PNWD-3257, Rev 1 WTP-RPT-031, Rev 1

Small Column Testing of SuperLig[®] 639 for Removing ⁹⁹Tc from Hanford Tank Waste 241-AN-102 Supernate (Envelope C) Mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions

I. E. Burgeson D. L. Blanchard Jr. J. R. Deschane

March 2004

Prepared for Bechtel National, Inc. under Contract 24590-101-TSA-W000-0004

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Small Column Testing of SuperLig[®] 639 for Removing ⁹⁹Tc from Hanford Tank 241-AN-102 Supernate (Envelope C) Mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions

I. E. Burgeson D. L. Blanchard Jr. J. R. Deschane

L- Ht. For W.L. Tomosettis 318104

March 2004

ACCEPTED FOR WTP PROJECT USE

Test specification: TSP-W375-00-00028 Test plan: CHG-TP-41500-013, Rev. 0 TP-RPP-WTP-013, Rev 0. Test exceptions: None R&T focus area: Pretreatment Test Scoping Statement(s): B-47

Battelle Pacific Northwest Division Richland, Washington, 99352

COMPLETENESS OF TESTING

This report describes the results of work and testing specified by Test Specification TSP-W375-00-00028, Rev 1. and Test Plans CHG-TP-41500-013, Rev. 0 and TP-RPP-WTP-013 Rev 0. The work and any associated testing followed the quality assurance requirements outlined in the Test Specification/Plan. The descriptions provided in this test report are an accurate account of both the conduct of the work and the data collected. Test plan results are reported. Also reported are any unusual or anomalous occurrences that are different from expected results. The test results and this report have been reviewed and verified.

Approved:

nala

Gordon H. Beeman, Manager WTP R&T Support Project

	History Sheet					
Rev	Date	Reason for revision	Revised by			
0	January 2003	New Document	IE Burgeson			
	Noted higher uncertainty in the total ⁹⁹ Tc values in Tables					
1	February 2004	3.1, 3.2, 3.3, 3.6, 3.8 and 3.9 as footnotes.	IE Burgeson			

Summary

The River Protection Project-Waste Treatment Plant (RPP-WTP) baseline process for ⁹⁹Tc removal from Hanford tank waste is ion exchange. The current flowsheet includes the use of TcO_4^- -selective sorbent SuperLig[®] 639 (SL-639) for Tc removal from the aqueous waste fraction. This material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT. The process testing was performed on a blended tank waste feed that was prepared by combining Tank 241-C-104 (C-104) high-level waste pretreatment stream solutions (filtrate, wash, and leach solutions) with Tank 241-AN-102 (AN-102) tank waste supernate. At the time of testing, this combination represented the baseline process flowsheet for the AN-102 tank waste supernate at the Waste Treatment Plant.

This report documents the results of dual-column testing of the SL-639 sorbent with waste from Hanford Tank AN-102 blended with C-104 filtrate, wash and leach solutions (AN-102/C-104) for Bechtel National, Inc. in accordance with Test Specification TSP-W375-00-00028, Rev.1 (Johnson 2000). Section 5 of the Research and Technology Plan (BNI 2002) identifies the research needs for Tc ion exchange process verification [Statement of Work (SOW) Ref Sec C.6 Std 2(a)(3)(ii) and Work Breakdown Structure (WBS) 02.08.04]. The Tc ion exchange process verification tests are also addressed in Scoping Statement B-47, which is included in Appendix C of the *Research and Technology Plan*. These studies are to verify design and operating parameters for plant-scale ion exchange systems. Test results will also be used to validate ion exchange models.

Objectives

The Tc ion exchange test objectives were to

- demonstrate the effectiveness of all SL-639 process steps
- prepare loading breakthrough profiles and elution profiles with AN-102/C-104 blended feed
- prepare batch-distribution isotherms
- produce a final effluent that removed at least 25% of the technetium from the AN-102/C-104 blended feed within a process goal of 250 bed volumes (BVs) of feed.

Conduct of Testing

This report documents the results of dual-column testing of the SL-639 sorbent with the blended waste AN-102/C-104 for Bechtel National, Inc. Two columns were arranged in series with each column containing a 5.0-mL resin bed, $L/D^{(a)} = 2.1$. These resin beds were utilized in two previous technetium-removal tests: AW-101 simulant and AP-101 tank waste feed. The AN-102 supernate was combined with permeate from the filtration, washing, and leaching of C-104 solids; this blend was evaporated to concentrate the sodium to ~4.8 <u>M</u> Na and processed for Cs removal by ion exchange using SuperLig[®]644 before removing technetium. Approximately 0.68 L of the prepared waste feed was processed for technetium removal; this volume correlates to ~136 BVs of feed. All ion exchange process steps were

⁽a) L/D = ratio of bed height to bed diameter.

tested, including resin-bed preparation, loading, feed displacement, water rinse, elution, and resin regeneration.

Results and Performance Against Objectives

After processing 136 BVs of feed (680 mL), the ⁹⁹Tc lead and lag column final breakthrough ratios, C/C₀, were 46% and 43%, respectively. The initial feed technetium concentration was 50% non-pertechnetate, which would not have been retained by the SL-639 resin. The initial ⁹⁹Tc decontamination factors (DFs) for the feed passing through the first column and the whole column system (derived from the ⁹⁹Tc concentration in the first sample from each column) were 1.9 and 2.2, respectively, indicating that 47% and 55% of the technetium was removed from the initial lead and lag column samples. The final DF of the effluent was 1.8, as measured by the concentration of ⁹⁹Tc present in the initial and processed feed. The ⁹⁹Tc concentration in the effluent composite was 44.1 μ Ci/L, and the initial concentration was 79.5 μ Ci/L, providing an overall ⁹⁹Tc removal of 44%, which meets the success criteria of \geq 25% removal of technetium. Based upon the slight breakthrough of pertechnetate on the lag column, it is predicted that the total technetium removal after processing 250 BVs of feed will meet or exceed the 25% removal target.

The pertechnetate quantitation appears to have suffered from an unidentified interferent. There was no interference observed for the ⁹⁹Tc quantitation reported above. The lead and lag column initial pertechnetate breakthrough ratios, C/C_0 , were ~13%. The final breakthrough ratios were 19% for the lead column and ~14% for the lag column. The lag column pertechnetate values are scattered and demonstrate an uncertainty of approximately 3% C/C_0 . The initial DFs for pertechnetate (derived from the ⁹⁹TcO₄⁻ C/C_0 in the first sample from each column) were 11 for both the lead and lag columns. The concentration of TcO₄⁻ in the effluent composite was 5.45 µCi/L, and the initial concentration of TcO₄⁻ was 39.9 µCi/L. The effluent composite concentration demonstrates a pertechnetate removal of 86%, or an overall TcO₄⁻ DF of 7.3.

Both columns were monitored during loading; however, only the lead column was eluted (deionized [DI] water at 65°C). The peak ⁹⁹Tc concentration was 48 times the ⁹⁹Tc concentration in the feed and was found in the second BV. After this, the elution proceeded relatively quickly; 16 BVs of eluant were required for the ⁹⁹Tc concentration to drop below $C/C_0 = 0.01$. The ⁹⁹Tc concentration of the composited eluate was 180 µCi/L, which correlates to a C/C_0 of 4.5.

The column distribution value, λ , approximately represents the effective capacity of the SL-639 resin when kinetics are not a significant factor and is the number of BVs processed when the concentration of pertechnetate reaches 50% of the feed concentration (C/C₀=0.5). Based upon the pertechnetate batchdistribution measurements and resin-bed density (K_d × resin bed density), it was expected that ~310 BVs would be processed before reaching C/C₀=0.50 for pertechnetate. However, since there was only a slight change in the pertechnetate breakthrough during the run, it was not possible to experimentally determine the column λ value. An extremely rough λ prediction, which was extrapolated from a change of 13% to 19% TcO₄⁻ breakthrough, resulted in a column λ value of ~500 BVs. The batch-contact and columnperformance data are summarized in Table S1.

		Composite Decontami	nation Factor ^(a)				
Flowrate,	Extrapolated TcO ₄ ^{- (b)}	TcO ₄	⁹⁹ Tc	⁹⁹ TcO ₄ K _d ,	TcO ₄ K _d		
BV/h	Column λ Value	(Pertechnetate)	(Total Tc)	mL/g	λ value		
3.0 500		7.3	1.8	620	310		
(a) The DF	(a) The DF is determined by dividing the final effluent technetium concentration by the initial feed						
concentration.							
(b) Extrapo	plated from final pertechne	etate breakthrough at 136	BVs (19%) to 509	% C/C ₀ at 500	BVs.		

 Table S1.
 Summary of Observed and Predicted Column Performance for AN-102/C-104 Blended Feed

Quality Requirements

Battelle—Pacific Northwest Division (PNWD) implemented the RPP-WTP quality requirements in a quality assurance project plan (QAPjP) as approved by the RPP-WTP quality assurance (QA) organization. Activities prior to September 2001 (AN-102 homogenization, subsampling, feed blending, evaporation, Sr/TRU precipitation and Cs IX) were conducted in accordance with PNWD's quality assurance project plan, CHG-QAPjP, Rev.0, which invoked PNWD's Standards Based Management System (SBMS), compliant with DOE Order 414.1A Quality Assurance and 10 CFR 830, Energy/Nuclear Safety Management, Subpart A -- Quality Assurance Requirements. Due to a change in the contract QA requirements, activities from September 2001 on (all analytical data for ion exchange testing) were conducted in accordance with PNWD's quality assurance project plan, RPP-WTP-QAPjP, Rev.0, which invoked NQA-1-1989 Part I, Basic and Supplementary Requirements, and NQA-2a-1990, Part 2.7. These quality requirements were implemented through PNWD's *Waste Treatment Plant Support Project Quality Assurance Requirements and Description Manual* (WTPSP). The quality of the data gathered during the early experiments was not impacted by the change in requirements.

PNWD addressed verification activities by conducting an Independent Technical Review of the final data report in accordance with procedure QA-RPP-WTP-604. This review verified that the reported results were traceable, that inferences and conclusions were soundly based, and that the reported work satisfied the Test Plan objectives. The review procedure is part of PNWD's WTPSP Manual.

Issues

No WTP design or operational issues were identified.

Terms, Symbols, and Abbreviations

AEA	alpha energy analysis
BNI	Bechtel National, Inc.
BV	bed volume
CUF	crossflow filtration system (cell unit filter)
DF	decontamination factor
DI	distilled and deionized
DOE	U.S. Department of Energy
GEA	gamma energy analysis
IC	ion chromatography
ICP-AES	inductively coupled plasma/atomic emission spectrometry
ICP-MS	inductively coupled plasma-mass spectrometry
ID	inner diameter
KPA	kinetic phosphorescence analysis
λ	lambda; the number of BV processed at 50% breakthrough
L/D	ratio of bed height to bed diameter
LAW	low-activity waste
MRQ	minimum reportable quantity
OD	outer diameter
PNWD	Battelle—Pacific Northwest Division
QA	quality assurance
QAPjP	quality assurance project plan
RPD	relative percent difference
RPP	River Protection Project
SBMS	Standards Based Management System
SOW	Statement of Work
TC	total carbon
TIC	total inorganic carbon
TOC	total organic carbon
TRU	transuranic
WBS	Work Breakdown Structure

WTP Waste Treatment Plant

WTPSP Waste Treatment Plant Support Project Quality Assurance Requirements and Description

Contents

Sum	nmary	yiii		
Terr	ns, S	ymbols	, and Abbreviations	vii
1.0	Intro	oduction	1	1.1
2.0	Exp	eriment	al	2.1
	2.1	AN-10	2 Sample History	2.1
	2.2	C-104	Sample History	2.1
	2.3	Prepar	ation of AN-102/C-104 Blended Feed	2.1
	2.4	Proces	sing of AN-102/C-104 Blended Feed	2.2
	2.5	SL-639	P Resin and Bed Preparation	2.2
	2.6	History	y of Technetium Processing with Resin Bed	2.3
	2.7	Batch-	Distribution Measurement	2.4
	2.8	Tc-Rei	moval Column System	2.5
	2.9	Colum	n Ion Exchange Test Procedure and Conditions	2.6
3.0	Res	ults and	Discussion	3.1
	3.1	Feed C	Composition	3.1
	3.2	Batch	Distribution	3.2
	3.3	AN-10	2/C-104 Column Test – Sample Loading	3.4
	3.4	AN-10	2/C-104 Column Test – Feed Displacement and Column Rinse	3.8
	3.5	AN-10	2/C-104 Column Test—Elution and Resin Regeneration	. 3.10
	3.6	AN-10	2/C-104 Column Test—Elution Composite and Effluent Composite Analysis	. 3.12
	3.7	Compa	arison of AN-102/C-104 Initial Feed and Effluent Composite Composition	. 3.15
	3.8	Techne	etium Recovery	
		3.8.1 3.8.2	System Recovery Using Composite Solution ⁹⁹ Tc Data Recovery for Lead Column Loading and Elution Using Individual ⁹⁹ Tc	
		3.8.3	Sample Data Estimate of Technetium Retained on Lead and Lag Columns During Processing	
			of AN-102/C-104 Blended Feed	
			ary of Objectives and System Performance	
4.0			s	
• •			mple Identification	
App	endiz	x B: Co	olumn Run Spreadsheets	B.1

Figures

Figure 2.1.	Schematic Representation of Column System for Removing Technetium	2.6
Figure 3.1.	⁹⁹ Tc and TcO ₄ ⁻ Derived K _d Values	3.4
Figure 3.2.	AN-102/C-104 Technetium Loading Breakthrough Curves, Lead and Lag Columns	3.5
0	Pertechnetate and Total Technetium Loading Curves for Lead and Lag Columns ared with the Technetium Monitoring and ICP-MS Results	3.6
Figure 3.4.	⁹⁹ Tc C/C ₀ for Feed Displacement of Lead and Lag Columns	3.8
Figure 3.5.	Component Concentrations in Lag Column Feed-Displacement Samples	3.9
Figure 3.6.	Elution of Technetium from Lead Column	3.11

Tables

	Summary of Observed and Predicted Column Performance for AN-102/C-104 led Feed	. v
Table 2.1.	Sieving Data for SL-639 Batch Number 010227CTC-9-23	.3
Table 2.2.	Summary of Resin and Column Parameters	.3
Table 2.3.	Experimental Conditions of AN-102/C-104 Blended Feed Small-Scale ^(a) Ion Exchange	.6
Table 2.4.	Sampling Interval and Analyses of Small-Scale Ion Exchange Column Process Stages 2	.7
Table 3.1.	Composition of AN-102/C-104 Blended Feed	.1
Table 3.2.	Selected Composition of AN-102/C-104 Blended Feed (Envelope C Feed)	.2
Table 3.3.	AN-102/C-104 Technetium K _d Values—Average of Duplicate Measurements	.3
Table 3.4.	Percent Displacement ^(a) of Feed Analytes from Resin Beds	10
Table 3.5.	Composition of Column Regenerate after AN-102/C-104 Column Run	12
Table 3.6.	Analysis Results of AN-102/C-104 Eluant Composite	13
Table 3.7.	Inorganic and Carbon Composition of Tc and Cs IX Effluent Composite	14
Table 3.8.	Radiochemical Composition of Cs and Tc Ion Exchange Effluent Composite	15
Table 3.9.	Comparison of Initial Feed and Effluent Composite Composition	16
Table 3.10	 Recovery for Technetium Recovery During Processing Using Composite Solution Data	17
Table 3.11	. Recovery for Loading and Elution of Technetium During Processing of AN-102/C- 104 Blended Feed	18
Table 3.12	2. Estimated Technetium Retained on Lead and Lag Columns During Processing of AN-102/C-104 Blended Feed	20

1.0 Introduction

The U.S. Department of Energy's Hanford Site in southeastern Washington State contains 177 large underground storage tanks with approximately 55 million gallons of radioactive waste. Plans are underway to separate the waste into high-level and low-activity waste (LAW) streams. The primary unit processes of the Hanford waste-treatment flowsheet for LAW feed are cross-flow filtration, Sr/TRU^(a) precipitation, cesium and technetium ion exchange, evaporation, and vitrification. After solids are removed, the LAW feed will be passed through ion exchange columns to remove cesium and technetium. The decontaminated LAW feed will contain the bulk of the waste mass and will be vitrified as a low-activity glass and stored at the Hanford Site. The cesium and technetium eluted from the ion exchange columns will be mixed with tank sludge, vitrified as high-level waste, and eventually stored at a federal repository.

This report describes the results of small-column testing of the SL-639 sorbent with 241-AN-102 tank waste supernate combined with wash and leach permeate from 241-C-104 solids. (The 241 prefix, which is common to all Hanford tanks, will not be used hereafter). Approximately 680 mL of the prepared tank waste feed was processed through dual small-scale ion exchange columns. This blended tank feed was processed for Sr/TRU removal, the solids were removed using vacuum filtration (Hallen et al. 2002), and the feed was processed for Cs removal by ion exchange using SuperLig[®]644 (Fiskum et al. 2002) before technetium ion exchange. The removal goal for the combined AN-102/C-104 permeate solution is to reduce the total Tc concentration by at least 25% after processing \geq 250 bed volumes (BVs) of solution.^(b)

The objectives of this work were to

- demonstrate the effectiveness of all SL-639 process steps, including loading, feed displacement, deionized (DI) water washing, elution, and resin regeneration
- investigate the potential for resin and/or column fouling
- demonstrate the ⁹⁹Tc decontamination of an Envelope C material (Tank AN-102 blended with permeate from the filtration, washing and leaching of C-104 solids)
- provide batch-distribution measurements on actual tank-waste feed.

This report discusses the experimental conditions for the column ion exchange test procedure. Work was performed in accordance with Scoping Statement B-47, the test specification TSP-W375-00-00028,^(c) Rev.1, and test plans CHG-TP-41500-013,^(d) Rev 0 and TP-RPP-WTP-013, Rev 0.^(e) The results of the feed composition, the batch distribution, the AN-102/C-104 column test, the comparison of the AN-102/C-104 initial feed and effluent composite composition, and the technetium mass balance are presented.

(c) Test Specification: "Tank 241-AN-102 and 241-AP-101 Ion Exchange," TSP-W375-00-00028, Rev. 1, December 11, 2000, ME Johnson, CH2MHill Hanford Group, Inc, Richland, WA.

⁽a) TRU = transuranic

⁽b) ME Johnson. Interoffice Memo to SM Mackay, "Minimum Required Technetium Removal from Low Activity Waste Solutions", CCN#016099C, October 25, 2000. CH2M Hill Hanford Group, Inc. Richland, WA.

