Organic Analysis of C-104 Tank Waste

J. C. Evans	G. M. Mong
J. A. Campbell	A. K. Sharma
F. V. Hoopes	M. J. Steele
E. W. Hoppe	R. T. Steele
G. S. Klinger	M. W. Urie

February 2001

Prepared for CH2M Hill Hanford Group, Inc. under Project Number 41503

Organic Analysis of C-104 Tank Waste

J. C. Evans	G. M. Mong
J. A. Campbell	A. K. Sharma
F. V. Hoopes	M. J. Steele
E. W. Hoppe	R. T. Steele
G. S. Klinger	M. W. Urie

February 2001

Prepared for CH2M Hill Hanford Group under Project Number 41503

Pacific Northwest National Laboratory Richland, Washington, 99352

Summary

Fourteen jars of waste material from Tank C-104 were received by PNNL. The contents of all jars were mixed to provide a single composite. Each composite was homogenized and representative sub-samples extracted for organic, radiochemical, and inorganic regulatory analyses.

The representative sub-samples were analyzed for inorganic, radiochemical, and organic analyses for analytes of interest as defined in Test Plan BNFL-29953-30, Rev. 1. This report presents the organic results. The inorganic and radiochemical results are reported in report WTP-RPT-007, PNNL-13364 (formerly BNFL-RPT-043).

The organic characterization of analyses of the as received material for C-104 includes the following:

- (1) Volatile Organic Analysis
- (2) Semi-volatile Organic Analysis
- (3) Polychlorinated biphenyls and pesticides
- (4) Polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans
- (5) Oxalate, formate, acetate, and acrylate by ion chromatography
- (6) Ethanol, methanol, 2-propanol, 1-propanol, n-butanol, triethylamine, 2-methyl-2-propanol, and 2-butanol by headspace analysis

Except for a very few cases, the characterization results met or exceeded the quality control requirements established by the governing quality assurance plan, and met or exceeded the minimum reportable quantity requirements specified by BNFL. Whenever possible the analyses were performed to SW-846 protocols so that the results can be used to support permit application, as well as provide feed envelope characterization data.

Table S.1 summarizes the results for target analytes, which produced quantifiable results. All other target analytes were either non-detects or below the quantitation limit. Numerous tentatively identified compounds with estimated quantities measured were also detected by the VOA and SVOA methods. Those data are reported in the respective sections for those two methods.

C-104 Supernatant C-104 Wet Centrifuged Solids						ed Solids	
	-	Blank Sample Duplicate		Blank Sample		Duplicate	
CAS #	Target Analyte	μg/L	μg/L	μg/L	µg/Kg	μg/Kg	μg/Kg
		10	10			10 0	
VOA Comp 106-35-4	3-Heptanone	U	74 J	U	U	420	800
106-97-8	Butane	U	U U	U	U	2,100	3,000
107-13-1	Acrylonitrile	U	U	U	U	2,100 U	990
107-13-1	Pentane	U	U	U	U	5,600	7,400
110-43-0	2-Heptanone	U	97 J	U	U U	400 J	810
110-54-3	Hexane	11	5,000	U	U U	7,000	9,200
111-65-9	Octane	U	3,800	U	U	3,400	4,600
111-84-2	Nonane	<u> </u>	6,200	U	U U	2,900	4,500
123-38-6	Propionaldehyde	<u> </u>	U	U	U U	880	1,100
142-82-5	Heptane	U U	1,900	U	U U	5,200	6,300
67-64-1	Acetone	1.8 J	1,000	U	5.5 J	190 JB	430 JB
75-09-2	Methylene Chloride	19	8,000	U	4.3 J	880	1,900
SVOA Com	pounds						
126-73-8	Tributyl phosphate	2,500	2,100 B	2,000 B	5,500	57,000 B	50,000 B
62-75-9	N-Nitrosodimethylamine	U	1,300	1,900	U	U	U
88-85-7	Dinoseb	250 J	2,200 B	2,500 B	6,500	6,400 B	3,400 B
92-52-4	Biphenyl	2,600	2,000 B	2,000 B	6,200	2,100 B	1,700 B
95-48-7	2-Methylphenol	1,700	U	U	3,100	U	U
98-86-2	Acetophenone	3,000	2,300 B	2,200 B	8,800	6,300 B	6,200 B
100-02-7	4-Nitrophenol	U 0,000	2,300 D 290 J	U	U 0,000	U	U
109-06-8	2-Methylpyridine	<u>U</u>	350 J	510 J	<u>U</u>	U	U
534-52-1	4,6-Dinitro-2-methylphenol	<u> </u>	140 J	U	U	U	U
Pesticides	i,o 2 maio 2 montification	C	1.00		C	C	C
319-84-6	Alpha-BHC	U	U	1.4	U	U	5.5
319-85-7	Beta-BHC	<u>U</u>	3.4	U	<u>U</u>	U	U
58-89-9	Gamma-BHC	U	U	U	<u>U</u>	8.2	17.6
1024-57-3	Heptachlor Epoxide	U U	U	1.6	<u>U</u>	2.7	U
319-86-8	delta-BHC	U	U	U	U	6.4	7.2
5103-71-9	alpha-Chlordane	U U	U	U	<u>U</u>	U	2.2
72-55-9	4,4'-DDE	U U	U	U	U	5.6	U
7421-93-4	Endrin Aldehyde	U	U	U	<u>U</u>	4.3	U
PCBs	Litarin Aldenyae	U	0	0	U	4.5	U
12674-11-2	Aroclor 1016/1242	U	3.8	4.9	U	121	154
53469-21-9		U	5.0	1.9	U	121	151
12672-29-6	Aroclor 1248	U	4.3	5.3	U	278	202
11097-69-1	Aroclor 1254	U	1.8	2.3	U	72.8	80.2
11096-82-5 37324-23-5	Aroclor 1260/1262	U	U	U	U	37.8	40.3
51524-25-3	Total PCB	U	17.9	20.6	U	522	488
Dioxins/Fur							
	None Detected						

Table S.1. C-104 Summary Results - Target Analytes Detected

		C-104 Supernatant			C-104 Wet Centrifuged Solids		
		Blank	Sample	Duplicate	Blank	Sample	Duplicate
CAS #	Target Analyte	μg/L	μg/L	μg/L	µg/Kg	µg/Kg	µg/Kg
Organic Anions							
144-62-7	Oxalate	U	1,090,000	980,000	U	1,230,000	3,300,000
64-18-6	Formate	U	2,670,000	2,120,000	U	750,000	2,200,000
Headspace Analysis							
67-56-1	Methanol	U	16,000	U			
64-17-5	Ethanol	2,200	8,000 B	2,900 B			
71-23-8	1-Propanol	U	2,700	U			
71-36-3	n-Butanol	U	28,000	U			
121-44-8	Triethylamine	U	15 J	U			

U flag = Compound not detected; Compound concentration less than the MDL J flag = Compound detected, but concentration is less than the MDL B flag = Compound was present in the method blank

Terms and Abbreviations

ASR	analytical service request
BNFL	BNFL, Inc; subsidiary of British Nuclear Fuels, Ltd.
CAS#	Chemical Abstracts Service Registry Number
CCC	Calibration check compound
CLP	Contract Laboratory Program
CoC	chain of custody
K-D	Kuderna-Danish
ECD	electron capture detector
GC/ECD	gas chromatography/electron capture detection
GC/MS	gas chromatography/mass spectrometry
HLRF	High Level Radiation Facility
IC	ion chromatography
LCS	Laboratory Control Standard
MDL	method detection limit
MRQ	minimum reportable quantity
MS	matrix spike
MSD	matrix spike duplicate
M&TE	measuring and test equipment
NPH	normal paraffin hydrocarbons
%D	percent difference
PCB	polychlorinated biphenyl
QC	quality control
RSD	relative standard deviation
SAL	Shielded Analytical Laboratory
SPCC	system performance check compound
SVOA	semi-volatile organic analysis
TCLP	Toxicity characteristic leaching procedure
TIC	tentatively identified compound
USEPA	United States Environmental Protection Agency
VOA	volatile organic analysis

Units

°C	degree Centigrade
°F	degree Fahrenheit
g	gram
Kg	kilogram
L	liter
μg	microgram
mL	milliliter
mM	millimolar
min	minute
ng	nanogram
Vol%	volume percent
Wt%	weight percent

Contents

1.0 INTRODUCTION	1.1
2.0 SAMPLE PROCESSING	
2.1 Total Dissolved Solids and Weight Percent Solids	2.1
2.2 Phase Separation	2.1
2.3 Supernatant Density Measurements	2.2
2.4 Organic Extractions and Sub-sampling	2.2
3.0 VOLATILE ORGANIC ANALYSIS (VOA)	
3.2 Sample Preparation	
3.3 Instrumentation	
3.4 Analysis Results	
3.4.1 Results for Calibrated/Regulatory Analytes of Interest	
3.4.2 QC Evaluation	3.10
4.0 SEMI-VOLATILE ORGANIC ANALYSIS (SVOA)	4.1
4.1 Semi-Volatile Organic Analysis (SVOA)	
4.1.1 Introduction	
4.1.2 Sample Preparation	
4.1.3 Supernatants	
4.1.4 Solids	
4.1.5 Extract Volume Reduction	
4.1.6 Instrumentation	
4.1.7 Analysis Results	
4.1.8 Results for Calibrated/Regulatory Analytes of Interest	
4.1.9 QC Evaluation	
4.1.10 Other Observations (or Deviations/Concerns/Issues)	
5.0 POLYCHLORINATED BIPHENYLS/PESTICIDES ANALYSIS	
5.1 Introduction	
5.2 Sample Preparation	
5.3 Instrumentation	
5.4 Analysis Results	
5.5 QC Evaluation	5.4
6.0 POLYCHLORINATED DIBENZO-P-DIOXINS AND DIBENZOFURANS ANALYSIS	61
6.1 Introduction	

6.2	Sample Preparation	6.2
	6.2.1 Supernatants and Solids	6.2
	6.2.2 Laboratory Control Standard, Glassware Blank, and Silica Gel Cleanup	6.2
	6.2.3 Instrumentation	6.2
6.2	Analysis Results	6.3
6.3	QC Evaluation	6.3
	6.3.1 Ion Abundance Ratios and Response Factors Standards	6.3
	6.3.2 Ion Abundance Ratios – Samples, Duplicates, and Matrix Spikes	6.4
	6.3.3 Dioxins and Furans Matrix Spike Recoveries	6.5
6.4	Other Observations (Deviations/Concerns/Issues)	6.6
	GANIC ANIONS ANALYSIS	
	Introduction	
7.2	Sample Preparation	7.1
7.3	Instrumentation	7.1
7.4	Analysis Result	7.2
7.5	QC Evaluation	7.3
7.6	Other Observations (or Deviations/Concerns/Issues)	7.3
	ADSPACE ANALYSIS	
	oduction	
	Sample Preparation	
	Instrumentation	
	Analysis Results	
8.5	QC Evaluation	8.3
9.0 RE	FERENCES	
	DIX A: PNNL TEST PLAN FOR C-104 SAMPLE COMPOSITING, BNFL- 953-31, REV. 0	A.1
RA	DIX B: PNNL TEST PLAN FOR INORGANIC, ORGANIC, AND DIOCHEMICAL CHARACTERIZATION OF C-104 HLW SAMPLE – BNFL- 953-30, REV. 1	B.1
SA	DIX C: PNNL TEST PLAN FOR ORGANIC EXTRACTION OF C-104 MPLES AND SUB-SAMPLING FOR VOA, HEADSPACE, AND ANIONS, IFL-29953-080, REV. NO. 1	C.1
APPEN	DIX D: VOLATILE ORGANIC ANALYSIS RESULT FORMS	D.1
APPEN	DIX E: SEMI-VOLATILE ORGANIC ANALYSIS RESULT FORMS	E.1
	DIX F: DIOXINS AND FURANS ION ABUNDANCE RATIOS AND SPONSE FACTORS	F.1

Figures

Figure 1.1. Flow Diagram for C-104 As Received Analytical Samples	1.3
Figure 7.1. IC Chromatogram of Standard Solution. Peak 2-acetate; 3-acrylate; 4-formate; 5-carbonate; 6-sulfate; 7-oxalate	7.5
Figure 7.2. IC Chromatogram of C-104 Solids MS Sample. Peak 2-possibly F; Peak 3-formate; 4-chloride; 5-nitrate; 6-unknown; 7-carbonate; 8-sulfate; 9-oxalate	7.5
Figure 7.3. IC Chromatogram of C-104 Supernatant MS Sample. Peak 3-possibly F; 4-formate; 5-chloride; 6-nitrate; 7-unknown; 9-carbonate; 10-sulfate; 11-oxalate	
Figure 7.4. IC Chromatogram of C-104 Supernatant MSD. Peak 2-possibly F ⁻ ; 3-formate; 4- chloride; 6-nitrate; 6-unknown; 7-unknown; 8-carbonate; 9-sulfate; and 10-oxalate	7.6
Figure B.1. Analytical Sub-Sampling Flowchart	B.5
Figure C.1. SVOA Extraction Process Diagram	C.16
Figure C.2. Pesticide/PCB Extraction Process Diagram	C.17
Figure C.3. Dioxin/Furan Extraction Process Diagram	C.18

Tables

Table S.1.	C-104 Summary Results - Target Analytes Detected	iv
Table 2.1.	Slurry Vol% and Wt% Solids, TDS, and Centrifuged Solids Wt% Solids	2.1
Table 2.2.	Density Results for C-104 Supernatant Composite	
Table 3.1.	VOA Instrumentation	
Table 3.2.	C-104 VOA Results - BNFL & SW846 8260B Target Analyte List	
Table 3.3.	C-104 VOA Tentatively Identified Compounds	3.7
Table 3.4.	Target VOA Minimum Reportable Quantities	
Table 4.1.	SVOA Instrumentation	4.2
Table 4.2.	C-104 SVOA Results - Project & SW846 8270C Target Analyte List	4.4
Table 4.3.	C-104 Supernatant SVOA Tentatively Identified Compounds	4.7
Table 4.4.	C-104 Wet Centrifuged Solids SVOA Tentatively Identified Compounds	
Table 4.5.	Target SVOA Minimum Reportable Quantities	
Table 5.1.	PCB/Pesticides Analysis Instrumentation	
Table 5.2.	PCB/Pesticides Results	5.3
Table 5.3.	Target PCB/Pesticides Minimum Reportable Quantities	5.4
Table 5.4.	C104 – Pesticide Spike Recoveries	5.5
Table 5.5.	C104 – PCB Spike Recoveries	5.5
Table 6.1.	Standard Compounds Measured Using HRGC/LRMS	6.1
Table 6.2.	Dioxins and Furans Analysis Instrumentation	6.3
Table 6.3.	C-104 Dioxins and Furans Results	6.3
Table 6.4.	Theoretical Ion Abundance Ratios and Control Limits	6.4
Table 6.5.	Acceptance Criteria Summary of Ion Abundance Ratios	6.5
Table 6.6.	C-104 – Dioxins and Furans Spike Recoveries	6.6
Table 7.1.	Ion Chromatography Instrumentation	7.2
Table 7.2.	IC Organic Anion Results	7.2
Table 7.3.	IC Organic Anions Matrix Spike Recoveries	7.3
Table 8.1.	Headspace Instrumentation	8.1
Table 8.2.	C-104 Results – Headspace Analysis	8.2
Table 8.3.	Target Headspace Minimum Reportable Quantities	
Table 8.4.	C-104 Headspace Matrix Spike Recoveries	8.3
Table B.1.	"As Received" Sub-Samples for Characterization	B.6
Table B.2.	Organic Analytical Sub-Sampling Quantities Required ⁽¹⁾	B.7
Table B.3.	Inorganic/Radiochemistry Analytical Sub-Sampling Quantities Required (1)	B.8
Table B.4.	Organic Analytes of Interest List and MRQs	B.9
Table B.5.	Inorganic and Radiochemistry Analytes of Interest List	B.11
	Liquid portion HLW organic analysis MDLs	
Table C.2.	Solid Portion HLW Organic Analysis MDLs	C.6
Table C.3.	Surrogate Spike Compounds and Levels Added to Samples	C.6
Table C.4.	Laboratory Control Sample Spiking Level	C.9

Table F.1. Ion	Abundance Ratios and Response Factors for Standards	F.2
Table F.2. Ion A	Abundance Ratios for Supernatant Matrix Spikes	F.5
Table F.3. Ion A	Abundance Ratios for Solids Matrix Spikes	F.5
Table F.4. Ion A	Abundance Ratios for Supernatant Samples, Duplicates, and Process Blanks	F.6
Table F.5. Ion A	Abundance Ratios for Solids Samples, Duplicates, and Process Blanks	F.6

1.0 Introduction

This report presents the organic analytical results for "as received" C-104 tank waste materials. The organic analyses were conducted in support of BNFL Proposal No. 29274/30406 Task 5.0. The organic analysis results obtained from the "as received" tank waste materials may be used to support permitting activities, as well as to provide limited characterization information for subsequent process testing (Tasks 2 through 4). Based on the sampling and storage history of the samples, preservation or refrigeration of the "as received" samples was not performed. Also, hold times specified by SW-846 protocols had expired prior to receiving the samples. The method detection limits (MDL) for the analytes of interest were significantly impacted by the limited quantity of sample available for analysis. However, wherever possible the analytical protocols followed SW-846 guidelines. The concentrations of spiking solutions and choice of extraction solvents were based on SW-846 methods. Because of the unusual and highly hazardous nature of these samples, no attempt was made to sample or store the materials in a headspace free manner prior to analysis. Substantial loss of volatiles was thus inevitable during the storage phase. Additional losses may also have occurred during field sampling, compositing, and subsampling prior to laboratory study. Chemical transformations, which can be induced by radiolytic processes during storage of highly radioactive materials, may also be responsible for in situ formation of volatile compounds.

The organic analytes of interest (target compounds) and recommended methods are defined in the BNFL Proposal No. 29274/30406 and Test Plan BNFL-29953-30 Revision 1. Except where noted in this report, all organic target compounds defined by these documents are reported, with estimated MDLs provided where target compounds were not detected. Where detected, non-target compounds are identified, reported and quantified to the extent possible.

The composite of the C-104 as received material was prepared per Test Plan BNFL-29953-31. Appendix A contains the full text of that Test Plan. The C-104 composite (from 14 shipping jars) was prepared in a three-liter stainless steel vessel with a bottom drain spigot. A bladed stainless steel impeller was used to homogenize the material. While the composite was being stirred, it was drained into three 125-mL glass jars to evaluate representative sub-sampling. These sub-samples were allowed to settle for a minimum of 16 hours. After this settling period, the volume percent of settled solids in each of the 125-mL glass jars were similar (i.e., 88.9% to 89.9% compared to the overall average of 87% found for all 14 jars), providing indication that the sub-samples are representative of the composite. Following confirmation of representative sub-sampling, three additional 500-mL glass bottles were used to sub-sample the remainder of the C-104 composite.

Figure 1.1 provides the sample flow diagram for the preparation of the C-104 as received analytical characterization sub-samples. Two containers of C-104 composite slurry (C-104 Comp A and C-104 Comp B) and one container of composite supernatant (C-104 SUP A) were allocated for organic, inorganic, and radiochemical characterization. The compositing and sub-sampling operations were conducted in the High Level Radiation Facility (HLRF). The sub-samples were transferred under chain-of-custody (CoC) to the Shielded Analytical Laboratory (SAL) for characterization analysis preparation and distribution.

The organic results for the analytes of interest for the C-104 as received materials are typically reported in " μ g/L supernatant" or " μ g/Kg centrifuged wet solids". However, in some cases where the analyte concentrations are high or the method sensitivity is low, the results are reported in μ g/mL or μ g/g. Although the supernatants were processed by weight, the density of the supernatants has been used to provide the results in μ g/L or μ g/mL, as appropriate.

To evaluate the concentration of analytes of interest in the as received slurry material, estimates of the slurry concentration have been calculated from the analyte concentrations measured in the supernatant and in the wet centrifuged solids. To provide a conservative total slurry concentration, the highest measured concentration from either the sample or the duplicate for each phase is used in the calculation. Where no analyte concentration is measured (i.e., results less than MDL), the lowest MDL is used in the calculation. The "maximum" slurry concentration is calculated by Equation (1):

$$C_{m} = ((C_{l} / D_{l}) * W_{l}) + (C_{s} * W_{s})$$
(1)

$$\begin{array}{ll} \mbox{Where:} & C_m = Maximum \mbox{ slurry concentration in } \mu g/Kg \\ C_l = Concentration \mbox{ of supernatant in } \mu g/L \\ D_l = Density \mbox{ of supernatant in } g/mL \mbox{ (i.e. } 1.161 \end{array}$$

 C_1 = Concentration of supernatant in $\mu g/L$ D_1 = Density of supernatant in g/mL (i.e. 1.161) W_1 = Weight fraction of supernatant (i.e., 0.18) $C_s = Concentration of solids in \mu g/Kg$ $W_s =$ Weight fraction of solids (i.e. 0.82)

Throughout this report the term method detection limit (MDL) is used. This 'estimated' MDL is the 'estimated' analytical instrument detection limit (IDL) times all processing factors, such as sample quantities used and dilutions resulting from digestion processing. For most of the methods the estimated IDLs are defined as the lowest calibration standard; however, in some cases the estimated IDL is defined as half to 2-times the lowest calibration standard. The MDLs stated in this report are nominal for each of the analysis methods and are not based on performance of the methods on LAW glass matrices. These MDLs are the best available estimate of the ability to detect and quantify the analytes of interest. No effort has been made to establish matrix-specific MDLs for any of the analyses.

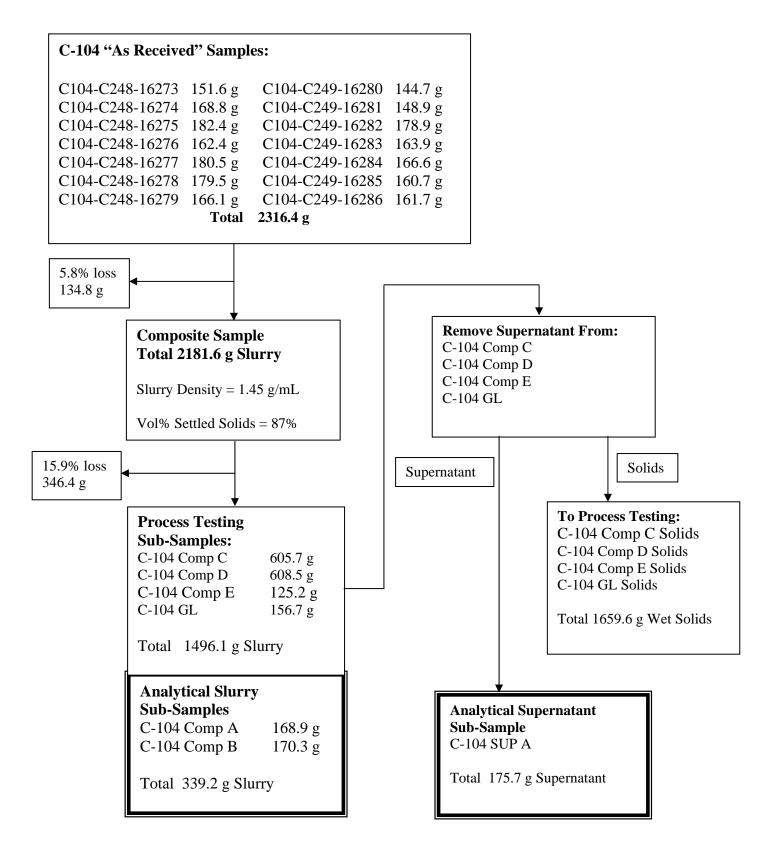


Figure 1.1. Flow Diagram for C-104 As Received Analytical Samples

2.0 Sample Processing

Sample processing instructions were provided to the SAL via special instructions included with Analytical Service Request (ASR) Number 5729 while the total dissolved solids (TDS), weight percent solids, and phase separation instructions were provided via Test Plan BNFL-TP-29953-080, Rev. 1 (Appendix B). For all organic analyses, the sample, sample duplicate, matrix spikes (MS), and matrix spike duplicates (MSD) for the supernatants and wet centrifuged solids sub-sampling was performed prior to inorganic and radiochemical sub-sampling as a precaution -to minimize loss of volatile organic compounds.

2.1 Total Dissolved Solids and Weight Percent Solids

Duplicate aliquots (approximately 3 g each) were withdrawn from C-104 Comp A for determination of centrifuged weight percent solids (wt% solids) of the composite slurry, TDS of the supernatant, and wt% solids (dry) of the centrifuged solids phase. The aliquots were withdrawn from the C-104 Comp A jar while the contents were mechanically stirred providing homogeneous sub-samples. The aliquots were placed in volume-graduated centrifuge tubes and centrifuged at 1100 rpm for about one hour. Following centrifuging, the volume percent solids and wt% solids (wet) were determined on the slurry. Following phase separation by decanting, the wt% solids (dry) of the centrifuged solids fraction and the TDS of the supernatant fraction were determined. Table 2.1 provides the results for the TDS and percent solids.

	Slurry		Supernatant	Centrifuged Solids
Sample ID	Volume % Centrifuged Solids (Wet)	Weight % Centrifuged Solids (Wet)	TDS (%)	Weight % Solids (Dry)
C-104 Comp A	63	81.0	16.7	58.8
C-104 Comp A Dup	60	83.0	16.8	59.4

Table 2.1. Slurry Vol% and Wt% Solids, TDS, and Centrifuged Solids Wt% Solids

Based on the Slurry wt% wet centrifuged solids and the Centrifuged Solids wt% dry solids, the Slurry wt% solids (dry) averages 51.5%.

2.2 Phase Separation

The contents of C-104 Comp A and C-104 Comp B were separated into solids and supernatant phases so that organic analyses could be performed on each phase (i.e., supernatant and wet solids). The phase separation was performed by centrifuging and decanting the supernatant. Each sample was centrifuged in its original jar at 1100 rpm for one hour, and the supernatant decanted and combined with C-104 SUP A. Following phase separation, the RPL Number 00-01360 was used to identify the supernatant sample and 00-01361 was used to identify the centrifuged solids sample.

2.3 Supernatant Density Measurements

Due to the viscous nature of the as received supernatant, most supernatant samples were processed by weight (i.e., most analytical sub-samples were aliquotted by weight instead of by volume). The density of the supernatant was determined by weighing 5-mL aliquots delivered from a calibrated 5-mL pipette. The delivery volume of the pipette was determined by five replicate measurement of water corrected for the SAL ambient temperature. The resulting average density was used to convert supernatant results from a per mass to a per volume basis, when necessary. Table 2.2 provides the density results obtained on the C-104 supernatant following phase separation.

RPL Number	Sample ID	Density (g/mL)	Average Density (g/mL)
00-01360	Supernatant	1.163	
	Supernatant Duplicate	1.160	1.161
	Supernatant Triplicate	1.160	

	Table 2.2.	Density Results for C-104 Supernatant Composite
--	------------	---

2.4 Organic Extractions and Sub-sampling

Complete details of organic extractions and sub-sampling for organic analysis may be found in Test Plan BNFL-29953-080, Rev. 1 (Appendix B).

3.0 Volatile Organic Analysis (VOA)

3.1 Introduction

Volatile organic analyses were performed on both the supernatant and wet centrifuged solids from samples of C-104 following phase separation. The VOA samples were aliquotted, prepared for analysis and removed from the SAL hot cells prior to introducing any organic solvents (e.g., methylene chloride) into the area.

The samples, both supernatants and wet centrifuged solids, were diluted with organic-free water to a final volume of approximately 5 mL in disposable dual septa-sealed purge vessels. The volatiles were purged from the samples with helium onto a multi-bed absorbent trap using a commercial purge and trap sample concentrator and auto-sampler. The trapped volatiles were then thermally desorbed onto a 75-meter by 0.45-millimeter DB-624 column (2.55-micron film) that was directly interfaced to the mass spectrometer. The samples were analyzed using VOA method PNL-ALO-335 (per SW-846 8260B protocols).

3.2 Sample Preparation

Supernatant and solids from C-104 were prepared in the SAL by accurately weighing an aliquot of sample into pre-cleaned, 40-mL purge vessels and adding sufficient blank water diluent to achieve a final volume of 5 mL. Sample, duplicate, MS, MSD, and blank samples were prepared in this manner in the SAL. Following transfer under CoC from the SAL to the analytical laboratories, all samples were refrigerated to ensure that sample integrity was maintained. Internal standards and surrogate compounds were added to each sample (including the MS and MSD) and target spike compounds are added to the MS and MSD. Once the spikes and standards were added, the samples were loaded into the VOA auto-sampler for purging.

3.3 Instrumentation

The analytical instrumentation used for VOA assays consisted of an auto-sampler, purge and trap system, and gas chromatograph mass spectrometer system. Detailed description of the VOA system is provided in Table 3.1.

System/Instrument	Manufacturer	Model Number	M&TE ⁽¹⁾ Number
Auto-sampler	Dynatech	PTA-30	WD25729
Purge & Trap	OI	4560	WD25728
GC/MS	Hewlett Packard	5890II/5989A	WC22547/WC28119

Table 3.1.	VOA	Instrumentation
------------	-----	-----------------

(1) Measuring and Test Equipment

3.4 Analysis Results

The VOA target (calibrated analytes) results for C-104 supernatant and solids phases are given in Table 3.2. Additionally, the results for any VOA tentatively identified compounds (TIC) that were detected for both supernatant and solids phases are given in Table 3.3. For both target compounds and TICs, the results are given in units of $\mu g/L$ for the supernatant and $\mu g/Kg$ for the wet solid phase.

The MDLs provided are based upon instrument detection limits and the weight or volume of the sample used for the analysis. The MDLs are nominal, and are not based upon performance of the method on these specific sample matrices. In nearly all cases the MDLs for the wet centrifuged solids and the supernatants (after adjusting for density) meet the BNFL VOA minimum reportable quantity (MRQ) requirements as detailed in Table 3.4.

3.4.1 Results for Calibrated/Regulatory Analytes of Interest

Supernatant:

As seen in Table 3.2, target compounds detected in the C-104 supernatant were primarily limited to alkanes ranging from hexane to nonane. In addition, butanone and the ketone counterparts to hexane and heptane were also detected but at levels below the quantitation limit. Acetone and methylene chloride were found above the quantitation limits. Hexane, acetone, and methylene chloride were detected in the hot cell storage blank, but at least two orders of magnitude lower than was found in the sample. A septa on the vial containing the duplicate supernatant sample was found to be leaking. The analytical results for the supernatant duplicate sample did not detect any analytes, an outcome reflecting the compromised sample containment. Comparison of the supernatant sample data and its duplicate is thus meaningless. An attempt to reanalyze new sample aliquots is discussed later in this section.

A number of tentatively identified compounds were also detected as seen in Table 3.3. These were the heavier alkanes through tridecane and the corresponding alkenes that were not target compounds. The primary components of normal paraffin hydrocarbons (NPH), undecane, dodecane, and tridecane, commonly used at the Hanford site, were the most abundant compounds. The quantity of NPH was greater in the supernatant sample than in the solids. This indicates that the slurry was saturated with these organics otherwise their solubilities would dictate their precipitation onto the surfaces of the solid phase. There may have been an undetected separable organic layer, or micelles containing these organics, which may explain the difference between the supernatant and solid results, however, if present, it was not visible during inspection of the sample in the hot cell.

Solids:

The C-104 solid samples contained a greater variety and generally larger amount of target analytes compared to the supernatant samples. A greater range of alkanes was also detected in the solids, ranging from butane through nonane. Since the samples were obtained and stored at ambient temperatures, the presence of butane in these samples indicated that volatile compounds were likely to have been continuously generated. Acrylonitrile, propionaldehyde, and methylene chloride were found above the quantitation limits. Acrylonitrile was found above the quantitation limit in the sample duplicate, but was not detected in the sample.

Like in the supernatant samples, ketone counterparts to each of the alkanes were detected, but were found at levels below the quantitation limits. Other compounds that were detected but that were below the quantitation limit include benzene and ethyl benzene, propyl nitrate, and acetone.

A greater variety of tentatively identified compounds were found in the solid samples than in the supernatant. This result further supports the premise that continuous generation of volatile constituents was occurring in the solid material. By virtue of partitioning, these constituents would

otherwise be located preferentially where the greater quantity of organic material was present, which was determined to be in the supernatant. That may also indicate that some of the volatile constituents had been lost from the supernatant material during handling, although the relatively low volatility of NPH should be expected to act as a chemical trap or "keeper solvent."

The absence or lower concentration level of the more volatile compounds in the supernatant could also be an artifact. This could occur because of the static nature of containment and continuous production of volatile constituents in the solid samples.

Sample aliquots were obtained one week later to provide sample duplicate and spike duplicate information lost in the first analysis set. When compared to the first data set, the results indicated that major losses of volatile constituents had occurred. Therefore, the second data set is not provided in this report. However, the dissimilarity in the results indicated that the majority of difference between the supernatant and solid phases is likely due to losses rather than artificial elevation.

	Tank Material	04 VOA Res C-10	04 Supernat		-	U	ifuged Solids		
	Sample ID	00-1360	00-1360	00-1360d	001361	00-1361	00-1361d	Max.	LCS
		HC Blank	Sample	Duplicate	HC	Sample	Duplicate	$\mu g/Kg^{(1)}$	Rec.
<i></i>	Units	µg/L	μg/L	µg/L	µg/Kg	µg/Kg	µg/Kg	of Slurry	
CAS #	MDL ⁽²⁾	10	1000	1000	50	400	750	36	
BNFI	L Target Analyte List								
100-41-4	Ethylbenzene	U	U	U	U	26 J	40 J	0.5	100%
100-42-5	Styrene	U	U	U	U	U	U	U	108%
10061-01-	cis-1,3-Dichloropropene	U	U	U	U	U	U	U	88%
10061-02-	trans-1,3-Dichloropropene	U	U	U	U	U	U	U	88%
106-35-4	3-Heptanone	U	74 J	U	U	420	800	10	112%
106-42-3	Xylene (m & p)	U	U	U	U	U	U	1	104%
106-46-7	1,4-Dichlorobenzene	U	U	U	U	U	U	U	96%
106-93-4	1,2-Dibromoethane	U	U	U	U	U	U	U	84%
106-97-8	Butane	U	U	U	U	2100	3000	149	80%
106-99-0	1,3-Butadiene	U	U	U	U	U	U	U	84%
107-02-8	Acrolein	U	U	U	U	U	U	U	88%
107-05-1	3-Chloropropene	U	U	U	U	U	U	U	96%
107-06-2	1,2-Dichloroethane	U	U	U	U	U	U	U	96%
107-13-1	Acrylonitrile	U	U	U	U	U	990	U	84%
107-87-9	2-Pentanone	U	U	U	U	40 J	99 J	U	88%
108-10-1	4-Methyl-2-pentanone	U	U	U	U	U	U	2	92%
108-87-2	Methylcyclohexane	U	U	U	U	U	U	2	92%
108-88-3	Toluene	U	U	U	U	U	U	U	92%
108-90-7	Chlorobenzene	U	U	U	U	U	U	U	88%
109-66-0	Pentane	U	U	U	U	5600	7400	24	80%
109-99-9	Tetrahydrofuran	U	U	U	U	U	U	108	84%
110-12-3	5-Methyl-2-hexanone	U	U	U	U	U	U	U	88%
110-43-0	2-Heptanone	U	97 J	U	U	400 J	810	10	96%
110-54-3	Hexane	11	5000 B	U	U	7000	9200	32	84%
110-82-7	Cyclohexane	U	<u>U</u>	U	U	U	U	U	104%
110-83-8	Cyclohexene	U	<u>U</u>	U	U	U	U	U	84%
111-65-9	Octane	U	3800	U	U	3400	4600	32	84%
111-84-2	Nonane	U U	6200 U	U U	U U	2900	4500	41	92%
123-19-3	4-Heptanone	U	U U	U	U	52 J 880	100 J 1100	1 U	96%
123-38-6	Propionaldehyde	U	U U	U	U	880 U		U U	72%
123-86-4 123-91-1	Butylacetate 1,4-Dioxane	U U	U U	U	U	U U	U U	117	100%
125-91-1 126-98-7	2-Methyl-2-propenenitrile	U	U	U	U	U U	U U	U U	100%
		U	U U	U	U	U U	U	U U	96%
127-18-4	Tetrachloroethene								88%
141-78-6	Ethyl acetate	U	U	U	U	U	U	U	88%
142-82-5	Heptane	U	1900	U	U	5200	6300	34	84%
287-92-3	Cyclopentane	U	U	U	U	U	U	U	88%
170-30-3	2-Butenal	U	U	U	U	U	U	2	100%
541-73-1	1,3-Dichlorobenzene	U	U	U	U	U	U	U	96%
56-23-5	Carbon Tetrachloride	U	U	U	U	U	U	U	84%
563-80-4	3-Methyl-2-butanone	U	U	U	U	U	U	6	80%

Table 3.2. C-104 VOA Results – BNFL & SW846 8260B Target Analyte List

	- Tank Material	C-1	04 Supernat	ant	C-104	Wet Centr	ifuged Solids		
	Sample ID	00-1360 HC Blank	00-1360 Sample	00-1360d Duplicate	001361 HC	00-1361 Sample	00-1361d Duplicate	Max. µg/Kg ⁽¹⁾	LCS Rec.
	Units	μg/L	μg/L	μg/L	µg/Kg	µg/Kg	µg/Kg	of Slurry	
CAS #	MDL ⁽²⁾	10	1000	1000	50	400	750	36	
591-78-6	2-Hexanone	U	24 J	U	U	130 J	270 J	6	92%
627-13-4	Propyl nitrate	U	U	U	U	30 J	40 J	U	96%
67-64-1	Acetone	1.8 J	1000 B	U	5.5 J	190 JB	430 JB	304	76%
67-66-3	Chloroform	U	U	U	U	U	U	U	88%
71-43-2	Benzene	U	U	U	U	25 J	60 J	2	88%
71-55-6	1,1,1-Trichloroethane	U	U	U	U	U	U	U	84%
74-83-9	Bromomethane	U	U	U	U	U	U	U	96%
74-87-3	Chloromethane	U	U	U	U	U	U	U	84%
75-00-3	Chloroethane	U	U	U	U	U	U	U	92%
75-01-4	Vinyl Chloride	U	U	U	U	U	U	U	80%
75-05-8	Acetonitrile	U	U	U	U	U	U	7	88%
75-09-2	Methylene Chloride	19	8000 B	U	4.3 J	880 B	1900 B	U	84%
75-15-0	Carbon Disulfide	U	U	U	U	U	U	U	84%
75-34-3	1,1-Dichloroethane	U	U	U	U	U	U	U	88%
75-35-4	1,1-Dichloroethene	U	U	U	U	U	U	U	88%
75-43-4	Dichlorofluoromethane	U	U	U	U	U	U	U	104%
75-45-6	Chlorodifluoromethane	U	U	U	U	U	U	4	76%
75-69-4	Trichlorofluoromethane	U	U	U	U	U	U	U	76%
75-71-8	Dichlorodifluoromethane	U	U	U	U	U	U	U	76%
76-13-1	1,2,2-Trichloro-1,1,2-	U	U	U	U	U	U	U	88%
76-14-2	1,2-Dichloro-1,1,2,2-	U	U	U	U	U	U	U	80%
78-87-5	1,2-Dichloropropane	U	U	U	U	U	U	U	100%
78-93-3	2-Butanone	U	290 J	U	U	52 J	320 J	57	
79-00-5	1,1,2-Trichloroethane	U	U	U	U	U	U	U	88%
79-00-5	Trichloroethene	U	U	U	U	U	U	U	88%
79-34-5	1,1,2,2-Tetrachloroethane	U U	U	U	U	U	U U	U	88%
95-47-6	Xylene (o)	U U	U	U	U	U	U U	0.3	92%
95-50-1	1,2-Dichlorobenzene	U	U U	U U	U	U	U U	0.5 U	104%
96-22-0	3-Pentanone	U U	U U	U U	U	U	U	U	92%
U	260B Target Analyte List	0	0	0	0	0	U	0	92%
103-65-1	Propylbenzene	U	U	U	U	U	U	U	96%
103-63-1	Butylbenzene	U U	U	U	U	U U	U U	U	<u>96%</u> 84%
104-31-0	4-Chlorotoluene	U	U	U	U	U	<u> </u>	U	108%
108-67-8	1,2,3-Trimethylbenzene	U	U	U	U	U	U	U	84%
108-86-1	Bromobenzene	U	U	U	U	U	U	U	92%
110-57-6	trans-1,4-Dichloro-2-	U	U	U	U	U	U	U	0.55
120,92,1	butene	TT	TT	TT	TT	TT	TT	TT	96%
120-82-1 124-48-1	1,2,4-Trichlorobenzene Dibromochloromethane	U U	U U	U U	U U	U U	<u> </u>	U U	92% 88%
124-48-1	sec-Butylbenzene	U	U	UU	U	U U	U U	U	<u>88%</u> 92%
142-28-9	1,3-Dichloropropane	U	U	U	U	U	<u> </u>	U	88%
156-59-2	cis-1,2-Dichloroethene	U	U	U	U	U	U	U	88%

	Tank Material	C-1	04 Supernat	ant	C-104	Wet Centr	ifuged Solids		
	Sample ID	00-1360 HC Blank	00-1360 Sample	00-1360d Duplicate	001361 HC	00-1361 Sample	00-1361d Duplicate	Max. µg/Kg ⁽¹⁾	LCS Rec.
	Units	μg/L	μg/L	µg/L	µg/Kg	µg/Kg	µg/Kg	of Slurry	
CAS #	MDL ⁽²⁾	10	1000	1000	50	400	750	36	
156-60-5	trans-1,2-Dichloroethene	U	U	U	U	U	U	U	88%
563-58-6	1,1-Dichloropropene	U	U	U	U	U	U	U	84%
594-20-7	2,2-Dichloropropane	U	U	U	U	U	U	U	88%
74-95-3	Dibromomethane	U	U	U	U	U	U	U	88%
74-97-5	Bromochloromethane	U	U	U	U	U	U	U	84%
75-25-2	Bromoform	U	U	U	U	U	U	U	88%
75-27-4	Bromodichloromethane	U	U	U	U	U	U	U	88%
87-61-6	1,2,3-Trichlorobenzene	U	U	U	U	U	U	U	96%
87-68-3	Hexachloro-1,3-butadiene	U	U	U	U	U	U	U	96%
91-20-3	Naphthalene	U	U	U	U	U	U	U	96%
95-49-8	2-Chlorotoluene	U	U	U	U	U	U	U	100%
95-63-6	1,2,4-Trimethylbenzene	U	U	U	U	U	U	U	88%
96-12-8	1,2-Dibromo-3-	U	U	U	U	U	U	U	
	chloropropane								84%
96-18-4	1,2,3-Trichloropropane	U	U	U	U	U	U	U	104%
98-06-6	tert-Butylbenzene	U	U	U	U	U	U	U	100%
98-82-8	Isopropylbenzene	U	U	U	U	U	U	U	92%
99-87-6	4-Isopropyltoluene	U	U	U	U	U	U	U	88%

⁽¹⁾ Maximum slurry μg/Kg calculated using results of Tables 2.1 (weight fractions) and 2.2 (supernatant density)—See Section 1.0

 $^{(2)}$ MDL = Method detection limit based on instrument detection limit and sample quantity

U flag = Compound not detected; Compound concentration less than the MDL

J flag = Compound detected, but concentration is less than the MDL

B flag = Compound was present in the method blank

C-104 Supernatant 00-1360			Sample	Duplicate	Blank
CAS #	TIC	Ret. Time (Min.)	μg/L	μg/L	μg/L
124-38-9	Carbon dioxide	3.08			78 J
19689-18-0	4-Decene	19.51	5300 J		
124-18-5	Decane	19.63	42000 J		
1120-21-4	Undecane	21.90	93000 J		
	Unknown Siloxane	22.58			23 J
7206-17-9	6-Dodecene, (E)-	23.75	8300 J		
112-40-3	Dodecane	23.88	49000 J		
820-29-1	5-Decanone	24.20	12000 J		
928-80-3	3-Decanone	24.50	4800 J		
693-54-9	2-Decanone	24.68	5100 J		
629-50-5	Tridecane	25.73	3800 J		
	Unknown Siloxane	25.96			3.1 J
50639-02-6	5-Undecanone, 2-methyl-	26.11	9200 J		
(C-104 Wet Centrifuged Solids	00-1361	Sample	Duplicate	Blank
CAS #	TIC	Ret. Time (Min.)	µg/Kg	µg/Kg	µg/Kg
592-76-7	1-Heptene	11.53	3200 J	5400 J	
111-66-0	1-Octene	14.50	3300 J	4600 J	
124-11-8	1-Nonene	17.17	2100 J	2900 J	
	Unknown Siloxane	19.16			61 J
19689-18-0	4-Decene	19.61	1800 J	3100 J	
124-18-5	Decane	19.71	13000 J	26000 J	
111-13-7	2-Octanone	20.54	1200 J		
764-96-5	5-Undecene, (Z)-	21.82	2800 J	6200 J	
1120-21-4	Undecane	21.97	24000 J	50000 J	
764-97-6	5-Undecene, (E)-	22.06	1600 J		
19549-83-8	3-Heptanone, 2,6-dimethyl-	22.27	1900 J		
	Unknown Siloxane	22.58		3000 J	34 J
821-55-6	2-Nonanone	22.75	2600 J	3800 J	
124-12-9	Octanenitrile	23.09	1500 J	2200 J	
2030-84-4	4-Dodecene	23.86	2900 J	6700 J	
112-40-3	Dodecane	24.00	21000 J	43000 J	
624-16-8	4-Decanone	24.31	6300 J	10000 J	
928-80-3	3-Decanone	24.61	2700 J	4400 J	
693-54-9	2-Decanone	24.79	3000 J	5000 J	
2243-27-8	Nonanenitrile	25.17	1400 J	2100 J	
629-50-5	Tridecane	25.86	1900 J	4500 J	
33083-83-9	5-Undecanone	26.24	4400 J	9300 J	

Table 3.3. C-104 VOA Tentatively Identified Compounds

"-----" = Compound not detected J Flag = Estimated quantity. TIC compounds estimated using the response factor from the closest eluting internal standard.

CAS #	VOA Compounds	Solids Target MRQ ⁽¹⁾	Supernatant Target MRQ (Density = 1.161)
		μg/Kg	μg/L
141-78-6	Acetic acid ethyl ester	11000	12800
75-05-8	Acetonitrile	12700	14700
107-02-8	Acrolein		
107-13-1	Acrylonitrile	28000	32500
3825-26-1	Ammonium perfluorooctanoate		
71-43-2	Benzene	3300	3800
74-83-9	Bromomethane	5000	5800
106-99-0	1,3-Butadiene		
106-97-8	Butane		
78-93-3	2-Butanone	12000	13900
4170-30-3	2-Butenaldehyde (2-Butenal)		
71-36-3	n-Butyl alcohol	900	1050
123-86-4	Acetic acid n-butyl ester		
75-15-0	Carbon disulfide		
56-23-5	Carbon tetrachloride	2000	2320
108-90-7	Chlorobenzene	2000	2320
75-45-6	Chlorodifluoromethane		
75-00-3	Chloroethane		
75-01-4	1-Chloroethene	2000	2320
67-66-3	Chloroform	2000	2320
74-87-3	Chloromethane	10000	11600
107-05-1	3-Chloropropene	10000	11600
110-82-7	Cyclohexane		
108-94-1	Cyclohexanone		
110-83-8	Cyclohexene		
287-92-3	Cyclopentane		
76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane		
75-71-8	Dichlorodifluoromethane	2400	2790
75-34-3	1,1-Dichloroethane	2000	2320
107-06-2	1,2-Dichloroethane	2000	2320
75-35-4	1,1-Dichloroethene	2000	2320
75-43-4	Dichlorofluoromethane		
75-09-2	Dichloromethane (methylene chloride)	10000	11600
78-87-5	1,2-Dichloropropane		
10061-01-5	Cis-1,3-Dichloropropene	6000	6970
10061-02-6	trans-1,3-Dichloropropene	6000	6970
57-14-7	1,1-Dimethylhydrazine		
123-91-1	1,4-Dioxane		
64-17-5	Ethyl alcohol		
100-41-4	Ethyl benzene	3300	3830
106-93-4	Ethylene dibromide	5000	5810
142-82-5	n-Heptane		
110-43-0	2-Heptanone		

Table 3.4. Target VOA Minimum Reportable Quantities

CAS #	VOA Compounds	Solids Target MRQ ⁽¹⁾ µg/Kg	Supernatant Target MRQ (Density = 1.161) µg/L
106-35-4	3-Heptanone		
123-19-3	4-Heptanone		
684-16-2	Hexafluoroacetone		
110-54-3	n-Hexane		
591-78-6	2-Hexanone		
67-56-1	Methyl alcohol (Methanol)		
624-83-9	Methyl isocyanate		
563-80-4	3-Methyl-2-butanone		
110-12-3	5-Methyl-2-hexanone		
108-10-1	4-Methyl-2-pentanone	11000	12800
75-65-0	2-Methyl-2-propanol		
126-98-7	2-Methyl-2-propenenitrile	28000	32500
108-87-2	Methylcyclohexane		
60-34-4	Methylhydrazine		
78-92-2	1-Methylpropyl alcohol(2-butanol)		
627-13-4	Nitric acid, propyl ester		
111-84-2	n-Nonane		
111-65-9	n-Octane		
75-21-8	Oxirane		
109-66-0	n-Pentane		
107-87-9	2-Pentanone		
96-22-0	3-Pentanone		
67-64-1	2-Propanone (Acetone)	53300	61900
123-38-6	n-Propionaldehyde		
107-12-0	Propionitrile	120000	139300
71-23-8	n-Propyl alcohol (1-propanol)		
67-63-0	2-Propyl alcohol (Isopropanol; Propan-2-ol)		
100-42-5	Styrene		
79-34-5	1,1,2,2-Tetrachloroethane	2000	2320
127-18-4	1,1,2,2-Tetrachloroethene	2000	2320
109-99-9	Tetrahydrofuran		
108-88-3	Toluene	3300	3830
76-13-1	1,2,2-Trichloro-1,1,2-trifluoroethane	10000	11600
71-55-6	1,1,1-Trichloroethane	2000	2900
79-00-5	1,1,2-Trichloroethane	2000	2320
79-01-6	1,1,2-Trichloroethylene	2000	2320
75-69-4	Trichlorofluoromethane	10000	11600
108-38-3	m-Xylene	3300	3830
95-47-6	o-Xylene	3300	3830
106-42-3	p-Xylene	3300	3830

⁽¹⁾ MRQ = Minimum Reportable Quantity. Values provided by BNFL. "-----" = No MRQ target provided.

3.4.2 QC Evaluation

Instrument tuning check criteria and 12-hour calibration clock window criteria were met for all initial calibration and sample analysis sequences as seen in the "5A" Forms in the Appendix C. The initial calibration met the criteria of USEPA SW-846 method 8260B, as seen in the "6A" Form in the Appendix C. All five-system performance check compounds (SPCC) met the criteria for minimum response factor, and all six calibration check compounds (CCC) met the maximum relative standard deviation (RSD) criteria.

The continuing calibration check standard met the criteria of USEPA SW-846 method 8260B, as seen in the "7A" Forms in the Appendix C. All calibration check standards met the SPCC and CCC criteria. Only Acrolein at 16.7% exceeded the recommended percent difference (%D) of 15%.

The internal standards used in this study were 1,4-difluorobenzene, pentafluorbenzene, chorobenzene- d_5 , and 1,4-dichorobenzene- d_4 . The surrogate compounds used were toluene- d_8 , bromofluorobenzene, dibromofluoromethane, and 1,2-dichloroethane- d_4 . These eight compounds were added to each sample, duplicate, MS, MSD, and blank sample analyzed.

To evaluate surrogate recoveries, Contract Laboratory Program (CLP) limits for low-level soil samples were used only as a guide and are included on the "2A & 2B" Forms in Appendix C. Only the supernatant duplicate sample failed to meet the limits due to a leaking vial. Attempts to reanalyze sample aliquots obtained one week later found noticeably lower concentrations of most analytes. Therefore, reanalysis data is not presented.

The CLP criterion for internal standard response was used ($\pm 50\%$ of the calibration check standard response). Internal standard response met the criteria for all but two of the samples, which was due to leaking vials. Both the supernatant duplicate and the supernatant matrix spike duplicate failed. The internal standard data are summarized on the each of the CLP-type "8A" Forms in the Appendix C.

Matrix spiking was performed by adding the methanolic calibration solution to the samples at a level of 250 ng per compound. As described previously, no spike duplicate data is available for the supernatant due to a leaking sample container. In general, when compounds were found in the unspiked supernatant or solid, their recoveries in the spiked samples were erratic. This is likely caused by the small sample size used which was ~0.055-0.139 grams. The small sample sizes were necessary because of the relatively high levels of NPH present. Sample aliquots of one gram or less often exhibit poor reproducibility.

Ethyl acetate and butyl acetate appear to be reacting with both matrices types. Except for the solid duplicate, 2-butenal exhibited no recovery also. The difference in recovery between the solid sample and its duplicate for 2-butenal is not understood.

Propionitrile coeluted with Cyclohexene on the DB-624 column used for this analysis and was not calibrated because the only abundant mass, m/z = 54) was common to Cyclohexene. Likewise, Cyclohexanone coeluted with methylcyclohexane and no abundant and unique masses permitted calibration of Cyclohexane using the DB-624 column.

4.0 Semi-Volatile Organic Analysis (SVOA)

4.1 Semi-Volatile Organic Analysis (SVOA)

4.1.1 Introduction

Semi-volatile organic analyses were performed on both the supernatant and wet centrifuged solids from tank C-104 samples following phase separation. Supernatants and wet centrifuged solids were extracted with methylene chloride as per Test Plan BNFL-29953-80, Revision 1. The extracted samples were reduced in volume using a Kuderna-Danish concentrator. Following volume reduction, an aliquot was prepared and analyzed for semi-volatiles by method PNL-ALO-345.

The SVOA samples were extracted at the initial starting pH of the samples and then adjusted and reextracted for those compounds (e.g. phenols) that are not extracted at high pH. This extraction approach is fully detailed in TP BNFL-29953-80 Revision 1. The approach calls for dissolving the solids, if possible, and extracting the solution by the conventional liquid-liquid extraction procedure. However, during processing of the solids phases it was determined that a high fraction of the solids were insoluble following dilution with 0.01 N NaOH solution. Therefore, the aqueous dissolution step detailed in the Test Plan was eliminated and the solids were subjected directly to an ultrasonication extraction using a methylene chloride combined with a desiccant.

4.1.2 Sample Preparation

Prior to performing the extraction process for the SVOA, the aliquots of the supernatants and the wet centrifuged solids (mixed with deionized water) were titrated with phosphoric acid. The resulting titration curves were used to establish the quantity of phosphoric acid required to adjust the extracting pH to level defined by the procedure (approximately 6.5).

4.1.3 Supernatants

For each supernatant sample of C-104 extracted, a known quantity (10 to 20 g) of sample was transferred into a Teflon separatory funnel. Appropriate spikes, internal standards, and surrogates were added to the samples prior to subjecting the samples to the extraction process. Each supernatant sample was extracted with three 25-mL portions of methylene chloride by subjecting the separatory funnel to mechanical shaking. Following this initial extraction, the supernatant was chilled in ice and stirred while the pH was adjusted with a predetermined quantity of phosphoric acid. Samples of C-104 formed significant precipitates that were separated from the supernatant by centrifuging and decanting. The extraction process was repeated on the pH-adjusted supernatant. The precipitates formed following acid addition were extracted (by ultrasonication) using three 25-mL portions of methylene chloride. All extracts from the supernatant sample were combined and passed through a column containing an anhydrous sodium sulfate desiccant to complete the supernatant extraction process.

4.1.4 Solids

For each of the wet centrifuged solids samples extracted, a known quantity (2.5 to 5 g) of sample was transferred to a small Teflon bottle and anhydrous sodium sulfate (pre-dried in a muffle furnace) desiccant was added. Appropriate spikes, internal standards, and surrogates were added to the samples prior to subjecting the samples to the ultra-sonication extraction process. Each sample was

ultra-sonicated with three 25-mL portions of methylene chloride. Following this initial extraction, the pH of the solids was adjusted with a predetermined quantity of phosphoric acid and the ultrasonication extraction process repeated. All extracts from the solids sample were combined and passed through a column containing an anhydrous sodium sulfate desiccant to complete the solids extraction process.

4.1.5 Extract Volume Reduction

Once the extraction processes were completed in the SAL, the supernatant extracts and the wet centrifuged solids extracts were transferred under CoC from the SAL to the analytical laboratories and refrigerated prior to subsequent volume reduction processing. During the volume reduction processing, each extract was reduced in volume to 1 mL for each of the supernatant samples and 10 mLs for each of the solids. The solid extracts had exhibited foaming during the concentration step and were not concentrated further for that reason. The SVOA concentrated extracts were refrigerated until analysis was performed.

4.1.6 Instrumentation

The analytical instrumentation used for SVOA consists of an autosampler-injector and gas chromatograph mass spectrometer system. Detailed description of the SVOA system is provided in Table 4.1.

Table 4.1.	SVOA Instrumentat	ion
------------	-------------------	-----

System/Instrument	Manufacturer	Model Number	M&TE ⁽¹⁾ Number
Autosampler	Hewlett Packard	7673A	N/A
GC/MS	Hewlett Packard	5890II/5972	WB47238/WD25623

⁽¹⁾ Measuring and Test Equipment

4.1.7 Analysis Results

The SVOA target (calibrated analytes) results for C-104 supernatant and solids phases are given in Table 4.2. Additionally, the results for any SVOA TICs that were detected for both C-104 supernatant and solids phases are given in Tables 4.3 and 4.4. For both target compounds and TICs, the results are given in units of μ g/L for the supernatant and μ g/Kg for the wet solid phase.

The MDLs provided are based upon instrument detection limits that are achievable in reagent water and the weight or volume of the sample used for the analysis. The MDLs are nominal, and are not based upon performance of the method on these specific sample matrices. Minimum reported quantities specified by BNFL for a limited number of SVOA compounds are listed in Table 4.5.

4.1.8 Results for Calibrated/Regulatory Analytes of Interest

C-104 Supernatant Results

As detailed in the QC section, relatively few unspiked target compounds were detected in the C-104 supernatant. Only N-nitrosodimethylamine was found at levels greater than the MDL. Bis(2-ethylhexyl)phthalate, 2-methylpyridine, 4-nitrophenol and 4,6-dinitrophenol were detected at levels below the quantitation limit.

The TIC results contained two siloxane compounds, hexamethyl-cyclotetrasiloxane and decamethyl-cyclotetrasiloxane were found in the samples and blank, and were likely leached from the Teflonlined, silcone rubber septum used in the I-Chem bottles that held the sample extracts prior to removal from the SAL.

Several straight chain alkanes were detected that include decane, undecane, dodecane, tridecane, tetradecane and pentadecane (components of NPH, a diluent used in the PUREX and B-Plant solvent extraction processes). A number of organic acids such as pentanoic acid, hexanoic acid, heptanoic acid, 2-ethyl hexanoic acid, octanoic acid, valproic acid, nonanoic acid, decanoic acid, undecanoic acid and dodecanoic acid were found in the C-104 supernatant. These organic acids are likely oxidation products of the alkanes in the tank waste and were generally found in higher concentrations than the alkanes in the supernatant, likely due to their greater solubility. Hexanenitrile and methylene propanedinitrile were detected. The compound 2-methoxy-2methyl butane was found in the blank and samples at similar levels. It is possible that it is an oxidation product of a free-radical scavenger, amylene, used in the residue-analysis grade methylene chloride or a reaction product of the acetone used in the spiking solution. Several alcohols, ketones, and esters such as 2,2-dimethyl-3-pentanone, 2-decanone and butyl nonanoate were identified in the samples. These compounds are likely oxidation products of the alkanes in the tank waste.

Nitric acid, propyl ester was identified in supernatant, and is likely to be the result of a reaction of the nitrous acid formed from the nitrite in the tank waste after the pH adjustment. Several nitrated phenolic compounds such as 2-fluoro-6-nitrophenol, 4-methyl-2-nitrophenol, 3-fluoro-4-nitrophenol, 3-methyl-4-nitrophenol, and 2-methyl-3,5-dinitrophenol were detected in the supernatant. These compounds are likely reaction products of the spiked phenolic compounds.

C-104 Solids Results

As detailed in the QC section, only one unspiked target compound was detected in the C-104 wet centrifuged solids, bis(2-ethylhexyl)phthalate, a common plasticizer, was detected at levels below the method quantitation limit. Tributyl phosphate was detected in the C-104 solids at levels well above the quantitation limit.

The compound 1,1,2-trichloroethane is reported in the TIC results for the blank, and is likely to be a reaction product or trace contaminant of the methylene chloride extraction solvent. The TIC results contained two siloxane compounds, octamethyl-cyclotetrasiloxane (samples) and decamethyl-cyclotetrasiloxane (blank), and were likely leached from the Teflon lined, silcone rubber septum used in the I-Chem bottles that held the sample extracts prior to removal from the SAL.

Several straight chain alkanes were detected that included decane, undecane, dodecane, tridecane, and tetradecane (components of NPH, a diluent used in the PUREX and B-Plant solvent extraction processes). These alkanes were detected in the C-104 solids at concentrations several hundred times higher than those found in the C-104 supernatant samples. A series of ketone compounds such as various undecanone, dodecanone and tridecanone compounds were detected in the C-104 solid samples. These compounds are presumed to be oxidation products of the straight chain alkanes.

A number of potentially artifact compounds such as alcohols, enols and aldol condensation products were reported in the data for the blank; these are likely to be aldol condensation products of the acetone used in the spiking solutions.

	Tank ID:	C-104 Supernatant			C-104 Wet Centrifuged Solids			LCS	Max
	RPL ID:	00-1360bl 00-1360 99-1360d		00-1361bl 00-1361 00-1361d			Slurry		
		Proc Blk	Sample	Duplicate	Proc Blk	Sample	Duplicate	Rec.	Conc. ⁽¹⁾
		μg/L	μg/L	μg/L	μg/Kg	μg/Kg	μg/Kg		μg/Kg
	MDL: ⁽²⁾	560	560	560	2000	19000	20000		15700
Project Ter	get Analyte List	500	500	500	2000	17000	20000		15700
100-00-5	1-Chloro-4-nitrobenzene ⁽³⁾	2600	2100 B	1900 B	6300	2800 BJ	2900 BJ	130%	15700
100-00-3	1.4-Dinitrobenzene ⁽³⁾	1600	1500 B	1500 B	4400	2300 BJ	1500 BJ	130%	15700
	/						1300 BJ		
100-51-6	Benzyl alcohol 4-Methylphenol ⁽³⁾	U 2900	U U	U U	U 6800	U U	6100 BJ	 85%	15700
106-44-5			U	U		U			15700
106-46-7	1,4-Dichlorobenzene	U			U		U	61%	15700
108-95-2	Phenol	U	U	U	U	U	U	25%	15700
110-86-1	Pyridine ⁽³⁾	2400	2300 B	3100 B	8200	6500 BJ	U	110%	15700
117-81-7	Bis(2-Ethylhexyl)phthalate	U	480 J	96 J	U	5900 J	U		15700
117-84-0	Di-n-octylphthalate	U	U	U	U	U	U		15700
118-74-1	Hexachlorobenzene	U	U	U	U	U	U		15700
120-82-1	1,2,4-Trichlorobenzene	U	U	U	U	U	U	66%	15700
122-39-4	N,N-Diphenylamine	U	U	U	U	U	U	0%	15700
126-73-8	Tributyl phosphate ⁽³⁾	2500	2100 B	2000 B	5500	57000 B	50000 B	110%	15700
128-37-0	Butylated Hydroxytoluene ⁽³⁾	1500	130 BJ	92 BJ	170 J	670 BJ	790 BJ	-	15700
2234-13-1	Octachloronaphthalene ^(3,4)	45000	38000 B	36000 B	250000	65000 B	51000 B	5500%	15700
309-00-2	Aldrin	U	U	U	U	U	U		15700
319-84-6	alpha-BHC	U	U	U	U	U	U		15700
319-85-7	beta-BHC	U	U	U	U	U	U		15700
465-73-6	Isodrin	U	U	U	U	U	U		15700
50-29-3	4,4'-DDT	U	U	U	U	U	U		15700
50-32-8	Benzo(a)pyrene	U	U	U	U	U	U		15700
53-70-3	Dibenz(a,h)anthracene	U	U	U	U	U	U		15700
541-73-1	1,3-Dichlorobenzene	U	U	U	U	U	U		15700
58-89-9	gamma-BHC (Lindane)	U	U	U	U	U	U		15700
60-57-1	Dieldrin	U	U	U	U	U	U		15700
62-75-9	N-Nitrosodimethylamine	U	1300	1900	U	U	U		15700
67-72-1	Hexachloroethane	U	1300 U	1900 U	U	U	U		
72-20-8		U	U	U	U	U	U		15700
	Endrin	U	U		U U	U	U		15700
72-54-8	4,4'-DDD			U	-				15700
76-44-8	Heptachlor	U	U	U	U	U	U		15700
82-68-8	Pentachloronitrobenzene	U	U	U	U	U	U	0%	15700
87-68-3	Hexachlorobutadiene	U	U	U	U	U	U		15700
87-86-5	Pentachlorophenol	U	U	U	U	U	U	0%	15700
88-85-7	Dinoseb ⁽⁴⁾	250 J	2200 B	2500 B	6500	6400 BJ	3400 BJ	160%	15900
91-20-3	Naphthalene	U	U	U	U	U	U		15700
92-52-4	Biphenyl ⁽³⁾	2600	2000 B	2000 B	6200	2100 BJ	1700 BJ	100%	15700
95-48-7	2-Methylphenol ⁽³⁾	1700	U	U	3100	U	U	76%	15700
95-50-1	1,2-Dichlorobenzene	U	U	U	U	U	U		15700
98-86-2	Acetophenone ⁽³⁾	3000	2300 B	2200 B	8800	6300 BJ	6200 BJ	190%	15700
98-95-3	Nitrobenzene	U	U	U	U	U	U		15700
	70C Target Analyte List								
100-01-6	4-Nitroaniline	U	U	U	U	U	U		15700
100-02-7	4-Nitrophenol	U	290 J	U	U	U	U	14%	15700
100-75-4	N-Nitrosopiperidine	U	U	U	U	U	U		15700
101-55-3	4-Bromophenyl-phenylether	U	U	U	U	U	U		15700
101-55-5	Heptachlor Epoxide	U	U	U	U	U	U		15700
1024-37-3	Endosulfan Sulfate	U	U	U	U	U	U		15700
1031-07-8	Azeobenzene	U	U	U	U	U	U		15700
103-33-3	2,4-Dimethylphenol	U	U	U	U U	U	U		15700
105-07-9	2,4-Dimensiphenoi	U	U	U	U	U	U		13700

Table 4.2. C-104 SVOA Results - Project & SW846 8270C Target Analyte List

	Tank ID:	C-10	4 Superna	tant	C-104 Wet	Centrifug	ed Solids	-	Max
	RPL ID:	00-1360bl	00-1360	99-1360d	00-1361bl	00-1361	00-1361d	LCS	Slurry
		Proc Blk	Sample	Duplicate	Proc Blk	Sample	Duplicate	Rec.	Conc. ⁽¹⁾
		μg/L	μg/L	μg/L	µg/Kg	µg/Kg	µg/Kg		µg/Kg
	MDL: ⁽²⁾	560	560	560	2000	19000	20000		15700
10595-95-6	N-Nitrosomethylethylamine	U	U	U	U	U	U		15700
106-47-8	4-Chloroaniline	U	U	U	U	U	U		15700
108-60-1	2,2'-oxybis(1-Chloropropane)	U	U	U	U	U	U		15700
109-06-8	2-Methylpyridine	U	350 J	510 J	U	U	U		15700
111-44-4	bis(2-Chloroethyl)ether	U	U	U	U	U	U		15700
111-91-1	bis(2-Chloroethoxy)methane	U	U	U	U	U	U		15700
119-93-7	3,3'-Dimethylbenzidine	U	U	U	U	U	U		15700
120-12-7	Anthracene	U	U	U	U	U	U		15700
120-58-1	Isosafrole	U	U	U	U	U	U		15700
120-83-2	2,4-Dichlorophenol	U	U	U	U	U	U		15700
121-14-2	2,4-Dinitrotoluene	U	U	U	U	U	U	77%	15700
129-00-0	Pyrene	U	U	U	U	U	U	89%	15700
130-15-4	1,4-Naphthoquinone	U	U	U	U	U	U		15700
131-11-3	Dimethylphthalate	U	U	U	U	U	U		15700
132-64-9	Dibenzofuran	U	U	U	U	U	U		15700
134-32-7	1-Naphthylamine	U	U	U	U	U	U		15700
143-50-0	Kepone	U	U	U	U	U	U		15700
1888-71-7	Hexachloropropene	U	U	U	U	U	U		15700
191-24-2	Benzo(g,h,i)perylene	U	U	U	U	U	U		15700
193-39-5	Indeno(1,2,3-cd)pyrene	U	U	U	U	U	U		15700
205-99-2	Benzo(b)fluoranthene	U	U	U	U	U	U		15700
206-44-0	Fluoranthene	U	U	U	U	U	U		15700
207-08-9	Benzo(k)fluoranthene	U	U	U	U	U	U		15700
207-06-9	Acenaphthylene	U	U	U	U U	U	U		15700
218-01-9	Chrysene	U	U	U	U U	U	U		15700
2303-16-4	Diallate (cis)	U	U	U	U U	U	U		15700
2303-16-4	Diallate (trans)	U	U	U	<u> </u>	U	U		15700
23950-58-5		U	U	U	U U	U	U		15700
23950-58-5 319-86-8	delta-BHC	U	U	U	U U	U	U		15700
	Endosulfan II	U	U	U	U	U	U		15700
510-15-6	Chlorobenzilate	U	U	U	U	U	U		15700
51-28-5	2,4-Dinitrophenol	U	U	U	U U	U	U		15700
534-52-1	4,6-Dinitro-2-methylphenol	U	140 J	U	U U	U	U		15700
	Endrin Ketone	U	140 J U	U	U	U	U		15700
53-96-3	2-Acetylaminofluorene	U	U	U	U U	U	U		15700
	N-Nitrosodiethylamine			U					
55-18-5 56-49-5	3-Methylcholanthrene	U U	U U	U	U U	U U	U U		15700 15700
		U			U U				
56-55-3 57-74-9	Benzo(a)anthracene	U	U U	U	U U	U	U		15700
	Chlordane (alpha)	U	-	U	U U	U U	U U		15700
57-74-9	Chlordane (gamma)		U	U	U U				15700
58-90-2	2,3,4,6-Tetrachlorophenol	U	U	U		U	U		15700
59-50-7	4-Chloro-3-methylphenol	U	U	U	U	U	U	44%	15700
60-11-7	p-Dimethylaminoazobenzene	U	U	U	U	U	U		15700
606-20-2	2,6-Dinitrotoluene	U	U	U	U	U	U		15700
608-93-5	Pentachlorobenzene	U	U	U	U	U	U		15700
621-64-7	N-Nitroso-di-n-propylamine	U	U	U	U	U	U	79%	15700
62-44-2	Phenacetin	U	U	U	U	U	U		15700
62-50-0	Ethyl methane sulfonate	U	U	U	U	U	U		15700
62-53-3	Analine	U	U	U	U	U	U		15700
66-27-3	Methyl methane sulfonate	U	U	U	U	U	U		15700
7005-72-3	4-Chlorophenyl-phenylether	U	U	U	U	U	U		15700
70-30-4	Hexachlorophene	U	U	U	U	U	U		15700
72-43-5	Methoxychlor	U	U	U	U	U	U		15700

	Tank ID:	C-104 Supernatant		C-104 Wet Centrifuged Solids				Max	
RPL ID:		00-1360bl	00-1360	99-1360d	00-1361bl	00-1361	00-1361d	LCS	Slurry
		Proc Blk	Sample	Duplicate	Proc Blk	Sample	Duplicate	Rec.	Conc. ⁽¹⁾
		μg/L	μg/L	μg/L	µg/Kg	µg/Kg	µg/Kg		µg/Kg
	MDL: ⁽²⁾	560	560	560	2000	19000	20000		15700
72-55-9	4,4'-DDE	U	U	U	U	U	U		15700
76-01-7	Pentachloroethane	U	U	U	U	U	U		15700
77-47-4	Hexachlorocyclopentadiene	U	U	U	U	U	U		15700
78-59-1	Isophorone	U	U	U	U	U	U		15700
83-32-9	Acenaphthene	U	U	U	U	U	U	74%	15700
84-66-2	Diethylphthalate	U	U	U	U	U	U		15700
84-74-2	Di-n-butylphthalate	U	U	U	U	U	U		15700
85-01-8	Phenanthrene	U	U	U	U	U	U		15700
85-68-7	Butylbenzylphthalate	U	U	U	U	U	U		15700
86-73-7	Fluorene	U	U	U	U	U	U		15700
86-74-8	Carbazole	U	U	U	U	U	U		15700
87-65-0	2,6-Dichlorophenol	U	U	U	U	U	U		15700
88-06-2	2,4,6-Trichlorophenol	U	U	U	U	U	U		15700
88-74-4	2-Nitroaniline	U	U	U	U	U	U		15700
88-75-5	2-Nitrophenol	U	U	U	U	U	U		15700
91-57-6	2-Methylnaphthalene	U	U	U	U	U	U		15700
91-58-7	2-Chloronaphthalene	U	U	U	U	U	U		15700
91-59-8	2-Naphthylamine	U	U	U	U	U	U		15700
91-94-1	3,3'-Dichlorobenzidine	U	U	U	U	U	U		15700
924-16-3	N-Nitrosodi-n-butylamine	U	U	U	U	U	U		15700
92-67-1	4-Aminobiphenyl	U	U	U	U	U	U		15700
92-87-5	Benzidine	U	U	U	U	U	U		15700
930-55-2	N-Nitrosopyrolidine	U	U	U	U	U	U		15700
94-59-7	Safrole	U	U	U	U	U	U		15700
95-57-8	2-Chlorophenol	U	U	U	U	U	U	42%	15700
95-94-3	1,2,4,5-Tetrachlorobenzene	U	U	U	U	U	U		15700
95-95-4	2,4,5-Trichlorophenol	U	U	U	U	U	U		15700
959-98-8	Endosulfan I	U	U	U	U	U	U		15700
99-09-2	3-Nitroaniline	U	U	U	U	U	U		15700
99-35-4	1,3,5-Trinitrobenzene	U	U	U	U	U	U		15700
99-55-8	5-Nitro-o-toluidine	U	U	U	U	U	U		15700
99-65-0	1,3-Dinitrobenzene	U	U	U	U	U	U		15700

Footnotes:

 Maximum slurry µg/Kg calculated using results of Tables 2.1 (weight fractions) and 2.2 (supernatant density)— See Section 1.0

(2) MDL = Method detection limit based on instrument detection limit and sample quantity

(3) Compound added to surrogate spiking mixture (see QC Evaluation section).

