%
$\begin{gathered} 8.92 E-3 \\ \pm 16 \% \end{gathered}$	$\begin{gathered} 1.78 \mathrm{E}-4 \\ \pm 8 \% \end{gathered}$	$\begin{gathered} 7.54 \mathrm{E}-4 \\ \pm 4 \% \end{gathered}$	$\begin{gathered} 8.10 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 6.54 \mathrm{E}-4 \\ \pm 4 \% \end{gathered}$	$\begin{gathered} 4.45 \mathrm{E}-5 \\ \pm 16 \% \end{gathered}$	$\begin{gathered} 9.73 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$
$\begin{aligned} & 1.44 \mathrm{E}-2 \\ & \pm 12 \% \end{aligned}$	$\begin{gathered} 1.49 \mathrm{E}-4 \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 6.40 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 8.46 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 6.97 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 3.73 \mathrm{E}-5 \\ \pm 21 \% \end{gathered}$	$\begin{gathered} 9.98 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$
47\%	18\%	16\%	4\%	6\%	18\%	3\%

ALO ID
Client ID
$01-1003$
LS-01
01-1003 DUP
LS-01 DUP
RPD
01-1004 PB
Process Blank
$01-1004$
LS-02
$01-1004$ DUP
LS-02 DUP
RPD
$01-1005$
LS-03
$01-1005$ DUP
LS-03 DUP
RPD
$01-1006$
LS-04
$01-1006$ DUP
LS-04 DUP
RPD

Measured Activities ($\mu \mathrm{Ci} / \mathrm{g}$) with 1-sigma error

ALO ID Client ID	Total Alpha $\pm 1 \mathrm{~s}$	Alpha Energy Analysis					
		$\begin{gathered} \mathrm{U}-234+ \\ \mathrm{Np}-237 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Pu}-239+ \\ \mathrm{Pu}-240 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \text { Pu-238+ } \\ \text { Am-241 } \\ \pm 15 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cm}-243+ \\ \mathrm{Cm}-244 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \text { Cm- } 242 \\ \pm 15 \\ \hline \end{gathered}$	Sum of individual alpha emitters
01-1006 Lab DUP LS-04		$\begin{gathered} 2.15 \mathrm{E}-4 \\ \pm 9 \% \end{gathered}$	$\begin{gathered} 7.27 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 8.99 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 7.25 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 6.83 \mathrm{E}-5 \\ \pm 16 \% \end{gathered}$	$\begin{gathered} 1.07 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
$\begin{aligned} & \text { 01-1007 } \\ & \text { LS-05 } \end{aligned}$	$\begin{aligned} & 1.12 E-2 \\ & \pm 14 \% \end{aligned}$	$\begin{gathered} 1.62 E-4 \\ +8 \% \end{gathered}$	$\begin{gathered} 7.64 \mathrm{E}-4 \\ \pm 4 \% \end{gathered}$	$\begin{gathered} 9.06 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 1.07 \mathrm{E}-3 \\ \pm 3 \% \end{gathered}$	$\begin{gathered} 5.22 \mathrm{E}-5 \\ \pm 15 \% \end{gathered}$	$\begin{aligned} & 1.11 \mathrm{E}-2 \\ & +2 \% \end{aligned}$
01-1007 DUP LS-05 DUP	$\begin{gathered} 9.83 \mathrm{E}-3 \\ \pm 16 \% \end{gathered}$	$\begin{gathered} 1.38 \mathrm{E}-4 \\ \pm 13 \% \end{gathered}$	$\begin{gathered} 6.28 \mathrm{E}-4 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 8.84 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 7.57 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 4.90 \mathrm{E}-5 \\ \pm 22 \% \end{gathered}$	$\begin{gathered} 1.04 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
RPD	13\%	16\%	20\%	2\%	34\%	2\%	6\%
$\begin{aligned} & \text { 01-1008 PB } \\ & \text { Process Blank } \end{aligned}$	$\begin{gathered} 2.63 \mathrm{E}-4 \\ \pm 9 \% \end{gathered}$	$<4 . \mathrm{E}-7$	$\begin{gathered} 2.83 E-5 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.68 \mathrm{E}-4 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 7.30 E-5 \\ \pm 3 \% \end{gathered}$	<4.E-7	$\begin{gathered} 2.70 \mathrm{E}-4 \\ \pm 2 \% \end{gathered}$
$\begin{aligned} & \text { 01-1008 } \\ & \text { LS-06 } \end{aligned}$	$\begin{aligned} & 1.87 E-2 \\ & \pm 11 \% \end{aligned}$	$\begin{gathered} 1.93 E-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 9.50 E-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.30 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{aligned} & \text { 9.65E-4 } \\ & \pm 5 \% \end{aligned}$	$\begin{gathered} 7.27 \mathrm{E}-5 \\ \pm 19 \% \end{gathered}$	$\begin{gathered} 1.52 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
01-1008 DUP LS-06 DUP	$\begin{aligned} & 1.24 \mathrm{E}-2 \\ & \pm 12 \% \end{aligned}$	$\begin{gathered} 1.92 E-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 8.66 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.14 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 8.26 E-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 7.26 \mathrm{E}-5 \\ \pm 18 \% \end{gathered}$	$\begin{gathered} 1.34 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
RPD	41\%	1\%	9\%	13\%	16\%	0\%	13\%
$\begin{aligned} & \text { 01-1009 } \\ & \text { LS-07 } \end{aligned}$	$\begin{aligned} & 1.43 E-2 \\ & \pm 14 \% \end{aligned}$	$\begin{aligned} & 1.81 \mathrm{E}-4 \\ & \pm 12 \% \end{aligned}$	$\begin{gathered} 1.03 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.34 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 1.18 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 8.09 E-5 \\ \pm 18 \% \end{gathered}$	$\begin{gathered} 1.59 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
01-1009 DUP LS-07 DUP	$\begin{aligned} & \text { 1.41E-2 } \\ & \pm 12 \% \end{aligned}$	$\begin{gathered} 1.70 \mathrm{E}-4 \\ \pm 12 \% \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.25 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 9.82 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 4.54 \mathrm{E}-5 \\ \pm 24 \% \end{gathered}$	$\begin{gathered} 1.47 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
RPD	1\%	6\%	3%	7\%	18\%	56\%	8\%
$\begin{aligned} & \text { 01-1010 } \\ & \text { LS-08 } \end{aligned}$	$\begin{gathered} 1.82 \mathrm{E}-2 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 2.41 \mathrm{E}-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 1.10 E-3 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.32 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 9.65 \mathrm{E}-4 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 1.09 \mathrm{E}-4 \\ \pm 17 \% \end{gathered}$	$\begin{gathered} 1.56 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
01-1010 DUP LS-08 DUP	$\begin{aligned} & 1.29 E-2 \\ & \pm 13 \% \end{aligned}$	$\begin{gathered} 1.98 \mathrm{E}-4 \\ \pm 13 \% \end{gathered}$	$\begin{gathered} 9.70 E-4 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 1.29 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}-3 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 9.26 E-5 \\ \pm 19 \% \end{gathered}$	$\begin{gathered} 1.52 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
RPD	34\%	20\%	13\%	2\%	4\%	16\%	3\%
$\begin{aligned} & \text { 01-1011 } \\ & \text { LS-09 } \end{aligned}$	$\begin{aligned} & 1.35 \mathrm{E}-2 \\ & \pm 13 \% \end{aligned}$	$\begin{gathered} 1.86 \mathrm{E}-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 9.00 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.13 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 8.53 E-4 \\ \pm 5 \% \end{gathered}$	$\begin{aligned} & 8.06 \mathrm{E}-5 \\ & \mathrm{t} 17 \% \end{aligned}$	$\begin{gathered} 1.33 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
01-1011 DUP LS-09 DUP	$\begin{aligned} & 1.55 \mathrm{E}-2 \\ & \pm 11 \% \end{aligned}$	$\begin{gathered} 1.83 \mathrm{E}-4 \\ \pm 8 \% \end{gathered}$	$\begin{gathered} 1.07 \mathrm{E}-3 \\ \pm 3 \% \end{gathered}$	$\begin{gathered} 1.17 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 8.70 E-4 \\ \pm 4 \% \end{gathered}$	$\begin{gathered} 5.32 E-5 \\ \pm 15 \% \end{gathered}$	$\begin{gathered} 1.39 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
RPD	14\%	2\%	17\%	3\%	2\%	41\%	4\%

ALO ID Client ID	Alpha Energy Analysis						
	Total Alpha $\pm 1 \mathrm{~s}$	$\begin{gathered} \mathrm{U}-234+ \\ \mathrm{Np}-237 \\ \pm 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { Pu-239+ } \\ \text { Pu-240 } \\ \pm 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} \text { Pu-238+ } \\ \text { Am- } 241 \\ \pm 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{Cm}-243+ \\ \mathrm{Cm}-244 \\ \pm 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{Cm}-242 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	Sum of individual alpha emitters
$\overline{01-1012 \mathrm{~PB}}$ Process Blank	$\begin{gathered} 2.25 \mathrm{E}-4 \\ \pm 9 \% \end{gathered}$	<5 E-7	$\begin{gathered} 2.61 \mathrm{E}-5 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.67 \mathrm{E}-4 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 6.17 \mathrm{E}-5 \\ \pm 3 \% \end{gathered}$	$<5 . \mathrm{E}-7$	$\begin{gathered} 2.56 \mathrm{E}-4 \\ \pm 2 \% \end{gathered}$
$\begin{aligned} & 01-1012 \\ & \text { LS-10 } \end{aligned}$	$\begin{aligned} & 1.94 \mathrm{E}-2 \\ & \pm 10 \% \end{aligned}$	$\begin{gathered} 2.43 E-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 1.05 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.19 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{aligned} & 1.02 \mathrm{E}-3 \\ & \pm 5 \% \end{aligned}$	$\begin{gathered} 6.90 \mathrm{E}-5 \\ \pm 21 \% \end{gathered}$	$\begin{gathered} 1.43 E-2 \\ \pm 2 \% \end{gathered}$
$\begin{aligned} & 01-1012 \text { DUP } \\ & \text { LS-10 DUP } \end{aligned}$	$\begin{gathered} 1.51 \mathrm{E}-2 \\ \pm 13 \% \end{gathered}$	$\begin{gathered} 2.02 \mathrm{E}-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 1.12 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 1.31 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 9.36 E-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 7.84 \mathrm{E}-5 \\ \pm 18 \% \end{gathered}$	$\begin{gathered} 1.54 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
RPD	25\%	18\%	6\%	10\%	9\%	13\%	8\%
$\begin{aligned} & \text { 01-1012 Lab Dup } \\ & \text { LS-10 DUP } \end{aligned}$		$\begin{gathered} 2.11 \mathrm{E}-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 1.07 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$\begin{aligned} & 1.22 \mathrm{E}-2 \\ & \pm 2 \% \end{aligned}$	$\begin{gathered} 9.69 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 6.62 E-5 \\ \pm 20 \% \end{gathered}$	$\begin{gathered} 1.45 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
$\begin{aligned} & \text { 01-1013 } \\ & \text { LS-11 } \end{aligned}$	$\begin{gathered} 1.44 \mathrm{E}-2 \\ \pm 12 \% \end{gathered}$	$\begin{aligned} & 1.87 \mathrm{E}-4 \\ & \pm 11 \% \end{aligned}$	$\begin{gathered} 1.01 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$\begin{aligned} & 1.13 \mathrm{E}-2 \\ & \pm 2 \% \end{aligned}$	$\begin{gathered} 8.70 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 5.53 E-5 \\ \pm 21 \% \end{gathered}$	$\begin{gathered} 1.34 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
01-1013 DUP LS-11 DUP	$\begin{aligned} & 1.63 \mathrm{E}-2 \\ & \pm 12 \% \end{aligned}$	$\begin{gathered} 1.89 \mathrm{E}-4 \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 1.07 \mathrm{E}-3 \\ \pm 4 \% \end{gathered}$	$\begin{gathered} 1.17 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$	$\begin{aligned} & 8.82 E-4 \\ & +5 \% \end{aligned}$	$\begin{gathered} 7.23 E-5 \\ \pm 17 \% \end{gathered}$	$\begin{gathered} 1.39 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
RPD	12\%	1\%	6\%	3\%	1\%	27\%	4\%
01-1014 PB Process Blank	$\begin{gathered} 1.78 \mathrm{E}-3 \\ \pm 3 \% \end{gathered}$	<1.E-6	$\begin{gathered} 3.41 \mathrm{E}-4 \\ \pm 2 \% \end{gathered}$	$\begin{aligned} & 2.23 E-3 \\ & \pm 2 \% \end{aligned}$	$\begin{gathered} 2.01 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 2.79 \mathrm{E}-6 \\ \pm 24 \% \end{gathered}$	$\begin{gathered} 4.58 \mathrm{E}-3 \\ \pm 1 \% \end{gathered}$
$\begin{aligned} & 01-1014 \\ & \text { LS-12 } \end{aligned}$	$\begin{gathered} 1.18 E-2 \\ \pm 15 \% \end{gathered}$	$\begin{gathered} 1.71 \mathrm{E}-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 6.64 \mathrm{E}-4 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 8.68 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 5.29 \mathrm{E}-4 \\ \pm 6 \% \end{gathered}$	$\begin{aligned} & 3.54 \mathrm{E}-5 \\ & \pm 25 \% \end{aligned}$	$\begin{gathered} 1.01 E-2 \\ \pm 2 \% \end{gathered}$
$\begin{aligned} & \text { 01-1014 Dup } \\ & \text { LS-12 DUP } \end{aligned}$	$\begin{aligned} & 1.03 E-2 \\ & \pm 15 \% \end{aligned}$	$\begin{gathered} 1.79 \mathrm{E}-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 7.56 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 8.54 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 5.47 \mathrm{E}-4 \\ \pm 6 \% \end{gathered}$	$\begin{aligned} & 3.17 \mathrm{E}-5 \\ & \pm 27 \% \end{aligned}$	$\begin{gathered} 1.01 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
RPD	14\%	5\%	13\%	2\%	3\%	11\%	0\%
01-1014 Lab DUP LS-12							
$\begin{aligned} & 01-1015 \\ & \text { LS-13 } \end{aligned}$	$\begin{gathered} 7.90 \mathrm{E}-3 \\ \pm 17 \% \end{gathered}$	$\begin{gathered} 1.88 E-4 \\ \pm 11 \% \end{gathered}$	$\begin{gathered} 7.32 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 8.48 E-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 6.10 E-4 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 3.93 E-5 \\ \pm 24 \% \end{gathered}$	$\begin{gathered} 1.00 \mathrm{E}-2 \\ \pm 2 \% \end{gathered}$
$\begin{aligned} & \text { 01-1016 } \\ & \text { LS-14 } \end{aligned}$	<4.E-3	$\begin{aligned} & 3.69 E-5 \\ & \pm 24 \% \end{aligned}$	$\begin{gathered} 1.20 E-4 \\ \pm 13 \% \end{gathered}$	$\begin{aligned} & 1.32 E-3 \\ & \pm 4 \% \end{aligned}$	$\begin{gathered} 1.07 \mathrm{E}-4 \\ \pm 14 \% \end{gathered}$	<2.E-5	$\begin{gathered} 1.60 \mathrm{E}-3 \\ \pm 4 \% \end{gathered}$
$\begin{aligned} & \text { 01-1016 Rep } \\ & \text { LS-14 } \end{aligned}$							
RPD							