 ⁽d) Test Plan: "Actual Waste Ion Exchange Testing for the RPP-WTP Project," CHG-TP-41500-013, Rev 0, January 24, 2000, DL Blanchard, Battelle—Pacific Northwest Division, Richland, WA.

⁽e) Test Plan: "AP-101 and AN-102/C-104 Actual Waste Ion Exchange Testing "TP-TPP-WTP-013, Rev 0, February 22, 2002, DL Blanchard, Battelle—Pacific Northwest Division, Richland, WA.

2.0 Experimental

This section describes the history, the preparation, and the processing of the AN-102/C-104 blended feed before technetium ion exchange. It also describes the preparation and history of the technetium resin beds as well as the technetium processing of the AN-102/C-104 blended feed.

2.1 AN-102 Sample History

Hanford site personnel grab sampled the sludge layer of Tank AN-102 in August 2000 and retrieved 30 samples from Riser 22 at six different tank waste heights. Battelle—Pacific Northwest Division received 27 of these samples. Each sample was contained in a 500-mL bottle and consisted of wet solids plus supernatant incidental to obtaining the wet solids. Eight of these samples, which were collected 193 cm from the bottom of the tank, were used to prepare a homogenized composite for the initial characterization and process testing of AN-102 as-received material (Urie et al. 2002a). After verification of the homogenization, 15 subsamples representing the entire composite sample were collected. The samples were identified as *AN-102-AR-A* through *O*. The slurry composite sub sample *AN-102 AR-E* was combined with the supernate decanted from five additional composite subsamples (*AN-102 AR- J, K, L, M,* and *N*), to form an AN-102 composite slurry consisting of approximately 2 wt% solids (Urie et al. 2002b).

2.2 C-104 Sample History

Battelle—Pacific Northwest Division received 14 sample jars of C-104 from Hanford's 222-S laboratory on March 3, 1999, identified as jars 16273 through 16286. Each of the as-received samples was used to prepare a homogenized composite for characterization and process testing. After verification of the homogenization, six composite subsamples representing the entire composite were collected. The samples were identified as *C104 Comp A, B, C, D, E and GL*. Because there was composited material remaining behind in the composite vessel (due to a flat bottom), the mixing vessel was rinsed with a total of 200 mL of 0.01 <u>M</u> NaOH and collected in two additional subsample jars: *C104 RIN 1* and *RIN 2*.

The composite samples C104 Comp C, C104 Comp D, C104 RIN 1, and C104 RIN 2 were used in crossflow filtrations, water washing, and caustic leaching tests described by Brooks (Brooks et al. 2000). The material from the four subsample jars was dewatered using the crossflow filtration system (CUF). Part of the filtrate resulting from the dewatering step was set aside for blending (samples *C-104 Filtrate* #1 and *C-104 Filtrate* #2). The dewatered C-104 sludge was washed with inhibited water (0.01 <u>M</u> NaOH), and part of the water wash permeates were set aside for blending (*C-104 Wash* (H_2O) *Filtrate Composite*). After washing, the sludge was caustic leached using 3.0 <u>M</u> NaOH. The leach permeate was combined, and a portion was set aside for blending (*C-104 Caustic Leach Permeate*). The leached C-104 sludge was contacted with inhibited water at elevated temperature. A portion of the resulting caustic wash solution was set aside for blending (*C-104 Caustic Wash Composite*).

2.3 Preparation of AN-102/C-104 Blended Feed

The filtrate, leachate, and wash solutions from Tank C-104 processing were blended with the 2-wt% solids AN-102 feed to produce an AN-102/C-104 blended feed. Following the successful compatibility

testing, a majority of the AN-102 composite slurry containing 2-wt% solids (802 g) was combined with five solutions collected in the C-104 process testing (~1570 g) to produce approximately 2 L of AN-102/C-104 blended feed. The blended feed was homogenized, and six sub-samples were collected, representing the entire blended feed. The subsamples were identified as *AN-102 DF A*, *B*, *C*, *D*, *E* and *TRANS3*. Sample *AN-102 DF A* was used for physical testing and chemical and radioisotope characterization and is reported in Urie et al. (2002b).

The sodium concentration for the blended feed was approximately 3.2 M. To undergo further process testing, the remaining five subsamples of blended feed were concentrated by evaporation using gentle heat (50°C) and a nitrogen sparge. The resulting solution, approximately 1.0 L, had a sodium concentration of 5.3 M (Lumetta et al. 2001). However, the resulting material was unstable toward precipitation, as observed in sample aliquots set aside to monitor solution stability. The main precipitate products were identified as sodium (nitrate, nitrite, and oxalate) and aluminum (hydroxide) salts, which formed within one week and continued to form in the sample aliquots over the next several months. This solid formation was not observed in the bulk material.

2.4 Processing of AN-102/C-104 Blended Feed

The evaporated feed was processed for strontium and TRU removal and filtered (Hallen et al. 2002). Although aliquots of the evaporated sample were observed to form crystalline precipitates over time, there was no observed formation of significant solids in the bulk sample of the blended feed before Sr/TRU removal. Because there were insufficient solids, the processed AN-102/C-104 feed was filtered using vacuum filtration to remove solids rather than cross-flow filtration. After filtration, the blended feed did not undergo significant dilution as a result of the Sr/TRU removal or cesium ion exchange processing. The blended feed was processed for technetium removal without further alteration; i.e., no technetium tracer was added to the feed.

2.5 SL-639 Resin and Bed Preparation

The SL-639 resin was supplied by IBC Technologies, Inc. from Batch # 010227CTC-9-23. The resin consists of a proprietary organic compound (ligand) attached to spherical styrene beads. SuperLig[®] 639 functions by extracting the sodium pertechnetate salt-pair from either acidic or basic solutions. The manufacturer reports the mean diameter of the beads (D_p) as 0.5 mm. A separate aliquot of this batch of SL-639 resin was sieved to determine the particle-size distribution of the resin. The results are reported in Table 2.1.

A subsample of the as-received resin was pulled from the original 1-L container by scooping ~2-g increments of the resin while rotating and occasionally inverting the resin within the container. This material was *not* sieved. The resin was soaked in a 10-fold excess volume of DI water (14 g of resin soaked in 140 mL of water) for 2 h, the water was decanted, and the resin was soaked a second time in 1.0 <u>M</u> NaOH for 2 h and then decanted. No volume change was observed going from the dry-resin form to the wet-resin form. An aliquot of the resin was transferred to each of the two columns using the following approach. The resin (in 1.0 <u>M</u> NaOH) was transferred to a 10-mL graduated cylinder and allowed to settle overnight. The resin BV was adjusted to 5.0 ± 0.05 mL, slurried, and quantitatively transferred to the ion exchange column.

Sieve Number	Particle Size, µm	Mass of Resin, g	% of Total (mass basis)
Sieve 18	>1000	0.1345	1.35
Sieve 30	1000-600	2.6099	26.1
Sieve 40	600–425	5.9904	60.0
Sieve 50	425-300	1.1000	11.0
Sieve 70	300–212	0.1456	1.46
Sieve 100	212–150	0.0075	0.08
	Totals	9.9879	100.0

Table 2.1. Sieving Data for SL-639 Batch Number 010227CTC-9-23

The settled resin bed height was 3.1 cm, with a BV of 5.0 mL and a length-to-diameter ratio (L/D) of 2.1. The ratio of the column diameter (D_c) to the diameter of the resin beads (D_p) was approximately 20-30:1, which is a large enough D_c/D_p ratio to avoid wall effects during small-scale column tests. The resin beds were gently packed with approximately 0.7 cm of quartz glass wool to prevent the resin from floating during contact with the AN-102/C-104 blended feed.

Duplicate fractions of the as-received resin (0.5 g each) were dried in a vacuum oven at 50°C until the dry mass was constant (within ± 0.0006 g). This allowed a determination of the F factor (0.9931), which is the ratio of the mass of the dried exchanger to the mass of the wet exchanger. The bed density was determined by weighing 5.0 mL of exchanger in a 5-mL graduated cylinder. Based on an as-received bed density of 0.50 g/mL and an F factor of 0.993, the dry mass of SL-639 in each column is estimated to be 2.5 g. Table 2.2 summarizes these values.

Resin Parameter	Value	Column Parameter	Value			
Batch ID	010227CTC-9-23	Resin Bed Height3.1 c				
Resin F Factor	0.9931	Resin BV	5.0 mL			
Resin Bulk Dry	0.50 g/mL	Mass Resin in Column	2.5 g			
Density	0.30 g/mL	Mass Resin in Column	2.5 g			
Particle Density	1.07 g/mL ^(a)	Column Diameter to Resin Diameter Ratio				
Resin Diameter 460–670 µm ^(b) Column Length to Column Diameter Ratio 2		2.1				
 (a) Particle density represents the grams of dry solids divided by the volume of wet resin particles ("asreceived resin") determined with a volumetric flask. (b) Weight-percent-based resin diameter determined from sieve data. 						

Table 2.2. Summary of Resin and Column Parameters

2.6 History of Technetium Processing with Resin Bed

After preparing the column resin beds as described in Section 2.5, the column system was tested using an AW-101 simulant. Approximately 2.7 L of ⁹⁹Tc-spiked AW-101 simulant were processed through the dual columns. Once in contact with the simulant feed (1.24 g/mL), the resin bed began to float. As a result of this observation, all subsequent testing of the column system was performed using a quartz glass wool plug between the resin bed and the feed plunger to mitigate floating. All steps

associated with the process removal of technetium were performed in the AW-101 simulant shake-down test: resin loading, feed displacement, water rinse, elution, and resin regeneration. In this particular case, both columns were eluted and regenerated. The system was taken to 50% loading of technetium on the lead column (2.7 L at 64 μ Ci/L technetium). Elution was performed for each column until the C/C₀ was <0.01.

An actual tank waste run was then performed using tank waste supernate from AP-101 (Burgeson et al. 2002a). The column system remained in the same configuration during the AP-101 actual tank waste run; i.e., the lead column in the AW-101 run was the lead column in the AP-101 run. During processing of the AP-101 tank waste, the lead column only was rinsed, eluted, and regenerated. The system processed 220 BV of feed (1100 mL at 50 μ Ci/L technetium), resulting in a breakthrough of ~5% on the lead column. The lead column was eluted until the C/C₀ was <0.01.

Before processing the AN-102/C-104 blended feed, the lead column from the AP-101 column run was switched to the lag-column position. This lag column had not been eluted and exhibited a slight breakthrough (0.2%) while processing AP-101. Both the lead and lag columns were prepared for AN-102/C-104 loading by flushing with 5 BV (25 mL) of 0.25 <u>M</u> NaOH. This was done primarily to assure that the bed was sufficiently settled before starting the column run.

2.7 Batch-Distribution Measurement

Some of the AN-102/C-104 blended feed was used to determine technetium batch-distribution coefficients (K_d values) before running the column. The AN-102/C-104 blended feed was processed to remove cesium before using the material for technetium-batch-distribution measurements. The resin was contacted with AN-102/C-104 blended feed spiked with approximately 6 μ Ci of ^{95m}TcO₄⁻. The ^{95m}Tc was used as a tracer for following the removal of pertechnetate (TcO₄⁻) from solution. The contribution of technetium from the tracer is very small relative to the amount of technetium already present in the supernate (mole ratio ⁹⁹Tc to ^{95m}Tc = 1.1 × 10⁶); therefore, the added tracer is not expected to affect the batch-distribution values. The ^{95m}Tc spiked AN-102/C-104 blended feed was subdivided into three aliquots. The concentration of technetium in the AN-102/C-104 blended feed was approximately 70 µCi/L. The total technetium concentration was increased in two aliquots to approximately 1100 and 3100 µCi/L using a stock solution of ⁹⁹Tc (17 and 54 µL of 808 µCi/mL stock solution).

The batch contacts were conducted at a phase ratio of approximately 100:1 (liquid volume to resin mass), using resin batch # 010227CTC-9-23. Six milliliters of AN-102/C-104 blended feed were contacted with 0.06 g of exchanger. The exchanger mass was determined to an accuracy of \pm 0.0001 g. The waste volume was transferred by pipette, and the actual volume was determined from the mass difference (\pm 0.0002 g accuracy) and the solution density. An orbital shaker was used to provide agitation for approximately 96 h. The temperature was not controlled, and it varied between approximately 24°C and 25°C over the course of the 4-day contacts. All batch-distribution experiments were conducted in duplicate.

After equilibration, the supernate was syringe filtered using a 0.45- μ m nylon filter. The total ⁹⁹Tc concentration in the AN-102/C-104 blended feed was determined by inductively coupled plasma-mass spectroscopy (ICP-MS), which in turn was used to calculate the ⁹⁹Tc K_ds. The total TcO₄⁻ concentration

in the AN-102/C-104 blended feed was determined by radiochemical separation and beta counting, which was used to calculate the $TcO_4^-K_ds$.

The batch-distribution coefficient, K_d (with units of mL/g), was determined using the following relationship:

$$K_{d} = \frac{(C_{0} - C_{1})}{C_{1}} * \frac{V}{M * F}$$
(2.1)

where C_0 and C_1 = initial and final concentrations in solution, respectively, of the species of interest (i.e., ${}^{95m}TcO_4^-$, ${}^{99}TcO_4^-$ and ${}^{99}Tc$)

V = volume of the liquid sample (mL)

M = mass of resin used for the contact (g)

F = mass of a sample of dried resin divided by its mass before drying

The resin was sampled for F-factor determination at the same time that resin samples for the batch contacts were measured to minimize mass changes due to changes in atmospheric humidity.

2.8 Tc-Removal Column System

Figure 2.1 shows a schematic of the column system for removing technetium. The system, which is mounted in a radiological fume hood, consists of two small columns containing the sorbent resin, a small metering pump, three valves, a pressure gauge, and a pressure-relief valve. The pump-inlet tube was manually switched between the waste feed and various process solutions. Valves 1, 2, and 3 are three-way valves that can be turned to a flow position, a sample position, or a no-flow position. Valve 1 is placed at the outlet of the pump and is used to eliminate air from the system, purge the initial volume of the system, or isolate the columns from the pump. Valves 2 and 3 are primarily used for obtaining samples and may also be used to isolate the columns from the rest of the system.

The columns are Spectra ChromTM chromatography columns made of glass with adjustable plungers on the bottom and the top. The inside diameter of the columns is 1.5 cm, which corresponds to a volume of 1.77 mL per cm of length. The columns are jacketed with a clear plastic to provide temperature regulation and a safety shield. The connecting tubing is a polyfluorinated plastic with 1/8-in. OD and 1/16-in. ID. The columns are connected in series with the first column referred to as the lead column and the second column referred to as the lag column. An Accu® piston pump (SciLog, Middleton, Wisconsin) was used to deliver feed to the columns. The flowrate was controlled with a metering pump head (Fluid Metering, Inc., Oyster Bay, New York) and a pump stroke-rate controller (0.025 mL/stroke). The volume actually pumped through the system is determined using the effluent mass (including analytical samples) and the fluid density. The pressure-relief valve is set at 40 psi, which is below the maximum operating pressure for the columns. The pressure indicated on the pressure gauge remained below 5 psi during the run. The system-apparatus volume was measured to be 20 mL (4 BV) with approximately 10 mL (2 BV) volume holdup from the feed line to the lead column.



Figure 2.1. Schematic Representation of Column System for Removing Technetium

2.9 Column Ion Exchange Test Procedure and Conditions

The experimental conditions for each process step of the column ion exchange test are shown in Table 2.3. The bed preparation, loading, and feed-displacement steps were conducted by passing the specified solution through both resin beds connected in series. Only the lead column was rinsed with DI water, eluted, and regenerated, as indicated in column one of the table.

			Total Vol,	Flowrate, ML/h/	Time, h	
Column	Process Step	Solution	mL/(BV)	(BV/h)	(min)	
Lead and Lag	Column Prep	0.25 <u>M</u> NaOH	15 (3)	15 (3)	1 (60)	
Lead and Lag	Loading	AN-102/C-104	625–680	15 (3)	46 (2740)	
		Feed	(132–136)			
Lead and Lag	Feed ^(b)	0.10 <u>M</u> NaOH	50 (~2 apparatus	15 (3)	5 (300)	
	Displacement		volumes)			
Lead	Rinse	DI water	10 (2)	15 (3)	0.7 (40)	
Lead	Elution	DI @ 65°C	132	5 (1)	~27 (1590)	
Lead	Lead Regeneration 0.25 <u>M</u> NaOH ~23 (4) 5 (1) 2 (120)					
(a) The BV for each column was 5.0 ± 0.1 mL.						
(b) 0.10 <u>M</u> NaOH is used to prevent the feed from precipitating, even though it has been demonstrated to						
slightly elute	technetium from th	e loaded column (Bland	chard et al. 2000a, 200	00b; King 1999	9).	

Table 2.3. Experimental Conditions of AN-102/C-104 Blended Feed Small-Scale^(a) Ion Exchange

The resin beds were gently packed with approximately 0.7 cm of quartz glass wool to prevent the resin from floating during contact with the AN-102/C-104 blended feed. The adjustable plungers at the top of each column were lowered to be in contact with the glass wool. Both the resin-bed height and quartz glass-wool height were carefully monitored throughout the loading and elution process. There was no observed change in the height of either material, indicating that if the resin BV changed during the run, the change was less than 0.1 mL, or less than 2% of the total BV.

All steps of the column run were performed at ambient temperature, with the exception of the elution, which was performed at 65°C. Ambient temperature during this run ranged from 24 to 26°C. A recirculating water bath was used to circulate heated water through the column jacket during elution.

The sampling-and-analysis protocol is shown in Table 2.4. Samples were collected during loading to provide sample material for monitoring the ion exchange run as well as to provide sample material for the Tc monitoring system. The technetium monitor system requested sample volumes of 2 and 4 mL. To accommodate the Tc monitor-system needs and the column ion exchange needs, samples of either 3 mL or 5 mL were collected during loading.

The total technetium (⁹⁹Tc) levels were determined by ICP-MS for all samples after the run was concluded. Pertechnetate was determined in all loading samples using TcO_4^- data obtained by performing a chemical separation and beta scintillation count. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine sodium and other elemental concentrations for samples from the feed displacement and regeneration steps. Free hydroxide ion concentrations were determined by titration with standard hydrochloric acid solutions for the feed displacement and regeneration samples. Table 2.4 identifies the analyses performed on the samples collected during the ion exchange column run and the final sample composites.