(4) Response in calibration standard low due to suspected crystallization from solution, quantitation value should be regarded as erroneously high

U flag = Compound not detected; Compound concentration less than the MDL

J flag = Compound detected, but concentration is less than the MDL

B flag = Compound was present in the method blank

			C-104 Supernatant 00-1360			
			Sample	Duplicate	Blank	
CAS #	TIC	Ret. Time (Min.)	μg/L	μg/L	μg/L	
627-13-4	Nitric acid, propyl ester	3.74-3.75	230 J	370 J		
2110-78-3	Methyl 2-hydroxy-2-isobutyrate	4.06			200 NJ	
541-05-9	Cyclotrisiloxane, hexamethyl-	6.43-6.44	8200 J	9000 J		
994-05-8	Butane, 2-methoxy-2-methyl-	7.12-7.16	3800 J	5700 J	6200 NJ	
1120-64-5	Oxazole, 4,5-dihydro-2-methyl-	7.52-7.53	7000 J	8800 J		
628-73-9	Hexanenitrile	8.29	140 J			
109-52-4	Pentanoic acid	9.50	680 J			
3970-62-5	3-Pentanol, 2,2-dimethyl-	9.73	510 J			
556-67-2	Cyclotetrasiloxane, octamethyl-	10.85	3900 J			
124-18-5	Decane	11.31-11.32	230 J	400 J		
553-97-9	p-Benzoquinone, 2-methyl-	11.75	400 J			
142-62-1	Hexanoic acid	11.91-12.11	2200 J	6300 J		
1120-21-4	Undecane	13.52-13.54	920 J	1700 J		
541-02-6	Cyclopentasiloxane, decamethyl-	14.13			300 J	
111-14-8	Heptanoic acid	14.07-14.22	7000 J	2700 J		
	Unknown	14.20	500 J			
922-64-5	Propanedinitrile, methylene-	14.22		12000 J		
149-57-5	Hexanoic acid, 2-ethyl-	14.43	160 J			
1526-17-6	2-Fluoro-6-nitrophenol	14.58-14.60	380 J	750 J		
695-06-7	2(3H)-Furanone, 5-ethyldihydro-	15.15	170 J			
616-45-5	2-Pyrrolidinone	15.17		160 J		
112-40-3	Dodecane	15.50-15.52	2000 J	3300 J		
124-07-2	Octanoic Acid	15.92-16.04	9900 J	14000 J		
99-66-1	Valproic Acid	16.19		170 J		
119-33-5	Phenol, 4-methyl-2-nitro-	16.22-16.24	380 J	410 J		
700-38-9	5-Methyl-2-nitrophenol	16.71-16.73	170 J	180 J		
112-05-0	Nonanoic acid	17.25-17.52	3600 J	5900 J		
629-50-5	Tridecane	17.34-17.35	2900 J	3600 J		
101-83-7	Cyclohexanamine, N-cyclohexyl-	17.58		95 J		
394-41-2	Phenol, 3-fluoro-4-nitro-	18.29-18.30	300 J	250 J		
334-48-5	Decanoic acid	18.74-18.81	3100 J	1000 J		
6175-49-1	2-Dodecanone	18.96		250 J		
629-59-4	Tetradecane	19.01-19.03	820 J	1200 J		
79-77-6	4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- 3- Buten-2-one	20.12	270 J			
112-37-8	Undecanoic acid	20.17-20.20	920 J	1100 J		
0-00-0	Butyl nonanoate	20.41		130 J		
593-08-8	2-Tridecanone	20.57		120 J		
629-62-9	Pentadecane	20.61		120 J		
143-07-7	Dodecanoic acid	21.60	100 J			
2581-34-2	Phenol, 3-methyl-4-nitro-	22.17	89 J			
497-56-3	Phenol, 2-methyl-3,5-dinitro-	22.39		230 J		

Table 4.3. C-104 Supernatant SVOA Tentatively Identified Compounds

Footnotes:

J flag = Estimated quantity. TIC compounds estimated using the response factor from the closest eluting internal standard.

N flag = Indicates presumptive evidence of compound based on mass spectral library search. B flag = Compound was present in the method blank "-----" = Compound not detected

			C-104 Wet Centrifuged Solids 00-1361			
			Sample	Duplicate	Blank	
CAS #	тіс	Ret. Time (Min.)	µg/Kg	µg/Kg	µg/Kg	
79-00-5	Ethane, 1,1,2-trichloro-	5.33			5100 J	
2110-78-3	Methyl 2-hydroxy-2-isobutyrate -	6.201	38000 J			
75-65-0	2-Propanol, 2-methyl-	6.23			10000 J	
625-31-0	4-Penten-2-ol	6.29-6.33	58000 J		18000 J	
507-45-9	Butane, 2,3-dichloro-2-methyl-	6.674			2100 J	
77-74-7	3-Pentanol, 3-methyl-	7.095			7900 J	
556-67-2	Cyclotetrasiloxane, octamethyl-	10.855			18000 J	
124-18-5	Decane	11.32-11.34	170000 J	150000 J		
1120-21-4	Undecane	13.58-13.62	580000 J	480000 J		
541-02-6	Cyclopentasiloxane, decamethyl-	14.113			1400 J	
112-40-3	Dodecane	15.59-15.62	820000 J	690000 J		
33083-83-9	5-Undecanone	16.82-16.84	52000 J	44000 J		
2216-87-7	3-Undecanone	17.10-17.13	34000 J	25000 J		
112-12-9	2-Undecanone	17.19-17.22	37000 J	28000 J		
629-50-5	Tridecane	17.42-17.46	980000 J	830000 J		
19780-10-0	5-Dodecanone	18.58-18.60	67000 J	64000 J		
1534-27-6	3-Dodecanone	18.83-18.85	23000 J	22000 J		
6175-49-1	2-Dodecanone	18.93-18.94	14000 J	10000 J		
629-59-4	Tetradecane	19.05-19.07	200000 J	190000 J		
26215-90-7	4-Tridecanone	20.22-20.24	47000 J	41000 J		
593-08-8	2-Tridecanone	20.54-20.56	18000 J	16000 J		
26496-20-8	4-Tetradecanone	21.75-21.76	10000 J	9500 J		
sta	timated quantity. TIC compounds estim ndard				ng interna	

Table 4.4. C-104 Wet Centrifuged Solids SVOA Tentatively Identified Compounds

N flag = Indicates presumptive evidence of compound based on mass spectral library search.

"-----" = Compound not detected

4.1.9 QC Evaluation

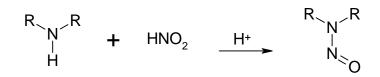
Instrument tuning check criteria and 12-hour calibration clock window criteria were met (USEPA CLP 3/90 SOW) for all initial calibration and sample analysis sequences as seen in the "5B" Forms in Appendix D. The initial calibration met the criteria of USEPA SW-846 method 8270C, as seen in the "6B & 6C" Form in the Appendix D. All four system performance compounds (SPCC) met the criteria for minimum response factor, and all 13 calibration check compounds (CCC) met the maximum relative standard deviation (RSD) criteria. Hexachlorophene had a very low response and was not used in the calibration mixture. Octachloronaphthalene was only detected in the lowest concentration standard, and had a very low response. Octachloronaphthalene is nearly insoluble in methylene chloride and requires addition of other solvents to maintain solubility. It is presumed that it precipitated out of the multi-component solution.

The continuing calibration check standard met the criteria of USEPA SW-846 method 8270C, as seen in the "7A & 7B" Forms in the Appendix D. All calibration check standards met the SPCC and CCC criteria. However, in comparison of the results for the continuing calibration standards to the initial calibration all compounds but with the exception of hexachlorophene, 1,3,5-nitrobenzene and octachloronaphthalene had relative percent differences below 30%.

The internal standards used in this study were 1,4-dichorobenzene- d_4 , naphthalene- d_8 , acenaphthene- d_{10} phenanthrene- d_{10} chrysene- d_{12} , and perylene- d_{12} . Each target compound was quantified using the relative response calculated from the most closely eluting internal standard. Acetophenone, nitrobenzene and nitrobenzene- d_5 where quantified using the first internal standard. An additional internal standard, pyridine- d_5 , added to each sample, spike, blank and calibration standard to quantify the earliest eluting peaks. The internal standard area criteria of -50% and +100% were met for all C-104 supernatant samples, matrix spikes, and process blanks. The C-104 solids samples, matrix spike, process blank and LCS met the internal standard area criteria. Internal standard area data are found on the "8B & 8C" Forms in Appendix D.

The surrogate compounds used were 2-fluorophenol, phenol- d_5 , nitrobenzene- d_5 , 2-fluorobiphenyl, 2,4,6-tribromophenol, and terphenyl- d_{14} . A mixture of project specific analytes containing 2-methyl phenol, 3-methyl phenol (co-elutes with 4-methyl phenol and is reported as 4-methyl phenol in summary tables and forms), acetophenone, tributyl phosphate, pyridine, 1,1'-biphenyl, 1,4-dinitrobenzene, 2,6-bis(tert-butyl)-4-metyl phenol (butylated hydroxytoluene or BHT), octachloronaphthalene, pentachloronitrobenzene, 2-sec-butyl-4,6-dinitrotoluene (Dinoseb), 1-chloro-4-nitrobenzene, and N,N-diphenylamine was inadvertently added to the surrogate spiking solution. Since there was insufficient C-104 material available in the laboratory to perform another extraction, the decision was made to report the data set.

Evaluation of surrogate recoveries are somewhat difficult in that performance based recovery limits have not been established for this type of sample matrix. Contract Laboratory Program (CLP) limits for low-level soil samples were used as a guide and are included on the "2C & 2D" Forms in Appendix D.


All phenolic surrogates were poorly recovered from all of the C-104 supernatant samples. It is believed this is due to the reaction of these compounds with the sample matrix. One possible reaction of these compounds is the reaction nitrous acid to form nitration products. Nitrous acid is a relatively weak acid, and some was likely formed when the pH of the samples was adjusted to 6.4 with the addition of phosphoric acid. Nitration products of 2-fluorophenol and 2-chlorophenol-d₄ were identified in the C-104 supernatant samples TIC data (Table 4.4). The base neutral surrogate compounds all have acceptable recoveries. The C-104 solids samples were not concentrated to a final volume of 1 mL due to foaming problems with the extract during the concentration step. The extracts were concentrated to 10 mL, making measurement of the surrogates difficult. However, the recoveries of the phenolic surrogates from the C-104 solids were much greater than for the supernatant. The tribromophenol recoveries were consistently low for the samples and matrix spikes. It is believed this is due to the presence of nitrite in the solids. The surrogate which were outside the QC limits are flagged with the "D" flag (for dilution) and not counted in the "total out" column in the "2C & 2D" Forms in Appendix D.

Matrix spike recovery data are found on a summary page in Appendix D. The CLP "3C & 3D" Forms could not successfully be produced using the Thru-Put system software. Each attempt resulted in program termination with an "Illegal Operation" error. In lieu of the CLP "3C & 3D" Forms, the individual matrix recovery sheets for the MS and MSD are included in Appendix D. The sheets show

the total amount of spike compounds added to the matrix spike and duplicate and include the contribution from those compounds added to the surrogate spiking solution.

The phenolic matrix spike compounds exhibited low, but acceptable, recovery in both the C-104 supernatant matrix spikes samples. In order to conserve sample and provide the lowest possible detection limit in the sample results, the matrix spike sample used approximately half the quantity of C-104 tank material as was used for the sample and sample duplicate. N,N-diphenylamine and pentachlorobenzene were not recovered in either the matrix spike or matrix spike duplicate. Octachloronathlene values are measured very high relative to the calibration standard where most of it had precipitated from solution. Its actual response was low when compared with the total peak size for the other spike compounds. The C-104 solids matrix spike data exhibit a greater number of spike failures, but since these sample are ten-fold more dilute with respect to their associated process blank, this is not unexpected. However, performance based recovery limits for these spike compounds need to be established to access these spike recoveries.

N-nitrosodimethylamine is reported in the C-104 supernatant data. The C-104 supernatant and solids samples contain large quantities of nitrite, ~3% and ~1%, respectively. Adjustment of the sample pH to 6.4 with phosphoric acid in the second part of the extraction procedure was performed in order to protonate phenolic compounds so they were extractable in the solvent. As discussed above, this pH adjustment can produce some nitrous acid. Secondary amines, both aliphatic and aromatic, react with nitrous acid to produce N-nitrosoamines:

Primary amines react with HNO_2 to form diazonium salts, however these tend to be unstable and produce alkenes, alcohols and nitrogen gas. It is not entirely clear as how to interpret the presence of N-nitroso- compounds in the samples; it is conceivable they could be present in the native tank material. Further investigation into N-nitroso- compounds in tank samples that have lesser quantities of solubilized aluminum may be useful to answer the question of artifact formation.

There is evidence that nitrosation reactions can occur in slightly alkaline buffered systems (Challis, 1994). Alkaline N_2O_4 can also nitrosate secondary amines (Camaioni, 1997), and in situations where the formed nitrosoamines can be protected by partitioning into an organic solvent phase, it is conceivable that nitrosoamines can be formed and stabilized.

4.1.10 Other Observations (or Deviations/Concerns/Issues)

Test Plan BNFL-TP-29953-80 specified a 32-component SVOA matrix spike. Several of these compounds were not included in the matrix spiking solution for various reasons. A commercial source of the various isomers of pentachloronaphthalene, hexachloronaphthalene, and heptachloronaphthalene could not be found, however octachloronaphthalene was included in the spiking solution. Equal amounts of 2-, 3-, and 4-methylphenol were used to represent cresol [CAS 1319-77-3]. Some difficulties were encountered in preparing the multi-component spiking solution. The solvent initially used to prepare the spiking solution was methanol, which is completely miscible with the aqueous sample matrix. Unfortunately, several of the spike compounds have limited solubility or are insoluble in methanol. Other solvents were added, and solvent "cocktail" consisting of methanol, methylene chloride, diethyl ether, and acetone was used to dissolve the various

compounds. After the addition of octachloronaphthalene, pentachloronitrobenzene and dinoseb, crystallization occurred. The relative amounts of the various solvents used were adjusted in order to get the crystals back into solution. It appears that the calibration solution had very low or no response for these compounds due to precipitation or recrystallization from the solution. A decision was made to limit the number of components in this spiking solution in order to avoid further problems with recrystallization from the solution. The samples were spiked with 16 of the analytes specified in the test plan, plus an additional seven that were part of the commercially available acid and base/neutral matrix spiking solutions.

Due to the inadvertent addition of one of the calibration mixtures to the surrogate spiking solution, the sample results for compounds 2-methyl phenol, 3-methyl phenol (co-elutes with 4-methyl phenol and is reported as 4-methyl phenol in summary tables and forms), acetophenone, tributyl phosphate, pyridine, 1,1'-biphenyl, 1,4-dinitrobenzene, 2,6-bis(tert-butyl)-4-metyl phenol (butylated hydroxytoluene or BHT), octachloronaphthalene, pentachloronitrobenzene, 2-sec-butyl-4,6-dinitrotoluene (Dinoseb), 1-chloro-4-nitrobenzene, and N,N-diphenylamine should be treated as having a higher quantitation limit, equal to the spiking amount.

SVOA results for tributyl phosphate in the C-104 solids were not corrected for the small relative quantity of tributyl phosphate added to the surrogate spiking solution. The C-104 solids sample extracts were ten-fold more dilute than the associated processing blank, resulting in a final spike added concentration below the minimum quantitation limit.

CAS #	SVOA Compounds	Solids Target MRQ ⁽¹⁾ µg/Kg	Supernatant Target MRQ (Density = 1.161 g/mL) µg/L
100-25-4	1,4-Dinitrobenzene	800	930
108-95-2	Phenol	2100	2440
110-86-1	Pyridine	5300	6150
118-74-1	Hexachlorobenzene	3300	3830
122-39-4	N,N-Diphenylamine	4300	4990
50-32-8	Benzo(a)pyrene	1100	1280
53-70-3	Dibenz[a,h]anthracene	2700	3130
62-75-9	N-nitrosodimethylamine	800	930
82-68-8	Pentachloronitrobenzene (PCNB)	1600	1860
87-68-3	Hexachlorobutadiene	1900	2210
95-50-1	1,2-Dichlorobenzene	2000	2320
98-86-2	Acetophenone	3200	3720
98-95-3	Nitrobenzene	4700	5460

Table 4.5. Target SVOA Minimum Reportable Quantities

⁽¹⁾ MRQ = Minimum Reportable Quantity. Values provided through BNFL private communication from L. Bostic (BNFL) to G. Klinger (Battelle). No MRQ target provided in communication for other target compounds.

5.0 Polychlorinated Biphenyls/Pesticides Analysis

5.1 Introduction

For the PCB and pesticide analysis, the supernatants and solids samples were prepared and extracted in the SAL by the procedure outlined in Test Plan BNFL-29953-080, Rev. 1: Organic Extraction of C-104 Samples and Sub-sampling for VOA, Headspace, and Anions (see Appendix B). Following extraction, the resulting methylene chloride or methylene chloride/acetone residues were transferred from the SAL under CoC to the 329 laboratory. The residues were then exchanged into hexane and concentrated to 2 mL. Following residue cleanup, analysis was performed for the PCB/pesticides by gas chromatography/electron capture detection (GC/ECD). Mass spectrometry was used for confirmation of PCBs.

5.2 Sample Preparation

Cleanup of the 2-mL extract residue was performed prior to GC/ECD analysis. For the pesticide analysis, additional cleanup was performed using cartridge columns. These were typically columns employing silica gel, alumina, or Florisil. In this case, Florisil (SW-846 Method 3620) cleanups were used.

Florisil cleanup was selected because of the ease of use and removal of potential interferences. Batch to batch variation in the composition of the Florisil or overloading the column may cause a change in the distribution patterns of the organochlorine pesticides. The lot number of cartridges used for this cleanup was evaluated for recovery of pesticides and PCBs and removal of unwanted polar materials before processing samples. The resulting Florisil cleaned residues were again concentrated to 2 mL using a micro-Snyder, Kuderna-Danish (K-D) apparatus.

After analysis for pesticides, the remaining residues were treated with concentrated sulfuric acid in an effort to improve the detection of PCBs by removing additional interfering contaminants. The remaining hexane residues were once again analyzed, however, only for PCBs.

Laboratory Control Samples (LCS) were prepared in a manner identical to the samples. They were prepared in fume hoods rather than the hot cells. Both solid and liquid LCS samples were essentially blank spikes. The solid matrix consisted of granular sodium sulfate, which was used as a drying agent in the sample preparation. The liquid matrix was blank water.

5.3 Instrumentation

The instrumentation used for the analysis of pesticides and PCBs consisted of a gas chromatograph equipped with two electron capture detectors (ECD). The analytical instrumentation is identified in Table 5.1. Both of the detectors were operated at 320° C. Injections were made on-column onto a 10-m fused silica retention gap, which was split between two analytical columns: a) 0.32 mm x 30 m CLP I (0.50 µm phase, Restek Corp.) and b) 0.32 mm x 30 m CLP II (0.25 µm film thickness, Restek Corp.).

Table 5.1.	PCB/Pesticides	Analysis	Instrumentation
------------	----------------	----------	-----------------

System/Instrument	Manufacturer	Model Number	M&TE ⁽¹⁾ Number	
Gas Chromatograph	Hewlett-Packard	5890	WD 11127	

(1) Measuring and Test Equipment

The instrumentation used for confirmation was the same gas chromatograph/high-resolution mass spectrometer (GC/HRMS) used for the dioxins analysis (see Section 6). The mass spectrometer data was obtained at a resolution of 1000.

5.4 Analysis Results

Pesticide and PCB results are presented in Table 5.2. GC/ECD analysis of the residue from the solid samples resulted in quite complex chromatograms. Although the presence of Aroclors was evident, substantial degradation of the expected response pattern was observed. The presence and approximate quantity of PCBs in the solid sample was confirmed using mass spectrometry. The concentration of PCB in the supernatant was not adequate for confirmation by mass spectrometry.

The GC/ECD chromatograms exhibited elution of compounds beyond the retention time of DCB in a pattern, which suggests the presence of polychlorinated terphenyls.

	Tank Material		C104 S	upernatant		C1	04 Wet Cer	ntrifuged S	olids
	Sample ID		00-1360	00-1360	00-1360		00-1361	00-1361	00-1361
		MDL	Proc. Blk	Sample	Duplicate	MDL	Proc. Blk	Sample	Duplicate
CAS #	Units	µg/L	μg/L	μg/L	μg/L	µg/Kg	µg/Kg	µg/Kg	µg/Kg
BNFL Pestic	cide Analyte List			I	I		I	I	<u> </u>
309-00-2	Aldrin	1.0	U	U	U	2.0	U	U	U
319-84-6	Alpha-BHC	1.0	U	U	1.4	2.0	U	U	5.5
319-85-7	Beta-BHC	1.0	U	3.4	U	2.0	U	U	U
465-73-6	Isodrin	2.0	U	U	U	4.0	U	U	U
50-29-3	4,4'-DDT	2.0	U	U	U	4.0	U	U	U
58-89-9	Gamma-BHC	1.0	U	U	U	2.0	U	8.2	17.6
60-57-1	Dieldrin	2.0	U	U	U	4.0	U	U	U
72-20-8	Endrin	2.0	U	U	U	4.0	U	U	U
72-54-8	4,4'-DDD	2.0	U	U	U	4.0	U	U	U
76-44-8	Heptachlor	1.0	U	U	U	2.0	U	U	U
8001-35-2	Toxaphene	10	U	U	U	20	U	U	U
SW-846 808	1A Pesticide Analyte	e List							
1024-57-3	Heptachlor Epoxide	1.0	U	U	1.6	2.0	U	2.7	U
1031-07-8	Endosulfan Sulfate	2.0	U	U	U	4.0	U	U	U
319-86-8	delta-BHC	1.0	U	U	U	2.0	U	6.4	7.2
33213-65-9	Endosulfan II	2.0	U	U	U	4.0	U	U	U
5103-74-2	gamma-Chlordane	1.0	U	U	U	2.0	U	U	U
5103-71-9	alpha-Chlordane	1.0	U	U	U	2.0	U	U	2.2
53494-70-5	Endrin Ketone	2.0	U	U	U	4.0	U	U	U
72-43-5	Methoxychlor	10	U	U	U	20	U	U	U
72-55-9	4,4'-DDE	2.0	U	U	U	4.0	U	5.6	U
7421-93-4	Endrin Aldehyde	2.0	U	U	U	4.0	U	4.3	U
959-98-8	Endosulfan I	1.0	U	U	U	2.0	U	U	U
BNFL Polyc	hlorinated Biphenyl	Analy	te List						
12674-11-2 53469-21-9	Aroclor 1016/1242	2.0	U	3.8	4.9	4.0	U	121	154
11104-28-2	Aroclor 1221	2.0	U	U	U	4.0	U	U	U
11141-16-5	Aroclor 1232	2.0	U	U	U	4.0	U	U	U
12672-29-6	Aroclor 1248	2.0	U	4.3	5.3	4.0	U	278	202
11097-69-1	Aroclor 1254	2.0	U	1.8	2.3	4.0	U	72.8	80.2
11096-82-5 37324-23-5	Aroclor 1260/1262	2.0	U	U	U	4.0	U	37.8	40.3
11100-14-4	Aroclor 1268	2.0	U	U	U	4.0	U	U	U
	Total PCB	14	U	17.9	20.6	24	U	522*	488*
			% Recov.	% Recov.	% Recov.	-	% Recov.	% Recov.	% Recov.
	TCX (surrogate)		34.3	74.8	78.5		5.3	32.7	41.1
	DCB (surrogate)		74.4	71.9	72.7		57.3	50.8	63.8

Table 5.2.	PCB/Pesticides Results
------------	------------------------

U = Not detected; results less than MDL * confirmed by mass spectrometry

The pesticide results were obtained from residues that had undergone only the Florisil cleanup. The PCB results were obtained after an additional cleanup was performed using concentrated sulfuric acid.

As seen in Table 5.3, the BNFL target MRQs were met for both the wet centrifuged solids and supernatant (after adjusting for density).

CAS #	Compound	Solids Target MRQ ⁽¹⁾	Supernatant Target MRQ ⁽²⁾
		µg/Kg	μg/L
All	Polychlorinated	3300	3830
	Biphenyls		
309-00-2	Aldrin	22	26
319-84-6	Alpha-BHC	22	26
319-85-7	Beta-BHC	22	26
465-73-6	Isodrin	22	26
50-29-3	4,4'-DDT		
58-89-9	Gamma-BHC		
60-57-1	Dieldrin	43	50
72-20-8	Endrin	43	50
72-54-8	4,4'-DDD		
76-44-8	Heptachlor	22	26
8001-35-2	Toxaphene	900	1050

Table 5.3. Target PCB/Pesticides Minimum Reportable Quantities

⁽¹⁾ MRQ = Minimum Reportable Quantity as provided by BNFL

"-----" = No MRQ target provided.

⁽²⁾ Density = 1.161 g/mL

5.5 QC Evaluation

Surrogate Recoveries:

The surrogate results for the pesticide spike samples were obtained from residues that had undergone only the Florisil cleanup. The sample surrogate results were obtained after an additional cleanup was performed using concentrated sulfuric acid. Therefore, the surrogate recoveries presented in Table 5.2 are from the PCB analysis. These are more conservative surrogate results since they were obtained from residues, which have undergone the additional handling of both cleanup procedures. Specifically, the sample residues had been concentrated twice followed by an acid cleanup. Note that the pesticide spike samples which have been concentrated only once have better surrogate recoveries. The notably low TCX surrogate recovery for the solids blank is likely due to over heating during one or both of the concentration steps. The volatility of TCX, particularly in blank samples, make it susceptible to loss during concentration.

Spike Recoveries:

Duplicate samples of both the supernatant and solids were spiked separately for each of the pesticides (Table 5.4) and for PCBs (Table 5.5). Because limited sample was available, the quantity of sample spiked was approximately half of that used for unspiked sample analysis. Laboratory control samples (LCS) consisted of PCB spiked blank water or drying agent (granulated sodium sulfate) for the solids extractions. The LCS results are presented in Table 5.5.

An unexpectedly high level of Aroclor 1254 was found in the supernatant pesticide spike sample. Correspondingly, there was a noticeably low recovery of Aroclor 1254 in the PCB spike duplicate sample. It was assumed that some inadvertent intermixing occurred during one of the sample extraction processes. The reported PCB spike recovery for sample 00-1360 is from the addition of the two results. Spike results are summarized in Tables 5.4 and 5.5 for pesticides and PCBs respectively. Concentration values are listed in the tables in parentheses following the % recovery numbers.

	Tank Material	C104 Suj	pernatant	C104 Wet Centrifuged Solids			
	Sample ID	00-1	360	00-1361			
	-	MS	MSD	MS	MSD		
	Units	%Rec (µg/L)	%Rec (µg/L)	%Rec (µg/Kg)	%Rec (µg/Kg)		
CAS #	MDL	2-4	2-4	4-8	4-8		
309-00-2	Aldrin	102 (18.4)	92.8 (17.5)	141 (113)	138 (115)		
50-29-3	4,4'-DDT	106 (38.4)	99.1 (37.4)	87.8 (140)	74.7 (125)		
58-89-9	Gamma-BHC	5.2 (0.93)	3.9 (0.73)	43.9 (48.0)	32.8 (40.3)		
60-57-1	Dieldrin	13.0 (4.7)	8.2 (3.1)	141 (225)	146 (244)		
72-20-8	Endrin	16.3 (5.9)	10.4 (3.9)	171 (274)	159 (266)		
76-44-8	Heptachlor	113 (20.4)	103 (19.4)	147 (118)	121 (101)		
		% Rec	% Rec	% Rec	% Rec		
	TCX (surrogate)	65.3	55.7	63.0	64.6		
	DCB (surrogate)	61.2	62.7	84.0	93.4		

T-1-1 - 7 4	C104	D	C 11	D
Table 5.4.	C104 -	Pesticide	Spike	Recoveries

Table 5.5. C104 – PCB Spike Recoveries

	Tank Material	C104 Supernatant			C104 Wet Centrifuged Solids		
	Sample ID	00-1360		LCS	00-1361		LCS
			MSD		MS	MSD	
	Units	%Rec (µg/L)	%Rec (µg/L)	%Rec (µg/L)	%Rec (µg/Kg)	%Rec (µg/Kg)	%Rec (µg/Kg)
CAS #	MDL	2	2	0.2	8	8	4
11097-69-1	Aroclor 1254	87.3 (19.5)	96.7 (21.4)	71.8 (1.4)	123 (172)	151 (202)	91.1 (36.5)
		% Rec	% Rec	% Rec	% Rec	% Rec	% Rec
	TCX (surrogate)	73.9	94.6	76.1	65.5	71.7	94.2
	DCB (surrogate)	89.3	105	61.8	87.0	96.7	72.2

Chromatographic resolution and degradation of pesticide indicator analytes was affected following a number of sample residue analyses, indicating some column degradation had occurred. Reanalysis was performed on all pesticide residues. While the methods indicator compound degradation criteria were met, the observed peak broadening impacted the retention time windows to a limited extent. For both the solids and supernatant samples, some variation was observed for duplicate samples of the single component pesticide results. However, in all cases, the results were less than ten times the MDL and this is the region where the greatest error is expected to occur. None of the results exceeded the MRQ levels. In addition to the analytes of interest specified by BNFL, additional analytes normally analyzed utilizing this method have been reported.

Distinct Aroclor patterns were observed during the PCB analysis by GC/ECD. However, the congener ratios for a given Aroclor varied substantially. Also, congeners were present which could not be attributed to any particular Aroclor observed in the samples. Confirmation analysis using gas chromatography/ mass spectrometry (GC/HRMS) was performed on the C-104 solid material extract residue. The mass spectrometer was operated at a resolution of 1000 and calibrated using a standard mixture which contained ten PCB congeners. Each congener represented the ten possible PCB homologs (levels of PCB chlorination) and were used to establish chromatographic retention time windows and mass spectrometer response factors. The GC/ECD results were confirmed by the GC/HRMS. The amount found by each method was in agreement within a factor of two. Also, the GC/HRMS instrument indicated every homolog was represented in the tank sample. Since decachlorobiphenyl was added to the sample as one of the surrogate compounds, it cannot be determined if this congener was native to the original tank material.

Although the two analytical methods agreed within a factor of two, the PCB results should be considered qualitative. The congener ratio variation observed by the GC/ECD analysis demonstrated that the sample had undergone degradation or rearrangement of the PCBs. Quantitation by comparison to Aroclor standards may have substantial error associated with the result. Calibration of the GC/ECD using the congener method can be performed, however, the calibration standards must be chosen carefully so that the full chromatographic elution range and detector responses for each homolog are well represented. Existing methods do not address this issue sufficiently for adequate application to this and other highly complex samples.

In this case, the GC/HRMS calibration used only one congener to represent the entire homolog chromatographic elution and response. While the GC/HRMS data confirms the presence of PCBs, it was not intended to provide adequate quantitation based on this calibration. Further investigation is necessary to more accurately determine the quantity of PCBs present in these samples.

6.0 Polychlorinated Dibenzo-p-Dioxins and Dibenzofurans Analysis

6.1 Introduction

For the dioxins and furans analysis, the supernatant and solid samples were prepared in the SAL by the procedure outlined in Test Plan BNFL-29953-080, Rev. 1: Organic Extraction of C-104 Samples and sub-sampling for VOA, Headspace, and Anions (see Appendix B). Following extraction, the resulting residues were transferred from the SAL under CoC to the 329 organic laboratory for analysis of dioxins and furans.

The dioxins and furans extracts were exchanged into hexane and passed through several column cleanup procedures including silica gel and alumina to remove interfering components. After column cleanup, the resulting solutions were further concentrated. Analysis was then performed using high resolution gas chromatography/low resolution mass spectrometry (HRGC/LRMS). In the event that any dioxins or furans had been detected using HRGC/LRMS, HRGC/high resolution MS would have been used for verification. However, since no dioxin or furan compounds were found, confirmation was not required and consequently only the low-resolution mode was employed. A resolution of 1000 was utilized for the initial dioxins and furans analyses.

Dioxins and furans, typically exhibit multiple isomers. Table 6.1 lists the dioxin and furan standards analyzed to establish retention time windows and used as the basis for the determination of response factors.

CAS #	Dioxin Compounds	Report ID ⁽¹⁾
1746-01-6	2,3,7,8-Tetrachlorodibenzo-p-dioxin	TCDD
40321-76-4	1,2,3,7,8-Pentachlorodibenzo-p-dioxin	PeCDD
57653-85-7	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	HxCDD
39227-28-6	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin	HxCDD
19408-74-3	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin	HxCDD
35822-39-4	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin	HpCDD
3268-87-9	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin	OCDD
CAS #	Furan Compounds	Report ID ⁽¹⁾
51207-31-9	2,3,7,8-Tetrachlorodibenzofuran	TCDF
57117-41-6	1,2,3,7,8-Pentachlorodibenzofuran	PeCDF
57117-31-4	2,3,4,7,8-Pentachlorodibenzofuran	PeCDF
57117-44-9	1,2,3,6,7,8-Hexachlorodibenzofuran	HxCDF
72918-21-9	1,2,3,7,8,9-Hexachlorodibenzofuran	HxCDF
70648-26-9	1,2,3,4,7,8-Hexachlorodibenzofuran	HxCDF
60851-34-5	2,3,4,6,7,8-Hexachlorodibenzofuran	HxCDF
67562-39-4	1,2,3,4,6,7,8-Heptachlorodibenzofuran	HpCDF
55673-89-7	1,2,3,4,7,8,9-Heptachlorodibenzofuran	HpCDF
39001-02-0	1,2,3,4,6,7,8,9-Octachlorodibenzofuran	OCDF

⁽¹⁾ Report ID is shorthand notation for dioxins and furans for use in results tables

The data presented in this report were obtained utilizing procedures, instrumentation, and data systems for dioxins and furans analysis of radioactive materials.

6.2 Sample Preparation

6.2.1 Supernatants and Solids

Following methylene chloride extraction of the supernatant samples and methylene chloride-acetone extraction of the solids, the extracts for dioxins and furans analysis were exchanged into hexane. The hexane residues from both the supernatant samples and the solids samples were then processed through an extensive cleanup procedure to remove potential interfering components.

The hexane residues were first washed with concentrated sulfuric acid, 20% KOH, and 5% NaCl in a separatory funnel. The washed hexane extract was passed through a column of anhydrous sodium sulfate to remove water. The hexane extract was then applied to the top of a silica gel column and eluted with hexane. The eluate was concentrated to approximately 1 mL using a K-D apparatus, and added to an alumina column. The concentrated solution was then eluted with 60% methylene chloride in hexane (v/v) and collected. The resulting eluate was concentrated to approximately 1 mL using a K-D apparatus, and then reduced to a final volume of 200 μ L using nitrogen blow-down techniques for subsequent analysis using HRGC/LRMS.

6.2.2 Laboratory Control Standard, Glassware Blank, and Silica Gel Cleanup

For the laboratory control standard (LCS), 100 mL of doubly-distilled water was spiked with a pre-measured volume of spiking materials and extracted with three 25-mL portions of methylene chloride. The LCS was extracted in like manner to the supernatants (as described above in Section 6.2.1), except that the LCS was extracted in the laboratory instead of the SAL hot cells.

A glassware blank was prepared to demonstrate that that the laboratory glassware was free of interferants under the conditions of analysis. The blank was prepared by rinsing various glassware associated with sample preparation and analysis including separatory funnels, beakers, graduated cylinders, K-D flasks, glass columns, and storage vials with 50 mL of methylene chloride. The rinsates were transferred to a K-D flask, exchanged into hexane, and reduced in volume to approximately 2 mL. The hexane extract was then further purified, concentrated, and analyzed as described under Section 6.2.1 above. The purpose of a glassware blank was to demonstrate that there was no contamination resulting from the glassware; therefore, the glassware blank was not put through the column cleanup (silica gel and alumina) procedure.

In order to confirm that the silica gel column chromatography material was contaminant free, approximately 500 g was extracted with methylene chloride-acetone. The resulting solution was concentrated to approximately 200 μ L and analyzed using HRGC/LRMS.

6.2.3 Instrumentation

The analytical instrumentation used for the analysis of dioxins and furans consisted of a gas chromatograph equipped with a 5 m x 0.32 mm HP retention gap (uncoated and deactivated) column followed by an RTX-5 (60 m x 0.25 mm, 0.25 μ m film thickness, Restek) column. Analyses were performed using on-column injection techniques and auto sampler injections. The JEOL high-resolution mass spectrometer (HRMS) system was operated in the low-resolution mass spectrometer (LRMS) mode. A description of the instrumentation is shown in Table 6.2.

Table 6.2.	Dioxins	and Furans	Analysis	Instrumentation

System/Instrument	Manufacturer	Model Number	M&TE Number ⁽¹⁾		
GC	Hewlett-Packard	5890	WD11062		
HRMS	JEOL	SX-102/SX-102	WD11061		

(7) Measuring and Test Equipment

6.2 Analysis Results

The dioxins and furans results for C-104 are presented in Table 6.3. The CAS numbers have been omitted since there are multiple dioxin and furan isomers that are not included as standards. For example, if a peak is detected in the TCDD retention time window with a slightly different retention time than that of the standard, the exact TCDD isomer cannot be identified since it does not match the standard. Per SW-846 Method 8280 protocol, if multiple isomers are detected in the appropriate retention time window, the multiple isomers are summed to provide a single dioxin or furan result. No dioxin and furan isomers were detected in any of the samples.

Tank Material	C-104 Supernatant C-104 Wet Centrifuged Solid							olids
Sample ID		00-01360	00-01360	00-01360		00-01361	00-01361	00-01361
	MDL	Proc Blk	Sample	Duplicate	MDL	Proc Blk	Sample	Duplicate
Units	μg/L	μg/L	μg/L	μg/L	µg/Kg	µg/Kg	µg/Kg	µg/Kg
TCDD	0.01	U	U	U	0.04	U	U	U
TCDF	0.01	U	U	U	0.04	U	U	U
PeCDD	0.04	U	U	U	0.08	U	U	U
PeCDF	0.04	U	U	U	0.08	U	U	U
HxCDD	0.04	U	U	U	0.08	U	U	U
HxCDF	0.04	U	U	U	0.08	U	U	U
HpCDD	0.04	U	0.002 J	U	0.08	U	U	U
HpCDF	0.04	U	U	U	0.08	U	U	U
OCDD	0.08	U	U	U	0.16	U	U	U
OCDF	0.08	U	0.005 J	U	0.16	U	U	U

Table 6.3. C-104 Dioxins and Furans Results

 Multiple isomers possible in retention time window; each isomer has unique CAS #. Component represents sum of dioxins or furans meeting retention time window and ion abundance ratio criteria. U = not detected; results less than MDL

J = detected and quantified, but results less than MDL. Analysis met ion abundance ratio and retention time criteria.

6.3 QC Evaluation

The QC evaluation focuses on: a) ion abundance ratios and response factors for the standards; b) ion abundance ratios for the samples, duplicates, MSs and MSDs; and c) the spike recovery results from the analyses of the MSs for both liquids and solids.

6.3.1 Ion Abundance Ratios and Response Factors --- Standards

The theoretical ion abundance ratios and control limits are listed in Table 6.4. These ratios are applicable to both the LRMS and HRMS. The matrix spiking solutions contained both ¹³C-labeled

and unlabeled standards. All samples, including MSs, were spiked with labeled internal standards. The ion ratios for both the native (unlabeled) and the labeled components must meet the criteria shown in Table 6.4. The letter designations M, M+2, and M+4 refer to the parent ion (M) and the corresponding additional masses associated with the chlorine isotope pattern.

Number of		Theoretical	Contro	l Limits	
Cl atoms	Ion Type	Abundance Ratio	Lower	Upper	
4	M/M+2	0.77	0.65	0.89	
5	M+2/M+4	1.55	1.32	1.78	
6	M+2/M+4	1.24	1.05	1.43	
7	M+2/M+4	1.04	0.88	1.20	
8	M+2/M+4	0.89	0.76	1.02	

Table 6.4. Theoretical Ion Abundance Ratios and Control Limits

Appendix E contains the ion abundance ratio QC data for the native and labeled components of the standards.

The percent relative standard deviations for the average response factors are less than 15% as required by USEPA SW-846 Method 8280 (low resolution MS method), except for components:

OCDD for m/z 458 (RSD =22.5%) and m/z 460 (RSD = 22.3%) OCDF for m/z 442 (RSD = 19.6%) and m/z 444 (RSD= 18.8%) PeCDF for m/z 340 (RSD = 21.7%) and m/z 342 (RSD = 19.5%) TCDD for m/z 320 (RSD = 18.6%)

However, the percent relative standard deviation for the average response factors are required to be less than 30% for high resolution mass spectrometry (Method 8290). The 15% criteria has been applied to data obtained from low resolution quadrupole mass spectrometry. The data obtained in this study is from a high resolution, magnetic sector mass spectrometer operated in the low resolution mode. There may be deviations from the 15% low resolution criteria using the high resolution instrument. This is an area requiring further study. In order to verify that the data are not adversely affected, a continuous calibration verification standard was analyzed during the sample set. The concentrations were calculated based on the response factors and compared with the known concentration values. The calculated concentration vs. the known concentrations agreed very well. Based on this data, it would appear that the data and the ability to measure dioxins and furans are not affected by several components with percent relative standard deviations greater than 15%.

The peak areas obtained and used in the calculations are affected by the condition of the mass spectrometry source and chromatography. This factor is discussed more thoroughly in Section 6.4.

6.3.2 Ion Abundance Ratios – Samples, Duplicates, and Matrix Spikes

The ion abundance ratios for both the native and labeled components for all samples, duplicates, MSs, MSDs, and process blanks are listed in Appendix E The ion abundance ratio is a major criteria for identifying dioxins and furans. If the ion abundance ratio is not within the control limits listed in Table 6.4, the component is not identified as a dioxin or furan even though the retention times may be consistent with dioxins and furans. Table 6.5 summarizes all of the ion abundance ratio data.

Sample ID	Compound	TCDD Native	TCDD Labeled	TCDF Native	TCDF Labeled	PeCDD Native	PeCDD Labeled	PeCDF Native	PeCDF Labeled	HxCDD Native	HxCDD Labeled	HxCDF Native	HxCDF Labeled	HpCDD Native	HpCDD Labeled	HpCDF Native	HpCDF Labeled	OCDD Native	OCDD Labeled	OCDF Native	OCDF Labeled
C-104	Proc Blank		р		р		р		р		р		р		р		р		р		р
Supernatant	Sample		р		р		р		р		р		р		р		р		р		р
	Duplicate		р		р		р		р		р		р		р		р		р		р
	MS	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р
	MSD	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р
C-104	Proc Blank		р		р		р		р		р		р		р		р		Р	р	р
Wet	Sample		р		р		р		f		р		р		р		р		р	р	р
Centrifuged	Duplicate		р		р		р		р		р		р		р		р		р		р
Solids	MS	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р
	MSD	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р
LCS	Standard	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р	р

Table 6.5. Acceptance Criteria Summary of Ion Abundance Ratios

p = pass; peak detected at dioxins and furans retention time and ion abundance ratio met acceptance criteria from Table 6.4

f = fail; peak detected at dioxins/furans retention time but ion abundance ratio does not meet criteria from Table 6.4

blank = No signal or peak area detected; ion abundance ratio undefined

For C-104 supernatant and solids MS, MSD, and LCS samples, all native and labeled compounds met the ion abundance ratio acceptance criteria. For the process blanks, samples and duplicates, only one of the 110 labeled compounds analyses failed to meet the ion abundance ratio acceptance criteria; labeled PeCDF in the solids sample did not meet the ion abundance criteria. There is no simple explanation why this particular isomer did not meet the abundance ratio acceptance criteria. In previous analyses of AN-107 and AW-101, several isomers did not meet the ion abundance ratio criteria (Klinger et al., 2000).

6.3.3 Dioxins and Furans Matrix Spike Recoveries

The recoveries for the MSs and MSDs for C-104 supernatants and wet centrifuged solids are detailed in Table 6.6. The CAS numbers are included to identify the components in the matrix spiking solution. All ion abundance ratios for both the native and labeled components in the MSs and MSDs met the criteria listed in Table 6.4.

Most of the recoveries are in the range of 75-125%. An interesting but unexplainable item is the apparent lower recovery for HxCDD compared to the other components in all samples analyzed, except the LCS. At this point, there is no reasonable explanation for this observation.

	Tank Material	C-104 Su	pernatant	C-104 Wet Sol	LCS	
	Sample ID	00-0	1360	00-0	1361	
		MS	MSD	MS	MSD	
CAS #	Units	Rec	Rec	Rec	Rec	Rec
1746-01-6	TCDD	115%	101%	106%	94%	108%
51207-31-9	TCDF	99%	106%	105%	88%	104%
40321-76-4	PeCDD	116%	113%	92%	78%	106%
57117-41-6	PeCDF	109%	103%	96%	92%	103%
57653-85-7	HxCDD	79%	55%	75%	65%	96%
57117-44-9	HxCDF	86%	102%	91%	83%	95%
35822-39-4	HpCDD	102%	117%	108%	77%	101%
67562-39-4	HpCDF	102%	106%	94%	89%	104%
3268-87-9	OCDD	117%	113%	89%	97%	106%
39001-02-0	OCDF	125%	124%	89%	98%	104%

Table 6.6. C-104 – Dioxins and Furans Spike Recoveries

6.4 Other Observations (Deviations/Concerns/Issues)

The dioxins and furans analyses were performed by LRMS. If any dioxins or furans had been detected, HRMS would have been performed for confirmation. At lower resolution, the mass spectrometer has higher sensitivity but less specificity. The resolving power of a mass spectrometer is a measure of its ability to separate two ions of any defined mass difference. Basically, for two overlapping peaks M_1 and M_2 , the resolution may be defined in terms of the mass difference (M_2 - M_1) between them. The resolution is then defined as $M_1/(M_2-M_1)$. The HRMS method requires a resolution of 10,000. At 10,000 resolution a mass at m/z of 300.00 is separated from a mass at m/z of 300.03. For each group of ions, a lock mass is assigned in high resolution. The analyses were performed in low-resolution mode. In low-resolution mode the resolution was set at 1,000. At 1,000 resolution a mass at m/z 300.30.

A four-point calibration was performed rather than a five-point calibration as specified in SW-846 Method 8290. The concentration of the standards ranged from 0.5 to 200 μ g/L for TCDD and TCDF, 5.0 to 2000 μ g/L for OCDF and OCDD, and 2.5 to 1000 μ g/L for all other compounds. The concentrations of solutions were made for detection using a quadruple mass spectrometer; the instrument used in these studies was a high resolution, magnetic sector mass spectrometer and was approximately 100 times more sensitive than the quadruple instrument. The values for the highest concentration standards were not used for calculating the average response factor due to the fact that the low-resolution mode was used for the analysis. In the low-resolution mode the concentration versus peak area response for the highest concentration standard was outside the linear dynamic range of the instrument. For the highest concentration standard solution, the detector was saturated. This phenomenon was also observed in previous tank waste analyses (Klinger et al., 2000). For the highest concentration standard solutions, the detector was saturated.

Analyses of the glassware blank and silica gel extract showed no indication of potential interfering contaminants.

On-column injection was used throughout the analyses. As analyses progressed, small pieces of the septum became lodged in the retention gap. After several injections, chromatographic quality was effected by the production of irregular peak shapes. The solution to this problem used at the time was to change the septum and remove a small portion of the retention gap column each time. However, typically, after only several injections, small pieces of septum were again present in the retention gap. This problem was solved after the analyses were complete by changing the inlet configuration.

The cleanup procedure used for dioxins and furans was very labor intensive and time consuming. After following the cleanup steps listed in SW-846 method, there are several places where time could be saved and the cost greatly reduced in future work. As an example, the method states that the sample must be eluted through a silica gel column, concentrated, and then eluted through an alumina column, and then concentrated prior to analysis. An alternative approach would use one column packed with both silica gel and alumina. The sample would be eluted through one column containing the two packing materials, concentrated, and analyzed. Studies would first need to be performed to insure that the recoveries were not affected. If the recoveries were comparable (through two columns vs. one), both time for cleanup would be reduced (thus improving analytical throughput and reducing turnaround time) and a large cost savings would be realized. There are other possible areas in the sample cleanup that could be combined to provide additional economies as well.

7.0 Organic Anions Analysis

7.1 Introduction

Analyses of organic anions were performed on both the supernatant and solids from samples of tank waste material from Tank C-104 following sub-sampling in the SAL per Test Plan BNFL-29953-080 Rev. 1. The supernatant samples were passed through cation exchange resin material to reduce the radioactivity to a sufficient low level to be safely handled in the laboratory. The solid samples were leached at ambient temperature with water, filtered, and the resulting solution passed through cation exchange resin to reduce the radioactivity levels. The supernatant and solids were aliquotted and prepared in the SAL and transferred under CoC to the analytical laboratory for organic anion analysis by ion chromatography (IC).

7.2 Sample Preparation

Tank samples from C-104 were prepared in the SAL. For the supernatants, a 1-mL sample was accurately weighed and then passed through a column of cation exchange resin to reduce the radioactivity level. Similarly for the solids, an approximate 1-g sample was accurately weighed, leached at ambient temperature with a known volume (approximately 5 mL) of distilled water for 12 hours, and then filtered. The resulting solution was then passed through a cation exchange column. The activity reduction was performed as per Test Plan BNFL-29953-014, "Activity Reduction Via Cation Exchange for Carboxylate Analysis". The treatment within the SAL resulted in an approximate 20-fold dilution (weight/weight) into a dilute caustic matrix that is not significantly different from the caustic matrix of the original sample. An additional 90-fold dilution was performed to dilute the major inorganic ions (nitrate and nitrite) to levels that prevent overloading the capacity of the analytical column. Previous experience (Campbell, 1997; Sharma et al., 1998) has demonstrated that ion-exchange sites within the IC column apparently do not recover quickly from an overload of these inorganic species. That can result in non-uniform elution of the weakly retained analytes (e.g. acetate and formate).

Matrix spikes and MSDs were prepared in the laboratory after the MS and MSD samples were eluted through the cation exchange resin. Previous studies on samples from this tank have shown that organic material was neither introduced nor removed with the use of cation exchange resin (Campbell et al., 1998). Spiking solutions were prepared using oxalic acid and sodium formate, in deionized water. A laboratory control standard (LCS) was prepared from independent materials, and diluted to a value within the bounds of the calibration curve.

7.3 Instrumentation

The analytical instrumentation utilized for the analysis of low molecular weight organic acids consisted of an ion chromatograph (IC) unit equipped with a conductivity detector. A Dionex AS-11 separation column and AG-11 guard column were used at ambient temperature with a 25- μ L sample loop. An anion suppressor was used. The flow rate of the mobile phase was 2.0 mL/min. A description of the IC system is provided in Table 7.1.

Table 7.1.	Ion Chromato	graphy I	nstrumentation
------------	--------------	----------	----------------

System/Instrument	Manufacturer	Model Number	M&TE ⁽¹⁾ Number
IC System	Dionex	500 DX	WD 24293
Conductivity Detector	Dionex	CD20	WD 24295

(1) Measuring and Test Equipment

The IC gradient conditions were: (a) 0.0 min 0% 100 mM NaOH, 98.1% deionized water and 1.9% 5 mM NaOH; (b) 6.4 min 0% 100 mM NaOH, 0% deionized water and 100% 5 mM NaOH; and (c) 18.4 min 35% 100 mM NaOH, 0% deionized water and 65% 5 mM NaOH. The mobile phase contained a gradient of deionized water and a weak solution of NaOH.

7.4 Analysis Result

The results of the analysis of the C-104 supernatant and wet centrifuged solids samples are listed below in Table 7.2.

Acetate co-elutes with glycolate under typical analysis conditions and requires the use of an alternate column for separation from glycolate. Without additional separation, one can not unequivocally state whether or not the observed peak contains only acetate, only glycolate, a combination of both anions, or a possible unknown contaminant. Tank waste and solubility studies have shown that the results are dependent on tank waste type. In other words, for tanks with different fill histories, the dominant organic anions in the waste may be primarily glycolate, primarily acetate, or a combination of both anions (Sharma et al., 1998, Camaioni et al., 1998, Barney 1997, Ashby et al., 1994.)

For C-104 analyses, no acetate/glycolate peak was detected in the supernatants or solids above the MDL. In view of the fact that acetate and glycolate have similar response factors, the reported acetate MDL can be used to bound the upper acetate/glycolate concentration. Interference from fluoride makes this determination questionable and is discussed in detail in Section 7.6.

	Tank Material	Ē	C-104 Su	pernatant	t	C-	-			
	Sample ID		00-01360				00-01361 pb			Maximum
		MDL ⁽¹⁾	Proc Blk	Sample	Duplicate	MDL ⁽¹⁾	Proc Blk	Sample	Duplicate	$\mu g/g^{(2)}$
CAS #	Units	µg/mL	µg/mL	µg/mL	µg/mL	µg/g	µg/g	µg/g	μg/g	of Slurry
144-62-7	Oxalate	780	U	1090	980	540	U	1230	3300	1600
64-18-6	Formate	1020	U	2670	2120	720	U	750	2200	2300
79-10-7	Acrylate	780	U	U	U	540	U	U	U	U
64-19-7	Acetate ⁽³⁾	2640	U	U	U	600	U	U	U	U

Table 7.2. IC Organic Anion Results

(1) MDL = Method detection limit based on instrument detection limit and sample quantity

(2) Maximum slurry µg/g calculated using results of Tables 2.1 (weight fractions) and 2.2 (supernatant density) -See Section 1.0

(3) Acetate and glycolate are not resolved; results or MDL represent bounding upper concentration

7.5 QC Evaluation

No organic anions of interest were detected in the blank samples. The MDLs stated in Table 7.2 are assumed to be adequate, since no MRQs were established by BNFL for the organic anions measured. The sample intended as a MS was analyzed, then spiked, and then reanalyzed. Matrix spike data were collected by adding an amount of oxalate and formate, which would double the peak area of the native analyte in the sample. Table 7.3 presents the MS and MSD recoveries and LCS recovery results for the C-104 supernatants and wet centrifuged solids. Spike recoveries for LCS, MSs, and MSDs ranged from 77% to 142%; several spikes failed to meet the acceptance criteria of 75% to 125%; i.e., oxalate for the C-104 solids MSD and formate for the C-104 solids MSD.

	Tank Material	C-104 Su	pernatant		C-104 Wet Centrifuged Solid			
	Sample ID	00-01360			00-01361			
	-	MS	MSD	LCS	MS	MSD		
CAS #	Units	% Rec	% Rec	% Rec	% Rec	% Rec		
144-62-7	Oxalate	106	78	97	77	141		
64-18-6	Formate	nd	91	88	127	142		
79-10-7	Acrylate	U*	U*	89	U*	U*		

Table 7.3. IC Organic Anions Matrix Spike Recoveries

* U -- Component not added as part of spike solution

nd -- not determined due to large interferant, possibly F

Acetate was not included in the MS and MSD due to interference from F⁻. Formate was detected in the C-104 supernatant MSD but not in the MS and is discussed in more detail in the following section. The continuous calibration verification (CCV) solution contained all of the analytes. The CCV data collected at the start of each day gave a maximum deviation of 13% for acrylate; other analytes afforded 10% deviation or less from the expected values. The calculated values were generated from 4-point curves with multiple data collected at each dilution point. This calibration data was sufficient for calculation of all quantitative values.

7.6 Other Observations (or Deviations/Concerns/Issues)

For these samples, there was a large early eluting interfering material thought to be fluoride (F). Although the samples were not spiked with F^{-} to verify its presence, previous experience has indicated that the early eluting component is probably F. An experiment was conducted using purified calcium oxide as a precipitant to remove this interfering component. Preliminary indications are that calcium oxide may provide a method to improve the chromatography of samples that contain F. A problem arises in ion chromatography when there is a large amount of a slightly retained ion such as F⁻ in the matrix. All monovalent ions that elute in the timeframe close to F⁻ are affected in peak shape and (to a lesser extent) retention time. This effect is illustrated in Figures 7.1 through 7.4. Figure 7.1 is an IC chromatogram of a solution composed of acetate (peak 2), acrylate (peak 3) and formate (peak 4). Figure 7.2 is an IC chromatogram of a C-104 MS solids sample. Peak 2 is probably F and peak 3 is formate in this chromatogram. A large amount of F is sufficient to overlap with acetate, making a determination of acetate impossible by this IC separation. The peak shape of other monovalent anions is also severely affected, which adversely affects the quantitation and lowlevel detection of formate and acrylate. Thus, one of the formate spike results is not available due to the adverse affects of F⁻. This is illustrated in Figures 7.3 and 7.4. Figure 7.3 is an IC chromatogram of C-104 MS supernatant sample. Peak 3 is possibly F and peak 4 is formate. The chromatography of formate is affected by the presence of F; the peak is not measurable. Figure 7.4 is an IC

chromatogram of C-104 supernatant MSD. Peak 2 is possibly F^- and peak 3 is formate. The peak broadening effect due to F^- is more severe in the MS sample; a rerun of the sample showed the same result. Later eluting ions (nitrate, oxalate, sulfate, citrate) are not subject to this loading effect by F^- since a re-focusing of the analyte is possible after F^- has been eluted from the column.

It is possible that ion chromatographic separation of carboxylates in the presence of F^- could be improved by addition of a precipitant, such as calcium ion. This treatment would necessitate determination of oxalate first, followed by analysis of samples in which F^- has been reduced or removed.

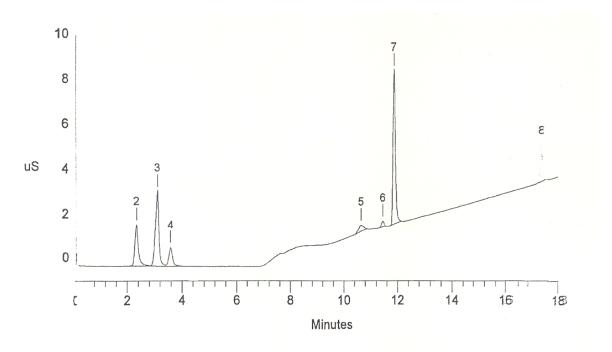


Figure 7.1. IC Chromatogram of Standard Solution. Peak 2-acetate; 3-acrylate; 4formate; 5-carbonate; 6-sulfate; 7-oxalate

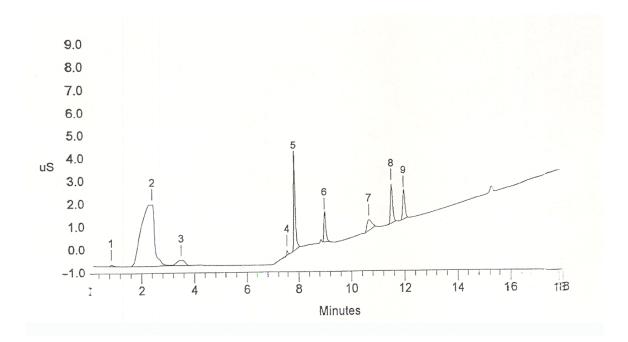


Figure 7.2. IC Chromatogram of C-104 Solids MS Sample. Peak 2-possibly F^{*}; Peak 3formate; 4-chloride; 5-nitrate; 6-unknown; 7-carbonate; 8-sulfate; 9-oxalate

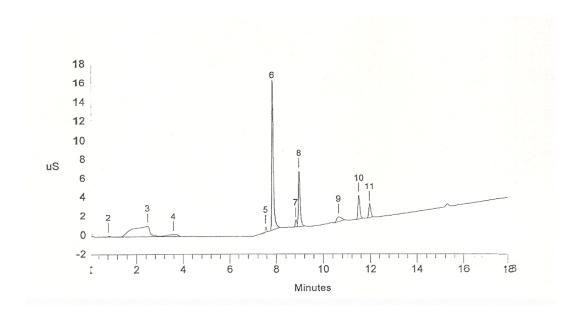


Figure 7.3. IC Chromatogram of C-104 Supernatant MS Sample. Peak 3-possibly F[•]; 4formate; 5-chloride; 6-nitrate; 7-unknown; 9-carbonate; 10-sulfate; 11-oxalate

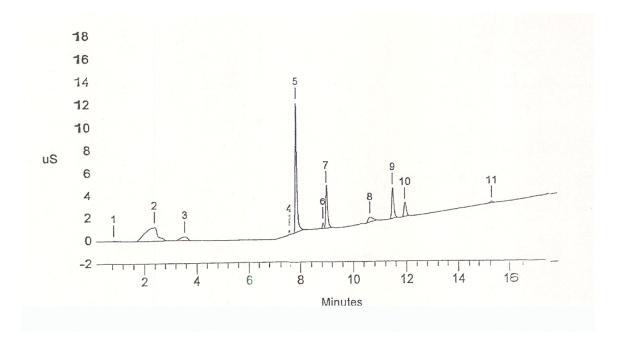


Figure 7.4. IC Chromatogram of C-104 Supernatant MSD. Peak 2-possibly F⁻; 3formate; 4-chloride; 6-nitrate; 6-unknown; 7-unknown; 8-carbonate; 9-sulfate; and 10oxalate

8.0 Headspace Analysis

Introduction

Headspace analyses were performed on the supernatant of tank waste material from Tank C-104 following sub-sampling in the SAL per Test Plan BNFL-29953-080 Rev. 1. The samples were prepared in the SAL and transferred under CoC to the laboratory for analysis. Analyses were performed using an automated headspace sampler interfaced to a gas chromatographic/mass spectrometric (GC/MS) system. Test Plan BNFL-29953-026 Rev. 0: "Analysis for Volatile Constituents using Headspace Gas Chromatography Mass Spectrometry" provides details of the procedure used for this analysis. Analytes of interest include methanol, ethanol, 1-propanol, 2-propanol, n-butanol, 1-methylpropanol, 2-methyl-2-propanol, and triethylamine.

8.2 Sample Preparation

Tank samples from C-104 were prepared in the SAL. Sample aliquots of 1 mL were placed in 10-mL headspace vials and immediately sealed using crimp-top septa. The samples were then transported to the 329 organic laboratory for subsequent analysis. Immediately prior to analysis, internal standards and surrogate compounds were added through the septa.

8.3 Instrumentation

The analytical instrumentation utilized for the analysis of volatile components by headspace consists of an automated headspace analyzer interfaced to a GC/MS system. A description of the system is provided in Table 8.1.

System/Instrument	Manufacturer	Model Number	M&TE ⁽¹⁾ Number
Headspace Sampler	Hewlett-Packard	7964	WD 25715
Gas Chromatograph	Hewlett-Packard	5890	WD 14120
Mass Spectrometer	Hewlett-Packard	5972	WD 17020

(1) Measuring and Test Equipment

8.4 Analysis Results

The headspace analysis results for BNFL specified target compounds are presented in Tables 8.2. Headspace analysis for the analytes of interest was performed on the supernatants only. As seen in Table 8.3, the target MRQ (after adjusting for density) for triethylamine was not met. There was not good comparison of the results between the sample and a duplicate. A reanalysis of the samples confirmed these results. The crimp top to the duplicate sample was found to be slightly loose and the analytes may have been lost prior to analysis.