File: 01-1003.xls

Americium/Curium Analysis				$\begin{gathered} \text { Uranium } \\ \mu \mathrm{g} / \mathrm{g} \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$
$\begin{gathered} \mathrm{Am}-241 \\ +1 \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{Cm}-243+ \\ \mathrm{Cm}-244 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cm}-242 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \text { Sum of } \\ \mathrm{Am}+\mathrm{Cm} \end{gathered}$	
$\begin{gathered} 2.84 \mathrm{E}-3 \\ \pm 4 \% \end{gathered}$	$\begin{gathered} 1.84 \mathrm{E}-3 \\ \pm 5 \% \end{gathered}$	$<3 . E-5$	$\begin{gathered} 4.71 \mathrm{E}-3 \\ \pm 3 \% \end{gathered}$	$\begin{gathered} 1.82 \mathrm{E}+0 \\ 2 \% \end{gathered}$
$\begin{gathered} 3.99 E+0 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 1.64 E-1 \\ \pm 6 \% \end{gathered}$	$\begin{aligned} & 1.09 E-2 \\ & \pm 21 \% \end{aligned}$	$\begin{gathered} 4.16 E+0 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 3.25 E+2 \\ 3 \% \end{gathered}$
$\begin{gathered} 3.45 \mathrm{E}+0 \\ +3 \% \end{gathered}$	$\begin{gathered} 1.37 \mathrm{E}-1 \\ \pm 7 \% \end{gathered}$	$\begin{aligned} & 1.08 \mathrm{E}-2 \\ & \pm 24 \% \end{aligned}$	$\begin{gathered} 3.60 \mathrm{E}+0 \\ \pm 3 \% \end{gathered}$	$\begin{gathered} 2.97 \mathrm{E}+2 \\ 3 \% \end{gathered}$
15\%	18\%	1\%		9\%
100\%				
99\%				$\begin{aligned} & 102 \% \\ & 99 \% \end{aligned}$
<2.E-5	$<2 . \mathrm{E}-5$	$<7 . E-6$		<2.E-5

Measured Activities ($\mu \mathrm{Ci} / \mathrm{g}$) with 1-sigma error

Total Alpha $\pm 1 \mathrm{~s}$	Alpha Energy Analysis					
	$\begin{gathered} \mathrm{U}-234+ \\ \mathrm{Np}-237 \\ \pm 1 \mathrm{~s} \end{gathered}$	$\begin{gathered} \mathrm{Pu}-239+ \\ \mathrm{Pu}-240 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \text { Pu- } 238+ \\ \mathrm{Am}-241 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cm}-243+ \\ \mathrm{Cm}-244 \\ \pm 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{Cm}-242 \\ \pm 1 \mathrm{~s} \end{gathered}$	Sum of individual alpha emitters
$\begin{gathered} 6.31 \mathrm{E}-3 \\ \pm 9 \% \end{gathered}$	$<2 . E-5$	$\begin{gathered} 9.48 \mathrm{E}-4 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 4.82 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 1.75 E-3 \\ \pm 3 \% \end{gathered}$	$<2 . E-5$	$\begin{gathered} 7.56 \mathrm{E}-3 \\ \pm 2 \% \end{gathered}$
$\begin{gathered} 4.70 E+0 \\ \pm 3 \% \end{gathered}$	$<1 . \mathrm{E}-3$	$\begin{gathered} 2.52 \mathrm{E}-1 \\ \pm 3 \% \end{gathered}$	$\begin{gathered} 4.37 \mathrm{E}+0 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 1.70 \mathrm{E}-1 \\ \pm 3 \% \end{gathered}$	$\begin{gathered} 1.58 \mathrm{E}-2 \\ \pm 10 \% \end{gathered}$	$\begin{gathered} 4.81 \mathrm{E}+0 \\ \pm 2 \% \end{gathered}$
$\begin{gathered} 4.16 E+0 \\ \pm 3 \% \end{gathered}$	$\begin{gathered} 8.33 E-3 \\ \pm 28 \% \end{gathered}$	$\begin{gathered} 2.25 \mathrm{E}-1 \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 3.70 \mathrm{E}+0 \\ \pm 2 \% \end{gathered}$	$\begin{gathered} 1.52 \mathrm{E}-1 \\ \pm 6 \% \end{gathered}$	$\begin{gathered} 1.31 \mathrm{E}-2 \\ \pm 22 \% \end{gathered}$	$\begin{gathered} 4.10 \mathrm{E}+0 \\ \pm 2 \% \end{gathered}$
12\%		11\%	17\%	11\%	19\%	16\%
105\%		$\begin{gathered} 95 \% \\ 104 \% \end{gathered}$				
102\%		$\begin{aligned} & 113 \% \\ & 116 \% \end{aligned}$				
<4.E-3	$\begin{aligned} & <2 . E-5 \\ & <2 . E-5 \end{aligned}$	$\begin{aligned} & <2 . E-5 \\ & <2 . E-5 \end{aligned}$	$\begin{aligned} & <3 . E-5 \\ & <2 . E-5 \end{aligned}$	$\begin{aligned} & <2 . E-5 \\ & <9 . E-6 \end{aligned}$	$\begin{aligned} & <2 . E-5 \\ & <9 . E-6 \end{aligned}$	

ALO ID
Client 1 D

Project / WP\#:	$42365 /$ W58166
ASR\#:	6130
Client:	S. Fiskum
Total Samples:	2

RPL\#:	$01-01345$
Client ID:	"ANS $102 / 104-\mathrm{C}-\mathrm{F} / \mathrm{A} "$
Sample Preparation: $\mathrm{PNL}-\mathrm{ALO}-106(0.2 \mathrm{~mL} / 20 \mathrm{~mL})$	

Procedure: PNNL-ALO-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICPAES).

Analyst: D.R. Sanders
Analysis Date (File): 07-18-2001 (A0700)
See Chemical Measurement Center 98620 file: ICP-325-405-1
(Calibration and Maintenance Records)
M\&TE Number: $\quad \frac{\text { WB73520 }}{\text { (ICPAES instrument) }}$
360-06-01-029 (Mettle AT400 Balance)

Reviewed by

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report

Two liquid samples (ANC 102/104-C F/A and AN102CST-C F/A) from Analytical Service Request 6130 were prepared by acid digestion per PNL-ALO-106. The samples werc digesting in the laboratory (i.e., not in the Shielded Analytical Laboratory) by using 0.2 mL of sample and diluting to a final rolume of 20 mL .

In the Analytical Service Request (ASR), Na and K were identified as analytes of interest for this work along with 'minors as found'. Therefore, any analyte detected in the samples besides Na and K was considered an analyte of interest; i.e., $\mathrm{Al}, \mathrm{B}, \mathrm{Ba}, \mathrm{Ca}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{P}, \mathrm{Pb}, \mathrm{Si}, \mathrm{Sr}$, and Zn . The quality control (QC) tesults for each of these analytes has been evaluated and is presented below. Analytes other than those detected part of the ICPAES analysis are reported, but have concentrations less than the method detection limit (MDL) and have not been fully evaluated for QC performance.

The attached ICPAES Results (2 pages) presents the final results. Results are from the direct measurement of the digestates, except for the AN102CST-C F/A duplicate which was measured following an additional $2 x$ dilution at the ICPAES. The ICPAES measurement results are reported in $\mu \mathrm{g} / \mathrm{mL}$. of liquid sample and have been corrected for all dilutions resulting from sample processing.

The following is a list of quality control measurement results relative to ICPAES analysis requirements of the controlling QA plan A digestion processing blank, laboratory control sample (blank spike), and duplicate were prepared with the sample. Through a mix up in the processing laboratory, no matrix spike was prepared from either of the samples analyzed by ICPAES; therefore, post spike were used to assess matrix interferences. The blank spike was prepared by using 1 ml of a custom mult-element solution "INT-QC-MCVA-1B" per 20 mL digestate volume.

Process Blank:

Concentration of analytes of interest measured in the process blank were all within tolerance limit of $\leq \mathrm{EQL}$ or less than $\leq 5 \%$ of the concentration in the sample, cxcept for $\mathrm{B}, \mathrm{Ba}, \mathrm{Fe}$, and Si. The sample concentration for $\mathrm{B}, \mathrm{Ba}, \mathrm{Fe}$, and Si are essentially the same as the processing blank concentrations, suggesting that there is little, if any, $\mathrm{B}, \mathrm{Ba}, \mathrm{Fe}$, or Si in the samples.

Blank Spike (haboratory control sample):

The blank spike recovery for analyes of interest was within the acceptance criteria of 80% to 120%, except for B, Mo, and Si . For B the high recovery (i.e., 210%) is attributed to digesting the BS in glass vials. Silicon and A :o were not included in the BS since the only analytes identified as required were Na and K.

Duplicate RPD (Relative Percent Difference):

For those analytes of interest measured above the estimated Method Detection Limit (MDL), the RPDs were within the acceptance criteria of less than 20%.

Matrix Spiked Sample:

No matrix spike was analyzed with this batch of samples.

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report

Post-Spiked Samples (Group A; all analytes of interest):

All post-spiked analytes of interest in samples tested were tecovered within tolerance of 75% to 125%, except Al and Na . The post spike analysis uses a general spiking solution intended to be usable on the majority of sample analyzed by ICPAES. However, for the sample selected for post spiking, the spike concentration for Al and Na was less than 20% of the sample concentration and the recorery results are considered meaningless. For these analytes, the use of serinl dilution results is required to evaluate potential matrix interferences.

Post-Spiked Samples (Group B; other analyres):

The post spiked analytes (i.e., analytes other than those identified as analytes of interest) were within tolerance of 75% to 125%.

Serial dilution:

Serial dilution was required for Al and Na , since both the post spike concentrations were less than 20% of the sample concentration (i.e., recoveries could not be evaluated). These analytes demonstrated a percent difference (\%D) within the acceptance criteria of $\pm 10 \%$ after correcting for dilution.