	Lead Column	Lag Column	Collected			
Process Step	BV	BV	Volume, mL	Analyses ^(a)		
Original Feed				ICP-MS, ICP-AES, OH ⁻ , IC ^(b) anions		
Oliginal Feed				$TOC^{(c)} TIC$, ^(d) rad chem., and TcO_4^-		
		Column Prej	paration			
Loading	Every 10 BV	Every 20 BV	3 or 5	ICP-MS, TcO_4^- , Tc monitoring sys.		
Feed Displacement		Every 1 BV	5	ICP-AES, ICP-MS, OH ⁻		
DI water rinse	2 BV		10	ICP-AES, ICP-MS, OH		
Elution	Every 1 BV ^(a)		2.5/5 ^(a)	ICP-MS		
Regeneration		2 BV	10	ICP-AES, ICP-MS, OH ⁻		
Composite Samples						
Effluent		1 composite	20	ICP-AES, TOC, TIC, IC, OH ⁻ , ICP-		
Effluent				MS, U, Radchem ^(e)		
Eluont	1 composite		20	ICP-AES, TIC, TOC, IC, OH ⁻ ICP-		
Eluant				MS, U, Radchem ^(f)		
(a) Initial samples (first 10 BV) were taken in ¹ / ₂ BV increments, resulting in 2.5-mL samples.						
(b) IC = ion chromatography						
(c) TOC = total organic carbon						
Eluant I composite 20 ICP-AES, TIC, TOC, IC, OH ⁻ ICP-MS, U, Radchem ^(f) (a) Initial samples (first 10 BV) were taken in ½ BV increments, resulting in 2.5-mL samples. (b) IC = ion chromatography						

Table 2.4. Sampling Interval and Analyses of Small-Scale Ion Exchange Column Process Stages

(d) TIC = total inorganic carbon

(e) Radiochemical analyses were separation/alpha energy analysis (AEA), extended counting gamma energy analysis (GEA), ⁹⁰Sr separation, alpha counting, and pertechnetate speciation.

(f) Radiochemical analyses were 90 Sr and GEA.

-- Indicates data cell is not applicable

3.0 Results and Discussion

This section provides the feed composition and the batch-distribution results for AN-102/C-104 blended feed. It also provides specific detail into each of the ion exchange processing steps and concludes with the Tc mass balance.

3.1 Feed Composition

The composition of the AN-102/C-104 supernate used for the batch contacts and column ion exchange is shown in Table 3.1. Table 3.1 contains all of the analytes observed by each analytical method: ICP-AES, titration, ICP-MS, ion chromatography (IC), TIC/TOC, and GEA. The concentration of pertechnetate and ⁹⁰Sr was determined by radiochemical separation.

	Analytical	Analytical		Analytical	Analytical	
Analyte	Result	Method	Analyte	Result	Method	
Radiochemical Results in µCi/mL						
⁹⁹ Tc ^(a)	7.95E-02	ICP-MS	²⁴¹ Am	1.04E-02	AEA	
TcO ₄ -	3.99E-02	Sep/Count	¹⁵⁴ Eu	2.20E-02	GEA	
⁹⁰ Sr	1.52E+00	Sep/Count	¹⁵⁵ Eu	1.23E-02	GEA	
Total α	1.10E-02	Alpha count	⁶⁰ Co	3.41E-02	GEA	
¹²⁶ Sn/Sb	4.34E-02	GEA	¹³⁷ Cs	1.40E-02	GEA	
	Ι	norganic Analysis	Results in µg	g/mL		
Al	7,840	ICP-AES	Na	110,000	ICP-AES	
В	86	ICP-AES	Nd	[3.6]	ICP-AES	
Ca	149	ICP-AES	Ni	145	ICP-AES	
Cd	24.2	ICP-AES	Р	562	ICP-AES	
Со	[1.90]	ICP-AES	Pb	69.1	ICP-AES	
Cr	98.2	ICP-AES	Si	179	ICP-AES	
Fe	[2.0]	ICP-AES	Sr	86.9	ICP-AES	
K	1,080	ICP-AES	Zn	[4.0]	ICP-AES	
Mo	23.1	ICP-AES	U	8.22E-01	KPA ^(b)	
		Inorganic Anion H	Results in µg/	mL		
Cl	1,800	IC Anions	NO ₃	107,000	IC Anions	
F	6,300	IC Anions	PO ₄	2,200	IC Anions	
NO ₂	41,400	IC Anions	SO ₄	6,700	IC Anions	
		Carbon Result	s in μg C/mL			
TIC	9,100	Hot Persulfate	TIC	^(c)	Furnace	
TOC	12,300	Hot Persulfate	TOC	21,200	Furnace	
	Physical	Properties Units a	s Reported, <u>N</u>	<u>A</u> is moles/L		
Hydroxide	0.18 <u>M</u>	Titration	Density	1.240 g/mL	Gravimetric	
•	s detected within 10			•	exceed $\pm 15\%$.	
•	y, including standar	•	m -10% to $+3$	0%.		

Table 3.1. Composition of AN-102/C-104 Blended Feed

(b) kinetic phosphorescence analysis

(c) The TIC value could not be determined. TIC=TC-TOC; the TC and TOC values were the same.

The compositions of selected anions and cations, as well as information important to technetium ion exchange, are collected in Table 3.2. The total anion normality, 5.23 N, is larger than the total cation normality, 4.82 N. This difference is approximately 9 percent and is within analytical and experimental uncertainties.

Analyte	Moles/Liter (<u>M</u>) (Normality)		
Na ⁺	4.78 (4.78)		
\mathbf{K}^+	0.028 (0.028)		
Ca ⁺²	0.004 (0.007)		
Total Cation (Normality)	4.82		
$AlO_2^{-(a)}$	0.29 (0.29)		
Cl	0.051 (0.051)		
CO ₃ ^{-2 (b)}	0.76 (1.52)		
$\operatorname{CrO_4}^{-2}(a)$	0.002 (0.004)		
F	0.33 (0.33)		
NO ₂	0.90 (0.90)		
NO ₃	1.73 (1.73)		
OH	0.18 (0.18)		
PO_4^{-3}	0.023 (0.069)		
SO_4^{-2}	0.07 (0.14)		
Oxalate	0.016 (0.016)		
Total Anion (Normality)	5.23		
⁹⁹ Tc and Compet	ing Ion Ratios		
99 Tc, μ Ci/L (mg/L) ^(c)	79.5 (4.68)		
⁹⁹ Tc as pertechnetate, μ Ci/L (mg/L)	39.9 (2.35)		
NO ₃ ^{-/99} Tc mole ratio	3.65E+04		
$CrO_4^{-2/99}$ Tc mole ratio	40		
Solution Density, g/mL	1.240		
(a) Elemental Al and Cr were determined by ICP-AES. The anionic forms, AlO_2^{-2} and CrO_4^{-2} , are assumed on the basis of waste chemistry.			
(b) The carbonate value is based upon th(c) Uncertainty, including standards bias			

Table 3.2. Selected Composition of AN-102/C-104 Blended Feed (Envelope C Feed)

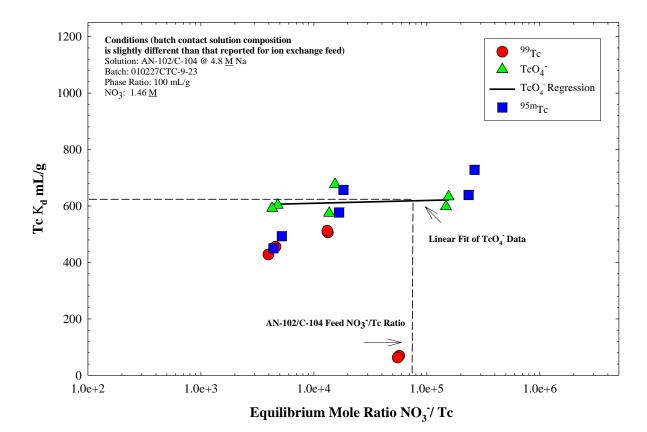
3.2 Batch Distribution

The equilibrium behavior of the sorbent material was assessed by measuring batch-distribution coefficients on the original feed and the feed spiked at two higher concentrations of technetium. The results of duplicate distribution-coefficient measurements are shown in Table 3.3. The sodium, nitrate, and technetium concentrations and the density reported in the column "Feed Conditions" reflect initial conditions. The nitrate-to-technetium mole ratio reflects the equilibrium concentration of nitrate and the equilibrium concentration of technetium. This ratio is important since nitrate is a known competitor with the SL-639 adsorption sites (Hamm et al. 2000; Rapko et al. 2001). Note that the reported batch-contact

initial ⁹⁹Tc value (70 μ Ci/L) is not the same as the initial ion exchange feed ⁹⁹Tc value (79 μ Ci/L) as reported elsewhere within this report. The difference is caused by using a separate sample aliquot for the batch contacts. The batch-contact solution underwent evaporation and slight solids precipitation during storage. Based upon the analysis of the solution, water was added to adjust the sodium concentration from 6.3 <u>M</u> to approximately 5.0 <u>M</u>. Note also that the nitrate value for the batch-contact solution is lower than that of the ion exchange feed, possibly due to precipitation of nitrate solids during storage.

The distribution coefficients were determined by assessing the change in both the ⁹⁹Tc and TcO₄⁻ in solution and are reported as either ⁹⁹Tc or TcO₄⁻ K_d values. The ⁹⁹Tc concentration reflects the total technetium-solution concentration, which includes both pertechnetate and non-pertechnetate forms of technetium. The TcO₄⁻ K_d values reflect only the pertechnetate in solution, which is approximately 50% of the total technetium concentration. Note the discussion in the first paragraph about the difference in composition of the batch-contact solution and the ion exchange composition reported in Tables 3.1 and 3.2.

		Total Tc K _d , mL/g ^(a)	$TcO_4^- K_d, mL/g^{(b)}$		
Sample	Feed Conditions	(% Removal)	(%Removal)		
	Na = 4.8 <u>M</u>	70 (38%)	660 (85%)		
AN-102/C-104	99 Tc= 70 μ Ci/L ^(c) (2.77 mg/L)				
Original	NO_3^{-}/Tc , eq = 5.61E+04	$RPD^{(d)} = 9\%$	$\text{RPD}^{(d)} = 6\%$		
Oliginal	NO_3^{-}/TcO_4^{-} , eq = 1.52E+05				
	SL-639 batch #010227CTC-9-23				
	$Na = 4.8 \underline{M}$	550 (83%)	670 (86%)		
AN-102/C-104	99 Tc = 1500 μ Ci/L ^(c) (88.9 mg/L)				
Spike 1	NO_3^{-}/Tc , eq = 1.32E+04	$RPD^{(d)} = 1\%$	$RPD^{(d)} = 18\%$		
Spike I	NO_3^{-}/TcO_4^{-} , eq = 1.45E+04				
	SL-639 batch #010227CTC-9-23				
	$Na = 4.8 \underline{M}$	470 (81%)	640 (86%)		
AN-102/C-104	99 Tc = 4100 μ Ci/L ^(c) (241 mg/L)				
Spike 2	NO_3^{-}/Tc , eq = 4.27E+03	$\text{RPD}^{(d)} = 6\%$	$\text{RPD}^{(d)} = 2\%$		
	NO_3^{-}/TcO_4^{-} , eq = 4.53E+03				
	SL-639 batch #010227CTC-9-23				
(a) The total Tc K_d is assumed to be equal to the ⁹⁹ Tc K_d .					
(b) The $TcO_4^-K_d$ is	determined from pertechnetate speciation data	1.			


Table 3.3. AN-102/C-104 Technetium K_d Values—Average of Duplicate Measurements

(b) The 100_4 K_d is determined from perfectinetate speciation data.

(c) Uncertainty, including standards bias, ranged from -10% to +30%

(d) The RPD is the relative percent difference and is determined by taking (Initial K_d –Duplicate K_d)/Initial K_d times 100.

The equilibrium mole ratio of nitrate to technetium was determined using the equilibrium concentration of nitrate and the equilibrium concentration of either total technetium or pertechnetate. Both values are shown in Table 3.3. The ⁹⁹Tc K_d values are assumed to be equivalent to the total Tc K_ds. The percent differences between the duplicate measurements are indicated along with the average K_d values in the table. A plot of the K_ds versus the equilibrium mole ratio of nitrate to technetium is shown in Figure 3.1. Both the ⁹⁹Tc and TcO₄⁻ derived K_d values, as well as the ^{95m}TcO₄⁻ values, are shown in the figure.

Figure 3.1. ⁹⁹Tc and TcO_4^- Derived K_d Values

As can be seen in Figure 3.1, the ⁹⁹Tc K_d values for the initial solution batch contact (largest ratio of $NO_3/^{99}Tc$) are significantly lower than the other K_d values. This is due to the high fraction of nonpertechnetate present in this solution. The other samples were spiked with pertechnetate to increase the total technetium concentration, thus the fraction of non-pertechnetate is quite small in those samples. The figure also shows that the ^{95m}TcO₄⁻ derived K_d values correlate well with the TcO₄⁻ K_d values. Since the SL-639 only removed pertechnetate from solution, a linear fit of the pertechnetate data was used to interpolate the TcO₄⁻ K_d value at the initial feed conditions (mole $NO_3/^{99}TcO_4$ ⁻). The resulting TcO₄⁻ K_d value is ~620 mL/g, which results in an estimated λ value (K_d × resin density) of ~310 BVs.

3.3 AN-102/C-104 Column Test – Sample Loading

The ion exchange system was shaken down using an AW-101 simulant and then used to remove technetium from AP-101 (Burgeson et al. 2002a) as described in Section 2.6. Only the lead column was eluted during the AP-101 column run. After elution of the lead column, the lead column was regenerated using 0.25 <u>M</u> NaOH. The lead and lag columns were then switched; thus, the lead column in the AN-102/C-104 run was the non-eluted lag column from the AP-101 run.

Immediately before starting to load the AN-102/C-104 blended feed, the system was flushed again with 0.25 <u>M</u> NaOH (10 mL at 15 mL/h). The AN-102/C-104 feed was processed through the system beginning August 6, 2001. The loading stage lasted for 46 h, in which time 136 BVs (680 mL) of

AN-102/C-104 feed were processed. The flowrate was determined at each sampling event and was approximately 15 mL/h (3.0 BV/h) throughout the run. There were no observed anomalies, e.g., bed fluidization, gas bubbles, changes in resin bed height or color, etc. The pressure remained below 5 psi during the entire loading cycle.

The feed was first processed through the column system until 1¹/₂ apparatus volumes had passed through the system. At this point, the first sample collected was considered to be 1 BV. Analytical samples were collected from the lead column at 1, 3, 5, and 7 BVs and then every 10th BV thereafter. The lag column was not sampled as frequently as the lead column; samples were collected after the 2nd and 5th BVs of processed feed, and then every 20 BVs thereafter.

The column loading was monitored in selected loading samples using a TEVA resin isolation of pertechnetate, which was then beta counted since the AN-102/C-104 blended feed was not spiked with a radiotracer. Using the counting data for these selected samples, the ratio of the measured TcO_4^- passing through the lead and lag column with respect to the initial amount of ⁹⁹Tc in the ion exchange feed (C/C₀) was calculated. These values are shown in Figure 3.2 for each sample. In addition, each loading sample was analyzed for total technetium (⁹⁹Tc). The ratio of the initial ⁹⁹Tc and the ⁹⁹Tc measured in the loading samples is also shown in Figure 3.2. The C₀ value for ⁹⁹Tc was 79.5 µCi/L (4.68 mg/mL). The initial $TcO_4^-C_0$ value was 39.9 µCi/L (2.35 mg/mL). The C/C₀ % values are plotted on a probability scale.

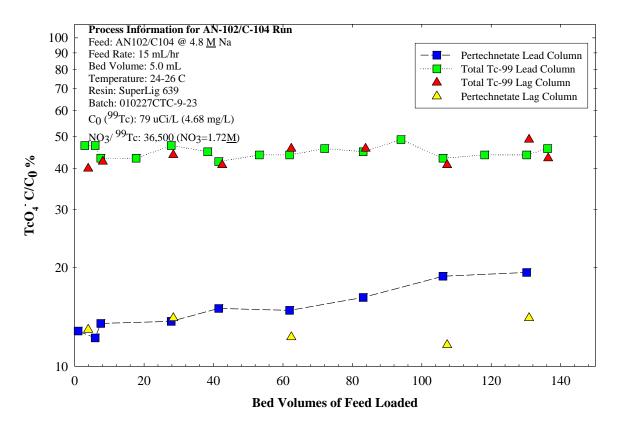
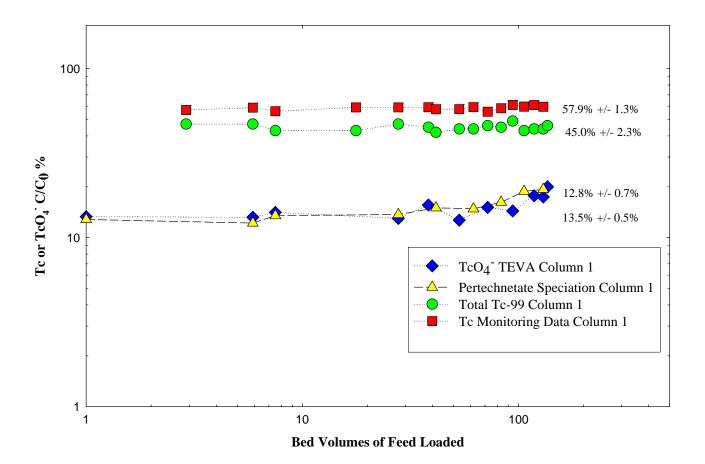



Figure 3.2. AN-102/C-104 Technetium Loading Breakthrough Curves, Lead and Lag Columns

The technetium breakthrough, after processing approximately 680 mL of AN-102/C-104 blended feed, was 46% on the lead column and 43% on the lag column, based upon the ⁹⁹Tc concentration values. The TcO_4 breakthrough, measured by speciation, was 19% on the lead column and 14% on the lag column. There was significant scatter in the TcO_4^- speciation results; this reflects the uncertainty in the analytical method. As can be seen Figure 3.2, the analytical data results indicate that pertechnetate immediately broke through on both columns at a level of ~13%. The overall system change in pertechnetate breakthrough is approximately 6% during the course of the run. A separate radiochemical separation of 99 TcO₄, column separation followed by solvent extraction and beta scintillation counting, was performed by the analytical laboratory. The analytical laboratory results are in excellent agreement with the values obtained while monitoring the column run, using TEVA resin separation and beta scintillation counting. The two pertechnetate separation procedures were quite different; however, both methods used beta cocktail scintillation counting to quantitate pertechnetate. The data from these two methods were also compared with the values obtained from the technetium monitoring system with the ICP-MS analyses since the technetium monitoring system oxidized all of the technetium to the Tc⁺⁷ state before quantitation. The lead column loading data from all four analytical methods are presented in Figure 3.3.