As is typical of many Hanford tank materials, a substantial amount of normal paraffin hydrocarbons (NPH) were found to be present in the sample primarily as undecane (55 μ g/mL), dodecane (90 μ g/mL), tridecane (110 μ g/mL), and tetradecane (30 μ g/mL). These and other tentatively identified compounds (TICs) are not included in Table 8.2 because they were not part of the target list. Quantitation for the those compounds was based on an assumed response factor taken from the

internal standard and should be considered as approximate. The duplicate sample contained about twice the quantity of NPH as that found in the sample which may indicate homogeneity issues are a contributor to the poor comparability of the target analytes. NPH oxidation products were also found in lesser quantities. These constituents included unsaturated similarly sized straight chain and branched hydrocarbons, as well as ketones such as dodecanones and undecanones.

	Sample ID		00-1360		00-1360	00-1360
	Units	MDL	Method Blank		-	Duplicate
<u>a.a.</u> "	r	µg/mL	μg/mL	μg/mL	µg/mL	µg/mL
CAS #	BNFL Compound List					
67-56-1	Methanol	5	U	U	16	U
64-17-5	Ethanol	1	2.6	2.2 B	8.0 B	2.9 B
67-63-0	2-Propanol	1	U	U	U	U
75-65-0	2-Methyl-2-propanol	1	U	U	U	U
71-23-8	1-Propanol	1	U	U	2.7	U
78-92-2	2-Butanol	1	U	U	U	U
71-36-3	n-Butanol	1	U	U	28	U
121-44-8	Triethylamine	20	U	U	15 J	U
Surrogate Compound			% Rec	% Rec	% Rec	% Rec
Met	hanol-d ₄		105	122	104	101

Table 8.2. C-104 Results – Headspace Analysis

"J" = Compound was detected below the level of quantitation

"B" = Compound was present in the method blank

		Solids Target MRQ ⁽¹⁾	Supernatant Target MRQ (Density = 1.161 g/mL)
	Units	μg/Kg	µg/mL
CAS #	BNFL Compound List		
67-56-1	Methanol		
64-17-5	Ethanol		
67-63-0	2-Propanol		
75-65-0	2-Methyl-2-propanol		
71-23-8	1-Propanol		
78-92-2	2-Butanol		
71-36-3	n-Butanol	900	1.0
121-44-8	Triethylamine	500	0.6

Table 8.3. Target Headspace Minimum Reportable Quantities

(1) MRQ =Minimum Reportable Quantity

"-----" = No MRQ target provided

8.5 QC Evaluation

Response for the internal standard, ethanol- d_6 , varied substantially (almost a factor of three) throughout the analytical batch. This affected the detection limits for methanol and triethylamine. In addition, the surrogate recoveries for methanol- d_4 were slightly affected. However, the surrogate recovery variation appears primarily to be attributable to variation of the internal standard response as well. Matrix spike and MSD recoveries are presented in Table 8.4. Fifty micrograms of each analyte was added to the sample.

	Sample ID	00-1360		
		MS	MSD	
	Units	% Rec	% Rec	
CAS #	BNFL Compound List		-	
67-56-1	Methanol	113	106	
64-17-5	Ethanol	95.0	95.3	
67-63-0	2-Propanol	98.9	100	
75-65-0	2-Methyl-2-propanol	85.1	87.0	
71-23-8	1-Propanol	97.8	101	
78-92-2	2-Butanol	95.6	97.8	
71-36-3	n-Butanol	93.8	82.7	
121-44-8	Triethylamine	51.8	45.4	
Sur	rogate Compound	% Rec	% Rec	
	Methanol-d ₄	103	108	

Table 8.4. C-104 Headspace Matrix Spike Recoveries

Recoveries were calculated after subtraction of the results from the sample analysis. The recoveries are reasonable in general with the exception of triethylamine, which had a lower recovery than expected. This method has typically performed well for methanol and shows promise as an effective technique for the analysis of triethylamine. Further development and evaluation will be necessary to improve the stability performance of this technique and sensitivity for triethylamine.

9.0 REFERENCES

Ashby, EC. et al. 1994. *Synthetic Waste Chemical Mechanism Studies*, WHC-EP-0823, Westinghouse Hanford Company, Richland, Washington.

Barney, GL. 1996. Solubilities of Significant Organic Compounds in HLW Tank Supernate Solutions-FY 1996 Progress Report, WHC-EP-0899, Westinghouse Hanford Company, Richland, Washington.

Camaioni, DM., WD. Samuels, JC Linehan, SA Clauss, AK Sharma, KL. Wahl, JA Campbell. 1996. *Organic Tanks Safety Program, FY 96 Waste Aging Studies*, PNNL-11312, Pacific Northwest National Laboratory, Richland, Washington.

Camaioni, DM., WD., Samuels, JC., Linehan, ST Autry, AK Sharma, MA Lilga, MO Hogan, SA Clauss, KL. Wahl, JA Campbell. 1998. *Organic Tanks Safety Program, FY 96 Waste Aging Studies Final Report*, PNNL-11909 Rev. 1, Pacific Northwest National Laboratory, Richland, Washington.

Challis, BC, N. Carman, et al. 1994 *Peptide Nitrosations*. *Nitrosamines and Related N-Nitroso Compounds*. Chemistry and Biochemistry R.N. Loeppky and C.J. Michejda. Washington DC, American Chemical Society. 553: 74-92.

Campbell, JA. 1997. Organic Analysis Progress Report FY 1997. PNNL-1738, Pacific Northwest National Laboratory, Richland, Washington.

Sharma, AK, SA Clauss, GM Mong, KL Wahl, JA Campbell. 1998. "Analysis and Quantification of Organic Acids in Simulated Hanford Tank Waste and Hanford Tank Waste." *J. of Chromatography*, 805, 101-107.

Klinger, GS, MW Urie, JA Campbell, SA Clauss, TW Clauss, EW Hoppe, GM Mong, and AK Sharma. 2000. *Organic Analysis of AW-101 and AN-107 Tank Waste*. PNWD-2461, Battelle, Pacific Northwest Division, Richland, Washington.

Fiskum, SK, et al. 2000. *Inorganic and Radiochemical Analysis of 241-C-104 Tank Waste*, PNNL-13364, Pacific Northwest National Laboratory, Richland, Washington.

Appendix A: PNNL Test Plan For C-104 Sample Compositing, Bnfl-29953-31, Rev. 0

PNNL Test Plan	Document No.: BNFL-TP-29953-031 Rev. No.: 0				
Title: C-104 Sample Compositing					
Work Location: 325/SFO	Page 1 of 5				
Author: Paul Bredt	Effective Date: Upon Final Signature				
Use Category Identification: Reference	Supersedes Date: New				
Identified Hazards: Radiological Hazardous Materials Physical Hazards Hazardous Environment Other:	Required Reviewers: X X Technical Reviewer X X PL Manager X Project Manager X RPG Quality Engineer BNFL				
Are One-Time Modifications Allowed to this Procedure? <u>X</u> Yes <u>NO</u> NOTE: If Yes, then modifications are not anticipated to impact safety. For documentation requirements of a modification see SBMS or the controlling Project QA Plan as appropriate.					
On-The Job Training Required? Yes or	<u>X</u> No				
FOR REVISIONS: Is retraining to this procedure required?Yes	<u>X</u> No				
Does the OJT package associated with this procedure re Yes No X N/A	equire revision to reflect procedure changes?				
Approval Signature	e Date				
Author <i>Signature on File</i>					
Technical Reviewer Signature on File					
RPL Manager Signature on File					
Project Manager Signature on File					
RPG Quality Engineer Signature on File					
BNFL					

Applicability

This Test Plan describes work to be performed under Task 2.01, LAW and HLW Feed Characterization. This work is defined under BNFL letter W375-98-0018 dated September 29, 1998. Approximately 1.7 L of material from Tank 241-C-104 has been transferred from the 222-S laboratory to the 325 HLRF. All of this material is to be used to prepare a C-104 composite. Homogenous subsamples of the composite are to be collected for delisting and permitting activities as well as for select research and development activities.

Subsamples will be withdrawn from the composite in a manner which will provide representative samples for chemical and radiochemical analysis and physical testing. To support the delisting and permitting, this test plan will generate samples that will allow measurement of chemical properties of the waste that are both precise and accurate. Integrity of the subsamples will be maintained consistent with prior sampling and storage history. No preservation or temperature control of the subsamples are planned. Sampling protocols in SW-846 are not strictly applicable since these protocols are targeted at sampling in the field.

Quality Control

Quality control has been implemented in the work instructions.

Since this document will be used to record an experimental process, markups as specified in the RPL Operations manual section 16.6 will be allowed. The staff member performing the change initials markups to this Test Plan. The Cognizant Scientist overseeing the work initials and dates changes to the Test Plan. Changes made by the Cognizant Scientist do not require additional reviews or approvals. If changes occur to multiple pages then the Cognizant scientist shall note the effected pages and initialize the note. Superseded text shall be lined out, but not obscured, initialed and dated.

M&TE List:

Balance 1:			
	Calib ID		Calib Exp Date
Balance 2:	Location		
	Calib ID		Calib Exp Date
	Location		
Thermocouples	:		
	Calib ID		Calib Exp Date
	Location		Thermocouple type
Digital Thermo	ometer:		
	Calib ID	<u> </u>	Calib Exp Date
	Location		

Work Instructions

1) The composite is to be prepared in a 3L stainless steel vessel. Secondary containment will be used to allow recovery from a possible breach of a 3L vessel or failure of the tap valve. The recommended parts for the kettles are listed below. Viton O-rings are to be used for sealing the vessel. No grease is to be used. Assemble the vessel in the hot cell.

Description	Part	Vendor
UHMWPE packed ³ / ₄ " Ball Valve	SS-63ES12	Seattle Valve and Fitting
5"ID x 9.87" pipe nipple with	FNF0500	Varian
6.75" Comflat flange		
6.75" blank off flange	F06750000NC4	Varian
6.75" viton gasket	FG0675VU	Varian
Nut and bolt set	FB0600C06	Varian
Clamping ring	Z12,171-1	Sigma-Aldrich
³ / ₄ " swagelok to pipe thread	SS-12-TA-1-12	Seattle Valve and Fitting
Stir rod	14-500-18	Fischer
Total		

2) Weigh the sample jars listed below to ± 0.01 g. Transfer all material from the jars to the mixing vessel. If necessary, use supernatant from the jars or vessel to rinse the solids into the vessel. Reweigh the empty jars and record the mass to ± 0.01 g in the space provided.

Sample Label	Mass (Full)	Mass (Empty)	Mass Transferred
16273			
16274			
16275			
16276			
16277			
16278			
16279			
16280			
16281			
16282			
16283			
16284			
16285			
16286			

3) The goal of this step is to homogenize the sample using as little force as possible. Stir the sample by slowly increasing the motor speed until the solids are mobilized. Given this work is being conducted in a steel vessel, observations need to be made with the lid off the vessel. Stir for a minimum of one hour. Record the hot cell temperature.

Time _____ Date _____ Temperature _____°C

- 4) While the solids are mobilized, collect ~50 ml of sample in a clean jar. This fraction is probably high in solids due to the geometry of the vessel, so return this sample to the vessel and continue to stir the vessel.
- 5) Collect 3 ~100 ml samples in volume-graduated tared bottles listed below by removing material using the $\frac{3}{4}$ " ball valve located on the bottom of the vessel. Sufficient sample is to be collected in each jar as to minimize headspace in the jars. Weight the full bottles to ± 0.01 g and record the masses below.

C-104 C	COMP A	C-104 CC	OMP B	C-104 GI	4
Total	g	Total	g	Total	g
Tare	g	Tare	g	Tare	g
Slurry	g	Slurry	g	Slurry	g

6) Turn off the stirring motor, record the date and time. Cover the vessel using a blank flange.

Day _____ Time _____

- 7) Allow C-104 COMP A, C-104 COMP B, and C-104 GL to settle for a minimum of 16 hours.
- 8) Record the date and time, and total volume of the slurries and volume of the settled solids in C-104 COMP A, C-104 COMP B, and C-104 GL.

	Day	Time			
C-104	COMP A	C-104 COMP B		C-104 GL	
Total Solids	ml ml	Total Solids	ml ml	Total Solids	ml ml

- 9) If the volume percent settled solids in the 5 samples are within ~10%, then the samples are representative of the whole composite and proceed to step 10. If the volume percent settled solids vary by much more than 10%, then return the slurry samples in jars C-104 COMP A, C-104 COMP B, and C-104 GL to the kettle, increase the stirring rate and repeat steps 3 through 9.
- 10) Turn the stirrer on and allow the system to stir for ~10 minutes. While the stirrer is on, collect all the remaining material in 500 ml jars as labeled below. It is possible that up to 3 jars may be required. Record the time and date.

	Day	Time			
C-104 (COMP C	C-104 CO	MP D	C-104 CC	OMP E
Total Tare Slurry	g g g	Total Tare Slurry	හ හ	Total Tare Slurry	g g

11) Allow samples C-104 COMP C, C-104 COMP D, and C-104 COMP E to settle for at least 3 days then transfer all standing liquid on samples C-104 COMP A, C-104 COMP B, C-104 COMP C, C-104 COMP D, C-104 COMP E, and C-104 GL to 250 ml jars as labeled below. It is possible that up to 3 jars may be required. Record the time and date.

	Day	Time			
C-104 SU	J P A	C-104 S	UP B	C-104 St	UP C
Total Tare Slurry	a a	Total Tare Slurry	g g	Total Tare Slurry	50 50 50

12) Transfer sample C-104 COMP A, C-104 COMP B, C-104 GL, C-104 SUP A, C-104 SUP B, and C-104 SUP C to the SAL with a chain of custody.

Appendix B: PNNL Test Plan For Inorganic, Organic, and Radiochemical Characterization of C-104 HLW Sample – BNFL-29953-30, Rev. 1

PNNL Test Plan		Document No.: BNFL-29953 Rev. No.: 1	8-030	
Title: Inorganic, Organic and Radiochemical Ch	aracterizatio	on of C-104 HLW Sample		
Work Location: 325/SFO, 325/general labs; 329/general labs	Pag	e 1 of 9		
Author: Michael W. Urie	Effective Date: Upon final signature		e	
Use Category Identification: Reference	Sup	ersedes Date: New		
Identified Hazards:	Required Reviewers: X Technical Reviewer X Project Manager Building Manager X RPL Manager Radiological Control X SFO Manager ES&H X AO&AM Manager X Quality Engineer AO		ger ger	
Are One-Time Modifications Allowed to this Procedure? <u>X</u> YesNo NOTE: If Yes, then modifications are not anticipated to impact safety. For documentation requirements of a modification see SBMS or the controlling Project QA Plan as appropriate. On-The Job Training Required?Yes orX_No FOR REVISIONS: Is retraining to this procedure required?Yes _X_No Does the OJT package associated with this procedure require revision to reflect procedure changes?Yes_No X N/A				
Approval Signature Author Signature on File			Date	
Technical Reviewer <u>Signature on File</u>				
RPL Manager <u>Signature on File</u>				
SFO Manager Signature on File				
Project Manager <u>Signature on File</u>				
AO&AM Manager <u>Signature on File</u>				
Quality Engineer <u>Signature on File</u>				
BNFL Signature on File				

Applicability

This Test Plan describes work to be performed under Task 5.0, Double Shell Tank Analytical Support Change No. 1, for tank wastes from C-104. A composite generated from Test Plan TP-29953-031, "C-104 Sample Compositing", provide the starting material for the inorganic, organic, and radiochemical characterization of the "as received" tank waste material. Per TP-29953-031, two bottles containing approximately 340 grams of slurry and one jar containing approximately 175 grams of decanted supernatant are allocated to support the "as received" characterization analysis. The representative slurry and supernatant sub-samples are extracted from the C-104 HLW composite sample in the High Level Radiation Facility and transferred to the Shielded Analytical Laboratory for analytical sub-sampling, digestion, extraction, and distribution for analysis.

The characterization of the "as received" tank waste materials is conducted to provide key characterization information for processing, as well as to provide limited information for the permitting activities. This Test Plan covers the sub-sampling and processing of analytical samples, and the inorganic, organic and radiochemical analysis of these samples to provide both precise and accurate compositional results that meet, when possible, regulatory requirements.

This Test Plan does not cover physical properties testing on the C-104 material. Physical properties testing is to be conducted under an alternate test plan. Also, this Test Plan does not include analyses to support the dilution of the C-104 material for the CUF activities, nor does it include the inorganic and radiochemical analysis for the resulting diluted material.

Prerequisites

The majority of sub-sampling, analytical processing, and inorganic, organic and radiochemical analysis are being conducted per established and approved Battelle procedures or analytical test plans written specifically to support the work detailed in this Test Plan. The Battelle technical procedures and test plans supporting the characterization activity adhere to SW-846 protocols to the extent possible considering the limited sample volume, radiological condition, and extended target analyte list.

Hazards Assessment and Mitigation

All hazards associated with work conducted to this Test Plan have either been evaluated as part of each laboratory's Hazard Awareness Summary or as hazards unique to a specific analytical preparation or specific analytical procedures or test plans. The Hazard Awareness Summaries are posted for all laboratories in the Radiological Processing Laboratory. Hazards unique to analysis procedures are identified in the applicable procedures or test plans, and where applicable, specific Chemical Processing Permits are obtained.

Quality Control

Quality control is governed by Quality Assurance Planning Subject Area, including Exhibit "Conducting Analytical Work in Support of Regulatory Programs". The Subject Area Exhibit specifies calibration and verification requirements for analytical systems, as well as batch processing quality control samples to monitor preparation and extraction processing (i.e., blanks, duplicates, matrix spikes, matrix spike duplicates, and laboratory control standards). This Test Plan identifies those analyses for which duplicates and matrix spikes are to be performed, and the approximate quantity of sample to be used for each analysis. Technical procedures used to support the characterization of the HLW material are either from Chemical Measurement Center Core Capabilities Manual or are project-specific procedures/test plans written specifically to support activities identified in this Test Plan. Necessary method modifications and deviations from technical procedures, test plans, or SW-846 protocols shall be documented in the final report.

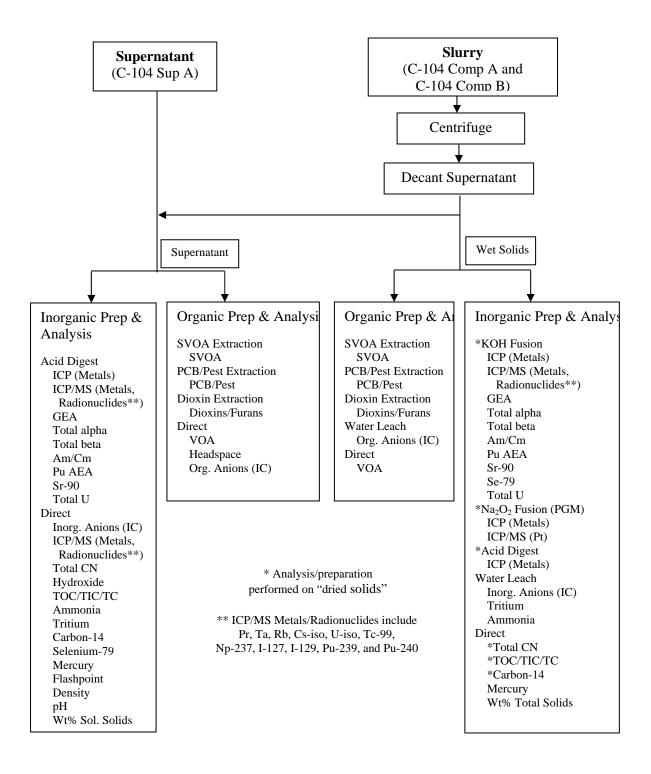
Integrity of the sub-samples and processed samples distributed throughout the laboratory will be maintained by chain-of-custody documentation. Changes to this Test Plan (initialed markups are allowed) shall be approved by the Task Manager.

Exceptions

Based on the history of the C-104 sample, exceptions are being taken to the preservation, temperature control, and hold time requirements specified by SW-846 protocols. The samples are not preserved and no refrigeration of the samples is practical at this time. Hold times, based on sampling dates, have been exceeded prior to sample receipt and starting the analytical characterization.

In some cases, sample sizes based on SW-846 protocols are not attainable due to limited sample quantity. A limited quantity of material is available for the characterization analyses, and to the extent possible, the sample material is allocated based on the PNNL method sensitivity and ability to meet Minimum Reportable Quantities (MRQ). The sample volumes and weights used for analyses may be less than the recommended values in SW-846. The effect of small sample size on detection limits and reproducibility will be discussed in the final report. Specifically, the quantity of supernatant available for analysis is insufficient to ensure that all the MRQs are met. All the supernatant from the C-104 "as received" material is targeted to support the regulatory analyses, including inorganic, radiochemical, and organic analytes of interest.

Due to the limited sample quantity, deviations from SW-846 preparation methods may be necessary (e.g., modification to organic extraction procedure). Per the QA Planning Subject Area Exhibit, modifications (e.g., single organic extraction protocol) require Task Leader approval prior to performing the analysis. Formal method qualification of minor modifications will not be performed, but the modification will be validated by the use of duplicate, matrix spikes and surrogates. Modifications, as well as minor deviations to procedures or SW-846 protocols that do not affect data quality, will be documented in the final report.


Per discussion with WDOE and BNFL, certain analyses included in the Battelle Proposal No. 29274/30406 (for AN-107, AW-101, and C-104 tank waste materials) are not being performed, specifically, Total Oil and Grease, Sulfide, Iodide, Nitrogen, Corrosion Test, Reactive Cyanide, Reactive Sulfide, and ZHE for VOA. Also, three organic analytes (ammonium perfluorooctanoate, oxirane, and picric acid) are being omitted from the organic analysis analyte list following discussions with BNFL and WDOE. Also, per letter communication from BNFL, no TCLP extractions of the solids are being conducted for either inorganic or organic constituents.

Based on radiological dose considerations, the analytical samples may be diluted to reduce the dose to laboratory staff. This may significantly impact the ability to meet the MRQs for some analytes.

Work Instructions

A simple flowchart for the sub-sampling activity is provided in Figure A.1. The analysis methods are contained in Appendix A of the Battelle Proposal No. 29274/30406 and are not duplicated in this Test

Plan. Analytical work is either initiated by a standard Analytical Service Request that will identify each test to be performed on the various samples and sub-samples or through the implementation of an analysis-specific test plan.

The starting analysis material consists of two containers of representative composite slurry and one container of decanted supernatant. The supernatant from the two slurry containers and the decanted supernatant represent essentially all of the supernatant available for characterization analysis. If slurry from the two containers have to be combined prior to sub-sampling, the entire contents of the containers shall be thoroughly homogenized, by mechanical mixing, prior to extracting any sub-samples. All material sub-sampling and most analytical processing (e.g., digestions, fusions, and organic extractions) will be performed in the Shielded Analytical Laboratory due to dose levels.

Sub-Sampling and Phase Separation

The slurry and supernatant materials for "as received" characterization analysis are contained in three sample containers as described in Test Plan BNFL-29953-031. Table A.1 details the container tare values and the sample masses associated with each container.

Sample Material	Bottle ID	Bottle Tare (g)	Total Mass (g)	Supernatant or Slurry Mass (g)
Composite Slurry	C-104 Comp A	133.8	302.7	168.9
Composite Slurry	C-104 Comp B	133.5	303.8	170.3
Supernatant	C-104 Sup A	248.8	424.5	175.7

Table B.1. "As Received" Sub-Samples for Characterization

The composite slurry samples are to be centrifuged to provide solids and supernatant phase separation. The supernatant from the slurry samples is decanted from the "wet solids" and combined with the supernatant in C-104 Sup A. The "wet solids" remaining are to be sub-sampled immediately for weight percent solids (in duplicate) and then sub-sampled for all organic analyses, water leaching analyses (i.e., anions, tritium, and ammonia), and mercury analysis as soon as practical. Following the sub-sampling for organic analysis, water leaching analyses, and mercury analysis, the remaining solids are to be dried to allow representative sub-sampling for all other analyses to be performed at a later date (i.e., without the necessity of additional weight percent solids measurements).

Organic Analysis

Special care is taken handling both the supernatants and "wet solids" to ensure sample integrity is maintained and representative sub-samples are extracted for analysis. Organic analyses (either direct or following extraction processing) are performed on the supernatant and "wet solids" fractions, and Table B.2 details the estimated sub-sampling quantities for each analysis. Table B.4 identifies the organic analyte list and associates each compound with an analysis method. Organic compounds other than those listed in Appendix A that are identified during analysis will be noted in the final report.

Test plans will be used to establish the extraction protocols for each extraction process used to generate samples for organic analysis (i.e., SVOA, PCB/Pest, and/or Dioxin). In order to conserve sample material, the Matrix Spikes and Matrix Spike Duplicates may be prepared using half the sample size used for the Sample and Duplicate.

Inorganic and Radiochemistry Sub-Sampling

Where required by the analysis method, sample preparation by digestion, fusion, or leaching are performed to established and approved Battelle procedures. Table B.3 details the estimated

sub-sampling quantities of the supernatants, "wet solids", and "dried solids". Inorganic analytes and radionuclides of interest are included in Table B.5. Inorganic analytes and radionuclides other than those listed in Table F.5 that are identified during analysis will be noted in the final report.

Analytical Service Request and Special Laboratory Instructions

This Test Plan details the sub-sampling and sample quantity requirements for processing the HLW C-104 "as received" material for inorganic, radiochemistry, and organic analysis. The Analytical Service Request form is to be used to assign unique sample identification numbers to all samples and to identify specific analyses to be performed on each sub-sample. As part of the ASR, special laboratory instructions are to be provided to the laboratory staff to ensure that all sub-sampling and preparation activities are accomplished per this Test Plan. The ASR and the special instruction require review and approval of the Task Leader and become part of the project record once approved and implemented. Changes to the ASR or special instructions also require the approval of the Task Leader.

Phase	Analysis or Procedure	Sample	Duplicate	MS/MSD	SW-846 ⁽²⁾
Wet Solids	VOA	0.5 g	0.5 g	0.5 g	5 g
	Water Leach (IC Org.)	1 g	1 g	1 g	n/a
	Extraction (SVOA)	5 g	5 g	5 g	30 g
	Extraction (PCB/Pest)	5 g	5 g	5 g	30 g
	Extraction (Dioxins)	5 g	5 g	5 g	30 g
	Sub Total	16.5 g	16.5 g	16.5 g	
	Total		49.5 g		
Supernatant	VOA	2 ml	2 ml	2 ml	5 ml
_	Headspace	2 ml	2 ml	2 ml	10 g
	IC (organic anions)	1 ml	1 ml	1 ml	n/a
	Extraction (SVOA)	35 ml	35 ml	35 ml	3000 ml
	Extraction (PCB/Pest)	35 ml	35 ml	35 ml	3000 ml
	Extraction (Dioxins)	10 ml	10 ml	10 ml	3000 ml
	Sub Total	85 ml	85 ml	85 ml	
	Total		255 ml		

Table B.2. Organic Analytical Sub-Sampling Quantities Required ⁽¹⁾

(1) Subsampling quantities are estimates; actual quantities used for the analyses will be dictated by the total quantity of material available for analysis.

(2) Typical SW-846 total volume for sample, duplicate, matrix spike, and matrix spiked duplicate extraction

Phase	Analysis or Procedure	Sample	Duplicate	MS	SW-846 ⁽²⁾
Dried Solids	Acid Digest (ICP, ICP/MS)	1 g	1 g	1 g	3 g
	KOH Fusion (ICP,ICP/MS, Radiochemistry)	0.3 g	0.3 g	0.3 g	n/a
	Na ₂ O ₂ Fusion (ICP, ICP/MS)	0.3 g	0.3 g	0.3 g	n/a
	Total CN	0.5 g	0.5 g	0.5 g	75 g
	TOC/TIC/TC	0.5 g	0.5 g	0.5 g	n/a
	Carbon-14	0.5 g	0.5 g	0.5 g	n/a
	Selenium-79	1 g	1 g	1 g	n/a
Wet Solids	Wt% Solids	3 g	3 g	n/a	n/a
	Water Leach (IC, Ammonia, H-3)	2 g	2 g	2 g	n/a
	Mercury	0.3 g	0.3 g	0.3 g	0.6 g
	Sub Totals	9.4 g	9.4 g	6.4 g	
	Total	25.2 g			
Supernatant	Acid Digest (ICP, ICP/MS, Radiochemistry)	8 ml	8 ml	8 ml	300 ml
	Dilution (ICP/MS)	1 ml	1 ml	1 ml	n/a
	IC (inorganic anions)	1 ml	1 ml	1 ml	n/a
	Mercury	1 ml	1 ml	1 ml	300 ml
	Total CN	1 ml	1 ml	1 ml	1500 ml
	TOC/TIC/TC	1 ml	1 ml	1 ml	n/a
	Carbon-14	1 ml	1 ml	1 ml	n/a
	Ammonia	2 ml	2 ml	n/a	n/a
	Tritium (H-3)	2 ml	2 ml	2 ml	n/a
	Hydroxide (OH) & pH	5 ml	5 ml	n/a	n/a
	Flashpoint	2 ml	2 ml	n/a	150 ml
	Total Dissolved Solids	5 ml	5 ml	n/a	n/a
	Density	2 ml	2 ml	n/a	n/a
	Sub Totals	32 ml	32 ml	16 ml	
	Total 80 ml				

Table B.3. Inorganic/Radiochemistry Analytical Sub-Sampling Quantities Required ⁽¹⁾

(1) Subsampling quantities are estimates; actual quantities used for the analyses will be dictated by the total quantity of material available for analysis.

(2) Typical SW-846 total volume for sample, duplicate, and matrix spike.

		MRQ			MRQ
CAS	Compound/Element	µg/Kg	CAS	Compound/Element	µg/Kg
PNL-ALO	-346(9056)				
144-62-7	Oxalic acid		64-19-7	Acetic acid	
64-18-6	Formic acid		79-10-7	2-Propenoic acid	
PNL-ALO	-346(3810/5021)			· · · · · · · · · · · · · · · · · · ·	
121-44-8	Triethylamine	500	71-23-8	n-Propyl alcohol (1-propanol)	
64-17-5	Ethyl alcohol		71-36-3	n-Butyl alcohol	900
67-56-1	Methyl alcohol (Methanol)		75-65-0	2-Methyl-2-propanol	
67-63-0	2-Propyl alcohol (Isopropanol)		78-92-2	1-Methylpropyl alcohol (2-butanol)	
PNL-ALO					
1336-36-3	Polychlorinated biphenyls (PCBs)	3300	58-89-9	gamma-BHC (Lindane)	
309-00-2	Aldrin	22	60-57-1	Dieldrin	43
319-84-6	alpha-BHC	22	72-20-8	Endrin	43
319-85-7	beta-BHC	22	72-54-8	4,4'-DDD	
465-73-6	Isodrin	22	76-44-8	Heptachlor	22
50-29-3	4,4'-DDT		8001-35-2	Toxaphene	900
	-345(8270C)			I	
100-00-5	p-Nitrochlorobenzene		2234-13-1	Octachloronaphthalene	
100-25-4	1,4-Dinitrobenzene	800	50-32-8	Benzo(a)pyrene	1100
100-51-6	Benzyl alcohol		53-70-3	Dibenz[a,h]anthracene	2700
106-46-7	1,4-Dichlorobenzene		541-73-1	1,3-Dichlorobenzene	
108-95-2	Phenol	2100	62-75-9	N-Nitroso-N,N-dimethylamine	800
110-86-1	Pyridine	5300	67-72-1	Hexachloroethane	
1319-77-3	Cresol (1)		82-68-8	Pentachloronitrobenzene (PCNB)	1600
95-48-7	2-Methylphenol (Cresol isomer)		87-68-3	Hexachlorobutadiene	1900
106-44-5	4-Methylphenol (Cresol isomer)		87-86-5	Pentachlorophenol	
117-81-7	Di-sec-octyl phthalate		88-85-7	2-sec-Butyl-4,6-dinitrophenol (Dinoseb)	
117-84-0	n-dioctyl phthalate		91-20-3	Naphthalene	
118-74-1	Hexachlorobenzene	3300	92-52-4	1,1`-Biphenyl	
120-82-1	1,2,4-Trichlorobenzene		95-50-1	1,2-Dichlorobenzene	2000
122-39-4	N,N-Diphenylamine (2)	4300	98-86-2	Acetophenone	3200
126-73-8	Tributyl phosphate		98-95-3	Nitrobenzene	4700
128-37-0	2,6-Bis(tert-butyl)-4-methylphenol			l	
TEST Plan	1 per 8290				
1746-01-6	2,3,7,8-Tetrachlorodibenzo-p-dioxin		57117-31-4	2,3,4,7,8-Pentachlorodibenzofuran	
19408-74-3	1,2,3,7,8,9-Hexachlorodibenzo-p-dioxin		57117-41-6	1,2,3,7,8-Pentachlorodibenzofuran	
3268-87-9	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin		57117-44-9	1,2,3,6,7,8-Hexachlorodibenzofuran	
35822-39-4	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin			1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin	
39001-02-0	1,2,3,4,6,7,8,9-Octachlorodibenzofuran			2,3,4,6,7,8-Hexachlorodibenzofuran	
39227-28-6	1,2,3,4,7,8-Hexachlorodibenzo-p-dioxin		67562-39-4	1,2,3,4,6,7,8-Heptachlorodibenzofuran	
40321-76-4				1,2,3,4,7,8-Hexachlorodibenzofuran	
51207-31-9	2,3,7,8-Tetrachlorodibenzofuran		72918-21-9	1,2,3,7,8,9-Hexachlorodibenzofuran	
55673-89-7	1,2,3,4,7,8,9-Heptachlorodibenzofuran				
	-335(8260B)				
100-41-4	Ethyl benzene	3300	141-78-6	Acetic acid ethyl ester	11000

Table B.4. Organic Analytes of Interest List and MRQs

		MRQ			MRQ
CAS	Compound/Element	μg/Kg	CAS	Compound/Element	μg/Kg
100-42-5	Styrene		142-82-5	n-Heptane	
10061-01-5	cis-1,3-Dichloropropene	6000	287-92-3	Cyclopentane	
10061-02-6	trans-1,3-Dichloropropene	6000	4170-30-3	2-Butenaldehyde (2-Butenal)	
106-35-4	3-Heptanone		56-23-5	Carbon tetrachloride	2000
106-42-3	p-Xylene & m-Xylene	3300	563-80-4	3-Methyl-2-butanone	
106-93-4	Ethylene dibromide	5000	591-78-6	2-Hexanone	
106-97-8	Butane		627-13-4	Nitric acid, propyl ester	
106-99-0	1,3-Butadiene		684-16-2	Hexafluoroacetone (3)	
107-02-8	Acrolein		67-64-1	2-Propanone (Acetone)	53300
107-05-1	3-Chloropropene	10000	67-66-3	Chloroform	2000
107-06-2	1,2-Dichloroethane	2000	71-43-2	Benzene	3300
107-12-0	Propionitrile	120000	71-55-6	1,1,1-Trichloroethane	2000
107-13-1	Acrylonitrile	28000	74-83-9	Bromomethane	5000
107-87-9	2-Pentanone		74-87-3	Chloromethane	10000
108-10-1	4-Methyl-2-pentanone	11000	75-00-3	Chloroethane	
108-38-3	m-Xylene (See 106-42-3)	3300	75-01-4	1-Chloroethene	2000
108-87-2	Methylcyclohexane		75-05-8	Acetonitrile	12700
108-88-3	Toluene	3300	75-09-2	Dichloromethane (Methylene Chloride)	10000
108-90-7	Chlorobenzene	2000	75-15-0	Carbon disulfide	
108-94-1	Cyclohexanone		75-34-3	1,1-Dichloroethane	2000
109-66-0	n-Pentane		75-35-4	1,1-Dichloroethene	2000
109-99-9	Tetrahydrofuran		75-43-4	Dichlorofluoromethane	
110-12-3	5-Methyl-2-hexanone		75-45-6	Chlorodifluoromethane	
110-43-0	2-Heptanone		75-69-4	Trichlorofluoromethane	10000
110-54-3	n-Hexane		75-71-8	Dichlorodifluoromethane	2400
110-82-7	Cyclohexane		76-13-1	1,2,2-Trichloro-1,1,2-trifluoroethane	10000
110-83-8	Cyclohexene		76-14-2	1,2-Dichloro-1,1,2,2-tetrafluoroethane	
111-65-9	n-Octane		78-87-5	1,2-Dichloropropane	
111-84-2	n-Nonane		78-93-3	2-Butanone	12000
123-19-3	4-Heptanone		79-00-5	1,1,2-Trichloroethane	2000
123-38-6	n-Propionaldehyde		79-01-6	1,1,2-Trichloroethylene	2000
123-86-4	Acetic acid n-butyl ester		79-34-5	1,1,2,2-Tetrachloroethane	2000
123-91-1	1,4-Dioxane		95-47-6	o-Xylene	3300
126-98-7	2-Methyl-2-propenenitrile	28000	96-22-0	3-Pentanone	
127-18-4	1,1,2,2-Tetrachloroethene	2000			
PNL-ALO-3	345(8270C) –Standards Unavailable		PNL-ALO-	-346(8260B) – Very reactive	
1321-64-8	Pentachloronaphthalene		57-14-7	1,1-Dimethylhydrazine	
1335-87-1	Hexachloronaphthalene		60-34-4	Methylhydrazine	
	Tetrachloronaphthalene		624-83-9	Methyl isocyanate	
Deleted per					1
	Ammonium perfluorooctanoate		88-89-1	Picric acid	
	Oxirane				
(1) Cre (2) Not (3) Tox	sol measured as independent Methylphenols. be distinguished from Diphenylamine tic gas, not previously analyzed " = No MRQ provided by BNFL				<u> </u>

ICP Analytes	¥		
Silver	Iron		Antimony
Aluminum	Potassium		Selenium
Arsenic	Lanthanum ⁽¹⁾		Silicon
Boron	Lithium		Tin
Barium	Magnesium		Strontium ⁽¹⁾
Beryllium	Manganese		Tellurium ⁽¹⁾
Bismuth	Molybdenum		Thorium ⁽¹⁾
Calcium	Sodium		Titanium ⁽¹⁾
Cadmium	Neodymium ⁽¹⁾		Thallium
Cerium ⁽¹⁾	Nickel		Uranium
Cobalt	Phosphorus		Vanadium
Chromium	Lead		Tungsten
Copper	Palladium		Yttrium
Dysprosium	Rhodium		Zinc
Europium	Ruthenium ⁽¹⁾		Zirconium
IC Analytes			
Bromide	Nitrite	Nitrate	Phosphate
Chloride	Fluoride	Sulfate	<u>^</u>
ICP-MS Analytes			
Iodine-127	Plutonium-240		Uranium-233
Iodine-129	Praseodymium		Uranium-234
Neptunium-237	Rubidium		Uranium-235
Platinum	Tantalum		Uranium-236
Plutonium-239	Technitium-99		Uranium-238
Radiochemistry Analytes			
Alpha, Total	Cobalt-60		Plutonium-241
Antimony-125 (GEA)	Curium-242 (AEA)		Ruthenium-106/Rhodium-106
Americium-241 (AEA)	Curium-243/244 (AEA)		Selenium-79
Americium-241 (GEA) ⁽¹⁾	Europium-154 (GEA)		Strontium-90/Yttrium-90
Beta, Total	Europium-155 (GEA)		Tin-126 (GEA)
Carbon-14	Niobium-94 (GEA)		Tritium
Cesium-134 (GEA)	Plutonium-238		Uranium-Fluorimetry
Cesium-137 (GEA)	Plutonium-239/240 ⁽¹⁾		5
Other Analytes ⁽¹⁾			
Ammonia/Ammonium	Mercury		Wt% Dissolved Solids
Cyanide	pH (Supernatant)		Wt% Suspended Solids
Flashpoint (Supernatant)	Total Organic Carbon		
Hydroxide (Supernatant)	Total Inorganic Carbon		
Analytes Not Analyzed per			
Total Nitrogen	Total Sulfur		Total Iodine
Total Oil/Grease	Reactive Sulfur		Reactive Cyanide
SS Corrosion Testing	TCLP Extractions/Analys	is	<u>.</u>
6	·····		

Table B.5. Inorganic and Radiochemistry Analytes of Interest List(Note: No MRQs Provided For Inorganic Analytes or Radionuclides of Interest)

(1) Additional Analytes of Interest Measured and Reported

Appendix C: PNNL Test Plan for Organic Extraction of C-104 Samples and Sub-sampling for VOA, Headspace, and Anions, BNFL-29953-080, Rev. No. 1

PNNL Test Plan	Document No.: BNFL-29953-080 Rev. No.: 1			
Title: Organic Extraction of C-104 Samples and s	ub-sampling for VOA, Headspace, and Anions			
Work Location: 325/SFO, 325/general labs; 329/general labs	Page 1 of 17			
Author: Michael W. Urie	Effective Date: Upon final signature			
Use Category Identification: Reference	Supersedes Date: New			
Identified Hazards: Required Reviewers: x Radiological X x Hazardous Materials Building Manager X Physical Hazards Radiological Control X SFO Manager Hazardous Environment ES&H X AO&AM M Other: Other: X Page Project Mare				
Are One-Time Modifications Allowed to this P <u>X</u> Yes No NOTE: If Yes, then modifications are not anticipated to imp SBMS or the controlling Project QA Plan as appropriate.	rocedure?			
On-The Job Training Required? Yes or FOR REVISIONS: Is retraining to this procedure required? Yes _X Does the OJT package associated with this procedure r X N/A				
spproval Sig	nature Date			
Author (VOA, SVOA)/Reviewer Signature on F	ile			
Author (PCB, Headspace)/Reviewer Signature of	ı File			
Author (Dioxins/Furans, Anions)/Reviewer Signa	ture on File			
RPL Manager Signature on File				
SFO Manager Signature on File				
Project Manager/Reviewer Signature on File				
AO&AM Manager Signature on File				
Quality Engineer <u>Signature on File</u>				

Applicability

This Organic Extraction Test Plan describes work to be performed under Test Plan TP-29953-030, Inorganic, Organic and Radiochemical Characterization of C-104 Samples. These samples are slurries, which contain solids, and decanted liquid. Together these samples provide the starting material for the organic characterization of the "as received" materials. Per the TP-29953-030, two bottles containing about 340 grams of slurry and one jar containing about 175 grams of supernatant will be sub-sampled for VOA, headspace analysis, organic anions, SVOA, pesticide/PCB, and Dioxin/Furan analysis, as well as inorganic and radiochemistry analysis specified in the test plan. Sub-sampling and dilutions for VOA and headspace analysis will be performed prior to beginning extractions so as not to contaminate these sub-samples with solvent vapors.

Based on the history of the samples, and the limited quantities available, exceptions are being taken to the preservation, temperature control, sample size, and hold time requirements specified by SW-846 protocols. The choice of spiking solutions and extraction solvents is based upon SW-846 methods 8270C, 8081A/8082 and 8290 guidelines, where applicable.

This revision provides final documentation for the actual work performed for phase separation of the C-104 slurry, sub-sampling activities for the VOA and Headspace analyses, and the organic extraction process performed for preparing the SVOA, PCB, and Dioxin/Furan samples.

Hazards Assessment and Mitigation

The radioactive work conducted under this Test Plan is comprised of analytical organic analysis preparative operations that have been conducted routinely in the RPL and 329 Facilities. The organic extractions with small quantities of methylene chloride or methylene chloride/acetone mixtures have been performed in the Shielded Analytical Laboratory (SAL) many times and are included as a standard preparative activity on the RPL Analytical Service Request. The organic solvent extraction operations are included in the SAL work authorization. Since all of the analytical preparative operative operations fall within current work authorizations, no further assessment of the hazards is detailed in this Test Plan.

Quality Control

Per TP-29953-030, quality control is governed by PNNL's web-based Quality Assurance Planning Subject Area, "Conducting Analytical Work in Support of Regulatory Programs". The organic analyses will be performed in duplicate using a sample size that will closely meet regulatory reporting level for waste material. Sample sizes are specified in Test Plan TP-29953-030. Surrogate spike compounds will be added to the sample, sample duplicate, and matrix spikes in order to provide information on analyte recoveries. Separate laboratory control samples (LCS) will be prepared outside the hot-cell.

Integrity of the sub-samples and processed extracts distributed throughout the laboratory will be maintained by chain-of-custody documentation. The Task Manager shall approve changes to this Test Plan (initialed markups are allowed).

Work Instructions

An extraction scheme for the SVOA extraction activity is provided in Figure C.1. Extraction schemes for PCB/pesticide and dioxin extractions are provided in Figures C.2 and C.3, respectively.

Total dissolved solids of the supernatant and weight percent solids of the centrifuged solids will be determined prior to sub-sampling and extracting.

The extractions of these C-104 HLW samples will be performed in the Shielded Analytical Laboratory within the 325 facility.

Total Dissolved Solids and Weight Percent Solids Determination

Because these samples may contain reduced iron or other magnetically separable particles, a magnetic stir-bar and magnetic stir table should not be used. A better approach is to perform the stirring with an impeller-type stirrer, such as a Teflon coated spatula rotated by a variable speed drill. After a few minutes of stirring, and once the solids appear to be suspended, a 1-g to 3-g aliquot is placed in a tared graduated centrifuge tube, weighed, and centrifuged at 1000 RPM for approximately one hour. After centrifuging, note and record the volume of both the liquid and the solids in the tube. Decant the liquid into a tared beaker, weigh and dry at 105°C overnight. Weigh the beaker after at least 12 hours of drying to determine the total dissolved solids for the supernatant. Weight percent solids determination will be performed on the centrifuged solids, remaining in the centrifuge tube, in accordance with PNL-ALO-504.

Separation of the Wet Solids from the Slurry

Centrifugation of the slurry (i.e., C104 Comp A and C104 Comp B) may be more convenient than filtration for the separation of the wet solids from the slurry. In order to centrifuge the 120-mL jars, they must first be balanced to ± 1 g. Weigh each jar and transfer the appropriate quantity of liquid from the heavier jar to the lighter jar to balance them. Place the jars in clean polyethylene sleeves, and centrifuge at no greater than 1000 RPM for 1 hour. As a precaution, it is prudent to perform a "dry-run" first, using balanced jars containing approximately 100 mL of deionized water, and centrifuging at 1100 RPM. After the jars containing the slurries have been centrifuged, carefully remove them from the centrifuge and the plastic sleeves. Carefully decant the supernatant into a clean jar or combine with the jar containing C-104 supernatant (i.e., container C104 SUP. A) if room is available in the container. Weigh the jar containing the wet centrifuged solids, and record this weight on the benchsheet. In the event the total quantities of supernatant and wet solids are less than those listed in test plan BNFL-29953-30, contact Michael W. Urie, 376-9454.

Sub-sampling for VOA and Headspace analysis

VOA and headspace aliquots shall be made prior to introducing methylene chloride, or other solvents, into the hot-cells.

Headspace samples should be aliquotted into clean 10-mL headspace vials and sealed with a septalined cap immediately afterward. A 1-mL supernatant sample, sample duplicate, sample triplicate and blank will be prepared for each sample as described in Test Plan TP-29953-030, Table C.2. (Note: The sample triplicate is an additional sub-sample not identified in TP-29953-030.) A 1-mL supernatant matrix spike and matrix spike duplicate will also be aliquotted at this time. The headspace vials should be tared on an analytical balance, and each 1-mL aliquot weighed and recorded, so that the density of the supernatant can be determined during this step. Additionally, 50-microliter aliquots each of the supernatant sample, sample duplicate, sample triplicate, matrix spike, and matrix spike duplicate shall also be prepared to permit quantitation of analytes that may be outside the calibration range for a 1-mL sample size. VOA samples should be aliquotted into clean 40-mL VOA vials and sealed with a septa-lined cap immediately afterward. A 2-mL supernatant sample, sample duplicate and blank will be prepared for each sample as described in Test Plan TP-29953-030. A 1-mL supernatant matrix spike, and matrix spike duplicate will also be aliquotted at this time. Additionally, 50-microliter aliquots of each the supernatant sample, sample duplicate, matrix spike, matrix spike duplicate shall also be prepared to permit quantitation of analytes that maybe outside the calibration range for a 2-mL sample size.

Half gram aliquots of the wet centrifuged solids will be aliquotted into clean 40-mL VOA vials, diluted with organic-free water to a volume of 5 mL and sealed immediately with a septa-lined cap. The aliquots for the VOA MS and MSD shall be 0.25-g rather than the 0.5-g aliquots used for the sample and duplicate. In a like manner, a second set of wet centrifuged solids will be aliquotted using a 50-mg sample size for each the sample, duplicate, MS and MSD.

VOA and headspace samples will be transferred from the hot-cell immediately after preparation. For further guidance or questions regarding VOA sub-sampling contact George S. Klinger, 372-0448. For further guidance or questions regarding headspace sub-sampling contact Eric W. Hoppe, 376-2126.

Extraction Samples for SVOA, PCB/Pesticides and Dioxins Analysis

General Comments:

- The quantities of the sample, sample duplicate, matrix spike, and matrix spike duplicate are given in Table C.2 of Test Plan BNFL-29953-030 and restated in Section 2.1.
- Teflon separatory funnels, with FEP caps, are used for the liquid-liquid extraction processing and Teflon centrifuge tubes are used for the subsequent solids ultrasonic processing.
- Phosphoric acid is used to adjust the pH prior to extraction of the liquids, as appropriate.
- A small (0.5 ml) portion of the liquid is potentiometricly titrated to determine the quantity of phosphoric acid required to adjust the pH of the sample. The amount of precipitate formed during acidification will be evaluated and the precipitate extracted separately, if required.
- Spiking solutions will be added to the sample prior to extraction. If solids formed as a result of pH adjustment warrant a separate extraction step, additional spikes will not be added as these extracts will be recombined with the "like" phase extracts.

The nominal MDLs for liquids and solids are shown in Tables B.1 and B.2, respectively. The surrogate spikes and quantities added are shown in Table C.3. The appropriate spiking materials shall be provided by G. Klinger for SVOA, by E. Hoppe for pesticides/PCB, and J. Campbell for dioxins/furans.

Analysis	MDL (ppb, 1 L water)	MDL (ppb, 25 mL sample)
Semivolatiles	10 to 25	400 to 1000
Pesticides and PCBs	0.1 to 1	4 to 40
Dibenzodioxins and Dibenzofurans	1×10^{-4} to 1×10^{-3}	4×10^{-3} to 4×10^{-2}

Table C.1. Liquid portion HLW organic analysis MDLs

Analysis	MDL (ppm, 1 g solid)	MDL (ppm, 5 g sample)
Semivolatiles	10 to 25	2 to 5
Pesticides and PCBs	0.1 to 1	0.02 to 0.2
Dibenzodioxins and	1×10^{-4} to 1×10^{-3}	2×10^{-5} to 2×10^{-4}
Dibenzofurans		

Table C.2. Solid Portion HLW Organic Analysis MDLs

Analysis	Spike Compounds	Amounts Added (µg)
Semivolatiles	phenol-d ₅	τ 75
Semivolatiles	2-fluorophenol	75
	2-chlorophenol-d ₄	75 75
	2,4,6-tribromophenol	75 75
	1,2-dichlorobenzene-	73 50
	d ₄	50 50
	nitrobenzene-d ₅	50 50
	2-fluorobiphenyl	50 50
	p-terphenyl-d ₁₄	50
Dibenzodioxins and	$^{13}C_{12}$ -2,3,7,8 TCDD	0.05
Dibenzofurans	¹³ C ₁₂ -2,3,7,8 TCDF	0.05
Dibelizoruralis	$^{13}C_{12}$ -1,2,3,7,8 PeCDD	0.05
	$^{13}C_{12}$ -1,2,3,7,8 PeCDD	0.05
	$^{13}C_{12}$ -2,3,4,7,8 PeCDF	0.05
	$^{13}C_{12}$ -1,2,3,4,7,8 FCCDF	0.05
	HxCDD	0.05
	$^{13}C_{12}$ -1,2,3,6,7,8	0.05
	HxCDD	0.05
	$^{13}C_{12}$ -1,2,3,4,7,8	0.05
	C ₁₂ -1,2,5,4,7,8 HxCDF	0.05
	$^{13}C_{12}$ -1,2,3,6,7,8	0.05
	HxCDF	0.05
		0.03
	¹³ C ₁₂ -1,2,3,7,8,9 HxCDF	0.05
	_	0.1
	$^{13}C_{12}$ -2,3,4,6,7,8	
	HxCDF	
	$^{13}C_{12}$ -1,2,3,4,6,7,8	
	$\frac{\text{HpCDD}}{^{13}\text{C}} = 1.2.2.4 \text{ (7.8)}$	
	$^{13}C_{12}$ -1,2,3,4,6,7,8	
	HpCDF	
	$^{13}C_{12}$ -1,2,3,4,7,8,9	
	HpCDF	
Destinition and DCD	¹³ C ₁₂ -OCDD	0.040
Pesticides and PCBs	tetrachloro-m-xylene	0.040
	decachlorobiphenyl	0.040

Table C.3. Surrogate Spike Compounds and Levels Added to Samples

Extraction of the supernatant portion of the HLW samples

Extractions for the SVOA supernatant sample and duplicate are performed on 20-mL aliquots, with the extractions for the SVOA matrix spike and matrix spike duplicates being performed on 10-mL aliquots.

Extractions for all pesticides and PCB supernatant samples are performed on 10-mL aliquots. And, extractions for dioxins/furans supernatant sample and duplicate are performed on 15-mL aliquots, with the extractions for the dioxins/furans matrix spike and matrix spike duplicate being performed on 7.5-mL aliquots. The quantity of matrix spike used is given in Table C.4. Extraction blanks shall be prepared using the same quantity of organic-free water as the quantity of supernatant sample. Stepwise instructions for performing the extractions are given in the appropriate sections.

Semivolatiles

As shown in Figure C.1, the supernatant portion of the as received sample is diluted with 25 mL of 0.01 N NaOH (prepared from organic-free water) prior to extraction. Following dilution the supernatant sample is extracted three times with equal portions of methylene chloride.

The supernatant sample is then pH adjusted by slow drop-wise addition of phosphoric acid while the sample is cooled in an ice-bath during the acidification. The pH-adjusted supernatant sample is extracted three times with equal portions of methylene chloride.

If during the acidification process any solids are formed at a relative quantity >1% by volume, the solids are separated, desiccated with sodium sulfate, and ultrasonic extracted three times using equal portions of methylene chloride.

All SVOA extracts from the supernatant portion of the as received sample are combined and concentrated to 1 mL outside the hot-cells.

Pesticides/PCB

As shown in Figure C.2, the supernatant portion of the as received sample is diluted with 25 mL of 0.01 N NaOH (prepared from organic-free water) prior to extraction. Following dilution the supernatant sample is extracted three times with equal portions of methylene chloride.

The supernatant sample is then pH adjusted by slow drop-wise addition of phosphoric acid while the sample is cooled in an ice-bath during the acidification. The pH-adjusted supernatant sample is extracted three times with equal portions of methylene chloride.

If during the acidification process any solids are formed at a relative quantity >1% by volume, the solids are separated, desiccated with sodium sulfate, and ultrasonic extracted three times using equal portions of a 1:1 methylene chloride/acetone mixture.

All extracts from the supernatant portion of the as received sample are combined and concentrated to 1 mL outside the hot-cells.

Dioxins/Furans

Adjustment of the pH is presumed not to be necessary for the dioxin/furan extractions. To dilute the sample, 25 mL of 0.01 N NaOH (prepared from organic-free water) will be added to the sample prior to extraction. As shown in Figure C.3, a supernatant sample is extracted (liquid-liquid) three times with equal portions of methylene chloride. The extracts from the supernatant portion of the as received sample are combined and concentrated to 1 mL outside the hot-cells.

Extraction of the centrifuged solids portion of the HLW samples

The solid sample and duplicate will be extracted using 5 g of the solids portion of the as received sample. A matrix spike and spike duplicate will be extracted using 2.5 g of sample. The quantity of matrix spike used is given in Table C.4. Leach blanks shall be prepared using the same quantity of organic-free water as the quantity of 0.01 N NaOH added to the sample. Stepwise instructions for performing the extractions are given in the appropriate sections.

SVOAs

As shown in Figure C.1, the solids portion of the as received sample is leached (with ultrasonic agitation) once with 50 mL of organic-free 0.01 N NaOH solution. Based upon the earlier dissolution test using a 0.5-g aliquot, any solids remaining at a level greater than 1% of the original solids portion are separated and extracted separately. The NaOH leachate (i.e., dissolved solids) is extracted three times with equal portions of methylene chloride.

The NaOH leachate is then pH adjusted by slow drop-wise addition of phosphoric acid while the sample is cooled in an ice-bath during the acidification. If a solid precipitate is formed at a relative quantity of >1% by volume, it is separated and extracted separately. The pH-adjusted NaOH leachate is extracted three times with equal portions of methylene chloride.

The undissolved solids and any solids formed during the acidification process are combined, desiccated with sodium sulfate, and ultrasonic extracted three times using methylene chloride.

All SVOA extracts from the solids portion of the as received sample are combined and concentrated to 1 mL outside the hot cells.

Pesticide/PCBs

As shown in Figure C.2, the solids portion of the sample is leached (with ultrasonic agitation) twice with 40 mL of organic-free 0.01 N NaOH solution. Based upon the earlier dissolution test using a 0.5-g aliquot, any solids remaining at a level greater than 1% of the original solids portion are separated and extracted separately. The NaOH leachate (i.e., dissolved solids) is extracted three times with equal portions of methylene chloride.

The NaOH leachate is then pH adjusted by slow drop-wise addition of phosphoric acid while the sample is cooled in an ice-bath during the acidification. If a solid precipitate is formed at a relative quantity of >1% by volume, it is separated and extracted separately. The pH-adjusted NaOH leachate is extracted three times with equal portions of methylene chloride.

The undissolved solids and any solids formed during the acidification process are combined, desiccated with sodium sulfate, and ultrasonic extracted three times using a 1:1 methylene chloride/acetone solution.

All pesticide/PCB extracts from the solids portion of the as received sample are combined and concentrated to 1 mL outside the hot-cells.

Dioxins/Furans

As shown in Figure C.3, no liquids will be added to the solid portion of the solids sample, as was done for the SVOA and pesticide/PCB extractions. The dioxin extractions do not require a pH adjustment of the wet centrifuged solids. A desiccant is mixed with the wet solids to retain any water, and the desiccated solids are ultrasonically extracted three times with a 1:1 methylene

chloride/acetone solution. The dioxin extracts are combined and concentrated to 1 mL outside the hot-cells.

Preparation and Extraction of Matrix Spikes and LCS for SVOA, Dioxins/Furans and pesticide/PCB analysis

A separate LCS will be prepared for each analysis outside the hot-cells using the sample reagents used for the extraction of the HLW samples. The LCS matrix will consist of 1 Liter of distilled water. The LCSs will be extracted using liquid-liquid extraction. The LCSs will be spiked with the compounds and levels listed in Table C.4. Separate LCSs will be prepared for SVOA, Dioxin/Furans, pesticides, and PCBs. The LCS will be spiked with the same surrogates as listed in Table C.3.

CAS Reg. No.	Compound	μg
Semivolatile MS a	and LCS spike compounds	
100-51-6	Benzyl alcohol	50
106-46-7	1,4-Dichlorobenzene	50
108-95-2	Phenol	50
117-81-7	Di-sec-octyl phthalate	50
117-84-0	n-dioctyl phthalate	50
118-74-1	Hexachlorobenzene	50
120-82-1	1,2,4-Trichlorobenzene	50
50-32-8	Benzo(a)pyrene	50
53-70-3	Dibenz[a,h]anthracene	50
541-73-1	1,3-Dichlorobenzene	50
62-75-9	N-Nitroso-N,N-dimethylamine	50
67-72-1	Hexachloroethane	50
87-68-3	Hexachlorobutadiene	50
87-86-5	Pentachlorophenol	50
91-20-3	Naphthalene	50
95-50-1	1,2-Dichlorobenzene	50
98-95-3	Nitrobenzene	50
100-00-5	p-Nitrochlorobenzene	50
100-25-4	1,4-Dinitrobenzene	50
110-86-1	Pyridine	50
122-39-4	N,N-Diphenylamine	50
126-73-8	Tributyl phosphate	50
128-37-0	2,6-Bis(tert-butyl)-4-methylphenol	50
1319-77-3	Cresol	50
2234-13-1	Octachloronaphthalene	50
82-68-8	Pentachloronitrobenzene (PCNB)	50
88-85-7	2-sec-Butyl-4,6-dinitrophenol (Dinoseb)	50
92-52-4	1,1'-Biphenyl	50
98-86-2	Acetophenone	50
CB MS and LCS	S spike compounds	•
11097-69-1	PCB Aroclor 1254	0.5
	Pesticides MS and LCS spike compounds	
58-89-9	Gamma-BHC	0.2

 Table C.4.
 Laboratory Control Sample Spiking Level

CAS Reg. No.	Compound	μg
50-29-3	4, 4'-DDT	0.8
72-20-8	Endrin	0.8
76-44-8	Heptachlor	0.2
309-00-2	Aldrin	0.2
60-57-1	Dieldrin	0.8
Dioxins/Furans M	S and LCS spike compounds	
1746-01-6	2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD)	8.0
40321-76-4	1,2,3,7,8-Pentachlorodibenzo-p-dioxin (PeCDD)	40
57653-85-7	1,2,3,6,7,8-Hexachlorodibenzo-p-dioxin (HxCDD)	40
35822-39-4	1,2,3,4,6,7,8-Heptachlorodibenzo-p-dioxin (HpCDD)	40
3268-87-9	1,2,3,4,6,7,8,9-Octachlorodibenzo-p-dioxin (OCDD)	80
51207-31-9	2,3,7,8-Tetrachlorodibenzofuran (TCDF)	8.0
57117-41-6	1,2,3,7,8-Pentachlorodibenzofuran (PeCDF)	40
57117-44-9	1,2,3,6,7,8-Hexachlorodibenzofuran (HxCDF)	40
67562-39-4	1,2,3,4,6,7,8-Heptachlorodibenzofuran (HpCDF)	40
39001-02-0	1,2,3,4,6,7,8,9-Octachlorodibenzofuran (OCDF)	80

Preparation of Organic Anion Samples

The organic anion sample preparation uses a sodium-form of a cation exchange column to remove most of the radioactive cesium and strontium to reduce the overall radioactivity in the samples. Organic anion samples (1-mL supernatant samples and 1 g wet solids samples) are prepared in accordance with procedure AOAM-03. For further guidance and questions regarding execution of this procedure contact James A. Campbell, 376-0899.

Initial Testing

<u>Determination of Titration Curves for Supernatants and Soluble Fraction of Wet Centrifuged</u> <u>Solids</u>

- 1) Transfer a 0.5-mL aliquot of the supernatant (or soluble solids fraction) into a tared 100-mL beaker and weigh.
- 2) Add 10 mL of 0.01 N sodium hydroxide solution (prepared from organic-free water) and a clean magnetic stir bar to the beaker containing the aliquot. Measure and record the initial pH.
- 3) Titrate the sample to pH 2 using 0.1 N H_3PO_4 solution. Record the acid volume, temperature and pH at $\Delta 0.1 0.2$ pH units. Note the acid volume and pH at the point where any precipitation begins to occur, or redissolve. Repeat this titration using 0.1 N HNO₃ solution.
- 4) Using the titration spreadsheet, plot the curves for both the supernatant and soluble solids fraction.
- 5) Closely examine the curves. Find a region of the curve where the pH is near 6.5 and exhibits some buffering behavior. Calculate the quantity of acid needed per gram of sample to adjust the pH to the midpoint of this region. Review the data with the cognizant scientist prior to adjusting the pH of the extraction sample.

Determination of Insoluble Solids Content

- 1) Transfer a 0.5-g aliquot of the centrifuged solids into a tared centrifuge tube and weigh.
- 2) Add 10 mL of 0.01 N NaOH solution in 1-mL aliquots. After each addition, swirl the centrifuge tube for a few minutes and observe and record any dissolution of the solid that appears to occur after each addition. If all of the solids dissolve before 10 mL of 0.01 N NaOH solution have been added, record this volume for use in Step 1, Sections 6 and 7.
- Centrifuge the tube at the highest safe speed for the centrifuge tube for approximately 15 minutes. Carefully decant the liquid portion and reweigh the centrifuge tube containing the residual centrifuged solids.
- 4) Calculate the percentage of solids remaining.
- 5) If the solids remaining are less than one percent of the original wet solids, 0.01 N NaOH solution water should be added to the solids and then extracted as a liquid sample. If the solids remaining are greater than 1% then the dissolved portion will be extracted as a liquid and the insoluble solids will be extracted using ultrasonication extraction.

Stepwise Instructions for Preparation of Semi-volatile Organic Samples

Note: Prior to performing SVOA extractions, perform activities defined in Sections 1.0 and 1.1 and Section 5.0. Figure C.1 provides a schematic of the following steps.

Solids

- 1) Transfer 5-g aliquot (2.5-g aliquot for MS and MSD) of the centrifuged solids to a tared 200-mL centrifuge tube and weigh.
- 2) Add the surrogate spiking solution to all samples (including blank) and the target compound spiking solution to the MS and MSD. Use the entire contents of the vial(s) provided for spiking. After transferring the contents of the spiking vial to the sample, add approximately 0.2 mL of methylene chloride to the vial(s) and transfer this rinsate to the sample.
- 3) Add 50 mL of organic-free 0.01 N NaOH solution to the centrifuge tube and ultrasonicate (pulsed) for 2 minutes.
- 4) Centrifuge the tube and decant the liquid into a tared bottle, labeled SVOA C-104 SF1, and weigh. Set aside the wet solids for ultrasonic extraction (Step 7).
- 5) Transfer the NaOH leachate sample to a centrifuge tube and while stirring vigorously, very slowly adjust the pH of the soluble solids to near 6.5 and verify final pH. This step should be done using an ice bath to cool the sample.

Note: The quantity of acid required for adjusting the pH to near 6.5 is determined by titrating an aliquot of the NaOH leachate (i.e., soluble solids fraction) per Section 5.1.

Note: If solids are formed that do not redissolve, centrifuge and decant the liquid into a separatory funnel. Cap the centrifuge tube containing the wet solids and set aside for ultrasonic extraction (Step 7).

6) Transfer leachate to a separatory funnel and perform a set of three sequential separatory funnel shakeout extractions of the pH-adjusted liquid using 25-mL portions of methylene chloride. Collect and combine the three extracts in the 250-mL amber bottle labeled as designated below.

C104-S-y-z

Where,

- y = S for solid (centrifuged solids fraction), L for liquid (supernatant fraction)
- z = B for blank, S for sample, D for sample duplicate, MS for matrix spike, MSD matrix spike duplicate
- 7) Combine the solids reserved in Step 4 and any solids formed in Step 5 and add 2-3 times amount of anhydrous sodium sulfate desiccant and stir with a glass or metal rod until a sandy texture is obtained.
- 8) Add 25 mL of methylene chloride and ultrasonicate (pulsed) for 2 minutes. Settle (or centrifuge if necessary) and decant the extract into the 250-mL amber bottle labeled in Step 6.
- 9) Repeat Step 8 two additional times and combine the extracts.

Supernatant

- 1) Transfer 20-mL aliquot (10-mL aliquot for MS and MSD) of the C-104 supernatant into a separatory funnel and dilute with 25 mL of 0.01 N NaOH.
- 2) Add the surrogate spiking solution to all samples (including blank) and the target compound spiking solution to the MS and MSD. Use the entire contents of the vial(s) provided for spiking. After transferring the contents of the spiking vial to the sample, add approximately 0.2 mL of methylene chloride to the vial(s) and transfer this rinsate to the sample.
- 3) Perform three sequential separatory funnel shakeout extractions of the supernatant using 25-mL portions of methylene chloride. Collect and combine the three extracts in a 250-mL amber bottle labeled as designated in Section 6.1 Step 6.
- 4) Transfer the sample to a centrifuge tube and while stirring vigorously, very slowly adjust the pH of the sample with the quantity of acid calculated in Section 5.1 for supernatant sample and verify final pH. This step should be done using an ice bath to cool the sample.

Note: If solids are formed that do not redissolve, centrifuge and decant the liquid back into the separatory funnel used in Step 1. Cap the centrifuge tube containing the wet solids and set aside for ultra-sonic extraction.

5) Transfer supernatant to the separatory funnel used in Step 1 and perform a second set of three sequential separatory funnel shakeout extractions of the pH-adjusted liquid using 25-mL portions of methylene chloride. Collect and combine the three extracts in the 250-mL amber bottle labeled in Step 3.

- 6) To any solids formed in Step 4, add 2-3 times amount of anhydrous sodium sulfate desiccant and stir with a glass or metal rod until a sandy texture is obtained.
- 7) Add 25 ml of methylene chloride and ultrasonicate (pulsed) for 2 minutes. Settle (or centrifuge if necessary) and decant the extract into the 250-mL amber bottle labeled in Step 3.
- 8) Repeat Step 7 two additional times and combine the extracts.