Comments:

1) "Final Results" have been corrected for all haboratory dilution performed on the sample during processing and analysis unless specificilly noted.
2) Detection limits (Det. Limit) shown are for acidified water. Detection limits for other matrices may be determined if requested. Method detection limits (NDI.) can be estimated by muluplying the 'Afulupher' imes the Detection Limit.
3) Routine precision and bias is typically $=15 \%$ or better for samples in dilute, acidified water (e.g. 2% y/v HNO , or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than $5000 \mu \mathrm{~g} / \mathrm{mL}$. (0.5 per cent by weight). Note that bracketed values listed in the data report are within ten umes instrument detection limit (adjusted for processing facrors and lalurator: dilutions) and have a potential uncertainty much greater than 15%
4) Absolute precision, bias and detection "imits may be determined on each sample if required by the client.
5) The maximum number of significant figures for all ICP measurements is 2 .

Det. Limit	Muftiplier=	100	100	200	200
	RPL\# $=$	01-1338 PB	01-1345	01.1354	01-1354 D
	Client 10 $=$	Process Blank	$\begin{gathered} \text { ANC } 102 \\ / 104-\mathrm{C}-\mathrm{F} / \mathrm{A} \end{gathered}$	$\begin{gathered} \text { AN } 102 \text { CST- } \\ \text { C-FIA } \end{gathered}$	$\begin{gathered} \text { AN102 CST- } \\ \text { C-F/A } \end{gathered}$
ug/mL	Analytes	ug/mL	ug/mL	ug/mL	$\underline{u g} / \mathrm{mL}$
0.150	Na	1,010	111,000	136,000	146,000
2.000	K	--	[950]	[1,100]	[1,100]
Other Analyte Detected					
0.050	A!	84.1	8.210	6,520	6.730
0.050	B	750	624	815	755
0.010	Ba	(1.3)	[1.6]	[2.5]	\rightarrow
0.250	Ca	-	[150]	[190]	[190]
0.015	Cd	--	26.0	32.1	32.3
0.020	Cr	--	108	119	121
0.025	Cu	--	[10]	[8.4]	[7.5]
0.025	Fe	[5.7]	[9.4]	[9.1]	[8.8]
0.050	Mo	-	[22]	[26]	[27]
0.030	Ni	--	188	237	240
0.100	P	--	748	457	455
0.100	Pb	--	[67]	[88]	[84]
0.500	Si	973	1.110	1,250	1,240
0.015	Sr	--	86.5	60.3	62.1
0.050	Zn	--	[8.6]	\cdots	--
Other Analytes Measured but Not Detected					
0.025	Ag	--	--	-	-
0.250	As	--	--	--	-
0.010	Be	--	\cdots	\cdots	--
0.100	Bi	--	\cdots	-	--
0.200	Ce	--	--	-	-.
0.050	Co	--	--	\cdots	--
0.050	Dy	--	--	--	--
0.100	Eu	--	--	\cdots	\cdots
0.050	La	--	\cdots	\cdots	-
0.030	Li	--	--	\cdots	--
0.100	Mg	--	--	\cdots	--
0.050	Mn	--	--	\cdots	-
0.100	Nd	--	--	--	-
0.750	Pd	-	-	--	--
0.300	Rh	--	--	--	-
1.100	Ru	\cdots	--	--	--
0.500	Sb	--	-	\cdots	--
0.250	Se	--	--	--	--
1.500	Sn	\cdots	--	--	--
1.500	Te	--	--	\cdots	--
1.000	Th	--	--	--	\cdots
0.025	Ti	--	--	\cdots	-
0.500	TI	\cdots	\cdots	--	-
2.000	U	--	\cdots	\cdots	\because
0.050	V	--	\cdots	\cdots	--
2.000	W	--	--	\cdots	--
0.050	Y	\cdots	\cdots	\cdots	\cdots
0.050	Zr	-	--	--	\cdots

Note: 1) Overall error greater than 10 -times cetection fimit is estimated to be within $+1-15 \%$. 2) Values in brackets If are within 10-times detection limit with errors likely to exceed 15%. 3) "-." indicate measurement is befow detection. Sample detection limit may be found by multiplying "det timu" (far left column) by "multiptier" (top of each column).

QC Performance

Criteria>	<20\%	$\begin{aligned} & 80 \%= \\ & 120 \% \end{aligned}$	75\%-125\%	$\begin{aligned} & 75 \% \\ & 125 \% \end{aligned}$	75\%-125\%	< $+1.10 \%$
QC ID=	$\begin{aligned} & 01-1354 \& \\ & 01-1354 \mathrm{D} \end{aligned}$	$\begin{gathered} 01-1388- \\ \text { AES }- \\ \text { LCS.BS } \end{gathered}$	none	$\begin{gathered} 01-1345+ \\ \text { Post } \\ \text { Spike A } \end{gathered}$	$\begin{gathered} \hline 01.1345+ \\ \text { Post } \\ \text { Spike B } \end{gathered}$	$\begin{gathered} 01-1354 \\ \text { @2/@3 } \\ \text { Serial Dil } \end{gathered}$
Analytes	RPD (\%)	\%Rec	\%Rec	\%Rec	\%Rec	\%Diff
Na	7.1	93.5		n.r.		0.7
K	5.2	103.4		93.6		

Other Analyte Detected

Al	3.2	97.6		$n . r$		-0.2
B	7.6	209.8		102.0		
Ba		110.3		95.5		
Ca	1.0	105.6		97.5		
Cd	0.5	106.7		98.1		
Cr	2.2	105.9		98.4		
Cu	11.2	107.9		99.2		
Fe	2.3	109.0		100.5		
Mo	1.3			97.0		
Ni	1.3	109.0		100.5		
P	0.5	105.3		93.8		
Pb	4.6	109.7		100.3		
Si	0.8			106.7		
Sr	2.9	105.4		99.1		
Zn		114.2		101.9		
Cr						

Other Analytes Measured but Not Detected

n.r. $=$ not recovered; spike at $<20 \%$ of sample concentration

Battelle, PNNL / AIAL
Inorganic Analysis / ICP-MS Data Report

Project/WP尖: 42365/W58168
ASR\#: 6130
Client: Sandy Fishum
Total Samples: 8

RPL $\#$	Client ID
$01-01338$	AP101-S3C-F/A
$01-01339$	AP101-S2a
$01-01340$	AP101-Sla
$01-01345$	ANC $102 / 104-\mathrm{C}-\mathrm{F} / \mathrm{A}$
$01-01346$	ANC $102 / 104-\mathrm{S} 1 \mathrm{C}-\mathrm{F} / \mathrm{A}$
$01-01354$	AN102 CST-C-F/A
$01-01355$	AN102 CST-S3C
$01-01356$	AN102 CST-S4C

Procedure: PNL-ALO-280 Rev: 1, Inductively-Coupled Plasma Mass Spectrometric (ICPMS) Analysis

M\&TE Number: WB36913 ICP/MS, VGElemental
512-06-01-014 Mettler AJ100 Balance

Analyst: James P Bramson
Analysis Date: $\quad 9 / 12 / 01,9 / 17 / 01,9 / 18 / 01$
Analysis Files: Experiment-12SEP01b, 17SEP01b, 18SEP01b
Procedure - 010912b, 010917b, 010918b
Element Menu - CsTcRb, Multi
For Calibration and Maintenance Records, see ICPMS Service Center 98038 RIDS
brip anmes 1 260:
Prepared By

Eight samples, a process blank, and a blank spike submitted for analysis were analyzed on a radioactive-materiai-contained ICP/MS for the requested analyte, Cs^{133}.

1. Analysis

See attached ICP/MS data reports for final results and run order for the analytical batch. The final results have been corrected for all client and laboratory dilutions performed on the sample during analysis.

2. Quality Control

Duplicate (DUP). In addition to the duplicate sample submitted (AN102 CST-C-F/A), a replicate analysis on sample AP101-S3C-F/A, was also performed. The RPD for both duplicate and replicate analyses met the QC criteria of $<20 \%$.

Matrix Spike (MS). In addition to the matrix spike samples submitted, a post spike was also performed on AN1 102 CST-C-F/A. The spike recovery for both the ANC 102/104-S1C-F/A matrix spike and AN1102 CST-C-F/A post spike met the QC criteria of $75 \%-125 \%$. However, the AN102 CST-C-F/A matrix spike recovery was above this range (129%).

Process Blank (PB), Blank Spike (BS). The PB concentration was near detection timit and below the MRQ. A post spike of the PB met the spike recovery QC criteria of $75 \%-125 \%$. However, the BS spike recovery (132%) was above the QC criteria of $80 \%-120 \%$.

Initial Calibration Blank (ICB) and Contiming Calibration Blank (CCB). The ICB/CCB standards are 1% high purity nitric acid solution used as the diluent for the samples. The QC criteria of less than the estimated quantitation limit (EQL, taken to be the lowest calibration standard), was met.

Initial Calibration Verification (ICV) and Contiming Calibration Verification (CCV) The ICV/CCV standards met the QC criteria of $90-110 \%$.

Unless other'wise specified, the results are reported in ty analyetml of original sample.

Battelle Pacific Northwest Laboratory
8/10/01
Radiochemical Processing Group-325 Building
Chemical Measurement Center
Client: S. Fiskum

PNL-ALO-476 (Sr-90)

ALO ID
Sr-90
Client ID
Error \%
$<7 . E-3$
Process Blank
01-1348
AN-102-CST-F/A
$9.14 \mathrm{E}+0$
3\%
01-1349
AN-102-CSTD-F/A
$8.22 \mathrm{E}+0$
3\%
RPD
11\%
01-1350
AN-102-S3-CST-F/A
1.07E+1

7\%
01-1351
AN-102-S3-CSTD-F/A
$1.02 \mathrm{E}+1$
7\%
RPD 5%
01-1352
AN-102-S4-CST-F/A
$1.05 \mathrm{E}+1$
7\%
01-1353
AN-102-S4-CSTD-F/A
1.03E+1

8\%
RPD 2%
01-1354
AN-102CST-C-F/A
01-1354 DUP
AN-102CST-C-F/A
RPD 8%

Blank Spike $\quad 108 \%$

Matrix Spike	126%
Blank	$1.03 \mathrm{E}-2$
	36%

Client: S. Fiskum

Measured Activities (uCi/ml) with 1 -sigma error

ALOID Client ID	$\begin{gathered} \text { Co-60 } \\ \text { Error \% } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Cs-134 } \\ & \text { Error \% } \end{aligned}$	$\begin{aligned} & \text { Cs-137 } \\ & \text { Error } \% \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Eu-154 } \\ & \text { Error \% } \end{aligned}$	$\begin{aligned} & \text { Eu-155 } \\ & \text { Error \% } \end{aligned}$	Am-241 Error \%
01-1336	2.23E-3	4.45E-3	2.18E+1	$<2 . \mathrm{E}-3$	<2.E-2	<2.E-2
AP101-S3-644-F/A	12\%	10\%	2\%			
01-1337	$2.44 \mathrm{E}-3$	$5.46 \mathrm{E}-3$	$2.34 \mathrm{E}+1$	<2.E-3	$<3 . \mathrm{E}-2$	<3.E-2
AP101-S3-644D-F/A	11\%	11\%	2\%			
01-1338	2.39E-3	3.26E-2	1.38E+2	<4.E-3	<4.E-2	<4.E-2
AP101-S3-C-F/A	14\%	5\%	2\%			
01-1341	3.57E-2	<4.E-4	$5.16 \mathrm{E}+0$	2.32E-2	1.31E-2	9.76E-3
ANC102/104-644-F/A	2\%		2\%	2\%	7\%	13\%
01-1342	3.51E-2	$<5 . \mathrm{E}-4$	1.50E+1	$2.29 \mathrm{E}-2$	1.27E-2	6.80E-3
ANC102/104-S1-644-F/A	2\%		2\%	2\%	9\%	26\%
01-1343	$3.65 \mathrm{E}-2$	$<7 . \mathrm{E}-4$	1.45E+1	2.26E-2	1.24E-2	1.17E-2
ANC102/104 S1-644D-F/A	2\%		2\%	3\%	14\%	23\%
$\begin{aligned} & \text { 01-1344 } \\ & \text { ANC102/104-S2-644-F/A } \end{aligned}$	$\begin{gathered} 3.50 \mathrm{E}-2 \\ 3 \% \end{gathered}$	<2.E-3	$\begin{gathered} 5.14 E+1 \\ 2 \% \end{gathered}$	$\begin{gathered} 2.36 \mathrm{E}-2 \\ 6 \% \end{gathered}$	$<3 . \mathrm{E}-2$	$<3 . \mathrm{E}-2$
01-1345	4.09E-2	<5.E-3	1.61E+2	<9.E-3	<6.E-2	<6.E-2
ANC102/104-C- F/A	3\%		2\%			
01-1346	4.05E-2	<5.E-3	1.62E+2	<1.E-2	$<7 . E-2$	<7.E-2
ANC102/104-S1-C-F/A	3\%		2\%			
01-1347	4.04E-2	<4.E-3	1.60E+2	<8.E-3	$<6 . \mathrm{E}-2$	<6.E-2
ANC102/104-S2C-F/A	3\%		2\%			
01-1348	5.28E-2	$<3 . E-3$	$1.84 \mathrm{E}+1$	8.19E-2	4.77E-2	5.31E-2
AN-102-CST-F/A	3\%		2\%	3\%	12\%	17\%
01-1350	$5.18 \mathrm{E}-2$	<3.E-3	1.76E+1	7.84E-2	3.84E-2	2.77E-2
AN-102-S3-CST- F/A	3\%		2\%	3\%	14\%	28\%
01-1352	5.28E-2	<2.E-3	$6.59 \mathrm{E}+1$	7.85E-2	3.51E-2	3.87E-2
AN-102-S4-CST-F/A	2\%		2\%	3\%	17\%	26\%