Figure 3.3. Pertechnetate and Total Technetium Loading Curves for Lead and Lag Columns Compared with the Technetium Monitoring and ICP-MS Results

The four curves in Figure 3.3 are from four different analytical methods: 1) TEVA resin separation of pertechnetate and quantitation by beta counting, 2) radiochemical separation and extraction of pertechnetate and quantitation by beta counting, 3) Tc monitoring system, which oxidizes pertechnetate to technetium and quantitates total technetium with beta counting, and 4) ICP-MS measurement of total technetium. The average percent breakthrough of the initial three data points for each analytical method is shown beside each plot. Two points about the data become readily apparent. One, there is very little change in technetium breakthrough from the beginning of the column run to the end of the column run. There is a definite upward trend in the pertechnetate breakthrough value for the lead column, approximately a 6% increase during the course of the run (from $\sim 13\%$ to $\sim 19\%$). Returning to Figure 3.2, there is not a corresponding increase in the total technetium values of the lag column, indicating that the breakthrough of the lead column is contained by the lag column. Second, the difference between the ICP-MS total determination of technetium and the Tc monitoring system determination of total technetium is $\sim 15\%$, approximately the value reported for pertechnetate using either speciation method. This strongly indicates that there is an interferent in the beta counting of pertechnetate and total technetium. However, the presence of an interferent is circumstantial; thorough evaluation of the counting data did not indicate the presence of either a beta or gamma interferent. Note that it was verified that there was no ^{95m}Tc present in the loading samples. Thus, it is not apparent what is causing the elevated pertechnetate signal. The difference between the Tc monitor and ICP-MS results was attributed to holdup of ^{121m}Sn on the AGMP-1 resin used for Tc separation in the Tc monitor^a. The separation procedure was modified to eliminate this problem, and agreement between the monitor and ICP-MS in subsequent analysis of AN-102 samples was excellent. The initial AN-102/ C-104 samples were consumed in analysis, so could not be re-analyzed.

The initial ⁹⁹Tc DFs for the first and second columns (derived from the ⁹⁹Tc concentration in the first sample from each column) are 1.9 and 2.2, respectively. The corresponding initial DFs for pertechnetate (similarly derived from the $TcO_4^- C/C_0$ in the first sample from each column) were 11 for both the lead and lag columns. The concentration of TcO_4^- in the effluent composite was 5.45 µCi/L, and the initial concentration of TcO_4^- was 39.9 µCi/L. The effluent composite concentration demonstrates a pertechnetate removal of 86%, or an overall TcO_4^- DF of 7.3. The concentration of ⁹⁹Tc in the effluent composite was 79.5 µCi/L. The effluent composite concentration of ⁹⁹Tc in the effluent composite concentration of ⁹⁹Tc in the effluent composite concentration of 99 Tc in the effluent composite concentration demonstrates a total technetium removal of 44%, or an overall DF of 1.8.

The λ value is the number of BVs of processed feed at which the C/C₀ value reaches 50% and is a direct indicator of the effective capacity of the resin. Since there was only ~19% breakthrough of technetium on the lead column, the λ value could not be experimentally determined. An estimate of the λ value can be obtained from extrapolating the loading-curve data plotted on a linear scale, assuming kinetics are not a significant contributor. This extrapolation provides a rough estimate of 500 BVs of feed that could be processed before reaching 50% C/C₀ breakthrough.

^a Egorov OB, and MJ O'Hara. 2002. Development and Testing of the Automated ⁹⁹Tc Monitor: October 2001 – March 2002 Progress Report. WTP-RPT-042, Battelle—Pacific Northwest Division, Richland, WA.

3.4 AN-102/C-104 Column Test – Feed Displacement and Column Rinse

Feed displacement was started immediately after the last load sample was collected. The beds were flushed in series with 0.10 M NaOH at 3.0 BV/h to displace the feed before elution.

The feed displacement was monitored using beta scintillation counting of the collected samples. The ratio of the measured ⁹⁹Tc passing through the lead and lag column with respect to the initial amount of ⁹⁹Tc in the ion exchange feed (C/C₀) was calculated during displacement. Samples were collected from the lag column during feed displacement with occasional samples collected from the lead column to determine when the feed-displacement criteria, C/C₀ <1%, had been met. Based upon the beta monitoring of ⁹⁹Tc, the feed displacement progressed for 9 BVs. After the feed displacement was stopped, enough of DI water (10 mL) was passed through the system to rinse the lead column.

Inductively coupled plasma-mass spectrometry analysis of the solutions after completion of the run indicated that the lead column had begun to elute technetium from the column after 6 BVs. The ⁹⁹Tc concentration from the lag column decreased steadily to ~1% C/C₀ during the 9 BV of feed displacement. The lead column decreased to a low of ~4% at 5 and 6 BV and then began to increase. The increase (elution) is caused by a decrease in the ionic strength of the solution in contact with the SL-639 resin. The elution of TcO₄⁻ with 0.10 <u>M</u> NaOH has been observed in previous column waste testing (Blanchard et al. 2000a, 2000b; Burgeson et al. 2002a).

The ratio of the ICP-MS measured ⁹⁹Tc passing through the lead and lag column with respect to the initial amount of ⁹⁹Tc in the ion exchange feed (C/C₀) was calculated and is reported in Figure 3.4 for each sample for the feed displacement and water rinse.

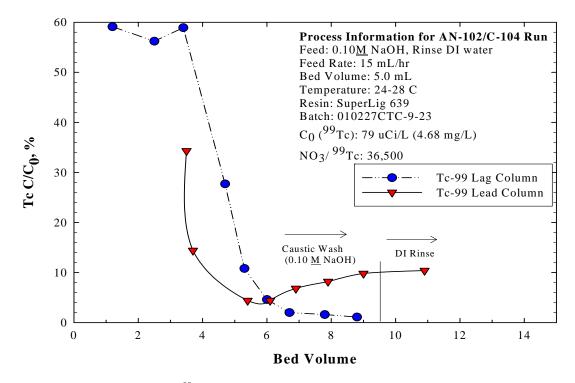


Figure 3.4. ⁹⁹Tc C/C₀ for Feed Displacement of Lead and Lag Columns

The feed-displacement solutions were analyzed to determine the concentration of Al, K, Na, and OH⁻ present in each solution. The concentrations of sodium, potassium, aluminum, and hydroxide in the feed-displacement samples are shown in Figure 3.5. The concentrations of Na, K, and Al are indicated on the left hand axis while the OH⁻ concentration is shown on the right-hand axis. Both Y-axes are logarithmic scales in order to clearly show the large decreases in the analyte concentrations. The samples were collected from the lag column after the solution had passed sequentially through both columns.

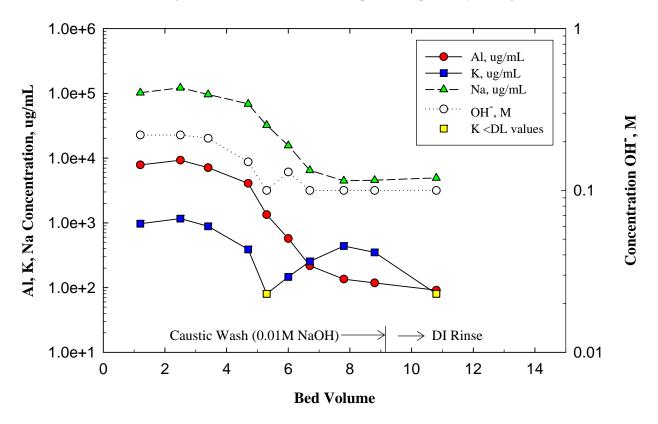


Figure 3.5. Component Concentrations in Lag Column Feed-Displacement Samples

The concentrations of the four feed components changed slightly during the first four BVs of processing. For all of the analytes, the second data solution reports a higher concentration than that observed for the first solution. This is likely due to sample preparation before analysis. The concentration of each analyte dropped significantly (at least 50%) after 3 BVs and continued through the feed-displacement process. The displacement of the feed is reasonably sharp, except for potassium. The potassium data are close to the method detection limit. In fact, two of the values shown in the figure for potassium were below detection and are shown as a different symbol to highlight this fact. The Na and OH⁻ concentrations do not drop as low as the other analytes because they are present in the displacement solution. Table 3.4 reports the percent reduction of the analyte concentrations during feed displacement.

The 0.10 <u>M</u> NaOH feed displacement was followed by a room-temperature DI water rinse of only the lead column. The column was rinsed immediately after the feed displacement was completed. The DI water-rinse used approximately 2 BVs of water flowing at a rate of 3 BV/h. The rinse solution was collected as one sample. The concentrations of sodium, potassium, aluminum, and hydroxide were measured in the rinse sample and are also shown in Figure 3.5 and Table 3.4. The elution of technetium, started during feed displacement, continued during the water wash. The TcO₄ was measured in the rinse sample at a C/C₀ value of 10%.

Bed Al, % K, % Na, % OH, %						
Sample	Volumes	displaced	displaced	displaced	displaced	
FD-1 Lag Column	1.2	-0.2	10.4	7.0	-4.9	
FD-2 Lag Column	2.5	-18.3	-7.4	-10.5	-5.9	
FD-3 Lag Column	3.4	9.4	18.2	12.7	-0.5	
FD-6 Lag Column	4.7	48.2	64.0	37.5	30.5	
FD-7 Lag Column	5.3	82.9	< 96	70.7	53.9	
FD-9 Lag Column	6.0	92.7	86.5	85.8	39.7	
FD-11 Lag Column	6.7	97.2	76.5	94.1	50.5	
FD-13 Lag Column	7.8	98.3	59.4	95.9	50.8	
FD-15 Lag Column	8.8	98.5	67.6	95.9	51.7	
Rinse Lag Column	10.9	98.8	< 92	95.5	51.0	
FD-4 Lead Column	3.5	61.5	68.4	50.4	100.0	
FD-5 Lead Column	3.7	87.3	84.3	79.8	59.2	
FD-8 Lead Column	5.4	97.6	76.6	95.1	41.7	
FD-10 Lead Column	6.1	98.3	78.2	95.0	51.7	
FD-12 Lead Column	6.9	98.2	84.3	94.2	49.9	
FD-14 Lead Column	7.9	98.9	92.9	95.9	49.6	
FD-16 Lead Column	9.0	98.8	93.7	95.4	52.9	
(a) The percent displaced is determined from the difference of the original AN-102/C-104 feed composition and the analyzed feed-displacement samples.						

Table 3.4. Percent Displacement^(a) of Feed Analytes from Resin Beds

3.5 AN-102/C-104 Column Test—Elution and Resin Regeneration

At the completion of the DI water rinse, the lead column was immediately eluted with 65°C DI water at a rate of 1 BV/h. The column was equilibrated for approximately 15 min before elution was started by running pre-equilibrated 65°C water through the column jacket. The eluate was initially collected in $\frac{1}{2}$ -BV increments, which was increased to 1-BV increments after 10 BV. The elution was monitored using beta-scintillation counting of the elution samples. After completion of the run, ICP-MS was used to determine the ⁹⁹Tc for each of the elution samples. A plot of the ⁹⁹Tc C/Co for both beta counting data and ICP-MS data is presented in Figure 3.6. The Y-axis is a logarithmic scale to clearly show the large range of C/C₀ values.

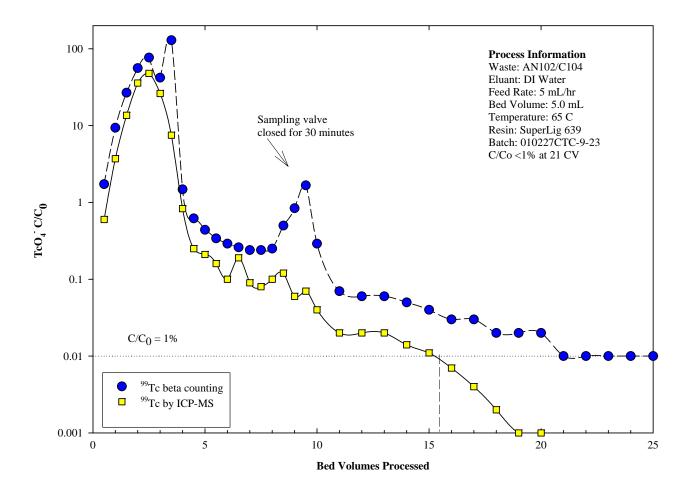


Figure 3.6. Elution of Technetium from Lead Column

The concentrations of ⁹⁹Tc by ICP-MS are significantly lower than those measured during beta scintillation counting of the elution samples. A beta interferent is clearly elevating the technetium signal. The culprit is the gamma emission from ^{95m}Tc, which is observed in the elution samples. Analytical characterization of the elution composite indicates that 1.83E-03 μ Ci/mL of ^{95m}Tc is present in the eluate composite. This concentration correlates well to the amount of technetium calculated to have been retained on the lag column during the AP-101 ion exchange run. Thus, the source of the ^{95m}Tc is the non-eluted lag column created during processing of the AP-101 tank waste.

The elution of technetium peaked at approximately 2 BVs with a value approximately 48 times higher than the initial feed concentration. There was a slight fluctuation in the elution data during the peak elution stage of 9 to 11 BVs, which was due to an inadvertent closing of the sampling valve. The target elution value, $C/C_0 \le 1\%$, was reached after processing 16 BVs of eluent. The dotted line in Figure 3.6 identifies the target elution value of 1% of the original feed value ($C/C_0=1\%$). The vertical dashed line indicates the BV where this target elution was reached.

To assure that the C/C₀ value had reached the target C/C₀ \leq 1% value, a total of 25 BVs of eluent was passed through the lead column. The system was stored in the water eluent for 7 days before regenerating the lead column with 0.25 <u>M</u> NaOH. The delay was to allow time to resolve questions with the initial elution data. Ten milliliters of NaOH were passed through the lead column at a flowrate of 1 BV/h. The regenerate was analyzed for various analytes; the results of these analyses are shown in Table 3.5.

Analyte	Concentration, µg/mL	Concentration, Molarity	
Na	4180	1.82E-01	
K	< 48	< 1.23E-03	
Al	7.5	2.78E-04	
OH	1870	2.10E-01	
⁹⁹ Tc	< 0.0001 (< 4.27E-05 µCi/mL)	< 2.54E-08	

Table 3.5. Composition of Column Regenerate after AN-102/C-104 Column Run

There was no measurable ⁹⁹Tc present in the regeneration sample. The measured concentration of sodium and hydroxide are right in line with the expected concentration of sodium and hydroxide, based upon a system holdup volume of approximately 20 mL. Although the target volume for regeneration was 20 mL, only half of that volume was processed during regeneration.

3.6 AN-102/C-104 Column Test—Elution Composite and Effluent Composite Analysis

The eluate samples were combined to produce a 132-mL composite sample, and an aliquot was submitted for characterization. The results are shown in Table 3.6. The required minimum reportable quantity (MRQ) levels for all of the requested analytes were met. Table 3.6 contains all of the analytes observed by each analytical method: titration, ICP-AES, ICP-MS, IC, AEA, ⁹⁰Sr, and GEA. Any observed, non-requested analytes are reported opportunistically.

The main chemical components of the eluate composite were sodium nitrate and nitrite. Although silicon and boron were both observed in the eluate composite, they are most likely due to leaching of the borosilicate glass vials used for sample storage. Aluminum, chloride, fluoride, and sulfate were observed in very low quantities. Nitrate and nitrite were observed at approximately 0.1% of the initial feed, indicating that there may have been some retention and subsequent elution of nitrate and nitrite by the resin. The TIC and TOC values were 110 µg C/mL and 140 µg C/mL, respectively. These values are approximately 1.1% of the initial feed composition. The amount of retained TIC/TOC is higher than that of the anions; however, the ratio of TIC to TOC is consistent with that of the original feed. Thus, there is no evidence of selective increase in either TIC or TOC, e.g., from decomposition of the resin. The major radionuclides observed in solution were ⁹⁹Tc and ^{95m}Tc. A ^{95m}TcO₄⁻¹ tracer was not used to monitor the AN-102/C-104 testing; the ^{95m}Tc comes from the non-eluted lag column from the AP-101 column run. A slight amount of ⁹⁰Sr, ¹³⁷Cs, and total alpha was also present in the eluate composite, confirming that a slight amount of feed was potentially present in a sampling valve or held up in the system after feed displacement and rinsing.

Analyte	Analytical Result	Analytical Method	Analyte	Analytical Result	Analytical Method	
Radiochemical Results in µCi/mL						
⁹⁰ Sr	1.08E-03	Sep/ Counting	¹⁵⁵ Eu	< 3.00E-05	GEA	
⁹⁹ Tc ^(a)	1.80E-01	ICP-MS	¹³⁷ Cs	1.55E-05	GEA	
²⁴¹ Am	<5.0E-05	AEA	⁹⁵ Tc	9.24E-05	GEA	
¹⁵⁴ Eu	5.00E-05	GEA	^{95m} Tc	1.83E-03	GEA	
	In	organic Analysis R	lesults in µg	mL		
Al ^(b)	9	ICP-AES	La	< 1.2	ICP-AES	
K ^(b)	< 50	ICP-AES	Mg	< 2.5	ICP-AES	
Na ^(b)	280	ICP-AES	Mn	< 1.2	ICP-AES	
В	20	ICP-AES	Мо	< 1.2	ICP-AES	
Ba	< 2.5	ICP-AES	Ni	< 0.7	ICP-AES	
Ca	< 3.2	ICP-AES	Pb	< 2.5	ICP-AES	
Cd	< 6.7	ICP-AES	Si	26	ICP-AES	
Со	< 1.2	ICP-AES	Sn	< 37	ICP-AES	
Cr	< 0.5	ICP-AES	Ti	< 0.6	ICP-AES	
Cu	< 0.6	ICP-AES	Zn	< 1.2	ICP-AES	
Fe	< 0.6	ICP-AES	U	1.79E-03	U by KPA	
Inorganic Anion Results in µg/mL						
Cl	3.0	IC Anions	NO ₃	130	IC Anions	
F	11	IC Anions	SO_4	9	IC Anions	
NO ₂	50	IC Anions	PO ₄	< 0.25	IC Anions	
Carbon Results in µg C/mL						
TOC	140	Hot Persulfate	TOC	< 100	Furnace	
TIC	110	Hot Persulfate	TIC	^(c)	Furnace	
 (a) Uncertainty, including standards bias, ranged from -10% to +30% (b) These are the ICP-AES analytes of interest. All other analytes are reported opportunistically. (c) The TIC value could not be determined. TIC=TC-TOC; the TC and TOC values were the same within error 						

Table 3.6.	Analysis Results of AN-102/C-104 Eluant Composite
-------------------	---

same within error.