For further guidance and questions regarding execution of these steps, and those described in Appendix A, for extraction of SVOA samples contact George S. Klinger, 372-0448.

Stepwise Instructions for Preparation of Pesticide/PCB Organic Samples

Note: Prior to performing pesticide/PCB extractions, perform activities defined in Sections 1.0 and 1.1 and Section 5.0. Figure C.2 provides a schematic of the following steps.

Solids

- 1) Transfer 5-g aliquot (2.5-g aliquot for MS and MSD) of the centrifuged solids to a tared 200-mL centrifuge tube and weigh.
- 2) Add the surrogate spiking solution to all samples (including blank) and the target compound spiking solution to the MS and MSD. Use the entire contents of the vial(s) provided for spiking. After transferring the contents of the spiking vial to the sample, add approximately 0.2 mL of methylene chloride to the vial(s) and transfer this rinsate to the sample.
- 3) Add 40 mL of organic-free 0.01 N NaOH solution to the centrifuge tube and ultrasonicate (pulsed) for 2 minutes.
- 4) Centrifuge the tube and decant the liquid into a tared bottle, labeled PPCB C-104 SF1.
- 5) Repeats Steps 3 and 4 and weigh bottle PPCB C-104 SF1. Set aside the wet solids for ultrasonic extraction (Step 8).
- 6) Transfer the NaOH leachate sample to a centrifuge tube and while stirring vigorously, very slowly adjust the pH of the soluble solids to near 6.5 and verify final pH. This step should be done using an ice bath to cool the sample.

Note: The quantity of acid required for adjusting the pH to near 6.5 is determined by titrating an aliquot of the NaOH leachate (i.e., soluble solids fraction) per Section 5.1.

Note: If solids are formed that do not redissolve, centrifuge and decant the liquid into a separatory funnel. Cap the centrifuge tube containing the wet solids and set aside for ultrasonic extraction (Step 8).

7) Transfer leachate to a separatory funnel and perform a set of three sequential separatory funnel shakeout extractions of the pH-adjusted liquid using 25-mL portions of methylene chloride. Collect and combine the three extracts in the 250-mL amber bottle labeled as designated below.

C104-P-y-z

Where,

- y = S for solid (centrifuged solids fraction), L for liquid (supernatant fraction)
- z = B for blank, S for sample, D for sample duplicate, MS for PCB matrix spike, MSD for PCB matrix spike duplicate, MSP for pesticide spike, MSDP for pesticide matrix spike duplicate
- 8) Combine the solids reserved in Step 5 and any solids formed in Step 6 and add 2-3 times amount of anhydrous sodium sulfate desiccant and stir with a glass or metal rod until a sandy texture is obtained.
- 9) Add 25 ml of methylene chloride/acetone mixture (1:1) and ultrasonicate (pulsed) for 2 minutes. Settle (or centrifuge if necessary) and decant the extract into the 250-mL amber bottle labeled in Step 7.
- 10) Repeat Step 9 two additional times and combine the extracts.

Supernatant

- 1) Transfer 10-mL aliquot of the C-104 supernatant into a separatory funnel and dilute with 25 mL of 0.01 N NaOH.
- 2) Add the surrogate spiking solution to all samples (including blank) and the target compound spiking solution to the MS and MSD. Use the entire contents of the vial(s) provided for spiking. After transferring the contents of the spiking vial to the sample, add approximately 0.2 mL of methylene chloride to the vial(s) and transfer this rinsate to the sample.
- 3) Perform three sequential separatory funnel shakeout extractions of the supernatant using 25-mL portions of methylene chloride. Collect and combine the three extracts in a 250-mL amber bottle labeled as designated in Section 7.1 Step 7.
- 4) Transfer the sample to a centrifuge tube and while stirring vigorously, very slowly adjust the pH of the sample with the quantity of acid calculated in Section 5.1 for supernatant sample and verify final pH. This step should be done using an ice bath to cool the sample.

Note: If solids are formed that do not redissolve, centrifuge and decant the liquid back into the separatory funnel used in Step 1. Cap the centrifuge tube containing the wet solids and set aside for ultra-sonic extraction.

- 5) Transfer supernatant to the separatory funnel used in Step 1 and perform a second set of three sequential separatory funnel shakeout extractions of the liquid using 25-mL portions of methylene chloride. Collect and combine the three extracts in the 250-mL amber bottle labeled in Step 3.
- 6) To any solids formed in Step 4. Add 2-3 times amount of anhydrous sodium sulfate desiccant and stir with a glass or metal rod until a sandy texture is obtained.
- Add 25 ml of methylene chloride/acetone mixture (1:1) and ultrasonicate (pulsed) for 2 minutes. Settle (or centrifuge if necessary) and decant the extract into the 250-mL amber bottle labeled in Step 3.
- 8) Repeat Step 7 two additional times and combine the extracts.

For further guidance and questions regarding execution of these steps for pesticide/PCB extractions, contact Eric W. Hoppe, 376-2126.

Stepwise Instructions for Preparation of Dioxin/Furan Samples

Note: Prior to performing Dioxin/Furan extractions, perform activities defined in Sections 1.0 and 1.1 and Section 5.0. Figure C.3 provides a schematic of the following steps.

- Transfer 5-g aliquots (5-g aliquot for MS and MSD) of the centrifuged solids to a tared 200-mL centrifuge tube and weigh. Add the labeled spiking solution (i.e., surrogates) to all samples (including blank) and the unlabeled spiking solution (i.e., spikes) to the MS and MSD. Use the entire contents of the vial(s) provided for spiking. After transferring the contents of the spiking vial to the sample, add approximately 0.2 mL of methylene chloride to the vial(s) and transfer this rinsate to the sample.
- 2) Add 2-3 times the amount of anhydrous sodium sulfate desiccant. Stir with glass or metal rod until it forms a sandy texture. Add 25 mL of methylene chloride/acetone mixture (1:1) and ultrasonicate (pulsed) for 2 minutes. Settle (or centrifuge, if necessary) and decant the extract into 250-mL amber bottle labeled as indicated below. Repeat methylene chloride/acetone extraction two more times and combine extracts.

C104-D-y-z

Where,

- y = S for solid (centrifuged solids fraction), L for liquid (supernatant fraction)
- z = B for blank, S for sample, D for sample duplicate, MS for matrix spike, MSD for matrix spike duplicate.
- 3) Transfer 15 mL of the C-104 supernatant (7.5 mL for MS and MSD) into a separatory funnel and add 25 mL of 0.01 N NaOH to the separatory funnel. Add the labeled spiking solution (i.e., surrogates) to all samples (including blank) and the unlabeled spiking solution (i.e., spikes) to the MS and MSD. Use the entire contents of the vial(s) provided for spiking. After transferring the contents of the spiking vial to the sample, add approximately 0.2 mL of methylene chloride to the vial(s) and transfer this rinsate to the sample.
- 4) Perform three sequential separatory funnel shakeout extractions of the supernatant using three 25mL portions of methylene chloride. Collect and combine the three extracts in a 250-mL amber bottle labeled in Step 2.

For further guidance and questions regarding execution of these steps contact James A. Campbell, 376-0899.

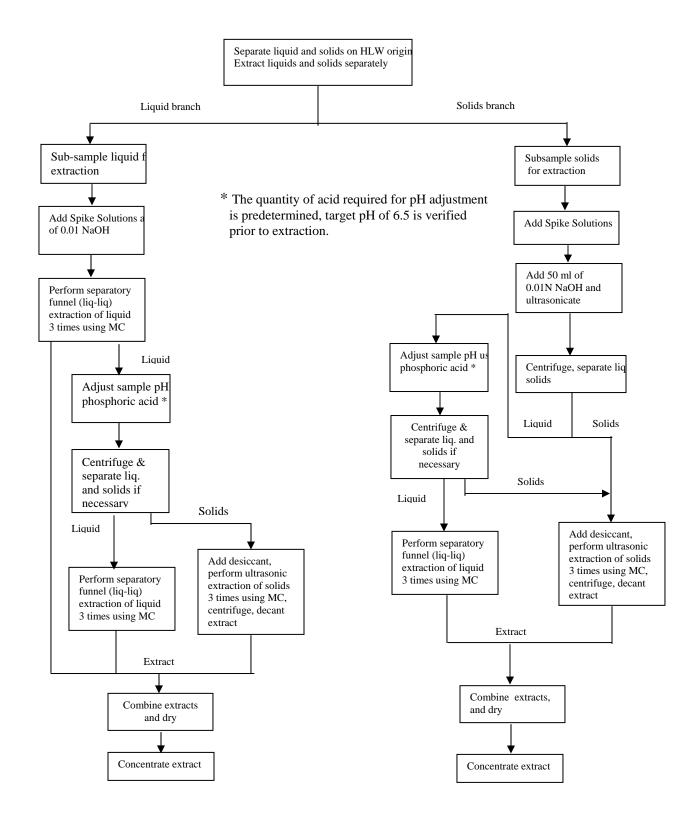


Figure C.1. SVOA Extraction Process Diagram

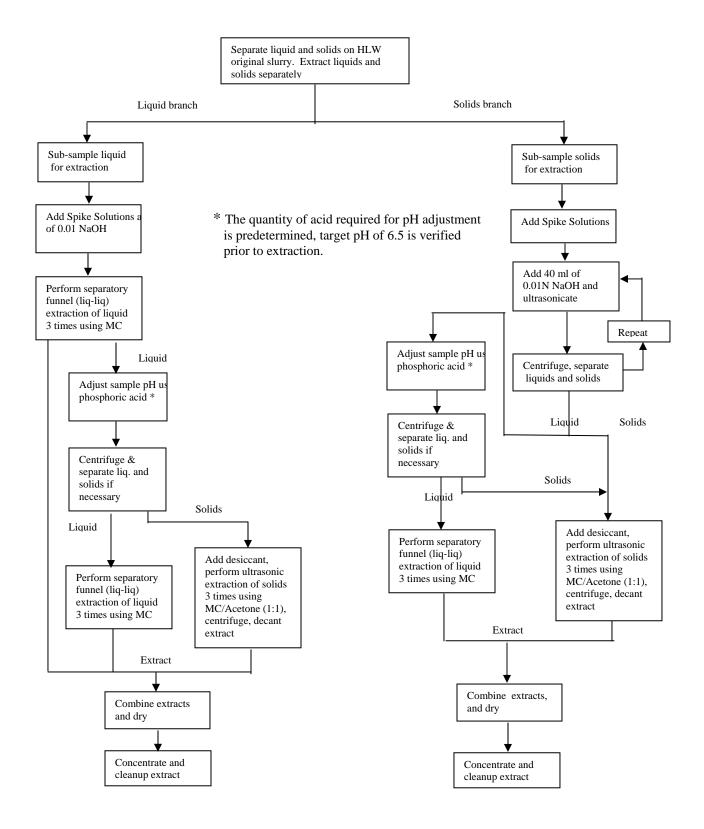


Figure C.2. Pesticide/PCB Extraction Process Diagram

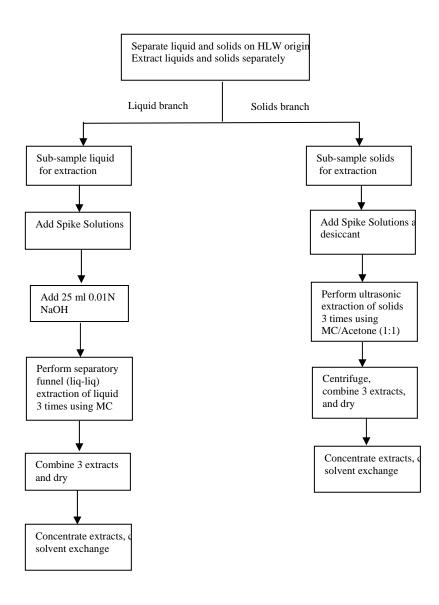


Figure C.3. Dioxin/Furan Extraction Process Diagram

Appendix A1: Semivolatile Research Sample

Prior work done on AW-101 and AN-107 samples using phosphoric acid to adjust the pH was complicated by large quantities of formed solids. It is assumed that some of the formed solids were the results of aluminum precipitation at pH less than 11 and greater than 3. It is also likely that some of the formed solids were insoluble phosphates, which were formed upon addition of the phosphoric acid.

The use of nitric acid to adjust the pH of the sample to pH 3 may have certain advantages in reducing or eliminating "formed solids" in the supernatant and the soluble portion of the centrifuged solids. Additionally, it is likely that phosphate acts in a similar fashion to sulfate in its ability to catalyze nitrate (which is present in the C-104 material at a concentration of approximately 30,000 ppm) to form the reactive nitronium ion (⁺NO₃), which is a powerful nitrating agent for a variety of organics.

Nitric acid alone produces only a small quantity of "auto-catalyzed" nitronium ion. We believe that the use of nitric acid, rather than phosphoric acid, to adjust the pH of the sample may eliminate or reduce formed solids, thus reducing the number of extraction steps, and also reduce or eliminate the quantity of nitration "artifacts".

Reaction of organic amines, such as chelator fragments found in some tank samples, with nitrous acid (HONO) may also be reduced by the addition of nitric acid.

In order to test this idea for application to potential future work, one additional semivolatile sample (supernatant only) will be processed using the procedure described in Sections 5.1 and 6, using 0.1 N nitric acid, rather than phosphoric acid, for the titration of the sample and pH adjustment during the extraction.

The supernatant used for this test is to be decanted/pipetted from container "C104 COMP E".

Appendix D: Volatile Organic Analysis Result Forms

EPA SAMPLE NO. 1A VOLATILE ORGANICS ANALYSIS DATA SHEET HOTCELLBLK Lab Name: PNNL Contract: C104 Lab Code: PNNL Case No.: SAS No.: SDG No.: 2 Matrix: (soil/water) WATER Lab Sample ID: 00-1360-CB Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 00040617 Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 04/07/0 GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L 0 74-87-3-----Chloromethane 10 U 75-01-4-----Vinyl Chloride 10 U 106-99-0-----1,3-Butadiene 5 U 106-97-8-----Butane 5 U 74-83-9----Bromomethane 10 U 75-35-4-----1,1-Dichloroethene 10 U 75-00-3-----Chloroethane 10 U 67-64-1-----Acetone 2 J109-66-0----Pentane 5 U 75-15-0-----Carbon Disulfide 10 U 107-02-8-----Acrolein____ 5 U 75-09-2-----Methylene Chloride 19 B 107-13-1-----Acrylonitrile 5 U 123-38-6----Propionaldehyde 5 U 156-60-5-----trans-1,2-Dichloroethene 10 U 4170-30-3-----2-Butenal 5 U 75-34-3-----1,1-Dichloroethane 10 U 110-54-3-----Hexane 156-59-2-----cis-1,2-Dichloroethene 11 10 0 78-93-3-----2-Butanone 10 U 110-83-8-----Cyclohexene 5 U 141-78-6-----Ethyl acetate 5 U 287-92-3-----Cyclopentane_ 5 U 74-97-5-----Bromochloromethane 10 U 67-66-3-----Chloroform 10 U 75-43-4-----Dichlorofluoromethane 5 U 71-55-6-----1,1,1-Trichloroethane 10 U 75-45-6-----Chlorodifluoromethane_____ 5 U 10 U 56-23-5-----Carbon Tetrachloride_ 75-69-4-----Trichlorofluoromethane 5 U 71-43-2----Benzene 10 U 107-06-2-----1,2-Dichloroethane 10 U 79-01-6-----Trichloroethene 10 U

IΑ EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET HOTCELLBLK Lab Name: PNNL Contract: C104 Lab Code: PNNL Case No.: SAS No.: SDG No.: 2 Matrix: (soil/water) WATER Lab Sample ID: 00-1360-CB Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 00040617 Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 04/07/0 GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/L Q 5 U 96-22-0----3-Pentanone 76-13-1-----1,2,2-Cl3-1,1,2-F3ethane 5 U 5 U 5 U 76-14-2-----1,2-Cl2-1,1,2,2-F4ethane 75-71-8-----Dichlorodifluoromethane 5 U 75-05-8-----Acetonitrile 5 U 110-82-7----Cyclohexane 108-86-1----Bromobenzene 10 U 104-51-8-----Butylbenzene 10 U 98-06-6-----tert-Butylbenzene 10|U 135-98-8----sec-Butylbenzene 10 U 95-49-8-----2-Chlorotoluene 10 U 99-87-6-----4-Isopropyltoluene 10 U 106-43-4----4-Chlorotoluene 1010 96-12-8-----1,2-Dibromo-3-chloropropane 10 U 106-93-4-----1,2-Dibromoethane 10 U 110-57-6----trans-1,4-Dichloro-2-butene 10 U 10|U 142-28-9-----1,3-Dichloropropane_____ 594-20-7-----2,2-Dichloropropane 10 U 563-58-6-----1,1-Dichloropropene 10 U 87-68-3-----Hexachloro-1, 3-butadiene 10 U 98-82-8----Isopropylbenzene 10 U 91-20-3-----Nathphalene 10 U 10 U 103-65-1----Propylbenzene 87-61-6-----1,2,3-Trichlorobenzene 10 U 120-82-1-----1,2,4-Trichlorobenzene 10 U 96-18-4-----1,2,3-Trichloropropane 10 U 95-63-6-----l,2,4-Trimethylbenzene 10 U 108-67-8-----1,2,3-Trimethylbenzene 10 U 5 U 106-35-4-----3-Heptanone 5 0 110-43-0----2-Heptanone 5 U 109-99-9----Tetrahydrofuran 74-95-3-----Dibromomethane 10 U

. : ; ;

J

)

)

LA VOLATILE ORGANICS ANALYSIS DATA SHEET			EPA SAMPLE NO.		
Lab Name: PNNL		Contract: Cl(04	HOTCEL	LBLK
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 2	
Matrix: (soil/water)	WATER	Lab	Sample ID:	00-1360	-CB
Sample wt/vol:	5.000 (g/mL) <i>M</i> L	Lab	File ID:	0004061	7
Level: (low/med)	LOW	Date	e Received:		
% Moisture: not dec		Date	e Analyzed:	04/07/0	
GC Column: DB-624 75	5M X 2.55UM ID: 0.	45 (mm)	Dilu	tion Fac	tor: 1.0
Soil Extract Volume	:(uL)	Soil	l Aliquot V	Volume: _	(uL)
CAS NO.	COMPOUND		TION UNITS: 1g/Kg) UG/I		Q
$\begin{array}{c} 75-27-4\\ 10061-01-5\\ 108-10-1\\ 108-88-3\\ 10061-02-6\\ 79-00-5\\ 127-18-4\\ 591-78-6\\ 124-48-1\\ 108-90-7\\ 100-41-4\\ 106-42-3\\ 95-47-6\\ 100-42-5\\ 75-25-2\\ 79-34-5\\ 79-34-5\\ 79-34-5\\ 106-46-7\\ 95-50-1\\ 106-46-7\\ 95-50-1\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 106-46-7\\ 100-42-5$	trans-1,3-Dich 1,1,2-Trichlor Tetrachloroeth 2-Hexanone Chlorobenzene Chlorobenzene Xylene (m & p) Xylene (o) Xylene (o) Styrene Styrene 1,1,2,2-Tetrac 1,3-Dichlorobe 1,4-Dichlorobe 1,2-Dichlorobe Heptane Octane	ethane propropene tanone loropropene oethane nene nethane enzene enzene enzene enzene enzene ppenenitrile		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

FORM I VOA

OLM03.0

1A VOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: PNNL		Contract	: C104		HOT	CELLBLKI	D
Lab Code: PNNL	Case No.:	SAS No.	:	SDG	No.:	2	
Matrix: (soil/water)				ample ID:			
Sample wt/vol:	(g/mL) G	3	Lab F:	ile ID:	0004	0623	
Level: (low/med)	LOW		Date I	Received:			
Moisture: not dec.	•		Date A	Analyzed:	04/0	7/0	
GC Column: DB-624 75	5M X 2.55UM ID:	0.45 (mm)		Dilu	tion	Factor:	1.0
Soil Extract Volume:	:(uL)		Soil A	Aliquot V	olume	:	
CAS NO.	COMPOUND			ON UNITS: /Kg) UG/K		Q	
$\begin{array}{c} 75 - 01 - 4 \\ 106 - 99 - 0 \\ 74 - 83 - 9 \\ 75 - 35 - 4 \\ 75 - 00 - 3 \\ 75 - 00 - 3 \\ 109 - 66 - 0 \\ 109 - 66 - 0 \\ 107 - 02 - 8 \\ 107 - 02 - 8 \\ 107 - 02 - 8 \\ 107 - 13 - 1 \\ 107 - 13 - 1 \\ 123 - 38 - 6 \\ 107 - 13 - 1 \\ 123 - 38 - 6 \\ 107 - 13 - 1 \\ 123 - 38 - 6 \\ 107 - 13 - 1 \\ 123 - 38 - 6 \\ 107 - 13 - 1 \\ 123 - 38 - 6 \\ 107 - 30 - 3 \\ 107 - 30 - 3 \\ 107 - 30 - 3 \\ 75 - 43 - 4 \\ 75 - 43 - 4 \\ 75 - 43 - 4 \\ 75 - 45 - 6 \\ 75 - 45 - 6 \\ 75 - 69 - 4 \\ 71 - 43 - 2 \\ 107 - 06 - 2 \end{array}$	Bromomethane Chloroethane Chloroethane Carbon Disul Carbon Disul Acrolein Acrolein Acrylonitril Propionaldeh trans-1,2-Di 2-Butenal 1,1-Dichloro Hexane Cyclohexene Cyclohexene Cyclohexene Cyclopentane Cyclopentane Cyclopentane 	de ethene fide loride e yde chloroethene ethane loroethene e ethane romethane oroethane chloride oromethane			50 50 50 50 50 50 50 50 50 50 50 50 50 5	vou a a a a a a a a a a a a a a a a a a a	

.

)

1A

į

Ì

)

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYSIS DATA	SHEET		
Lab Name: PNNL Contra	ct: C104	HOTCELLBLK	D
Lab Code: PNNL Case No.: SAS N	SDG	No.: 2	
Matrix: (soil/water) SOLID	Lab Sample ID:	00-1360-CBD	
Sample wt/vol: (g/mL) G	Lab File ID:	00040623	
Level: (low/med) LOW	Date Received:		
% Moisture: not dec	Date Analyzed:	04/07/0	
GC Column: DB-624 75M X 2.55UM ID: 0.45 (m	m) Dilu	tion Factor:	1.0
Soil Extract Volume:(uL)	Soil Aliquot V	Volume:	(uL)
	CENTRATION UNITS: /L or ug/Kg) UG/K		
78-87-51, 2-Dichloropropane_ 75-27-4Bromodichloromethane 10061-01-5cis-1, 3-Dichloroprop 108-10-14-Methyl-2-pentanone 108-88-3Toluene 10061-02-6trans-1, 3-Dichloroprop 79-00-51, 1, 2-Trichloroethan 127-18-4Tetrachloroethene 591-78-62-Hexanone 124-48-1Dibromochloromethane 108-90-7Chlorobenzene 100-41-4Ethylbenzene 100-42-3Xylene 100-42-5Styrene 75-25-2Bromoform 79-34-51, 1, 2, 2-Tetrachloroe 541-73-11, 3-Dichlorobenzene 106-46-71, 4-Dichlorobenzene 95-50-11, 2-Dichlorobenzene 95-50-13-Chloropropene 107-05-13-Chloropropene 107-05-13-Chloropropene 107-05-13-Chloropropene 107-05-13-Chloropropene 107-87-9	ene opene e thane	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

EPA SAMPLE NO. 1A VOLATILE ORGANICS ANALYSIS DATA SHEET HOTCELLBLKD Lab Name: PNNL Contract: C104 SAS No.: Lab Code: PNNL Case No.: SDG No.: 2 Matrix: (soil/water) SOLID Lab Sample ID: 00-1360-CBD Sample wt/vol: ____ (g/mL) G Lab File ID: 00040623 Level: (low/med) LOW Date Received: Date Analyzed: 04/07/0 % Moisture: not dec. GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm) Dilution Factor: 1.0 Soil Extract Volume: (uL) Soil Aliquot Volume: (uL) CONCENTRATION UNITS: CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q 50 U 96-22-0-----3-Pentanone 76-13-1-----1,2,2-Cl3-1,1,2-F3ethane 50 U 50 I U 76-14-2----1,2-Cl2-1,1,2,2-F4ethane 50 U 75-71-8----Dichlorodifluoromethane 50 U 75-05-8-----Acetonitrile 110-82-7-----Cyclohexane 50 U 108-86-1-----Bromobenzene 50 U 50 U 104-51-8-----Butylbenzene 50 U 98-06-6-----tert-Butylbenzene 50 U 135-98-8-----sec-Butylbenzene 50 U 95-49-8-----2-Chlorotoluene 50 U 99-87-6----4-Isopropyltoluene 50 U 106-43-4-----4-Chlorotoluene 96-12-8-----1, 2-Dibromo-3-chloropropane 50 U 50 U 106-93-4-----1,2-Dibromoethane 110-57-6-----trans-1,4-Dichloro-2-butene 50 U 50 U 142-28-9-----1,3-Dichloropropane_____ 50 U 594-20-7-----2,2-Dichloropropane____ 50 U 563-58-6-----1,1-Dichloropropene 50 U 87-68-3-----Hexachloro-1,3-butadiene 50 U 98-82-8-----Isopropylbenzene 50 U 91-20-3-----Nathphalene 50 U 103-65-1----Propylbenzene 50 U 87-61-6-----1,2,3-Trichlorobenzene 50 U 120-82-1-----1,2,4-Trichlorobenzene 50 U 96-18-4-----1,2,3-Trichloropropane_____ 50 U 95-63-6-----1,2,4-Trimethylbenzene 50 U

108-67-8----1,2,3-Trimethylbenzene

109-99-9-----Tetrahydrofuran

74-95-3----Dibromomethane

106-35-4-----3-Heptanone

110-43-0----2-Heptanone

OLM03.C

50 U

50 U 50 U

50 U

1A ANALVELS DATA SHEET VOLATER ODONITO

		S DATA SHEET			
Lab Name: PNNL	(Contract: C104	1	LCS	
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 29274	I
Matrix: (soil/water)		Lab S			
Sample wt/vol:	5.000 (g/mL) ML	Lab H	File ID:	00040614	
Level: (low/med)	LOW	Date	Received:		
% Moisture: not dec.		Date	Analyzed:	04/06/0	
GC Column: DB-624 75	M X 2.55UM ID: 0.4	15 (mm)	Dilu	tion Factor:	1.0
Soil Extract Volume:	(uL)	Soil	Aliquot V	olume:	(
CAS NO	CONDOLINE	CONCENTRATI			
CAS NO.	COMPOUND	(ug/L or ug	g/Kg) UG/L	, Q	
$\begin{array}{c} 75-01-4\\ 106-99-0\\ 106-97-8\\ 74-83-9\\ 75-35-4\\ 75-35-4\\ 75-00-3\\ 75-15-0\\ 109-66-0\\ 75-15-0\\ 107-02-8\\ 107-02-8\\ 107-13-1\\ 123-38-6\\ 156-60-5\\ 156-60-5\\ 156-60-5\\ 156-59-2\\ 110-54-3\\ 156-59-2\\ 78-93-3\\ 110-83-8\\ 141-78-6\end{array}$	Bromomethane 1,1-Dichloroeth Chloroethane Acetone Acetone Acrolein Acrolein Acrolein Acrylonitrile Propionaldehyde trans-1,2-Dichlor trans-1,2-Dichlor 1,1-Dichloroeth Hexane cis-1,2-Dichlor Hexane cis-1,2-Dichlor 2-Butanone Cyclohexene Ethyl acetate Cyclopentane	hene		210 200 210 200 240 220 230 190 200 210 200 210 210 210 210 210 210 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 220 210 210	

1 1

()

1A

EPA SAMPLE NO.

VOLATILE ORGANICS A	ANALYSIS DATA SHEET
Lab Name: PNNL	LCS Contract: C104
Lab Code: PNNL Case No.:	SAS No.: . SDG No.: 29274
Matrix: (soil/water) WATER	Lab Sample ID: LCS
Sample wt/vol: 5.000 (g/r	nL) ML Lab File ID: 00040614
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 04/06/0
GC Column: DB-624 75M X 2.55UM	ID: 0.45 (mm) Dilution Factor: 1.0
Soil Extract Volume:(ul	L) Soil Aliquot Volume:(uI
CAS NO. COMPOUNI	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
96-22-03-Pentar 76-13-11,2,2-C 76-14-21,2-Cl2 75-71-8Dichlord 75-05-8Acetonit 110-82-7Cyclohes 108-86-1Bromober 104-51-8Cyclohes 104-51-8Cyclohes 98-06-6Cyclohes 99-87-6	13-1,1,2-F3ethane 220 -1,1,2,2-F4ethane 200 odifluoromethane 190 trile 220 xane 260 nzene 230 nzene 210 cylbenzene 250 ylbenzene 230 otoluene 270 otoluene 270 otoluene 270 otoluene 220 noropropane 220 otooloropropane 240 otolo

VOLATII	1A E ORGANICS ANALY	SIS DATA SHE	ET	EPA :	SAMPLE	NO.
Lab Name: PNNL		Contract:	C104		LCS	
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 2	29274	
Matrix: (soil/water	WATER	I	ab Sample ID	: LCS		
Sample wt/vol:	5.000 (g/mL) MI	L I	ab File ID:	00040	0614	
Level: (low/med)	LOW	Γ	ate Received	:		
% Moisture: not dec	•	Ε	ate Analyzed	: 04/06	5/0	
GC Column: DB-624 7	5M X 2.55UM ID: (0.45 (mm)	Dil	ution B	Factor:	1.0
Soil Extract Volume	:(uL)	S	oil Aliquot '	Volume	:	(uL)
CAS NO.	COMPOUND		RATION UNITS or ug/Kg) UG/1		Q	
$\begin{array}{c} 75-27-4\\ 10061-01-5\\ 108-10-1\\ 108-88-3\\ 108-88-3\\ 10061-02-6\\ 79-00-5\\ 127-18-4\\ 591-78-6\\ 127-18-4\\ 108-90-7\\ 124-48-1\\ 108-90-7\\ 106-42-3\\ 106-42-3\\ 95-47-6\\ 100-42-5\\ 75-25-2\\ 79-34-5\\ 75-25-2\\ 79-34-5\\ 100-42-5$	trans-1,3-Dic 1,1,2-Trichlo Tetrachloroet Dibromochloroc Chlorobenzene Ethylbenzene Xylene (m & p Xylene (o) Styrene Styrene 1,1,2,2-Tetra 1,3-Dichlorok 1,4-Dichlorok 1,2-Dichlorok 1,2-Dichlorok	omethane loropropene entanone chloropropen oroethane chene omethane omethane chloroethan oenzene oenzene oenzene chenzene oenzene chenzene oenzene	e	$\begin{array}{c} 250\\ 220\\ 220\\ 230\\ 230\\ 220\\ 220\\ 220\\ 22$		

F

))

EPA SAMPLE NO.

Į.

Lab Name: PNNL	Contract: C104	METHOD BLANK
Lab Code: PNNL Case No.:		No.: 2
Matrix: (soil/water) WATER	Lab Sample ID	: VBLK02
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID:	00040616
Level: (low/med) LOW	Date Received	:
% Moisture: not dec.	Date Analyzed	
GC Column: DB-624 75M X 2.55UM ID: 0.		
Soil Extract Volume:(uL)		
CAS NO. COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/I	
74-87-3Chloromethane 75-01-4Vinyl Chloride 106-99-01, 3-Butadiene 106-97-8Butane 74-83-9Bromomethane 75-35-4Bromomethane 75-00-3Chloroethane 67-64-1Acetone 107-02-8Carbon Disulf 107-02-8	thene	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

OLM03.0

lA VOLATILE ORGANICS ANALYSIS DATA SHEET METHOD BLANK Lab Name: PNNL Contract: C104 Lab Code: PNNL Case No.: SAS No.: SDG No.: 2

Lab Sample ID: VBLK02

Matrix: (soil/water) WATER

ļ

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 00040616

Level: (low/med) LOW

% Moisture: not dec.

GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)

CAS NO. COMPOUND

Soil Extract Volume:_____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

Date Received:

Date Analyzed: 04/07/0

	0

Dilution Factor: 1.0

Soil Aliquot Volume: (uL)

75-27-4 10061-01-5 108-88-3 10061-02-6 79-00-5 127-18-4 127-18-4	trans-1,3-Dichloropropene	5 5 10 5 5 5 5	מממממממממ
107-87-9 108-87-2 110-12-3 123-19-3 123-86-4 123-91-1 126-98-7 563-80-4	2-Pentanone Methylcyclohexane 5-Methyl-2-hexanone 4-Heptanone Butylacetate	5 5 5	บ บ บ บ

1A

EPA SAMPLE NO.

VOLATILE ORGANICS AN	ALYSIS DATA SHEET
Lab Name: PNNL	METHOD BLANK
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 2
Matrix: (soil/water) WATER	Lab Sample ID: VBLK02
Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 00040616
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 04/07/0
GC Column: DB-624 75M X 2.55UM I	D: 0.45 (mm) Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
96-22-03-Pentano 76-13-11,2,2-Cl3 76-14-21,2-Cl2-1 75-71-8Dichlorod 75-05-8Acetonitr 110-82-7Cyclohexa 108-86-1Bromobenz 104-51-8Cyclohexa 98-06-6	-1,1,2-F3ethane5,1,2,2-F4ethane5ifluoromethane5ile5une5une10 </td

OLM03 0

EPA SAMPLE NO. 1A VOLATILE ORGANICS ANALYSIS DATA SHEET METHOD BLANK Lab Name: PNNL Contract: C104 Lab Code: PNNL Case No.: SAS No.: SDG No.: 2 Matrix: (soil/water) SOLID Lab Sample ID: VBLK03 Lab File ID: 00040622

Sample wt/vol: _____ (g/mL) G

Level: (low/med) LOW

% Moisture: not dec.

GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)

CAS NO. COMPOUND

Soil Extract Volume:____(uL)

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

Date Received: ____

Date Analyzed: 04/07/0

Q

Dilution Factor: 1.0

Soil Aliquot Volume: (uL)

74-87-3Chloromethane 75-01-4Vinyl Chloride 106-99-01,3-Butadiene 106-97-8Butane	50	
106-97-8Butable 74-83-9Bromomethane 75-35-4Bromomethane 75-00-3Bromomethane 67-64-1Chloroethane 109-66-0Pentane 75-15-0Carbon Disulfide 107-02-8Acrolein 75-09-2Methylene Chloride 107-13-1Acrylonitrile 123-38-6Propionaldehyde 156-60-5Trans-1, 2-Dichloroethene 4170-30-32-Butenal 75-34-31, 1-Dichloroethane 110-54-3Hexane 156-59-2cis-1, 2-Dichloroethene 78-93-3	50 18 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50 50	00000000000000000000000000000000000000
	1	
75-69-4Trichlorofluoromethane	50	U
	u -	-
107-06-21,2-Dichloroethane	50	-
79-01-6Trichloroethene	50	U

				1			
Lab Name: PNNL		Contract:	C104		METHC)D BLAN	ĸ
Lab Code: PNNL	Case No.:	SAS No.:		SDG N	0.: 2	2	
Matrix: (soil/water) SOLID		Lab Śampl	e ID:	VBLKO)3	
Sample wt/vol:	(g/mL) (G	Lab File	ID:	00040	622	
Level: (low/med)	LOW		Date Rece	ived:			
% Moisture: not dec	·		Date Anal	yzed:	04/07	/0	
GC Column: DB-624 7	5M X 2.55UM ID:	0.45 (mm)		Dilut	ion F	actor:	1.0.
Soil Extract Volume	e:(uL)		Soil Alic	uot Vo	lume:		(uL)
CAS NO.	COMPOUND		TRATION U or ug/Kg)			Q	
$\begin{array}{c} 75-27-4\\ 10061-01-5\\ 108-10-1\\ 108-88-3\\ 108-88-3\\ 10061-02-6\\ 79-00-5\\ 127-18-4\\ 591-78-6\\ 124-48-1\\ 108-90-7\\ 100-41-4\\ 106-42-3\\ 95-47-6\\ 100-42-5\\ 75-25-2\\ 79-34-5\\ 75-25-2\\ 79-34-5\\ 75-25-2\\ 79-34-5\\ 106-46-7\\ 95-50-1\\ 106-46-7\\ 95-50-1\\ 106-46-7\\ 95-50-1\\ 11-65-9\\ 111-65-9\\ 111-65-9\\ 111-65-9\\ 107-87-9\\ 108-87-2\\ 108-87-2\\ 108-87-2\\ 123-19-3\\ 123-91-1\\ 126-98-7\\ 563-80-4\end{array}$	trans-1,3-Di 1,1,2-Trichl Tetrachloroe Dibromochlor Chlorobenzer Chlorobenzer Chlorobenzer Chlorobenzer Chlorobenzer Chlorobenzer 	romethane hloropropene pentanone ichloroprope loroethane ethene p) romethane p) rachloroetha obenzene obenzene obenzene obenzene obenzene obenzene obenzene obenzene obenzene	ne		$\begin{array}{c} 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\ 50\\$	מממממממממממממממממממ	

)

1

				METH	DD BLAN	ĸ
Lab Name: PNNL		Contract: C10	4			
Lab Code: PNNL (Case No.:	SAS No.:	SDG	No.: 2	2	
Matrix: (soil/water)	SOLID	Lab	Sample ID:	VBLK)3	
Sample wt/vol:	(g/mL) G	Lab	File ID:	00040)622	
Level: (low/med)	LOW	Date	Received			
% Moisture: not dec.		Date	Analyzed	04/07	7/0	
GC Column: DB-624 75N	1 X 2.55UM ID: 0.4	45 (mm)	Dilu	ition B	actor:	1.0
Soil Extract Volume:_	(uL)	Soil	Aliquot V	/olume:		(uL)
CAS NO.	COMPOUND	CONCENTRAT (ug/L or u			Q	
$\begin{array}{c} 76-14-2\\ 75-71-8\\ 75-05-8\\ 75-05-8\\ 108-86-1\\ 104-51-8\\ 98-06-6\\ 98-06-6\\ 98-8-8\\ 99-87-6\\ 99-87-6\\ 99-87-6\\ 106-93-4\\ 106-93-4\\ 106-93-4\\ 106-93-4\\ 106-93-4\\ 106-35-8-6\\ 87-68-3\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 99-82-1\\ 96-18-4\\ 95-63-6\\ 108-67-8\\ 108-67-8\\ 109-99-9\\ 109-99-9\\ \end{array}$	1,2,2-Cl3-1,1,2, 1,2-Cl2-1,1,2,3 Dichlorodifluo Acetonitrile Cyclohexane Bromobenzene Butylbenzene tert-Butylbenzene tert-Butylbenzene 2-Chlorotoluene 4-Isopropyltolue 4-Chlorotoluene 1,2-Dibromo-3-e 1,2-Dibromo-3-e 1,2-Dibromo-4-e 1,3-Dichloropro 2,2-Dichloropro 1,1-Dichloropro 1,1-Dichloropro 1,2,3-Trichloro 1,2,3-Trichloro 1,2,4-Trimethy 1,2,3-Trimethy 1,2,3-Trimethy 1,2,3-Trimethy 1,2,3-Trimethy 3-Heptanone	2-F4ethane romethane romethane ene ene e uene e chloropropane opane opane opane opane opane opene -butadiene obenzene obenzene obenzene lbenzene		50 50 50 50 50 50 50 50 50 50 50 50 50 5	ddddddddddddddddddddddddddd	· · · · · · · · · · · · · · · · · · ·

1A

EPA SAMPLE NO.

VOLATILE ORGANICS ANALYS	SIS DATA SHEET
Lab Name: PNNL	C104SUP
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 2
Matrix: (soil/water) WATER	Lab Sample ID: 00-1360
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: 00040618
Level: (low/med) LOW	Date Received:
<pre>% Moisture: not dec.</pre>	
	Date Analyzed: 04/07/0
	.45 (mm) Dilution Factor: 100.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
74-87-3	e 1000 U 500 U 500 U 1000 U 1000 U 1000 U 1000 U ide 1000 U ide 500 U oride 8000 B de 500 U hloroethene 1000 U oroethene 1000 U oroethene 1000 U 500 U 500 U thane 1000 U oroethene 1000 U 500 U 500 U thane 1000 U oroethene 1000 U oroethene 1000 U omethane 500 U omethane 500 U onethane 500 U thane 1000 U omethane 500 U thane 500 U thane 500 U thane 500 U thane 1000 U omethane 500 U thane 1000 U thane 1000 U

OLM03.(

1

) }

)

	VOLATIL	1A E ORGANICS ANALYS	SIS DATA SI	HEET		EPA S	AMPLE	NO.
	Lab Name: PNNL		Contract	· C104		C1	.04SUP	
i ž					I			I
	Lab Code: PNNL	Case No.:	SAS No.	•	SDG	No.: 2		
	Matrix: (soil/water)	WATER		Lab Sam	ple ID:	00-13	60	
	Sample wt/vol:	5.000 (g/mL) ML	L	Lab Fil	e ID:	00040	618	
	Level: (low/med)	LOW		Date Re	ceived:			
	% Moisture: not dec			Date An	alyzed:	04/07	/0	
-	GC Column: DB-624 7	5M X 2.55UM ID: 0).45 (mm)		Dilu	tion F	actor:	100.0
	Soil Extract Volume	:(uL)		Soil Al	iquot V	olume:		(uL)
	CAS NO.	COMPOUND		NTRATION or ug/K			Q	
	$\begin{array}{c} 75-27-4\\ 10061-01-5\\ 108-10-1\\ 108-88-3\\ 108-88-3\\ 106-102-6\\ 79-00-5\\ 127-18-4\\ 591-78-6\\ 124-48-1\\ 108-90-7\\ 108-90-7\\ 100-41-4\\ 106-42-3\\ 95-47-6\\ 100-42-5\\ 75-25-2\\ 79-34-5\\ 75-25-2\\ 79-34-5\\ 75-25-2\\ 79-34-5\\ 75-25-2\\ 79-34-5\\ 106-46-7\\ 95-50-1\\ 106-46-7\\ 95-50-1\\ 11-65-9\\ 112-82-5\\ 111-84-2\\ 107-87-9\\ 108-87-2\\ 108-87-2\\ 108-87-2\\ 123-19-3\\ 123-91-1\\ 123-91-1\\ 126-98-7\\ 563-80-4\end{array}$	trans-1,3-Dic 1,1,2-Trichlc Tetrachloroet Dibromochloroc Chlorobenzene Ethylbenzene Xylene (m & p Xylene (o) Styrene Styrene Styrene 1,1,2,2-Tetra 1,3-Dichlorok 1,4-Dichlorok 1,2-Dichlorok Heptane	ene entanone entanone entanone ene ene ene ene ene ene ene ene ene ene ene ene ene ene ene ene enchloroethane ene encloroethan	e		$\begin{array}{c} 1000\\$	dadaaaaaa daaaaaaaaaaaaaaaaaaaaaaaaaaa	

.

10141111	S OKONNICS ANALIS	15 DATA SHEET				
Lab Name: PNNL		Contract: C1	04	с	104SUP	
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.:	2	I
Matrix: (soil/water)		Lab				
Sample wt/vol:	5.000 (g/mL) ML	Lab	File ID:	0004	0618	
Level: (low/med)	LOW	Date	e Received	:		
% Moisture: not dec.	<u> </u>	Date	e Analyzed	: 04/0	7/0	
GC Column: DB-624 75	M X 2.55UM ID: 0	.45 (mm)	Dilu	ution 2	Factor:	100.0
Soil Extract Volume:	(uL)	Soi	l Aliquot	Jolume	:	(uL)
CAS NO.	COMPOUND	CONCENTRA: (ug/L or 1	TION UNITS 1g/Kg) UG/1		Q	
$\begin{array}{c} 76-13-1\\ 76-14-2\\ 75-71-8\\ 75-05-8\\ 110-82-7\\ 108-86-1\\ 104-51-8\\ 98-06-6\\ 135-98-8\\ 99-87-6\\ 135-98-8\\ 99-87-6\\ 106-43-4\\ 96-12-8\\ 106-93-4\\ 106-93-4\\ 106-93-4\\ 106-93-4\\ 106-93-4\\ 106-35-8-6\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 98-82-8\\ 103-65-1\\ 95-63-6\\ 108-67-8\\ 108-67-8\\ 109-99-9\\ 109-99-9\\ \end{array}$	3-Pentanone 1,2,2-Cl3-1,1 1,2-Cl2-1,1,2 Dichlorodiflu Acetonitrile Cyclohexane Bromobenzene Bromobenzene tert-Butylbenzene tert-Butylbenz 2-Chlorotolue 4-Isopropylto 4-Chlorotolue 1,2-Dibromoet 1,2-Dibromoet 1,3-Dichlorop 2,2-Dichlorop 1,1-Dichlorop 1,1-Dichlorop Hexachloro-1, Isopropylbenzene Nathphalene Propylbenzene 1,2,3-Trichlo 1,2,4-Trimeth 1,2,3-Trimeth 1,2,3-Trimeth 1,2,3-Trimeth 1,2,3-Trimeth 1,2,3-Trimeth	,2-F4ethane oromethane zene ene luene ne -chloropropane hane hloro-2-butene ropane ropene 3-butadiene ene robenzene robenzene ylbenzene ylbenzene		500 500 500 500 500 1000 1000 1000 1000	0 L L C C C C C C C C C C C C C C C C C	

ţ

;}

y J EPA SAMPLE NO.

	SIS DATA SHEET
Lab Name: PNNL	C104SUPD Contract: C104
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 2
Matrix: (soil/water) WATER	Lab Sample ID: 00-1360D
Sample wt/vol: 5.000 (g/mL) M	L Lab File ID: 00040619
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 04/07/0
GC Column: DB-624 75M X 2.55UM ID: (0.45 (mm) Dilution Factor: 100.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(ul
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q
74-87-3Chloromethane 75-01-4Vinyl Chlorid 106-99-0	de 1000 U 500 U 500 U 1000 U 1000 U athene 1000 U 1000 U 1000 U athene 1000 U 1000 U 500 U fide 1000 U fide 1000 U fide 500 U loride 500 U vde 500 U chloroethene 1000 U athane 1000 U athane 500 U loroethene 1000 U athane 500 U chloroethene 1000 U athane 500 U boroethane 500 U comethane 500 U

OLM03.0

1A

EPA SAMPLE NO.

VOLATILE	E ORGANICS ANALY	YSIS DATA S	HEET				
		O rative i	01.04		C1	04SUPD	
Lab Name: PNNL		Contract	: C104)			
Lab Code: PNNL	Case No.:	SAS No.	:	SDG	No.: 2	2	
Matrix: (soil/water)	WATER		Lab Sam	mple ID:	00-13	360D	
Sample wt/vol:		۹L	Lab Fil	e ID:	0004(0619	
Level: (low/med)	LOW		Date Re	ceived:	<u></u>		
% Moisture: not dec.			Date An	alyzed:	04/07	7/0	
GC Column: DB-624 75	M X 2.55UM ID:	0.45 (mm)		Dilu	tion H	Factor:	100
Soil Extract Volume:	(uL)		Soil Al	iquot V	olume		(ı
CAS NO.	COMPOUND	CONCEN (ug/L	TTRATION or ug/K	UNITS: (g) UG/L	ł	Q	
$\begin{array}{c} 75-27-4\\ 10061-01-5\\ 108-10-1\\ 108-88-3\\ 10061-02-6\\ 79-00-5\\ 127-18-4\\ 591-78-6\\ 124-48-1\\ 108-90-7\\ 100-41-4\\ 106-42-3\\ 95-47-6\\ 100-42-5\\ 75-25-2\\ 75-25-2\\ 79-34-5\\ 75-25-2\\ 79-34-5\\ 541-73-1\\ 106-46-7\\ 95-50-1\\ 106-46-7\\ 95-50-1\\ 106-46-7\\ 95-50-1\\ 106-46-7\\ 95-50-1\\ 106-46-7\\ 107-87-9\\ 11-84-2\\ 107-87-9\\ 108-87-2\\ 108-87-2\\ 108-87-2\\ 123-19-3\\ 123-91-1\\ 126-98-7\\ 563-80-4\end{array}$	trans-1,3-Di 1,1,2-Trichl Tetrachloroe Dibromochlor Chlorobenzen Ethylbenzene Xylene (m & Xylene (o) Styrene Bromoform 1,1,2,2-Tetr 1,3-Dichloro 1,4-Dichloro 1,2-Dichloro Heptane Octane	conethane loropropene pentanone chloroprope oroethane thene p) achloroetha benzene benzene benzene benzene benzene			$\begin{array}{c} 1000\\ 500\\ 5$	מפמממממממממממממממממממממממ	

OLM03.C

1

}

1

.

1

ì

´)

	ORGENICO MEMISI		1			
Lab Name: PNNL		Contract: C104		C10	4 SUPD	
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 2		
Matrix: (soil/water)	WATER	Lab S	ample ID:	00-13	60D	
Sample wt/vol:	5.000 (g/mL) ML	Lab F	ile ID:	00040	619	
Level: (low/med)	LOW	Date	Received:			
% Moisture: not dec.		Date	Analyzed:	04/07	/0	
GC Column: DB-624 75	M X 2.55UM ID: 0.	45 (mm)	Dilu	tion F	actor:	100.0
Soil Extract Volume:	(uL)	Soil	Aliquot V	Volume:		(uL)
CAS NO.	COMPOUND	CONCENTRATI (ug/L or ug			Q	
$\begin{array}{c} 76-13-1\\ 76-14-2\\ 75-71-8\\ 75-05-8\\ 110-82-7\\ 108-86-1\\ 104-51-8\\ 98-06-6\\ 135-98-8\\ 99-87-6\\ 135-98-8\\ 99-87-6\\ 106-43-4\\ 96-12-8\\ 106-93-4\\ 106-93-4\\ 110-57-6\\ 142-28-9\\ 594-20-7\\ 563-58-6\\ 142-28-9\\ 594-20-7\\ 563-58-6\\ 106-35-8\\ 95-63-6\\ 108-67-8\\ 108-67-8\\ 109-99-9\\ \end{array}$	3-Pentanone 1,2,2-Cl3-1,1, 1,2-Cl2-1,1,2, Dichlorodifluc Acetonitrile Cyclohexane Bromobenzene Butylbenzene tert-Butylbenze z-Chlorotoluen 4-Isopropyltol 4-Chlorotoluen 1,2-Dibromo-3- 1,2-Dibromoeth trans-1,4-Dich trans-1,4-Dich 1,3-Dichloropr 2,2-Dichloropr 2,2-Dichloropr 1,1-Dichloropr 1,1-Dichloropr 1,2,3-Trichlon 1,2,4-Trinethy 1,2,3-Trichlon 1,2,4-Trimethy 1,2,3-Trichlon 1,2,4-Trimethy 1,2,3-Trimethy 1,2,3-Trimethy 2-Heptanone 2-Heptanone Dibromomethane	2-F4ethane promethane promethane promethane promethane promethane propene propane propene probenzene probenzene probenzene probenzene propane propane propane propane propane propene propane propene propane propene propane	-	500 500 500 500 1000	מתתממתמתמתמתמתמתמתמתמתמת	

						I
Lab Name: PNNL		Contract:	C104	C1(04SUPMS	
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 2	2	
Matrix: (soil/water) WATER	I	Lab Sample ID:	: 00-01	L360MS	
Sample wt/vol:	5.000 (g/mL) ML]	Lab File ID:	0004(0620	
Level: (low/med)	LOW	I	Date Received:			
% Moisture: not dec			Date Analyzed:			
GC Column: DB-624 7						
Soil Extract Volume	:(uL)					(uL)
CAS NO.	COMPOUND		IRATION UNITS: or ug/Kg) UG/I		Q	
$\begin{array}{c} 75-01-4\\ 106-99-0\\ 106-97-8\\ 74-83-9\\ 75-35-4\\ 75-00-3\\ 75-00-3\\ 75-09-2\\ 109-66-0\\ 75-15-0\\ 107-02-8\\ 107-02-8\\ 107-02-8\\ 107-13-1\\ 123-38-6\\ 107-13-1\\ 123-38-6\\ 156-60-5\\ 156-60-5\\ 156-59-2\\ 156-59-2\\ 156-59-2\\ 75-34-3\\ 110-83-8\\ 156-59-2\\ 78-93-3\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 156-59-2\\ 75-43-4\\ 75-43-4\\ 75-45-6\\ 75-45-6\\ 75-45-6\\ 75-45-6\\ 75-69-4\\ 71-43-2\\ 107-06-2\\ 107-06-2\end{array}$	Pentane Carbon Disulfi Acrolein Methylene Chlo Propionaldehyd trans-1,2-Dich 2-Butenal 1,1-Dichloroet Hexane Cyclohexene Cyclohexene Cyclopentane Cyclopentane Cyclopentane Cyclopentane Cyclopentane Cyclopentane Cyclopentane Cyclopentane Cyclopentane Cyclopentane Chlorofluoro 1,1,1-Trichlor Chlorodifluoro Carbon Tetrach	hene		5000 5000 5700 2600 5000 2800 5000 2500 2500 2500 2500 500	D D <td< td=""><td></td></td<>	

1A

,

1

EPA SAMPLE NO.

	VOLATILI	E ORGANICS ANALY	YSIS DATA S	HEET				0.
Lab Na	ame: PNNL		Contract	: C104		C10	4 SUPMS	· .
Lab Co	ode: PNNL	Case No.:	SAS No.	:	SDG	No.: 2	2	
	x: (soil/water)				mple ID:			
Sample	e wt/vol:	5.000 (g/mL) M	ML	Lab Fi	le ID:	00040	620	
Level	: (low/med)	LOW		Date R	eceived:			
% Mois	sture: not dec.			Date A	nalyzed:	04/07	/0	
GC Co	lumn: DB-624 75	5M X 2.55UM ID:	0.45 (mm)		Dilu	tion F	actor:	100.0
Soil H	Extract Volume	:(uL)		Soil A	liquot V	olume:		(uL
			CONCE	<u>דיי א אידיא</u>	N UNITS:			
	CAS NO.	COMPOUND					Q	
	75-27-4 10061-01-5 108-10-1 108-88-3 10061-02-6 79-00-5 127-18-4 591-78-6 124-48-1 108-90-7 100-41-4 106-42-3 106-42-3 106-42-5 75-25-2 75-25-2 75-25-2 75-25-2 75-25-2 106-46-7 95-50-1 106-46-7 11-84-2 107-87-9 107-87-9	trans-1,3-Di 1,1,2-Trichl Tetrachloroe Dibromochlor Chlorobenzer Ethylbenzene Xylene (m & Xylene (o) Styrene Styrene 1,1,2,2-Tetr 1,3-Dichloro 1,4-Dichloro 1,2-Dichloro Heptane Neptane	romethane loropropen chloroprop loroethane thene romethane p) rachloroeth obenzene obenzene pene nexane pene	e		5000 5000 5000 2300 5000 1400 2500 14000 15000 14000 14000 15000 14000	С С С С С С С С С С С С С С	
		Propyl nitra				2200	J	
	I					<u> </u>	·	

OLM03.0

VOLATILE ORGANICS ANALYSIS DATA SHEET C104SUPMS Lab Name: PNNL Contract: C104

Lab Code: PNNL Case No.: SAS No.: SDG No.: 2

Matrix: (soil/water) WATER

Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 00040620

Level: (low/med) LOW

% Moisture: not dec.

GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)

Soil Extract Volume: (uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L Q

Dilution Factor: 100.0

Soil Aliquot Volume: _____(uL)

96-22-03-Pentanone 15000 76-13-11,2,2-Cl3-1,1,2-F3ethane 1700 J 76-14-21,2-Cl2-1,1,2,2-F4ethane 2300 J 75-05-8Dichlorodifluoromethane 9200 75-05-8			
87-61-61,2,3-Trichlorobenzene 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 96-18-41,2,3-Trichloropropane 5000 U 95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 14000 109-99-9Tetrahydrofuran 690 J	76-13-11,2,2-Cl3-1,1,2,F3ethane 76-14-21,2-Cl2-1,1,2,2-F4ethane 75-71-8Dichlorodifluoromethane 75-05-8Acetonitrile 110-82-7Cyclohexane 108-86-1Bromobenzene 104-51-8Butylbenzene 98-06-6tert-Butylbenzene 98-08-6tert-Butylbenzene 99-87-6	1700 2300 9200 3200 5000 5000 5000 5000 5000 5000 5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
95-49-82-Chlorotoluene 5000 U 99-87-64-Isopropyltoluene 5000 U 106-43-44-Chlorotoluene 5000 U 96-12-84-Chlorotoluene 5000 U 106-93-41,2-Dibromo-3-chloropropane 5000 U 110-57-61,2-Dibromoethane 5000 U 110-57-6trans-1,4-Dichloro-2-butene 5000 U 142-28-91,3-Dichloropropane 5000 U 594-20-72,2-Dichloropropane 5000 U 563-58-61,1-Dichloropropane 5000 U 87-68-3Hexachloro-1,3-butadiene 5000 U 98-82-8	135-98-8sec-Butylbenzene		-
99-87-64-Isopropyltoluene 5000 U 106-43-44-Chlorotoluene 5000 U 96-12-84-Chlorotoluene 5000 U 106-93-41,2-Dibromo-3-chloropropane 5000 U 110-57-6trans-1,4-Dichloro-2-butene 5000 U 142-28-9trans-1,4-Dichloro-2-butene 5000 U 142-28-9			-
106-43-44-Chlorotoluene 5000 U 96-12-81, 2-Dibromo-3-chloropropane 5000 U 106-93-41, 2-Dibromoethane 5000 U 110-57-6trans-1, 4-Dichloro-2-butene 5000 U 142-28-91, 3-Dichloropropane 5000 U 142-28-9			
96-12-81, 2-Dibromo-3-chloropropane 5000 U 106-93-41, 2-Dibromoethane 5000 U 110-57-6trans-1, 4-Dichloro-2-butene 5000 U 142-28-91, 3-Dichloropropane 5000 U 594-20-72, 2-Dichloropropane 5000 U 563-58-61, 1-Dichloropropane 5000 U 563-58-61, 1-Dichloropropane 5000 U 87-68-3Hexachloro-1, 3-butadiene 5000 U 91-20-3Nathphalene 5000 U 103-65-1Propylbenzene 5000 U 87-61-61, 2, 3-Trichlorobenzene 5000 U 120-82-11, 2, 4-Trichlorobenzene 5000 U 96-18-41, 2, 3-Trichloropropane 5000 U 95-63-61, 2, 4-Trimethylbenzene 5000 U 108-67-81, 2, 3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 110-43-02-Heptanone 14000 109-99-9Tetrahydrofuran 690 J	106-43-44-Chlorotoluene		- ,
106-93-41, 2-Dibromoethane 5000 U 110-57-6trans-1, 4-Dichloro-2-butene 5000 U 142-28-9trans-1, 4-Dichloro-2-butene 5000 U 142-28-9	96-12-81,2-Dibromo-3-chloropropane		12.50
110-57-6trans-1,4-Dichloro-2-butene 5000 U 142-28-91,3-Dichloropropane 5000 U 594-20-72,2-Dichloropropane 5000 U 563-58-61,1-Dichloropropane 5000 U 87-68-3	106-93-41,2-Dibromoethane	5000	U
594-20-72,2-Dichloropropane 5000 U 563-58-61,1-Dichloropropene 5000 U 87-68-3Hexachloro-1,3-butadiene 5000 U 98-82-8Isopropylbenzene 5000 U 91-20-3Nathphalene 5000 U 103-65-1Propylbenzene 5000 U 87-61-61,2,3-Trichlorobenzene 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 96-18-41,2,3-Trichloropropane 5000 U 95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 108-67-83-Heptanone 3900 110-43-02-Heptanone 14000 109-99-9Tetrahydrofuran 690 J	110-57-6trans-1,4-Dichloro-2-butene		
563-58-61,1-Dichloropropene 5000 U 87-68-3Hexachloro-1,3-butadiene 5000 U 98-82-8Isopropylbenzene 5000 U 91-20-3Nathphalene 5000 U 103-65-1Propylbenzene 5000 U 87-61-61,2,3-Trichlorobenzene 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 96-18-41,2,3-Trichloropropane 5000 U 95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 110-43-0Tetrahydrofuran 690 J	142-28-91,3-Dichloropropane		10 Con
87-68-3Hexachloro-1,3-butadiene 5000 U 98-82-8Isopropylbenzene 5000 U 91-20-3Nathphalene 5000 U 103-65-1Propylbenzene 5000 U 87-61-61,2,3-Trichlorobenzene 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 96-18-41,2,3-Trichlorobenzene 5000 U 95-63-61,2,4-Trichlorobenzene 5000 U 108-67-81,2,3-Trichloropropane 5000 U 108-67-83-Heptanone 3900 110-43-02-Heptanone 14000 109-99-9Tetrahydrofuran 690 J	594-20-72,2-Dichloropropane		-
98-82-8Isopropylbenzene 5000 U 91-20-3Nathphalene 5000 U 103-65-1Propylbenzene 5000 U 87-61-61,2,3-Trichlorobenzene 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 96-18-41,2,3-Trichloropropane 5000 U 95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 110-43-0Tetrahydrofuran 690 J	563-58-61,1-Dichloropropene		-
91-20-3Nathphalene 5000 U 103-65-1Propylbenzene 5000 U 87-61-61,2,3-Trichlorobenzene 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 96-18-41,2,3-Trichloropropane 5000 U 95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 110-43-0Tetrahydrofuran 690 J			-
103-65-1Propylbenzene 5000 U 87-61-61,2,3-Trichlorobenzene 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 96-18-41,2,3-Trichloropropane 5000 U 95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 110-43-02-Heptanone 14000 09-99-9Tetrahydrofuran 690 J			-
87-61-61,2,3-Trichlorobenzene 5000 U 120-82-11,2,4-Trichlorobenzene 5000 U 96-18-41,2,3-Trichloropropane 5000 U 95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 14000 109-99-9Tetrahydrofuran 690 J			10111
120-82-11,2,4-Trichlorobenzene 5000 U 96-18-41,2,3-Trichloropropane 5000 U 95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 14000 109-99-9Tetrahydrofuran 690 J			1.1.1
96-18-41,2,3-Trichloropropane 5000 U 95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 14000 110-43-0Tetrahydrofuran 690 J	87-61-61,2,3-Trichlorobenzene		-
95-63-61,2,4-Trimethylbenzene 5000 U 108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 14000 110-43-02-Heptanone 14000 690 J 5000 J	120-82-11,2,4-Trichloropenzene		
108-67-81,2,3-Trimethylbenzene 5000 U 106-35-43-Heptanone 3900 110-43-02-Heptanone 14000 109-99-9Tetrahydrofuran 690 J	96-18-41,2,3-Tricnioropropane		-
106-35-43-Heptanone 3900 110-43-02-Heptanone 14000 109-99-9Tetrahydrofuran 690	100 (7 0 1 2 2 Twinethulbergene		
110-43-02-Heptanone 14000 109-99-9Tetrahydrofuran 690 J	106-25-4		0
109-99-9Tetrahydrofuran 690 J			
10 JJ J			T

Lab Sample ID: 00-01360MS

Date Received: ____

Date Analyzed: 04/07/0

.

1A

1A

EPA SAMPLE NO.

VOLATIL	E ORGANICS ANALYS	SIS DATA SHI	EET		SAMPLE NO.
Lab Name: PNNL		Contract:	C104	C104	SUPMSD
Lab Cada, DNRT				·	/
Lab Code: PNNL	Case No.:	SAS NO.:	SDG	NO.: 2	
Matrix: (soil/water)) WATER	I	Lab Sample ID	: 00-01	360MSD
Sample wt/vol:	5.000 (g/mL) ML	J	ab File ID:	00040	621
Level: (low/med)	LOW	Ι	Date Received	:	
% Moisture: not dec	•	I	Date Analyzed	: 04/07	/0
GC Column: DB-624 75	5M X 2.55UM ID: 0	.45 (mm)	Dil	ution F	actor: 100.0
Soil Extract Volume	:(uL)	5	Soil Aliquot	Volume:	(uL
CAS NO.	COMPOUND		TRATION UNITS or ug/Kg) UG/1		Q
$\begin{array}{c} 75-01-4\\ 106-99-0\\ 106-97-8\\ 74-83-9\\ 75-35-4\\ 75-00-3\\ 75-00-3\\ 75-15-0\\ 109-66-0\\ 75-15-0\\ 107-02-8\\ 107-02-8\\ 107-02-8\\ 107-02-8\\ 107-03-3\\ 107-03-3\\ 123-38-6\\ 123-38-6\\ 156-60-5\\ 156-60-5\\ 156-59-2\\ 75-34-3\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 110-83-8\\ 156-59-2\\ 75-34-3\\ 107-66-2\\ 107-06-2$	Bromomethane Chloroethane Chloroethane Acetone Acetone Acrolein Acrolein Methylene Chl Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile Acrylonitrile 	thene ide oride de thane thane thane thane concethane thane concethane thane concethane thane thane thane thane thane		5000 5000 2500 5000 5000 5000 2500 2500 160000 2500 120000 120000 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 2500 5000 2500 5000 2500 5000 2500 5000	U U U U U U U U U U U U U U U U U U U

1

÷.

ź

÷

IA EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET Clo4 SUPMSD Lab Name: PNNL Contract: Clo4 Clo4 SUPMSD Lab Code: PNNL Case No.: SAS No.: SDG No.: 2 Matrix: (soil/water) WATER Lab Sample ID: 00-01360MSD Sample wt/vol: 5.000 (g/mL) ML Lab File ID: 00040621

GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm) Dilution Factor: 100.0

Date Received: ____

Date Analyzed: 04/07/0

Level: (low/med) LOW

% Moisture: not dec.

	0010		TINT TO C		
CAS NO.		ENTRATION L or ug/Kg			Q
78-87-5	1,2-Dichloropropane			5000	TT
75-27-4	-Bromodichloromethane			5000	
10061-01-5	-cis-1,3-Dichloroprope	ne l		5000	1
108-10-1	-4-Methyl-2-pentanone			16000	-
108-88-3	-Toluene			760	
	-trans-1,3-Dichloropro	pene		5000	
79-00-5	-1,1,2-Trichloroethane			5000	Ū
127-18-4	-Tetrachloroethene	(5000	
591-78-6	-2-Hexanone			14000	_
124-48-1	-Dibromochloromethane			5000	U
108-90-7	-Chlorobenzene			830	
100-41-4	-Ethylbenzene			5000	
106-42-3	-Xylene (m & p)			5000	
95-47-6	-Xylene (o)			5000	
100-42-5	-Styrene			5000	U
75-25-2	-Bromoform			5000	U
79-34-5	-1,1,2,2-Tetrachloroet	hane		5000	υ
541-73-1	-1,3-Dichlorobenzene			5000	U
	-1,4-Dichlorobenzene			5000	U
95-50-1	-1,2-Dichlorobenzene			5000	U
142-82-5	-Heptane			2500	U
111-65-9	-Octane			2500	U
111-84-2				2500	
	-3-Chloropropene			5000	1
107-87-9				15000	
	-Methylcyclohexane			2200	
	-5-Methyl-2-hexanone			2500	U
123-19-3	-4-Heptanone]		12000	
123-86-4				11000	
123-91-1				110000	E
126-98-7	-2-Methyl-2-propenenit	rile		15000	
563-80-4	-3-Methyl-2-butanone			16000	
627-13-4	-Propyl nitrate			2500	U

OLM03.(

: 7

)

1

)

VOLATILE O	1A RGANICS ANALYSIS DAT	TA SHEET	EPA S	SAMPLE N	JO.
Lab Name: PNNL	Cont	ract: C104	C104	SUPMSD	
Lab Code: PNNL Ca:	se No.: SAS	No.: S	DG No.: 2	2	
Matrix: (soil/water) W	ATER	Lab Sample	ID: 00-01	360MSD	
Sample wt/vol: 5	.000 (g/mL) ML	Lab File ID	: 00040	621	
Level: (low/med) LA		Date Receiv			
% Moisture: not dec		Date Analyz	ed: 04/07	7/0	
GC Column: DB-624 75M 2	X 2.55UM ID: 0.45	(mm) E	ilution H	factor:	100.0
Soil Extract Volume:	(uL)	Soil Alique	t Volume:		(uL)
CAS NO.		ONCENTRATION UNI ug/L or ug/Kg) U		Q	
$\begin{array}{c} 76-14-2$	-1,2,2-Cl3-1,1,2-F36 -1,2-Cl2-1,1,2,2-F46 -Dichlorodifluoromet -Acetonitrile -Cyclohexane -Bromobenzene -Butylbenzene -Butylbenzene -tert-Butylbenzene -2-Chlorotoluene -4-Isopropyltoluene -4-Chlorotoluene -1,2-Dibromo-3-chlo -1,2-Dibromoethane -trans-1,4-Dichloro -1,3-Dichloropropane -2,2-Dichloropropane -1,1-Dichloropropane -1,2,3-Trichloroben -1,2,3-Trichloroben -1,2,3-Trichloroben -1,2,3-Trichloroben -1,2,3-Trichloroben -1,2,3-Trichloroben -1,2,3-Trichloroben -1,2,3-Trimethylben -2-Heptanone -2-Heptanone -2-Heptanone 	ethane thane thane thane ropropane zene zene zene zene	17000 2500 2500 2500 2500 2500 500 500 500 500 500 500 500 500 500 500 50	<u>с</u> <u>с</u> <u>с</u> <u>с</u> <u>с</u> <u>с</u> <u>с</u> <u>с</u>	

Lab Name: PNNL		Contract:	C104	с	104SOL	
Lab Code: PNNL	Case No.:	SAS No.:	2	SDG No.:	2	I
Matrix: (soil/water) SOLID	L	ab Sample	ID: 00-0	1361	
Sample wt/vol:	0.1 (g/mL) G	L	ab File II	0004	0624	
Level: (low/med)	LOW	D	ate Receiv	red:		
Moisture: not dec		D	ate Analyz	ed: 04/0	7/0	
GC Column: DB-624 7	5M X 2.55UM ID:	0.45 (mm)	I	ilution 2	Factor: 1	1.0
Soil Extract Volume	:(uL)	S	oil Alique	ot Volume	:	(
CAS NO.	COMPOUND	CONCENT (ug/L o	RATION UNI r ug/Kg) U	TS: JG/KG	Q	
$\begin{array}{c} 75-01-4\\ 106-99-0\\ 106-97-8\\ 74-83-9\\ 75-35-4\\ 75-35-4\\ 75-00-3\\ 109-66-0\\ 75-15-0\\ 107-02-8\\ 107-02-8\\ 107-02-8\\ 107-13-1\\ 123-38-6\\ 156-60-5\\ 156-60-5\\ 156-59-2\\ 156-59-2\\ 156-59-2\\ 75-34-3\\ 156-59-2\\ 75-34-3\\ 110-83-8\\ 141-78-6\\ 287-92-3\\ 74-97-5\\ 75-43-4\\ 75-43-4\\ 75-45-6\\ 56-23-5\end{array}$	Pentane Carbon Disul Acrolein Methylene Ch Propionaldeh Propionaldeh trans-1,2-Dich 2-Butenal 1,1-Dichlorod Hexane Cyclohexene Cyclohexene Cyclopentane Cyclopentane Cyclopentane Chloroform Dichlorofluo: 1,1,1-Trichlo Chlorodifluo: Carbon Tetrad	ae e e thene fide loride e yde chloroethene ethane loroethene e e thane chloride		$\begin{array}{c} 400\\ 400\\ 400\\ 2100\\ 400\\ 400\\ 400\\ 400\\ 400\\ 400\\ 400\\ $	U U <td< td=""><td></td></td<>	
1 75-69-4	Trichloroflue	oromethane		400 25		

EPA SAMPLE NO.