ALOID Client ID	Measured Activities ($u \mathrm{Cl} / \mathrm{ml}$) with 1 -sigma error					
	$\begin{gathered} \text { Co-60 } \\ \text { Error } \% \\ \hline \end{gathered}$	Cs-134 Error \%	Cs-137 Error \%	Eu-154 Error \%	Eu-155 Error \%	Am-241 Error \%
$\begin{aligned} & 01-1354 \\ & \text { AN-102CST-C-F/A } \end{aligned}$	$\begin{gathered} 5.46 \mathrm{E}-2 \\ 6 \% \end{gathered}$	<1.E.2	$\begin{gathered} 2.05 \mathrm{E}+2 \\ 2 \% \end{gathered}$	<4.E-2	<3.E-1	$<3 . \mathrm{E}-1$
01-1355	5.52E-2	$<2 . \mathrm{E}-2$	2.10E+2	$<6 . E-2$	<4.E-1	<4.E-1
AN-102CST-S3-C- F/A	8\%		2\%			
01-1356	$5.46 \mathrm{E}-2$	<8.E-3	$2.05 \mathrm{E}+2$	<3.E-2	<2.E-1	$<2 . \mathrm{E}-1$
AN102CST-S4-C-F/A	5\%		2\%			

AN-102 / C-104 Column Run Analytical Results

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report PO Box 999, Richland, Washington 99352

Project/WP苄:	$42365 /$ W58166
ASR\#:	6174
Client:	S. Fiskum
Iotal Samples:	1

RPL\#:	$01-01732$	-
Client ID:	AN102/C104-RGN	
Sample Preparation: Sample prepared by PNL-ALO-106 $(0.5 \mathrm{~mL} / 10 \mathrm{~mL})$.		

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report

 PO Bo999, Richland, W'asbington 99352One liquid sample (RPL $\quad 01$-01732) submitted under Analytical Serrice Request (ASR) 6174 was prepared by acid digestion per PNL-ALO-106. The sample was digested by using 0.5 mL of sample and diluting to a final volume of 10 mJ .. Analytes of interest (AOI) were specified on the ASR as Ni. All other analytes that were not requested are reported, but hare not been fully evaluated for QC performance.

A summary of the ICPAES analyses of the sample, including QC performance, is given in the attached ICPAES Data Report (2 pages). ICPAES mensurement results are reported in $\mu \mathrm{g} / \mathrm{mL}$ and have been corrected for dilution resuluing from sample processing.

The process blank had detectable amounts of $\mathrm{Ag}, \mathrm{Al}, \mathrm{B}, \mathrm{Ba}, \mathrm{D} y$, and Na present. The $\mathrm{Ag}, \mathrm{Al}, \mathrm{B}, \mathrm{Ba}$, and $D y$ were below estimated quantitation limits (EQI) and were not A OIs. The Na present in the process blank was at a concentration greater than the estimated EQL and greater than 5% of the sample concentration. The Na concentration in the process blank is approximately 30% of that found in the AN102/C104-RGN sample. This is outside of the tolerance limit, and most likely results from processing the samples by method lNL-ALO-106 as per the ASR. This method uses glass digestion vessels and high Na and B values are not uncommon.

Quality control standard results met tolerance requirements for the specific AOI's except as noted below: Following is a list of quality control measurement tesults rehative to ICPAES analysis tolerance requirements of the controlling QA plan. Blank spikes, Matrix-spikes and duplicates were prepared with the sample and amalyzed. Blank-spike and matrix-spike samples were prepared using 1.0 mL of multi-element solution "INT-QC-MCVA-1B" per 10 mL of digestate volume.

Process Blanks:

The concentration of sodium (the AOI) measured in the process blank was outside the tolerance limit of $\leq E Q L$ or less than $\leq 5 \%$ of the sample. One Na blank concentration is approximately 30% of the sample concentration. The other analytes detected in the process blank meet the $<\mathrm{EQL}$ acceptance criteria.

Duplicate RPD (Relative Percent Difference):

The original and duplicate sample (RPL\# 01-01732) were outside the tolerance limit of $\leq 3.5 \%$ RPI) for Na . This indicates poor precision. The process blank had very high and variable levels of Na , which leads to poor precision.

Blank Spike:

Blank-Spike recoveries for the analste of interest were within toletance of 80% to 120% Howerer, the blank spike recovery for B was outside the tolerance limit at 63% and 51%; most likely due to high B in the sample blanks.

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report
 PO Box 999, Richlund, W'ushington 99352

Matrix Spiked Sample:

Matrix-Spike recovery for the analyte of interest was within tolerance of 75% to 125%.
However, the matrix spike recovery for B was outside the tolerance limit at 61%; most likely due to high and variable B in the sample blanks.

Post-Spiked Samples (Group A):

No post-spike A was analyzed with this batch of samples.
Post-Spiked Samples (Group B):
No post-spike A was analyzed with this batch of samples.

Five fold scrial dilution:

All analytes above EQL in the sample tested were within tolerance limit of 10% after cortecting for dilution.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
2) Detection limits (DI.) shown are for acidified water. Detection limits for other matrices may be determined if requested.
3) Routine precision and bias is typically $\pm 15 \%$ or better for samples in dilute, acidified water (c.g. $2 \% \mathrm{v} / \mathrm{v} \mathrm{HNO}_{3}$ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentation in the sample is less than $5000 \mathrm{\mu g} / \mathrm{mL}$ (0.5 per cent by weight).
4) Absolute precision, bias and detection limits may be determined on each sample if reguired by the client.
5) The maximum number of significant figures for all ICP measurements is 2 .

	Run Date=	10122/2002	10122/2002	10122/2002
	Multipliers	20.0	20.0	20.0
	RPL/LAB \#=	01-01732-BLK	01-01732	01.01732-DUP
Det. Limit	Client 10=	process blank	$\frac{A N 102 / C 104}{R G N}$	$\frac{\text { ANTOLCTO4- }}{\text { RGN-DUP }}$
($\mathrm{ug} / \mathrm{mL}$)	(Analyte)	($\mathrm{ug} / \mathrm{mL}$)	(ug/ml)	($\mathrm{Ng} / \mathrm{mL}$)
0.150	Na	99.1	275	326
Other Analytes				
0.025	Ag	[0.60]	--	*
0.060	A]	[10]	[6.5]	[6.6]
0.250	As	--	--	--
0.050	B	[8.3]	[3.6]	[4.5]
0.010	Ba	[0.21]	--	--
0.010	Be	--	-*	--
0.100	Bi	--	*-	--
0.250	Ca	--	*	--
0.015	Cd	--	--	4.20
0.200	Ce	--	-	--
0.050	Co	--	--	--
0.020	Cr	--	--	--
0.025	Cu	\because	--	\cdots
0.050	Dy	[6.8]	16.0	--
0.100	Eu	--	\cdots	--
0.025	Fe	\cdots	--	[0.71]
2.000	K	\bullet	--	-•
0.050	La	**	--	--
0.030	Li	--	--	--
0.100	Mg	-	\cdots	\cdots
0.050	Mn	--	-	--
0.050	Mo	--	--	-.
0.100	Nd	\because	--	-.
0.030	Ni	--	-	-
0.100	P	-	-	--
0.100	Pb	\cdots	--	--
0.750	Pd	--	\because	-
0.300	Rh	--	--	--
1.100	Ru	--	--	-
0.500	Sb	--	--	-.
0.250	Se	--	--	.-
0.500	Si	--	--	--
1.500	Sn	-	--	*-
0.015	Sr	--	[2.4]	--
1.500	Te	\cdots	--	--
1.000	Th	\cdots	**	*-
0.025	Ti	--	\cdots	--
0.500	TI	--	\because	--
2.000	U	--	\cdots	-.
0.050	V	--	[2.4]	-
2.000	W	-	*	-.
0.050	Y	--	-	--
0.050	Zn	-.	--	*
0.050	Zr	-	--	--

Note: 1) Overall error greater than 10-mmes detection timit is estimated to be within $+1 / 15 \%$
2) Vatues in brackets D are within 10 -tmes detection timit with errors likely to exceed 15%.
3) "- " indicate measurement is below detection. Sample detection limit may be
found by muit:pying "det, timlit" (far deft csitumn) by "multipher" (top of each column).

QC Performance 10/22/2001

Criteria>	<20\% ${ }^{\text {(8) }}$	80\% $\cdot 120 \%$		75\%-125\%	75\%-125\%	75\%-125\%	< $+1.10 \%$
QC ID $=$	$\begin{gathered} 01-01732 \& \\ 01-01732.0 \\ \text { RPO (\%) } \\ \hline \end{gathered}$	$\begin{gathered} \text { LCS/BS } \\ \% \operatorname{Rec} \end{gathered}$		$\begin{gathered} 01.01732 \& \\ 01-01732-\mathrm{MS} \end{gathered}$	Post Spike A (none)	Post Spike B (none)	01.01732 @1/05 Serial Dil
Analytes				\%Rec	\%Rec	\%Rec	\%Diff
Na	16.9	101	100	109			2.6

Other Analytes

Ag	92	93.	100			
Al	100	99	103			
As	102	101	103			
B	63.	51	61			
Ba	98	96	100			
Be	100	99	100			
Bi	101	100	102			
Ca	102	99	103			
Cd	103	102	104			
Ce						
Co	104	102	104			
C	102	100	102			
Cu	101	100	103			
Dy						
Eu						
Fe	102	102	103			
K	105	. 106	111			
La						
Li	103	103	108			
Mg	105	102	106			
Mn	104	103	105			
Mo						
Nd						
Ni	106	103	103			
P	102	101	103			
Pb	103	102	104			
Pd						
Rh						
Ru						
Sb						
So	102.	102	104			
Si						
Sn						
Sr	98	86	76			
Te						
Th						
7						
T1	99	96.	99			
U						
v	97	96	86			
W						
Y	97	96	98			
2 n	104	104	104			
Zr						

Shaded results exceed acceptance criteria
Bold results for information only: LCS, MS, or Serial Difution concentration tess than EOL
(a) Na RPD Criteria $\leq 3.5 \%$.
. . . Putting Technology To Work

Subject: Hydroxide Analyses for: AN-102/C104-RGN (0.025M NaOH)
ASR: 6174 RPL\# 01-1732

A 0.025 M NaOH fraction of AN-102/C104-RGN tank waste was analyzed in duplicate for the hydroxide content following procedure PNL-ALO-228. Direct sample aliquots were analyzed using a Brinkman 636 Auto Titrator. A 0.0103 N NaOH (ChemRec_72), solution was used as a standard and for the sample spike and the titrant was a 0.0051 M HCl prepared solution for all the samples. The attached Report Summary shows average OH molarity (1st inflection point) of 0.0036 M on the sample and replicate results with an RPD of 11%, which is good considering the very weak base concentration of the sample being titrated. The hydroxide $\mathrm{ug} / \mathrm{ml}$ results averaged $61+1-4.6 \mathrm{ug} / \mathrm{ml}$ and was above the required $M R Q$ value of $17 \mathrm{ug} / \mathrm{mL}$. which is equivalent to 0.01 M NaOH . The hydroxide recoveries averaged 100% for the standards and the matrix spike recovery on 01-1732 was 102%. No hydroxide was detected in the reagent blank. The second inflection point frequently associated with carbonate, showed an RPD of 13%. There wasn't a third inflection point recorded for this sample. All of the results meet the QC acceptance criteria for spike recovery and RSD of duplicate measurements. The titration curves are included with the report.