NOTE: 132 mL of composited eluate material was collected.

The effluent analytical samples were combined with the collected effluent, the feed displacement, and rinse solutions to produce a 682-mL composite sample, and an aliquot was submitted for characterization. The results are shown in Tables 3.7 and 3.8. The required MRQ levels for all of the requested analytes were met. Tables 3.7 and 3.8 contain all of the analytes observed by each analytical method: titration, ICP-AES, ICP-MS, IC, AEA, and GEA. Any observed, non-requested analytes are reported opportunistically. Boron (0.01 M) and silicon (0.01 M) are two such analytes; however, they were most likely leached from the glass sample vial and are not actually present in the effluent composite. The concentration of ⁹⁰Sr and technetium present as pertechnetate were determined by radiochemical separation. The total anion normality, 4.78 N, is equal to the total cation normality, 4.78 N.

		Analytical			Analytical	
Analyte	Analytical Result	Method	Analyte	Analytical Result	Method	
Inorganic Analysis Results in µg/mL						
Al	7,890	ICP-AES	Мо	22.5	ICP-AES	
В	37.7	ICP-AES	Na	109,000	ICP-AES	
Ba	< 0.25	ICP-AES	Ni	141	ICP-AES	
Be	< 0.25	ICP-AES	Р	618	ICP-AES	
Ca	146	ICP-AES	Pb	67.5	ICP-AES	
Cd	23.4	ICP-AES	Rb	^(a)	ICP-AES	
Со	[1.9]	ICP-AES	S	^(a)	ICP-AES	
Cr	96.4	ICP-AES	Si	[61]	ICP-AES	
Cs	< 2.4E-03 ^(a)	ICP-MS	Sn	< 37	ICP-AES	
Fe	[2]	ICP-AES	Sr	85.3	ICP-AES	
K	1,060	ICP-AES	Zn	[4.2]	ICP-AES	
La	< 1.3	ICP-AES	Zr	< 1.2	ICP-AES	
Mg	< 2.5	ICP-AES	U	0.69	U by KPA ^(c)	
	In	organic Anion I	Results in µg	g/mL		
Cl	1,650	IC Anions	NO ₃	98,100	IC Anions	
F	5,800	IC Anions	PO ₄	1,750	IC Anions	
NO ₂	38,100	IC Anions	SO_4	5,900	IC Anions	
Carbon Results in µg C/mL						
TIC	7,850 µg C/mL	Persulfate	TIC	^(b)	Furnace	
TOC	11,300 µg C/mL	Persulfate	TOC	18,800	Furnace	
Physical Properties Units as Reported, <u>M</u> is moles/L						
Hydroxide	0.21 <u>M</u>	Titration	Density	1.23 g/mL	Gravimetric	
$\pm 15\%$. (a) Cs, Rb, an	as detected within 10 times d S could not be measured	on the ICP-AES	system. The	-	s by ICP-MS.	

Table 3.7. Inorganic and Carbon Composition of Tc and Cs IX Effluent Composite

(b) The TIC value could not be determined; TIC=TC-TOC; the TC and TOC values were the same within error.

(c) Kinetic phosphorescence analysis

The two analytical methods for TIC and TOC produce a significant difference in the TIC/TOC values. The hot-persulfate wet-oxidation method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92 to 95°C for TOC, all on the same sample. The furnace method that determines the TOC is performed by combusting an aliquot of the sample (solids or liquid) in oxygen at 750°C for 30 min. The total carbon (TC) is determined on another aliquot of the sample by combusting at 1000°C for 30 min, and the TIC is obtained by the difference between the TC and TOC. The characterization of AN-102/C-104 (Urie et al. 2002b) also observes a different result between the two methods; however, the TC determined from either method was essentially the same. That is also the case for these analyses. In his report, Urie evaluates the two methods and identifies the hot-persulfate-based values as the best representation of the TIC and TOC content. Thus, the hot-persulfate results should be considered the more correct value.

	Analytical	Analytical		Analytical	Analytical	
Analyte	Result	Method	Analyte	Result	Method	
	Radiochemical Results in µCi/mL					
⁹⁹ Tc ^(a)	4.41E-02	ICP-MS	TcO ₄	5.45E-03	Sep/ Counting	
²³⁷ Np	9.33E-02	ICP-MS	²³⁹ Pu	1.64E-02	ICP-MS	
²⁴⁰ Pu	9.30E-04	ICP-MS	²⁴¹ Pu/Am	1.22E-03	ICP-MS	
⁹⁰ Sr	1.59E+00	Sep/Counting	^{239/240} Pu	1.74E-05	Sep/AEA	
⁶⁰ Co	3.16E-02	GEA	¹⁵⁴ Eu	2.10E-02	GEA	
¹³⁷ Cs	1.38E-02	GEA	¹⁵⁵ Eu	1.21E-02	GEA	
²⁴¹ Am	1.05E-02	AEA	Total α	1.17E-02	alpha counting	
^(a) Uncertainty, including standards bias, ranged from -10% to +30%						

Table 3.8. Radiochemical Composition of Cs and Tc Ion Exchange Effluent Composite

Several analytes are reported for the effluent composite (Table 3.8) that were not measured for the initial technetium ion exchange feed (Table 3.1). These analytes, ²³⁷Np, ²³⁹Pu, ²⁴⁰Pu, ^{239/240}Pu and ²⁴¹Pu/Am, contribute to the total alpha activity and are reported to provide details on the alpha content.

3.7 Comparison of AN-102/C-104 Initial Feed and Effluent Composite Composition

The analysis results of the effluent composite can be compared with the initial feed-analysis results to determine the effect, if any, on the analytes in solution upon passing through the resin bed. Table 3.9 compares the initial feed characterization with the final effluent composition. Note that the effluent composite contains the column effluent, feed-displacement solutions (28 g), and column wash solution (9.2 g). The addition of the feed displacement and rinse solutions resulted in a dilution to the effluent of approximately 5%. The percent change in concentration from the initial feed composition is also shown in the table. A negative percent change indicates that the effluent composition was lower than the initial feed composition. Changes of less than 15% are likely insignificant since a combination of the typical analytical uncertainty ($\pm 10\%$) and the dilution (5%) could result in an observed difference of 5 to 15%.

Comparing the initial feed and effluent composite analyses indicates that the only significant concentration changes occurred in the ⁹⁹Tc and pertechnetate values. The silicon results are most likely artifacts of leaching from the glass vials where the samples were stored. The phosphate value is suspect, since the phosphorus values determined by ICP-MS show an opposite trend—the values increase by 10% (560 in the initial feed and 620 in the effluent). The hydroxide difference is within the observed analytical uncertainty. The hydroxide value for the initial feed to the Cs ion exchange system was 0.20 M, which is the same as measured in the technetium ion exchange effluent composite.

Analyte	Initial Feed µCi/mL	Effluent Composite µCi/mL	Percent Change
⁹⁹ Tc ^(a)	7.95E-02	4.41E-02	-56
TcO ₄	3.99E-02	5.45E-03	-86
¹³⁷ Cs	1.40E-02	1.38E-02	-2
⁹⁰ Sr	1.52E+00	1.59E+00	5
⁶⁰ Co	3.41E-02	3.16E-02	-4
²⁴¹ Am	1.04E-02	1.05E-02	1
	μg/mL, except where noted	µg/mL except where noted	
Al ^(b)	7,840	7,890	1
K ^(b)	1,080	1,060	-2
Na ^(b)	110,000	109,000	-1
Ba	< DL	< DL	
Ca	149	146	-2
Cd	24.2	23.4	-3
Со	[1.9]	[1.9]	0
Cr	98.2	96.4	-2
Cu	< DL	< DL	
Fe	[2.0]	[2.0]	0
La	< DL	< DL	
Mg	< DL	< DL	
Mn	< DL	< DL	
Мо	23.1	22.5	-3
Ni	145	141	-3
Р	562	618	10
Pb	69.1	67.5	-2
Si	179	[61]	-66 ^(c)
Sn	< DL	< 37	
Sr	86.9	85.3	-2
Zn	[4.0]	[4.2]	5
U	0.822	0.69	-16
Hydroxide	0.18 <u>M</u> (moles/L)	0.21 <u>M</u> (moles/L)	17
TIC	9,100	7,850	-14
TOC	12,300	11,300	-8
Cl	1,800	1,650	-8
F	6,300	5,800	-8
NO ₃	107,000	98,100	-8
NO ₂	41,400	38,100	-8
SO_4	6,700	5,900	-12
PO ₄	2,200	1,750	-20
Density	1.24 g/mL	1.23 g/mL	8

Table 3.9. Comparison of Initial Feed and Effluent Composite Composition

[] Analyte was detected within 10 times the instrument detection limit and the uncertainty is estimated to exceed $\pm 15\%$.

<DL-- Indicates analyte was not observed above the detection limit.</p>
(a) Uncertainty, including standards bias, ranged from -10% to +30%

(b) These are the ICP-AES analytes of interest. All other analytes are reported opportunistically.

(c) Si appears to be a contaminant originating from the glass vials used during sample preparation.

3.8 Technetium Recovery

solutions.

Some stages of the column run were monitored by beta scintillation counting. Multiple samples were collected during each process step: loading, feed displacement, water rinse, elution, and regeneration. All samples were analyzed for ⁹⁹Tc by ICP-MS. After the individual samples had been analyzed and the data evaluated, an effluent composite and eluate composite were formed. Both of the composites were analyzed for ⁹⁹Tc by ICP-MS. Since there is overlapping analytical data available for each processing stage, multiple mass balances are shown. Section 3.8.1 details the recovery of the column system based upon the analysis of the composite solutions for ⁹⁹Tc by ICP-MS. Section 3.8.2 details the recovery for the lead column loading and elution using ⁹⁹Tc by ICP-MS. Section 3.8.3 calculates the estimated technetium retained on the resin.

3.8.1 System Recovery Using Composite Solution ⁹⁹Tc Data

The system recovery for ⁹⁹Tc in the AN-102/C-104 ion exchange run is shown in Table 3.10. The recovery is based upon the analysis of the final effluent and eluate composite samples and the regeneration solution from the lead column. These three solutions account for all of the samples collected during the column run. The effluent composite solution contains the ion exchange effluent, the loading samples taken during processing, the water rinse sample, and the feed-displacement samples. The eluate composite was simply a collection of each of the elution fractions. All values are based upon ICP-MS analysis of ⁹⁹Tc.

Column Processing Step	Technetium Activi	ty, μCi (mg)	Percent of ⁹⁹ Tc in Total Feed					
Feed	49.7	(2.93)	100					
Effluent composite ^(b)	28.9	(1.70)	58.1					
Lead column eluate	19.1	(1.13)	38.4					
Lead column regeneration	< 0.0011	(<0.00006)	< 0.002					
Total technetium recovered	48.0	(2.83)	97					
(a) Based upon ⁹⁹ Tc analysis of final solutions.								
(b) Effluent composite contains eff	luent, loading samples, I	OI water rinse, and fe	eed-displacement					

Table 3.10. Recovery for Technetium Recovery During Processing Using Composite Solution Data^(a)

A total of 49.7 μ Ci of ⁹⁹Tc was processed through the column system. The total recovery, based upon composite solutions, is 97% of the processed technetium. The data reported in Table 3.10 do not account for the technetium loaded on the lag column. The lag column loading and retention of technetium is included in Section 3.8.3.

3.8.2 Recovery for Lead Column Loading and Elution Using Individual ⁹⁹Tc Sample Data

The loading and elution curves for the lead and lag columns combined with the feed displacement, water rinse, and regeneration solutions provide an accounting of all of the technetium passing through the system during processing of the AN-102/C-104 blended feed. A recovery for the lead-column loading

and elution of AN-102/C-104 tank-waste feed is shown in Table 3.9. The amount of technetium loaded onto the lead column was calculated by the following equation:

$$\sum_{i=0}^{i=N} \left[(1 - C/C_0)_i (C_0) (\Delta V)_i \right]$$
(3.1)

where C/C_0 = ratio of Tc in each sample versus the Tc present in the initial feed

 C_0 = initial feed technetium concentration

 ΔV = volume of feed processed between each sample (including sample volume)

N = number of samples collected during loading.

The amount of technetium eluted from the lead column during elution was determined using Equation 3.2.

$$\sum_{i=0}^{i=N} \left[(C/C_0)_i (C_0) (\Delta V)_i \right]$$
(3.2)

where

 C/C_0 = ratio of Tc in each elution sample versus the Tc present in the initial feed

 C_0 = initial feed technetium concentration

 $\Delta V =$ volume of each elution sample

N = number of samples collected during elution.

The lead column loading and elution recovery calculated for total technetium are shown in Table 3.11.

 Table 3.11.
 Recovery for Loading and Elution of Technetium During Processing of AN-102/C-104 Blended Feed

	Technetiu	Percent of ⁹⁹ Tc in								
Column Processing Step	μCi	Total Feed, %								
Total Technetium Processed	49.7	(2.93)	100							
Loaded on Lead Column	25.0	(1.47)	50.3							
Eluted from Lead Column ^(a)	25.2	(1.49)	50.7							
Fraction Eluted from Lead Column		101%								
(a) Based upon the sum of μ Ci eluted during elution (25.13), feed displacement (0.030), water										
rinse (0.067), and regeneration stages	(<0.0011).									

Since elution also occurred during feed displacement, rinsing, and regeneration of the lead column, the contribution of those samples was also included in the table. The data indicate that there was less than 1% retention of the technetium loaded on the column. The estimate of technetium retained on the column is based solely on solution analyses. When all actual waste testing is completed, the resin will be dissolved and analyzed to determine residual Tc and other metals.

3.8.3 Estimate of Technetium Retained on Lead and Lag Columns During Processing of AN-102/C-104 Blended Feed

Table 3.12 estimates the amount of technetium retained on the lead and lag columns during processing of the AN-102/C-104 blended feed. The calculation of the technetium loaded onto the lead column was determined using Equation 3.1. The amount of technetium eluted from the lead column was based upon the analysis of the individual eluate samples combined with the analysis of the regeneration samples, feed displacement samples, and water-rinse sample.

Direct analysis of the eluate sample composite should provide a more accurate value than summing the individual eluate sample results since it does not combine the analytical uncertainty of 37 measurements. However, the eluate composite result (19.2 μ Ci) was 24% lower than the sum of the individual eluate samples (25.2 μ Ci). This discrepancy is unexpectedly high, but is likely due to sample-preparation methods. An evaluation to determine the effect that sample preparation has on the measurement of technetium demonstrated that the technetium-solution concentration decreases as the digestion method becomes more vigorous (acid dilution, versus two types of acid digest). Thus, technetium was likely lost from the sample during acid digestion.

Equation 3.3 was used to calculate the amount of technetium passing through the lag column during processing of AN-102/C-104 blended feed:

$$\sum_{i=0}^{i=N} \left[(C/C_0)_i (C_0) (\Delta V_L)_i \right]$$
(3.3)

where	C/C_0	=	ratio of Tc exiting the lead column with respect to the initial technetium feed
			concentration
	C		initial food tooknotive concentration

 C_0 = initial feed technetium concentration

 ΔV_L = volume of feed processed by the lag column

N = number of samples collected during loading of the lag column.

The concentration of technetium exiting the lead column, which represents the technetium entering the lag column, is calculated in the term $(C/C_0) \times C_0$ Equation 3.2 was used to calculate the technetium passing through the lag column during loading.

Essentially all of the technetium loaded onto the lead column was eluted; the calculations indicate that 1% of the processed technetium was retained on the two columns. The calculated retention of the lead column resulted in a negative value. It is possible that the amount of ⁹⁹Tc eluted from the lead column includes ⁹⁹Tc that was retained by the column during processing of AP-101. However, it may also be due to analytical uncertainty. The calculated system retention value, then, is due entirely to the lag column, which was not eluted. Note that the estimate of technetium retained on both columns is based solely on solution analyses. When all actual waste testing is completed, the resin will be dissolved and analyzed to determine residual Tc and other metals.

	Technetium Activity,	Percent of ⁹⁹ Tc in			
Column Processing Step	μCi (mg)	Total Feed, %			
Loaded on Lead Column	25.0 (1.47)	50.3			
Eluted from Lead Column ^(a)	25.2 (1.49)	50.7			
Estimated Retained on Lead Column	-0.23 (-0.02)	-0.5			
Technetium Entering Lag Column	27.2 (1.61)	54.8			
Eluted from Lag Column	26.6 (1.57)	53.4			
Estimate Retained on Lag Column	0.6 (0.04)	1.3			
Total Retained on Both Columns	0.6 (0.04)	1.3			
(a) Based upon the sum of μ Ci eluted during elution (0.067), and regeneration stages (<0.0011).	tion (25.13), feed displacement	t (0.030), water rinse			

 Table 3.12.
 Estimated Technetium Retained on Lead and Lag Columns During Processing of AN-102/C-104 Blended Feed

3.9 Summary of Objectives and System Performance

The objectives of this testing were to

- demonstrate the effectiveness of all SL-639 process steps, including loading, feed displacement, DI water washing, elution, and resin regeneration
- investigate the potential for resin and/or column fouling
- demonstrate the ⁹⁹Tc decontamination of an Envelope C material (Tank AN-102 blended with permeate from the filtration, washing and leaching of C-104 solids)
- provide batch-distribution measurements on actual tank waste feed.

Each of the objectives is discussed in detail below.

Demonstrate the effectiveness of all SL-639 process steps, including loading, feed displacement, DI water washing, elution, and resin regeneration

The processing of the column system using AN-102/C-104 blended feed and SL-639 resin progressed without difficulties. A total of 136 BVs of feed (680 mL) were processed through the dual-column system. The lead- and lag-column breakthroughs were approximately 46% and 43%, respectively, based upon ⁹⁹Tc analytical data. The quantitation of the pertechnetate is suspected of being affected by the presence of an unidentified beta or gamma emitter; however, an increase in the pertechnetate breakthrough of approximately 6% can be observed. A comparison of the ⁹⁹Tc and TcO₄⁻ values demonstrates that 50% of the technetium was in the pertechnetate form.

Feed displacement progressed smoothly as did the column rinse. The feed was reduced to less than 1% within the target of 2 apparatus volumes of 0.10 <u>M</u> NaOH. The elution of the technetium-loaded columns with DI water at 65°C progressed quickly. The concentration of ⁹⁹Tc peaked in the 2nd BV, giving a C/C₀ = 48. The target C/C₀ value of <0.01 was reached at the 16th BV.