	· · · · · · · · · · · · · · · · · · ·
Lab Name: PNNL	Contract: C104 C104 SOL
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 2
Matrix: (soil/water) SOLID	Lab Sample ID: 00-01361
Sample wt/vol: 0.1 (g/mL) G	Lab File ID: 00040624
Level: (low/med) LOW	Date Received:
% Moisture: not dec	Date Analyzed: 04/07/0
GC Column: DB-624 75M X 2.55UM ID: 0.	45 (mm) Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
78-87-51, 2-Dichloropr 75-27-4Bromodichlorom 10061-01-5cis-1, 3-Dichlo 108-10-14-Methyl-2-pen 108-88-3Toluene 10061-02-6trans-1, 3-Dich 79-00-51, 1, 2-Trichlor 127-18-4Tetrachloroeth 591-78-62-Hexanone 124-48-1Dibromochlorom 108-90-7Chlorobenzene_ 100-41-4Ethylbenzene 100-42-5Xylene (m & p) 95-47-6Xylene (o)	aethane 400 U bropropene 400 U utanone 400 U opethane 400 U utanone 400 U opethane 400 U utanone 52 J utanone 52 J utanone 400 U utanone 400 U utanone 400 U

Ì

j

ţ

	C104SOL
Lab Name: PNNL C	Cit4501
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 2
Matrix: (soil/water) SOLID	Lab Sample ID: 00-01361
Sample wt/vol: 0.1 (g/mL) G	Lab File ID: 00040624
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 04/07/0
GC Column: DB-624 75M X 2.55UM ID: 0.4	5 (mm) Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
96-22-03-Pentanone_ 76-13-11,2,2-Cl3-1,1,2,2 76-14-21,2-Cl2-1,1,2,2 75-71-8Dichlorodifluor 75-05-8Acetonitrile_ 110-82-7Cyclohexane 104-51-8Butylbenzene 98-06-6tert-Butylbenzene 98-06-6	-F4ethane 400 U omethane 400 U 400 U 400 U e 400 U 400 U pane 400 U 400 U pane 400 U 400 U pane 400 U 400 U pene 400 U 400 U benzene 400 U 400

VOLATILI	la E organics analys	IS DATA SHE	DET	EPA :	SAMPLE 1	NO.
Lab Name: PNNL		Contract:	C104	C1	04 SOLD	
Lab Code: PNNL	Case No.:	SAS No.:	SI	XG No.: 2	2	
Matrix: (soil/water)	SOLID	I	ab Sample I	ID: 00-0	1361D	
Sample wt/vol:	0.1 (g/mL) G	I	ab File ID	0004	0625	
Level: (low/med)		Ι	ate Receive	ed:		
% Moisture: not dec.		Ι	Date Analyze	ed: 04/0'	7/0	
GC Column: DB-624 75						
Soil Extract Volume:	(uL)	5			:	(uL)
CAS NO.	COMPOUND		TRATION UNIT		Q	
$\begin{array}{c} 75 - 01 - 4 \\ 106 - 99 - 0 \\ 106 - 97 - 8 \\ 74 - 83 - 9 \\ 75 - 35 - 4 \\ 75 - 00 - 3 \\ 75 - 00 - 3 \\ 109 - 66 - 0 \\ 109 - 66 - 0 \\ 107 - 02 - 8 \\ 107 - 02 - 8 \\ 107 - 02 - 8 \\ 107 - 13 - 1 \\ 123 - 38 - 6 \\ 107 - 13 - 1 \\ 123 - 38 - 6 \\ 156 - 60 - 5 \\ 156 - 60 - 5 \\ 156 - 60 - 5 \\ 156 - 60 - 5 \\ 156 - 59 - 2 \\ 156 - 59 - 2 \\ 75 - 34 - 3 \\ 110 - 54 - 3 \\ 156 - 59 - 2 \\ 75 - 34 - 3 \\ 156 - 59 - 2 \\ 78 - 93 - 3 \\ 156 - 59 - 2 \\ 78 - 93 - 3 \\ 100 - 83 - 8 \\ 75 - 43 - 4 \\ 75 - 43 - 4 \\ 75 - 43 - 4 \\ 75 - 45 - 6 \\ 75 - 45 - 6 \\ 75 - 45 - 6 \\ 75 - 45 - 6 \\ 75 - 45 - 6 \\ 75 - 45 - 6 \\ 75 - 45 - 6 \\ 75 - 69 - 4 \\ 71 - 43 - 2 \\ 107 - 06 - 2 \end{array}$	Bromomethane 1,1-Dichloroe Chloroethane Acetone Pentane Carbon Disulf Acrolein Acrolein Acrylonitrile Acrylonitrile Propionaldehy trans-1,2-Dic 2-Butenal 1,1-Dichloroe Hexane Cis-1,2-Dichl 2-Butanone Cyclohexene Cyclohexene Cyclohexene Cyclopentane Cyclopentane Dichlorofluor Dichlorofluor 1,1,1-Trichlo Chlorodifluor	e thene ide oride oride de thane thane oroethene thane oroethane comethane comethane comethane comethane comethane comethane comethane comethane		$\begin{array}{c} 750\\ 750\\ 750\\ 750\\ 3000\\ 750\\ 750\\ 750\\ 750\\ 1900\\ 990\\ 1100\\ 750\\ 750\\ 750\\ 750\\ 750\\ 750\\ 750\\ 7$	U U U U U U U J U U U U U U U U U U U U	

) j

IA VOLATILE ORGANICS ANALYSI	EPA SAMPLE NO.	
Lab Name: PNNL	Contract: C104	C104SOLD
Lab Code: PNNL Case No.:	SAS No.: SDG	No.: 2
Matrix: (soil/water) SOLID	Lab Sample ID	: 00-01361D
Sample wt/vol: 0.1 (g/mL) G	Lab File ID:	00040625
Level: (low/med) LOW	Date Received	:
% Moisture: not dec.	Date Analyzed	: 04/07/0
GC Column: DB-624 75M X 2.55UM ID: 0.	45 (mm) Dilu	ution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot V	Volume:(uL)

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

ì

LA EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET Lab Name: PNNL Contract: C104 Lab Codo: DNNL Case No.

Lab Code: PNNL Case No.: SAS No.: SDG No.: 2 Matrix: (soil/water) SOLID Lab Sample ID: 00-01361D Sample wt/vol: 0.1 (g/mL) G Lab File ID: 00040625 Level: (low/med) LOW Date Received: % Moisture: not dec. Date Analyzed: 04/07/0 GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm) Dilution Factor: 1.0 Soil Aliquot Volume: _____(uL) Soil Extract Volume: _____(uL) CONCENTRATION UNITS: CAS NO'. COMPOUND (ug/L or ug/Kg) UG/KG Q 96-22-0----3-Pentanone 750 U 76-13-1-----1,2,2-Cl3-1,1,2-F3ethane 750 U 76-14-2-----1,2-Cl2-1,1,2,2-F4ethane____ 750 U 75-71-8-----Dichlorodifluoromethane 750 U 75-05-8-----Acetonitrile 750 U 110-82-7----Cyclohexane 750 U 110-82-7-----Cyclohexane 108-86-1-----Bromobenzene 750 U 104-51-8-----Butylbenzene 750 U 98-06-6----tert-Butylbenzene 750 U 135-98-8-----sec-Butylbenzene 750 U 95-49-8-----2-Chlorotoluene 750 U 99-87-6-----4-Isopropyltoluene 750 U 106-43-4-----4-Chlorotoluene 750 U 96-12-8-----1,2-Dibromo-3-chloropropane 750 U 750 U 106-93-4-----1,2-Dibromoethane 110-57-6-----trans-1,4-Dichloro-2-butene 750 U 142-28-9-----1,3-Dichloropropane 750 U 594-20-7-----2,2-Dichloropropane_____ 750 U 750 U 563-58-6-----1,1-Dichloropropene 87-68-3-----Hexachloro-1, 3-butadiene 750 U 98-82-8-----Isopropylbenzene 750 U 91-20-3-----Nathphalene 750 U 750 U 103-65-1----Propylbenzene 87-61-6-----1, 2, 3-Trichlorobenzene 750 U 120-82-1-----1,2,4-Trichlorobenzene 750 U 96-18-4-----1,2,3-Trichloropropane 750 U 95-63-6-----1,2,4-Trimethylbenzene 750 U 108-67-8-----1,2,3-Trimethylbenzene 750 U 106-35-4-----3-Heptanone_____ 800 810 750 U 109-99-9-----Tetrahydrofuran 74-95-3-----Dibromomethane 750 U

1A

EPA SAMPLE NO.

VOLATILI	E ORGANICS ANALYS	IS DATA SHEET		LPA SAMPLI	E NO.
Lab Name: PNNL		Contract: C104		C104SOL	1S
Lab Code: PNNL	Case No.:	SAS No.:	SDG 1	No.: 2	I
Matrix: (soil/water)		Lab S			3
Sample wt/vol:	0.7 (g/mL) G				
Level: (low/med)			Received:		
% Moisture: not dec.		Date			
GC Column: DB-624 75					c· 1 0
Soil Extract Volume:					
					(u
CAS NO.	COMPOUND	CONCENTRATI (ug/L or ug	ON UNITS: (/Kg) UG/KC	g Q	
$\begin{array}{c} 75-01-4\\ 106-99-0\\ 106-97-8\\ 74-83-9\\ 75-35-4\\ 75-35-4\\ 75-00-3\\ 75-15-0\\ 109-66-0\\ 75-15-0\\ 107-02-8\\ 107-02-8\\ 107-13-1\\ 123-38-6\\ 107-13-1\\ 123-38-6\\ 156-60-5\\ 156-60-5\\ 156-59-2\\ 110-54-3\\ 156-59-2\\ 75-34-3\\ 110-83-8\\ 110-83-8\\ 141-78-6\\ 287-92-3\\ 75-43-4\\ 75-43-4\\ 75-45-6\\ 56-23-5\\ 75-69-4\\ 71-43-2\\ \end{array}$	Bromomethane Chloroethane Chloroethane Chloroethane Carbon Disulf: Acrolein Acrolein Acrylonitrile Acrylonitrile Acrylonitrile Propionaldehyd trans-1,2-Dichloroet trans-1,2-Dichloroet 	e		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-

1

lA

. . ;

∕

J

VOLATILE ORGANICS ANALYS	IS DATA SHEET	
Lab Name: PNNL	C104SOLMS	
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 2	
Matrix: (soil/water) SOLID	Lab Sample ID: 00-01361MS	
Sample wt/vol: 0.7 (g/mL) G	Lab File ID: 00040626	
Level: (low/med) LOW	Date Received:	
% Moisture: not dec.	Date Analyzed: 04/07/0	
GC Column: DB-624 75M X 2.55UM ID: 0	.45 (mm) Dilution Factor: 1.0	
Soil Extract Volume:(uL)	Soil Aliquot Volume:(u	ட)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
78-87-51, 2-Dichloropt 75-27-4Bromodichloropt 10061-01-5cis-1, 3-Dichlor 108-10-14-Methyl-2-per 108-88-3Toluene 10061-02-6trans-1, 3-Dichlor 79-00-51, 1, 2-Trichlor 127-18-4Tetrachloroethl 591-78-62-Hexanone 124-48-1Dibromochloror 108-90-7Chlorobenzene 100-41-4Ethylbenzene 106-42-3Xylene (m & p) 95-47-6Xylene (o) 100-42-5Styrene 75-25-2Bromoform 79-34-51, 1, 2, 2-Tetrac 541-73-11, 3-Dichlorobe 106-46-71, 4-Dichlorobe 106-46-71, 2-Dichlorobe 106-46-7	methane 71 U propropene 71 U ntanone 200	

LA VOLATILE ORGANICS ANALYS	IS DATA SHEET
Lab Name: PNNL	C104SOLMS
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 2
Matrix: (soil/water) SOLID	Lab Sample ID: 00-01361MS
Sample wt/vol: 0.7 (g/mL) G	Lab File ID: 00040626
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 04/07/0
GC Column: DB-624 75M X 2.55UM ID: 0.	
Soil Extract Volume: (uL)	
	Soil Aliquot Volume:(uL)
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q
96-22-03-Pentanone 76-13-11,2,2-Cl3-1,1, 76-14-21,2-Cl2-1,1,2, 75-71-8Dichlorodifluc 75-05-8	2-F4ethane 24 J promethane 130 35 J 20 J 71 U ene 71 me 71 uene 71 ue

.

OLM03.0

1A EPA SAMPLE NO. VOLATILE ORGANICS ANALYSIS DATA SHEET C104SOLMSD Lab Name: PNNL Contract: C104 Lab Code: PNNL Case No.: SAS No.: SDG No.: 2 Matrix: (soil/water) SOLID Lab Sample ID: 00-01361MSD

Sample wt/vol: 0.1 (g/mL) G Lab File ID: 00040627

Level: (low/med) LOW

% Moisture: not dec.

GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)

Soil Extract Volume:_____(uL) Soil Aliquot Volume: _____(uL)

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q

Dilution Factor: 1.0

Date Received:

Date Analyzed: 04/07/0

	Chloromethane	10 360	- 1
106-99-0	1,3-Butadiene	2900	0
106-97-8	Butane	22	J
74-83-9	Bromomethane	360	
	1,1-Dichloroethene	28	J
75-00-3	Chloroethane	360	U
67-64-1	Acetone	33	J
109-66-0		120	J
75-15-0	Carbon Disulfide	360	U
107-02-8	Acrolein	360	U
75-09-2	Methylene Chloride	830	В
	Acrylonitrile	22	J
123-38-6 -	Propionaldehyde	680	
156-60-5 -	trans-1,2-Dichloroethene	360	
4170-30-3		17	-
	1,1-Dichloroethane	360	•
110-54-3 -		120	J
	cis-1,2-Dichloroethene	360	U
78-93-3		1300	
110-83-8	Cyclohexene	12	4
	Ethyl acetate	360	
287-92-3	Cyclopentane	15	
74-97-5	Bromochloromethane	360	
	Chloroform	360	1 -
75-43-4	Dichlorofluoromethane	18	1 -
	1,1,1-Trichloroethane	360	[
	Chlorodifluoromethane	22	
	Carbon Tetrachloride	360	
	Trichlorofluoromethane	360	
71-43-2		34	1
	1,2-Dichloroethane	360	
79-01-6 -	Trichloroethene	22	J

LA VOLATILE ORGANICS ANALY	EPA SAMP	LE NO.
Lab Name: PNNL	Cl04SOL	MSD
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 2	
Matrix: (soil/water) SOLID	Lab Sample ID: 00-01361	MSD
Sample wt/vol: 0.1 (g/mL) G		
Level: (low/med) LOW	Date Received:	
% Moisture: not dec.	Date Analyzed: 04/07/0	
GC Column: DB-624 75M X 2.55UM ID: (or: 1.0
	Soil Aliquot Volume:	
CAS NO. COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG Q	
78-87-5	methane 360 U oropropene 360 U ntanone 1000 21 J hloropropene 82 J J noethane 360 U 34 J methane 360 U 34 J methane 360 U 34 J methane 360 U 360 U	

2

!

è

ł J

VOLATILE OR	1A GANICS ANALYSIS DAT	A SHEET	EPA S	AMPLE NO.
Lab Name: PNNL	Contr	ract: C104	C104	SOLMSD
Lab Code: PNNL Cas	e No.: SAS	No.: SD	G No.: 2	
Matrix: (soil/water) SO	LID	Lab Sample II): 00-01	361MSD
Sample wt/vol:	0.1 (g/mL) G	Lab File ID:	00040	627
Level: (low/med) LO	W	Date Received	1:	
% Moisture: not dec		Date Analyzed	l: 04/07	/0
GC Column: DB-624 75M X	2.55UM ID: 0.45	mm) Di	lution F	actor: 1.0
Soil Extract Volume:	(uL)	Soil Aliquot	Volume:	(บ
CAS NO.		NCENTRATION UNITS 1g/L or ug/Kg) UG,		Q
76-14-2	1,2,2-Cl3-1,1,2-F3e 1,2-Cl2-1,1,2,2-F4e Dichlorodifluoromet Acetonitrile Cyclohexane Bromobenzene Butylbenzene tert-Butylbenzene 2-Chlorotoluene 4-Isopropyltoluene 4-Chlorotoluene 1,2-Dibromo-3-chlor 1,2-Dibromoethane trans-1,4-Dichloro- 1,3-Dichloropropane 2,2-Dichloropropane 1,1-Dichloropropane 1,1-Dichloropropane 1,2,3-Trichloroben: 1,2,3-Trichloroben: 1,2,3-Trichloroben: 1,2,3-Trichloropen: 1,2,3-Trichloropen: 1,2,3-Trichloropen: 1,2,3-Trichloropen: 1,2,3-Trichloropen: 1,2,3-Trimethylben: 3-Heptanone 2-Heptanone Tetrahydrofuran	thane hane copropane 2-butene adiene zene zene zene zene	1200 16 7 200 14 14 360 360 360 360 360 360 360 360	J J J J J J J J J J J J J J

OLM03.0

1E VOLATILE ORGANICS ANALYSIS DATA	
TENTATIVELY IDENTIFIED COMPO	LCS
Lab Name: PNNL Contract	
Lab Code: PNNL Case No.: SAS No	.: SDG No.: 2
Matrix: (soil/water) WATER	Lab Sample ID: LCS
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: 00040614
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 04/06/0
GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	ENTRATION UNITS: L or ug/Kg) ug/L

RT

14.50

14.71

17.25 20.25

22.49

EST. CONC.

0

}

310 NJ

120 NJ

180 NJ

130 NJ

22 NJ

1 17

COMPOUND NAME

2-HEXANONE, 5-METHYL-BENZENE, 1,2,3-TRIMETHYL-BENZALDEHYDE, 2,5-BIS[(TRIME

1-PROPENE, 2,3-DICHLORO-

OCTANE

CAS NUMBER

1. 111-65-9

2. 78-88-6

3. 110-12-3

4. 526-73-8

<u>6</u>._ 7.___ 8.____

9.__ 10._ 11._ 12. 13.___ 14.____ 15.____ 16.____ 17.____ 18.__ 19.____ 20.____ 21.____ 22.____ 23.____ 24._ 25. 26.___ 27.___ 28.____ 29.____ 30.

5. 56114-69-3

OLM03.0

1

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS			EPA SAMPLE NO.	,	
				METHOD BLANK	
Lab Name: PNNL	(Contract	: C104	·	_
Lab Code: PNNL	Case No.:	SAS No.	: SDG	No.: 2	
Matrix: (soil/water)	WATER		Lab Sample ID:	VBLK02	
Sample wt/vol:	5.000 (g/mL) ML		Lab File ID:	00040616	
Level: (low/med)	LOW		Date Received:	· · · · · · · · · · · · · · · · · · ·	
% Moisture: not dec.			Date Analyzed:	04/07/0	
GC Column: DB-624 75	M X 2.55UM ID: 0.4	45 (mm)	Dilu	tion Factor: 1.	. 0
Soil Extract Volume:	(uL)		Soil Aliquot V	Volume:	_(uL)
		CONCE	WTRATION UNITS		

Number TICs found: 2

."

;

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	0
				-
			===============	
1.	UNKNOWN SILOXANE	19.15	9	J
2.	UNKNOWN SILOXANE	22.57	5	J
3				
4 .				
5				
6				
7				
7	· · · · · · · · · · · · · · · · · · ·			
~·	•			
10				
10		<u> </u>		
11				
12.				
TJ.				
14.				
15				
16				·
17		· · · · · · · · · · · · · · · · · · ·		
17				·
TO .				
т <i>у</i> .			ļ	
20.				
∠⊥.				
22.				
23.				
24	· · · · · · · · · · · · · · · · · · ·			
24			·	
40.				
20.				
		1		
20.				
29				
30.				
	·	· [
				·

1E VOLATILE ORGANICS ANALYSIS	EPA SAMPLE NO. DATA SHEET
TENTATIVELY IDENTIFIED	COMPOUNDS METHOD BLANK
Lab Name: PNNL Co	ntract: C104
Lab Code: PNNL Case No.: S	AS No.: SDG No.: 2
Matrix: (soil/water) SOLID	Lab Sample ID: VBLK03
Sample wt/vol: 0.0 (g/mL) G	Lab File ID: 00040622
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 04/07/0
GC Column: DB-624 75M X 2.55UM ID: 0.45	(mm) Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
Number TICs found: 2	CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 2.	UNKNOWN SILOXANE UNKNOWN SILOXANE	19.13 22.57	48 34	J
3. 4. 5. 6				
7				
10			· · · · · · · · · · · · · · · · · · ·	
12 13 14				
16 17				
19 20				
22				
25				
28				<u> </u>
30				

OLM03.0

1E VOLATILE ORGANICS ANALYSIS DATA S TENTATIVELY IDENTIFIED COMPO	
Lab Name: PNNL Contract	HOTCELLBLK
Lab Code: PNNL Case No.: SAS No	.: SDG No.: 2
Matrix: (soil/water) WATER	Lab Sample ID: 00-1360-CB
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: 00040617
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 04/07/0
GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)	Dilution Factor: 1.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	ENTRATION UNITS: L or ug/Kg) ug/L

1

1. 124-38-9 CARBON DIOXIDE 3.08 78 N. 2. UNKNOWN SILOXANE 22.58 23 JI 3. UNKNOWN SILOXANE 25.96 3 J 4.	CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
3.	2. 3.	CARBON DIOXIDE UNKNOWN SILOXANE	22.58	78 23	JB
10.	6. 7. 8.				
14.	10. 11. 12.				
19.	14. 15. 16. 17.				
23.	19. 20. 21.				
	23. 24. 25.				
26.	28				

OLM03.0

1E VOLATILE ORGANICS ANALYSIS DATA SHEET TENTATIVELY IDENTIFIED COMPOUNDS				E 	EPA SAMPLE NO.	
Lab Name: PNNL		Contract:	C104		HOTCELL	BLKD
Lab Code: PNNL	Case No.:	SAS No.:		SDG No	.: 2	
Matrix: (soil/wat		:				CBD
Sample wt/vol:	0.0 (g/mL) G					
Level: (low/med			Date Recei			
% Moisture: not de	ec		Date Analy			
	75M X 2.55UM ID: 0		-			or · 1 0
	me:(uL)					
Number TICs found		CONCEN	IRATION UN Dr ug/Kg)	IITS:		(ull)
CAS NUMBER	COMPOUND N		RT	EST.	CONC.	Q
6. 7. 8. 9. 10. 11. 12.						JB JB
30						

OLMO3.0

1

i

	1E	0 0 0 0 0 0	771701	EPA SAMPLE NO.
	ORGANICS ANALYSI ATIVELY IDENTIFIE			C104SUP
Lab Name: PNNL	(Contract	: C104	
Lab Code: PNNL	Case No.:	SAS No.	: SDG	No.: 2
Matrix: (soil/water)	WATER		Lab Sample ID:	00-1360
Sample wt/vol:	5.000 (g/mL) ML		Lab File ID:	00040618
Level: (low/med)	LOW		Date Received:	
% Moisture: not dec.			Date Analyzed:	04/07/0
GC Column: DB-624 75	M X 2.55UM ID: 0.4	45 (mm)	Dilu	tion Factor: 100.0
Soil Extract Volume:	(uL)		Soil Aliquot V	olume:(uL)

Number TICs found: 10

1

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	. ~ .
1. 19689-18-0 2. 124-18-5 3. 1120-21-4 4. 7206-17-9 5. 112-40-3 6. 820-29-1 7. 928-80-3 8. 693-54-9 9. 629-50-5 10. 50639-02-6	4 - DECENE DECANE UNDECANE 6 - DODECENE, (E) - DODECANE 5 - DECANONE 3 - DECANONE 2 - DECANONE TRI DECANE 5 - UNDECANONE, 2 - METHYL -		5300 42000 93000 8300 49000	NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ
30				

1E VOLATILE ORGANICS ANALYSIS DATA S TENTATIVELY IDENTIFIED COMPOU	
Lab Name: PNNL Contract	C104SUPD
Lab Code: PNNL Case No.: SAS No.	.: SDG No.: 2
Matrix: (soil/water) WATER	Lab Sample ID: 00-1360D
Sample wt/vol: 5.000 (g/mL) ML	Lab File ID: 00040619
Level: (low/med) LOW	Date Received:
% Moisture: not dec.	Date Analyzed: 04/07/0
GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)	Dilution Factor: 100.0
Soil Extract Volume:(uL)	Soil Aliquot Volume:(uL)
	ENTRATION UNITS: L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1.				
2				
) 1 .		· · · · · · · · · · · · · · · · · · ·		
5				
6 7				<u> </u>
9				<u> </u>
12.				
14.		 		
L TP.				
± / •				
18 19				
20.				
21.				
23.				
24				
20.				
28.	· · · · · · · · · · · · · · · · · · ·			
29				
30			· · · · · · · · · · · · · · · · · · ·	

VOLATILE ORGANICS	1E ANALYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: PNNL	DENTIFIED COMPOUNDS Contract: C10	C104SOL
Lab Code: PNNL Case No.:	SAS No.:	SDG No.: 2
Matrix: (soil/water) SOLID	Lab	Sample ID: 00-01361
Sample wt/vol: 0.1 (g,	/mL) G Lab	File ID: 00040624
Level: (low/med) LOW	Date	e Received:
% Moisture: not dec.	Date	e Analyzed: 04/07/0
GC Column: DB-624 75M X 2.55UN	M ID: 0.45 (mm)	Dilution Factor: 1.0
Soil Extract Volume:()	uL) Soil	Aliquot Volume:(uL)

Number TICs found: 20

÷,

1

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. $592-76-7$ 2. $111-66-0$ 3. $124-11-8$ 4. $19689-18-0$ 5. $124-18-5$ 6. $111-13-7$ 7. $764-96-5$ 8. $1120-21-4$ 9. $764-97-6$ 10. $19549-83-8$ 11. $821-55-6$ 12. $124-12-9$ 13. $2030-84-4$ 14. $112-40-3$ 15. $624-16-8$ 16. $928-80-3$ 17. $693-54-9$ 18. $2243-27-8$ 19. $629-50-5$ 20. $33083-83-9$ 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.	1-HEPTENE 1-OCTENE 1-NONENE 4-DECENE DECANE 2-OCTANONE 5-UNDECENE, (Z) - UNDECANE 5-UNDECENE, (E) - 3-HEPTANONE, 2, 6-DIMETHYL- 2-NONANONE OCTANENITRILE 4-DODECENE DODECANE 4-DECANONE 3-DECANONE 3-DECANONE 2-DECANONE NONANENITRILE TRIDECANE 5-UNDECANONE 	11.53 14.50 17.17 19.61 19.71 20.54 21.82 21.97 22.06 22.27 22.75 23.09 23.86 24.00 24.31 24.61 24.61 24.79 25.17 25.86 26.24	3200 3300 2100 1800 13000 1200 2800 24000 1600 1900 2600 1500 2900 21000 6300 2700 3000 1400 1900 4400	NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ N

VOLATILE	EPA SAMPLE N	JO _			
Lab Name: PNNL	ATIVELY IDENTIFIE	Contract:		C104SOLD	
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 2	
Matrix: (soil/water)	SOLID		Lab Sample ID:	00-01361D	
Sample wt/vol:	0.1 (g/mL) G		Lab File ID:	00040625	
Level: (low/med)	LOW		Date Received:	<u></u>	
% Moisture: not dec.			Date Analyzed:	04/07/0	
GC Column: DB-624 75	M X 2.55UM ID: 0.4	15 (mm)	Dilu	tion Factor:	1.0
Soil Extract Volume:	(uL)		Soil Aliquot V	olume:	(uL)

Number TICs found: 19

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. $592-76-7$ 2. $111-66-0$ 3. $124-11-8$ 4. $19689-18-0$ 5. $19689-18-0$ 6. $124-18-5$ 7. $764-96-5$ 8. $1120-21-4$ 9. 10. $821-55-6$ 11. $124-12-9$ 12. $2030-84-4$ 13. $112-40-3$ 14. $624-16-8$ 15. $928-80-3$ 16. $693-54-9$ 17. $2243-27-8$ 18. $629-50-5$ 19. $50639-02-6$ 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30.	1-HEPTENE 1-OCTENE 1-NONENE 4-DECENE 4-DECENE DECANE 5-UNDECENE, (Z) - UNDECANE UNKNOWN SILOXANE 2-NONANONE OCTANENITRILE 4-DODECENE DODECANE 4-DECANONE 3-DECANONE 2-DECANONE 2-DECANONE 5-UNDECANOE, 2-METHYL-	11.51 14.47 17.12 19.54 19.54 19.65 21.75 21.90 22.56 22.67 23.01 23.78 23.93 24.23 24.23 24.53 24.71 25.07 25.77 26.14	5400 4600 2900 3100 3100 26000	NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ N

SOLID VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: PNNL

Contract: C104

SAS No.: SDG No.: 2 Lab Code: PNNL Case No.:

Level: (low/med) LOW

	EPA	SMC1	SMC2	SMC3	OTHER	TOT
	SAMPLE NO.	(TOL)#	(BFB)#	#	(DCE)#	OUT
	===========	=====	======			===
01	METHOD BLANK	95	98	106	103	0
02	HOTCELLBLKD	95	99	107	102	0
03 04	C104SOL C104SOLD	100 97	93 97	86 84	97 90	0
04	C104SOLMS	99	99	84	89	l ol
06	C104SOLMSD	96	100	78	88	Ö
07	010000					
08						
09						
10 11						
12^{11}						
13	· · · · · · · · · · · · · · · · · · ·					
14^{-0}						
15						
16						!
17	-				·	
18 19						
20				_	-	I—I
21						
22						
23						
24						
25 26						
26 27						
28						
29		· · · · ·				
30						

QC LIMITS

SMC1 (TOL)	=	Toluene-d8	(84-138)
SMC2 (BFB)	=	Bromofluorobenzene	(59-113)
SMC3	=	Dibromofluoromethane	(0-150)
OTHER (DCE)	=	1,2-Dichloroethane-d4	(70-121)

Column to be used to flag recovery values

* Values outside of contract required QC limits

page 1 of 1

FORM II VOA-2

WATER VOLATILE SYSTEM MONITORING COMPOUND RECOVERY

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.: SAS No.: SDG No.: 2

	EPA SAMPLE NO.	SMC1 (TOL)#	SMC2 (BFB)#	SMC3 #	OTHER (DCE)#	TOT
		(100)#	(DFD)#			1
01	======================================	200	100	100		====
02		100	102	100	95	0
	METHOD BLANK	94	100	106	106	0
03	HOTCELLBLK	94	97	105	104	0
04	C104SUP	102	97	89	96	0
05	C104SUPD	0*	0*	0	0*	3
06	C104SUPMS	96	98	86	92	0
07	C104SUPMSD	95	92	96	105	0
80						
09]	_	
10						
11 12						
13			<u> </u>			í ——-
13 14						l
15						
16			<u> </u>			
17					Í —	}
18			·		ļ	
19					\	
20					<u> </u>	
21					<u> </u>	
22						
23						
24					<u> </u>	
25					[I
26					Í	
27						
28						·
29						
30						I
SN	1C1 (TOL) = To	oluene-c	18	Q	C LIMIT: (88-1)	

SMC1 (TOL)	=	Toluene-d8	(88-110)
SMC2 (BFB)	=	Bromofluorobenzene	(86-115)
SMC3	=	Dibromofluoromethane	(0-150)
OTHER (DCE)	=	1,2-Dichloroethane-d4	(76-114)

Column to be used to flag recovery values

* Values outside of contract required QC limits

page 1 of 1

FORM II VOA-1

ЗA

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.:

SAS No.: SDG No.: 2

Matrix Spike - EPA Sample No.: C104SUP

COMPOUND	SPIKE ADDED (ng)	SAMPLE AMOUNT (ng)	MS AMOUNT (ng)	MS % REC #	QC. LIMITS REC.
Butane	150	0.0	130	87	0-200
1,1-Dichloroethene	190	0.0	140	74	61-145
Acetone	150	50	160	73	0-200
Pentane	150	0.0	79	53	0-200
Acrylonitrile	150	0.0	120	80	0-200
2-Butenal	150	0.0	0.0	Ő	0-200
Hexane	150	250	250	Ő	0-200
Cyclohexene	150	0.0	66	44	0-200
Ethyl acetate	150	0.0	0.0	0	0-200
Cyclopentane	150	. 0.0	150	100	0-200
Dichlorofluoromethane	150	0.0	96	64	0-200
Chlorodifluoromethane	150	0.0	110	73	0-200
Benzene	190	0.0	180	95	76-127
Trichloroethene	190	0.0	120	63*	71-120
Toluene	190	0.0	110	58*	76-125
2-Hexanone	150	1	150	99	0-200
Chlorobenzene	190	0.0	93	49*	75-130
Heptane	150	93	56	-25*	
Octane	150	190	29	~107*	
Nonane	150	310	21	-193*	
2-Pentanone	150	0.0	150	100	0~200
Methylcyclohexane	150	0.0	71	47	0~200
4-Heptanone	150	0.0	130	87	0-200
Butylacetate	150	0.0	0.0	0	0-200
Propyl nitrate	150	0.0	110	73	0-200
1,2,2-Cl3-1,1,2-F3ethan	150	0.0	87	58	0-200
1,2-Cl2-1,1,2,2-F4ethan	150	0.0	120	80	0-200
Acetonitrile	150	0.0	160	107	0-200

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:

page 1 of 4

3A

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab	Name:	PNNL		Contract	t: C104		
Lab	Code:	PNNL	Case No.:	SAS No	. :	SDG No.:	2
Mati	rix Spi	ike - EPA	Sample No.:	C104SUP			

COMPOUND	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	AMOUNT	AMOUNT	%	LIMITS
	(ng)	(ng)	(ng)	REC #	REC.
Cyclohexane 3-Heptanone Tetrahydrofuran	150 150 150	0.0 4 0.0	98 190 34	====== 65 124 23	0-200 0-200 0-200 0-200

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:

page 2 of 4

FORM III VOA-1

OLM03.0

ł

3A-

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.:

ī

SAS No.: SDG No.: 2

Matrix Spike - EPA Sample No.: C104SUP

COMPOUND	SPIKE ADDED (ng)	MSD AMOUNT (ng)	MSD % REC #	% RPD #	QC LI RPD	IMITS REC.
COMPOUND Butane 1,1-Dichloroethene Acetone Pentane Acrylonitrile 2-Butenal Hexane Cyclohexene Ethyl acetate Cyclopentane Dichlorofluoromethane Benzene Trichloroethene Toluene 2-Hexanone Chlorobenzene Heptane Octane Nonane 2-Pentanone Methylcyclohexane 4-Heptanone Butylacetate Propyl nitrate 1,2,2-Cl3-1,1,2-F3ethan 1,2-Cl2-1,1,2,2-F4ethan	(ng) 	(ng) 	REC # 999* 999* 9999*	RPD # ====== 173* 170* 200* 162* 162* 164* 164* 164* 164* 182* 168*	RPD 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0	REC.
Acetonitrile	0.0	0.0	999*		Ō	0- 0

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:

page 3 of 4

3A

WATER VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: PNNLContract: C104Lab Code: PNNLCase No.:SAS No.:SDG No.: 2

Matrix Spike - EPA Sample No.: C104SUP

	SPIKE ADDED	MSD AMOUNT	MSD %	olo	QC LI	IMITS
COMPOUND	(ng)	(ng)	REC #	RPD #	RPD	REC.
=======================================	=========	=================			======	======
Cyclohexane	0.0	0.0	999*		0	0- 0
3-Heptanone	0.0	160	999 *	156*	0	0- 0
Tetrahydrofuran	0.0	42	999*	191*	0	0- 0

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 12 out of 31 outside limits Spike Recovery: 37 out of 62 outside limits

COMMENTS:

page 4 of 4

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.: SAS No.: SDG No.: 2

Matrix Spike - EPA Sample No.: C104SOL Level: (low/med) LOW

	SPIKE	SAMPLE	MS	MS	QC.
COMPOUND	ADDED	AMOUNT	AMOUNT	%	LIMITS
COMPOUND	(ng)	(ng)	(ng)	REC #	REC.
	======================================		============	======	======
Butane	150	260	300	27	0-200
1,1-Dichloroethene	. 190	0.0	150	79	61-145
Acetone	150	24	140	77	0-200
Pentane	150	690	340	-233*	0-200
Acrylonitrile	150	0.0	120	80	0-200
2-Butenal	150	0.0	0.0	0	0-200
Hexane	150	870	510	-240*	0-200
Cyclohexene	150	0.0	65	43	0-200
Ethyl acetate	150	0.0	0.0	0	0-200
Cyclopentane	150	0.0	160	107	0-200
Dichlorofluoromethane	150	0.0	100	67	0-200
Chlorodifluoromethane	150	0.0	110	73	0-200
Benzene	190	3	180	93	76-127
Trichloroethene	190	0.0	120	63*	71-120
Toluene	190	0.0	120	63*	76-125
2-Hexanone	150	16	160	96	0-200
Chlorobenzene	190	0.0	87	46*	75-130
Heptane	150	640	190	-300*	0-200
Octane	150	420	79	-227*	
Nonane	150	350	50	-200*	
2-Pentanone	150	5	150	97	0-200
Methylcyclohexane	150	0.0	69	46	0-200
4-Heptanone	150	6	130	83	0-200
Butylacetate	150	0.0	0.0	0	0-200
Propyl nitrate	150	4	100	64	0-200
1,2,2-Cl3-1,1,2-F3ethan	150	0.0	98	65	0-200
1,2-Cl2-1,1,2,2-F4ethan	150	0.0	120	80	0-200
Acetonitrile	150	0.0	170	113	0-200
<u></u> _				I	I

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits.

COMMENTS:

page 1 of 4

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: PNNLContract: C104Lab Code: PNNLCase No.:SAS No.:SDG No.: 2Matrix Spike - EPA Sample No.: C104SOLLevel:(low/med) LOW

COMPOUND	SPIKE	SAMPLE	MS	MS	QC.
	ADDED	AMOUNT	AMOUNT	%	LIMITS
	(ng)	(ng)	(ng)	REC #	REC.
Cyclohexane	150	0.0	99	66	0-200
3-Heptanone	150		210	105	0-200
Tetrahydrofuran	150	0.0	32	21	0-200

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:

page 2 of 4

FORM III VOA-2

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.: SAS No.: SDG No.: 2

Matrix Spike - EPA Sample No.: C104SOL Level: (low/med) LOW

	SPIKE	MSD	MSD			
	ADDED	AMOUNT	o l o	010	OC LI	IMITS
COMPOUND	(ng)	(nq)	REC #	RPD #	RPD	REC.
	========		======			======
Butane	150	110	-100*	-348	50	0-200
1,1-Dichloroethene	190	140	74	6	14	61-145
Acetone	150	160	91	17	50	0-200
Pentane	150	600	-60*	-118	50	0-200
Acrylonitrile	150	110	73	9	50	0-200
2-Butenal	150	87	58		50	0-200
Hexane	150	620	-167*	-36	50	0~200
Cyclohexene	150	60	40	7	50	0-200
Ethyl acetate	150	0.0	0		50	0-200
Cyclopentane	150	77	51	71*	50	0-200
Dichlorofluoromethane	150	89	59	13	50	0-200
Chlorodifluoromethane	150	110	73	0	50	0-200
Benzene	190	170	88	6	11	76-127
Trichloroethene	190	110	58*	8	14	71-120
Toluene	190	100	53*	17*	13	76-125
2-Hexanone	150	170	103	7	50	0-200
Chlorobenzene	190	73	38*	19*	13	75-130
Heptane	150	210	-287*	-4	50	0-200
Octane	150	60	-240*	-6	50	0-200
Nonane	150	31	213*	-6	50	0-200
2-Pentanone	150	160	103	6	50	0-200
Methylcyclohexane	150	61	41	11	50	0-200
4-Heptanone	150	130	83	0	50	0-200
Butylacetate	150	11 .	7		50	0-200
Propyl nitrate	150	110	71	10	50	0-200
1,2,2-Cl3-1,1,2-F3ethan	150	79	53	20	50	0-200
1,2-Cl2-1,1,2,2-F4ethan	150	34	23	111*	50	0-200
Acetonitrile	150	68	45	86*	50	0-200
l						

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

COMMENTS:

page 3 of 4

FORM III VOA-2

SOLID VOLATILE MATRIX SPIKE/MATRIX SPIKE DUPLICATE RECOVERY

Lab	Name:	PNNL		Conti	ract: C104			
Lab	Code:	PNNL	Case No.:	SAS	No.:	SDG	No.:	2
Matı	rix Spi	ike - EPA	Sample No.:	C104SOL	Level:(low/	med)	LOW	

	SPIKE ADDED	MSD AMOUNT	MSD %	010	QC LI	IMITS
COMPOUND	(ng)	(ng)	REC #	RPD #	RPD	REC.
**=====================================	==========		======			=====
Cyclohexane	150	68	45	38	50	0-200
3-Heptanone	150	240	125	17	50	0-200
Tetrahydrofuran	150	35	23	9	50	0-200
			Í			

Column to be used to flag recovery and RPD values with an asterisk

* Values outside of QC limits

RPD: 5 out of 31 outside limits Spike Recovery: 17 out of 62 outside limits

COMMENTS:

EPA SAMPLE NO.

4A VOLATILE METHOD BLANK SUMMARY

METHOD BLANK

Lab Name: PNNLContract: C104Lab Code: PNNLCase No.:SAS No.:Lab File ID: 00040616Lab Sample ID: VBLK02Date Analyzed: 04/07/0Time Analyzed: 0037GC Column: DB-624 75M X 2.55UMID: 0.45 (mm)Heated Purge: (Y/N) Y

Instrument ID: HP1

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	LCS	LCS	00040614	2310
	,			
02	HOTCELLBLK	00-1360-CB	00040617	0120
03	C104SUP	00-1360	00040618	0204
04	C104SUPD	00-1360D	00040619	0247
05	C104SUPMS	00-01360MS	00040620	0331
06	C104SUPMSD	00-01360MSD	00040621	0414
07	HOTCELLBLKD			
- · ·		00-1360-CBD	00040623	0541
08	C104SOL	00-01361	00040624	0625
09	C104SOLD	00-01361D	00040625	0708
10	C104SOLMS	00-01361MS	00040626	0752
11	C104SOLMSD	00-01361MSD	00040627	0835
12	CT04BOH05D	CO OTDOTUDD	00040027	0000
	· <u>····································</u>			
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29	<u> </u>			
30				

COMMENTS:

page 1 of 1

FORM IV VOA

4A

EPA SAMPLE NO.

METHOD BLANK

Heated Purge: (Y/N) Y

VOLATILE METHOD BLAN	IK SUMMARY
----------------------	------------

Lab Name: PNNL

Lab Code: PNNL Case No.: SAS No.: SDG No.: 2

Contract: C104

Lab File ID: 00040622

Lab Sample ID: VBLK03

Date Analyzed: 04/07/0

Time Analyzed: 0458

GC Column: DB-624 75M X 2.55UMID: 0.45 (mm)

Instrument ID: HP1

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	FIDA			
	EPA	LAB	LAB	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================			===========
01	LCS	LCS	00040614	2310
02	HOTCELLBLK	00-1360-CB	00040617	0120
03	C104SUP	00-1360	00040618	0204
04	C104SUPD	00-1360D	00040619	
05	C104SUPMS			0247
		00-01360MS	00040620	0331
06	C104SUPMSD	00-01360MSD	00040621	0414
07	HOTCELLBLKD	00-1360-CBD	00040623	0541
08	C104SOL	00-01361	00040624	0625
09	C104SOLD	00-01361D	00040625	0708
10	C104SOLMS	00-01361MS	00040626	0752
11	C104SOLMSD	00-01361MSD	00040627	0835
12				
13				
14				
15				
16				
17				
18	<u> </u>			
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29		· · · · · · · · · · · · · · · · · · ·		
30			· · · · · · · · · · · · · · · · · · ·	

COMMENTS:

page 1 of 1

FORM IV VOA

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: PNNL		Contract:	C104
Lab Code: PNNL	Case No.:	SAS No.:	SDG No.: 2
Lab File ID: 0004	0601	BFB	Injection Date: 04/06/0
Instrument ID: HP	1	BFB	Injection Time: 1345
GC Column:	ID: 2.00 (mm) Heat	ed Purge: (Y/N) N

% RELATIVE m/e ION ABUNDANCE CRITERIA ABUNDANCE 50 8.0 - 40.0% of mass 95 34.4 30.0 - 66.0% of mass 95 75 55.6 95 Base Peak, 100% relative abundance 100.0 96 5.0 - 9.0% of mass 95 7.1 173 Less than 2.0% of mass 174 0.0(0.0)1174 50.0 - 120.0% of mass 95 76.9 175 4.0 - 9.0% of mass 174 5.5 7 7.2)1 176 93.0 - 101.0% of mass 174 71.9 (93.6)1 5.0 - 9.0% of mass 176 177 5.0 (7.0)2 1-Value is % mass 174 2-Value is % mass 176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EPA LAB LAB DATE TIME SAMPLE NO. SAMPLE ID FILE ID ANALYZED ANALYZED 01 VSTD025 VSTD025 00040602 04/06/0 1429 02 VSTD050 VSTD050 00040603 04/06/0 1513 03 VSTD100 VSTD150 00040605 04/06/0 1556	
01 VSTD025 VSTD025 00040602 04/06/0 1429 02 VSTD050 VSTD050 00040603 04/06/0 1513 03 VSTD100 VSTD100 00040604 04/06/0 1556	1941) I
02 VSTD050 VSTD050 00040603 04/06/0 1513 03 VSTD100 VSTD100 00040604 04/06/0 1556	
02 VSTD050 VSTD050 00040603 04/06/0 1513 03 VSTD100 VSTD100 00040604 04/06/0 1556	:=== {
03 VSTD100 VSTD100 00040604 04/06/0 1556	
	; I
04 VSTD150 VSTD150 00040605 04/06/0 1640	
05 VSTD200 VSTD200 00040606 04/06/0 1723	
06	
07	
08	
09	
10	
13	
	i
	İ
16	
17	
18	
19	
20	
21	
22	

page 1 of 1

5A VOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK BROMOFLUOROBENZENE (BFB)

Lab Name: PNNL			Contract:	C104		
Lab Code: PNNL	Case No.:		SAS No.:	5	SDG No.	: 2
Lab File ID: 000	040612		BFB	Injection	Date:	04/06/0
Instrument ID: H	IP1		BFB	Injection	Time:	2143
GC Column:	ID: 2.00	(mm)	Heat	ed Purge:	(Y/N)	N

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
50 75 95 173 174 175 176 177	8.0 - 40.0% of mass 95 30.0 - 66.0% of mass 95 Base Peak, 100% relative abundance 5.0 - 9.0% of mass 95 Less than 2.0% of mass 174 50.0 - 120.0% of mass 95 4.0 - 9.0% of mass 174 93.0 - 101.0% of mass 174 5.0 - 9.0% of mass 176	$ \begin{array}{c} 31.0 \\ 53.2 \\ 100.0 \\ 6.9 \\ 0.0 \\ \hline 0.0 \\ \hline 0.01 \\ 82.3 \\ 5.7 \\ \hline 0.9 \\ \hline 0.01 \\ 82.3 \\ 5.7 \\ \hline 0.9 \\ 98.3 \\ 1 \\ 5.4 \\ \hline 0.7 \\ 2 \\ \hline 0.7 \\ \hline 0.0 \\ \hline 0$
/	1-Value is % mass 174 2-Value is % mass	176