Battelle Pacific Northwest Laboratory
Radiochemical Processing Group-325 Building
Chemical Measurements Center
ASR

WP\# W58166
Hydroxide and Alkalinity Determination
Procedure: PNL-ALO-228
Equip\#
WB76843

Report Summary for ASR \# --
6174
Concentration, moles
RPG $\# \quad$ Client ID

Reng. Blk. 1
Standard 3
0
99\%
Standard 4
100%
MS 01-1732 Matrix spike
Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

Battelle Pacific Northwest Laboratory
Radiochernical Processing Group- 325 Building
Chemical Measurement Center
8/2/01

				$\stackrel{\leftrightarrow}{4}$		$\begin{aligned} & \stackrel{H}{U} \\ & \dot{V} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \stackrel{\rightharpoonup}{V} \end{aligned}$	$\begin{aligned} & \stackrel{H}{U} \\ & \text { V } \end{aligned}$	$\begin{aligned} & \stackrel{9}{山} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$		$\begin{aligned} & \stackrel{H}{山} \\ & \underset{V}{N} \end{aligned}$	$\stackrel{\text { N゙～}}{\underset{\sim}{\sim}}$
				$\begin{aligned} & \stackrel{0}{W} \\ & \stackrel{\rightharpoonup}{O} \stackrel{0}{\circ} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \stackrel{W}{山} \\ & \underset{\mathrm{~V}}{2} \end{aligned}$	$\stackrel{\stackrel{B}{\ddot{~}}}{\stackrel{\rightharpoonup}{V}}$	$\begin{aligned} & \stackrel{B}{U} \\ & \stackrel{\rightharpoonup}{V} \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \stackrel{1}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{m}{\mu} \\ & \underset{v}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\tilde{u}} \\ & \underset{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{4}{4} \\ & \stackrel{N}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{4} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$	¢
					$\begin{aligned} & \stackrel{W}{4} \\ & \stackrel{4}{\underset{\sim}{m}} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \bar{u} \\ & \stackrel{v}{v} \end{aligned}$	$\begin{aligned} & \overline{\underset{\sim}{w}} \\ & \underset{v}{n} \end{aligned}$	$\stackrel{\stackrel{\Gamma}{\stackrel{\rightharpoonup}{v}}}{\stackrel{\rightharpoonup}{\stackrel{1}{2}}}$	$\begin{aligned} & \underset{\sim}{U} \\ & \underset{v}{n} \end{aligned}$	$\begin{aligned} & \stackrel{y}{\underset{~}{u}} \\ & \stackrel{\oplus}{6} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{4} \\ & \underset{\mathrm{~V}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{u} \\ & \stackrel{\rightharpoonup}{\mathrm{v}} \end{aligned}$	岗
$\begin{aligned} & \stackrel{\pi}{6} \\ & \stackrel{\text { W}}{\#} \end{aligned}$				$\begin{aligned} & \text { Wi } \\ & \stackrel{\sim}{\infty} \stackrel{0}{\circ} \\ & \underset{\sim}{\infty} \end{aligned}$	蓡		$\begin{aligned} & \text { m } \\ & \stackrel{+}{\sim} \\ & \stackrel{0}{\sim} \\ & \infty \end{aligned}$		$\begin{aligned} & \text { o } \\ & \stackrel{+}{山} \\ & \underset{\sim}{r} \end{aligned}$	岗岗	$\begin{aligned} & \text { N } \\ & \text { 山̈ } \\ & \text { © } \\ & \text { in } \end{aligned}$	N゙	N゙
$\frac{5}{3}$		$: \begin{aligned} & n_{n}^{u} \\ & \underset{v}{2} \end{aligned}$	$\stackrel{\stackrel{4}{山 己}}{\stackrel{\rightharpoonup}{\sim}} \stackrel{0}{\sim}$	峖	憂岲	$\begin{aligned} & \text { O} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \underset{\mathrm{U}}{ } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{v}{2} \end{aligned}$	$\begin{aligned} & ? \stackrel{?}{4} \\ & \underset{V}{v} \end{aligned}$	$\begin{aligned} & \underset{\sim}{U} \\ & \underset{V}{N} \end{aligned}$	$\begin{aligned} & \stackrel{0}{4} \\ & \stackrel{4}{4} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{山} \\ & \stackrel{\rightharpoonup}{\dot{v}} \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \underset{\sim}{N} \text { in } \\ & \dot{\sim} \end{aligned}$
$\mathscr{\cong}$			V	V	$\begin{gathered} \stackrel{\sim}{4} \\ \underset{\mathrm{v}}{2} \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{H}{\varphi} \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{u}}}{\stackrel{\mathrm{v}}{2}}$	$\begin{aligned} & \underset{\mathrm{B}}{\mathrm{U}} \\ & \underset{\mathrm{i}}{2} \end{aligned}$	$\begin{aligned} & ? \\ & \underset{\sim}{w} \\ & \varphi \end{aligned}$	$\stackrel{\sim}{4}$	$\begin{aligned} & \underset{~}{\Psi} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$	$\begin{gathered} \underset{\sim}{U} \\ \underset{V}{\sim} \end{gathered}$	$\begin{aligned} & \underset{H}{\underset{\sim}{u}} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$
		$\begin{aligned} & n \\ & \hdashline \\ & \\ & \end{aligned}$	u $\stackrel{4}{\mathrm{u}}$	N	$\begin{gathered} \stackrel{?}{4} \\ \underset{\sim}{\mathrm{v}} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{u} \\ & \underset{\mathrm{v}}{2} \end{aligned}$	$\begin{aligned} & \bar{山} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$	$\begin{aligned} & \underset{\underset{N}{N}}{N} \end{aligned}$	$\begin{gathered} \underset{W}{w} \\ \underset{\sim}{v} \end{gathered}$	$\begin{aligned} & \stackrel{H}{U} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$	$\begin{aligned} & \text { en } \\ & \underset{\mathrm{U}}{2} \end{aligned}$	$\begin{gathered} \stackrel{\sim}{山} \\ \underset{\sim}{2} \end{gathered}$	$\stackrel{\text { U゙ }}{\text { ¢ }}$
	$\begin{array}{ll} 0 & 0 \\ \hline \dot{B} \\ 0 \\ 0 & 0 \\ \hline \end{array}$				荢苓	$\begin{aligned} & \underset{\sim}{\underset{V}{0}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{v}} \\ & \bar{v} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\underset{V}{u}} \end{aligned}$		$\begin{aligned} & \stackrel{4}{4} \\ & \frac{山}{山} \\ & \stackrel{1}{\circ} \\ & \stackrel{y}{\circ} \end{aligned}$		$\stackrel{\underset{\sim}{4}}{\underset{\sim}{\underset{\sim}{\sim}} \stackrel{\circ}{\sim}}$	
		$\underset{\sim}{v}$	$\begin{aligned} & \stackrel{4}{U} \\ & \stackrel{\leftrightarrow}{\circ} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{U} \\ & \underset{\sim}{v} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{U} \\ & \stackrel{\rightharpoonup}{v} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\ddot{v}} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { 바 } \\ & \dot{V} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{\mathrm{V}} \end{aligned}$	$\begin{aligned} & \tilde{W} \\ & \dot{\mu} \\ & \stackrel{\varphi}{\varphi} \end{aligned}$	$\begin{aligned} & \underset{y}{u} \\ & \stackrel{\rightharpoonup}{v} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{U} \\ & \dot{V} \end{aligned}$	$\begin{aligned} & \underset{U}{U} \\ & \dot{W} \\ & \dot{V} \end{aligned}$

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report PO Box999, Richland, IFashington 9935 ?

Project / WP共:	$42365 / \mathrm{W} 60567$
ASR\#:	6281
Client:	I. Burgeson
Total Samples:	4

RPL云:	$02-00776$	$02-00779$
Client 1D:	Tc-IX-Eluate Compositc (AN102/C104)	AN102/C104-CsE-
	Comp 1	

Sample Preparation: 02-00776 to 02-00778-PNL-ALO-129; 02-00779--10x dilution (SAL./vh). Not the same analytes of interest for each sample. See sample Results for analytes of interest.

Concur

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report

 PO Box 999, Ribbland, Waibingion 99352Four AN $102 / \mathrm{C} 104$ ion exchange samples (RPL\#02-00776...02-00779) were received under Analgtical Scrvice Request (ASR) 6281. Three of the samples, 02-00776 through 02-00778, were subjected to an acid digestion per PNL-SLO-128. The fourth sample, 02-00779, was simply diluted by 10 x with $0.5 \mathrm{NH}_{3} \mathrm{HNO}_{3}$ solution. Analytes of interest (AOIs) and addicional 'opportunistic analytes' for each sample were specified in four individual tables attached to the $\bar{A} S R$. Analytes other than those identified as A OIs or opportunistic analytes are included in the results for information only, since these analytes have not been fully craluated for QC performance.

A summary of the ICPAES analysis results for the samples, as well as a summary of the QC performanec, is given in the attached ICPAES Report (6 pages). Since the smmples have different AOIs, the results for samples 02-00776 and 02-00777, sample 02-00778, and sample 02-00779 are presented in different tables, along with the applicable QC performance. The QC performance was eraluated for two batch runs, since samples 02-00776 through 02-00778 were prepared and analyzed in a single batch, with sample $02-00779$ being analyzed in a different batch ICPAES measurement resulcs are reported in $\mu \mathrm{g} / \mathrm{mL}$ and have been corrected for dilution resulting from sample processing

Quality control check-standard results met tolerance requirements for the specific AOIs except as noted below. Below is a list of quality control measurement results relative to ICPAES analysis tolerance requirements of the controlling, QA plan (applicable to process blank, post spike recoveries, and serial dilution tolerance) and QC parameter tables from the ASR (applicable to blank spike, matrix spike, and duplicate precision.

Analysis Run January 29, 2002-Samples 02-00776 through 02-00778
Process Blanks:
No AOIs were detected in the process blark at concentations above the method detection limit, thus meeting the requiremer: that process blank concentration be $\leq E Q L$.

Duplicate RPD.Relative Petcent Difference):

Per the Quality Concol Parameter tables included with the ASR, samples 02-00776 and 02-00777 have a precision requirement of $<20 \%$ RPD and sample $02-00778$ has a precision requirement of $<15 \% \operatorname{RSD}(<3.5 \% \mathrm{RSD}$ for Na). As part of the batch processing for these samples, sample 02-00776 was selected for analysis in duplieate, and is used to estimate the precision for all samples processed in the batch. Unfortunately, only. Na and B were detected at concentrations above the EQL in sample 02-00776, and are the only xesults available for accessing precision. It should be noted that no instructions were provided in the ASR to perform replicate analyses for 'cach' sample.

Blank Spike:
For the blank spike control sample analyzed with samples 02-00776 through 02-00778, all AOI were within the tolerance limit of 80% to 120% recovery except for K , which had a recovery of 34%. Both the blank spike and matrix spike are from the same spiking solution

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report

PO Box 999, Ritibland, Wasbington 99352
and both demonstrate very low K recoreries. Low K tecoveries have been experiences when the blank spiking solution has been transferred to the SAL hot cells in polycarbonate vials. This may be an explanation for the low K recorery. Howerer, this can not be verified since the containers used for transferring the spiking solution were discarded prior to discovering the low K recovery problem. Use of polycarbonate containers has been discontinued.

Matrix Spiked Sample:

A matrix spike was prepared by adding 0.5 ml each of stock multi-element standards 'BPNL-QC part 1' and 'BNPL-QC part 2' to 1.0 mL of sample 02-00777, processing, and diluting to a final volume to 25 ml . All AOI were within the tolerance limit of 75% to 125% recorety except for $\mathrm{K}, \mathrm{Al}, \mathrm{N}_{\mathrm{a}}, \mathrm{Co}$, and Sn . K had a recorery of only 35% (Sce blank spike explanation). Co and S_{n} were not included in either 'part 1' or 'part 2' of the spiking solution. 'The matrix spike analysis uses a general multi-element spiking solution intended to be usable on the majority of samples analyzed by ICPAES. However, for the sample selected for matrix spiking, the spike concentration for Al and Na were less than 20% of the sample concentration and the recovery results are not considered valid. For Al and Na , the use of serial dilution results is used to evaluate potential matrix interferences.

Post-Spiked Samples (Group A):

Post spike analysis for 'Group A' analytes was performed on sample 02-00776. All postspiked AOIs and opportunistic aralytes in the sample were recovered within tolerance of 75% to 125%.

Post-Spiked Samples (Group B):
Post spike analysis for 'Group B' analytes was performed on sample 02-00776. There are no AOIs in the 'Group B' spiking solution; however; the opportunistic analytes in the sample were recovered within tolerance of 75% to 125%.

Serial Dilution:
Serial dibution was performed on sample 02-00777. All AOIs above EQL were within tolerance limits of 10% after correcting for dilution.

Analysis Run February 19, 2002 - Sample 02-00779

Process Blanks:

No processing, other than dilution wich acid, was performed; thus no process blank was prepared. However, the dilution matrix (0.5 M HNO) was analyzed and reported. No AOIs were detected in the dilution blan'i at concentations above the method detection limit.