The resin was regenerated with 2 BVs of 0.25 \underline{M} NaOH. This volume was adequate to rinse the lead resin bed with caustic. The regeneration effluent was collected in one batch in which ⁹⁹Tc was not detected by the analytical method.

Investigate the potential for resin and/or column fouling

There were no anomalies observed during the column run. For example, during loading, feed displacement, and elution, there was no observed back pressure, no decrease in flowrate, no resin color change, no change in resin bed height or glass wool height, and no evidence of channeling.

<u>Demonstrate the ⁹⁹Tc decontamination of an Envelope C material (Tank AN-102 blended with permeate</u> from the filtration, washing, and leaching of C-104 solids)

Tank waste feed from Tank AN-102 blended with permeate from the filtration, washing, and leaching of Envelope D solids (C-104) was successfully processed through a dual 5.0-mL resin-bed column system that had previously been loaded and eluted with AP-101 tank waste feed. The AN-102/C-104 blended feed contained 79.5 μ Ci/L ⁹⁹Tc, and 680 mL of feed (136 BV) were processed through the column system. The total amount of technetium processed through the two columns was 49.7 μ Ci. The final effluent composite ⁹⁹Tc concentration was 44.1 μ Ci/L, which correlates to 44% removal of technetium. An overall ⁹⁹Tc DF value of 1.8 was obtained using the two 5.0-mL beds in series.

The ⁹⁹Tc concentration in the effluent from this test exceeds the plant target of removing ⁹⁹Tc to a level that would permit production of a LAW glass with a concentration of ⁹⁹Tc < 0.1 Ci/m³. The effluent ⁹⁹Tc concentration does not necessarily exceed the contract requirement however, since the contract limit of ⁹⁹Tc < 0.1 Ci per m³ of LAW glass is based on a running average. These data illustrate the need for a study (calculations) of a best estimated running average ⁹⁹Tc concentration for the first ten or so LAW batches.

Provide batch-distribution measurements on actual tank waste feed

Batch distributions were measured with the AN-102/C-104 blended feed using SL-639 resin batch #010227CTC-9-23. The SL-639 resin demonstrated excellent removal of technetium: the ⁹⁹TcO₄⁻ K_d value was 660 mL/g, providing 85% removal of technetium. The ⁹⁹Tc K_d value was low, ~70, due to the high fraction of non-pertechnetate present in the sample. Interpolation of the isotherm data provides an estimated TcO₄⁻ K_d value of ~620 at the initial feed conditions. The batch- λ value derived from the TcO₄⁻ K_d data interpolated to the initial feed conditions is ~310 BV.

4.0 Conclusions

All objectives of the testing were met.

- All process steps for ⁹⁹Tc decontamination of AN-102/C-104 blended waste feed were successfully demonstrated.
- No resin or column fouling was observed.
- The ⁹⁹Tc decontamination of an Envelope C waste (AN-102) blended with permeate from the filtration, washing, and leaching of Envelope D solids (C-104) was successfully demonstrated. A total of 136 BV (680 mL @ 79.5 μ Ci ⁹⁹Tc/L) of feed was processed, resulting in 44% removal of ⁹⁹Tc.
- The total technetium removal at the 250 BVs is predicted to meet or exceed the target criteria of 25%.
- The Tc effluent composite (~650 mL, 44 μ Ci ⁹⁹Tc/L) and the Tc eluate composite (132 mL, 180 μ Ci ⁹⁹Tc/L) solutions are available but have not been provided for downstream testing because of a change in the treatment-plant flowsheet.
- Batch-distribution measurements were made on the AN-102/C-104 blended feed. The batch- λ value derived from the TcO₄⁻ K_d data interpolated to the initial feed conditions is ~310 BV.
- A comparison of the ⁹⁹Tc and TcO₄⁻ results demonstrates that 50% of the technetium was in the pertechnetate form.

5.0 References

Bechtel National, Inc. (BNI). 2002. *Research and Technology Plan*, 24590-WTP-PL-RT-01-002, Rev 1, U.S. Department of Energy, Office of River Protection, Richland, WA.

Blanchard Jr., DL, DE Kurath, and BM Rapko. 2000a. *Small Column Testing of Superlig*[®] 639 for *Removal of* ⁹⁹*Tc from Hanford Tank Waste Envelope C (Tank 241-AN-107),* PNWD-3028, Battelle—Pacific Northwest Division, Richland, WA.

Blanchard Jr., DL, DE Kurath, and JR Bontha. 2000b. *Small Column Testing of Superlig*[®]639 for *Removal of* ⁹⁹*Tc from Hanford Tank Waste Envelope A (Tank 241-AW-101),* PNWD-3004, Battelle—Pacific Northwest Division, Richland, WA.

Brooks KP, PR Bredt, GR Golcar, SA Hartley, LK Jagoda, KG Rappe, and MW Urie. 2000. *Characterization, Washing, Leaching and Filtration of C-104 Sludge*, PNDW-3024, Battelle—Pacific Northwest Division, Richland, WA.

Burgeson IE, JR Deschane, and DL Blanchard Jr. 2002a. *Small Column Testing of Superlig*[®]639 for *Removal of* ⁹⁹*Tc from Hanford Tank Waste Envelope A (241-AP-101),* PNWD-3222, Battelle—Pacific Northwest Division, Richland, WA.

Fiskum SK, DL Blanchard Jr., BM Rapko, and ST Arm. 2002. Small Column Testing of Superlig[®]644 for Removal of ¹³⁷Cs from Hanford Tank Waste Envelope C (Tank 241-AN-102) Mixed with Tank 241-C-104 Solids (Envelope D) Wash and Permeate Solutions, PNWD-3240, Battelle—Pacific Northwest Division, Richland, WA.

Hallen RT, JGH Geeting, DR Jackson, and DR Weier. 2002. *Combined Entrained Solids and Sr/TRU Removal from AN-102/C-104 Waste Blend*, PNWD-3264, Battelle—Pacific Northwest Division, Richland, WA.

Hamm LL, F. G. Smith, III, and D. J. McCabe. 2000. *Preliminary Ion Exchange Modeling for Removal of Technetium from Hanford Waste Using SuperLig®* 639 Resin, WSRC-TR-2000-00305, Westinghouse Savannah River Company, Aiken, SC.

Johnson ME. 2000. *Tank 241-AN-102 and 241-AP-101 Ion Exchange Test Specification*, TSP-W375-00-00028, Rev 1, CH2M Hill Hanford Group, Inc., Richland, WA.

King, WD. 1999. Evaluation of Superlig 639 Resin for the Removal of Perrhenate Ion from Hanford Envelope A Simulant. BNF-003-098-0140, IBC Technologies, Inc., American Fork, UT.

Lumetta GJ, JP Bramson, IE Burgeson, OT Farmer III, LR Greenwood, RT Hallen, SD Halstead, ED Jenson, RL Sell, MJ Steele, and MW Urie. 2001. *Evaporation of a Mixture of Tank AN-102 Low Activity Waste and C-104 Washing and Leaching Solution*, PNWD-3132, Battelle—Pacific Northwest Division, Richland, WA.

Rapko, BM, KJ Carson, and DL Blanchard Jr. 2001. *Equilibrium Batch Contact Testing of SuperLig*[®]639, PNWD-3251, Battelle—Pacific Northwest Division, Richland, WA.

Urie M, PR Bredt, JA Campbell, OT Farmer III, LR Greenwood, LK Jagoda, GM Mong, AP Poloski, LL Reed, RD Scheele, CZ Soderquist, RG Swoboda, MP Thomas, and JJ Wagner. 2002a. *Chemical Analysis and Physical Properties Testing of 241-AN-102 Tank Waste- Supernatant and Centrifuged Solids*, PNWD-3229, Pacific Northwest National Laboratory, Richland, WA.

Urie MW, PR Bredt, JA Campbell, OT Farmer III, LR Greenwood, LK Jagoda, GM Mong, AP Poloski, RD Scheele, CZ Soderquist, RG Swoboda, MP Thomas, and JJ Wagner. 2002b. *Chemical and Physical Properties Testing of 241-AN-102 Tank Waste Blended with 241-C-104 Wash/Leachate Solutions*, PNWD-3228, Battelle—Pacific Northwest Division, Richland, WA.

APPENDIX A

Sample Identification

Appendix A: Sample Identification

Sample ID	Sample #	Description
AN2-Tc-0	02-777	Initial feed sample
AN2-Tc-PL1 through 6	Not submitted for	Lead and lag column reservoir collected during
	laboratory analyses	initial loading
AN2-Tc-LL1 through LL17	01-2040 to 2056	Loading samples from lead column
AN2-Tc-LP1 through PL9	01-2057 to 2065	Loading samples from lag column
AN2-Tc-FD-P1 through P16	01-2188 to 01-2203	Feed displacement samples
AN2-Tc-RL1	01-2204/01-2082	DI water rinse sample
AN2-Tc-E1-1 through E1-37	01-2083 to 2119	Lead column eluate samples
AN2-Tc-Regen 1	01-2205/01-2120	Lead column regeneration sample
Tc-AN2-Effluent	02-778	Effluent composite sample (contains feed
		displacement and rinse solutions)
Tc-AN2-Eluate	02-776	Eluate composite sample

APPENDIX B

Column Run Spreadsheets

Appendix B: Column Run Spreadsheets

Loading

B.1

Resin: SuperLig 639, batch #010227CTC-9-23 Tracer: none used Bed volume, Col 1 = 5.0 mL (3.3 cm) Ded volume, Col 2 5.0 mL (2.4 cm)
Bed volume, Col 1 = $5.0 \text{ mL} (3.3 \text{ cm})$
$\mathbf{D} = \mathbf{J} = \mathbf{D} = $
Bed volume, Col $2 = 5.0 \text{ mL} (3.4 \text{ cm})$
Empty Eff Bottle w/cap (wo/h 120.55 g
Bed volumes diverted to wastenone
Supernate Density = 1.2398
Feed analyses: Tc-99, µCi/mL
Flow Rate: approx 16 mL/hr or ~3.2 CV/hr
Start Date and Time: 8/6/2001 8:00 AM
End Date and Time: 8/6/2001 9:40 AM

Table 1. Column Loading Initial Sample Data Sheet

Sample	Source	# column volumes	· · · ·	Projected Date/Time	Vol., mL	Vial + Cap Mass (g)	Start	Sampling End Time		Sample + Vial + Cap Mass, g	Sample Mass, g	Count date	Count start time	file name
Effluent Bottle		-			-	120.55								
AN2-Tc-0-C	Feed Bot		0:00		5	17.092			/					
AN2-Tc-0b-C	Feed Bot		0:00		10	16.96								
AN2-Tc-PL1	Col 2	0	0:00	8/6/2001 8:00 AM	5	17.068	8:00 AM	8:20 AM		21.6115	4.5436			
AN2-Tc-PL2	Col 2	1	0:20	8/6/2001 8:20 AM	5	17.104	8:20 AM	8:54 AM		25.4609	8.3571	No Cour	nting or ICP-	MS done
AN2-Tc-PL3	Col 2	2	0:40	8/6/2001 8:40 AM	5	17.113	8:54 AM	9:10 AM		18.2624	1.1499			
AN2-Tc-PL4	Col 2	3	1:00	8/6/2001 9:00 AM	5	16.867	9:10 AM	9:20 AM	/	19.6562	2.7895			
AN2-Tc-PL5	Col 2	4	1:20	8/6/2001 9:20 AM	5	16.947	9:20 AM	9:40 AM	/	22.7900	5.8428			
AN2-Tc-PL6	Col 2	5	1:40	8/6/2001 9:40 AM	5	17.044			/					
indicates no information relation to those calls														

indicates no information relevant to these cells

indicates no data

Bed Height of Column 1 @ beginning	3.2 cm	Height of glass wool in Column 1 @ beginning	0.4 cm
Bed Height of Column 2 @ beginning	3.2 cm	Height of glass wool in Column 2 @ beginning	0.3 cm
Bed Height of Column 1 @ end	3.2 cm	Height of glass wool in Column 1 @ end	0.4 cm
Bed Height of Column 2 @ end	3.2 cm	Height of glass wool in Column 2 @ end	0.3 cm

Loading

F	Feed:	AN102/C104 supernate with Cs-137 removed by ion exchange (SL644)
F	Resin:	SuperLig 639, batch #010227CTC-9-23
Т	Tracer:	none used
E	Bed volume, Col 1 =	5.0 mL (3.3 cm)
E	Bed volume, $Col 2 =$	5.0 mL (3.4 cm)
Ν	AT Eff Bot. w/cap (w/hole)	120.55 g
E	Bed volumes diverted to was	ste = none
S	Supernate Density =	1.2398
F	Feed analyses:	Tc-99, µCi/mL (by TEVA Resin IX and scintillation counting)
F	Flow Rate:	approx 16 mL/hr or ~3.2 CV/hr
S	tart Date and Time:	8/6/2001 8:00 AM
E	End Date and Time:	8/8/2001 7:17 AM

Sample	Source	# CV	Elapsed Time at Start, hh:mm	Projected Date/Time	Vol. (mL)	Vial + Cap Mass (g)	Sampling Start Time	End Time	Boffle	Sample+ Vial+ Cap Mass (g)	Sample Mass (g)	Effluent Mass, g	Est. Effluent Vol	Est. Flow Rate	#CV
AN2-Tc-0	Feed bot.								129.41				1.2398	g/mL	
AN2-Tc-LL1	Col 1					17.0582	9:40 AM	9:43 AM	129.41 ^a	17.8278	0.7696	0.8	0.6	13.45	0.1
AN2-Tc-LL2	Col 1	3	1:40	8/6/2001 10:40 AM	5	17.0891	10:40 AM	10:45 AM	137.70	23.1990	6.1099	15.2	12.2	14.45	2.4
AN2-Tc-LL3	Col 1	6	5:00	8/6/2001 11:40 AM	3	17.0531	11:40 AM	11:43 AM	144.30	20.5329*	3.4798	31.4	25.4	14.85	5.1
AN2-Tc-LL4	Col 1	9	8:20	8/6/2001 12:40 PM	3	17.0064	12:40 PM	12:43 PM	150.70	20.5466*	3.5402	41.4	33.4	12.55	6.7
AN2-Tc-LL5	Col 1	19	11:40	8/6/2001 4:00 PM	5	17.0987	4:00 PM	4:05 PM	215.10	23.2591	6.1604	115.6	93.2	13.94	18.6
AN2-Tc-LL6	Col 1	29	15:00	8/6/2001 7:20 PM	3	17.1352	7:18 PM	7:30 PM	272.00	20.7847*	3.6495	176.1	142.1	14.44	28.4
AN2-Tc-LL7	Col 1	39	18:20	8/6/2001 10:40 PM	3	17.0801	10:40 PM ^b	10:52 PM	326.60	20.7302*	3.6501	240.8	194.2	14.71	38.8
AN2-Tc-LL8	Col 1	49	21:40	8/7/2001 2:00 AM	5	17.0631	2:00 AM	2:20 AM	343.20	23.1765	6.1134	263.5	212.5	12.71	42.5
AN2-Tc-LL9	Col 1	59	25:00	8/7/2001 5:20 AM	3	16.9905	5:20AM ^e	5:32 AM	405.70	20.7341*	3.7436	333.5	269.0	13.53	53.8
AN2-Tc-LL10	Col 1	69	28:20	8/7/2001 8:40 AM	3	17.0350	8:40 AM	8:43 AM	455.60	20.6040	3.5690	387.0	312.2	13.45	62.4
AN2-Tc-LL11	Col 1	79	31:40	8/7/2001 12:00 PM	5	17.1138	12:00 PM	12:05 PM ^a	508.70	23.1839*	6.0701	452.4	364.9	13.67	73.0
AN2-Tc-LL12	Col 1	89	35:00	8/7/2001 3:20 PM	3	16.9370	3:22 PM	3:25 PM	571.50	20.8957	3.9587	519.2	418.8	14.01	83.8
AN2-Tc-LL13	Col 1	- 99	38:20	8/7/2001 6:40 PM	3	17.0953	6:40 PM	6:43 PM ^e	631.00	21.1069	4.0116	586.8	473.3	14.24	94.7
AN2-Tc-LL14	Col 1	109		8/7/2001 10:00 PM	5	17.0800	10:00 PM	10:05 PM	701.80	24.3858	7.3058	664.9	536.3	14.60	107.3
AN2-Tc-LL15	Col 1	119	45:00	8/8/2001 1:20 AM	3	17.0128	1:20 AM	1:32 AM	761.70	21.1041	4.0913	736.3	593.9	14.89	118.8
AN2-Tc-LL16	Col 1	129	48:20	8/8/2001 4:40 AM	3	16.9624	4:40 AM	4:43 AM	832.50	21.2930	4.3306	811.4	654.5	15.14	130.9
AN2-Tc-LL17	Col 1	139	51:40	8/8/2001 7:16 AM	1	17.0350	7:16 AM ^r	7:17 AM	861.10	18.3941	1.3591	845.8	682.2	14.94	136.4

Notes:

*samples weighed after removing 100μ L for counting *mass of effluent bottle with lid (8.8605g). Previous mass was bottle w/o lid

^bvalve 3 left closed from ~11:40 until ~1AM. Pressure built up to 30 psi. Confirmed - sampling began at 10:40 AM

^cthought the wrong column was sampled, but it was taken from valve 2

^dchanged flow rate to 55% @ 12:25 PM 8/7/01

^eincreased pump setting to 60% at 6:59 PM

^fcolumn loading complete, check sample pulled at end for TcO₄ values

TcO4- initial feed0.0273uCi/mLTc-99 initial feed0.074485881uCi/mLTc-99 initial feed (mass balance)0.07947118uCi/mL