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	*============	*================	=======================================	******	=========
01	VSTD050	VSTD050	00040613	04/06/0	2226
02	LCS	LCS	00040614	04/06/0	2310
03	METHOD BLANK	VBLK02	00040616	04/07/0	0037
04	HOTCELLBLK	00-1360-CB	00040617	04/07/0	0120
05	C104SUP	00-1360	00040618	04/07/0	0204
06	C104SUPD	00-1360D	00040619	04/07/0	0247
07	C104SUPMS	00-01360MS	00040620	04/07/0	0331
80	C104SUPMSD	00-01360MSD	00040621	04/07/0	0414
09	METHOD BLANK	VBLK03	00040622	04/07/0	0458
10	HOTCELLBLKD	00-1360-CBD	00040623	04/07/0	0541
11	C104SOL	00-01361	00040624	04/07/0	0625
12	C104SOLD	00-01361D	00040625	04/07/0	0708
13	C104SOLMS	00-01361MS	00040626	04/07/0	0752
14	C104SOLMSD	00-01361MSD	00040627	04/07/0	0835
15					
16					
17					
18					
19					
20					
21					
22					
~~~			i		

page 1 of 1

OLM03.(

ì

# VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: PNNL		Contract: C104	
Lab Code: PNNL	Case No.:	SAS No.:	SDG No.: 2
Instrument ID: HP1	Calibratic	on Date(s): 04/06/0	04/06/0
Heated Purge: (Y/N)	Y Calibratic	n Time(s): 1429	1723

GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)

LAB FILE ID: R RRF500=00040604 R	RF100=00040 RF750=00040	602 605	RRF2 RRF1	50=0004 000=000	0603 40606		
COMPOUND	RRF100	1		RRF750	RRF 1000	RRF	
Chloromethane		1					====
Vinyl Chloride	^ 0.382		0.367	0.373			
1,3-Butadiene	0.264		0.231				
Butane	0.350		0.262				13.
Decement							
1,1-Dichloroethene	0.140		0.116				
Chloroethane	0.209		0.190				
Acetone	0.124	0.100	0.087				
Pentane	0 674						
Carbon Disulfide	0.614						
ACTOLAID							
Methylene Chloride			0.006				
Acrylonitrile	0.327		0.345				
Propionaldehyde	0.075						
trans-1,2-Dichloroethene						0.065	
2-Butenal							
1,1-Dichloroethane	0.010 * 0.797	0.012	0.009				9.6
Hexane	0.740			0.899			
cis-1,2-Dichloroethene	0.466	0.802 0.543	0.741	0.756			
2-Butanone	0.486		0.482	0.492			
			0.415				5.9
Ethyl acetate	1.235	1.442	0.370				
Cyclopentane	0.971	0.944	1.337				6.9
Bromochloromethane	0.224		0.813				
Chloroform	0.783		0.225		0.208		
Dichlorofluoromethane	0.783		0.721				12.6
L,1,1-Trichloroethane	0.486	0.808	0.734 0.456				10.2
Chlorodifluoromethane	1.107	1.240	0.456	0.502	0.469	0.491	6.7
Carbon Tetrachloride			1.154		1.282	1.196	
Trichlorofluoromethane	0.529	0.545	0.454		0.464		
Benzene	0.310	0.304	0.253	0.282	0.259	0.282	
L,2-Dichloroethane	0.952	0.414	0.820				
Trichloroethene	0.285		0.353	0.360			13.6
1,2-Dichloropropane	0.285	0.326			0.235		
Bromodichloromethane			0.215				
stomoutchioromethane	0.382	0.413	0.338		0.302	0.356	
cis-1,3-Dichloropropene	0.464	0.524	0.413		0.358	0.436	
A-Methyl-2-pentanone	0.825	1.016	0.773	0.792	0.704	0.822	14.2
Compounds with required							

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

page 1 of 3

FORM VI VOA

### 6A

## VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: PNNL		Contract:	C104	
Lab Code: PNNL	Case No	D.: SAS No.:		SDG No.: 2
Instrument ID: HP1		Calibration Date(s):	04/06/0	04/06/0
Heated Purge: $(Y/N)$	Y	Calibration Time(s):	1429	1723

GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)

LAB FILE ID:         RRF100=00040602         RRF250=00040603           RRF500=00040604         RRF750=00040605         RRF1000=00040606							
RRF500=00040604 RRF75	0=000406	505	RRF1(	000=0004	10606		
		<u>.                                    </u>		····	RRF		-010
COMPOUND	RRF100	RRF250	RRF500	RRF750	1000	RRF	RSD
				======			====
Toluene	0.703				0.636		10.2
trans-1,3-Dichloropropene	0.377			0.352			10.7
1,1,2-Trichloroethane	0.243		0.249				10.4
Tetrachloroethene	0.260						11.9
2-Hevanone	0 594			0.611	0.545		11.6
Dibromochloromethane	0.285	0.388			0.300	0.323	
l Ch Lorobenzene	* ().'/4'/	0.784	0.699	0.675	0.577	0.696	11.4
Ethylbenzene	0.394	0.386		0.335	0.284	0.351	12.6
Xylene (m & p)	0.787				0.559		
Ethylbenzene Xylene (m & p) Xylene (o) Styrene Bromoform	0.476				0.339	0.400	14.1
Styrene	0.762	0.724		0.644		0.679	
		0.277					11.5
1,1,2,2-Tetrachloroethane	* 0.396	0.393					10.8
1,3-Dichlorobenzene	0.699	0.632					14.6
1,4-Dichlorobenzene	0.684	0.674	0.607	0.670			9.3
1,2-Dichlorobenzene	0.713	0.697	0.598	0.619	0.576	0.641	9.5
Heptane	0.210	0.206	0.169			0.181	13.9
Octane	0.128			0.104	0.099	0.116	
Nonane	0.095	0.089	0.073	0.075	0.066		14.8
Nonane 3-Chloropropene	0.489	0.459	0.426		0.448		
			0.090	0.093			
2-Pentanone Methylcyclohexane 5-Methyl-2-hexanone	0.741			0.619	0.588	0.662	12.4
5-Methvl-2-hexanone	0.523				0.523	0.533	3.3
4-Heptanone	0.976		0.906	0.888			
Butvlacetate	1.213	1.324	1.113	1.039	0.948	1.127	
4-Heptanone Butylacetate 1,4-Dioxane	* 0.031	0.028	0.027	0.026	0.024	0.027	
2-Methyl-2-propenenitrile	0.425			0.386	0.333	0.399	
3-Methyl-2-butanone	0.125	0.144	0.115	0.118	0.100		
Propyl nitrate	0.572					0.573	13.3
3-Pentanone	0.482		0.443			0.463	
1,2,2-Cl3-1,1,2-F3ethane	0.382						5.1
1,2-Cl2-1,1,2,2-F4ethane	0.447						6.1
Dichlorodifluoromethane	0.995						9.9
Acetonitrile	0.090						7.2
Cyclohexane	1.214						
Bromobenzene	0.393						
Butylbenzene	0.328						6.9
		<u> </u>	I	SPCD VO		]	

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

page 2 of 3

### FORM VI VOA

### 6A VOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: PNNLContract: C104Lab Code: PNNLCase No.:SAS No.:SDG No.: 2Instrument ID: HP1Calibration Date(s): 04/06/004/06/0Heated Purge: (Y/N) YCalibration Time(s): 14291723

GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)

RRF500=00040604 RRF75	0=000406	505		50=00040 000=0004			
COMPOUND	RRF100	RRF250	RRF500	RRF750	RRF 1000	RRF	RSD
tert-Butylbenzene sec-Butylbenzene 2-Chlorotoluene 4-Isopropyltoluene 4-Chlorotoluene 1,2-Dibromo-3-chloropropane_ 1,2-Dibromoethane	1.123 1.419 1.026 1.032 1.207 0.109 0.262	1.056 1.008 1.166 0.126 0.353 0.023 0.546 0.389 0.689 0.342 1.178 1.108 1.502 0.492 0.512 0.492 0.512 0.412 1.156 1.422 0.761 1.048 1.388 0.205	0.892 0.863 1.015 0.285 0.020 0.444 0.320 0.532 0.289 1.047 0.952 1.288 0.407 0.952 1.288 0.407 0.448 0.368 0.964 1.150 0.646 0.841 1.238 0.163 ====== 1.062 0.533	$\begin{array}{c} 0.888\\ 1.255\\ 0.882\\ 0.947\\ 0.925\\ 0.116\\ 0.298\\ 0.020\\ 0.408\\ 0.321\\ 0.540\\ 0.281\\ 0.540\\ 0.281\\ 0.998\\ 1.008\\ 1.226\\ 0.435\\ 0.463\\ 0.354\\ 1.054\\ 1.215\\ 0.632\\ 0.836\\ 1.227\\ 0.167\\ ====\\ 1.080\\ 0.537\end{array}$	0.962 0.964 1.182 0.398 0.419 0.328 0.958 1.122 0.595 0.727 1.263 0.148 ====== 1.105	0.938 0.938 1.060 0.112 0.293 0.022 0.467 0.333 0.566 0.305 1.075 1.032 1.355 0.441 0.475 0.383 1.088 1.290 0.669 0.868 1.289 0.173 ====== 1.089 0.538	14 . 9 . 9 . 10 . 7 . 12 . 7 . 13 . 10 . 14 . 10 . 9 . 9 . 12 . 9 . 9 . 12 . 13 . 14 . 10 . 13 . 12 . 9 . 9 . 12 . 13 . 14 . 10 . 12 . 13 . 14 . 10 . 12 . 13 . 12 . 12 . 13 . 14 . 10 . 12 . 13 . 12 . 13 . 14 . 10 . 12 . 12 . 13 . 14 . 10 . 11 . 11 . 11 . 11 . 11 . 11 . 11

* Compounds with required minimum RRF and maximim %RSD values.

All other compounds must meet a minimim RRF of 0.010.

page 3 of 3

Lab Name: PNNLContract: C104Lab Code: PNNLCase No.:SAS No.:SDG No.: 29274Instrument ID: HP1Calibration Date: 04/06/0Time: 2226Lab File ID: 00040613Init. Calib. Date(s): 04/06/004/06/0Heated Purge: (Y/N) YInit. Calib. Times: 14291723GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)

COMPOUND	RRF	RRF250	MIN RRF	%D	MAX %D	
		======		======	====	
Chloromethane	0.374	0.390	0.100	~4.3	100	
Vinyl Chloride	0.244	0.260		-6.6	1	
1,3-Butadiene	0.302			2.0		
Butane	0.476	0.460		3.4		
Ethyl ether	-			İ		<-
Bromomethane	0.124	0.117	}	5.6		
1,1-Dichloroethene	0.202	0.188		6.9		
Acetone	0.226	0.220		2.6		
Chloroethane	0,100	0.100		0.0		
Pentane	0.596	0.632		-6.0		
Carbon Disulfide	0.047	0.045		4.2	ļ	
Acrolein	0.006		0.001	-16.7	100	
Methylene Chloride	0.324	0.326		-0.6		
Acrylonitrile	0.412	0.428	1	-3.9		
trans-1,2-Dichloroethene	0.449			4.7		
	0.065	0.058		10.8		
1,1-Dichloroethane	0.866	0.893	0.100	-3.1	100	
2-Butenal	0.010	0.010	}	0.0		1
cis-1,2-Dichloroethene	0.487	0.510		-4.7		
Hexane	0.748	0.762		-1.9		
2-Butanone	0.446	0.479		~7.4		1
Cyclohexene	0.397	0.445		-12.1		
Cyclopentane	0.847	0.908		-7.2		
Ethyl acetate	1.331	1.396		-4.9		
1,1-Dimethylhydrazine	-	]				<-
Bromochloromethane	0.235	0.244		-3.8		
Chloroform	0.778	0.810		-4.1		-
Methylhydrazine	-		Í			<-
Dichlorofluoromethane	0.793	0.746		5.9		
1,1,1-Trichloroethane	0.491	0.516		-5.1		
Chlorodifluoromethane	1.196	1.233		-3.1		
Carbon Tetrachloride	0.486	0.487		-0.2		
Trichlorofluoromethane	0.282	0.286		~1.4		
Benzene	0.874			-12.1		
1,2-Dichloroethane	0.375			-11.2		
Trichloroethene	0.276			-4.7		
1,2-Dichloropropane	0.230			-3.9		
	1					

All other compounds must meet a minimum RRF of 0.010.

page 1 of 4

OLM03.0

÷

Lab Name: PNNL	Contract: C104	
Lab Code: PNNL Case No.	: SAS No.:	SDG No.: 29274
Instrument ID: HP1	Calibration Date: 04/06/0	Time: 2226
Lab File ID: 00040613	Init. Calib. Date(s): 04/06/	/0 04/06/0
Heated Purge: (Y/N) Y	Init. Calib. Times: 1429	1723
GC Column: DB-624 75M X 2.55	UM ID: 0.45 (mm)	

			MIN		MAX
COMPOUND	RRF	RRF250		%D	%D
		=====			====
Bromodichloromethane	0.356	0.406		-14.0	
cis-1,3-Dichloropropene	0.436	0.500		-14.7	
4-Methyl-2-pentanone	0.822	0.855		-4.0	
Toluene	0.706			-7.8	
Toluene	0.359			-11.4	
				-9.7	
Tetrachloroethene	,	0.255		-10.9	
2-Hexanone	0.615			-1.8	
Dibromochloromethane	0.323	0.351		-8.7	
Chlorobenzene	0.696	0.800	0.300	-14.9	100
Ethylbenzene Xylene (m & p)	0.351	0.361		-2.8	
Xylene (m & p)	0.675		Í	-10.4	
Xylene (o)	1 0.400	0.411		-2.8 -2.9	}
Styrene		0.699		-2.9	
Bromoform	0.240	0.264	0.100	-10.0	100
1,1,2,2-Tetrachloroethane				-11.3	100
1,3-Dichlorobenzene	0.581			-13.6	i
1,4-Dichlorobenzene	0.636			-8.0	
1,2-Dichlorobenzene	0.641			-12.5	
Heptane	0.181		1	-9.4	
Octane	0.116			-7.8	
	0.080	0.088		-10.0	
Nonane3-Chloropropene	0.452		1	1.3	
2-Pentanone	0.095	0.102		-7.4	
2-Pentanone Methylcyclohexane 5-Methyl-2-hexanone	0.662	0.686		-3.6	
5-Methyl-2-hexanone	0.533	0.600		-12.6	
4-Heptanone	0.937	L T'020	.		
4-Heptanone Butylacetate	1.127	1.226		-8.8	
1.4-Dioxane	1 0.021	0.030	0.001	-11.1	100
2-Methyl-2-propenenitrile	-  0.399	0.426		-6.8	
3-Methyl-2-butanone	0.120	0.134		-11.7	
Methylisocyanate	1.140			100.0	
Propyl nitrate		0.640		-11.7	
Hexafluoroacetone	~~				
3-Pentanone	0.463	0.486		-5.0	
1,2,2-Cl3-1,1,2-F3ethane				6.8	
1,2-Cl2-1,1,2,2-F4ethane	- 0.407	0.417	'	-2.4	
$\pm_1 \leq (\pm 2 = \pm_1 \pm_1 \leq_1 \leq \pm_1 \pm_2 \leq_1 \leq_1 \leq_1 \leq_1 \leq_1 \leq_1 \leq_1 \leq_1 \leq_1 \leq_1$	-		1		1

All other compounds must meet a minimum RRF of 0.010.

1 page 2 of 4

į

Lab Name:	PNNL			Cont	tract: Cl	.04			
Lab Code:	PNNL	Case No	- :	SAS	5 No.:		SDG N	Jo.:	29274
Instrument	ID: HP1		Calib:	ration I	Date: 04/	06/0	Time	e: 22	26
Lab File I	ID: 0004061	L3	Init.	Calib.	Date(s):	04/06,	/0	04/0	6/0
Heated Pur	ge: (Y/N)	Y	Init.	Calib.	Times:	1429		1723	
GC Column:	DB-624 75	SM X 2.5	5UM ID	: 0.45	(mm)				

			MIN		MAX
COMPOUND	RRF	RRF250	RRF	%D	%D
*======================================	======	=====	*===*	======	====
Dichlorodifluoromethane	0.961	0.969		-0.8	
Acetonitrile	0.085	0.082		3.5	
Cyclohexane	1.096	1.205	ĺ	-9.9	
Bromobenzene	0.351			-10.8	
Butylbenzene	0.320	0.367		-14.7	
tert-Butylbenzene	0.947	1.019		-7.6	
sec-Butylbenzene	1.283	1.385		-8.0	
2-Chlorotoluene	0.938	1.000		-6.6	í l
4-Isopropyltoluene	0.938	1.067		-13.8	
4-Chlorotoluene	1.060	1.066		-0.6	
1,2-Dibromo-3-chloropropane	0.112	0.123		-9.8	
1.2-Dibromoethane	0.293	0.316		-7.8	
trans-1,4-Dichloro-2-butene_	0.022			-4.5	
1,3-Dichloropropane	0.467	0.535		-14.6	
2,2-Dichloropropane	0.333	0.347		-4.2	
1,1-Dichloropropene	0.566			-7.2	·
Hexachloro-1, 3-butadiene	0.305	0.325		-6.6	
Iodomethane				1	
Isopropylbenzene	1.075			-5.4	
Nathphalene	1.032			9.3	
Propylbenzene	1.355			-11.3	
1,2,3-Trichlorobenzene	0.441	0.478		-8.4	
1,2,4-Trichlorobenzene	0.475	0.507		-6.7	
1,2,3-Trichloropropane	0.383			-1.6	
1,2,4-Trimethylbenzene	1.088	1.214		-11.6	
1,2,3-Trimethylbenzene	1.290			-12.9	
Butanol		,			
2-Propanol					
1-Propanol	0.025			100.0	
2-Methyl-2-propanol			}		
2-Butanol				ĺ	
3-Heptanone	0.669	0.666		0.4	1
2-Heptanone	0.868			-8.8	
Tetrahydrofuran	1.289			-12.7	
Dibromomethane	0.173			-10.4	
		======			1
Toluene-d8	1.089			2.6	

All other compounds must meet a minimum RRF of 0.010.

page 3 of 4

FORM VII VOA

Lab Name: PNNLContract: C104Lab Code: PNNLCase No.:SAS No.:SDG No.: 29274Instrument ID: HP1Calibration Date: 04/06/0Time: 2226Lab File ID: 00040613Init. Calib. Date(s): 04/06/004/06/0Heated Purge: (Y/N) YInit. Calib. Times: 14291723GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm)

COMPOUND	RRF	RRF250	MIN RRF	%D	MAX %D
Bromofluorobenzene Dibromofluoromethane 1,2-Dichloroethane-d4	===== 0.538 0.497 0.690	0.486	====	0.7 2.2 ~5.4	====

All other compounds must meet a minimum RRF of 0.010.

ļ

#### 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: PNNL Case No.: Contract: C104 Lab Code: PNNL Case No.: SAS No.: SDG No.: 2 Lab File ID (Standard): 00040613 Date Analyzed: 04/06/0 Instrument ID: HP1 Time Analyzed: 2226 GC Column: DB-624 75M X 2.55UM ID: 0.45 (mm) Heated Purge: (Y/N) Y

		IS1(DFB)		IS2(CBZ)	"	IS3	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	==================	=======	======	========	=======	==============	=========
	12 HOUR STD	847750	11.76	750345	16.71	493849	10.54
	UPPER LIMIT	1695500	12.26	1500690	17.21	987698	11.04
	LOWER LIMIT	423875	11.26	375173	16.21	246925	10.04
	==============		======	================	=======		=======
	EPA SAMPLE						
	NO.						
		========			======	****	=====
01	LCS	862174	11.77	749432	16.72	512627	10.55
02	METHOD BLANK	885464	11.84	833761	16.81	526979	10.63
03	HOTCELLBLK	923689	11.86	877895	16.82	547800	10.63
04	C104SUP	982346	11.81	895169	16.78	564946	10.59
05	C104SUPD						
06	C104SUPMS	908851	11.80	828127	16.77	567902	10.58
07	C104SUPMSD	25698*	11.80	24958*	16.78	16107*	10.57
08	METHOD BLANK	909269	11.83	842649	16.81	527570	10.61
09	HOTCELLBLKD	945470	11.86	902414	16.82	559038	10.63
10	C104SOL	998888	11.89	963170	16.87	599035	10.66
11	C104SOLD	864648	11.86	776045	16.81	536952	10.64
12	C104SOLMS	849831	11.78	744410	16.74	529662	10.57
13	C104SOLMSD	809324	11.77	738714	16.74	521123	10.55
14		009921		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10.74	561125	10.33
15							
16							
17							
18							
19		i					
20							
20			]		<u> </u>	·	
22	{		Ì		<u> </u>		

IS1	(DFB)	=	1,4-Difluorobenzene
IS2	(CBZ)	=	Chlorobenzene-d5
IS3		=	Pentafluorobenzene

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

page 1 of 2

FORM VIII VOA

OLM03.0

3

### 8A VOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab	Name:	PNNL				Cont	fract	: C104			
Lab	Code :	PNNL	Case	No.:		SAS	S No.	:	SDG No.:	2	
Lab	File I	D (Stand	ard):	0004061	3		Date	Analyzed:	04/06/0		
Inst	rument	ID: HP1					Time	Analyzed:	2226		
GC C	olumn:	DB-624	75M X	2.55UM	ID:	0.45	(mm)	Heate	ed Purge:	(Y/N)	Y

		IS4 (DCB)					
		AREA #	RT #	AREA #	RT #	AREA #	RT #
		=========	=======				
	12 HOUR STD	649584	20.92				
	UPPER LIMIT	1299168	21.42				
	LOWER LIMIT	324792	20.42				
		========	=======		=======		
	EPA SAMPLE						
	NO.						
			<b>zzz==</b> ==		=======	===========	=======
01	LCS	648268	20.93				
02	METHOD BLANK	667780	21.01				
03	HOTCELLBLK	732061	21.02				
04	C104SUP	636881	20.97				
05	C104SUPD						
06	C104SUPMS	659218	20.97				
07	C104SUPMSD	19029*	20.98				
08	METHOD BLANK	667213	21.01				
09	HOTCELLBLKD	746133	21.02				
10	C104SOL	716473	21.08				
11	C104SOLD	606456	21.00				
12	C104SOLMS	599096	20.93				
13	C104SOLMSD	586107	20.93				
14						·	ļ
15		]					
16							
17	- <u></u>						
18							
19	<u> </u>						·
20							
21							
22						I	

IS4 (DCB)  $\approx$  1,4-Dichlorobenzene-d4

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag values outside QC limits with an asterisk.
* Values outside of QC limits.

Appendix E: Semi-Volatile Organic Analysis Result Forms

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Ì

Lab Name: PNNL	C104-SLB Contract: C104
Lab Name: FINIL	
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 000819
Matrix: (soil/water) SUPERNATAN	Lab Sample ID: 00-1360-SLB
Sample wt/vol: (g/mL) ML	Lab File ID: 00081904
Level: (low/med) LOW	Date Received:
% Moisture: decanted: (Y/N)	Date Extracted:
Concentrated Extract Volume: 1000	(uL) Date Analyzed: 08/19/0
Injection Volume:(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	

CAS NO. COMPOUND

J

3

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

108-95-2	Phenol	560	IJ
	bis(2-Chloroethyl)ether	560	-
	2-Chlorophenol	560	
	1,3-Dichlorobenzene	560	
	1,4-Dichlorobenzene	560	Ū
	1,2-Dichlorobenzene	560	Ū
	Benzyl alcohol	560	Ū
	2-Methylphenol	1700	
	2,2'-oxybis(1-Chloropropane)	560	U
621-64-7	N-Nitroso-di-n-propylamine	560	U
	4-Methylphenol	2900	
	Hexachloroethane	560	U
98-95-3	Nitrobenzene	560	U
	Isophorone	560	U
	2-Nitrophenol	560	U
	2,4-Dimethylphenol	560	U
111-91-1	bis(2-Chloroethoxy)methane	560	U
120-83-2	2,4-Dichlorophenol	560	U
	1,2,4-Trichlorobenzene	560	U
	Naphthalene	560	U
	4-Chloroaniline	560	U
87-68-3	Hexachlorobutadiene	560	U
59-50-7	4-Chloro-3-methylphenol	560	U
	2-Methylnaphthalene	560	U
77-47-4	Hexachlorocyclopentadiene	560	U
	2,4,6-Trichlorophenol	560	U
	2,4,5-Trichlorophenol	560	U
	2-Chloronaphthalene	560	U
	2-Nitroaniline	560	Ū
	3-Nitroaniline	560	U
	Dimethylphthalate	560	U
	2,6-Dinitrotoluene	560	U
	Acenaphthylene	560	U

lC

EPA SAMPLE NO.

SEMIVOLATI	LE ORGANICS ANALYSIS DATA	SHEET
Lab Name: PNNL	Contract	: C104-SLB
Lab Code: PNNL	Case No.: SAS No.	: SDG No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID: 00-1360-SLB
Sample wt/vol:	(g/mL) ML	Lab File ID: 00081904 ,
Level: (low/med)	LOW	Date Received:
% Moisture:	decanted: $(Y/N)$	Date Extracted:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 08/19/0
Injection Volume:	(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH:	
	CONCE	WTRATION INTTS.

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

83-32-9Acenaphthene         51-28-52, 4-Dinitrophenol         132-64-9Dibenzofuran         100-02-74-Nitrophenol         121-14-22, 4-Dinitrotoluene         84-66-2Diethylphthalate         86-73-7Fluorene         7005-72-34-Chlorophenyl-phenylether         100-01-64-Nitroaniline         534-52-14, 6-Dinitro-2-methylphenol         122-39-4N, N-Diphenylamine         76-44-8N, N-Diphenylamine         76-44-8	560 560	ממממממממממממממממממממממממ
206-44-0Fluoranthene	560 560 560	น น น น น น

# 1C

SEMIVOLATILE	ORGANICS	ANALYSIS	DATA	SHEET
--------------	----------	----------	------	-------

Lab Name: PNNL		Contract	: C104	Cl	04-SLB	
Lab Code: PNNL	Case No.:	SAS No.	: SDG	No.:	000819	
Matrix: (soil/water	) SUPERNATAN		Lab Sample ID	: 00-1	360-SLE	3
Sample wt/vol:	(g/mL) ML		Lab File ID:	0008	1904	,
Level: (low/med)	LOW		Date Received	:		51
% Moisture:	decanted: (Y/N)_		Date Extracte	d:		
Concentrated Extrac	t Volume: 1000	(uL)	Date Analyzed	: 08/1	9/0	
Injection Volume:	(uL)		Dilution Fact	or: 1.	0	
GPC Cleanup: (Y/N	) N pH:	_				
CAS NO.	COMPOUND		NTRATION UNITS or ug/Kg) UG/		Q	
85-68-7 1031-07-8 50-29-3	Butylbenzylpht Endosulfan Sul	halate fate		560 560 560	υ	

85-68-7Butylbenzylphthalate         1031-07-8Endosulfan Sulfate         50-29-3	560 560 560 560 560 560 560 560 560 560	аааа ча аааааааааааааааааааааааааааааа
---------------------------------------------------------------------------------	--------------------------------------------------------------------	----------------------------------------

1

1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

Lab Name: PNNL	Contract	: C104	C104-SLB
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLB
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081904
Level: (low/med)	LOW	Date Received:	·
% Moisture:	decanted: $(Y/N)$	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	: 08/19/0
Injection Volume:	(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		
	CONCE	ENTRATION UNITS:	:

CAS NO.

COMPOUND

(ug/L or ug/Kg) UG/L

100-75-4N-Nitrosopiperidine 1888-71-7Hexachloropropene	560	-
924-16-3N-Nitrosodi-n-butylamine		-
94-59-7Safrole	560	-
	560	-
95-94-31,2,4,5-Tetrachlorobenzene	560	
120-58-1Isosafrole		U
130-15-41,4-Naphthoquinone	560	-
608-93-5Pentachlorobenzene		U
134-32-71-Naphthylamine	560	
58-90-22,3,4,6-Tetrachlorophenol	560	
91-59-82-Naphthylamine	560	
99-55-85-Nitro-o-toluidine	560	
103-33-3Azeobenzene	560	
99-35-41,3,5-Trinitrobenzene	560	U
2303-16-4Diallate (cis)	560	U
62-44-2Phenacetin	560	U
2303-16-4Diallate (trans)	560	U
92-67-14-Aminobiphenyl	560	U
23950-58-5Pronamine	560	U
465-73-6Isodrin	560	U
57-74-9Chlordane (alpha)	560	U
92-87-5Benzidine	2800	
60-11-7p-Dimethylaminoazobenzene	560	<u> </u>
510-15-6Chlorobenzilate	560	U
119-93-73,3'-Dimethylbenzidine	560	
53-96-32-Acetylaminofluorene	560	
56-49-53-Methylcholanthrene	560	-
109-06-82-Methylpyridine	560	บ
143-50-0Kepone	560	-
57-74-9Chlordane (gamma)	560	-
CE 27.2 Mothyl mothana gulfonata	560	U
66-27-3Methyl methane sulfonate	560	
70-30-4Hexachlorophene		U
99-65-01,3-Dinitrobenzene	500	0

	SEMIVOLATII		.C S ANALYSIS	DATA	SHEET		EPA SAMPLE	NO.
Lab Name:	PNNL		Con	tract:	C104		C104-SLB	۰.
Lab Code:	PNNL	Case No.:	SA	S No.:		SDG 1	No.: 000819	)
Matrix: (s	soil/water)	SUPERNATA	N		Lab Sampl	e ID:	00-1360-SI	B
Sample wt/	vol:	(g/	mL) ML		Lab File	ID:	00081904	*:
Level: (	(low/med)	LOW			Date Rece	ived:		
% Moisture	2:	decanted:	(Y/N)		Date Extr	acted	:	
Concentrat	ed Extract	Volume:	1000 (uL)		Date Anal	yzed:	08/19/0	
Injection	Volume:	(uL)			Dilution	Facto	pr: 1.0	
GPC Cleanu	up: (Y/N)	N	рН:					
CAS	SNO.	COMPOUN	D		NTRATION ( or ug/Kg)			- 1

87-65-02,6-Dichlorophenol	560	U

)

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET EPA SAMPLE NO.

Lab Name: PNNL	Contract	: C104	C104-SLD	
Lab Code: PNNL	Case No.: SAS No.		No.: 000819	
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLD	
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081906	4
Level: (low/med)	LOW	Date Received:		
% Moisture:	decanted: (Y/N)	Date Extracted	1:	
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0	
Injection Volume:	(uL)	Dilution Facto	pr: 1.0	
GPC Cleanup: (Y/N)	N pH:			

CAS NO.

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/L

108-95-2Phenol       560 U         111-44-4bis (2-Chloroethyl) ether560 U       560 U         95-57-82-Chlorophenol560 U       560 U         106-46-71, 4-Dichlorobenzene560 U       560 U         100-51-61, 2-Dichlorobenzene560 U       560 U         100-51-6	,.			
88-74-42-Nitroaniline         560 U           99-09-23-Nitroaniline         560 U		111-44-4       bis (2-Chloroethyl) ether         95-57-8       2-Chlorophenol         541-73-1       1, 3-Dichlorobenzene         106-46-7       1, 4-Dichlorobenzene         95-50-1       2-Dichlorobenzene         100-51-6       Benzyl alcohol         95-48-7       2-Methylphenol         100-51-6       Benzyl alcohol         95-48-7       2-Wethylphenol         108-60-1       2, 2'-oxybis (1-Chloropropane)         621-64-7	560 560 560 560 560 560 560 560 560 560	<u>ממממממממממממממממממממממ</u> ממממממממ מממממממ
88-74-42-Nitroaniline 560 U		91-58-72-Chloronaphthalene 88-74-42-Nitroaniline 99-09-23-Nitroaniline 131-11-3Dimethylphthalate 606-20-22,6-Dinitrotoluene	560 560 560 560 560 560	บ บ บ บ บ

### lC

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: PNNL	Cor	ntract: Cl04	C104-SLD
Lab Code: PNNL	Case No.: Si	AS No.: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLD
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081906
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0
Injection Volume:	(uL)	Dilution Facto	r: 1.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.	COMPOUND	CONCENTRATION UNITS:	0

COMPOUND

)

(ug/L or ug/Kg) UG/L

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
51-28-52,4-Dinitrophenol       560         132-64-9Dibenzofuran       560         100-02-74-Nitrophenol       560         121-14-22,4-Dinitrotoluene       560         84-66-2Diethylphthalate       560         86-73-7Fluorene       560         7005-72-34-Chlorophenyl-phenylether       560         100-01-64-Nitroaniline       560         534-52-14, 6-Dinitro-2-methylphenol       560         122-39-4N, N-Diphenylamine       560         76-44-8	83-32-9Acenaphthene	560	TT
132-64-9Dibenzofuran       560 U         100-02-74-Nitrophenol       560 U         121-14-22,4-Dinitrotoluene       560 U         84-66-2Diethylphthalate       560 U         86-73-7Fluorene       560 U         7005-72-34-Chlorophenyl-phenylether       560 U         100-01-64-Chlorophenyl-phenylether       560 U         100-01-6	51-28-52.4-Dinitrophenol	1	1
100-02-74-Nitrophenol       560 U         121-14-22,4-Dinitrotoluene       560 U         86-66-2Diethylphthalate       560 U         86-73-7Diethylphthalate       560 U         100-01-6A-Chlorophenyl-phenylether       560 U         100-01-6	132-64-9Dibenzofuran		
121-14-22,4-Dinitrotoluene       560       U         84-66-2Diethylphthalate       560       U         86-73-7Fluorene       560       U         7005-72-3Fluorene       560       U         7005-72-3	100-02-74-Nitrophenol		J
84-66-2Diethylphthalate       560       U         86-73-7Fluorene       560       U         7005-72-3Fluorene       560       U         7005-72-3	121-14-22 4-Dipitrotoluene		
86-73-7Fluorene       560       U         7005-72-34-Chlorophenyl-phenylether       560       U         100-01-64-Nitroaniline       560       U         534-52-14.6-Dinitro-2-methylphenol       560       U         122-39-4N.N-Diphenylamine       560       U         76-44-8N.N-Diphenylamine       560       U         76-44-8	84-66-2Diethylphthalato		1
7005-72-34-Chlorophenyl-phenylether       560 U         100-01-64-Nitroaniline       560 U         534-52-14,6-Dinitro-2-methylphenol       560 U         122-39-4N,N-Diphenylamine       560 U         76-44-8Heptachlor       560 U         319-84-6A-Bromophenyl-phenylether       560 U         101-55-3	86-73-7Fluoropo	_	_
100-01-64-Nitroaniline       560       U         534-52-14,6-Dinitro-2-methylphenol       560       U         122-39-4N,N-Diphenylamine       560       U         122-39-4N,N-Diphenylamine       560       U         319-84-6Alpha-BHC       560       U         101-55-3	7005-72-34-Chlorophonul phonulether		
534-52-14, 6-Dinitro-2-methylphenol       560 U         122-39-4N, N-Diphenylamine       560 U         76-44-8N, N-Diphenylamine       560 U         319-84-6Alpha-BHC       560 U         101-55-34-Bromophenyl-phenylether       560 U         118-74-1Hexachlorobenzene       560 U         319-85-7beta-BHC       560 U         87-86-5beta-BHC       560 U         119-86-8	100-01-6 4 Nitroppilips		
122-39-4N, N-Diphenylamine       560       U         76-44-8Heptachlor       560       U         319-84-6alpha-BHC       560       U         101-55-34-Bromophenyl-phenylether       560       U         118-74-1Hexachlorobenzene       560       U         319-85-7beta-BHC       560       U         319-85-7beta-BHC       560       U         87-86-5	E34 E2 1 4 C Division 2 method	1	
76-44-8Heptachlor       560       U         319-84-6alpha-BHC       560       U         101-55-34-Bromophenyl-phenylether       560       U         118-74-1Hexachlorobenzene       560       U         319-85-7beta-BHC       560       U         87-86-5beta-BHC       560       U         87-86-5beta-BHC       560       U         919-86-8beta-BHC       560       U         120-12-7beta-BHC       560       U         85-01-8beta-BHC       560       U         120-12-7	122 29 4 N.N. Dinkersterie		
319-84-6alpha-BHC       560         101-55-34-Bromophenyl-phenylether       560         118-74-1Hexachlorobenzene       560         319-85-7beta-BHC       560         87-86-5beta-BHC       560         119-86-8beta-BHC       560         85-01-8beta-BHC       560         120-12-7Anthracene       560         58-89-9gamma-BHC (Lindane)       560         86-74-8Carbazole       560         84-74-2	122-39-4N, N-Dipnenylamine		
101-55-34-Bromophenyl-phenylether       560 U         118-74-1Hexachlorobenzene       560 U         319-85-7beta-BHC       560 U         87-86-5Pentachlorophenol       560 U         319-86-8delta-BHC       560 U         85-01-8Phenanthrene       560 U         120-12-7Anthracene       560 U         58-89-9gamma-BHC (Lindane)       560 U         86-74-8Carbazole       560 U         84-74-2Di-n-butylphthalate       560 U         309-00-2Aldrin       560 U         1024-57-3	76-44-8Heptachlor		
118-74-1Hexachlorobenzene       560         319-85-7beta-BHC       560         87-86-5Pentachlorophenol       560         319-86-8Pentachlorophenol       560         319-86-8Pentachlorophenol       560         319-86-8Pentachlorophenol       560         319-86-8Pentachlorophenol       560         319-86-8Pentachlorophenol       560         319-86-8Pentachlorophenol       560         120-12-7	319-84-6alpha-BHC		
319-85-7beta-BHC       560 U         87-86-5Pentachlorophenol       560 U         319-86-8Pentachlorophenol       560 U         85-01-8Phenanthrene       560 U         120-12-7Anthracene       560 U         58-89-9gamma-BHC (Lindane)       560 U         86-74-8Carbazole       560 U         84-74-2Di-n-butylphthalate       560 U         309-00-2Aldrin       560 U         1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0	101-55-34-Bromophenyi-phenylether	560	U
87-86-5Pentachlorophenol	118-74-1Hexachlorobenzene	560	U
319-86-8delta-BHC       560 U         85-01-8Phenanthrene       560 U         120-12-7Anthracene       560 U         58-89-9gamma-BHC (Lindane)       560 U         86-74-8Carbazole       560 U         84-74-2Di-n-butylphthalate       560 U         309-00-2Aldrin       560 U         1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8	319-85-7beta-BHC	560	U
85-01-8Phenanthrene       560 U         120-12-7Anthracene       560 U         58-89-9gamma-BHC (Lindane)       560 U         86-74-8Carbazole       560 U         84-74-2Di-n-butylphthalate       560 U         309-00-2Aldrin       560 U         1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	87-86-5Pentachlorophenol	560	U
120-12-7Anthracene       560 U         58-89-9gamma-BHC (Lindane)       560 U         86-74-8Carbazole       560 U         84-74-2Di-n-butylphthalate       560 U         309-00-2Aldrin       560 U         1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	319-86-8delta-BHC	560	U
120-12-7Anthracene       560 U         58-89-9gamma-BHC (Lindane)       560 U         86-74-8Carbazole       560 U         84-74-2Di-n-butylphthalate       560 U         309-00-2Aldrin       560 U         1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	85-01-8Phenanthrene	560	U
58-89-9gamma-BHC (Lindane)       560 U         86-74-8Carbazole       560 U         84-74-2Di-n-butylphthalate       560 U         309-00-2Aldrin       560 U         1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	120-12-7Anthracene		
86-74-8Carbazole       560 U         84-74-2Di-n-butylphthalate       560 U         309-00-2Aldrin       560 U         1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	58-89-9gamma-BHC (Lindane)		
84-74-2Di-n-butylphthalate       560 U         309-00-2Aldrin       560 U         1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	86-74-8Carbazole		
309-00-2Aldrin       560 U         1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	84-74-2Di-n-butylphthalate		_
1024-57-3Heptachlor Epoxide       560 U         206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	309-00-2Aldrin		-
206-44-0Fluoranthene       560 U         129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	1024-57-3Heptachlor Epoxide		
129-00-0Pyrene       560 U         959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	206-44-0Fluoranthene		
959-98-8Endosulfan I       560 U         72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U	129-00-0 Dyrene		_
72-55-94,4'-DDE       560 U         60-57-1Dieldrin       560 U			-
60-57-1Dieldrin 560 U			
/2-20-8Engrin [ 560]U			
33213-65-9Endosulfan II560 U			
72-54-84,4'-DDD 560 U	72-54-84,4'-DDD	560	U

### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: PNNL	C104-SLD
Lab Code: PNNL Case No.:	SAS No.: SDG No.: 000819
Matrix: (soil/water) SUPERNATAN	Lab Sample ID: 00-1360-SLD
Sample wt/vol: (g/mL) ML	Lab File ID: 00081906
Level: (low/med) LOW	Date Received:
% Moisture: decanted: (Y/N)	Date Extracted:
Concentrated Extract Volume: 1000	(uL) Date Analyzed: 08/19/0
Injection Volume:(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	~

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

85-68-7Butylbenzylphthalate       560 U         1031-07-8Endosulfan Sulfate       560 U         50-29-3Endosulfan Sulfate       560 U         53494-70-5Endrin Ketone       560 U         56-55-3Benzo (a) anthracene       560 U         91-94-13,3'-Dichlorobenzidine       560 U         218-01-9Chrysene       560 U         72-43-5Methoxychlor       560 U         117-81-7Bis (2-Ethylhexyl) phthalate       96 J         117-84-0Di-n-octylphthalate       560 U         205-99-2Benzo (b) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1, 2, 3-cd) pyrene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         100 B       3100 B
1031-07-8Endosulfan Sulfate       560 U         50-29-3
50-29-34,4'-DDT       560 U         53494-70-5Endrin Ketone       560 U         56-55-3Benzo(a) anthracene       560 U         91-94-13,3'-Dichlorobenzidine       560 U         218-01-9Chrysene       560 U         72-43-5Methoxychlor       560 U         117-81-7Bis (2-Ethylhexyl) phthalate       96 J         117-84-0Di-n-octylphthalate       560 U         205-99-2Benzo (b) fluoranthene       560 U         207-08-9Benzo (k) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1, 2, 3-cd) pyrene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         10-86-1Pyridine       3100 B
53494-70-5Endrin Ketone       560 U         56-55-3Benzo(a) anthracene       560 U         91-94-13,3'-Dichlorobenzidine       560 U         218-01-9Chrysene       560 U         72-43-5Methoxychlor       560 U         117-81-7Bis (2-Ethylhexyl) phthalate       96 J         117-84-0Di-n-octylphthalate       560 U         205-99-2Benzo(b) fluoranthene       560 U         207-08-9Benzo(k) fluoranthene       560 U         50-32-8Benzo(a) pyrene       560 U         193-39-5Indeno(1,2,3-cd) pyrene       560 U         191-24-2Benzo(g,h,i) perylene       560 U         10-86-1Pyridine       3100 B
56-55-3Benzo (a) anthracene       560 U         91-94-13,3'-Dichlorobenzidine       560 U         218-01-9Chrysene       560 U         72-43-5Methoxychlor       560 U         117-81-7Bis (2-Ethylhexyl) phthalate       96 J         117-84-0Di-n-octylphthalate       560 U         205-99-2Benzo (b) fluoranthene       560 U         207-08-9Benzo (k) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1, 2, 3-cd) pyrene       560 U         53-70-3Benzo (g, h, i) perylene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         100 B       560 U
91-94-13,3'-Dichlorobenzidine       560 U         218-01-9Chrysene       560 U         72-43-5Methoxychlor       560 U         117-81-7Bis (2-Ethylhexyl)phthalate       96 J         117-84-0Di-n-octylphthalate       560 U         205-99-2Benzo (b) fluoranthene       560 U         207-08-9Benzo (k) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1, 2, 3-cd) pyrene       560 U         53-70-3Benzo (g, h, i) perylene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         10-86-1Pyridine       3100 B
218-01-9Chrysene       560 U         72-43-5Methoxychlor       560 U         117-81-7Bis (2-Ethylhexyl)phthalate       96 J         117-84-0Di-n-octylphthalate       560 U         205-99-2Benzo (b) fluoranthene       560 U         207-08-9Benzo (k) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1, 2, 3-cd) pyrene       560 U         53-70-3Dibenz (a, h) anthracene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         10-86-1Pyridine       3100 B
72-43-5Methoxychlor       560 U         117-81-7Bis (2-Ethylhexyl)phthalate       96 J         117-84-0Di-n-octylphthalate       560 U         205-99-2Benzo (b) fluoranthene       560 U         207-08-9Benzo (k) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1, 2, 3-cd) pyrene       560 U         53-70-3Benzo (g, h, i) perylene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         10-86-1Pyridine       3100 B
117-81-7Bis (2-Ethylhexyl) phthalate       96 J         117-84-0Di-n-octylphthalate       560 U         205-99-2Benzo (b) fluoranthene       560 U         207-08-9Benzo (k) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1, 2, 3-cd) pyrene       560 U         53-70-3Dibenz (a, h) anthracene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         10-86-1Pyridine       3100 B
117-84-0Di-n-octylphthalate       560 U         205-99-2Benzo (b) fluoranthene       560 U         207-08-9Benzo (k) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1, 2, 3-cd) pyrene       560 U         53-70-3Dibenz (a, h) anthracene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         10-86-1Pyridine       3100 B
205-99-2Benzo (b) fluoranthene       560 U         207-08-9Benzo (k) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1,2,3-cd) pyrene       560 U         53-70-3Dibenz (a,h) anthracene       560 U         191-24-2Benzo (g,h,i) perylene       560 U         110-86-1Pyridine       3100 B
207-08-9Benzo (k) fluoranthene       560 U         50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1,2,3-cd) pyrene       560 U         53-70-3Dibenz (a, h) anthracene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         110-86-1Pyridine       3100 B
50-32-8Benzo (a) pyrene       560 U         193-39-5Indeno (1, 2, 3-cd) pyrene       560 U         53-70-3Dibenz (a, h) anthracene       560 U         191-24-2Benzo (g, h, i) perylene       560 U         110-86-1Pyridine       3100 B
193-39-5Indeno(1,2,3-cd)pyrene       560 U         53-70-3Dibenz(a,h)anthracene       560 U         191-24-2Benzo(g,h,i)perylene       560 U         110-86-1Pyridine       3100 B
53-70-3Dibenz(a,h)anthracene       560 U         191-24-2Benzo(g,h,i)perylene       560 U         110-86-1Pyridine       3100 B
191-24-2Benzo(g,h,i)perylene       560 U         110-86-1Pyridine       3100 B
110-86-1Pyridine 3100 B
126-73-8Tributyl phosphate 2000 B
62-75-9N-Nitrosodimethylamine 1900
98-86-2Acetophenone 2200 B
100-00-51-Chloro-4-nitrobenzene 1900 B
92-52-4Biphenyl 2000 B
100-25-41,4-Dinitrobenzene 1500 B
128-37-0Butylated Hydroxytoluene 92 JB
82-68-8Pentachloronitrobenzene 560 U
88-85-7Dinoseb 2500 B
2234-13-1Octachloronaphthalene 36000 B
10595-95-6N-Nitrosomethylethylamine560 U
55-18-5N-Nitrosodiethylamine 26 J
62-50-0Ethyl methane sulfonate 560 U
62-53-3Analine 560 U
76-01-7Pentachloroethane 560 U
930-55-2N-Nitrosopyrolidine 53 J

EPA SAMPLE NO.

Г

Lab Name: PNNL	C	Ontract: C104	C104-SLD
Lab Code: PNNL	Case No.:	SAS No.: SD	G No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample I	D: 00-1360-SLD
Sample wt/vol:	(g/mL) ML	Lab File ID:	
Level: (low/med)	LOW	Date Receive	d:
% Moisture:	decanted: (Y/N)	_ Date Extract	ed:
Concentrated Extract	Volume: 1000 (u	L) Date Analyze	d: 08/19/0
Injection Volume:	(uL)	Dilution Fac	tor: 1.0
GPC Cleanup: (Y/N)	N pH:		

CAS NO. COMPOUND

1

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

1			
	100-75-4N-Nitrosopiperidine         1888-71-7Hexachloropropene         924-16-3Nitrosodi-n-butylamine         94-59-7Safrole         95-94-3Safrole         130-15-4	$\begin{array}{c} 560\\ 560\\ 560\\ 560\\ 560\\ 10\\ 560\\ 560\\ 560\\ 560\\ 560\\ 560\\ 560\\ 56$	למכמת שמת ממממ מממ מממ מממ מממ מממ מממ ממ ממ ממ
	60-11-7p-Dimethylaminoazobenzene 510-15-6Chlorobenzilate 119-93-73,3'-Dimethylbenzidine 53-96-32-Acetylaminofluorene 56-49-53-Methylcholanthrene	560 560 560 560 560	ממממממ
		500	ľ

SEMIVOLAT	1C TILE ORGANICS ANALYSIS D	ATA SHEET	EPA SAMPLE NO.
Lab Name: PNNL	Contr	act: C104	C104-SLD
Lab Code: PNNL	Case No.: SAS	No.: SDG	No.: 000819
Matrix: (soil/water	) SUPERNATAN	Lab Sample ID:	: 00-1360-SLD
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081906
Level: (low/med)	LOW	Date Received	:
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extrac	t Volume: 1000(uL)	Date Analyzed	: 08/19/0
Injection Volume: _	(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N	I) N pH:		
CAS NO.		NCENTRATION UNITS g/L or ug/Kg) UG/I	•
87-65-0	2,6-Dichlorophenol		560 U

# 1B

EPA SAMPLE NO.

SEMIVOLATI	LE ORGANICS ANALY	YSIS DATA SHEET	1 1			<u> </u>
Lab Name: PNNL		Contract: C104		C1	04-SLE	
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: (	000819	
Matrix: (soil/water)	SUPERNATAN	Lab S	ample ID:	00-13	360-SLE	Ξ
Sample wt/vol:	(g/mL) ML	Lab F	ile ID:	00081	L909	
Level: (low/med)	LOW	Date 1	Received:			, te
% Moisture:	decanted: $(Y/N)$		Extracted			
Concentrated Extract	Volume: 1000(	uL) Date A	Analyzed:	08/19	)/0	
Injection Volume:	(uL)	Dilut:	ion Facto:	r: 1.0	)	
GPC Cleanup: (Y/N)	N pH:					
CAS NO.	COMPOUND	CONCENTRATIO			Q	
$\begin{array}{c} 95-57-8\\ 541-73-1\\ 106-46-7\\ 95-50-1\\ 95-50-1\\ 95-48-7\\ 108-60-1\\ 95-48-7\\ 106-44-5\\ 106-44-5\\ 88-95-3\\ 78-59-1\\ 88-75-5\\ 105-67-9\\ 111-91-1\\ 120-83-2\\ 112-83-2\\ 120-82-1\\ 91-20-3\\ 91-20-3\\ 91-50-7\\ 91-57-6\\ 91-57-6\\ 91-58-7\\ 95-95-4\\ 91-58-7\\ 88-74-4\\ 99-09-2\\ 131-11-3\\ 606-20-2\\ \end{array}$	bis(2-Chloroet 2-Chlorophenol 1,3-Dichlorobe 1,2-Dichlorobe Benzyl alcohol 2-Methylphenol 2,2'-oxybis(1- Nitroso-di-n 4-Methylphenol Hexachloroetha	nzene nzene nzene nzene chloropropane) -propylamine ne enol hoxy)methane enol obenzene diene hylphenol alene ophenol ophenol alene ate uene		560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560	000000000000000000000000000000000000000	

FORM I SV-1

, ·

OLM03.0

EPA SAMPLE NO.

Lab Name: PNNL	Cor	ntract: C104	C104-SLE
Lab Code: PNNL	Case No.: SA	AS No.: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	: 00-1360-SLE
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081909
Level: (low/med)	LOW	Date Received	
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed	: 08/19/0
Injection Volume:	(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/I	

83-32-9	Acenaphthene	560	U
	2,4-Dinitrophenol	560	U
132-64-9	Dibenzofuran	560	U
100-02-7	4-Nitrophenol	15000	
121-14-2	2,4-Dinitrotoluene	560	Ū
84-66-2	Diethylphthalate	560	U
86-73-7		560	U
7005-72-3	4-Chlorophenyl-phenylether	560	U
100-01-6	4-Nitroaniline	560	U
534-52-1	4,6-Dinitro-2-methylphenol	1800000	
122-39-4	N,N-Diphenylamine	560	U
76-44-8	Heptachlor	560	,
319-84-6	alpha-BHC	560	ł
101-55-3	4-Bromophenyl-phenylether	560	-
118-74-1	Hexachlorobenzene	. 560	
319-85-7		560	
87-86-5~	Pentachlorophenol	560	1
319-86-8	delta-BHC	560	
85-01-8	Phenanthrene	560	-
120-12-7	Anthracene	560	-
58-89-9	gamma-BHC (Lindane)	560	1
86-74-8	Carbazole	560	1 -
84-74-2	Di-n-butylphthalate	560	1
309-00-2	Aldrin	560	1
1024-57-3	Heptachlor Epoxide	560	
206-44-0	Fluoranthene	560	1
129-00-0	Pyrene	560	-
959-98-8	Endosulfan I	560	
72-55-9	4,4'-DDE	560	1
	Dieldrin	560	1
72-20-8	Endrin	560	1
33213-65-9	Endosulfan II	560	
72-54-8		560	U

EPA SAMPLE NO.

Lab Name: PNNL	(	Contract:	C104	C104-SLE
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN		Lab Sample ID:	00-1360-SLE
Sample wt/vol:	(g/mL) ML		Lab File ID:	00081909
Level: (low/med)	LOW		Date Received:	*
% Moisture:	decanted: $(Y/N)$		Date Extracted	
Concentrated Extract	Volume: 1000(u	lT)	Date Analyzed:	08/19/0
Injection Volume:	(uL)		Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N pH:			

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

		~
85-68-7Butylbenzylphthalate         1031-07-8Endosulfan Sulfate         50-29-3A,4'-DDT         53494-70-5Endrin Ketone         56-55-3Benzo (a) anthracene         91-94-1		ממלממממ
62-75-9N-Nitrosodimethylamine 98-86-2Acetophenone 100-00-51-Chloro-4-nitrobenzene 92-52-4Biphenyl 100-25-41,4-Dinitrobenzene 128-37-0Butylated Hydroxytoluene 82-68-8Pentachloronitrobenzene	4900 1300 1100 240000 430000 560 560	B B B B B U U D B J B J B J U U U U U

SEMIVOLATI	1C LE ORGANICS ANALYSIS	DATA SHEET	EPA SAMPLE NO.
Lab Name: PNNL	Con	tract: C104	C104-SLE
Lab Code: PNNL	Case No.: SA	S No.: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLE
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081909
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0
Injection Volume:	(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.		CONCENTRATION UNITS (ug/L or ug/Kg) UG/I	

100-75-4N-Nitrosopiperidine	560	U
1888-71-7Hexachloropropene	560	υ
924-16-3N-Nitrosodi-n-butylamine	560	U
94-59-7Safrole	560	U
95-94-31,2,4,5-Tetrachlorobenzene	560	U
120-58-1Isosafrole	560	Ū
130-15-41,4-Naphthoquinone	560	-
608-93-5Pentachlorobenzene	560	U
134-32-7l-Naphthylamine	560	U
134-32-7I-Naphenytamine	560	U C
58-90-22,3,4,6-Tetrachlorophenol 91-59-82-Naphthylamine	560	-
91-59-8Z-Naphthylamine	560	U
99-55-85-Nitro-o-toluidine	560	U
103-33-3Azeobenzene	560	U
99-35-41,3,5-Trinitrobenzene		U
2303-16-4Diallate (cis)	560	-
62-44-2Phenacetin	560	U
2303-16-4Diallate (trans)	560	U
92-67-14-Aminobiphenyl	560	1
23950-58-5Pronamine	560	1
465-73-6Isodrin	560	-
57-74-9Chlordane (alpha)	560	1
92-87-5Benzidine	560	U
60-11-7p-Dimethylaminoazobenzene	560	U
510-15-6Chlorobenzilate	560	U
119-93-73,3'-Dimethylbenzidine	j 560	U
53-96-32-Acetylaminofluorene	560	ט
56-49-53-Methylcholanthrene	560	U
109-06-82-Methylpyridine	560	ט
143-50-0Kepone	560	
57-74-9Chlordane (gamma)	560	
5/-/4-9Chilordane (gamma/	560	1
66-27-3Methyl methane sulfonate	560	1
70-30-4Hexachlorophene	560	
99-65-01,3-Dinitrobenzene	500	
	l	

OLM03.(

EPA SAMPLE NO.

Lab Name: PNNL	(	Contract: C	104	C104-SLE
Lab Code: PNNL Ca	ase No.:	SAS No.:	SDG	No.: 000819
Matrix: (soil/water) :	SUPERNATAN	La	b Sample ID:	00-1360-SLE
Sample wt/vol:	(g/mL) ML	La	b File ID:	00081909
Level: (low/med) ]	LOW	Da	te Received:	**
% Moisture: (	decanted: (Y/N)_	Da	te Extracted	l:
Concentrated Extract V	Volume: 1000(1	L) Da	te Analyzed:	08/19/0
Injection Volume:	(uL)	Di	lution Facto	or: 1.0
GPC Cleanup: (Y/N) 1	N pH:			
CAS NO.	COMPOUND		ATION UNITS: ug/Kg) UG/I	
87-65-0	2,6-Dichloroph	enol		560 U

EPA SAMPLE NO.

17

Lab Name: PNNL	Contrac	ct: C104	C104-SLMS
Lab Code: PNNL	Case No.: SAS No	SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLMS
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081907
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	: 08/19/0
Injection Volume:	(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N pH:		

CAS NO.

1.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

108-95-2Phenol	1800	
111-44-4bis(2-Chloroethyl)ether	560	U
95-57-82-Chlorophenol	1800	
541-73-11, 3-Dichlorobenzene	560	U
106-46-71,4-Dichlorobenzene	1100	
95-50-11,2-Dichlorobenzene	560	U
100-51-6Benzyl alcohol	560	U
95-48-72-Methylphenol	2900	В
108-60-12,2'-oxybis(1-Chloropropane)	000	U (
621-64-7N-Nitroso-di-n-propylamine	2200	
106-44-54-Methylphenol	4800	B
67-72-1Hexachloroethane	560	U
98-95-3Nitrobenzene	560	U
78-59-1Isophorone	560	U
88-75-52-Nitrophenol	560	U
105-67-92,4-Dimethylphenol	560	U
111-91-1bis(2-Chloroethoxy)methane	560	U
120-83-22,4-Dichlorophenol	560	U
120-82-11,2,4-Trichlorobenzene	1600	
91-20-3Naphthalene	560	1
106-47-84-Chloroaniline	560	1
87-68-3Hexachlorobutadiene	560	U
59-50-74-Chloro-3-methylphenol	2000	
91-57-62-Methylnaphthalene	560	1
77-47-4Hexachlorocyclopentadiene	560	U
88-06-22,4,6-Trichlorophenol	560	-
95-95-42,4,5-Trichlorophenol	560	U
91-58-72-Chloronaphthalene	560	U
88-74-42-Nitroaniline	560	U
99-09-23-Nitroaniline	560	U
131-11-3Dimethylphthalate	560	
606-20-22,6-Dinitrotoluene	560	
208-96-8Acenaphthylene	560	U
200-90-0-9 Accumption 2000		

EPA SAMPLE NO.

Lab Name: PNNL	Contract	: C104	C104-SLMS
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLMS
Sample wt/vol:	(g/mL) ML	Lab File ID:	
Level: (low/med)	LOW	Date Received:	*
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0
Injection Volume:	(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		
	CONCE	PUTTON INTTO	

CAS NO. COMPOUND

J

Ţ

(ug/L or ug/Kg) UG/L

83-32-9	Acenanhthene	0400	1
E1 00 E		2400	1
51-28-5	2,4-Dinitrophenol	560	Ū
132-64-9	Dibenzofuran	560	U
100-02-7	4-Nitrophenol	840	1
121-14-2	2,4-Dinitrotoluene	2600	
84-66-2	Diethylphthalate	560	U
86-73-7	Fluorene	560	Ū
7005-72-3	4-Chlorophenyl-phenylether	560	
100-01-6	4-Nitroaniline	560	Ū
534-52-1	4,6-Dinitro-2-methylphenol	560	Ū
	N,N-Diphenylamine	560	Ū
76-44-8	Heptachlor	560	U
319-84-6	alpha-BHC	560	U
101-55-3	4-Bromophenyl-phenylether	560	
118-74-1	Hexachlorobenzene	560	U
319-85-7	beta-BHC	560	U
87-86-5	Pentachlorophenol	960	1
319-86-8	delta-BHC	560	U
85-01-8	Phenanthrene	560	U
	Anthracene	560	1
58-89-9	gamma-BHC (Lindane)	560	1
86-74-8	Carbazole	560	
	Di-n-butylphthalate	560	1
309-00-2		560	1
1024-57-3	Heptachlor Epoxide	560	
206-44-0	Fluoranthene	560	1
129-00-0		2700	-
	Endosulfan I	560	U
72-55-9		560	I -
60-57-1		560	1 -
72-20-8		560	-
	Endosulfan II	560	1
72-54-8		560	1

EPA SAMPLE NO.

Lab Name: PNNL	Cor	ntract: C104	Cl04-SLMS
Lab Code: PNNL	Case No.: Si	AS No.: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLMS
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081907
Level: (low/med)	LOW	Date Received:	·
% Moisture:	decanted: $(Y/N)$	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0
Injection Volume:	(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/I	

EPA SAMPLE NO.

		TITTE DATA SHEE	± .		
Lab Name: PNNL		Contract: C104	4	C104-SL	MS
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 00081	.9
Matrix: (soil/wate	r) SUPERNATAN	Lab S	Sample ID:	00-1360-S	LMS
Sample wt/vol:	(g/mL) M	IL Lab I	File ID:	00081907	
Level: (low/med)	LOW	Date	Received:		Ŷŗ
% Moisture:	decanted: (Y/N	I) Date	Extracted		
Concentrated Extra	ct Volume: 100	0(uL) Date	Analyzed:	08/19/0	
Injection Volume:	(uL)	Dilut	tion Facto	r: 1.0	
GPC Cleanup: (Y/	N) N pH:_				
CAS NO.	COMPOUND	CONCENTRAT: (ug/L or ug			
$\begin{array}{c} 1888-71-7\\ 924-16-3\\ 94-59-7\\ 95-94-3\\ 120-58-1\\ 130-15-4\\ 608-93-5\\ 134-32-7\\ 58-90-2\\ 91-59-8\\ 99-55-8\\ 103-33-3\\ 99-35-4\\ 2303-16-4\\ 62-44-2\\ 2303-16-4\\ 92-67-1\\ 23950-58-5-\\ 465-73-6\\ 57-74-9\end{array}$	N-Nitrosopip Hexachloropr Safrole Safrole 1,2,4,5-Tetr I,3,4,5-Tetr Pentachlorob Pentachlorob 1-Naphthylam 2,3,4,6-Tetr 2-Naphthylam 5-Nitro-o-tc Azeobenzene 1,3,5-Trinit Diallate (ci Phenacetin Diallate (tr Diallate (tr Pronamine Isodrin Isodrin Chlordane (a	ropene n-butylamine achlorobenzene penzene ine achlorophenol ine oluidine robenzene s) rans)		$\begin{array}{c} 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 560 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\ 500 \\$	

560 U

560 U

560 U 560 U

560 U 160 J

560 U 560 U 560 U

560 U

560 U

60-11-7----p-Dimethylaminoazobenzene

66-27-3-----Methyl methane sulfonate

119-93-7-----3,3'-Dimethylbenzidine

53-96-3----2-Acetylaminofluorene 56-49-5-----3-Methylcholanthrene

510-15-6-----Chlorobenzilate

109-06-8-----2-Methylpyridine_ 143-50-0-----Kepone_ 57-74-9-----Chlordane (gamma)

70-30-4-----Hexachlorophene 99-65-0-----1,3-Dinitrobenzene

J

EPA SAMPLE NO.

T	Con		C104-SLMS
Lab Name: PNNL	Con	tract: C104	
Lab Code: PNNL	Case No.: SA	S No.: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLMS
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081907
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	l:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0
Injection Volume:	(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.		CONCENTRATION UNITS: (ug/L or ug/Kg) UG/I	
87-65-0	2,6-Dichloropheno	1	560 U

EPA SAMPLE NO.

Lab Name: PNNL	Contract	: C104	C104-SLMSD
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLMSD
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081908
Level: (low/med)	LOW	Date Received:	· · · · · · · · · · · · · · · · · · ·
% Moisture:	decanted: (Y/N)	Date Extracted	l:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0
Injection Volume:	(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N pH:		

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

108-95-2Phenol         111-44-4bis (2-Chloroethyl) ether         95-57-82-Chlorophenol         541-73-11, 3-Dichlorobenzene         106-46-71, 4-Dichlorobenzene         95-50-11, 2-Dichlorobenzene         100-51-6Benzyl alcohol         95-48-72-Methylphenol         108-60-12, 2'-oxybis (1-Chloropropane)         621-64-7N-Nitroso-di-n-propylamine         106-44-5Hexachloroethane         98-95-3Nitrobenzene	1600 560 1700 560 990 560 2300 560 1700 4200 560 560 560	U U B U B U U B U
106-46-71 4-Dichlorobenzene		
95-50-11 2-Dichlorobonzono		
		1 U I I
		Ŭ
		_
108-60-12,2'-oxydis(1-chioropropane)		U
621-64-7N-Nitroso-di-n-propylamine		
106-44-54-Methylphenol		_
67-72-1Hexachloroethane		-
78-59-1Isophorone	560	-
88-75-52-Nitrophenol	560	U
105-67-92,4-Dimethylphenol	560	U
111-91-1bis(2-Chloroethoxy)methane	560	U
120-83-22,4-Dichlorophenol	560	U
120-82-11,2,4-Trichlorobenzene	1400	
91-20-3Naphthalene	560	Ŭ
106-47-84-Chloroaniline	560	U
87-68-3Hexachlorobutadiene	560	U
59-50-74-Chloro-3-methylphenol	1900	-
91-57-62-Methylnaphthalene	560	Ū
77-47-4Hexachlorocyclopentadiene	560	Ū
88-06-22,4,6-Trichlorophenol	560	U
95-95-42,4,5-Trichlorophenol	560	Ŭ
91-58-72-Chloronaphthalene	560	U
88-74-42-Nitroaniline	560	Ŭ
99-09-23-Nitroaniline	560	U
131-11-3Dimethylphthalate	560	-
606-20-22,6-Dinitrotoluene	560	U
		U
208-96-8Acenaphthylene	560	
<u> </u>	l	

EPA SAMPLE NO.

Lab Name: PNNL	Contract	: C104	C104-SLMSD
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLMSD
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081908
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed	08/19/0
Injection Volume:	(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N pH:		

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

		<u> </u>
83-32-9Acenaphthene	2100	
51-28-52,4-Dinitrophenol	560	ĪJ
132-64-9Dibenzofuran	560	
100-02-74-Nitrophenol	1500	Ŭ
121-14-22,4-Dinitrotoluene	2400	
84-66-2Diethylphthalate	560	<del>U</del>
86-73-7Fluorene	560	-
7005-72-34-Chlorophenyl-phenylether	560	
100-01-64-Nitroaniline	560	
534-52-14,6-Dinitro-2-methylphenol	560	
120 20 4 N. N. Dimberularine	560	
122-39-4N, N-Diphenylamine		
76-44-8Heptachlor	560	
319-84-6alpha-BHC	560	
101-55-34-Bromophenyl-phenylether	560	-
118-74-1Hexachlorobenzene	560	
319-85-7beta-BHC	560	υ
87-86-5Pentachlorophenol	1100	
319-86-8delta-BHC	560	
85-01-8Phenanthrene	560	
120-12-7Anthracene	560	
58-89-9gamma-BHC (Lindane)	560	U
86-74-8Carbazole	560	U
84-74-2Di-n-butylphthalate	560	U
309-00-2Aldrin	560	U
1024-57-3Heptachlor Epoxide	560	U
206-44-0Fluoranthene	560	U
129-00-0Pyrene	2300	
959-98-8Endosulfan I	560	Ū
72-55-94,4'-DDE	560	1
60-57-1Dieldrin	560	
72-20-8Endrin	560	U
33213-65-9Endosulfan II	560	U
	560	U
72-54-84,4'-DDD	500	

EPA SAMPLE NO.

	LE ORGANICS ANAL	ISIS DATA	SHEET			·	
Lab Name: PNNL		Contract	: C104		C10	4 - SLMSI	D
Lab Code: PNNL	Case No.:	SAS No.	:	SDG	No.:	000819	
Matrix: (soil/water)					00-1	360-SLA	MSD
Sample wt/vol:							
Level: (low/med)			Date Re				*
% Moisture:	decanted: (Y/N)						
Concentrated Extract						9/0	
Injection Volume:			Dilutio				
GPC Cleanup: (Y/N)							
	COMPOUND	- CONCEN	TRATION or ug/K	UNITS: g) UG/L		Q	
$\begin{array}{c} 1031-07-8\\ 50-29-3\\ 53494-70-5\\ 56-55-3\\ 91-94-1\\ 218-01-9\\ 72-43-5\\ 117-81-7\\ 117-84-0\\ 205-99-2\\ 207-08-9\\ 207-08-9\\ 50-32-8\\ 193-39-5\\ 53-70-3\\ 193-39-5\\ 193-39-5\\ 193-39-5\\ 193-39-5\\ 193-39-5\\ 193-39-5\\ 193-39-5\\ 193-39-5\\ 193-39-5\\ 105-8\\ 126-73-8\\ 92-52-4\\ 128-37-0\\ 128-37-0\\ 82-68-8\\ 2234-13-1\\ 10595-95-6\\ 55-18-5\\ 55-18-5\\ 62-53-3\\ 76-01-7\\ \end{array}$	Endrin Ketone Benzo(a) anthra 3,3'-Dichlorok Chrysene Methoxychlor Bis(2-Ethylhex Di-n-octylphth Benzo(b) fluora Benzo(c) fluora Benzo(a) pyrene Indeno(1,2,3-c Dibenz(a,h) ant Benzo(g,h,i) pe Pyridine Tributyl phosp N-Nitrosodimet Acetophenone 1,4-Dinitrober Biphenyl 1,4-Dinitrober Butylated Hydr Dinoseb Octachloronaph N-Nitrosodieth N-Nitrosodieth N-Nitrosodieth N-Nitrosodieth	acene benzidine cyl)phthal nalate anthene chracene cylene chracene cylene chylamine coxytoluen coxytoluen coxytoluen coxytoluen coxytoluen consenzene coxytoluen consenzene coxytoluen consenzene coxytoluen consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consenzene consencene consenzene consenzene consenzene consenzene cons	.ate		560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560 560	U U U U U U U U U U U U U U U U U U U	

1

į

EPA SAMPLE NO.

Lab Name: PNNL	Con	tract: C104	C104-SLMSD
Lab Code: PNNL	Case No.: SA	SNO.: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLMSD
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081908
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0
Injection Volume:	(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.		CONCENTRATION UNITS: (ug/L or ug/Kg) UG/I	

1		
100-75-4N-Nitrosopiperidine         1888-71-7Hexachloropropene         924-16-3N-Nitrosodi-n-butylamine         94-59-7Safrole         95-94-31,2,4,5-Tetrachlorobenzene         120-58-1Isosafrole         130-15-41,4-Naphthoquinone         608-93-5Pentachlorobenzene         134-32-71-Naphthylamine         58-90-22,3,4,6-Tetrachlorophenol	560 560 560 560 560 560 560 560 560 560	ממממ ממממ מ מ מ מ מ מ מ מ מ מ מ מ מ מ