Duplicate RPD (Relative Percent Differcnce):

Per the Quality Control Parameter tables included with the ASR, sample 02-00779 has a precision requirement of $<20 \% \mathrm{RlPD}$. All AOIs measured above the EQI demonstrated good precision, with \%RPDs less than 5%.
$3 / 282124$

Battelle PNNL/RSE/Inorganic Analysis ... ICPAES Analysis Report PO Box 999, Richland, Wabington 99352

Blank Spike:

No sample processing; other than dilution with acid, was performed on the sample; thus no blank spike sample was prepared.

Matrix Spiked Sample:

No sample processing, other than dilution with acid, was performed on the sample; thus no matrix spike sample was prepared.

Post-Spiked Samples (Group A):

All post-spiked A OIs and oppormustic analytes in the sample were recovered within tolerance of 75% to 125%.

Post-Spiked Samples (Group B):

There are no AOIs in the 'Group B' spiking solution; however, the opportunistic analytes in the sample were recovered within tolerance of 75% to 125%.

Serial Dilution:
All AOIs above EQL were within tolerance limits of 10% after correcting for dilution.

Comments:

1) The "Final Results" have been corrected for all laboratory dilutions performed on the sample during processing and analysis unless specitically noted.
2) Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
3) Routine precision and bias is typicale $\pm 15 \%$ or better for samples in dilute, acidifed water (e.g. $2 \% \% / \mathrm{v} \mathrm{HNO}_{3}$ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration it the sample is less than $5000 \mu \mathrm{~g} / \mathrm{mL}$ (0.5 per cent by weigh:
4) Absolute precision, bias and detection limits may be determined on each sample if required by the clicnt.
5) The maximum number of significant figures for all ICP measurements is 2.

	Run Date $=$	1/29:2002	1/29/2002	1/29/2002	1/29/2002	1/29/2002
	Multiplier=	24.9	24.9	24.9	24.9	124.7
	RPL/ $48 \pm=$	PB. 00776	02-00776	02-00776-DUP	02.00777	02-00777@5
Det Limit	Client $10=$	$\frac{\text { process }}{\text { blank }}$	Tc-iX.Eluate	$\frac{\text { Tc-IX-Eluate- }}{\text { Dup }}$	AN102/C104Cs-Rem	
(ug/mL)	(Analyte)	(ughmb)	($\mathrm{ug} / \mathrm{mL}$)	($\mathrm{ug} / \mathrm{mL}$)	(ugiml)	(ug/mL)
0.060	Al	--	[9.0]	[8.6]	7,840	
0.010	Ba	--	-.	--	--	
0.250	Ca	--	--	*-	149	
0.015	Cd	\cdots	\cdots	--	24.2	
0.050	Co	--	--	--	[1.9]	
0.020	Cr	--	--	--	98.2	
0.025	Cu	--	--	--	--	
0.025	Fe	--	--	--	[2.0]	
2.000	K	--	-.	--	1,080	
0.050	La	--	\cdots	--	--	
0.100	Mg	--	--	--	--	
0.050	Mn	--	\because	--	--	
0.050	Mo	--	--	--	23.1	
0.150	Na	\cdots	279	280	over range	110,000
0.030	Ni	\cdots	--	--	145	
0.100	Pb	\bullet	\cdots	--	69.1	
0.500	\$i	*	[26]	[26]	179	
1.500	Sn	--	+-	--	--	
0.025	Ti	--	--	--	--	
0.050	Zn	--	--	$\bullet-$	[4.0]	
Other Analytes						
0.025	Ag	\cdots	--	--	--	
0.250	As	\because	\cdots	--	--	
0.050	B	\cdots	20.0	19.9	86.4	
0.010	Be	\cdots	--	--	..	
0.100	Bi	-	*	-	-.	
0.200	Ce	--	--	--	-	
0.050	Dy	--	-.	-	--	
0.100	Eu	-	--	\cdots	--	
0.030	Li	--	-	*-	--	
0.100	Nd	--	--	**	[3.6]	
0.100	P	--	--	*-	562	
0.750	Pd	-	--	--	\cdots	
0.300	Rh	--	--	\cdots	--	
1.100	Ru	--	\cdots	--	-.	
0.500	Sb	-	\cdots	-	\because	
0.250	Se	--	\cdots	--	--	
0.015	Sr	-	\cdots	+	86.9	
1.500	Te	-	\cdots	--	\cdots	
1.000	Th	\cdots	\cdots	--	..	
0.500	TI	--	--	--	-	
2.000	U	--	--	-	--	
0.050	V	*	--	--	--	
2.000	W	\cdots	-	-	-	
0.050	Y	-	\because	--	--	
0.050	Zr	--	-	--	--	

Noie: 1) Overail error greater than 10 -times detection limit is estimated to be withon $+1 / 15 \%$.
2) Values in brackets $\| f$ are within 10 -times cetection dimit with errors thely to exceed 15%.
3) ".." indicate measurement is below detection. Sample detection limit may be found by
muthiplying "det timit" (far feft column) by "mwhtiplier" (top of each column).

QC Performance $1 / 29 / 02$.. Applicable to Batch Containing 02-00776, 02-00777, and 02-00778

Criteria>	<20\%	80\% - 120\%	75\%-125\%	75\%-125\%	75\%-125\%	75\%-125\%	< + /.10\%
Batch OC	$\begin{gathered} 02.00776 \\ \text { Dup } \\ \hline \end{gathered}$	LCS/BS	$02-00777 \mathrm{MS}$	$\begin{gathered} 02.00777 \mathrm{MS} \\ (@ 5) \\ \hline \end{gathered}$	$\begin{gathered} 02.00776+ \\ \text { Post Spike A } \end{gathered}$	02-00776 + Post Spike B	02-00777 @1@5 Serial Dil
Analytes	RPD (\%)	\%Rec	\%Rec	\%Rec	\%Rec	\%Rec	\%Diff
Al		100	$n!$		100		1.8
Ba		100	94		99		
Ca		101	101		103		
Cd		101	101		103		-0.5
Co					105		
Cr		101	109		104		2.9
Cu		103	99		103		
Fe		104	100		105		
K			49354		97		
La (a)		101	98			102	
Mg		100	98.		108		
Mn		103	99		105		
Mo (a)		103	100		102		
Na	0.4	102	cver range	nr	100		3.6 (b)
Ni		103	105		107		3.3
Pb		118	117		120		
Si (a)		27-9530			116		
Sn (a)						98	
Ti (a)		98	92		98		
Zn		103	191		104		
Other Analytes							
Ag					99		
As					103		
B	0.3	104	99		$10:$		1.3
Be		98	98		101		
Bi		104	105		100		
Ce		100	98			99	
Dy						103	
Eu						103	
Li		103	98		101		
Nd		10 :	97			101	
P		191	107		103		-0.2
Pd						80	
Rh						98	
Ru							
Sb					103		
Se					102		
Sr		102	ni		102		2.5
Te						110	
Th		99	96			101	
T					100		
U		105	99			105	
V		97	93		98		
W		nf	103				
Y					99		
Zr		95	so		101		

Shaded results did not meet the acceptance critria
nr. = not recovered; spike concentration less than 20% of sample concentration or sample concentration <EQL
(a) Opportunistic analytes; no LCS or spiking required.
(b) Value obtained from @5 and @25 dilutions.
$;$

	Run Date $=$	1/29/2C02	1/29/2002	1/29/2002
	Multiplier=	24.9	24.9	124.7
	$R P L / L A B \#=$	P8-00776	02-00778	02-00778@5
Det. Limit	Client ID $=$	$\frac{\text { process }}{\text { blank }}$	Tc-IX-Effluent	
(ug/mL)	(Analyte)	(ug/mL)	(ug/mL)	(ug/mL)
0.060	A!	--	7,890	
0.010	Ba	.	-	
0.250	Ca	-	146	
0.015	Cd	..	23.4	
0.020	Cr	.-	96.4	
0.025	Fe	-.	[2.0]	
2.000	K	--	1,060	
0.050	La	\cdots	--	
0.100	M 3	-	--	
0.150	Na	-.	over range	109,000
0.030	Ni	-	141	
0.100	P	-	618	
0.100	Pb	-	67.5	
2.000	U	--	*	

Other Analytes

0.025	Ag	--	..	
0.250	As	\cdots	..	
0.050	B	-.	37.7	
0.010	Be	--	..	
0.100	Bi	--	..	
0.200	Ce	..	.-	
0.050	Co	-	[1.9]	
0.025	Cu	--	--	
0.050	Dy	
0.100	Eu	
0.030	Li	--	..	
0.050	Mn	\cdots	..	
0.050	Mo	--	22.5	
0.100	Na .	..	[3.5]	
0.750	Pd	
0.300	Rh	..	--	
1.100	Ru	..	.-	
0.500	Sb	..	-	
0.250	Se	
0.500	Si	..	[51]	
1.500	Sn	..	.-	
0.015	Sr	\cdots	85.3	
1.500	Te	--	..	
1.000	Th	
0.025	Ti	
0.500	TI	\cdots	..	
0.050	V	.-	..	
2.000	W	-.	..	
0.050	Y	
0.050	Zn	\cdots	[4.2]	
0.050	Zr	\cdots	..	

Note 1) Overall error greater than 10-tries cetection timit is estimated to be within $+1 / 15 \%$. 2) Vakes in brackets If are within 10-hmes cetection timit with errors Jikely to exceed 15%. 3) ".-" indicate measurement is below civection. Sample detection limit may be found by multiplying "det limit" (far left column) by "multiptier" (top of each column).

QC Performance $1 / 29 / 02$.- Applicable to Batch Containing 02-00776, 02-00777, and 02-00778

Criteria>	$\begin{gathered} <15 \% \\ (\mathrm{Na}<3.5 \%) \\ \hline \end{gathered}$	80\%-120\%	75\%-125\%	75\% $\cdot 125 \%$	75\%-125\%	75\%-125\%	< +1.10\%
Batch QC $\mathrm{ID}=$	$\begin{gathered} 02-00776 \\ \text { Dup } \\ \hline \end{gathered}$	LCS/BS	02-00777 MS	$\begin{gathered} 02-00777 \mathrm{MS} \\ (@ 5) \\ \hline \end{gathered}$	$\begin{gathered} 02.00776+\text { Post } \\ \text { Spike A } \\ \hline \end{gathered}$	$\begin{gathered} 02-00776+\text { Post } \\ \text { Spike } \mathrm{B} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 02-00777 } \\ & \text { @1@5 } \\ & \text { Serial Dil } \end{aligned}$
Analytes	RPD (\%)	\%Rec	\%Rec	\%Rec	\%Rec	\%Rec	\%Diff
AI		100	nr		100		1.8
Ba		100	94		99		
Ca		101	101		103		
Cd		101	101		103		-0.5
Cr		101	109		104		2.9
Fe		104	100		105		
K					97		
La (a)		101	98			102	
Mg		100	98		103		
Na	0.4	102	over range	nr	100		$3.6{ }^{31}$
Ni		103	105		107		3.3
P (a)		101	107		103		-0.2
Pb		118	117		120		
\cup		105	99			105	

- Analytes

Ag					99		
As					103		
8	0.3	104	99		101		1.3
Be		98	93		101		
Bi		104	106		100		
Ce		100	9%			99	
Co					105		
Cu		103	99		103		
Dy						103	
Eu						103	
Li		103	98		101		
Mn		103	99		105		
Mo		103	100		102		
Nd		101	97			101	
Pd						80	
Rh						98	
RU							
Sb					103		
Se					102		
Si			, 4 \%		116		
Sn						93	
Sr		102	$\square 1$		102		2.5
To						110	
Th		99	5			101	
Ti		93	92		98		
TI					100		
V		97	93		93		
W		$n \mathrm{r}$	103				
Y					99		
Zn		103	101		104		
Zr		95	90		101		

Shacted results did not meet the acceptance criteria
nr. $=$ net recovered, spike concentration less than 20% of sample concentration or measured sample concentration <EQL.
(a) Opportunistic analytes, no LCS or spiking required.
(b) Vatue obtained from (e) 5 and @ 25 dilutions.