Sample	cpm Tc-99, LSC counting	Гс-99 С/Со%	Tc-99 Data mCi/mL	Dilution Factor	Tc-99 mCi/mL	Tc-99 % C/Co	µCi/mL TcO4 ⁻	TcO ₄ ⁻ % C/Co		Volum e	uCi	uCi/mL	Volume	uCi
AN2-Tc-0	7758		1.72E-05	4334	7.45E-02	4.28E+00	2.73E-02	251	"TcO ₄ Ma	ss Balano	ce	Tc-9	9 Mass Ba	lance
AN2-Tc-LL1	1029	13%	9.84E-05	675	6.64E-02	89%	3.49E-03	13%	0.02381	0.6	0.015	0.0086	0.6	0.005
AN2-Tc-LL2			6.12E-05	683	4.18E-02	56%	3.33E-03	12%	0.02397	11.6	0.278	0.0349	11.6	0.405
AN2-Tc-LL3	1027	13%	6.41E-05	661	4.23E-02	57%			0.02379	13.1	0.312	0.0343	13.1	0.450
AN2-Tc-LL4	1091	14%	5.95E-05	652	3.88E-02	52%	3.69E-03	14%	0.02361	8.0	0.189	0.0381	8.0	0.305
AN2-Tc-LL5			6.40E-05	601	3.85E-02	52%			0.02358	59.9	1.412	0.0384	59.9	2.300
AN2-Tc-LL6	1009	13%	6.14E-05	687	4.21E-02	57%	3.75E-03	14%	0.02355	48.8	1.150	0.0345	48.8	1.685
AN2-Tc-LL7	1213	16%	6.18E-05	645	3.99E-02	54%			0.02338	52.1	1.219	0.0369	52.1	1.926
AN2-Tc-LL8			6.01E-05	619	3.72E-02	50%	4.09E-03	15%	0.02321	18.3	0.425	0.0398	18.3	0.728
AN2-Tc-LL9	1001	13%	6.15E-05	644	3.97E-02	53%			0.02324	56.5	1.313	0.0372	56.5	2.100
AN2-Tc-LL10			6.14E-05	634	3.89E-02	52%	4.03E-03	15%	0.02327	43.1	1.004	0.038	43.1	1.637
AN2-Tc-LL11	1172	15%	6.08E-05	675	4.10E-02	55%			0.02308	52.8	1.218	0.0357	52.8	1.884
AN2-Tc-LL12			6.14E-05	661	4.06E-02	54%	4.42E-03	16%	0.02288	53.8	1.232	0.0362	53.8	1.947
AN2-Tc-LL13	1121	14%	6.45E-05	671	4.33E-02	58%			0.02253	54.5	1.229	0.0333	54.5	1.814
AN2-Tc-LL14			6.18E-05	617	3.81E-02	51%	5.12E-03	19%	0.02218	63.0	1.397	0.0388	63.0	2.446
AN2-Tc-LL15	1376	18%	6.42E-05	609	3.91E-02	53%			0.0221	57.6	1.272	0.0377	57.6	2.173
AN2-Tc-LL16	1352	17%	6.39E-05	621	3.97E-02	53%	5.28E-03	19%	0.02202	60.6	1.334	0.0371	60.6	2.251
AN2-Tc-LL17	1554	20%	6.17E-05	667	4.12E-02	55%			0.02202	27.8	0.611	0.0356	27.8	0.987
								-	total vol		15.6	uC	Ci Tc total	23.5
									total CV	136	0.92	m	g Tc total	1.38

Table 2. (continued) Data Collection for Tc Loading of Lead Column in AN102/C104 Run - Counting

- indicates no data

			concetion	for re Bouung of Be	0										
Sample	Source	# CV	Elapsed Time at Start,	Projected Date/Time	Vol. (mL)	Vial + Cap Mass (g)	Sampling Start Time		Bottle	Sample+ Vial+ Cap Mass (g)	Sample Mass (g)	Effluent Mass, g	Est. Effluent Vol	Est. Flow Rate	#CV
-															
AN2-Tc-LP1	Col 2	3	1:40	8/6/2001 10:40 AM	5	16.9099	11:00 AM	11:20 AM	137.70	23.0913	6.1814	14.5	11.7	14.11	4
AN2-Tc-LP2	Col 2	9	8:20	8/6/2001 12:40 PM	3	16.9424	11:20 AM	11:23 AM	150.70	20.6002*	3.6578	31.1	25.1	10.08	8
AN2-Tc-LP3	Col 2	29	15:00	8/6/2001 7:20 PM	5	17.1533	7:30 PM	7:50 PM	272.00	23.5432	6.3899	158.8	128.1	13.75	25
AN2-Tc-LP4	Col 2	49	21:40	8/7/2001 2:00 AM	3	17.0438	2:20 AM	2:32 AM	343.20	20.8458*	3.8020	233.8	188.6	11.98	43
AN2-Tc-LP5	Col 2	69	28:20	8/7/2001 8:40 AM	5	17.0089	8:52 AM	9:12 AM	455.60	23.2612	6.2523	352.5	284.3	12.67	62
AN2-Tc-LP6	Col 2	89	35:00	8/7/2001 3:20 PM	3	16.9527	3:34 PM	3:46 PM	571.50	21.0589	4.1062	472.5	381.1	13.09	84
AN2-Tc-LP7	Col 2	109	41:40	8/7/2001 10:00 PM	5	16.9735	10:20 PM	10:40 PM	701.80	24.3608	7.3873	610.2	492.1	13.74	107
AN2-Tc-LP8	Col 2	129	48:20	8/8/2001 4:40 AM	3	16.9008	4:52 AM	5:04 AM	832.50	21.3611	4.4603	745.3	601.2	14.15	131
AN2-Tc-LP9	Col 2	149	55:00	8/8/2001 7:20 AM	1	17.1193	7:20 AM ^f	7:24 AM	861.10	18.7308	1.6115	775.5	625.5	29.20	136

Table 3. Data Collection for Tc Loading of Lag Column in AN102/C104 Run

Notes:

*samples weighed after removing 100µL for counting <u>fcolumn</u> loading complete, sample pulled for TcO4 value measurement

-indicates no data

Table 5. (continued) Data Concerton for Te Loading of Lag Column in Artifuz, e104 Run													
cpm Tc-99,		Tc-99 Data	Dilution	Tc-99	Tc-99 %	µCi/mL	TcO_4^-				V into		
LSC	beta Tc-99					·		Out of	Into	[Tc]	lag	uCi into	uCi out
counting	C/Co%	mCi/mL	Factor	mCi/mL	C/Co	TcO_4	% C/Co	Lag	Lag	into lag	column	lag	of lag
		5.71E-05	627	3.58E-02	48%	3.53E-03	13%	48%	89%	0.071	11.7	0.83	0.45
		6.05E-05	612	3.71E-02	50%			50%	57%	0.045	13.4	0.61	0.53
		6.41E-05	616	3.94E-02	53%	3.83E-03	14%	53%	52%	0.041	103.0	4.23	4.33
		5.87E-05	624	3.66E-02	49%			49%	54%	0.043	60.5	2.57	2.36
No	Data	6.07E-05	671	4.07E-02	55%	3.35E-03	12%	55%	53%	0.042	95.7	4.05	4.16
		6.64E-05	618	4.10E-02	55%			55%	55%	0.044	96.8	4.24	4.23
		6.01E-05	616	3.70E-02	50%	3.17E-03	12%	50%	58%	0.046	111.1	5.13	4.39
		5.85E-05	754	4.41E-02	59%	3.83E-03	14%	59%	53%	0.042	109.0	4.55	5.13
		6.04E-05	631	3.82E-02	51%			51%	53%	0.042	24.4	1.03	0.99

Table 3. (continued) Data Collection for Tc Loading of Lag Column in AN102/C104 Run

B.5

-- indicates no data

uCi in 27.24 26.57 uCi out 0.6634 uCi retained

Wash

Feed:	0.1 M NaOH
Resin:	SuperLig 639, batch #010227CTC-9-23
Tracer:	none
Bed volume, Col 1 =	5.0 mL (3.3 cm)
Bed volume, $Col 2 =$	5.0 mL (3.4 cm)
Bed volumes diverted to waste =	none
NaOH Density =	1.008 g/mL
Feed analyses:	Tc-99, μCi/mL
Flow Rate:	approx 16 mL/hr or 3.2 CV/hr
Start Date and Time:	8/8/2001 7:25 AM
End Date and Time:	8/8/2001 12:04 PM

Table 4. Data Collection during 0.10 M NaOH Feed Displacement of Columns 1 and 2

Sample	Source	# column volumes	Elapsed Time	Projected Date/Time	Vol. (mL)	Vial + Cap Mass (g)	Sampling Start Time	Sampling End Time	Sample+Vial+ Cap Mass (g)	0	Bed Height Col 2 / Glass Wool Ht	Sample Mass (g)
0.10 M NaOH Fee	d Displac	ement Solu	tion		5							
AN2-Tc-FDP1	Col 2	0	0:00	8/8/2001 7:25 AM	5	17.0608	7:25 AM	7:45 AM	24.2879	3.25/0.35	3.2/0.25	7.2271
AN2-Tc-FDP2	Col 2	1.00	0:20	8/8/2001 7:45 AM	5	17.0192	7:45 AM	8:10 AM	25.5470	3.25/0.35	3.2/0.25	8.5278
AN2-Tc-FDP3	Col 2	0.66	0:40	8/8/2001 8:05 AM	5	17.1018	8:10 AM	8:25 AM	22.4323	3.25/0.35	3.2/0.25	5.3305
AN2-Tc-FDP4	Col 1	1.00	1:00	8/8/2001 8:25 AM	1	17.0329	8:25 AM	8:29 AM	17.5939	3.25/0.35	3.2/0.25	0.5610
AN2-Tc-FDP5	Col 2	1.33	1:20	8/8/2001 8:45 AM	5	17.0854	8:29 AM	8:31 AM ^c	18.1777	3.25/0.35	3.2/0.25	1.0923
AN2-Tc-FDP6	Col 2	1.66	1:40	8/8/2001 9:05 AM	5	17.0402	8:31 AM	8:51 AM	23.3959	3.25/0.35	3.2/0.25	6.3557
AN2-Tc-FDP7	Col 2	1.99	2:00	8/8/2001 9:25 AM	4	17.1528	8:51 AM	9:03 AM	20.7076	3.25/0.35	3.2/0.25	3.5548
AN2-Tc-FDP8	Col 1	2.32	2:20	8/8/2001 9:45 AM	1	16.8872	9:03 AM	9:07 AM	17.9031	3.25/0.35	3.2/0.25	1.0159
AN2-Tc-FDP9	Col 2	2.65	2:40	8/8/2001 10:05 AM	4	17.0429	9:07 AM	9:19 AM	20.4710	3.25/0.35	3.2/0.25	3.4281
AN2-Tc-FDP10	Col 1	3.00	3:00	8/8/2001 10:25 AM	1	17.2420	9:19 AM	9:23 AM	18.2579 ^b	3.25/0.35	3.2/0.25	1.0159
AN2-Tc-FDP11	Col 2	3.33	3:20	8/8/2001 10:45 AM	5	17.2247	9:23 AM	9:35 AM ^a	20.6360	3.25/0.35	3.2/0.25	3.4113
AN2-Tc-FDP12	Col 1	3.66	3:40	8/8/2001 11:05 AM	1	17.1543	10:20 AM	10:24 AM ^a	18.1755 ^b	3.25/0.35	3.2/0.25	1.0212
AN2-Tc-FDP13	Col 2	3.99	4:00	8/8/2001 11:25 AM	5	17.1262	11:00 AM	11:20 AM	22.7119	3.25/0.35	3.2/0.25	5.5857
AN2-Tc-FDP14	Col 1	4.32	4:20	8/8/2001 11:45 AM	1	17.1436	11:20 AM	11:24 AM ^a	18.1606 ^b	3.25/0.35	3.2/0.25	1.0170
AN2-Tc-FDP15	Col 2	4.65	4:40	8/8/2001 12:05 PM	5	17.0468	11:40 AM	12:00 PM	22.5697	3.25/0.35	3.2/0.25	5.5229
AN2-Tc-FDP16	Col 1	4.98	5:00	8/8/2001 12:25 PM	1	17.2788	12:00 PM	12:04 PM ^a	18.2971 ^b	3.25/0.35	3.2/0.25	1.0183

Notes

^a Stopped pump
 ^b Weighed after removing 100µL for counting
 ^c AN2-Tc-FD4 and AN2-Tc-FD5 were combined prior to performing measurements indicates no information relevant to these cells

indicates no data ---

1.2298	density AN102/C104 (used in spreadsheet calculations)
1.008	density 0.10 M NaOH (used in spreadsheet calculations)

Table 4. (continued) Data Collection during 0.10 M NaOH Feed Displacement of Columns 1 and 2 - Counting

Sample	Approximate Volume mL	Calculated # CV's	cpm, 100µL (Teva IX)	Tc Beta Data μCi/mL	Tc-99 Data μCi/mL	Dilution Factor	Tc-99 μCi/mL	Tc-99 % C/Co	uCi/mL Tc (eluted)	Volume (during elution)	uCi Tc (eluted)
0.10 M NaOH			7758	0.0273	uCi/mL		0.0795	uCi/mL			
AN2-Tc-FDP1	5.88	1.2			6.05E-05	626	3.79E-02	48%	L		
AN2-Tc-FDP2	6.93	2.6			5.82E-05	619	3.60E-02	45%	This stage in	-	
AN2-Tc-FDP3	4.33	3.4			5.87E-05	643	3.78E-02	47%	proceeded as	·	
AN2-Tc-FDP4	0.46	3.5			3.19E-05	690	2.20E-02	28%	displaced. H	owever starti	ng at
AN2-Tc-FDP5	0.89	3.7	73920	953%	1.48E-05	625	9.22E-03	12%	FDP10, Tc b	egan to elute	. Thus, it is
AN2-Tc-FDP6	5.17	4.7			3.23E-05	551	1.78E-02	22%	necessary to	calculate the	amount of
AN2-Tc-FDP7	3.53	5.4			1.14E-05	609	6.92E-03	8.7%	Tc eluted sta	rting with FI	DP10
AN2-Tc-FDP8	1.01	5.6	13189	170%	4.37E-06	642	2.81E-03	3.5%		8	-
AN2-Tc-FDP9	3.40	6.3			4.81E-06	618	2.97E-03	3.7%			
AN2-Tc-FDP10	1.01	6.5	6188	80%	4.42E-06	645	2.85E-03	3.6%	0.0028	32.6	
AN2-Tc-FDP11	3.38	7.2			2.03E-06	619	1.26E-03	1.6%			
AN2-Tc-FDP12	1.01	7.4	5289	68%	6.69E-06	653	4.37E-03	5.5%	0.0044	37.0	
AN2-Tc-FDP13	5.54	8.5			1.60E-06	652	1.04E-03	1.3%			
AN2-Tc-FDP14	1.01	8.7	4587	59%	8.02E-06	652	5.23E-03	6.6%	0.0052	43.5	
AN2-Tc-FDP15	5.48	9.8			1.09E-06	623	6.79E-04	0.9%			
AN2-Tc-FDP16	1.01	10.0	4449	57%	9.78E-06	642	6.28E-03	7.9%	0.0063	50.0	
							area	calculation ^d	1/2*b*h =	0.030	uCi eluted

^d elution during feed displacement starts at FDP-10 and continues linearly through FDP-16. The area is described by a triangle ;

therefore 1/2*b*h using sample results from FDP10, 12, 14 and 16 will give area under curve indicates no information relevant to these cells

indicates no data

Rinse

Feed:	Deionized water
Resin:	SuperLig 639, batch #010227CTC-9-23
Tracer:	none
Bed volume, $Col 1 =$	5 mL (3.3 cm)
Bed volumes diverted to waste =	none
Supernate Density =	0.997 g/mL
Feed analyses:	Tc-99, mCi/mL
Flow Rate:	approx 16 mL/hr or 3.2 CV/hr
Start Date and Time:	8/8/2001 12:41 PM
End Date and Time:	8/8/2001 1:22 PM

Table 5. Data Collection for DI water Rinse of Resin Beds

Sample	Source	# column volumes	Elapsed Time	Projected Date/Time	Vol. (mL)	Vial + Cap Mass (g)	Sampling Start Time	Sampling	Sample+Vial + Can Mass	Col 1 /	Bed Height Col 2 / Glass Wool Ht	Sample
AN2-Tc-RL1	Col 1	1	0:40	8/8/2001 12:41 PM	10	17.2683	12:41 PM	1:22 PM	26.6851	3.25/0.35	3.2/0.25	9.4168

B.8

Sample	Tc-99 Data μCi/mL	Dilution Factor	Tc-99 μCi/mL	Tc-99 % C/Co	uCi/mL	Volume, mL	uCi	uCi/mL	Volume, mL	uCi
							^{95m} TcO ₄ Mass Balance Tc-99 Mass Bala			
AN2-Tc-RL1										
	8.00E-05	84	6.69E-03	8.98%		no data		7.13E-03	9.42	0.0672

Tc-99 control =	0.0745	uCi/mL

Rinse Solution= 0.079471 uCi/mL indicates no information relevant to these cells

<u>Elution</u>

B.9

Feed:	H ₂ O at 65°C
Resin:	SuperLig 639, batch #010227CTC-9-23
Tracer:	none used
Bed volume, Col 1 =	5.0 mL (3.3 cm)
Bed volume, Col 2 =	5.0 mL (3.4 cm)
Bed volumes diverted to waste =	none
Feed analyses:	Tc-99, mCi/mL
Flow Rate:	5 mL/hr or 1 CV/hr
Start Date and Time:	8/8/2001 1:30 PM
End Date and Time:	8/9/2001 5:00 PM

Table 6. Data Collection for Tc Elution of Column 1 (lead column) in AN102/C104 Run @ 65C