91-59-82-Naphthylamine	560	
99-55-85-Nitro-o-toluidine	560	-
103-33-3Azeobenzene 99-35-41,3,5-Trinitrobenzene	560 560	-
2303-16-4Diallate (cis)	560	-
62-44-2Phenacetin	560	-
2303-16-4Diallate (trans)	560	-
92-67-14-Aminobiphenyl	560 560	
465-73-6Isodrin	560	
57-74-9Chlordane (alpha)	560	-
92-87-5Benzidine	2000	В
60-11-7p-Dimethylaminoazobenzene	560	U
510-15-6Chlorobenzilate	560	-
119-93-73,3'-Dimethylbenzidine	560	
53-96-32-Acetylaminofluorene	560	
56-49-53-Methylcholanthrene	560	-
109-06-82-Methylpyridine	140	_
143-50-0Kepone	560	1
57-74-9Chlordane (gamma)	560 560	1
66-27-3Methyl methane sulfonate	560	
70-30-4Hexachlorophene	560	-

	SEMIVOLATII	1C LE ORGANICS ANALY	SIS DATA SHEET		EPA S	SAMPLE	NO.
Lab Name	: PNNL		Contract: C104		C104	-SLMSD	)
Lab Code	: PNNL (	Case No.:	SAS No.:	SDG	No.: (	00819	
Matrix:	(soil/water)	SUPERNATAN	Lab S	ample ID:	: 00-13	860-SLM	ISD
Sample wt	t/vol:	(g/mL) ML	Lab F	ile ID:	00081	908	
Level:	(low/med)	LOW	Date	Received			ł
% Moistu	re:	decanted: $(Y/N)$	Date	Extracted	1:		
Concentra	ated Extract	Volume: 1000(	uL) Date	Analyzed:	08/19	9/0	
Injection	n Volume:	(uL)	Dilut	ion Facto	or: 1.0	)	
GPC Clear	nup: (Y/N)	N pH:					
a	AS NO.	COMPOUND	CONCENTRATI (ug/L or ug			Q	
8	7-65-0	2,6-Dichloroph	enol	-	560	U	

1

1

EPA SAMPLE NO.

1 -

Lab Name: PNNL	Contract	: C104	C104-SLS	
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819	
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID	: 00-1360-SLS	
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081905	· •
Level: (low/med)	LOW	Date Received	:	
% Moisture:	decanted: (Y/N)	Date Extracted	1:	
Concentrated Extract	Volume: 1000(uL)	Date Analyzed	: 08/19/0	
Injection Volume:	(uL)	Dilution Facto	or: 1.0	
GPC Cleanup: (Y/N)	N pH:			

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{llllllllllllllllllllllllllllllllllll$	108-95-2Phenol	560	U
95-57-82-Chlorophenol       560         541-73-11, 3-Dichlorobenzene       560         106-46-71, 2-Dichlorobenzene       560         95-50-11, 2-Dichlorobenzene       560         100-51-6Benzyl alcohol       560         95-48-72-Methylphenol       560         108-60-12, 2'-oxybis (1-Chloropropane)       560         108-60-12, 2'-oxybis (1-Chloropropane)       560         106-44-5Nitroso-di-n-propylamine       560         106-44-5Nitrobenzene       560         72-1Nitrobenzene       560         108-75-5Nitrobenzene       560         78-59-1	111-44-4bis(2-Chloroethyl)ether	560	U
541-73-11,3-Dichlorobenzene       560         106-46-71,4-Dichlorobenzene       560         95-50-11,2-Dichlorobenzene       560         100-51-6			
106-46-71, 4-Dichlorobenzene       560       U         95-50-11, 2-Dichlorobenzene       560       U         100-51-6Benzyl alcohol       560       U         95-48-72-Methylphenol       560       U         108-60-12, 2'-oxybis (1-Chloropropane)       560       U         621-64-7N-Nitroso-di-n-propylamine       560       U         106-44-54-Methylphenol       560       U         67-72-1Hexachloroethane       560       U         98-95-3Nitrobenzene       560       U         78-59-1Isophorone       560       U         88-75-52,4-Dimethylphenol       560       U         105-67-92,4-Dimethylphenol       560       U         119-1bis (2-Chloroethoxy)methane       560       U         120-83-2		560	U
95-50-1		560	U
100-51-6Benzyl alcohol       560 U         95-48-72-Methylphenol       560 U         108-60-12, 2'-oxybis (1-Chloropropane)       560 U         621-64-7		560	U
95-48-72-Methylphenol       560       U         108-60-12,2'-oxybis(1-Chloropropane)       560       U         621-64-7N-Nitroso-di-n-propylamine       560       U         106-44-5N-Nitroso-di-n-propylamine       560       U         67-72-1			
108-60-12,2'-oxybis(1-Chloropropane)       560       U         621-64-7N-Nitroso-di-n-propylamine560       U         106-44-54-Methylphenol560       U         67-72-1Hexachloroethane560       U         98-95-3Hexachloroethane560       U         98-95-3		560	U
621-64-7N-Nitroso-di-n-propylamine560 U         106-44-54-Methylphenol560 U         67-72-1Hexachloroethane560 U         98-95-3Nitrobenzene560 U         78-59-1Sophorone560 U         88-75-52-Nitrophenol         105-67-92,4-Dimethylphenol560 U         111-91-1bis (2-Chloroethoxy)methane560 U         120-83-22,4-Dichlorophenol560 U         120-82-11,2,4-Trichlorobenzene560 U         106-47-8Naphthalene560 U         106-47-8		ane) 560	U
67-72-1Hexachloroethane       560 U         98-95-3Nitrobenzene       560 U         78-59-1Sophorone       560 U         88-75-52-Nitrophenol       560 U         105-67-92-Nitrophenol       560 U         111-91-1bis (2-Chloroethoxy)methane       560 U         120-83-22,4-Dichlorophenol       560 U         120-82-11,2,4-Trichlorobenzene       560 U         91-20-3Naphthalene       560 U         106-47-84-Chloroaniline       560 U         87-68-3	621-64-7N-Nitroso-di-n-propylami	ne 560	U
67-72-1Hexachloroethane       560 U         98-95-3Nitrobenzene       560 U         78-59-1Sophorone       560 U         88-75-52-Nitrophenol       560 U         105-67-92-Nitrophenol       560 U         111-91-1bis (2-Chloroethoxy)methane       560 U         120-83-22,4-Dichlorophenol       560 U         120-82-11,2,4-Trichlorobenzene       560 U         91-20-3Naphthalene       560 U         106-47-84-Chloroaniline       560 U         87-68-3	106-44-54-Methylphenol	560	U
98-95-3Nitrobenzene       560       U         78-59-1	67-72-1Hexachloroethane	560	U
88-75-52-Nitrophenol       560 U         105-67-92,4-Dimethylphenol       560 U         111-91-1bis(2-Chloroethoxy)methane       560 U         120-83-22,4-Dichlorophenol       560 U         120-82-11,2,4-Trichlorobenzene       560 U         91-20-3Naphthalene       560 U         106-47-84-Chloroaniline       560 U         87-68-3Hexachlorobutadiene       560 U         91-57-6	98-95-3Nitrobenzene	560	U
105-67-92,4-Dimethylphenol       560         111-91-1bis (2-Chloroethoxy)methane       560         120-83-22,4-Dichlorophenol       560         120-82-11,2,4-Trichlorobenzene       560         91-20-3Naphthalene       560         106-47-8Naphthalene       560         106-47-8Naphthalene       560         107-68-3	78-59-1Isophorone	560	U
111-91-1bis (2-Chloroethoxy) methane       560 U         120-83-22,4-Dichlorophenol       560 U         120-82-11,2,4-Trichlorobenzene       560 U         91-20-3Naphthalene       560 U         106-47-8Naphthalene       560 U         87-68-3Hexachlorobutadiene       560 U         91-57-6	88-75-52-Nitrophenol	560	U
111-91-1bis (2-Chloroethoxy) methane       560 U         120-83-22, 4-Dichlorophenol       560 U         120-82-11, 2, 4-Trichlorobenzene       560 U         91-20-3Naphthalene       560 U         106-47-8A-Chloroaniline       560 U         87-68-3	105-67-92,4-Dimethylphenol		U
120-82-11,2,4-Trichlorobenzene       560 U         91-20-3Naphthalene       560 U         106-47-8Naphthalene       560 U         87-68-3	111-91-1bis(2-Chloroethoxy)metha	ne 560	U
91-20-3Naphthalene       560 U         106-47-84-Chloroaniline       560 U         87-68-34-Chloro-3-methylphenol       560 U         59-50-74-Chloro-3-methylphenol       560 U         91-57-62-Methylnaphthalene       560 U         77-47-4Hexachlorocyclopentadiene       560 U         88-06-22,4,6-Trichlorophenol       560 U         95-95-42,4,5-Trichlorophenol       560 U         91-58-72-Chloronaphthalene       560 U         99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U	120-83-22,4-Dichlorophenol	560	U
106-47-84-Chloroaniline       560 U         87-68-3Hexachlorobutadiene       560 U         59-50-74-Chloro-3-methylphenol       560 U         91-57-62-Methylnaphthalene       560 U         77-47-4Hexachlorocyclopentadiene       560 U         88-06-22,4,6-Trichlorophenol       560 U         95-95-42,4,5-Trichlorophenol       560 U         91-58-72-Chloronaphthalene       560 U         98-74-42-Nitroaniline       560 U         99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U	120-82-11,2,4-Trichlorobenzene	560	U
106-47-84-Chloroaniline       560 U         87-68-3Hexachlorobutadiene       560 U         59-50-74-Chloro-3-methylphenol       560 U         91-57-62-Methylnaphthalene       560 U         77-47-4Hexachlorocyclopentadiene       560 U         88-06-22,4,6-Trichlorophenol       560 U         95-95-42,4,5-Trichlorophenol       560 U         91-58-72-Chloronaphthalene       560 U         98-74-42-Nitroaniline       560 U         99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U	91-20-3Naphthalene	560	U
59-50-74-Chloro-3-methylphenol       560 U         91-57-62-Methylnaphthalene       560 U         77-47-4	106-47-84-Chloroaniline	560	U
91-57-62-Methylnaphthalene       560 U         77-47-4Hexachlorocyclopentadiene       560 U         88-06-22,4,6-Trichlorophenol       560 U         95-95-42,4,5-Trichlorophenol       560 U         91-58-72-Chloronaphthalene       560 U         88-74-42-Nitroaniline       560 U         99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U		560	U
77-47-4Hexachlorocyclopentadiene       560 U         88-06-22,4,6-Trichlorophenol       560 U         95-95-42,4,5-Trichlorophenol       560 U         91-58-72-Chloronaphthalene       560 U         88-74-42-Nitroaniline       560 U         99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U	59-50-74-Chloro-3-methylphenol		
88-06-22,4,6-Trichlorophenol       560 U         95-95-42,4,5-Trichlorophenol       560 U         91-58-72-Chloronaphthalene       560 U         88-74-42-Nitroaniline       560 U         99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U			
95-95-42,4,5-Trichlorophenol       560 U         91-58-72-Chloronaphthalene       560 U         88-74-42-Nitroaniline       560 U         99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U			-
91-58-72-Chloronaphthalene       560 U         88-74-42-Nitroaniline       560 U         99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U			
88-74-42-Nitroaniline       560 U         99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U	95-95-42,4,5-Trichlorophenol	560	U
99-09-23-Nitroaniline       560 U         131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U	91-58-72-Chloronaphthalene	560	U
131-11-3Dimethylphthalate       560 U         606-20-22,6-Dinitrotoluene       560 U			1 -
606-20-22,6-Dinitrotoluene560 U	99-09-23-Nitroaniline		
	131-11-3Dimethylphthalate		1
	606-20-22,6-Dinitrotoluene	560	U
			U

#### 1C

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: PNNL	Con	tract: C104	C104-SLS
Lab Code: PNNL			No.: 000819
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLS
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081905
Level: (low/med)	LOW	Date Received:	·
% Moisture:	decanted: (Y/N)	Date Extracted	l:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0
Injection Volume:	(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L	

COMEQU

(ug/L or ug/Kg) UG/L

Q

EPA SAMPLE NO.

Lab Name: PNNL	Contract	: C104	C104-SLS	
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819	
Matrix: (soil/water)	SUPERNATAN	Lab Sample ID:	00-1360-SLS	
Sample wt/vol:	(g/mL) ML	Lab File ID:	00081905	
Level: (low/med)	LOW	Date Received:		
% Moisture:	decanted: (Y/N)	Date Extracted	1:	
Concentrated Extract	Volume: 1000(uL)	Date Analyzed	: 08/19/0	
Injection Volume:	(uL)	Dilution Facto	or: 1.0	
GPC Cleanup: (Y/N)	N pH:			
	CONCE	NTRATION INTERS		

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/L

85-68-7Butylbenzylphthalate	560	υ
1031-07-8Endosulfan Sulfate	560	U
50-29-34,4'-DDT	560	U
53494-70-5Endrin Ketone	560	U
56-55-3Benzo (a) anthracene	560	U
91-94-13,3'-Dichlorobenzidine	560	υ
218-01-9Chrysene	560	U
72-43-5Methoxychlor	560	U
117-81-7Bis(2-Ethylhexyl)phthalate	480	J
117-84-0Di-n-octylphthalate	560	U
205-99-2Benzo(b)fluoranthene	560	U
207-08-9Benzo(k)fluoranthene	560	U
50-32-8Benzo (a) pyrene	560	
193-39-5Indeno(1,2,3-cd)pyrene	560	U
53-70-3Dibenz (a, h) anthracene	560	
191-24-2Benzo(g,h,i)perylene	560	
110-86-1Pyridine	2300	
126-73-8Tributyl phosphate	2100	£
62-75-9N-Nitrosodimethylamine	1300	
98-86-2Acetophenone	2300	B
100-00-51-Chloro-4-nitrobenzene	2100	В
92-52-4Biphenyl	2000	В
100-25-41,4-Dinitrobenzene	1500	В
128-37-0Butylated Hydroxytoluene	130	JB
82-68-8Pentachloronitrobenzene	560	-
88-85-7Dinoseb	2200	1
2234-13-1Octachloronaphthalene	[	В
10595-95-6N-Nitrosomethylethylamine	560	1
55-18-5N-Nitrosodiethylamine	25	-
62-50-0Ethyl methane sulfonate	560	-
62-53-3Analine	560	1
76-01-7Pentachloroethane	560	U
930-55-2N-Nitrosopyrolidine	560	Ū

92-67-1----4-Aminobiphenyl

57-74-9-----Chlordane (alpha)

510-15-6-----Chlorobenzilate

109-06-8-----2-Methylpyridine

57-74-9-----Chlordane (gamma)

99-65-0----1,3-Dinitrobenzene

70-30-4----Hexachlorophene

60-11-7----p-Dimethylaminoazobenzene

119-93-7-----3,3'-Dimethylbenzidine

53-96-3-----2-Acetylaminofluorene

66-27-3-----Methyl methane sulfonate

56-49-5-----3-Methylcholanthrene

23950-58-5----Pronamine

92-87-5----Benzidine

465-73-6----Isodrin

143-50-0----Kepone

1

1CSEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

				1			
Lab Na	ame: PNNL		Contract: C104	L I	C1	.04-SLS	
Lab Co	ode: PNNL	Case No.:	SAS No.:	SDG	No.:	000819	
Matrix	<: (soil/water)	SUPERNATAN	Lab S	Sample ID:	00-1	360-SLS	5
Sample	e wt/vol:	(g/mL) ML		ile ID:			
Level:	(low/med)	LOW		Received:			4
% Mois	sture:	decanted: (Y/N)_		Extracted			
Concen	trated Extract	Volume: 1000	<pre>/</pre>	Analyzed:		9/0	
Inject	ion Volume:	(uL)		ion Facto			
GPC Cl	eanup: (Y/N)	N pH:					
	CAS NO.	COMPOUND	CONCENTRATI (ug/L or ug			Q	
	1888-71-7 924-16-3 94-59-7 95-94-3 120-58-1 130-15-4 608-93-5 134-32-7 58-90-2 91-59-8 99-55-8 103-33-3 99-35-4 2303-16-4 62-44-2	1,2,4,5-Tetrac Isosafrole I,4-Naphthoqui Pentachloroben 1-Naphthylamin 2,3,4,6-Tetrac 2-Naphthylamin 5-Nitro-o-tolu Azeobenzene 1,3,5-Trinitro	bene butylamine hlorobenzene none zene te hlorophenol e idine benzene		560 560 560 560 560 560 560 560 560 560	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

560 U

350 J

560 U

560 U

560 U

560 U

560 U

2100 B

	SEMIVOLATI	IC LE ORGANICS ANALYS	IS DATA SHEET		EPA S	SAMPLE	NO.
Lab Nar	ne: PNNL	C	contract: C104		C1(	04-SLS	
Lab Cod	le: PNNL	Case No.:	SAS No.:	SDG N	ю.: (	00819	
Matrix	(soil/water)	SUPERNATAN	Lab Sa	ample ID:	00-13	60-SLS	5
Sample	wt/vol:	(g/mL) ML	Lab F:	ile ID:	00081	.905	
Level:	(low/med)	LOW	Date H	Received:			
% Moist	ure:	decanted: (Y/N)	_ Date H	Extracted:			
Concent	rated Extract	Volume: 1000(u	L) Date A	Analyzed:	08/19	/0	
Injecti	on Volume:	(uL)	Dilut	ion Factor	: 1.C	)	
GPC Cle	eanup: (Y/N)	N pH:					
	CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug,			Q	
	87-65-0	2,6-Dichlorophe	nol		560	υ	

#### 1B

# SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

	Lab Name: PNNL		Contract:	: C104	C104-SSB
	Lab Code: PNNL	Case No.:	SAS No.:	s SDG	No.: 000819
	Matrix: (soil/water)	SOLID		Lab Sample ID:	00-1361-SSB
	Sample wt/vol:	5.0 (g/mL) G		Lab File ID:	
	Level: (low/med)	LOW		Date Received:	*s
	% Moisture: 0	decanted: $(Y/N)$	N	Date Extracted	l:
	Concentrated Extract	: Volume: 1000(	uL)	Date Analyzed:	08/20/0
Injection Volume:(uL) Dilution Factor				or: 1.0	
	GPC Cleanup: (Y/N)	N pH:	-		
	CAS NO.	COMPOUND		TRATION UNITS: or ug/Kg) UG/K	G Q
	95-57-8 541-73-1 106-46-7 95-50-1	Phenol bis(2-Chloroet 2-Chlorophenol 1,3-Dichlorobe 1,4-Dichlorobe 1,2-Dichlorobe Benzyl alcohol	nzene nzene		2000 U 2000 U 2000 U 2000 U 2000 U 2000 U 2000 U 2000 U

	95-50-11,2-Dichlorobenzene	2000	U
	100-51-6Benzyl alcohol	2000	1 -
	95-48-72-Methylphenol	3100	-
1	108-60-12,2'-oxybis(1-Chloropropane)	2000	
	621-64-7N-Nitroso-di-n-propylamine	2000	-
	106-44-54-Methylphenol	6800	ľ
	67-72-1Hexachloroethane	2000	
	98-95-3Nitrobenzene	2000	
	78-59-1Isophorone	2000	1
	88-75-52-Nitrophenol	2000	-
	105-67-92,4-Dimethylphenol	2000	1
	111-91-1bis(2-Chloroethoxy)methane	2000	
	120-83-22,4-Dichlorophenol	2000	Ū
	120-82-11,2,4-Trichlorobenzene	2000	Ū
	91-20-3Naphthalene	2000	U
	106-47-84-Chloroaniline	2000	U
	87-68-3Hexachlorobutadiene	2000	U
	59-50-74-Chloro-3-methylphenol	2000	U
	91-57-62-Methylnaphthalene	2000	U
	77-47-4Hexachlorocyclopentadiene	2000	U
	88-06-22,4,6-Trichlorophenol	2000	U
	95-95-42,4,5-Trichlorophenol	2000	U
	91-58-72-Chloronaphthalene	2000	U
	88-74-42-Nitroaniline	2000	U
	99-09-23-Nitroaniline	2000	U
	131-11-3Dimethylphthalate	2000	U
	606-20-22,6-Dinitrotoluene	2000	U
	208-96-8Acenaphthylene	2000	U
		le	I assessed

1

¥

OLM03.0

#### 1C

EPA SAMPLE NO.

	SEMIVOLATI	LE ORGANI	CS ANALYSIS DATA	SHEET		_
Lab Name:	PNNL		Contract	: C104	C104-SSB	
Lab Code:	PNNL	Case No.:	SAS No.	: SDG	No.: 000819	
Matrix: (s	soil/water)	SOLID		Lab Sample ID:	: 00-1361-SSB	
Sample wt/	vol:	5.0 (g/	'mL) G	Lab File ID:	00081913	
Level: (	(low/med)	LOW		Date Received:	·	
% Moisture	e: 0	decanted:	(Y/N) N	Date Extracted	1:	
Concentrat	ed Extract	Volume:	1000(uL)	Date Analyzed:	: 08/20/0	
Injection	Volume:	(uL)		Dilution Facto	or: 1.0	
GPC Cleanu	up: (Y/N)	N	рН:			

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

83-32-9Acenaphthene	2000	U
51-28-52,4-Dinitrophenol	2000	U
132-64-9Dibenzofuran	2000	U
100-02-74-Nitrophenol	2000	U
121-14-22,4-Dinitrotoluene	2000	U
84-66-2Diethylphthalate	2000	U
86-73-7Fluorene	2000	U
7005-72-34-Chlorophenyl-phenylether	2000	U
100-01-64-Nitroaniline	2000	U
534-52-14,6-Dinitro-2-methylphenol	2000	U
122-39-4N,N-Diphenylamine	2000	U
76-44-8Heptachlor	2000	-
319-84-6alpha-BHC	2000	U
101-55-34-Bromophenyl-phenylether	2000	U
118-74-1Hexachlorobenzene		
319-85-7beta-BHC	2000	-
87-86-5Pentachlorophenol	2000	1
319-86-8delta-BHC	2000	
85-01-8Phenanthrene		
120-12-7Anthracene	2000	_
58-89-9gamma-BHC (Lindane)	2000	
86-74-8Carbazole	2000	-
84-74-2Di-n-butylphthalate	2000	-
309-00-2Aldrin	2000	1
1024-57-3Heptachlor Epoxide	2000	1
206-44-0Fluoranthene	2000	
129-00-0Pyrene		-
959-98-8Endosulfan I	2000	1
72-55-94,4'-DDE	2000	-
60-57-1Dieldrin	2000	-
72-20-8Endrin	2000	
33213-65-9Endosulfan II		-
72-54-84,4'-DDD		U

10

1

J

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

- • •					C104-SSB
Lab Na	ame: PNNL		Contract	: C104	<u>.                                    </u>
Lab Co	ode: PNNL	Case No.:	SAS No.	: SDG	No.: 000819
Matrix	: (soil/water)	SOLID		Lab Sample ID:	00-1361-SSB
Sample	e wt/vol:	5.0 (g/mL) G		Lab File ID:	00081913
Level:	(low/med)	LOW		Date Received:	·
% Mois	sture: 0	decanted: $(Y/N)$	N	Date Extracted	1:
Concen	trated Extract	Volume: 1000(	uL)	Date Analyzed	: 08/20/0
Inject	ion Volume:	(uL)		Dilution Facto	pr: 1.0
GPC Cl	eanup: (Y/N)	N pH:			
	CAS NO.	COMPOUND		NTRATION UNITS or ug/Kg) UG/H	
	85-68-7	Butylbenzylpht	halate		2000 U

85-68-7Butylbenzylphthalate 1031-07-8Endrin Sulfate 50-29-34,4'-DDT 53494-70-5Endrin Ketone 56-55-3Benzo(a) anthracene 91-94-13,3'-Dichlorobenzidine 218-01-9Chrysene 72-43-5Methoxychlor 117-81-7Bis(2-Ethylhexyl)phthalate 205-99-2Benzo(b)fluoranthene 207-08-9Benzo(k)fluoranthene 207-08-9Benzo(k)fluoranthene 50-32-8Benzo(a)pyrene 193-39-5Dibenz(a,h) anthracene 191-24-2Benzo(g,h,i)perylene 110-86-1Pyridine 126-73-8Dibenz(a,h) anthracene 191-24-2Benzo(g,h,i)perylene 100-00-5Nitrosodimethylamine 98-86-2	2000 2000 2000 2000 2000 2000 2000 200	
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------	--

EPA SAMPLE NO.

SEMIVOLATI	LE ORGANICS ANALYSIS DATA	SHEET
Lab Name: PNNL	Contract	: C104-SSB
Lab Code: PNNL	Case No.: SAS No.	: SDG No.: 000819
Matrix: (soil/water)	SOLID	Lab Sample ID: 00-1361-SSB
Sample wt/vol:	5.0 (g/mL) G	Lab File ID: 00081913
Level: (low/med)	LOW	Date Received:
% Moisture: 0	decanted: (Y/N) N	Date Extracted:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 08/20/0
Injection Volume:	(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH:	
	CONCE	NTRATION INITS.

CAS NO. COMPOUND

(ug/L or ug/Kg) UG/KG Q

100-75-4N-Nitrosopiperidine       2000 U         1888-71-7Hexachloropropene       2000 U         924-16-3N-Nitrosodi-n-butylamine       2000 U         94-59-7Safrole       2000 U         95-94-3			~
	1888-71-7Hexachloropropene         924-16-3N-Nitrosodi-n-butylamine         94-59-7Safrole         95-94-3Safrole         130-15-4I,2,4,5-Tetrachlorobenzene         130-15-4Isosafrole         130-15-4Isosafrole         130-15-4Isosafrole         130-15-4Isosafrole         130-15-4	2000 2000 2000 2000 2000 2000 2000 200	ממממממממממממממממממממממממ
70-30-4Hexachlorophene       2000 U         99-65-01,3-Dinitrobenzene       2000 U	143-50-0Kepone 57-74-9Chlordane (gamma) 66-27-3Methyl methane sulfonate 70-30-4Hexachlorophene	2000 2000 2000 2000	U U U U

	SEMIVOLATILE	1C ORGANICS	ANALYSIS DATA	SHEET	EPA SAMPLE
					C104-SSB
Lab Name:	PNNL		Contract	: C104	
Lab Code:	PNNL Ca	use No.:	SAS No.	: SDC	JNO.: 000819

)

)

)

Matrix: (soil/water)	SOLID	Lab Sample ID: 00-1361-SSB
Sample wt/vol:	5.0 (g/mL) G	Lab File ID: 00081913 ,
Level: (low/med)	LOW	Date Received:
% Moisture: 0	decanted: (Y/N) N	Date Extracted:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 08/20/0
Injection Volume:	(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH:	
CAS NO.		ENTRATION UNITS: _ or ug/Kg) UG/KG Q

87-65-02,6-Dichlorophenol	2000	υ
	·	

NO.

EPA SAMPLE NO.

Lab Name: PNNL	C	Contract: C104	C104-SSD
Lab Code: PNNL	Case No.:	SAS No.: SDG	No.: 000819
Matrix: (soil/water)	SOLID	Lab Sample ID:	00-1361-SSD
Sample wt/vol:	4.9 (g/mL) G	Lab File ID:	00081915
Level: (low/med)	LOW	Date Received:	
% Moisture: 0	decanted: (Y/N) N	Date Extracted	l:
Concentrated Extract	Volume: 1000(u	L) Date Analyzed:	08/20/0
Injection Volume:	(uL)	Dilution Facto	pr: 10.0
GPC Cleanup: (Y/N)	N pH:		

CAS NO.

COMPOUND

CONCENTRATION UNITS:

(ug/L or ug/Kg) UG/KG

108-95-2Phenol       20000 U         111-44-4bis (2-Chloroethyl)ether       20000 U         95-57-82-Chlorophenol       20000 U         541-73-11,3-Dichlorobenzene       20000 U         106-46-71,4-Dichlorobenzene       20000 U         95-50-11,2-Dichlorobenzene       20000 U         100-51-6Benzyl alcohol       20000 U         95-48-72-Methylphenol       20000 U         108-60-12,2'-oxybis (1-Chloropropane)       20000 U         621-64-7N-Nitroso-di-n-propylamine       20000 U         106-44-5				
87-68-3Hexachlorobutadiene       20000 U         59-50-74-Chloro-3-methylphenol       20000 U         91-57-62-Methylnaphthalene       20000 U         77-47-4Hexachlorocyclopentadiene       20000 U         88-06-22,4,6-Trichlorophenol       20000 U         95-95-42,4,5-Trichlorophenol       20000 U         91-58-72-Chloronaphthalene       20000 U         88-74-42-Nitroaniline       20000 U         99-09-23-Nitroaniline       20000 U         131-11-3Dimethylphthalate       20000 U	$\begin{array}{c} 111-44-4bi,\\ 95-57-82-\\ 541-73-12-\\ 541-73-11,\\ 106-46-71,\\ 95-50-1Be,\\ 95-48-7Be,\\ 95-48-7Be,\\ 95-48-7$	s(2-Chloroethyl)ether Chlorophenol 3-Dichlorobenzene 2-Dichlorobenzene 2-Dichlorobenzene 2-Dichlorobenzene 2-Dichlorobenzene 2-Dichlorobenzene 2-Oxybis(1-Chloropropane) Methylphenol 2-oxybis(1-Chloropropane) Nitroso-di-n-propylamine Methylphenol cachloroethane 2-obenzene 2-Dichloroethane 2-obenzene 2-Dimethylphenol 3-Dimethylphenol 3-Dichlorophenol 2-4-Trichlorobenzene 2-Chloro-3-methylphenol 2-Chloro-3-methylphenol 2-Chlorophenol 2-Chlorophenol 2-Chlorophenol 2-Chlorophenol 2-Chlorophenol 2-Chlorophenol 2-Chlorophenol 2-Chlorophenol 2-Chloronaphthalene 2-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene 3-Chloronaphthalene	20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 20000 200000 20000 200000 2000000	ם ממממממממממממממממממ מממממממממממממממ מממממ
99-09-23-Nitroaniline 20000 U	99-09-23-	Nitroaniline	20000	U
131-11-3Dimethylphthalate       20000 U         606-20-22,6-Dinitrotoluene       20000 U         208-96-8Acenaphthylene       20000 U	606-20-22,	5-Dinitrotoluene	20000	Ŭ

EPA SAMPLE NO.

Lab Name: PNNL	Contract: C104	4 C104-SSD
Lab Code: PNNL Case No.:	SAS No.:	SDG No.: 000819
Matrix: (soil/water) SOLID	Lab (	Sample ID: 00-1361-SSD
Sample wt/vol: 4.9 (g/m	mL) G Lab I	File ID: 00081915
Level: (low/med) LOW	Date	Received:
% Moisture: 0 decanted:	(Y/N) N Date	Extracted:
Concentrated Extract Volume:	1000(uL) Date	Analyzed: 08/20/0
Injection Volume:(uL)	Dilut	tion Factor: 10.0
GPC Cleanup: (Y/N) N H	рН:	

CAS NO. COMPOUND

)

)

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

EPA SAMPLE NO.

Lab Name: PNNL	C	Contract: C104	C104-SSD
Lab Code: PNNL	Case No.:	SAS No.: SDG	No.: 000819
Matrix: (soil/water)	SOLID	Lab Sample ID:	00-1361-SSD
Sample wt/vol:	4.9 (g/mL) G	Lab File ID:	00081915
Level: (low/med)	LOW	Date Received:	
% Moisture: 0	decanted: (Y/N) N	Date Extracted	:
Concentrated Extract	Volume: 1000(u	L) Date Analyzed:	08/20/0
Injection Volume:	(uL)	Dilution Facto	pr: 10.0
GPC Cleanup: (Y/N)	N pH:		
		CONCENTER TON INTER.	

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

			,
85-68-7Butylbenz	ylphthalate	20000	U
1031-07-8Endosulfa	n Sulfate	20000	U
50-29-34,4'-DDT		20000	U
53494-70-5Endrin Ke	tone	20000	U
56-55-3Benzo(a)a	nthracene	20000	U
91-94-13,3'-Dich	lorobenzidine	20000	Ū
218-01-9Chrysene		20000	U
72-43-5Methoxych	lor	20000	U
117-81-7Bis(2-Éth		20000	U
117-84-0Di-n-octy	lphthalate	20000	U
205-99-2Benzo(b)f	luoranthene	20000	Ū
207-08-9Benzo(k)f		20000	U
50-32-8Benzo(a)p	vrene	20000	U
193-39-5Indeno(1,		20000	U
53-70-3Dibenz(a,	h) anthracene	20000	U
191-24-2Benzo(g,h	i)pervlene	20000	
110-86-1Pyridine	, _ ,	20000	U
126-73-8Tributyl	phosphate	50000	В
62-75-9N-Nitroso	dimethylamine	20000	U
98-86-2Acetophen		6200	
100-00-51-Chloro-		2900	JB
92-52-4Biphenyl	· · · · · · · · · · · · · · · · · · ·	1700	1
100-25-41,4-Dinit	robenzene	1500	JB
128-37-0Butylated		790	JB
82-68-8Pentachlo	ronitrobenzene	20000	U
88-85-7Dinoseb		3400	JB
2234-13-1Octachlor	onaphthalene	51000	В
10595-95-6N-Nitrosc		20000	U
55-18-5N-Nitroso		20000	Ū
62-50-0Ethyl met		20000	Ū
62-53-3Analine		20000	Ū
76-01-7Pentachlo	roethane	20000	U
930-55-2N-Nitrosc		20000	U
	P7-0110110		
			I

EPA SAMPLE NO.

1

Lab Name: PNNL	Contract: C104	C104-SSD
Lab Code: PNNL Case No.:	SAS No.: SDG	No.: 000819
Matrix: (soil/water) SOLID	Lab Sample ID	: 00-1361-SSD
Sample wt/vol: 4.9 (g/mL	) G Lab File ID:	00081915
Level: (low/med) LOW	Date Received	:
% Moisture: 0 decanted: (	(Y/N) N Date Extracted	d:
Concentrated Extract Volume:	1000(uL) Date Analyzed	: 08/20/0
Injection Volume:(uL)	Dilution Facto	or: 10.0
GPC Cleanup: (Y/N) N pH	I:	

COMPOUND

CAS NO.

1

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

	SEMIVOLATI	1C LE ORGANICS ANALY	YSIS DATA	SHEET	EPA	SAMPLE	NO.
Tab Nam	e: PNNL		Contract		Cl	04-SSD	
LaD Nall	e: PMML		CONCLACE		1		
Lab Cod	e: PNNL (	Case No.:	SAS No.	: SI	OG No.: (	00819	
Matrix:	(soil/water)	SOLID		Lab Sample 1	ID: 00-13	861-SSE	)
Sample	wt/vol:	4.9 (g/mĽ) G		Lab File ID:	: 00081	915	٩
Level:	(low/med)	LOW		Date Receive	ed:		
% Moist	ure: 0	decanted: $(Y/N)$	N	Date Extract	ced:		
Concent	rated Extract	Volume: 1000	(uL)	Date Analyze	ed: 08/20	0/0	
Injecti	on Volume:	(uL)		Dilution Fac	ctor: 10	. 0	
GPC Cleanup: (Y/N) N pH:							
	CAS NO.	COMPOUND		NTRATION UNI or ug/Kg) U(		Q	
	87-65-0	2,6-Dichloroph	nenol		20000	U	

COMPOUND

CAS NO.

EPA SAMPLE NO.

17

Lab Name: PNNL	c	Contract: C104	C104-SSMS
Lab Code: PNNL	Case No.:	SAS No.:	SDG No.: 000819
Matrix: (soil/water)	SOLID	Lab San	ple ID: 00-1361-SSMS
Sample wt/vol:	2.7 (g/mL) G	Lab Fil	e ID: 00081916
Level: (low/med)	LOW	Date Re	ceived:
% Moisture: 0	decanted: (Y/N) N	I Date Ex	tracted:
Concentrated Extract	Volume: 1000(u	L) Date An	alyzed: 08/20/0
Injection Volume:	(uL)	Dilutic	n Factor: 10.0
GPC Cleanup: (Y/N)	N рН:		

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

.

Q

108-95-2Phenol       7500 J         111-44-4bis (2-Chloroethyl) ether       37000 U         95-57-82-Chlorophenol       7000 J         541-73-11, 3-Dichlorobenzene       37000 U         106-46-71, 4-Dichlorobenzene       37000 U         95-50-11, 2-Dichlorobenzene       37000 U         100-51-6Benzyl alcohol       37000 U         95-48-72-Methylphenol       5600 JB         108-60-12, 2'-oxybis (1-Chloropropane)       37000 U         921-64-74-Methylphenol       6900 J         106-44-54-Methylphenol       16000 JB         7772-1Hexachloroethane       37000 U         98-95-3				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108-95-2	Phenol	7500	т
95-57-82-Chlorophenol       7000       J         106-46-71, 4-Dichlorobenzene       37000       U         106-46-71, 2-Dichlorobenzene       37000       U         100-51-6	111-44-4	bis(2-Chloroethyl)ether		_
541-73-11,3-Dichlorobenzene       37000 U         106-46-71,4-Dichlorobenzene       4200 J         95-50-11,2-Dichlorobenzene       37000 U         95-50-11,2-Dichlorobenzene       37000 U         95-48-72-Methylphenol       5600 JB         108-60-12,2'-oxybis(1-Chloropropane)       37000 U         621-64-7N-Nitroso-di-n-propylamine       6900 J         106-44-54-Methylphenol       16000 JB         67-72-1Hexachloroethane       37000 U         98-95-3Nitrobenzene       37000 U         98-95-3	95-57-8	2-Chlorophenol		
106-46-71, 4-Dichlorobenzene       4200       J         95-50-1	541-73-1	1,3-Dichlorobenzene		_
95-50-1	106-46-7	1,4-Dichlorobenzene		-
100-51-6Benzyl alcohol       37000 U         95-48-72-Methylphenol       5600 JB         108-60-12,2'-oxybis(1-Chloropropane)       37000 U         621-64-7N-Nitroso-di-n-propylamine       6900 J         106-44-5N-Nitrobenzene       37000 U         98-95-3Nitrobenzene       37000 U         98-95-3	95-50-1	1,2-Dichlorobenzene		
95-48-72-Methylphenol       5600       JB         108-60-12,2'-oxybis(1-Chloropropane)       37000       U         621-64-7N-Nitroso-di-n-propylamine       6900       J         106-44-5N-Nitroso-di-n-propylamine       16000       JB         67-72-1Hexachloroethane       37000       U         98-95-3Nitrobenzene       37000       U         78-59-1Hexachloroethane       37000       U         88-75-5	100-51-6	Benzyl alcohol		-
108-60-12,2'-oxybis(1-Chloropropane)       37000 U         621-64-7N-Nitroso-di-n-propylamine       6900 J         106-44-54-Methylphenol       16000 JB         67-72-1Hexachloroethane       37000 U         98-95-3Nitrobenzene       37000 U         88-75-52-Nitrophenol       37000 U         105-67-92,4-Dimethylphenol       37000 U         111-91-1bis(2-Chloroethoxy)methane       37000 U         120-83-22,4-Dichlorophenol       37000 U         120-83-22,4-Dichlorophenol       37000 U         120-83-2				-
621-64-7N-Nitroso-di-n-propylamine       6900 J         106-44-54-Methylphenol       16000 JB         67-72-1Hexachloroethane       37000 U         98-95-3Nitrobenzene       37000 U         78-59-1Sphorone       37000 U         88-75-52-Nitrophenol       37000 U         105-67-92,4-Dimethylphenol       37000 U         111-91-1bis (2-Chloroethoxy)methane       37000 U         120-83-22,4-Dichlorophenol       37000 U         120-83-22,4-Dichlorophenol       37000 U         120-83-22,4-Dichlorophenol       37000 U         120-83-2	108-60-1	2.2'-oxybis(1-Chloropropage)		
106-44-54-Methylphenol       16000 JB         67-72-1Hexachloroethane       37000 U         98-95-3Nitrobenzene       37000 U         78-59-1Sophorone       37000 U         88-75-52-Nitrophenol       37000 U         105-67-92, 4-Dimethylphenol       37000 U         11-91-1bis (2-Chloroethoxy)methane       37000 U         120-83-22, 4-Dichlorophenol       37000 U         120-83-21, 2, 4-Trichlorobenzene       5800 J         91-20-3Naphthalene       37000 U         106-47-84-Chloroaniline       37000 U         87-68-3	621-64-7	Nitroso-di-n-propylamine		
67-72-1Hexachloroethane       37000       U         98-95-3Nitrobenzene       37000       U         78-59-1	106-44-5	4-Methylphenol		-
98-95-3Nitrobenzene       37000 U         78-59-1	67-72-1	Hevachloroethane		
78-59-1	98-95-3	Nitrobenzene		-
88-75-52-Nitrophenol       37000 U         105-67-92,4-Dimethylphenol       37000 U         111-91-1bis (2-Chloroethoxy)methane       37000 U         120-83-22,4-Dichlorophenol       37000 U         120-82-11,2,4-Trichlorobenzene       5800 J         91-20-3Naphthalene       37000 U         106-47-8Naphthalene       37000 U         106-47-8				-
105-67-92,4-Dimethylphenol       37000       U         111-91-1bis(2-Chloroethoxy)methane       37000       U         120-83-22,4-Dichlorophenol       37000       U         120-82-11,2,4-Trichlorobenzene       5800       J         91-20-3Naphthalene       37000       U         106-47-8Naphthalene       37000       U         106-47-8Naphthalene       37000       U         106-47-8Naphthalene       37000       U         87-68-3Naphthalene       37000       U         91-50-7	88-75-5			-
111-91-1bis (2-Chloroethoxy) methane       37000 U         120-83-22,4-Dichlorophenol       37000 U         120-82-11,2,4-Trichlorobenzene       5800 J         91-20-3Naphthalene       37000 U         106-47-84-Chloroaniline       37000 U         87-68-3Hexachlorobutadiene       37000 U         91-57-64-Chloro-3-methylphenol       6500 J         91-57-64-Chloro-3-methylphenol       6500 U         91-57-6				-
120-83-22,4-Dichlorophenol       37000 U         120-82-11,2,4-Trichlorobenzene       5800 J         91-20-3Naphthalene       37000 U         106-47-8A-Chloroaniline       37000 U         87-68-3Hexachlorobutadiene       37000 U         91-57-6	111-91-1			-
120-82-11,2,4-Trichlorobenzene       5800 J         91-20-3Naphthalene       37000 U         106-47-84-Chloroaniline       37000 U         87-68-3Hexachlorobutadiene       37000 U         59-50-74-Chloro-3-methylphenol       6500 J         91-57-62-Methylnaphthalene       37000 U         77-47-4Hexachlorocyclopentadiene       37000 U         88-06-22,4,6-Trichlorophenol       37000 U         91-58-72-Chloronaphthalene       37000 U         91-58-72-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U				-
91-20-3Naphthalene       37000 U         106-47-84-Chloroaniline       37000 U         87-68-3Hexachlorobutadiene       37000 U         59-50-74-Chloro-3-methylphenol       6500 J         91-57-62-Methylnaphthalene       37000 U         77-47-4Hexachlorocyclopentadiene       37000 U         88-06-22,4,6-Trichlorophenol       37000 U         91-58-72-Chloronaphthalene       37000 U         91-58-72-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22, 6-Dinitrotoluene       37000 U	120-82-1	1 2 4-Trichlorohonzono		_
106-47-84-Chloroaniline       37000 U         87-68-3Hexachlorobutadiene       37000 U         59-50-74-Chloro-3-methylphenol       6500 J         91-57-62-Methylnaphthalene       37000 U         77-47-4Hexachlorocyclopentadiene       37000 U         88-06-22,4,6-Trichlorophenol       37000 U         91-58-72-Chloronaphthalene       37000 U         91-58-72-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U	91-20-3	Naphthalono		
87-68-3Hexachlorobutadiene       37000 U         59-50-74-Chloro-3-methylphenol       6500 J         91-57-62-Methylnaphthalene       37000 U         77-47-4Hexachlorocyclopentadiene       37000 U         88-06-22,4,6-Trichlorophenol       37000 U         91-58-72-Chloronaphthalene       37000 U         91-58-72-Chloronaphthalene       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U	106-47-9	4 Chlorophiling		1
59-50-74-Chloro-3-methylphenol       6500 J         91-57-62-Methylnaphthalene       37000 U         77-47-4Hexachlorocyclopentadiene       37000 U         88-06-22,4,6-Trichlorophenol       37000 U         91-58-72,4,5-Trichlorophenol       37000 U         91-58-72-Chloronaphthalene       37000 U         88-74-42-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U				-
91-57-62-Methylnaphthalene       37000 U         77-47-4Hexachlorocyclopentadiene       37000 U         88-06-22,4,6-Trichlorophenol       37000 U         95-95-42,4,5-Trichlorophenol       37000 U         91-58-72-Chloronaphthalene       37000 U         88-74-42-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U				
77-47-4Hexachlorocyclopentadiene       37000 U         88-06-22,4,6-Trichlorophenol       37000 U         95-95-42,4,5-Trichlorophenol       37000 U         91-58-72-Chloronaphthalene       37000 U         88-74-42-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U				
88-06-22,4,6-Trichlorophenol       37000 U         95-95-42,4,5-Trichlorophenol       37000 U         91-58-72-Chloronaphthalene       37000 U         88-74-42-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U	91-57-6	2-Metnyinaphthalene		
95-95-42,4,5-Trichlorophenol       37000 U         91-58-72-Chloronaphthalene       37000 U         88-74-42-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U	77-47-4	Hexachlorocyclopentadiene		-
91-58-72-Chloronaphthalene       37000 U         88-74-42-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U	88-06-2	2,4,6-Trichlorophenol		-
88-74-42-Nitroaniline       37000 U         99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U	95-95-4	2,4,5-Trichlorophenol		-
99-09-23-Nitroaniline       37000 U         131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U				-
131-11-3Dimethylphthalate       37000 U         606-20-22,6-Dinitrotoluene       37000 U				1 -
606-20-22,6-Dinitrotoluene 37000 U				· ·
	131-11-3	Dimethylphthalate		1 <b>*</b>
208-96-8Acenaphthylene 37000 U				
	208-96-8	Acenaphthylene	37000	U

1

EPA SAMPLE NO.

Lab Name: PNNL		Contract: C104		C104-SSMS	
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 000819	
Matrix: (soil/water)	SOLID	Lab S	ample ID:	00-1361-SSMS	
Sample wt/vol:	2.7 (g/mL) G	Lab F	ile ID:	00081916	•
Level: (low/med)	LOW	Date	Received:	;	
% Moisture: 0	decanted: $(Y/N)$	N Date	Extracted	1:	
Concentrated Extract	Volume: 1000(	uL) Date	Analyzed:	: 08/20/0	
Injection Volume:	(uL)	Dilut	ion Facto	or: 10.0	
GPC Cleanup: (Y/N)	N pH:				

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

· · · · · · · · · · · · · · · · · · ·		
83-32-9Acenaphthene         51-28-52,4-Dinitrophenol         132-64-9Dibenzofuran         100-02-74-Nitrophenol         121-14-22,4-Dinitrotoluene         84-66-2Diethylphthalate         86-73-74-Nitrophenyl-phenylether         100-01-64-Nitroaniline         534-52-14,6-Dinitro-2-methylphenol         122-39-44,6-Dinitro-2-methylphenol         122-39-44,6-Dinitro-2-methylphenol         122-39-44,6-Dinitro-2-methylphenol         122-39-44,6-Dinitro-2-methylphenol         122-39-4	37000 37000 4100 8700 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000 37000	ממממממממממממממממ
129-00-0Pyrene 959-98-8Endosulfan I	37000	U U U U

EPA SAMPLE NO.

		1
Lab Name: PNNL	Contract: C104	C104-SSMS
Lab Code: PNNL Case No.:	SAS No.:	SDG No.: 000819
Matrix: (soil/water) SOLID	Lab Sample	ID: 00-1361-SSMS
Sample wt/vol: 2.7 (g/mL) G	Lab File I	D: 00081916
Level: (low/med) LOW	Date Recei	ved:
% Moisture: 0 decanted: (Y/N	) N Date Extra	cted:
Concentrated Extract Volume: 100	0(uL) Date Analy	zed: 08/20/0
Injection Volume:(uL)	Dilution F	actor: 10.0
GPC Cleanup: (Y/N) N pH: _		
CAS NO. COMPOUND	CONCENTRATION UN (ug/L or ug/Kg)	
85-68-7Butylbenzylp 1031-07-8Endosulfan S 50-29-34,4'-DDT 53494-70-5Endrin Keton	ulfate	37000 U 37000 U 37000 U 37000 U 37000 U

53494-70-5Endrin Ketone	37000	U
56-55-3Benzo(a)anthracene	37000	U
91-94-13,3'-Dichlorobenzidine	37000	U
218-01-9Chrysene	37000	U
72-43-5Methoxychlor	37000	U
117-81-7Bis(2-Ethylhexyl)phthalate	37000	U
117-84-0Di-n-octylphthalate	37000	U
205-99-2Benzo(b)fluoranthene	37000	U
207-08-9Benzo(k)fluoranthene	37000	U
50-32-8Benzo(a)pyrene	37000	U
193-39-5Indeno (1, 2, 3-cd) pyrene	37000	U
53-70-3Dibenz (a, h) anthracene	37000	U
191-24-2Benzo(g,h,i)perylene	37000	U
110-86-1Pyridine	2700	JB
126-73-8Tributyl phosphate	92000	
62-75-9N-Nitrosodimethylamine	37000	U
98-86-2Acetophenone	5000	JB
100-00-51-Chloro-4-nitrobenzene	6900	
92-52-4Biphenyl	11000	JB
100-25-41,4-Dinitrobenzene	7100	
128-37-0Butylated Hydroxytoluene	2900	
82-68-8Pentachloronitrobenzene	37000	U
88-85-7Dinoseb	14000	
2234-13-1Octachloronaphthalene	400000	В
10595-95-6N-Nitrosomethylethylamine	37000	
55-18-5N-Nitrosodiethylamine	37000	1
62-50-0Ethyl methane sulfonate	37000	
62-53-3Analine	37000	U
76-01-7Pentachloroethane	37000	
930-55-2N-Nitrosopyrolidine	37000	U

OLM03.0

EPA SAMPLE NO.

Lab Name: PNNL	C	Contract: C104	C104-SSMS
Lab Code: PNNL	Case No.:	SAS No.: SDG	No.: 000819
Matrix: (soil/water)	SOLID	Lab Sample ID:	00-1361-SSMS
Sample wt/vol:	2.7 (g/mL) G	Lab File ID:	00081916
Level: (low/med)	LOW	Date Received:	
% Moisture: 0	decanted: (Y/N) N	Date Extracted	1:
Concentrated Extract	Volume: 1000(u	L) Date Analyzed:	08/20/0
Injection Volume:	(uL)	Dilution Facto	or: 10.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.	COMPOUND	CONCENTRATION UNITS: (ug/L or ug/Kg) UG/K	

- 1			
	100-75-4N-Nitrosopiperidine 1888-71-7Hexachloropropene 924-16-3N-Nitrosodi-n-butylamine 94-59-7Safrole 95-94-31,2,4,5-Tetrachlorobenzene	37000 37000 37000 37000 37000	บ บ บ
ĺ	120-58-1Isosafrole	37000	-
i	130-15-41,4-Naphthoquinone	37000	
	608-93-5Pentachlorobenzene	37000 37000	
	134-32-71-Naphthylamine 58-90-22,3,4,6-Tetrachlorophenol	37000	-
	91-59-82,3,4,8-1010101010101010101010101	37000	
	99-55-85-Nitro-o-toluidine	37000	1 -
	103-33-3Azeobenzene	37000	- <b>-</b>
i	99-35-41,3,5-Trinitrobenzene	37000	
	2303-16-4Diallate (cis)	37000	-
	62-44-2Phenacetin	37000	Ū
	2303-16-4Diallate (trans)	37000	U
	92-67-14-Aminobiphenyl	37000	U
	23950-58-5Pronamine	37000	-
	465-73-6Isodrin	37000	
	57-74-9Chlordane (alpha)	37000	-
	92-87-5Benzidine	37000	-
	60-11-7p-Dimethylaminoazobenzene	37000	-
	510-15-6Chlorobenzilate	37000	1 -
	119-93-73,3'-Dimethylbenzidine	37000	1
	53-96-32-Acetylaminofluorene	37000	-
	56-49-53-Methylcholanthrene	37000	[ -
	109-06-82-Methylpyridine	37000	
	143-50-0Kepone	37000	-
	57-74-9Chlordane (gamma)	37000	-
	66-27-3Methyl methane sulfonate	37000	1
	70-30-4Hexachlorophene	37000	-
	99-65-01,3-Dinitrobenzene	37000	U
			}

FORM I SV-4

## IC SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name	: PNNL		Contract	: C104		04-SSMS
Lab Code	: PNNL	Case No.:	SAS No.	: 9	SDG No.:	000819
Matrix:	(soil/water)	SOLID		Lab Sample	ID: 00-1	361-SSMS
Sample w	t/vol:	2.7 (g/mL) G		Lab File II	0008	1916
Level:	(low/med)	LOW		Date Receiv	red:	۳، 
% Moistu	re: 0	decanted: $(Y/N)$	Ν	Date Extrac	cted:	
Concentr	ated Extract	Volume: 1000	(uL)	Date Analyz	zed: 08/2	0/0
Injectio	n Volume:	(uL)		Dilution Fa	actor: 10	.0
GPC Clea	nup: (Y/N)	N рН:	_			
С	AS NO.	COMPOUND		NTRATION UNI or ug/Kg) U		Q
8	7-65-0	2,6-Dichloroph	nenol		37000	U
Ì						

J

#### 1B

EPA SAMPLE NO.

	SEMIVOLATI	LE ORGANIC	S ANALYSIS DATA	A SHEET	
Lab Name:	PNNL		Contract	t: C104	C104-SSMSD
Lab Code:	PNNL	Case No.:	SAS No	.: SDG	No.: 000819
Matrix: (s	soil/water)	SOLID		Lab Sample ID:	: 00-1361-SSMSD
Sample wt/	/vol:	2.5 (g/	ml) G	Lab File ID:	00081917
Level: (	(low/med)	LOW		Date Received:	:
% Moisture	e: 0	decanted:	(Y/N) N	Date Extracted	1:
Concentrat	ed Extract	Volume:	1000(uL)	Date Analyzed	: 08/20/0
Injection	Volume:	(uL)		Dilution Facto	or: 10.0
GPC Cleanu	up: (Y/N)	N	рН:		

COMPOUND

CAS NO.

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

108-95-2Phenol	10000	-
111-44-4bis(2-Chloroethyl)ether	40000	-
95-57-82-Chlorophenol	9200	-
541-73-11,3-Dichlorobenzene	40000	U
106-46-71,4-Dichlorobenzene	40000	U
95-50-11,2-Dichlorobenzene	40000	U
100-51-6Benzyl alcohol	40000	U
95-48-72-Methylphenol	4200	JB
108-60-12,2'-oxybis(1-Chloropropane)	40000	U
621-64-7N-Nitroso-di-n-propylamine	6300	J
106-44-54-Methylphenol	19000	JB
67-72-1Hexachloroethane	40000	1
98-95-3Nitrobenzene	40000	U
78-59-1Isophorone	40000	Ū
88-75-52-Nitrophenol	40000	-
105-67-92,4-Dimethylphenol	40000	_
111-91-1bis (2-Chloroethoxy) methane	40000	
120-83-22,4-Dichlorophenol	40000	-
120-82-11,2,4-Trichlorobenzene	5000	-
91-20-3Naphthalene	40000	-
106-47-84-Chloroaniline	40000	
87-68-3Hexachlorobutadiene	40000	-
59-50-74-Chloro-3-methylphenol	11000	-
91-57-62-Methylnaphthalene	40000	-
77-47-4Hexachlorocyclopentadiene	40000	
88-06-22,4,6-Trichlorophenol	40000	
86-06-22,4,6-frichlorophenol	40000	-
95-95-42,4,5-Trichlorophenol	40000	-
91-58-72-Chloronaphthalene	40000	1 -
88-74-42-Nitroaniline		-
99-09-23-Nitroaniline	40000	-
131-11-3Dimethylphthalate	40000	-
606-20-22,6-Dinitrotoluene	40000	-
208-96-8Acenaphthylene	40000	U

EPA SAMPLE NO.

C104-SSMSD

Lab Sample ID: 00-1361-SSMSD

Date Received:

SEMIVOLATILE ORGANICS ANALYSIS DATA	A SHEET
-------------------------------------	---------

Lab Name: PNNL

Lab Code: PNNL Case No.: SAS No.: SDG No.: 000819

Contract: C104

Matrix: (soil/water) SOLID

Sample wt/vol: 2.5 (g/mL) G Lab File ID: 00081917

Level: (low/med) LOW

% Moisture: 0 decanted: (Y/N) N

Concentrated Extract Volume: 1000(uL) Date Analyzed: 08/20/0

CAS NO. COMPOUND

Injection Volume: (uL)

GPC Cleanup: (Y/N) N pH:

CONCENTRATION UNITS:

Date Extracted:

Dilution Factor: 10.0

(ug/L or ug/Kg) UG/KG

0

*

	Acenaphthene	6400	J
51-28-5	2,4-Dinitrophenol	40000	U
132-64-9	Dibenzofuran	40000	U
100-02-7	4-Nitrophenol	4100	J
121-14-2	2,4-Dinitrotoluene	' 9600	J
84-66-2	Diethylphthalate	40000	U
86-73-7		40000	·U
7005-72-3	4-Chlorophenyl-phenylether	40000	U
	4-Nitroaniline	40000	U
	4,6-Dinitro-2-methylphenol	40000	U
	N,N-Diphenylamine	40000	U
	Heptachlor	40000	U
319-84-6		40000	U
101-55-3	4-Bromophenyl-phenylether	40000	U
	Hexachlorobenzene	40000	U
319-85-7	beta-BHC	40000	U
	Pentachlorophenol	40000	U
319-86-8		40000	U
	Phenanthrene	40000	U
	Anthracene	40000	U
	gamma-BHC (Lindane)	40000	U
86-74-8		40000	U
	Di-n-butylphthalate	40000	U
309-00-2		40000	U
1024-57-3	Heptachlor Epoxide	40000	U
	Fluoranthene	40000	U
129-00-0	Pyrene	7000	J
959-98-8	Endosulfan I	40000	U
72-55-9	4,4'-DDE	40000	U
60-57-1		40000	U
72-20-8	Endrin	40000	U
33213-65-9	Endosulfan II	40000	U
72-54-8	4,4'-DDD	40000	U
	· · · · · · · · · · · · · · · · · · ·		

lC

EPA SAMPLE NO.

	SEMIVOLATII	E ORGANIC	S ANALYSIS DA	TA SHEET			
Lab Name:	PNNL		Contra	act: C104		Cl04-SSMSD	
Lab Code:	PNNL C	ase No.:	SAS N	ю.:	SDG N	No.: 000819	
Matrix: (s	oil/water)	SOLID		Lab Sample	e ID:	00-1361-SSMS	D
Sample wt/	vol:	2.5 (g/	′mL) G	Lab File	ID:	00081917	•
Level: (	low/med)	LOW		Date Rece	ived:		
% Moisture	: 0	decanted:	(Y/N) N	Date Extr	acted:	:	
Concentrat	ed Extract	Volume:	1000(uL)	Date Anal	yzed:	08/20/0	
Injection	Volume:	(uL)		Dilution	Factor	c: 10.0	
GPC Cleanu	p: (Y/N)	N	рН:				

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		<u> </u>
85-68-7Butylbenzylphthalate	40000	-
1031-07-8Endosulfan Sulfate	40000	U
50-29-34,4'-DDT	40000	U
53494-70-5Endrin Ketone	40000	U
56-55-3Benzo(a)anthracene	40000	U
91-94-13,3'-Dichlorobenzidine	40000	U
218-01-9Chrysene	40000	U
72-43-5Methoxychlor	40000	U
117-81-7Bis(2-Ethylhexyl)phthalate	40000	U
117-84-0Di-n-octylphthalate	40000	U
205-99-2Benzo (b) fluoranthene	40000	U
207-08-9Benzo(k)fluoranthene	40000	U
50-32-8Benzo (a) pyrene	40000	U
193-39-5Indeno(1,2,3-cd)pyrene	40000	U
53-70-3Dibenz (a, h) anthracene	40000	U
191-24-2Benzo(g,h,i)perylene	40000	U
110-86-1Pyridine	3300	JB
126-73-8Tributyl phosphate	90000	
62-75-9N-Nitrosodimethylamine	40000	U
98-86-2Acetophenone	6000	1
100-00-51-Chloro-4-nitrobenzene	7600	
92-52-4Biphenyl	10000	
100-25-41,4-Dinitrobenzene	11000	
128-37-0Butylated Hydroxytoluene	1800	1
82-68-8Pentachloronitrobenzene	40000	
88-85-7Dinoseb	20000	1
2234-13-1Octachloronaphthalene	340000	
10595-95-6Nitrosomethylethylamine	40000	1
55-18-5N-Nitrosodiethylamine	40000	
	40000	
62-50-0Ethyl methane sulfonate	40000	1
62-53-3Analine	40000	E .
76-01-7Pentachloroethane	40000	10
930-55-2N-Nitrosopyrolidine	40000	
		I

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: PNNL		Control	<b>G1</b> 0.4	C104-SSMSD
Lab Name: PNNL		Contract:	C104	
Lab Code: PNNL (	Case No.:	SAS No.:	SDG	No.: 000819
Matrix: (soil/water)	SOLID		Lab Sample ID:	00-1361-SSMSD
Sample wt/vol:	2.5 (g/mL) G		Lab File ID:	00081917
Level: (low/med)	LOW		Date Received:	۰
% Moisture: 0	decanted: $(Y/N)$	N	Date Extracted	l:
Concentrated Extract	Volume: 1000(	uL)	Date Analyzed:	08/20/0
Injection Volume:	(uL)		Dilution Facto	or: 10.0
GPC Cleanup: (Y/N)	N pH:			
		CONCEN	TRATION UNITS.	

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG Q

100-75-4N-Nitrosopiperidine	40000	U
1888-71-7Hexachloropropene	40000	U
924-16-3N-Nitrosodi-n-butylamine	820	
94-59-7Safrole	40000	
95-94-31,2,4,5-Tetrachlorobenzene	40000	
120-58-1Isosafrole	40000	U
130-15-41,4-Naphthoquinone	40000	Ū
608-93-5Pentachlorobenzene	40000	Ū
134-32-71-Naphthylamine	40000	Ū
58-90-22,3,4,6-Tetrachlorophenol	40000	U
91-59-82-Naphthylamine	40000	U
99-55-85-Nitro-o-toluidine	40000	U
103-33-3Azeobenzene	40000	U
99-35-41,3,5-Trinitrobenzene	40000	U
2303-16-4Diallate (cis)	40000	U
62-44-2Phenacetin	40000	U
2303-16-4Diallate (trans)	40000	U
92-67-14-Aminobiphenyl	40000	U
23950-58-5Pronamine	40000	U
465-73-6Isodrin	40000	U
57-74-9Chlordane (alpha)	40000	U
92-87-5Benzidine	40000	U
60-11-7p-Dimethylaminoazobenzene	40000	U
510-15-6Chlorobenzilate	40000	U
119-93-73,3'-Dimethylbenzidine	40000	U
53-96-32-Acetylaminofluorene	40000	U
56-49-53-Methylcholanthrene	40000	U
109-06-82-Methylpyridine	40000	U
143-50-0Kepone	40000	U
57-74-9Chlordane (gamma)	40000	U
66-27-3Methyl methane sulfonate	40000	U
70-30-4Hexachlorophene	40000	U
99-65-01,3-Dinitrobenzene	5500	J

,

	EPA SAMPLE NO.		
SEMIVOLATI	LE ORGANICS ANALY	SIS DATA SHEET	
Lab Name: PNNL	(	Contract: C104	C104-SSMSD
Lab Code: PNNL	Case No.:	SAS No.:	SDG No.: 000819
Matrix: (soil/water)	SOLID	Lab Sa	ample ID: 00-1361-SSMSD
Sample wt/vol:	2.5 (g/mL) G	Lab Fi	le ID: 00081917
Level: (low/med)	LOW	Date F	Received:
% Moisture: 0	decanted: (Y/N) N	N Date B	Extracted:
Concentrated Extract	Volume: 1000(1	IL) Date A	Analyzed: 08/20/0
Injection Volume:	(uL)	Diluti	ion Factor: 10.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug/	ON UNITS: /kg) UG/kG Q
87-65-0	2,6-Dichlorophe	enol	40000 U

1

1

1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

Lab Name: PNNL		Contract	: C104	C104-SSS
Lab Code: PNNL	Case No.:	SAS No.	: SDG	No.: 000819
Matrix: (soil/water)	SOLID		Lab Sample ID:	00-1361-SSS
Sample wt/vol:	5.3 (g/mL) G		Lab File ID:	00081914
Level: (low/med)	LOW		Date Received:	·
% Moisture: 0	decanted: $(Y/N)$	N	Date Extracted	1:
Concentrated Extract	Volume: 1000(	(uL)	Date Analyzed:	08/20/0
Injection Volume:	(uL)		Dilution Facto	or: 10.0
GPC Cleanup: (Y/N)	N pH:	<u> </u>		
CAS NO.	COMPOUND		NTRATION UNITS: or ug/Kg) UG/K	

	108-95-2Phenol	19000	U
	111-44-4bis(2-Chloroethyl)ether	19000	U
	95-57-82-Chlorophenol	19000	U
	541-73-11,3-Dichlorobenzene	19000	U
	106-46-71,4-Dichlorobenzene	19000	U
	95-50-11,2-Dichlorobenzene	19000	U
-	100-51-6Benzyl alcohol	19000	U
	95-48-72-Methylphenol	19000	U
	108-60-12,2'-oxybis(1-Chloropropane)	19000	U
	621-64-7N-Nitroso-di-n-propylamine	19000	U
	106-44-54-Methylphenol	19000	U
	67-72-1Hexachloroethane	19000	
	98-95-3Nitrobenzene	19000	
	78-59-1Isophorone	19000	U
	88-75-52-Nitrophenol	19000	U
	105-67-92,4-Dimethylphenol	19000	U
	111-91-1bis(2-Chloroethoxy)methane	19000	U
	120-83-22,4-Dichlorophenol	19000	U
- {	120-82-11,2,4-Trichlorobenzene	19000	U
	91-20-3Naphthalene	19000	
	106-47-84-Chloroaniline	19000	
	87-68-3Hexachlorobutadiene	19000	
	59-50-74-Chloro-3-methylphenol	19000	
	91-57-62-Methylnaphthalene	19000	
	77-47-4Hexachlorocyclopentadiene	19000	
	88-06-22,4,6-Trichlorophenol	19000	U
	95-95-42,4,5-Trichlorophenol	19000	U
	91-58-72-Chloronaphthalene	19000	U
	88-74-42-Nitroaniline	19000	U
	99-09-23-Nitroaniline	19000	U
ļ	131-11-3Dimethylphthalate	19000	U
	606-20-22,6-Dinitrotoluene	19000	U
	208-96-8Acenaphthylene	19000	
1			

EPA SAMPLE NO.

SEMIVOLATI	LE ORGANICS ANALYSIS DATA	SHEET		
Lab Name: PNNL	Contract	: C104	Cl04-SSS	
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819	
Matrix: (soil/water)	SOLID	Lab Sample ID	: 00-1361-SSS	
Sample wt/vol:	5.3 (g/mL) G	Lab File ID:	00081914	
Level: (low/med)	LOW	Date Received	:	•
% Moisture: 0	decanted: (Y/N) N	Date Extracted	d:	
Concentrated Extract	Volume: 1000(uL)	Date Analyzed	: 08/20/0	
Injection Volume:	(uL)	Dilution Facto	or: 10.0	
GPC Cleanup: (Y/N)	N pH:			

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		·
83-32-9Acenaphthene 51-28-52,4-Dinitrophenol	19000 19000	U U
132-64-9Dibenzofuran	19000	U
100-02-74-Nitrophenol	19000	U
121-14-22,4-Dinitrotoluene	19000	U
84-66-2Diethylphthalate	19000	U
86-73-7Fluorene	19000	U
7005-72-34-Chlorophenyl-phenylether	19000	U
100-01-64-Nitroaniline	19000	U
534-52-14,6-Dinitro-2-methylphenol	19000	U
122-39-4N,N-Diphenylamine	19000	U
76-44-8Heptachlor	19000	U
319-84-6alpha-BHC	19000	U
101-55-34-Bromophenyl-phenylether	19000	U
118-74-1Hexachlorobenzene	19000	U
319-85-7beta-BHC	19000	U
87-86-5Pentachlorophenol	19000	U
319-86-8delta-BHC	19000	U
85-01-8Phenanthrene	19000	U
120-12-7Anthracene	19000	U
58-89-9gamma-BHC (Lindane)	19000	U
86-74-8Carbazole	19000	U
84-74-2Di-n-butylphthalate	19000	U
309-00-2Aldrin	19000	U
1024-57-3Heptachlor Epoxide	19000	U
206-44-0Fluoranthene	19000	U
129-00-0Pyrene	19000	U
959-98-8Endosulfan I	19000	U
72-55-94,4'-DDE	19000	U
60-57-1Dieldrin	19000	U
72-20-8Endrin	19000	U
33213-65-9Endosulfan II	19000	1
72-54-84,4'-DDD	19000	U

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

ı

Lab Name: PNNL		Contract: C	104	C104-SSS	
Lab Code: PNNL	Case No.:	SAS No.:	SDG	No.: 000819	
Matrix: (soil/water)	SOLID	La	b Sample ID:	00-1361-SSS	
Sample wt/vol:	5.3 (g/mL) G	La	b File ID:		
Level: (low/med)	LOW	Da	te Received:		*
% Moisture: 0	decanted: $(Y/N)$	N Da	te Extracted	:	
Concentrated Extract	Volume: 1000(	uL) Da	te Analyzed:	08/20/0	
Injection Volume:	(uL)	Di	lution Facto	r: 10.0	
GPC Cleanup: (Y/N)	N pH:				

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

85-68-7Butylbenzylphthalate         1031-07-8Endosulfan Sulfate         50-29-3Endrin Ketone         56-55-3Benzo(a) anthracene         91-94-1	19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 19000 6500 57000 19000 6300 2800 2100 2300 670 19000 19000 19000	аааждаддавдавааааааааааааааааааааааааа
10595-95-6N-Nitrosomethylethylamine 55-18-5N-Nitrosodiethylamine	19000 19000	บ บ บ บ

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-

Lab Name: PNNL	Co	ntract: C104	C104-SSS
Lab Code: PNNL	Case No.: SA	AS No.: SDG	No.: 000819
Matrix: (soil/water)	SOLID	Lab Sample ID:	00-1361-SSS
Sample wt/vol:	5.3 (g/mL) G	Lab File ID:	00081914
Level: (low/med)	LOW	Date Received:	:
% Moisture: 0	decanted: (Y/N) N	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	) Date Analyzed	: 08/20/0
Injection Volume:	(uL)	Dilution Facto	pr: 10.0
GPC Cleanup: (Y/N)	N pH:		
CAS NO.	COMPOUND	CONCENTRATION UNITS (ug/L or ug/Kg) UG/H	•

(ug/L or 1	ug/Kg)	Ū
------------	--------	---

100-75-4	N-Nitrosopiperidine	19000	U .
1888-71-7	Hexachloropropene	19000	U
924-16-3	N-Nitrosodi-n-butylamine	1100	J
94-59-7	Safrole	19000	U
95-94-3	1,2,4,5-Tetrachlorobenzene	19000	U
120-58-1	Isosafrole	19000	U
130-15-4	1,4-Naphthoquinone	19000	U
608-93-5	Pentachlorobenzene	19000	U
134-32-7	1-Naphthylamine	19000	U
58-90-2	2,3,4,6-Tetrachlorophenol	19000	U
91-59-8	2-Naphthylamine	19000	U
99-55-8	5-Nitro-o-toluidine	19000	U
103-33-3	Azeobenzene	19000	U
99-35-4	1,3,5-Trinitrobenzene	19000	U
2303-16-4	Diallate (cis)	19000	U
62-44-2	Phenacetin	19000	U
2303-16-4	Diallate (trans)	19000	U
92-67-1	4-Aminobiphenyl	19000	U
23950-58-5	Pronamine	19000	U
465-73-6	Isodrin	19000	U
57-74-9	Chlordane (alpha)	19000	U
92-87-5	Benzidine	4700	1
	p-Dimethylaminoazobenzene	19000	U
510-15-6	Chlorobenzilate	19000	U
119-93-7	3,3'-Dimethylbenzidine	19000	UU
53-96-3	2-Acetylaminofluorene	19000	U
56-49-5	3-Methylcholanthrene	19000	
109-06-8	2-Methylpyridine	19000	-
143-50-0	Kepone	19000	-
57-74-9	Chlordane (gamma)	19000	-
66-27-3	Methyl methane sulfonate		-
	Hexachlorophene	19000	-
	1,3-Dinitrobenzene	19000	_

SEMIVO.	1C LATILE ORGANICS ANA	LYSIS DATA SHEET	EPA SAMPLE NO.
Lab Name: PNNL		Contract: C104	C104-SSS
Lab Code: PNNL	Case No.:	SAS No.:	SDG No.: 000819
Matrix: (soil/wa	ter) SOLID	Lab Sa	ample ID: 00-1361-SSS
Sample wt/vol:	5.3 (g/mL) G	Lab F:	ile ID: 00081914
Level: (low/me	d) LOW	Date H	Received:
% Moisture: 0	decanted: (Y/N	) N Date H	Extracted:
Concentrated Ext:	ract Volume: 100	0(uL) Date A	Analyzed: 08/20/0
Injection Volume	:(uL)	Dilut:	ion Factor: 10.0
GPC Cleanup: (	Y/N) N pH:_		
CAS NO.	COMPOUND	CONCENTRATIO (ug/L or ug,	
87-65-0	2,6-Dichloro	phenol	19000 U

1

EPA SAMPLE NO.

Lab Name: PNNL Cont	ract: C104
Lab Code: PNNL Case No.: SAS	S No.: SDG No.: 000819
Matrix: (soil/water) SOLID	Lab Sample ID: LCSB
Sample wt/vol: 5.0 (g/mL) G	Lab File ID: 00081918
Level: (low/med) LOW	Date Received:
% Moisture: 0 decanted: (Y/N) N	Date Extracted:
Concentrated Extract Volume: 1000(uL)	Date Analyzed: 08/20/0
Injection Volume:(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N) N pH:	

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

108-95-2	Phenol	2000	U
111-44-4	bis(2-Chloroethyl)ether	2000	U
95-57-8	2-Chlorophenol	2000	Ū
541-73-1	1,3-Dichlorobenzene	2000	_
	1,4-Dichlorobenzene	2000	
	1,2-Dichlorobenzene	2000	-
	Benzyl alcohol	2000	
	2-Methylphenol	5200	в