	Run Date=	2/19/2002	2/19/2002	2/19/2002
	Multiplier=	1.0	10.0	10.0
	RPLLLAB \#=	02-00779-DB	02-00779	02-00779 DUP
Det. Limit	Client iD=	Diluent Blank	$\frac{\text { AN102C104-CsE }}{\text { Comp } 1}$	$\frac{\text { AN102C104-CsE }}{\text { Comp 1-Dup }}$
($\mathrm{ug} / \mathrm{mL}$)	(Analyte)	($\mathrm{ug} / \mathrm{mL}$)	(ugiml)	(ug/mL)
0.060	Al	..	[5.7]	[5.8]
0.010	Ba	--	[0.16]	[0.19]
0.250	Ca	.-	..	-
0.015	Cd	--	2.31	2.38
0.050	Co	\cdots	.-	--
0.020	Cr	-	22.5	23.3
0.025	Cu	--	30.1	31.1
0.025	Fe	--	6.16	6.56
2.000	K	.	--	..
0.050	La	--
0.100	Mg	-.	-	--
0.050	Mn	-	-	.
0.050	Mo	--	--	-.
0.150	Na	--	775	810
0.030	Ni	--	66.6	68.9
0.100	Pb	\because	24.8	25.4
0.500	Si	--	[20]	[20]
1.500	Sn	-	--	-.
0.025	Ti	-	.-	..
0.050	Zn	-.	[2.7]	[2.8)
Other Analytes				
0.025	Ag	-	-.	-
0.250	As	..	\cdots	--
0.050	B	--	7.28	7.47
0.010	Be	-	--	..
0.100	Bi	--	--	..
0.200	Ce	..	--	--
0.050	Dy	--
0.100	Eu	..	\cdots	..
0.030	Li	-
0.100	Nd	-
0.100	P	..	--	--
0.750	Pd	--	--	-
0.300	Rh	-	--	--
1.100	Ru	*-	+	..
0.500	Sb	--	.-	-
0.250	Se	--	--	\cdots
0.015	Sr	-	(1.0]	[1.1]
1.500	Te	.-	.-	..
1.000	Th	--	--	--
0.500	II
2.000	U	..	[170]	[180]
0.050	V	.-	.-	..
2.000	W
0.050	Y	.-	..	.-
0.050	Zr	--	.-	..

Note: 1) Overat error greater than 10-fimes detection limit is estimated to be within $+/ 15 \%$
2) Values in brackets Il are within 10 -t.tes detection limit with errors likely to excees 15%.
3) "--" indicate measurement is below cetection. Sample detection timit ma; bo found by
multiplying "des. limit" (far teft cotumn) by "multiplier" (top of each column).

QC Performance 02/19/02 - Applies to Sample 02-0779

Criteria>	<20\%	80\%-120\%	75\%-125\%	75\%-125\%	75\%-125\%	< + f. 10%
QC ID $=$	$\begin{aligned} & 02-007798 \\ & 02.00779 . \mathrm{D} \\ & \hline \end{aligned}$	LCS/BS (none)	MS (none)	$\begin{gathered} 02.00779+ \\ \text { Post Spike A } \end{gathered}$	$\begin{gathered} 02-00779+ \\ \text { Post Spike B } \\ \hline \end{gathered}$	02-00779 @1/@5 Serial Dil
Analytes	RPD (\%)	\%Rec	\%Rec	\%Rec	\%Rec	\%Diff
Al				99		
Ba				98		
Ca				101		
Cd	3.2			102		
Co				105		
Cr	3.7			101		0.2
Cu	3.4			101		0.2
Fe	6.3			101		
K				$10!$		
La (a)					99	
Mg				106		
Mn				104		
Mo (a)				101		
Na	4.4			98		0.3
Ni	3.4			98		0.9
Pb	2.4			104		
Si (a)				106		
Sn (a)					92	
Ti ${ }^{\text {a }}$)				96		
Zn				102		

Other Analytes

Ag				104		
As				100		
B	2.6			100		
8 e				103		
Bi				101		
Ce					98	
Dy					102	
Eu					102	
Li				100		
Na					100	
P				100		
Pd					93	
Rh					100	
Ru						
Sb				99		
Se				103		
Sr				100		
Te					100	
Th					99	
71				100		
U					104	
V				96		
W						
Y				93.		
Zr				100		

Shadedresults exceed acceptance criteria
(a) Opponunisic analytes; no LCS or spiking required.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Client:	I. Burgeson	Charge Code/Project:	W60567/42365
ASR Number:	6281	Sample Receipt Date:	$11 / 21 / 2001$
Sample Prep Date:	N/A	Sample Analysis Date:	$02 / 20 / 2002$
Analyst:	MJ Steele		

Preparation Procedure: None
Procedure: I'NL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography"
$\mathrm{M} \& T \mathrm{TE}$ IC
M\&TE: IC system (WD25214); Balance (360-06-01-031) Sce Chemical Measurement Center 98620 RIDS IC File for Calibration, Standards Preparations, and Maintenance Records.

Sample Results

Sample ID	Client ID	$\begin{gathered} \mathrm{F}(\mathrm{a}) \\ \mu \mathrm{g} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{Cl} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{NO}_{2} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{Br} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{NO}_{3} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{PO}_{4} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{SO}_{4} \\ \mathrm{\mu g}_{\mathrm{g}} / \mathrm{ml} \end{gathered}$	$\begin{gathered} \mathrm{C}_{2} \mathrm{O}_{4} \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$
	MRQ per ASR	150	3.0	(b)	(b)	3000	2500	2300	(b)
	EQI	0.13	0.13	0.25	0.13	0.25	0.25	0.25	0.25
	Dituent Blank	$\therefore 0.13$	<0.13	<0.25	<0.13	<0.25	<0.25	<0.25	<0.25
	FQL	1.5	0.1.	3.19	0.13	3.3	0.25	0.23	0.28
$02-0076$	Tc-IN.Eluate Composite	11	3	50	<0.13	130	<0.25	9	2
	EQL	290	290	5610	200	1,159	5613	560	560
$02-067$	AN2-Tc-O-C	6,300	1,800	$41,40 \%$	<290	10-900	2,2000	6,701	1,400
	EQL	140	1.417	569	140	1,100	280	280	280
	T'c-LX-Ffluent Composite	3,806	1,90	38,300	<14)	98.1005	1,800	5,800	1,300
-	Tc-IN-Fffluent Composite Dup	3,800	1,600	37,90:	$<141)$	98,100	1,200	6,0\% ${ }^{\text {a }}$	1,300
	RPD:	0\%:	6%	1\%	(c)	10\%	6\%	3\%	0\%
	RSD ($1{ }^{1 \%}$	+	1%	(c)	O"'	4%	2%	0\%
	EQI	13	13	25	13	281	2.5	26	25
	AN-102/C-104-CsE-Compl	≤ 13	22	<25	<13	27,8ij)	<25	<25	<25
Batch QC Samples									
¢) ? 0\%-T M	AN-TcOCN以	9+600000	96%	96\%	94.3	78%	950	93\%	980\%
	Blank Spike/ICS \% \%Rec	$9+3$	96\%	97\%	99%	920	95\%	930\%	99\%

(a) The tluoride results should be considered the upper bound concentretion for the fluoride, sirce the fiuoride peak shape and retention time suggests the presence o: co-cluting anion(s), possibly formate or acetate.
(b) No itrQ defined by client
(c) Not applicable: sample and or duplicate concentration $<$ EQL.

The samples was prepared for ion chromatography anion analysis by dilution at 12 -fold to 4400 -fold in order to ensure that the anions were measured within the calibration range and that column overloading was minimized. The stated estimated quantitation limits (EQL) are based on the lowest calibration standard adjusted for the dilutions used to obtain the reported results.
The minimum reportable quantities (MRQ) are included with the results; the MRQs are based on tables provided with ASR 6281. In gencral the MRQs are met. The exceptions being some fluoride and chloride analyses. Except for 02-00779, the failure to meet the MRQ is not considered to impact the results since the fluoride and chloride are at concentrations many times

Battelle PNNL/RPG/Inorganic Analysis --. IC Report

the MRQ. For 02-00779, the EQL for chloride is $13 \mu \mathrm{~g} / \mathrm{mL}$ (due to the very high nitrate) versus an MRQ of $3 \mu \mathrm{~g} / \mathrm{mL}$ and the measured chloride is less than two times the EQL.

Q.C. Comments:

Duplicates: The relative percent difference (RPD) for the sample and duplicate prepared from sample 02-00778 (Tc-IX-Effluent Composite) meets the acceptance criteria of $<20 \%$ of the laboratory's QA plan as well as the relative standard deviation ($\mathrm{RSD}, \mathrm{n}=2$) of $<15 \%$ from the ASR attachment Table 1-5.

Laboratory Control Sample/Blank Spike-(HCV 010912@4x[LCS 021902]): A Blank Spike was prepared as the Laboratory Control Sample (LCS) and demonstrate recoveries within the 80% to 120% acceptance criteria.
Matrix Spike (HCV 010912@2x): A matrix spike was prepared using sample 02-00777 (AN2-Tc-O-C) and the high-range HCV standard solution. Although nitrate was somewhat low, all anion recoveries are within the 75% to 125% acceptance criteria.
Process/Dilution Blank: The diluent used for diluting the samples was analyzed for all reported analytes. No anions were detected in the diluent blank above the laboratory's QA plan acceptance criteria of $<E Q L$.

General Comments:

- The reported "Final Results" have been corseted for al. dilution performed on the stripe during processing or analysis.
- The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and asstane nom-complex aqueous matrices. Actual detection limits or quantitubn limits for specific sample matrices may be determined, if requested.

Excel Archive Information: ASR 6281 Burgeson.xls
. . . Putting Technology To Work

Internal Distribution
Filc/LB

Date February 26, 2002

To Sandy Fiskum
Frons stan boss stare bios
Subject Cesium isotopic analysis (R1PL \# 02-00779)

Sandy
Cesium isotopic distribution analyses of samples AN102-C104 and An102-C124 (dup) have been completed. Approximately two micro liters of the sample was plated on a rhenium carbide filament and analyzed on the single stage mass spectrometer (M\&TE \# WB76849) in accordance with PNNL technical procedure PNNL-98523-264. Since natural cesium in mono-isotopic, a sample of rubidium chloride isotopic standard (NBS 984) was run to standardize the mass spectrometer. Work package W60553 will be charged for the analysis.

In addition to the samples a diluent blank was also analyzed. A small ${ }^{133} \mathrm{Cs}$ signal was detected for about 1 minute before it died away. During that time no ${ }^{137} \mathrm{Cs}$ could be detected. Do to the low concentration of cesium no attempt was made to do isotopic distribution analysis.

Please feel free to call me at $376-5384$ with any questions you might have.

Sample Id. AN-102 / C104 RPL 护02-00779

Note: ${ }^{134} \mathrm{Cs}$ was not detected above the background

Concurrence

$2-26 \cdots 2$

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Client:
I. Burgeson

RPL Numbers: 02-00776 to 02-00779
Analyst:
MJ Steele

Charge Code/Project: W60567/42365
ASR Number:
Analysis Date:
March 7, 2002

Procedure: PNL-ALO-381, "Direct Determination of TC, TOC, and TIC in Radioactive Sludge and Liquids by Hot Persulfate Method"
M\&TE: Carbon System (WA92040); Balance (360-06-01-023)

Analysis Results

The TOC/TIC analyses of the samples submitted under ASRs 6281 are to be performed by the hot persulfate wet oxidation method. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at $92-95^{\circ} \mathrm{C}$ for TOC , all on the same sample, with TC being the sum of the TIC and TOC.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank, as per procedure PNL-ALO-381.

Q.C. Comments:

The TIC analysis uses calcium carbonate and the TOC uses α-D-Glucose as the calibration, laboratory control, and matrix spike standars. (The JГ Baker, Aldrich, Sigma, and Mallinckrodt chemical lot numbers and Chemical Measurement System numbers are provided on the raw data benchsheets).

The QC for the methods involves calibration blanks, sample duplicates, laboratory control sample, and matrix spikes per analysis batch. The ASR indicates that the analyses are to be performed per the QA Plan "Conducting Analytical Work in Support of Regulatory Programs" Sections 4 and 5; the performance of the QC samples is compared to this Plan.

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Laboratory Control Sample (LCS)/Blank Spike(BS): At 100% recovery for both TIC and TOC, the LCS/BS samples recovered well within acceptance criteria of 80% to 120%.
Matrix Spike: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The matrix spike recoveries (104% for TIC and 110% for TOC) are within the acceptance criteria of 75% to 125% recovery.
Duplicates: The precision between the duplicates (replicates), as demonstrated by the Relative Percent Difference (RPD) between sample and duplicate. With RDs less than 2%, the TIC and TOC RPD results are within the QP Plan acceptance criteria of $<20 \%$ RD.

MDL/MRQ: Except for the duplicate analysis for the Tc-IX-Effluent sample, all estimated MOLs for the TIC and TOC measurements are less that one-third of the minimum reportable quantities for TIC $(150 \mu \mathrm{~g} / \mathrm{mL})$ and TOC ($1500 \mu \mathrm{~g} / \mathrm{mL}$).