Sample	Source	# column volumes	Elapsed Time	Projected Date/Time	Vol. (mL)	Vial + Cap Mass (g)	Sampling Start Time	Sampling End Time	Sample+Vi al+ Cap Mass (g)	Bed Height Col 1 / Glass Wool Ht	Sample	Count Date, Tc-99	count time (min)
AN2-Tc-E-0C	DI water elu	ıent				16.9874						8/14/2001	20
AN2-Tc-E1-1	Col 1	0.5	0:00	8/8/2001 1:30 PM	2.5	17.1048	1:30 PM	2:00 PM	19.7525	3.25/.25	2.6477	8/14/2001	20
AN2-Tc-E1-2	Col 1	1	0:30	8/8/2001 2:00 PM	2.5	16.9233	2:00 PM	2:03 PM	19.2694	3.25/.25	2.3461	8/14/2001	20
AN2-Tc-E1-3	Col 1	1.5	1:00	8/8/2001 2:30 PM	2.5	16.9907	2:03 PM	3:00 PM	19.3118	3.25/.25	2.3211	8/14/2001	20
AN2-Tc-E1-4	Col 1	2	1:30	8/8/2001 3:00 PM	2.5	16.9924	3:00 PM	3:30 PM	19.3047	3.25/.25	2.3123	8/14/2001	20
AN2-Tc-E1-5	Col 1	2.5	2:00	8/8/2001 3:30 PM	2.5	17.0219	3:30 PM	4:00 PM	19.3065	3.25/.25	2.2846	8/14/2001	20
AN2-Tc-E1-6	Col 1	3	2:30	8/8/2001 4:00 PM	2.5	17.1525	4:00 PM	4:30 PM	19.4261	3.25/.25	2.2736	8/14/2001	20
AN2-Tc-E1-7	Col 1	3.5	3:00	8/8/2001 4:30 PM	2.5	16.8280	4:30 PM	5:00 PM	19.1145	3.25/.25	2.2865	8/14/2001	20
AN2-Tc-E1-8	Col 1	4	3:30	8/8/2001 5:00 PM	2.5	17.0494	5:00 PM	5:30 PM	19.3303	3.25/.25	2.2809	8/14/2001	20
AN2-Tc-E1-9	Col 1	4.5	4:00	8/8/2001 5:30 PM	2.5	17.0536	5:30 PM	6:00 PM	19.3124	3.25/.25	2.2588	8/14/2001	20
AN2-Tc-E1-10	Col 1	5	4:30	8/8/2001 6:00 PM	2.5	17.1193	6:00 PM	6:30 PM	19.7454	3.25/.25	2.6261	8/14/2001	20
AN2-Tc-E1-11	Col 1	5.5	5:00	8/8/2001 6:30 PM	2.5	17.0797	6:30 PM	7:00 PM	19.7006	3.25/.25	2.6209	8/14/2001	20
AN2-Tc-E1-12	Col 1	6	5:30	8/8/2001 7:00 PM	2.5	17.1300	7:00 PM	7:30 PM	19.7737	3.25/.25	2.6437	8/14/2001	20
AN2-Tc-E1-13	Col 1	6.5	6:00	8/8/2001 7:30 PM	2.5	17.2099	7:30 PM	8:00 PM	19.8234	3.25/.25	2.6135	8/14/2001	20
AN2-Tc-E1-14	Col 1	7	6:30	8/8/2001 8:00 PM	2.5	17.1649	8:00 PM	8:30 PM	19.5961	3.25/.25	2.4312	8/14/2001	20
AN2-Tc-E1-15	Col 1	7.5	7:00	8/8/2001 8:30 PM	2.5	17.0878	8:30 PM	9:00 PM	19.4241	3.25/.25	2.3363	8/14/2001	20
AN2-Tc-E1-16	Col 1	8	7:30	8/8/2001 9:00 PM	2.5	17.1139	9:00 PM	9:30 PM	18.3332*	3.25/.25	1.2193	8/14/2001	20
AN2-Tc-E1-17	Col 1	8.5	8:00	8/8/2001 9:30 PM	2.5	17.0883	9:30 PM	10:00 PM	19.5859	3.25/.25	2.4976	8/14/2001	20

indicates no information relevant to these cells

- indicates no data

TcO4- initial feed	0.0273	uCi/mL	(used in spreadsheet calculations)
Tc-99 initial feed	0.0745	uCi/mL	(used in spreadsheet calculations)
Tc-99 initial feed (mass balance)	0.079471	uCi/mL	(used in spreadsheet calculations)

Table 6. (continued) Data Collection for Tc Elution of Column 1 (lead column) in AN102/C104 Run @ 65C - Counting

Sample	Vol counted, mL	Net counts Tc-99	%C/Co Tc-99	Tc-99 Data mCi/mL	Dilution Factor	Tc-99 mCi/mL	Tc-99 % C/Co	uCi/mL	Volume, mL	uCi	uCi/mL	Volume, mL	uCi
AN2-Tc-E-0C	0.1	7739						^{95m} Tc	O4 Mass Bala	ance	Tc-	99 Mass Bal	lance
AN2-Tc-E1-1	0.1	13354	1.73	6.28E-05	691	4.34E-02	60%	4.71E-02	2.65	0.125	4.75E-02	2.65	0.126
AN2-Tc-E1-2	0.1	72521	9.37	2.04E-04	1322	2.70E-01	372%	2.56E-01	2.35	0.600	2.96E-01	2.35	0.694
AN2-Tc-E1-3	0.1	206918	26.74	6.32E-04	1559	9.85E-01	1357%	7.30E-01	2.32	1.694	1.08E+00	2.32	2.504
AN2-Tc-E1-4	0.1	433664	56.04	1.93E-03	1345	2.59E+00	3577%	1.53E+00	2.31	3.537	2.84E+00	2.31	6.573
AN2-Tc-E1-5	0.1	593252	76.66	2.69E-03	1287	3.46E+00	4775%	2.09E+00	2.28	4.781	3.79E+00	2.28	8.670
AN2-Tc-E1-6	0.1	325390	42.05	1.50E-03	1263	1.90E+00	2619%	1.15E+00	2.27	2.610	2.08E+00	2.27	4.731
AN2-Tc-E1-7	0.1	1000533	129.28	3.34E-04	1617	5.41E-01	745%	3.53E+00	2.29	8.070	5.92E-01	2.29	1.354
AN2-Tc-E1-8	0.1	11430	1.48	3.67E-05	1648	6.04E-02	83%	4.03E-02	2.28	0.092	6.62E-02	2.28	0.151
AN2-Tc-E1-9	0.1	4828	0.62	1.36E-05	1345	1.82E-02	25.1%	1.70E-02	2.26	0.038	2.00E-02	2.26	0.045
AN2-Tc-E1-10	0.1	3413	0.44	9.13E-06	1633	1.49E-02	20.6%	1.20E-02	2.63	0.032	1.63E-02	2.63	0.043
AN2-Tc-E1-11	0.1	2610	0.34	6.73E-06	1684	1.13E-02	15.6%	9.21E-03	2.62	0.024	1.24E-02	2.62	0.033
AN2-Tc-E1-12	0.1	2277	0.29	5.63E-06	1342	7.55E-03	10.4%	8.03E-03	2.64	0.021	8.27E-03	2.64	0.022
AN2-Tc-E1-13	0.1	2042	0.26	8.08E-06	1742	1.41E-02	19.4%	7.20E-03	2.61	0.019	1.54E-02	2.61	0.040
AN2-Tc-E1-14	0.1	1856	0.24	7.28E-05	88	6.43E-03	8.9%	6.55E-03	2.43	0.016	7.04E-03	2.43	0.017
AN2-Tc-E1-15	0.1	1825	0.24	7.00E-05	82	5.75E-03	7.9%	6.44E-03	2.34	0.015	6.30E-03	2.34	0.015
AN2-Tc-E1-16	0.1	1915	0.25	7.52E-05	101	7.61E-03	10.5%	6.76E-03	1.22	0.008	8.34E-03	1.22	0.010
AN2-Tc-E1-17	0.1	3846	0.50	1.01E-04	87	8.83E-03	12.2%	1.36E-02	2.50	0.034	9.67E-03	2.50	0.024

indicates no information relevant to these cells

Sample	Source	# column volumes	Elapsed Time	Projected Date/Time	Vol. (mL)	Vial + Cap Mass (g)	Sampling Start Time	Sampling End Time	Sample+Vi al+ Cap Mass (g)	Bed Height Col 1 / Glass Wool Ht	Sample Mass (g)	Count Date, Tc-99	count time (min)
AN2-Tc-E1-18	Col 1	9	8:30	8/8/2001 10:00 PM	2.5	17.1791	10:00 PM	10:30 PM	19.6689	3.25/.25	2.4898	8/14/2001	20
AN2-Tc-E1-19	Col 1	9.5	9:00	8/8/2001 10:30 PM	2.5	17.1647	10:30 PM	11:00 PM	19.6215	3.25/.25	2.4568	8/14/2001	20
AN2-Tc-E1-20	Col 1	10	9:30	8/8/2001 11:00 PM	2.5	17.1991	11:00 PM	12:00 AM	22.0273	3.25/.25	4.8282	8/14/2001	20
AN2-Tc-E1-21	Col 1	11	10:30	8/9/2001 12:00 AM	5	17.1254	12:00 AM	1:00 AM	21.9612	3.25/.25	4.8358	8/14/2001	20
AN2-Tc-E1-22	Col 1	12	11:30	8/9/2001 1:00 AM	5	17.1144	1:00 AM	2:00 AM	21.9836	3.25/.25	4.8692	8/14/2001	20
AN2-Tc-E1-23	Col 1	13	12:30	8/9/2001 2:00 AM	5	17.1062	2:00 AM	3:00 AM	21.9569	3.25/.25	4.8507	8/14/2001	20
AN2-Tc-E1-24	Col 1	14	13:30	8/9/2001 3:00 AM	5	17.1589	3:00 AM	4:00 AM	21.9997	3.25/.25	4.8408	8/14/2001	20
AN2-Tc-E1-25	Col 1	15	14:30	8/9/2001 4:00 AM	5	17.1890	4:00 AM	5:00 AM	22.0240	3.25/.25	4.8350	8/14/2001	20
AN2-Tc-E1-26	Col 1	16	15:30	8/9/2001 5:00 AM	5	17.1751	5:00 AM	6:00 AM	22.0422	3.25/.25	4.8671	8/14/2001	20
AN2-Tc-E1-27	Col 1	17	16:30	8/9/2001 6:00 AM	5	17.2799	6:00 AM	7:00 AM	22.1560	3.25/.25	4.8761	8/15/2001	20
AN2-Tc-E1-28	Col 1	18	17:30	8/9/2001 7:00 AM	5	17.2745	7:00 AM	8:00 AM	22.1749	3.25/.25	4.9004	8/15/2001	20
AN2-Tc-E1-29	Col 1	19	18:30	8/9/2001 8:00 AM	5	17.2651	8:00 AM	9:00 AM	22.1971	3.25/.25	4.9320	8/10/2001	20
AN2-Tc-E1-30	Col 1	20	19:30	8/9/2001 9:00 AM	5	17.3086	9:00 AM	10:00 AM	22.1833	3.25/.25	4.8747	8/10/2001	20
AN2-Tc-E1-31	Col 1	21	20:30	8/9/2001 10:00 AM	5	17.3086	10:00 AM	11:00 AM	22.2413	3.25/.25	4.9327	8/10/2001	20
AN2-Tc-E1-32	Col 1	22	21:30	8/9/2001 11:00 AM	5	17.2724	11:00 AM	12:00 AM	22.1974	3.25/.25	4.9250	8/10/2001	20
AN2-Tc-E1-33	Col 1	23	22:30	8/9/2001 12:00 PM	5	17.2872	12:00 AM	1:00 PM	22.2289	3.25/.25	4.9417	8/10/2001	20
AN2-Tc-E1-34	Col 1	24	23:30	8/9/2001 1:00 PM	5	17.2115	1:00 PM	2:00 PM	22.0988	3.25/.25	4.8873	8/10/2001	20
AN2-Tc-E1-35	Col 1	25	24:30	8/9/2001 2:00 PM	5	17.2175	2:00 PM	3:00 PM	22.0906	3.25/.25	4.8731	8/10/2001	20
AN2-Tc-E1-36	Col 1	26	25:30	8/9/2001 3:00 PM	5	17.2366	3:00 PM	4:00 PM	22.0492	3.25/.25	4.8126	8/10/2001	20
AN2-Tc-E1-37	Col 1	27	26:30	8/9/2001 4:00 PM	5	17.3324	4:00 PM	5:00 PM	22.1822	3.25/.25	4.8498	8/10/2001	20

Table 6 (continued). Data Collection for Tc Elution of Column 1 (lead column) in AN102/C104 Run @ 65C

indicates no information relevant to these cells

indicates no data

Sample	Vol counted, mL	Net counts Tc-99	%C/Co Tc-99	Tc-99 Data mCi/mL	Dilution Factor	Tc-99 mCi/mL	Tc-99 % C/Co	uCi/mL	Volume, mL	uCi	uCi/mL	Volume, mL	uCi	
AN2-Tc-E1-18	0.1	6531	0.84	5.82E-05	81	4.70E-03	6.5%	2.30E-02	2.49	0.057	5.15E-03	2.49	0.013	
AN2-Tc-E1-19	0.1	12918	1.67	6.15E-05	78	4.81E-03	6.6%	4.56E-02	2.46	0.112	5.27E-03	2.46	0.013	
AN2-Tc-E1-20	0.1	2209	0.29	3.54E-05	78	2.77E-03	3.82%	7.79E-03	4.83	0.038	3.03E-03	4.83	0.015	
AN2-Tc-E1-21	0.1	519	0.07	1.66E-05	81	1.35E-03	1.86%	1.83E-03	4.84	0.009	1.48E-03	4.84	0.007	
AN2-Tc-E1-22	0.1	464	0.06	1.57E-05	78	1.22E-03	1.69%	1.64E-03	4.87	0.008	1.34E-03	4.87	0.007	
AN2-Tc-E1-23	0.1	435	0.06	1.49E-05	80	1.20E-03	1.65%	1.53E-03	4.85	0.007	1.31E-03	4.85	0.006	
AN2-Tc-E1-24	0.1	368	0.05	1.29E-05	79	1.01E-03	1.40%	1.30E-03	4.84	0.006	1.11E-03	4.84	0.005	
AN2-Tc-E1-25	0.1	290	0.04	9.39E-06	88	8.26E-04	1.14%	1.02E-03	4.84	0.005	9.05E-04	4.84	0.004	
AN2-Tc-E1-26	0.1	218	0.03	5.99E-06	80	4.80E-04	0.66%	7.69E-04	4.87	0.004	5.26E-04	4.87	0.003	
AN2-Tc-E1-27	0.1	204	0.03	3.48E-06	80	2.78E-04	0.38%	7.20E-04	4.88	0.004	3.04E-04	4.88	0.001	
AN2-Tc-E1-28	0.1	146	0.02	1.89E-06	79	1.49E-04	0.21%	5.15E-04	4.90	0.003	1.63E-04	4.90	0.001	
AN2-Tc-E1-29	0.1	129.9	0.02	1.11E-06	83	9.22E-05	0.13%	4.58E-04	4.93	0.002	1.01E-04	4.93	0.000	
AN2-Tc-E1-30	0.1	117	0.02	5.91E-07	78	4.59E-05	0.06%	4.13E-04	4.87	0.002	5.03E-05	4.87	0.000	
AN2-Tc-E1-31	0.1	104	0.01	3.91E-07	91	3.57E-05	0.05%	3.67E-04	4.93	0.002	3.91E-05	4.93	0.000	
AN2-Tc-E1-32	0.1	99	0.01	3.16E-07	80	2.52E-05	0.03%	3.49E-04	4.93	0.002	2.76E-05	4.93	0.000	
AN2-Tc-E1-33	0.1	95	0.01	1.82E-07	80	1.45E-05	0.02%	3.35E-04	4.94	0.002	1.59E-05	4.94	0.000	
AN2-Tc-E1-34	0.1	90	0.01	2.28E-07	82	1.87E-05	0.03%	3.17E-04	4.89	0.002	2.05E-05	4.89	0.000	
AN2-Tc-E1-35	0.1	86	0.01	1.99E-07	82	1.62E-05	0.02%	3.03E-04	4.87	0.001	1.78E-05	4.87	0.000	
AN2-Tc-E1-36	0.1	86.39	0.01	1.66E-07	78	1.30E-05	0.02%	3.05E-04	4.81	0.001	1.43E-05	4.81	0.000	
AN2-Tc-E1-37	0.1	84.27	0.01	1.65E-07	79	1.30E-05	0.02%	2.97E-04	4.85	0.001	1.43E-05	4.85	0.000	
			_					Sum	132.68	21.98	uCi	132.7	25.13	uCi
			indicates r	no informati	on relevant	to these cel	ls		27 BV	1.30	mg		1.48	mg

Table 6. (continued) Data Collection for Tc Elution of Column 1 (lead column) in AN102/C104 Run @ 65C - Counting

indicates no data

Regeneration

Feed:	0.25M NaOH
Resin:	SuperLig 639, batch #010227CTC-9-23
Tracer:	none used
Bed volume, Col 1 =	5.0 mL (3.3 cm)
Bed volume, Col 2 =	5.0 mL (3.4 cm)
Bed volumes diverted to waste =	none
Feed analyses:	Tc-99, mCi/mL
Flow Rate:	5 mL/hr or 1 CV/hr
Start Date and Time:	8/17/2001 11:59 AM
End Date and Time:	8/17/2001 1:51 PM

Table 7. Data Collection for Regeneration of Column 1 (lead column) in AN102/C104 Run

Sample	Source	# column volumes	Elapsed Time	Projected Date/Time	Vol. (mL)	Vial + Cap Mass (g)	Sampling Start Time	Sampling	Sample+Vial + Cap Mass (g)	U	Sample
AN2-Tc-Regen-1	Feed bot.	4	4 hrs	8/17/2001 11:59	20	15.0418	11:59 AM	1:51 PM	38.7876	3.2/0.3	23.7458

density 0.25 M NaOH	1.014	g/mL	(used in spreadsheet calculations)
Tc-99 initial feed	0.0745	uCi/mL	(used in spreadsheet calculations)
Tc-99 initial feed (mass balance)	0.0794712	uCi/mL	(used in spreadsheet calculations)

Sample	Tc-99 Data mCi/mL	Dilution Factor	Tc-99 mCi/mL	Tc-99 % C/Co	uCi/mL	Volume, mL	uCi	uCi/mL	Volume, mL	uCi
							lance	Тс	c-99 Mass Bala	ance
AN2-Tc-Regen-1	5.59E-07	76	<4.27E-05	< 0.059%		no data		4.68E-05	23.42	< 0.0011

indicates no information relevant to these cells

- indicates no data

Distribution

No. of Copies

OFFSITE

No. of Copies

ONSITE

5	Savannah River Technology Center	14 Battelle, Pacific Northwest Divisi	on
	Larry Hamm	S. T. Arm	P7-25
	PO Box 616, Road 1	I. E. Burgeson (3)	P7-25
	Building 773-42A	D.L. Blanchard, Jr.	P7-25
	Aiken, South Carolina 29808	J. R. Deschane	P7-25
		O. B. Egorov	P7-22
	Neguib Hassan	S. K. Fiskum	P7-25
	PO Box 616, Road 1	D.E. Kurath	P7-28
	Building 773-A	B. M. Rapko	P7-25
	Aiken, South Carolina 29808	Project Office (2)	P7-28
		Information Release (2)	K1-06
	Jim Marra		
	$\mathbf{P} \mathbf{O} \mathbf{D} = \mathbf{C} \mathbf{I} \mathbf{C} \mathbf{D} = \mathbf{I} \mathbf{I}$		

PO Box 616, Road 1 Building 773-43A Aiken, South Carolina 29808

Charles Nash PO Box 616, Road 1 Building 773-42A Aiken, South Carolina 29808

Harold Sturm PO Box 616, Road 1 Building 773-A Aiken, South Carolina 29808

2 <u>Bechtel National, Inc.</u> J. F. Doyle H4-02 R. A. Peterson H4-02