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis
- Routine precision and bias are typically $\pm 15 \%$ or better for non-conplex samples that are free of interferences
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MOL have higher uncertainties, and RODs are rot calculated for any results less than 5 times the MDL. The analysis MOLs (total aug C) are based on 3 times the standard deviation of a set of historical data. The sample MOLs (in hug Cion or un Cig) are calculated by using the analysis MDL adjusted for the sample volume or weight.
- Some results many be reported as less than ("く") values. These less than values represent the sample MDt. (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis. The system MDL is based on the attached pooled historical blank data. The evaluation and calculation of the system Midi is included in the data package

Date $3-8-82$

Excel Archive File: ASR 6281 Burgesonxls

. . . Putting Technology To Work

$$
\text { Client: } \quad \text { Ingrid Burgeson }
$$

Subject: Hydroxide Analyses for: AN2-TC-O-C
ASR: 6281

- 6281

Date: 01/16/02

Two samples of AN-102 / C-104 tank waste (the first, 02-0777 with Cs removed and the second, 02-0778 with Cs and Tc removed) were analyzed in duplicate for the hydroxide content following procedure PNL-ALO228. These samples were analyzed using a Brinkman 636 Auto-Titrator. A 0.1186 N NaOH (ChemRec_57) solution was used as a standard and sample spike and the titrant was a 0.2040 M HCl prepared solution for the liquid fraction. The attached Report Summary indicates good RPD on the OH molarity (1st inflection point) on the sample and replicate results. The hydroxide results were all well below the required $M R Q$ value of $7.5 \mathrm{E}+04 \mathrm{ug} / \mathrm{mL}$. The hydroxide standard recovery was 98% and the matrix spike recovery was 96%. No hydroxide was detected in the reagent blank. The second and third inflection points frequently associated with carbonate and bicarbonate, showed excellent RPD, well below the $+/-20 \%$ required. All of the results meet the QC acceptance criteria for spike recovery and RSD of duplicate measurements. Following is the report summary, the sample results calculated from the raw data, and the record file for the standardized acid and base used. Also included in this report are copies of the titration curves.

Battelle Pacific Northwest Laboratory
ASR 6281
Radiochemical Processing Group-325 Building
Chemical Measurements Center
WP W60567
Hydroxide and Alkalinity Determination
Procedure: PNL-ALO-228 Equip \ddagger
WB76843

Report Summary for ASR \# --
6281

$\mathrm{OH} \operatorname{conc}(\mathrm{ug} / \mathrm{mL})=\mathrm{M}(\mathrm{g} / \mathrm{L}) \cdot 17,000$

Reag. Blk. 1
0
Standard 3
98\%

MS 02-778 Matrix spike
96%
Note: Results are presented for the first, second, and third inflection points on the titration curves, as applicable. The first inflection point is generally associated with the hydroxide concentration. The second and third points generally represent the carbonate and bicarbonate concentrations.

. . . Putting Technology To Work

Internal Distribution
File/LB

Date March 12, 2002

To I. Burgeson and S. Fiskum
From I.. R. Greenwood

Subject Radiochemical Analyses for ASR 6281

Samples of the 'Ic-IX eluate composite and effluent for tanks AN102 and C104 were analyzed for gamma emitters, ${ }^{21} \mathrm{Sr}$, total alpha, $\mathrm{Am} / \mathrm{Cm}, \mathrm{U}$ and ' Cc as pertechnetate according to ASR 6281 . The analyses wete performed on direct sample material prepared by acid digestion in the laboratory. The attached reports list measured analyte activities in units of $\mu \mathrm{Ci} / \mathrm{ml}$. The reported errors ($1-\sigma$) represent the total propagated error including counting, dilution, yield, and calibration crrors, as appropriate. Laboratory and process blank values given with each analysis are the best indicators of the method detection limits, taking into account the actual sample sizes and counting times used for each analysis.

Gamma Spectrometry

Sample aliquots were directly counted for gamma emitters according to procedure PNL-ALO-450. Since no sample preparation was involved, no laboratory blanks or spikes were prepared for these analyses other than the standard laboratory control samples and background counts. Measured activities or detection limits generally met the requested MRQ values except for sample 02-779 where the high level of $\mathrm{Cs}-137$ made it impossible to meet the MRQ values after 14 hours of counting. ${ }^{55} \mathrm{Fc}$ and ${ }^{5 m} \mathrm{Tc}$ dominated the gamma spectrum for sample 02-0776.

Total Alpha

The total alpha activity was determined by evaporating small aliquots of the samples onto planchets according to RIPG-CMC-4001. The samples were then counted on Ludlum detcctors according to RPG-CMC-408. Alpha activity was detected in all of the samples except for $02-0779$; however, the detection limits were well below the requested MRQ value. Blank and matrix spikes gave good recovery and no alpha activity was detected in the reagent blanks.

Americium and Curium

The Am/Cm separations were performed according to PNL-ALO-417 for sample 02-0779 only. This test was cancelled for sample 02-0776 since the GEA detection limit was well below the requested MRQ value, as specified on the ASR. The separated fractions were precipitation plated according to PNJ.-ALO-496 and the samples were counted by alpha spectrometry according to PNL-AIO-422. The curium is known to follow the americium and both these isotopes were traced with ${ }^{243} \mathrm{Am}$. The americium radiochemical yields were acceptablc, averaging about 96%. The LCS
M. W. Urie

March 12, 2002
Page 2
and matrix spike recoveries were acceptable at $95-98 \%$. No Am or Cm activities were detected in the reagent blanks. The ${ }^{241}$ Am activities measured by alpha energy analysis are in very good agreement with the GEA data.

Strontium-90

The Sr separation was performed according to PNL-ALO-476 and radiochemical yiclds were traced with ${ }^{85} \mathrm{St}$. The separated fractions were then beta-counted according to RPG-CMC-408 and gamma counted according to PNI,-ALO-450 (for ${ }^{87} \mathrm{Sr}$ determination and ${ }^{137} \mathrm{Cs}$ impurity assessment), ${ }^{137} \mathrm{C}$ was not observed in the gamma counting, indicating a clean strontium sepatation. The process blank prepared with the acid digestion in the laboratory was found to have a low level of ${ }^{9 n} \mathrm{Sr}$ contamination that is negligible except for sample 02-0776 where the level in the blank is about 10% of the sample activity. The reagent blank did not show any contamination. The LCS and matrix spike showed good recovery at nearly 100% in both cases. Duplicate analyses showed acceptable agreement with RPD values of about $11-16 \%$. The detection limits as well as many of the measurements were well below the requested MRQ values.

Uranium

Uranium was measured by kinetic phosphorescence analysis (KPA) accotding to procedure PNL-ALO-4014. Duplicate analyses were in good agteement with RPD values below 3%. ICS and matrix spike recoveries were nearly 100% and laboratory blanks did not show any uranium contamination. The uranium measurements and detection limits were well below the requested MRQ values.

Tc-99 Not done yet.

Battelle Pacific Northwest National Laboratory
Radiochemical Chemical Science \& Engineering -325 Building
Date: $\frac{3 / 6 / 62}{3 / 7 / 02}$

Note: Samples were analyzed for $\mathrm{Sr}-90$ in two batches.

Battelle Pacific Northwest National Laboratory
Radiochemical Chemical Science \& Engineering - 325 Building
03/07/02
Client: I. Burgeson
ASP: 6281
Cognizant Scientist:

Date:

Date :
$3 / 7102$

Procedure: PNL-ALO-417/496/422 Americium
Procedure: PNL-ALO-420 \& 421 for Alpha
Measured Activities (uCi/ml) with 1-sigma error

Note: Samples were analyzed in two batches.

Battelle, Pacific Northwest National Laboratory	filename	$02-0776$
Richland, WA		$3 / 5 / 2002$
Radiochemical Processing Group		

Client: I. Burgeson AR 6281

Report prepared by: \qquad
Concur:
Procedure RPG-CMC-4014 Rev 1, Uranium Analysis by Kinetic Phosphorescence Chem-Chek Instruments model KPA 11R uranium analyzer

Appendix E

Cesium Ion Exchange and Batch Contacts Testing Personnel

Appendix E: Cesium Ion Exchange and Batch Contacts Testing Personnel

Cognizant Scientists

S. K. Fiskum
D. L. Blanchard
S. A. Arm
B. M. Rapko

Hot Cell Technicians

F. V. Hoopes
M. A. Mann

Analytical Support
S. J. Bos
J. P. Bramson
L. P. Darnell
O. T. Farmer, III
S. K. Fiskum
L. R. Greenwood
D. R. Sanders
C. Z. Soderquist
M. J. Steele
R. G. Swoboda
K. K. Thomas
T. L. Trang-Le
J. J. Wagner
M. W. Urie

Distribution

No. of
Copies
\section*{OFFSITE}
$7 \quad$ Savannah River Technoloy Center
Russ Eibling
PO Box 616, Road 1
Building 999-W
Aiken, South Carolina 29808
Larry Hamm
PO Box 616, Road 1
Building 773-42A
Aiken, South Carolina 29808
Neguib Hassan
PO Box 616, Road 1
Building 773-A
Aiken, South Carolina 29808
Jim Marra
PO Box 616, Road 1
Building 773-43A
Aiken, South Carolina 29808
Charles Nash
PO Box 616, Road 1
Building 773-42A
Aiken, South Carolina 29808
Robert Pierce
PO Box 616, Road 1
Building 773-A
Aiken, South Carolina
Harold Sturm
PO Box 616, Road 1
Building 773-A
Aiken, South Carolina 29808

No. of
Copies
ONSITE
15 Battelle, Pacific Northwest Division
S. T. Arm P7-28
D. L. Blanchard P7-25
I. E. Burgeson P7-25
S. K. Fiskum (5) P7-22
D. E. Kurath P7-28
B. M. Rapko P7-25
G. L. Smith K6-24
J. J. Toth K7-94

Project File P7-28
Information Release (2) K1-06
6 Bechtel National, Inc.
S. M. Barnes H4-02
R. Peterson H4-02
P. Sundar H4-02
M. Thorson $\quad \mathrm{H} 4-02$

R\&T Manager $\quad \mathrm{H} 4-02$
WTP PDC Coordinator H4-02

[^0]: (d) The conversion requires the following assumptions: Envelope C LAW will contain a minimum of $10 \mathrm{wt} \%$ $\mathrm{Na}_{2} \mathrm{O}$, all Na comes from the tank waste, the glass density is $2.66 \mathrm{~g} / \mathrm{mL}$, and the waste Na concentration is 4.8 M . For the maximum $14 \mathrm{wt} \% \mathrm{Na}_{2} \mathrm{O}$ waste loading, the Cs ion exchange effluent must be less than $0.120 \mu \mathrm{Ci} / \mathrm{mL}$.

[^1]: (a) PL-W375-TE00002, Rev. 1, River Protection Project Waste Treatment Plant Development Requirements Document, October 31, 2000, M. E., Johnson and T. W. Crawford, CH2MHill Hanford Group, Inc., Richland, WA. DRAFT.
 (b) IE-911 is an alternative Cs ion exchanger and is being tested in parallel to SL-644 only with batch contacts. The IE-911 was developed and supplied by UOP LLC, Des Plaines, IL.

[^2]: (a) Processing and data collection were recorded in Test Instruction TI-PNNL-WTP-080, Rev. 0, "Separation of Cesium from Hanford Tank Waste AN-102/C-104 Wash Solution Integrated Test Sample Using the Dual SmallColumn SuperLig 644 Cesium Ion Exchange System," SK Fiskum, 6/21/02.

[^3]: (b) Compositing was conducted according to Test Instruction TI-RPP-WTP-106, Rev. 0, "Preparing a Composite Solution of the Acid Eluate Samples from AN-102/C-104 Cs Ion Exchange Column 1," SK Fiskum, 9/4/01.

[^4]: (d) The C_{o} refers to the ${ }^{137} \mathrm{Cs}$ concentration in the $\mathrm{AN}-102 / \mathrm{C}-104$ sample fed to the lead column. For elution, the $\mathrm{C} / \mathrm{C}_{\mathrm{o}}$ value is an indication of the extent to which ${ }^{137} \mathrm{Cs}$ is concentrated relative to the feed. It is an indirect measure of the extent to which the resin is actually eluted.

[^5]: n.r. $=$ not recovered; spike is less than 20% of sample concentration.

[^6]: Note: 1) Overall error greater than 10 -times detection limit is estimated to be within $+/-15 \%$.
 2) Values in brackets \square are within 10 -times detection limit with errors likely to exceed 15%.
 3) "--" indicate measurement is below detection. Sample detection timit may be found by
 mutitiptying "del. limit" (far left column) by "multiplier" (top of each solumn).

[^7]: Shaded results do not meet QC acceptance criteria

[^8]: Raw Data Calculation/Archive Information:
 ASR 6019L\&S 6025L 6031L 6107S.xls
 AR 60146104510561066107615561626192 .xIs