	2,2'-oxybis(1-Chloropropane)	2000	Ū
621-64-7	N-Nitroso-di-n-propylamine	2000	-
106-44-5	4-Methylphenol	8000	-
	Hexachloroethane	2000	-
	Nitrobenzene	2000	_
	Isophorone	2000	_
	2-Nitrophenol	2000	
105 67 0	2,4-Dimethylphenol	2000	j
100-0/~9	bis (2-Chloroethoxy) methane	2000	-
100 03 0	2.4 Dishlevenhovel		U
120-83-2	2,4-Dichlorophenol	2000	-
	1,2,4-Trichlorobenzene	2000	-
91-20-3	Naphthalene	2000	U
	4-Chloroaniline	2000	U
	Hexachlorobutadiene	2000	U
	4-Chloro-3-methylphenol	2000	U
91-57-6	2-Methylnaphthalene	2000	U
	Hexachlorocyclopentadiene	2000	U
	2,4,6-Trichlorophenol	2000	U
95-95-4	2,4,5-Trichlorophenol	2000	U
91-58-7	2-Chloronaphthalene	2000	U
	2-Nitroaniline	2000	U
99-09-2	3-Nitroaniline	2000	U
	Dimethylphthalate	2000	U
606-20-2	2,6-Dinitrotoluene	2000	U
208-96-8	Acenaphthylene	2000	U
200 20 0			

FORM I SV-1

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1

Lab Name: PNNL	,		LCSB
Lab Mame. FMM	(	Contract: C104	
Lab Code: PNNL Ca	ase No.:	SAS No.: SDG	No.: 000819
Matrix: (soil/water)	SOLID	Lab Sample ID:	: LCSB
Sample wt/vol:	5.0 (g/mL) G	Lab File ID:	00081918
Level: (low/med) ]	LOW	Date Received:	*
% Moisture: 0 d	decanted: (Y/N) N	N Date Extracted	1:
Concentrated Extract V	Volume: 1000(u	L) Date Analyzed:	08/20/0
Injection Volume:	(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N) N	:Hq N		

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

83-32-9Acenaphthene       2000         51-28-52,4-Dinitrophenol       2000         132-64-9Dibenzofuran       2000         100-02-74-Nitrophenol       2000         121-14-22,4-Dinitrotoluene       2000         84-66-2Diethylphthalate       2000         86-73-7Fluorene       2000         7005-72-3Fluorene       2000         7005-72-3	
51-28-52, 4-Dinitrophenol       2000         132-64-9Dibenzofuran       2000         100-02-74-Nitrophenol       2000         121-14-22, 4-Dinitrotoluene       2000         84-66-2Diethylphthalate       2000         86-73-7Fluorene       2000         7005-72-3Fluorene       2000         7005-72-3Fluorene       2000         700-01-6	U
100-02-74-Nitrophenol       2000         121-14-22, 4-Dinitrotoluene       2000         84-66-2Diethylphthalate       2000         86-73-7Fluorene       2000         7005-72-3Fluorene       2000         7005-72-3Fluorene       2000         7005-72-3	U
121-14-22, 4-Dinitrotoluene       2000         84-66-2Diethylphthalate       2000         86-73-7Fluorene       2000         7005-72-3Fluorene       2000         100-01-64-Chlorophenyl-phenylether       2000         100-01-64-Chlorophenyl-phenylether       2000         100-01-64-Chlorophenyl-phenylether       2000         122-39-44-Chlorophenyl-phenylether       2000         122-39-44-G-Dinitro-2-methylphenol       2000         19-84-6	U
121-14-22, 4-Dinitrotoluene       2000         84-66-2Diethylphthalate       2000         86-73-7Fluorene       2000         7005-72-3Fluorene       2000         100-01-64-Chlorophenyl-phenylether       2000         100-01-64-Chlorophenyl-phenylether       2000         100-01-6	Ū
84-66-2Diethylphthalate       2000         86-73-7Fluorene       2000         7005-72-3Fluorene       2000         100-01-64-Nitroaniline       2000         534-52-14-Ohitro-2-methylphenol       2000         122-39-4N,N-Diphenylamine       2000         76-44-8N,N-Diphenylamine       2000         76-44-8N,N-Diphenylamine       2000         19-84-6	
86-73-7Fluorene       2000         7005-72-34-Chlorophenyl-phenylether       2000         100-01-64-Nitroaniline       2000         534-52-14,6-Dinitro-2-methylphenol       2000         122-39-4N,N-Diphenylamine       2000         76-44-8N,N-Diphenylamine       2000         719-84-6	1
7005-72-34-Chlorophenyl-phenylether       2000         100-01-64-Nitroaniline       2000         534-52-14,6-Dinitro-2-methylphenol       2000         122-39-4N,N-Diphenylamine       2000         122-39-4N,N-Diphenylamine       2000         139-84-6	1 .
100-01-64-Nitroaniline       2000         534-52-14,6-Dinitro-2-methylphenol       2000         122-39-4N,N-Diphenylamine       2000         76-44-8N,N-Diphenylamine       2000         319-84-6	-
534-52-14, 6-Dinitro-2-methylphenol       2000         122-39-4N, N-Diphenylamine       2000         76-44-8N, N-Diphenylamine       2000         319-84-6Alpha-BHC       2000         101-55-34-Bromophenyl-phenylether       2000         118-74-1Hexachlorobenzene       2000         319-85-7beta-BHC       2000         87-86-5beta-BHC       2000         87-86-5beta-BHC       2000         85-01-8	1 -
122-39-4N, N-Diphenylamine       2000         76-44-8Heptachlor       2000         319-84-6alpha-BHC       2000         101-55-3	1 -
76-44-8Heptachlor       2000         319-84-6alpha-BHC       2000         101-55-34-Bromophenyl-phenylether       2000         118-74-1Hexachlorobenzene       2000         319-85-7beta-BHC       2000         87-86-5beta-BHC       2000         319-86-8beta-BHC       2000         319-86-8beta-BHC       2000         319-86-8beta-BHC       2000         319-86-8beta-BHC       2000         319-86-8	-
319-84-6alpha-BHC       2000         101-55-34-Bromophenyl-phenylether_       2000         118-74-1Hexachlorobenzene       2000         319-85-7beta-BHC       2000         87-86-5beta-BHC       2000         319-86-8beta-BHC       2000         319-86-8beta-BHC       2000         319-86-8beta-BHC       2000         319-86-8	-
101-55-34-Bromophenyl-phenylether	
118-74-1Hexachlorobenzene       2000         319-85-7beta-BHC       2000         87-86-5beta-BHC       2000         319-86-8beta-BHC       2000         319-86-8beta-BHC       2000         85-01-8beta-BHC       2000         120-12-7Anthracene       2000         58-89-9Anthracene       2000         86-74-8Carbazole       2000         84-74-2Di-n-butylphthalate       2000         309-00-2Aldrin       2000         1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0	
319-85-7beta-BHC       2000         87-86-5Pentachlorophenol       2000         319-86-8Pentachlorophenol       2000         85-01-8Phenanthrene       2000         120-12-7Anthracene       2000         58-89-9gamma-BHC (Lindane)       2000         86-74-8Carbazole       2000         84-74-2Di-n-butylphthalate       2000         309-00-2Aldrin       2000         1024-57-3Fluoranthene       2000         29-00-0	1 -
87-86-5Pentachlorophenol       2000         319-86-8Phenanthrene       2000         85-01-8Phenanthrene       2000         120-12-7Anthracene       2000         58-89-9Garbazole       2000         86-74-8Carbazole       2000         84-74-2Di-n-butylphthalate       2000         309-00-2Aldrin       2000         1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-9	1
319-86-8delta-BHC       2000         85-01-8Phenanthrene       2000         120-12-7Phenanthrene       2000         120-12-7Anthracene       2000         58-89-9Garbazole       2000         86-74-8Carbazole       2000         84-74-2Di-n-butylphthalate       2000         309-00-2Aldrin       2000         1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-9	1~
85-01-8Phenanthrene       2000         120-12-7Anthracene       2000         58-89-9gamma-BHC (Lindane)       2000         86-74-8Carbazole       2000         84-74-2Di-n-butylphthalate       2000         309-00-2Aldrin       2000         1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-9Dieldrin       2000         205-57-1	
120-12-7Anthracene       2000         58-89-9gamma-BHC (Lindane)       2000         86-74-8Garbazole       2000         84-74-2Carbazole       2000         84-74-2Di-n-butylphthalate       2000         309-00-2Aldrin       2000         1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-9Dieldrin       2000         20-55-9Dieldrin       2000	-
58-89-9gamma-BHC (Lindane)       2000         86-74-8Carbazole       2000         84-74-2Carbazole       2000         84-74-2Di-n-butylphthalate       2000         309-00-2Aldrin       2000         1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-9Dieldrin       2000	
86-74-8Carbazole       2000         84-74-2Di-n-butylphthalate       2000         309-00-2Aldrin       2000         1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-94,4'-DDE       2000         60-57-1Dieldrin       2000	Ŧ
84-74-2Di-n-butylphthalate       2000         309-00-2Aldrin       2000         1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-94,4'-DDE       2000         60-57-1Dieldrin       2000	-
309-00-2Aldrin       2000         1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0Fluoranthene       2000         959-98-8Endosulfan I       2000         72-55-94,4'-DDE       2000         60-57-1Dieldrin       2000	-
1024-57-3Heptachlor Epoxide       2000         206-44-0Fluoranthene       2000         129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-94,4'-DDE       2000         60-57-1Dieldrin       2000	1 -
206-44-0Fluoranthene       2000         129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-94,4'-DDE       2000         60-57-1Dieldrin       2000	-
129-00-0Pyrene       2000         959-98-8Endosulfan I       2000         72-55-94,4'-DDE       2000         60-57-1Dieldrin       2000	-
959-98-8Endosulfan I       2000         72-55-94,4'-DDE       2000         60-57-1Dieldrin       2000	-
72-55-94,4'-DDE 2000 60-57-1Dieldrin 2000	-
60-57-1Dieldrin 2000	
2000 2000 2000 2000 2000 2000 2000 200	1 -
	-
72-20-8Endrin 2000	-
33213-65-9Endosulfan II 2000	-
72-54-84,4'-DDD2000	U

EPA SAMPLE NO.

SEMIVOLAT	TILE ORGANICS ANALY	YSIS DATA SHEET		
Lab Name: PNNL		Contract: C104	LCSB	
Lab Code: PNNL	Case No.:		SDG No.: 000819	
Matrix: (soil/water	) SOLID	Lab Sam	ple ID: LCSB	
Sample wt/vol:	5.0 (g/mL) G	Lab Fil	e ID: 00081918	
Level: (low/med)	LOW	Date Re	ceived:	
% Moisture: 0	decanted: (Y/N)	N Date Ex	tracted:	
Concentrated Extrac	t Volume: 1000	(uL) Date An	alyzed: 08/20/0	
Injection Volume: _	(uL)	Dilutic	n Factor: 1.0	
GPC Cleanup: (Y/N	) N pH:	_		

CAS NO.

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

85-68-7Butylbenzylphthalate	2000	U
1031-07-8Endosulfan Sulfate	2000	
50-29-34,4'-DDT	2000	5
53494-70-5Endrin Ketone	2000	1
56-55-3Benzo(a) anthracene	2000	
91-94-13,3'-Dichlorobenzidine	2000	
218-01-9Chrysene	2000	
72-43-5Methoxychlor	2000	-
117-81-7Bis (2-Ethylhexyl) phthalate	2000	-
117-84-0Di-n-octylphthalate	200	-
		1
205-99-2Benzo(b) fluoranthene	2000	1
207-08-9Benzo(k) fluoranthene	2000	1
50-32-8Benzo(a) pyrene	2000	
193-39-5Indeno(1,2,3-cd)pyrene	2000	
53-70-3Dibenz (a, h) anthracene	2000	-
191-24-2Benzo(g,h,i)perylene	2000	-
110-86-1Pyridine	6100	1 -
126-73-8Tributyl phosphate	5600	1
62-75-9N-Nitrosodimethylamine	2000	U
98-86-2Acetophenone	8800	B
100-00-51-Chloro-4-nitrobenzene	6300	В
92-52-4Biphenyl	5200	В
100-25-41,4-Dinitrobenzene	4500	в
128-37-0Butylated Hydroxytoluene	4400	в
82-68-8Pentachloronitrobenzene	2000	
88-85-7Dinoseb	6300	1 -
2234-13-1Octachloronaphthalene	320000	1
10595-95-6N-Nitrosomethylethylamine	2000	
	2000	
55-18-5N-Nitrosodiethylamine	2000	
62-50-0Ethyl methane sulfonate	2000	1
62-53-3Analine		-
76-01-7Pentachloroethane	2000	-
930-55-2N-Nitrosopyrolidine	2000	U

SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

ı.

Lab Name: PNNL		Contract	: C104	LCSB	
Lab Code: PNNL	Case No.:	SAS No.:	: SDG	No.: 000819	
Matrix: (soil/water)	SOLID		Lab Sample ID:	LCSB	
Sample wt/vol:	5.0 (g/mL) G		Lab File ID:	00081918	
Level: (low/med)	LOW		Date Received:		,
% Moisture: 0	decanted: $(Y/N)$	N	Date Extracted	1:	
Concentrated Extract	Volume: 1000(	uL)	Date Analyzed:	08/20/0	
Injection Volume:	(uL)		Dilution Facto	or: 1.0	
GPC Cleanup: (Y/N)	N pH:	-			
		CONCEN	TRATION UNITS:	:	

CAS NO. COMPOUND (ug/L or ug/Kg) UG/KG

1

J

Q.

	SEMIVOLAT	10 ILE ORGANICS		DATA SHEET		PA SAMPLE	NO.
Lab Na	me: PNNL		Cont	tract: C104		LCSB	
Lab Co	de: PNNL	Case No.:	SAS	5 No.:	SDG No	.: 000819	
Matrix	: (soil/water)	SOLID		Lab Sa	ample ID: LO	CSB	
Sample	wt/vol:	5.0 (g/m	nL) G	Lab F:	ile ID: 00	0081918	¥
Level:	(low/med)	LOW		Date H	Received:		
% Mois	ture: 0	decanted:	(Y/N) N	Date I	Extracted:		
Concen	trated Extract	: Volume:	1000(uL)	Date 1	Analyzed: 08	3/20/0	
Inject	ion Volume:	(uL)		Dilut:	ion Factor:	1.0	
GPC Cl	eanup: (Y/N	) N F	DH:				
	CAS NO.	COMPOUNI		CONCENTRATIO	ON UNITS: /Kg) UG/KG	Q	
	87-65-0	2,6-Dich	nloropheno	l	20	ט 000	

# 1B SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: PNNL		Contract	: C104	LCSMS	
Lab Code: PNNL	Case No.:	SAS No.	: SDG	No.: 000819	
Matrix: (soil/water)	SOLID		Lab Sample ID:		
Sample wt/vol:	5.0 (g/mL) G		Lab File ID:		
Level: (low/med)	LOW		Date Received:		5
% Moisture: 0	decanted: (Y/N)	N	Date Extracted	:	
Concentrated Extract	Volume: 1000(	പ്പ)	Date Analyzed:	08/20/0	
Injection Volume:	(uL)		Dilution Facto	r: 1.0	
GPC Cleanup: (Y/N)	N pH:				

CAS NO.

1

COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

		×
108-95-2Phenol	3800	
111-44-4bis(2-Chloroethyl)ether	2000	Ū
95-57-82-Chlorophenol	6300	· ·
541-73-11,3-Dichlorobenzene		Ū
106-46-71,4-Dichlorobenzene	6100	
95-50-11,2-Dichlorobenzene		U
100-51-6Benzyl alcohol	2000	U
95-48-72-Methylphenol	7600	В
108-60-12,2'-oxybis(1-Chloropropane		U
621-64-7N-Nitroso-di-n-propylamine_ 106-44-54-Methylphenol	7900	
67-72-1Hexachloroethane	17000	B
98-95-3Nitrobenzene	2000	U
78-59-1Isophorone	2000	U
88-75-52-Nitrophenol	_ 2000	U
105-67-92,4-Dimethylphenol		U
111-91-1bis (2-Chloroethoxy) methane		U
120-83-22,4-Dichlorophenol	2000	U
120-82-11,2,4-Trichlorobenzene	- 2000	U
91-20-3Naphthalene		Ū
106-47-84-Chloroaniline	- 2000 2000	U U
87-68-3Hexachlorobutadiene	- 2000	U U
59-50-74-Chloro-3-methylphenol	- 2000	0
91-57-62-Methylnaphthalene	- 2000	IJ
77-47-4Hexachlorocyclopentadiene	2000	IJ
88-06-22,4,6-Trichlorophenol	2000	U
95-95-42,4,5-Trichlorophenol	- 2000	U
91-58-72-Chloronaphthalene	2000	U
88-74-42-Nitroaniline	- 2000	U
99-09-23-Nitroaniline	- 2000	U
131-11-3Dimethylphthalate	- 2000	U
606-20-22,6-Dinitrotoluene	- 2000	U
208-96-8Acenaphthylene	- 2000	U
	-	Ĭ

## 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

Lab Name: PNNL Contract	· C104	I	LCSMS
		No. (	
Lab Code: PNNL Case No.: SAS No.	: 503	NO.: (	100913
Matrix: (soil/water) SOLID	Lab Sample ID:	LCSMS	3
Sample wt/vol: 5.0 (g/mL) G	Lab File ID:	00081	.919
Level: (low/med) LOW	Date Received:		
% Moisture: 0 decanted: (Y/N) N	Date Extracted	1:	
Concentrated Extract Volume: 1000(uL)	Date Analyzed:	: 08/20	0/0
Injection Volume:(uL)	Dilution Facto	or: 1.0	)
GPC Cleanup: (Y/N) N pH:			
	NTRATION UNITS or ug/Kg) UG/H		Q
83-32-9Acenaphthene         51-28-52,4-Dinitrophenol         132-64-9Dibenzofuran         100-02-74-Nitrophenol         121-14-22,4-Dinitrotoluene         84-66-2Diethylphthalate         86-73-7Fluorene         7005-72-34-Chlorophenyl-phenylet         100-01-64-Nitroaniline         534-52-14,6-Dinitro-2-methylphe         122-39-4N,N-Diphenylamine         76-44-8	ther	7400 2000 2000 2000 2000 2000 2000 2000	

FORM I SV-2

#### 1C SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-

				LCSMS	
Lab Name: PNNL		Contract:	: C104		
Lab Code: PNNL	Case No.:	SAS No.:	: SDG	No.: 000819	
Matrix: (soil/water)	SOLID		Lab Sample ID:	LCSMS	
Sample wt/vol:	5.0 (g/mL) G		Lab File ID:	00081919	
Level: (low/med)	LOW		Date Received:		'n
% Moisture: 0	decanted: $(Y/N)$	N	Date Extracted	1:	
Concentrated Extract	Volume: 1000	(uL)	Date Analyzed:	: 08/20/0	
Injection Volume:	(uL)		Dilution Facto	or: 1.0	
GPC Cleanup: (Y/N)	N pH:	_			

CAS NO. COMPOUND

CONCENTRATION UNITS: (ug/L or ug/Kg) UG/KG

Q

	······································	
85-68-7Butylbenzylphthalate		U
1031-07-8Endosulfan Sulfate	2000	U
50-29-34,4'-DDT	2000	U
53494-70-5Endrin Ketone	2000	U
56-55-3Benzo(a)anthracene	2000	U
91-94-13,3'-Dichlorobenzidine	2000	U
218-01-9Chrysene	2000	U
72-43-5Methoxychlor	2000	U
117-81-7Bis (2-Ethylhexyl) phthalate	2000	U
117-84-0Di-n-octylphthalate	2000	U
205-99-2Benzo(b)fluoranthene	2000	U
207-08-9Benzo(k)fluoranthene	2000	U
50-32-8Benzo(a)pyrene	2000	U
193-39-5Indeno (1, 2, 3-cd) pyrene	2000	U
53-70-3Dibenz (a, h) anthracene	2000	U
191-24-2Benzo(g,h,i)perylene	2000	U
110-86-1Pyridine	11000	В
126-73-8Tributyl phosphate	11000	В
62-75-9N-Nitrosodimethylamine	2000	U
98-86-2Acetophenone	19000	В
100-00-51-Chloro-4-nitrobenzene	13000	в
92-52-4Biphenyl	10000	в
100-25-41,4-Dinitrobenzene	11000	в
128-37-0Butylated Hydroxytoluene	8800	в
82-68-8Pentachloronitrobenzene	2000	U
88-85-7Dinoseb	16000	в
2234-13-1Octachloronaphthalene	550000	1
10595-95-6N-Nitrosomethylethylamine	2000	L
55-18-5N-Nitrosodiethylamine	2000	U
62-50-0Ethyl methane sulfonate	2000	-
62-53-3Analine	2000	-
76-01-7Pentachloroethane	2000	1 -
930-55-2N-Nitrosopyrolidine	2000	-
330-22-5-5IM-INTELOSOPALOTIGTINE	2000	Ĭ
	l	·

IC SEMIVOLATILE ORGANICS ANALYSIS DATA SHEET

EPA SAMPLE NO.

1-

Lab Na	ame: PNNL	C	ontract: C104		LCSMS
Lab Co	ode: PNNL	Case No.:	SAS No.:	SDG No.	: 000819
Matrix	k: (soil/water)	SOLID	Lab Sa	ample ID: LC	SMS
Sample	e wt/vol:	5.0 (g/mL) G	Lab Fi	ile ID: 00	081919 ,
Level:	: (low/med)	LOW	Date H	Received:	
% Mois	sture: 0	decanted: (Y/N) N	Date I	Extracted:	
Concer	ntrated Extract	Volume: 1000(u	L) Date A	Analyzed: 08	/20/0
Inject	ion Volume:	(uL)	Diluti	ion Factor:	1.0
GPC C]	Leanup: (Y/N)	N pH:			
	CAS NO.	COMPOUND	CONCENTRATIC (ug/L or ug,		Q
	100-75-4	N-Nitrosopiperi Hexachloroprope	dine		00 U 00 U

100-75-4N-Nitrosopiperidine	2000	υĮ
1888-71-7Hexachloropropene	2000	-
924-16-3N-Nitrosodi-n-butylamine	2000	U
94-59-7Safrole	. 2000	U
95-94-31,2,4,5-Tetrachlorobenzene	2000	υį
120-58-1Isosafrole	2000	U
130-15-41,4-Naphthoquinone	2000	υļ
608-93-5Pentachlorobenzene	2000	υļ
134-32-71-Naphthylamine	2000	U
58-90-22,3,4,6-Tetrachlorophenol	2000	U
	2000	U (
91-59-82-Naphthylamine 99-55-85-Nitro-o-toluidine	2000	U
103-33-3Azeobenzene	2000	U
99-35-41,3,5-Trinitrobenzene	2000	U
2303-16-4Diallate (cis)	2000	U
62-44-2Phenacetin	2000	U
2303-16-4Diallate (trans)	2000	U
92-67-14-Aminobiphenyl	2000	U
23950-58-5Pronamine	2000	U
465-73-6Isodrin	2000	U
57-74-9Chlordane (alpha)	2000	U
92-87-5Benzidine	8800	
60-11-7p-Dimethylaminoazobenzene	2000	
510-15-6Chlorobenzilate	2000	
119-93-73,3'-Dimethylbenzidine	2000	
53-96-32-Acetylaminofluorene	2000	U
56-49-53-Methylcholanthrene	2000	
109-06-82-Methylpyridine	2000	
143-50-0Kepone	2000	
57-74-9Chlordane (gamma)	2000	
66-27-3Methyl methane sulfonate	2000	
70-30-4Hexachlorophene	2000	U
99-65-01, 3-Dinitrobenzene	2000	U

	SEMIVOLATI	1C LE ORGANICS ANALY	YSIS DATA	SHEET	,	EPA S	SAMPLE	NO.
Lab Na	me: PNNL		Contract:	: C104		1	LCSMS	•
Lab Co	de: PNNL (	Case No.:	SAS No.:	:	SDG	No.: (	00819	
Matrix	: (soil/water)	SOLID		Lab Sar	mple ID:	LCSMS	5	
Sample	wt/vol:	5.0 (g/mL) G		Lab Fil	le ID:	00081	919	
Level:	(low/med)	LOW		Date Re	eceived:			Pr.
* Mois	ture: 0	decanted: $(Y/N)$	N	Date Ex	xtracted	:		
Concen	trated Extract	Volume: 1000	(uL)	Date Ar	nalyzed:	08/20	0/0	
Inject	ion Volume:	(uL)		Dilutio	on Facto	or: 1.0	)	
GPC Cl	eanup: (Y/N)	N pH:	_					
	CAS NO.	COMPOUND			N UNITS: Kg) UG/K		Q	
	87-65-0	2,6-Dichloroph	nenol			2000	υ	

/

SEMIVOLATT	LE ORGANICS ANALYSIS DATA	TTTT	EPA SAMPLE NO.
TENT	ATIVELY IDENTIFIED COMPOU	NDS	
Lab Name: PNNL	Contract	: C104	C104-SLB
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATANT	Lab Sam	ple ID: 00-1360-SLB
Sample wt/vol:	0.000 (g/mL) ML	Lab File ID:	00081904
Level: (low/med)	LOW	Date Received	:
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed	: 08/19/0
Injection Volume:	(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N)	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1.       2110-78-3         2.       994-05-8         3.       541-02-6         4.		4.06	EST. CONC. 200 6200 300	NJ
15.         16.         17.         18.         19.         20.         21.         22.         23.         24.         25.         26.         27.         28.         29.         30.				

FORM I SV-TIC

	1F LE ORGANICS ANALYSIS DATA ATIVELY IDENTIFIED COMPOU	
Lab Name: PNNL	Contract	C104-SLD
Lab Code: PNNL	Case No.: SAS No.	: SDG No.: 000819
Matrix: (soil/water)	SUPERNATANT	Lab Sample ID: 00-1360-SLD
Sample wt/vol:	0.000 (g/mL) ML	Lab File ID: 00081906
Level: (low/med)		Date Received:
% Moisture:	decanted: (Y/N)	Date Extracted:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 08/19/0
Injection Volume:	(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH:	

1

1

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1. 627-13-4				
2. 541-05-9	NITRIC ACID, PROPYL ESTER CYCLOTRISILOXANE, HEXAMETHYL	3.74	370	NJ
3. 994-05-8	CICINIRISILOANE, HEAMETHYL	6.44	9000	NJ
4. 1120-64-5	OXAZOLE 4 E DIREDO O MORTIN	7.16	5700	NJB
5. 124-18-5	BUTANE, 2-METHOXY-2-METHYL- OXAZOLE, 4,5-DIHYDRO-2-METHY DECANE	7.53	8800	NJ
6. 142-62-1	HEXANOIC ACID	11.32	400	NJ
7. 1120-21-4		12.11		
	UNDECANE	13.54	1700	
8. 922-64-5	PROPANEDINITRILE, METHYLENE-	14.22	12000	NJ.
9. 111-14-8	ALIANOIC ACID	14.22	2700	NJ
	2 - FLUORO-6-NIIROPHENOL	14.60	750	NU
	HEPTANOIC ACID 2-FLUORO-6-NITROPHENOL 2-PYRROLIDINONE DODECANE OCTANOIC ACID VALPROIC ACID PHENOL, 4-METHYL-2-NITRO- 5-METHYL-2-NITROPHENOL	15.17	160	NU
12. 112-40-3	DODECANE OCTANOLO ACTO	15.52	3300	INU NJ
13. 124-07-2	VALDBOIG AGID	16.04	14000	
	VALPROIC ACID	16.19	170	INU NT
15. 119-33-5	FAENOL, 4-METHYL-Z-NITRO-	16.24	410	
	5-METHYL-Z-NITROPHENOL	16.73	180	INU
I/. 629-50-5	IRIDELANE	11.35	1 100	
18. 112-05-0	NONANOIC ACID	17.52		NU
19. 101-83-7	CYCLOHEXANAMINE, N-CYCLOHEXY		95	NJ
20. 0-00-0	PHENOL, 2-FLUORO-4-NITRO-	18.30	250	NJ
21. 334-48-5	DECANOIC ACID	18.74	1000	NJ
22. 6175-49-1	2-DODECANONE	18.96	250	NJ
23. 629-59-4		19.03	1200 990 1100	NJ
24. 25013-16-5		20.05	990	NJ
25. 112-37-8	UNDECANOIC ACID			NJ
26. 0-00-0 27. 593-08-8	BUTYL NONANOATE	20.41		1
27. 593-08-8	2-TRIDECANONE	20.57		
28. 629-62-9	PENTADECANE	20.61		1
29. 497-56-3	PHENOL, 2-METHYL-3,5-DINITRO	22.39	230	NJ
30				I

SEMIVOLATI TENT	1F LE ORGANICS ANALYSIS DATA ATIVELY IDENTIFIED COMPOU	A SHEET JNDS	EPA SAMPLE NO.
Lab Name: PNNL	Contract	: C104	C104-SLE
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATANT	Lab Sam	ple ID: 00-1360-SLE
Sample wt/vol:	0.000 (g/mL) ML	Lab File ID:	
Level: (low/med)	LOW	Date Received	۴¢
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed	: 08/19/0
Injection Volume:	(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 3457-91-8	1,4-BUTANEDIOL, DINITRATE			
2. 79-09-4	PROPANOIC ACID	4.96		
3. 4911-70-0	2-PENTANOL, 2,3-DIMETHYL-	6.23		
4. 107-92-6	BUTANOIC ACID	8.23		- 1
5.	UNKNOWN	8.55		
6.	INTRICINI			
7. 615-29-2	UNKNOWN 3-HEXANOL, 4-METHYL- PENTANOIC ACID	10 00	20000	
8. 109-52-4	PENTANOIC ACID	10.44	9600	NTT (
9. 3404-73-7		10.51	1800	N.T
10. 503-60-6	2-BUTENE, 1-CHLORO-3-METHYL-	11 18	850	N.T
11 124-18-5	DECANE	11.32	2600	N.T
12. 142-62-1	HEXANOIC ACID UNKNOWN UNDECANE HEPTANOIC ACID UNKNOWN ORGANIC ACID	12.44	9600 1800 850 2600 19000 720 9000 11000 4000	N.T
13.	UNKNOWN	13.01	72.0	J
14. 1120-21-4	UNDECANE	13,56	9000	NJ
15. 111-14-8	HEPTANOIC ACID	14.19	11000	NJ
16.	UNKNOWN ORGANIC ACID	14.53	4000	J
17. 112-40-3	DODECANE	15.57	13000	
18. 124-07-2	OCTANOIC ACID	15.76	5600 450 2600	NJ
19. 33083-83-9	5-UNDECANONE	16.86	450	NJ
20. 112-05-0	NONANOIC ACID	17.19	2600	NJ
21. 629-50-5	TRIDECANE	17.39	16000	NJ
22. 104-61-0	2(3H)-FURANONE, DIHYDRO-5-PE	18.47	250	NJ
23. 334-48-5	DECANOIC ACID	18.70	680	NJ
24. 6175-49-1	2-DODECANONE	18.95		
25. 629-59-4	TETRADECANE	19.04	4800	NJ
26. 589-63-9	4-OCTANONE	20.23		
27. 1534-26-5	3-TRIDECANONE	20.47	350	
28. 593-08-8	2-TRIDECANONE	20.57		
29. 56196-67-9	ACETIC ACID, (3-METHYL-4-OXO	20.80	1200	NJ
30.	UNKNOWN	22.06	790	J

-	-
т	- 14
	- L'

SEMINOLATIE ODGANIZO ANALVOTO DAMA OUTER

EPA SAMPLE NO.

	ATIVELY IDENTIFIED COMPOU	INDS
Lab Name: PNNL	Contract	: C104-SLS
Lab Code: PNNL	Case No.: SAS No.	: SDG No.: 000819
Matrix: (soil/water)	SUPERNATANT	Lab Sample ID: 00-1360-SLS
Sample wt/vol:	0.000 (g/mL) ML	Lab File ID: 00081905
Level: (low/med)	LOW	Date Received:
% Moisture:	decanted: (Y/N)	Date Extracted:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed: 08/19/0
Injection Volume:	(uL)	Dilution Factor: 1.0
GPC Cleanup: (Y/N)	N pH:	

Number TICs found: 31

J

Ì

#### CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

CAS NUMBER COMPOUND NAME EST. CONC. RT 0 1. 3457-92-9 1,5-PENTANEDIOL, DINITRATE 3.75 230 NJ 2. 541-05-9 CYCLOTRISILOXANE, HEXAMETHYL 6.43 8200 NJ 3. 994-05-8 BUTANE, 2-METHOXY-2-METHYL-7.13 3800 NJB 4. 1120-64-5 OXAZOLE, 4,5-DIHYDRO-2-METHY 7.52 7000 NJ 5. 628-73-9 HEXANENITRILE 8.29 140|NJ 6, 109-52-4 680 NJ PENTANOIC ACID 9.50 3-PENTANOL, 2,2-DIMETHYL-7. 3970-62-5 9.73 510 NJ 10.85 8. 556-67-2 3900 NJ CYCLOTETRASILOXANE, OCTAMETH 9. 124-18-5 11.31 230 NJ DECANE 10. 553-97-9 P-BENZOQUINONE, 2-METHYL-11.75 400 NJ 11. 142-62-1 12. 1120-21-4 HEXANOIC ACID 11.91 2200 NJ 13.52 UNDECANE 920 | NJ 13. 111-14-8 HEPTANOIC ACID 14.07 7000 NJ 14. UNKNOWN 14.20 500 J 15. 149-57-5 HEXANOIC ACID, 2-ETHYL-14.43 160 NJ 14.58 15.15 16. 1526-17-6 2-FLUORO-6-NITROPHENOL 380 NJ 17. 695-06-7 2(3H)-FURANONE, 5-ETHYLDIHYD 170|NJ 18. 112-40-3 DODECANE 15.50 2000 NJ 15.92 9900 NJ 19. 124-07-2 OCTANOIC ACID 16.22 20, 119-33-5 380 NJ PHENOL, 4-METHYL-2-NITRO-21. 700-38-9 16.71 170 NJ 5-METHYL-2-NITROPHENOL 22. 112-05-0 NONANOIC ACID 3600 NJ 17.24 17.34 2900 NJ 23. 629-50**-**5 TRIDECANE 18.29 300 NJ 24. 394-41-2 PHENOL, 3-FLUORO-4-NITRO-DECANOIC ACID 18.81 3100 NJ 25. 334-48-5 820 NJ 26. 629-59-4 19.01 TETRADECANE BUTYLATED HYDROXYANISOLE 900 NJ 20.04 27. 25013-16-5 270 NJ 3-BUTEN-2-ONE, 4-(2,6,6-TRIM 28. 79-77-6 20.12 29. 112-37-8 30. 143-07-7 920 NJ UNDECANOIC ACID 20.17 21.60 100 NJ DODECANOIC ACID

	1F		EPA SAMPLE NO.
	LE ORGANICS ANALYSIS DATA ATIVELY IDENTIFIED COMPOU		C104-SLS
Lab Name: PNNL	Contract	: C104	
Lab Code: PNNL	Case No.: SAS No.	: SDG	No.: 000819
Matrix: (soil/water)	SUPERNATANT	Lab Samp	ole ID: 00-1360-SLS
Sample wt/vol:	0.000 (g/mL) ML	Lab File ID:	00081905
Level: (low/med)	LOW	Date Received:	
% Moisture:	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract	Volume: 1000(uL)	Date Analyzed:	08/19/0
Injection Volume:	(uL)	Dilution Facto	pr: 1.0
GPC Cleanup: (Y/N)	N pH:		

28.____ 29.___ 30.___ CONCENTRATION UNITS: (ug/L or ug/Kg) ug/L

RT CAS NUMBER COMPOUND NAME EST. CONC. 0 PHENOL, 3-METHYL-4-NITRO-1. 2581-34-2 22.17 89 NJ 2.____ з._ 4._ 5. 6.____ 7.____ 8.____ 9._ 10.____ 11.____ 12.____ 13.____ 14.____ 15.____ 16.____ 17.____ 18.____ 19.____ 20. 21.____ 22. 23.____ 24.____ 25.____ 26.____ 27.

	1F LE ORGANICS ANALY		EPA SAMPLE NO
TENT	ATIVELY IDENTIFIE	D COMPOUNDS	C104-SSB
Lab Name: PNNL		Contract: C104	
Lab Code: PNNL	Case No.:	SAS No.: SDG	No.: 000819
Matrix: (soil/water)	SOLID	Lab Sample ID	: 00-1361-SSB
Sample wt/vol:	5.0 (g/mL) G	Lab File ID:	00081913
Level: (low/med)	LOW	Date Received	·
% Moisture:	decanted: $(Y/N)$	Date Extracte	d:
Concentrated Extract	Volume: 1000(1	uL) Date Analyzed	: 08/20/0
Injection Volume:	(uL)	Dilution Fact	or: 1.0
GPC Cleanup: (Y/N)	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

			Date cova	
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. 79-00-5	ETHANE, 1,1,2-TRICHLORO-	5.33		NJ
2. 75-65-0	2-PROPANOL, 2-METHYL-	6.23	10000	
3. 625-31-0	4-PENTEN-2-OL	6.33	18000	
4. 507-45-9	BUTANE, 2,3-DICHLORO-2-METHY		2100	
5. 77-74-7	3-PENTANOL, 3-METHYL-	7.10	7900	NJ
6. 556-67-2	CYCLOTETRASILOXANE, OCTAMETH	10.85	18000	NJ
7. 541-02-6	CYCLOPENTASILOXANE, DECAMETH	14.11	1400	NJ
8. 25013-16-5	BUTYLATED HYDROXYANISOLE	19.98	1200	NJ
9				
10.				[]
12				{
13.	<u> </u>			
15.				
( <u>1</u> 0.				
1 1/.				
{ <u>18</u> .				
1 1 2 .				
20.			·····	
21.				
22			;	
23				
24		·		
26				
27				
28				
29.				
30.				
				ــــــــــــــــــــــــــــــــــــــ

1

SEMIVOLATI	EPA SAMPLE NO.		
TENT	C104-SSD		
Lab Name: PNNL	(	Contract: C104	
Lab Code: PNNL	Case No.:	SAS No.: SDG	No.: 000819
Matrix: (soil/water)	SOLID	Lab Sample ID	: 00-1361-SSD
Sample wt/vol:	4.9 (g/mL) G	Lab File ID:	00081915
Level: (low/med)	LOW	Date Received	:
% Moisture:	decanted: $(Y/N)$	Date Extracted	1:
Concentrated Extract	Volume: 1000(x	uL) Date Analyzed	: 08/20/0
Injection Volume:	(uL)	Dilution Facto	pr: 10.0
GPC Cleanup: (Y/N)	N pH:		

- -

Number TICs found: 14

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

				<u> </u>
CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
		=======	=======================================	
1. 124-18-5	DECANE	11.32	150000	
2. 1120-21-4	UNDECANE	13.58		
3. 112-40-3	DODECANE	15.59	690000	
4. 33083-83-9	5-UNDECANONE	16.82	44000	
5. 2216-87-7	3-UNDECANONE	17.10	25000	-
6. 112-12-9	2-UNDECANONE	17.19	28000	- 1
7. 629-50-5	TRIDECANE	17.42	830000	
8. 19780-10-0	5-DODECANONE	18.58	64000	
9. 1534-27-6	3-DODECANONE	18.83	22000	
10. 6175-49-1	2-DODECANONE	18.93	10000	
11. 629-59-4	TETRADECANE	19.05	190000	
12. 26215-90-7	4-TRIDECANONE	.20.22	41000	
13. 593-08-8	2-TRIDECANONE	20.54	16000	NJ
14. 26496-20-8	4-TETRADECANONE	21.75	9500	NJ
15				
16 17 18.				
17				
18				
20.				
21.				
44.			<u> </u>	
201	······································	<u> </u>		
47.				
23.	······································	~	·	
20.				
27.				
28.				
29.				
30		-		

-	_
ч.	L'.
-h-	г

EPA SAMPLE NO.

SEMIVOLATILE	ORGAN	ICS	ANALYSI	[S	DATA	SHEET
TENTAI	YLEVI	IDEN	TIFIED	CC	OMPOUN	1DS

Lab Name: PNNL	Contract	: C104
Lab Code: PNNL Cas	e No.: SAS No.	:
Matrix: (soil/water) SO	LID	Lab S
Sample wt/vol:	5.3 (g/mL) G	Lab F
Level: (low/med) LO	W	Date
% Moisture: de	canted: (Y/N)	Date
Concentrated Extract Vo	lume: 1000(uL)	Date
Injection Volume:	(uL)	Dilut
GPC Cleanup: (Y/N) N	pH:	

	C104-SSS
: C104	
: SDG	No.: 000819
Lab Sample ID	: 00-1361-SSS
Lab File ID:	00081914
Date Received	
Date Extracted	1:
Date Analyzed	: 08/20/0
Dilution Facto	pr: 10.0

1

Number TICs found: 16

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

.

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
1. $2110-78-3$ 2. $625-31-0$ 3. $124-18-5$ 4. $1120-21-4$ 5. $112-40-3$ 6. $33083-83-9$ 7. $2216-87-7$ 8. $112-12-9$ 9. $629-50-5$ 10. $19780-10-0$ 11. $1534-27-6$ 12. $6175-49-1$ 13. $629-59-4$ 14. $26215-90-7$ 15. $593-08-8$ 16. $26496-20-8$ 17. $18.$ 19. $20.$ 21. $22.$ 23. $24.$ 25. $266.$ 27. $28.$ 29. $30.$	PROPANOIC ACID, 2-HYDROXY-2- 4 - PENTEN-2-OL DECANE UNDECANE 5 - UNDECANONE 3 - UNDECANONE 2 - UNDECANONE 5 - DODECANONE 3 - DODECANONE 3 - DODECANONE 2 - DODECANONE 4 - TRIDECANONE 4 - TRIDECANONE 4 - TETRADECANONE 		170000	NJB NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ NJ

-1

SEMIVOLATI TENI	EPA SAMPLE NO.		
Lab Name: PNNL	ATIVELY IDENTIFIE	Contract: C104	LCSB
Lab Code: PNNL	Case No.:	SAS No.: SD	G No.: 000819
Matrix: (soil/water)	SOLID	Lab Sample I	D: LCSB
Sample wt/vol:	5.0 (g/mL) G	Lab File ID:	00081918
Level: (low/med)	LOW	Date Receive	d:
% Moisture:	decanted: (Y/N)_	Date Extract	ed:
Concentrated Extract	Volume: 1000 (1	uL) Date Analyze	d: 08/20/0
Injection Volume:	(uL)	Dilution Fac	tor: 1.0
GPC Cleanup: (Y/N)	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	Q
CAS NOMBER 1. 123-42-2 2. 541-02-6 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25.	COMPOUND NAME ====================================	====== 7.23	4900 240	 NJ NJB NJ J J J J J J J J J J J J J J J
26. 27. 28. 29. 30.				

	1F E ORGANICS ANALYSI		EPA SAMPLE NO
Lab Name: PNNL	TIVELY IDENTIFIED (	COMPOUNDS ntract: C104	LCSMS
Lab Code: PNNL Ca	ase No.: Si	AS No.: SDG	No.: 000819
Matrix: (soil/water) S	SOLID	Lab Sample ID	LCSMS
Sample wt/vol:	5.0 (g/mL) G	Lab File ID:	00081919
Level: (low/med) I	WO	Date Received:	: 
% Moisture: d	decanted: (Y/N)	Date Extracted	1:
Concentrated Extract V	Volume: 1000(uL)	Date Analyzed:	08/20/0
Injection Volume:	(uL)	Dilution Facto	or: 1.0
GPC Cleanup: (Y/N) N	N pH:		

CONCENTRATION UNITS: (ug/L or ug/Kg) ug/Kg

CAS NUMBER	COMPOUND NAME	RT	EST. CONC.	
1.       123-42-2         2.       3.         3.       1825-21-4         4.       29366-00-5         5.       6.         7.       8.         9.       10.         11.       12.         13.       14.         15.       16.         17.       18.         19.       20.         21.       22.         23.       24.         25.       26.         27.       27.	COMPOUND NAME	7.23 25.22 26.06	EST. CONC. 490 340 680 770 	NJ NJ NJ NJ
28. 29. 30.				

1

#### SUPERNATANT SEMIVOLATILE SURROGATE RECOVERY

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.:

SAS No.: SDG No.: 000819

	EPA	S1		0.2	01	05				
				S3	S4	S5	S6	S7	S8	TOT
	SAMPLE NO.	(2FP)#	(PHL)#	(NBZ) #	(FBP)#	(TBP)#	(TPH)#	#	#	OUT
		=====	======	=====		======	=====	======	======	===
01	C104-SLB	37	44	98	105	29	138			0
02	C104-SLS	0*	0*	73	77	0*	104			3
03	C104-SLD	0*	0*	70	72	0*	93			3
04	C104-SLMS	34	39	90	93	30	128		{ <del> </del>	O
05	C104-SLMSD	31	35	74	77	30	103	·		0
06	C104-SLE	0*	1*	44	10952*	0*	20*			5
07			-		105 <b>51</b> .	Ŭ	20		[	
08										
09									i — <u> </u>	
10									— — —	
11									<u> </u>	
12										
13			<u> </u>						]	
14										
15			]							
16										
17	(									
18										
19										
20										
21									Í	
22										
23										
24										
25										·
26										
27										— —
28		(								
29										
30		]				]				
201		i		<u> </u>		İ			í	l l

S2 S3 S4 S5	(PHL) (NBZ) (FBP) (TBP)	11 11 11 11	2-Fluorophenol Phenol-d5 Nitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol Terphenyl-d14	QC LIMITS (21-110) (10-110) (35-114) (43-116) (10-123) (33-141)
S6	(TPH)	=	Terphenyl-d14	(33-141)

# Column to be used to flag recovery values
* Values outside of contract required QC limits

D Surrogate diluted out

page 1 of 1

FORM II SV-1

#### 2D

Case No.:

### SOLID SEMIVOLATILE SURROGATE RECOVERY

Lab Name: PNNL

Contract: C104

Lab Code: PNNL

# SAS No.:

# SDG No.: 000819

Level:(low/med) LOW

	EPA	S1	S2	S3	S4	S5				
	SAMPLE NO.	(2FP)#	(PHL)#	(NBZ)#	(FBP)#	(TBP)#	S6	S7	S8'	TOT
		======				!	(TPH)#	#	#	OUT
01	C104-SSB	30	34	80	===== 81	23	=====≈ 109	=====	=====	===
02	C104-SSS	30	36	74	38	14D	48			0
03	C104-SSD	26	31	60	30D	14D 15D	40 39			0
04	C104-SSMS	26	26	29	43	15D	49			0
05	C104-SSMSD	26	31	18D	37	13D	49			0
	LCSB	30	26	78	. 66	26	116			Ö
07	LCSMS	28	24D	75	52	20	114		<u> </u>	0
08			2.2	, ,	52	21	114	<u> </u>		
09									·	
10										
11						— <del>—</del> ——————————————————————————————————				
12										
13	- <u></u>									————
14									<u> </u>	
15										
16										
17										
18										
19										- <b></b> -
20										
21										
22	· · · · · · · · · · · · · · · · · · ·									
23										
24										
25										
26	· · · · · · · · · · · · · · · · · · ·									
27										
28										
29										
30										
	· · · · · · · · · · · · · · · · · · ·	,		·····						I

# Column to be used to flag recovery values
* Values outside of contract required QC limits
D Surrogate diluted out

page 1 of 1

FORM II SV-2

Pacific Northwest National Laboratory - RPL

#### RECOVERY REPORT

Client Name: Sample Matrix: LIQUID Fraction: SV Lab Smp Id: 00-1360-SLMS Level: LOW Data Type: MS DATA SpikeList File: BNFL.spk Sublist File: BNFL.sub Method File: \HPCHEM\1\DATA\000819.b\SV5972.M Misc Info:

SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
SPIKE COMPOUND 13 Phenol 20 1,4-Dichlorobenzen 28 N-Nitroso-di-n-pro 51 4-Chloro-3-methylp 73 Acenaphthene 78 4-Nitrophenol 80 2,4-Dinitrotoluene 102 Pentachlorophenol 125 Pyrene 40 1,2,4-Trichloroben 17 2-Chlorophenol 3 Pyridine 24 2-Methylphenol 27 Acetophenone 29 4-Methylphenol 49 1-Chloro-4-nitrobe			-	LIMITS 12-110 36-97 41-116 23-97 46-118 10-80 24-96 9-103 26-127 39-98 27- 1-150 1-150 1-150 1-150 1-150
62 Biphenyl 66 1,4-Dinitrobenzene 90 N,N-Diphenylamine 92 Tributyl phosphate 103 Pentachloronitrob 109 Dinoseb 160 Octachloronaphthal	5600 5600 5600 5600 5600 5600 5600	4600 3600 0.0 4700 0.0 4100 94000	83.86 65.30 * 85.40 * 73.46 1694.38*	1-150 1-150 1-150 1-150 1-150 1-150 1-150

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	* RECOVERED	LIMITS
\$ 7 2-Fluorophenol	4200	1400	33.51	21-110
\$ 11 Phenol-d5	4200	1600	39.49	10-110
\$ 31 Nitrobenzene-d5	2800	2500	90.26	35-114

# MS recovery data in lieu of CLP form 3C

٠,

Client SDG: 000819 Client Smp ID: C104-SLMS Operator: GS Klinger SampleType: MS Quant Type: ISTD

# Data File: \HPCHEM\1\DATA\000819.b\00081907.D Report Date: 19-Oct-2000 16:55

SURROGATE COMPOUND	CONC CONC ADDED RECOVERED ug/L ug/L		چ RECOVERED	LIMITS
<pre>\$ 59 2-Fluorobiphenyl</pre>	2800	2600	93.30	43-116
\$ 93 2,4,6-Tribromophen	4200	1200	29.56	10-123
\$ 130 Terphenyl-d14	2800	3600	128.17	33-141

MS recovery data in lieu of CLP form 3C

Page 11

Pacific Northwest National Laboratory - RPL

#### RECOVERY REPORT

Client Name: Sample Matrix: LIQUID Lab Smp Id: 00-1360-SLMSD Level: LOW Data Type: MS DATA SpikeList File: BNFL.spk Sublist File: BNFL.sub Method File: \HPCHEM\1\DATA\000819.b\SV5972.M Misc Info: Client SDG: 000819 Fraction: SV Client Smp ID: C104-SLMSD Operator: GS Klinger SampleType: MSD Quant Type: ISTD

SPIKE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	ै RECOVERED	LIMITS
13 Phenol 20 1,4-Dichlorobenzen 28 N-Nitroso-di-n-pro 51 4-Chloro-3-methylp 73 Acenaphthene 78 4-Nitrophenol 80 2,4-Dinitrotoluene 102 Pentachlorophenol 125 Pyrene 40 1,2,4-Trichloroben 17 2-Chlorophenol 3 Pyridine	4200 2800 2800 4200 2800 4200 2800 4200 2800 28	ug/L 1600 990 1700 1900 2100 1500 2400 1100 2300 1400 1700	38.99 35.64* 60.64 45.26 74.96 36.28 88.26 27.09 81.98 49.28 39.95	12-110 36-97 41-116 23-97 46-118 10-80 24-96 9-103 26-127 39-98 27-
24 2-Methylphenol 27 Acetophenone 29 4-Methylphenol 49 1-Chloro-4-nitrobe 62 Biphenyl 66 1,4-Dinitrobenzene 90 N,N-Diphenylamine 92 Tributyl phosphate 103 Pentachloronitrob 109 Dinoseb 160 Octachloronaphthal	5600 5600 11000 5600 5600 5600 5600 5600	5000 2300 4600 4200 3800 3200 0.0 3900 0.0 3500 76000	90.69 41.76 83.01 37.40 71.58 69.48 56.85 * 70.08 * 63.75 1364.91*	1-150 1-150 1-150 1-150 1-150 1-150 1-150 1-150 1-150 1-150 1-150

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
<pre>\$ 7 2-Fluorophenol</pre>	4200	1300	31.04	21-110
\$ 11 Phenol-d5	4200	1400	34.80	10-110
\$ 31 Nitrobenzene-d5	2800	2000	74.10	35-114

# MSD recovery data in lieu of CLP form 3C

## Data File: \HPCHEM\1\DATA\000819.b\00081908.D Report Date: 19-Oct-2000 16:56

SURROGATE COMPOUND	CONC ADDED ug/L	CONC RECOVERED ug/L	% RECOVERED	LIMITS
\$ 59 2-Fluorobiphenyl	2800	2100	76.65	43-116
\$ 93 2,4,6-Tribromophen	4200	1200	30.04	10-123
\$ 130 Terphenyl-d14	2800	2900	103.06	33-141

MSD recovery data in lieu of CLP form 3C

,

Page 12

Pacific Northwest National Laboratory - RPL

#### RECOVERY REPORT

Client Name: Sample Matrix: SOLID Lab Smp Id: 00-1361-SSMS Level: LOW Data Type: MS DATA SpikeList File: BNFL.spk Sublist File: BNFL.sub Method File: \HPCHEM\1\DATA\000819.b\SV5972b.M Misc Info: Client SDG: 000819 Fraction: SV Client Smp ID: C104-SSMS Operator: GS Klinger SampleType: MS Quant Type: ISTD

SPIKE	COMPOUND	CONC ADDED ug/Kg	CONC RECOVERED ug/Kg	% RECOVERED	LIMITS
13	Phenol	14000	7500	54.10	12-110
	1,4-Dichlorobenzen	9300	4200	45.79	36-97
	N-Nitroso-di-n-pro	9300	6900	74.17	41-116
	4-Chloro-3-methylp	14000	6500	47.01	23-97
	Acenaphthene	9300	6800	73.90	46-118
	4-Nitrophenol	14000	4100	29.19	10-80
80	2,4-Dinitrotoluene	9300	8700	93.82	24-96
102	Pentachlorophenol	14000	0.0	*	9-103
	Pyrene	9300	7800	84.66	26-127
	1,2,4-Trichloroben	9300	5800	62.68	39-98 '
17	2-Chlorophenol	14000	7000	50.48	27-
3	Pyridine	9300	2700	29.04	1-⊥-∿
	2-Methylphenol	9300	5600	60.66	1-150
	Acetophenone	9300	5000	53.46	1-150
29	4-Methylphenol	18000	16000	86.55	1-150
	1-Chloro-4-nitrobe	9300	6900	74.16	1-150
	Biphenyl	9300	11000	122.80	1-150
	1,4-Dinitrobenzene	9300	7100	76.81	1-150
	N,N-Diphenylamine	9300	0.0	*	1-150
	Tributyl phosphate	9300	92000	989.65*	1-150
	Pentachloronitrob	9300	0.0	*	1-150
	Dinoseb	9300	14000	151.54*	
160	Octachloronaphthal	9300	400000	4367.89*	1-150
l					

SURROGATE COMPOUND	CONC ADDED ug/Kg	CONC RECOVERED ug/Kg	* RECOVERED	LIMITS
<pre>\$ 7 2-Fluorophenol \$ 11 Phenol-d5 \$ 31 Nitrobenzene-d5</pre>	28000	7200	25.85	25-121
	28000	7400	26.44	24-113
	18000	5400	28.87	23-120

MS recovery data in lieu of CLP form 3D

#### Data File: \HPCHEM\1\DATA\000819.b\00081916.D Report Date: 19-Oct-2000 10:13

SURROGATE COMPOUND	CONC ADDED ug/Kg	CONC RECOVERED ug/Kg	% RECOVERED	LIMITS
<pre>\$ 59 2-Fluorobiphenyl</pre>	18000	7900	42.62	30-115
\$ 93 2,4,6-Tribromophen	28000	4200	15.24*	19-122
\$ 130 Terphenyl-d14	18000	9100	49.12	18-137

MS recovery data in lieu of CLP form 3D

Pacific Northwest National Laboratory - RPL

#### RECOVERY REPORT

Client Name: Sample Matrix: SOLID Lab Smp Id: 00-1361-SSMSD Level: LOW Data Type: MS DATA SpikeList File: BNFL.spk Sublist File: BNFL.sub Method File: \HPCHEM\1\DATA\000819.b\SV5972b.M Misc Info: Client SDG: 000819 Fraction: SV Client Smp ID: C104-SSMSD Operator: GS Klinger SampleType: MSD Quant Type: ISTD

SPIKE	COMPOUND	CONC ADDED ug/Kg	CONC RECOVERED ug/Kg	% RECOVERED	LIMITS
13	Phenol	15000	10000	68.52	12-110
	1,4-Dichlorobenzen	9900	3700	37.16	36-97
	N-Nitroso-di-n-pro	9900	6300	63.98	41-116
51	4-Chloro-3-methylp	15000	11000	74.12	23-97
	Acenaphthene	9900	6400	64.94	46-118
78	4-Nitrophenol	15000	4100	27.31	10-80
	2,4-Dinitrotoluene	9900	9600	97.08*	24-96
102	Pentachlorophenol	15000	0.0	*	9-103
	Pyrene	9900	7000	70.85	26-127
	1,2,4-Trichloroben	9900	5000	50.10	39-98
	2-Chlorophenol	15000	9200	62.04	27-
	Pyridine	9900	3300	33.27	1-⊥ວບ
	2-Methylphenol	9900	4200	42.12	1-150
	Acetophenone	9900	6000	60.76	1-150
	4-Methylphenol	20000	19000	97.02	1-150
	1-Chloro-4-nitrobe	9900	7600	76.98	1-150
	Biphenyl	9900	10000	101.77	1-150
	1,4-Dinitrobenzene	9900	11000	111.10	1-150
	N,N-Diphenylamine	9900	0.0	*	1-150
	Tributyl phosphate	9900	90000	903.21*	1-150
	Pentachloronitrob	9900	0.0	*	1-150
1	Dinoseb	9900	20000	207.37*	3
160	Octachloronaphthal	9900	340000	3390.78*	1-150

SURROGATE COMPOUND	CONC ADDED ug/Kg	CONC RECOVERED ug/Kg	RECOVERED	LIMITS
\$ 7 2-Fluorophenol	30000	7700	25.99	25-121
\$ 11 Phenol-d5	30000	9100	30.69	24-113
\$ 31 Nitrobenzene-d5	20000	3600	18.34*	23-120

MSD recovery data in lieu of CLP form 3D

•

.

## Data File: \HPCHEM\1\DATA\000819.b\00081917.D Report Date: 27-Oct-2000 10:24

SURROGATE COMPOUND	CONC ADDED ug/Kg	CONC RECOVERED ug/Kg	% RECOVERED	LIMITS
\$ 59 2-Fluorobiphenyl	20000	7300	17.35*	30-115
\$ 93 2,4,6-Tribromophen	30000	5200		19-122
\$ 130 Terphenyl-d14	20000	8400		18-137

MSD recovery data in lieu of CLP form 3D

Page 2

EPA SAMPLE NO.

1-

Lab Name: PNNL	Contract: C104	Cl04-SLB
Lab Code: PNNL Case No.:	SAS No.: SDG	No.: 000819
Lab File ID: 00081904	Lab Sample ID:	00-1360-SLB
Instrument ID: HP1	Date Extracted	1:
Matrix: (soil/water) SUPERNATANT	Date Analyzed:	
Level:(low/med) LOW	Time Analyzed:	1738

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
01	======================================	======================================	======================================	========
02	C104-SLD	00-1360-SLD	00081905	08/19/0 08/19/0
03	C104-SLMS	00-1360-SLMS	00081907	08/19/0
04	C104-SLMSD	00-1360-SLMSD	00081908	08/19/0
05	C104-SLE	00-1360-SLE	00081909	08/19/0
06 07				
08				<u> </u>
09				
10				
11 12	· · · · · · · · · · · · · · · · · · ·			
13				
14				
15				
16 17				
18			· · · · · · · · · · · · · · · · · · ·	
19		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
20				
21				
22 23				
$24^{2}$				
25				
26				
27	·			<u></u>
28 29				
30				
20		1	I	·

COMMENTS:

page 1 of 1

EPA SAMPLE NO.

1

Time Analyzed: 0220

Lab Name: PNNL	Contract: C104	C104-SSB
Lab Code: PNNL Case No.	SAS No.: SDG	No.: 000819
Lab File ID: 00081913	Lab Sample ID	: 00-1361-SSB
Instrument ID: HP1	Date Extracted	
Matrix: (soil/water) SOLID	Date Analyzed	. 08/20/0
Level:(low/med) LOW	Time Analyzed	· 0220

THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES, MS and MSD:

	·			
	EPA	LAB	LAB	DATE
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED
	=======================================	=========================	=======================================	========
01	C104-SSS	00-1361-SSS	00081914	08/20/0
02	C104-SSD	00-1361-SSD	00081915	08/20/0
03	C104-SSMS	00-1361-SSMS	00081916	08/20/0
04	C104-SSMSD	00-1361-SSMSD	00081917	08/20/0
05	LCSB	LCSB	00081918	08/20/0
06	LCSMS	LCSMS	00081919	08/20/0
07				
08				
09				
10 11	·····			
$12^{11}$				
13				
14				
15				
16		·		·
17	· · · · · · · · · · · · · · · · · · ·			
18			·	· · · · · · · · · · · · · · · · · · ·
19	<u> </u>	· · · · · · · · · · · · · · · · ·	··	
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

COMMENTS:

page 1 of 1

		20		
SEMIVOLATILE	ORGANIC	INSTRUMENT	PERFORMANCE	CHECK
			INE (DFTPP)	

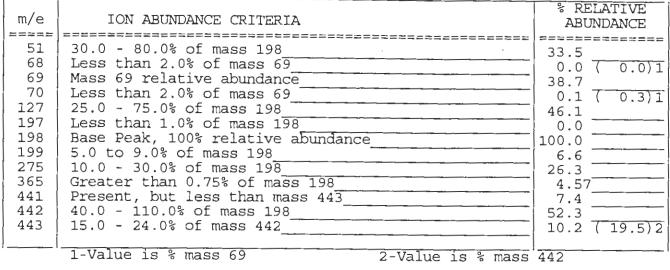
5 P

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.:

SAS No.:


SDG No.: 000811

Lab File ID: 00081101

DFTPP Injection Date: 08/14/0

Instrument ID: HP1

DFTPP Injection Time: 1642



1-Value is % mass 69

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

EI	A	LAB	LAB	DATE	TIME
SAMPI	ENO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
	0 0 0 0 0	STD 20 STD 20 STD 50 STD 80 STD 120 STD 160 QSTD 20 QSTD 50 QSTD 50 QSTD 120 QSTD 120 QSTD 160	1111111         00081102         00081103         00081105         00081106         00081107         00081108         00081109         00081110         00081111	Alkali 2222         08/14/0         08/14/0         08/14/0         08/14/0         08/14/0         08/14/0         08/14/0         08/14/0         08/14/0         08/14/0         08/14/0         08/14/0         08/14/0         08/15/0         08/15/0         08/15/0	1734         1827         1919         2012         2104         2157         2249         2342         0035         0127

page 1 of 1

#### 5B SEMIVOLATILE ORGANIC INSTRUMENT PERFORMANCE CHECK DECAFLUOROTRIPHENYLPHOSPHINE (DFTPP)

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.: SAS No.: SDG No.: 000819

*

Lab File ID: 00081910

Instrument ID: HP1

1 -

DFTPP Injection Date: 08/19/0

DFTPP Injection Time: 2254

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
$\begin{array}{c} =====\\ 51\\ 68\\ 69\\ 70\\ 127\\ 197\\ 198\\ 199\\ 275\\ 365\\ 441\\ 442\\ 443\\ \end{array}$	30.0 - 80.0% of mass 198         Less than 2.0% of mass 69         Mass 69 relative abundance         Less than 2.0% of mass 69         25.0 - 75.0% of mass 198         Less than 1.0% of mass 198         Base Peak, 100% relative abundance         5.0 to 9.0% of mass 198         10.0 - 30.0% of mass 198         Greater than 0.75% of mass 198         Present, but less than mass 443         40.0 - 110.0% of mass 198         15.0 - 24.0% of mass 442	$\begin{array}{c} ====================================$
· /	1-Value is % mass 69 2-Value is % mass	442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA SAMPLE NO.	LAB SAMPLE ID	LAB FILE ID	DATE ANALYZED	TIME ANALYZED
			=======================================	============	
01	SSTD050	SSTD050	00081911	08/19/0	2347
02	QSTD050	QSTD050	00081912	08/20/0	0127
03	C104-SSB	00-1361-SSB	00081913	08/20/0	0220
04	C104-SSS	00-1361-SSS	00081914	08/20/0	0312
05	C104-SSD	00-1361-SSD	00081915	08/20/0	0405
06	C104-SSMS	00-1361-SSMS	00081916	08/20/0	0458
07	C104-SSMSD	00-1361-SSMSD	00081917	08/20/0	0550
	LCSB	LCSB	00081918	08/20/0	0643
09	LCSMS	LCSMS	00081919	08/20/0	0736
10					
11 12			<u> </u>		
$12 \\ 13$	·				
14					
15					
16					·
17		·			
18					
19			·		
20					
21					
22					

page 1 of 1

1

		5 <b>B</b>		
SEMIVOLATILE	ORGANIC	INSTRUMENT	PERFORMANCE	CHECK
DECAFLU	JOROTRIPH	ENYLPHOSPH	INE (DFTPP)	

Lab Name:	PNNL		Contract:	C104		
Lab Code:	PNNL	Case No.:	SAS No.:		SDG No	.: 000819
Lab File I	D: 0008190	)1	DFTPP	Injection	Date;	08/19/0
Instrument	ID: HP1		DFTPP	Injection	Time;	1500

m/e	ION ABUNDANCE CRITERIA	% RELATIVE ABUNDANCE
=====		=================
51	30.0 - 80.0% of mass 198	34.9
68	Less than 2.0% of mass 69	0.0(0.0)1
69	Mass 69 relative abundance	40.3
70	Less than 2.0% of mass 69	0.2 ( 0.5)1
127	25.0 - 75.0% of mass 198	44.9
197	Less than 1.0% of mass 198	0.0
198	Base Peak, 100% relative abundance	100.0
199	5.0 to 9.0% of mass 198	6.5
275	10.0 - 30.0% of mass 198	28.7
365	Greater than 0.75% of mass 198	5.03
441	Present, but less than mass 443	10.9
442	40.0 - 110.0% of mass 198	75.7
443	15.0 - 24.0% of mass 442	14.6 (19.2)2
		11.0 (19.2)2

1-Value is % mass 69 2-Value is % mass 442

THIS CHECK APPLIES TO THE FOLLOWING SAMPLES, MS, MSD, BLANKS, AND STANDARDS:

	EPA	LAB	LAB	DATE	TIME !
	SAMPLE NO.	SAMPLE ID	FILE ID	ANALYZED	ANALYZED
01	SSTD050	SSTD050	00081902	08/19/0	1553
02	OSTD050	OSTD050	00081903	08/19/0	1645
03	C104-SLB	00-1360-SLB	00081904	08/19/0	1738
04	C104-SLS	00-1360-SLS	00081905	08/19/0	1831
05	C104-SLD	00-1360-SLD	00081906	08/19/0	1923
06	C104-SLMS	00-1360-SLMS	00081907	08/19/0	2016
07	C104-SLMSD	00-1360-SLMSD	00081908	08/19/0	2108
08	C104-SLE	00-1360-SLE	00081909	08/19/0	2201
09				00/10/0	LLOI
10		·	·		[
11					
12					
13					
14					~~~~~
15					
16					
17					
18				<u> </u>	
19					
20		·			
21					
22					
22	I	·	I		

page 1 of 1

OLM03.C

4

6B SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.: SAS No.: SDG No.: 000811

'4

Instrument ID: HP1 Calibration Date(s): 08/14/0 08/15/0

Calibration Time(s): 1734 0127

	=00081 0=00081			0 =0008 50=0008			
COMPOUND	RRF20	RRF50	RRF80	RRF120	RRF160	RRF	% RSD
	=======		(	1			=====
	1.345	1.732	1.819		1.704	1.660	11.0
2-Chlorophenol	1.266	1.411			1.498		
	* 1.316	1.426	1.512	1.420	1.557		6.4
1,3-Dichlorobenzene	1.585	1.743			1,813	1.718	5.9'
1,4-Dichlorobenzene	1.736	1.944			1.930		6.2
1,2-Dichlorobenzene	1.505	1.668	1.736	1.544	1.716	1.634	6.4
Benzyl alcohol	1.160				1.186	1.086	י8.7
2-Methylphenol	2.401	2.871	2.914		2.948	2.756	8.4,
2,2'-oxybis(1-Chloropropane)		1.309		1.251	1.330	1.311	3.4
N-Nitroso-di-n-propylamine	0.852	0.980	1.073		0.916	0.945	9.0
1-Methylphenol	1.026	1.436	1.457	1.323	1.535	1.355	14.7
lexachloroethane	0.681	0.820		0.726	0.724	0.754	8.2
viciopenzene *	1.323	1.350		1.439	1.575	1.433	7.1
sophorone *	0.608	0.669		0.624	0.702	0.655	5.8
-Nitrophenol *	0.197		0.241	0.227	0.256	0.229	
2,4-Dimethylphenol*	0.310	0.352		0.360	0.363		6.8
ois(2-Chloroethoxy)methane*	0.362	0.404	0.426	0.384	0.410		
2,4-Dichlorophenol*	0.274	0.299	0.338	0.331	0.366	0.322	11.2,
Benzoic acid*							7
,2,4-Trichlorobenzene*	0.377	0.428	0.454	0.410	0.453	0.424	7.67
Naphthalene*	1.126	1.313	1.388	1.234	1.337	1.280	8.0*
-Chloroaniline	0.371	0.449	0.429	0.371	0.335	0.391	11.9
Hexachlorobutadiene	0.245	0.280	0.301	0.285	0.314	0.285	9.2
-Chloro-3-methylphenol *	0.249		0.314	0.312	0.342	0.303	11.3
2-Methylnaphthalene *	0.726	0.857		0.791	0.856	0.822	7.7
Iexachlorocyclopentadiene	0.397	0.412	0.476	0.468	0.514	0.453	10.7
2,4,6-Trichĺorophenol	0.368	0.425	0.467	0.456	0.524	0.448	12.87
4 5-Trichlorophenol	0.442	0.373	0.406	0.450	0.487	0.432	10.1
2-Chloronaphthalene	1.176	1.396	1.484	1.285	1.462	1.361	9.5
2-Nitroaniline	0.273	0.302	0.332	0.294	0,338	0.308	8.7
3-Nitroaniline * Dimethylphthalate * 2,6-Dinitrotoluene * Acenaphthylene *	0.310	0.343	0.340	0.308	0.339		5.4
)imethylphthalate *	1.292	1.528	1.634	1.469	1.345	1.454	9.5
2,6-Dinitrotoluene *	0.318	0.393	0.436	0.407	0.433	0.397	12.0,
cenaphthylene*	1.717	2.124	2.338	2.170	2.428		12.7
Acenaphthene *	1.075	1.268	1.390	1.319	1.496	1.310	11.9
4-Dinitrophenol	0.170	0.184	0.210	0.206	0.248	0.204	14.7
Dibenzofuran	1.500	1.760	1.947	1.788	2.047	1.808	11.5

* Compounds with required minimum RRF and maximim %RSD values.

All other compounds must meet a minimim RRF of 0.010.

page 1 of 5

6C

# SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: PNNL		Contract: C104	
Lab Code: PNNL	Case No.:	SAS No.:	SDG No.: 000811
Instrument ID: HP1	Calibrat	ion Date(s): 08/14/0	08/15/0
	Calibrati	ion Time(s): 1734	0127

	=00081; 0=00081;			0 =0008: 50=0008:			
COMPOUND	RRF20	RRF50	RRF80		RRF160	RRF	* RSD
4-Nitrophenol 2,4-Dinitrotoluene Diethylphthalate Fluorene	* 1.187	0.433	0.467	0.440	0.472	0.442 1.518	14.0  7.0* 9.4  13.4*
4-Chlorophenyl-phenylether 4-Nitroaniline 4,6-Dinitro-2-methylphenol N.N-Diphenylamine	0.282	0.712	0.786 0.315 0.297	0.759 0.322 0.300	0.874 0.361 0.340	0.747 0.315 0.289	13.3* 9.7 12.8
4 Dromonhours internal stars	* 0.202	0.236	0.187 0.261 0.380	0.169 0.227 0.322	0.187 0.249 0.335	0.172 0.235 0.324	11.8* 9.5* 13.5*
4-Bromophenyl-phenylether         Hexachlorobenzene         beta-BHC         Pentachlorophenol         delta-BHC         Phenanthrene         Anthracene         gamma-BHC (Lindane)         Carbazole	* 0.314 * 0.150 * 0.157 * 0.150	0.393 0.176 0.174 0.176	0.190 0.199	0.177 0.211	0.201 0.230	0.179 0.194	13.9* 10.8* 14.9* 10.8*
Phenanthrene Anthracene gamma-BHC (Lindane) Carbazole	* 1.074 * 1.074 * 0.133	1.301 1.301 0.154 1.137	1.438 1.438 0.165	1.311 1.311 0.154	1.470 1.470 0.170	1.319 1.319 0.155	11.8 11.8 9.3* 11.4
Di-n-butylphthalate Aldrin Heptachlor_Epoxide	1.374	1,732	1.848 0.177 0.093	1.671 0.162 0.095	1.895 0.177 0.105	1.704 0.164 0.090	12.0 10.4* 12.9
Endosulfan I	* 1.447	$1.418 \\ 0.068$	0.068 0.292	0.060 0.293	0.065 0.333	1.377 0.065 0.297	5.3 6.9*
4,4'-DDE Dieldrin Endrin Endosulfan II 4,4'-DDD	* 0.196 * 0.058   0.046 * 0.441	0.196 0.056 0.045 0.439	0.057 0.044	0.043	0.050	0.059 0.046	9.4* 7.3* 5.8  10.1*
Endosulfan Sulfate	0.598 0.084 0.368 0.068	0.585 0.080 0.407	0.588 0.064 0.396	0.571 0.065 0.394	0.651 0.071	0.599 0.073 0.402	5.2 12.3 7.2* 6.0*
Benzo(a) anthracene 3,3'-Dichlorobenzidine Chrysene	* 1.370	1.030	1.067	1.047 0.358		1.146 0.386	12.7* 7.6  7.5*
Compounds with required min		and ma		PCD V2			

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

4

#### 6C SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name:	PNNL		Co	ontract: (	2104		
Lab Code:	PNNL	Case N	No.:	SAS No.:		SDG No.:	000811
Instrument	ID: HP1		Calibration	Date(s):	08/14/0	08/15/	0
			Calibration	Time(s):	1734	0127	

LAB FILE ID:         RRF20 =00081107         RRF50 =00081108           RRF80 =00081109         RRF120=00081110         RRF160=00081111							
COMPOUND	RRF20	RRF50	RRF80	RRF120	RRF160	RRF	°% RSD =====
Methoxychlor	* 1.106	1.106	1.092		0.930	1.029	9.7*
Bis(2-Ethylhexyl)phthalate	0.829					0.868	5.6
Di-n-octylphthalate	2.071	2.042	2.187			2.046	8.0
Benzo(b)fluoranthene	* 1.872	1.734		1.735		1.916	10.3*
Benzo(k) fluoranthene	* 1.653	1.734	2.062			1.872	12.4*
Benzo (a) pyrene	* 1.462	1.277				1.333	
Indeno (1,2,3-cd) pyrene	* 1.308	1.106				1.301	
	* 1.357			1.078		1.260	
Benzo (g, h, i) perylene	* 1.363	1.132		1.024		1.174	10.6*
Pyridine	0.882	0.979		1.106	0.911	0.967	9.0
Undecane	0.002	0.275	0.557	1.100			
Dodecane						[	
Tridecane							
Tetradecane							
Pentadecane		<del></del>					
Tributyl phosphate	1.548	1.776	1.766	1.739	1.555	1.677	6.9
Bis(2-Ethylhexyl)phosphate							
N-Nitrosodimethylamine	0.549	0.445	0.488	0.591	0.550	0.525	11.0
tetrachlorobiphenyl (peak 2)							
tetrachlorobiphenyl (peak 1)							
pentachlorobiphenyl (peak 3)							
pentachlorobiphenyl (peak 4)							
pentachlorobiphenyl (peak 5)							
pentachlorobiphenyl (peak 6)							
hexachlorobiphenyl (peak 7)							
pentachlorobiphenyl (peak 8)							
hexachlorobiphenyl (peak 9)							I
hexachlorobiphenyl (peak10)							
AROCLOR 1254							
2-Butoxyethanol							
Acetophenone	1.702						
1-Chloro-4-nitrobenzene	0.200	0.236					
Biphenyl	2.703	2.880					
1,4-Dinitrobenzene	0.262						
Butylated Hydroxytoluene	1.793	2.120					
Pentachloronitrobenzene	0.141						
Dinoseb	0.227		0.302	0.285	0.339	0.283	14.7
	-						

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

page 3 of 5

1

/

OLM03.0

*

6C

# SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: PNNL		Contract: C104	
Lab Code: PNNL	Case No.:	SAS No.:	SDG No.: 000811
Instrument ID: HP1	Calibratic	on Date(s): 08/14/0	08/15/0
	Calibratic	on Time(s): 1734	0127

LAB FILE ID: RRF20 RRF80 =00081109 RRF120	=000811 0=000811	L07 L10	RRF50 RRF16	) =00081 50=00081	.108 .111			
							olo	1
COMPOUND	RRF20	RRF50		RRF120		RRF	RSD	
Octachloronaphthalene	0.001					0.001	0.0	<-
N-Nitrosomethylethylamine N-Nitrosodiethylamine Ethyl methane sulfonate	0.492	0.382	0.423	0.482	0.482	0.452	10.6	
N-Nitrosodiethylamine	0.607	0.614	0.616	0.559	0.622	0.604	4.2	
Ethyl methane sulfonate	0.829	0.840	0.859	0.751	0.781	0.812	5.5	
Analine	1.336	1.481	1.483	1.393	1.497	1.438	4.9	ļ
Analine Pentachloroethane N-Nitrosopyrolidine	0.640	0.754	0.763	0.676	1.497 0.736	0.714		]
N-Nitrosopyrolidine	0.608	0.718		0.640	0.559	0.655		İ 🗌
N-Nitrosopiperidine	0.162	0.182	0.190	0.174	0.189	0.179	6.6	}
N-Nitrosopyrolidine N-Nitrosopiperidine Hexachloropropene	0.300	0.362			0.367	0.350	8.7	
Hexachloropropene	0.206	0.235			0.234	0.227	5.9	i i
Safrole	0.277	0.317	0.329		0.331	0.310	7.4	
1 2 4 5-Tetrachlorobenzene	0.676	0.791	0.880		0.962	0.827		
Isosafrole	0.720	0.554	0.715	0.726	0.679	0.679		{
1.4-Naphthoguinone	0.048	0.053		0.053	0.055 0.733	0.053	7.0	
Isosafrole 1,4-Naphthoquinone Pentachlorobenzene	0.517	0.613		0.644	0.733	0.636		
		0.402	0.397	0.309	0.313	0.357	12.5	
1-Naphthylamine 2,3,4,6-Tetrachlorophenol	0.319		0.363	0.372	0.426 0.311	0.361		ī .
2-Naphthylamine	0.364		0.397	0.309	0.311	0.358		
2-Naphthylamine 5-Nitro-o-toluidine	0.307		0.361	0.328	0.356			
Azeobenzene	0.884	0.895	1.032	1.053	1.181	1.009	12.2	1
1,3,5-Trinitrobenzene								< -
Diallate (cis)	0.234							
Phenacetin	0.421				0.470			
Diallate (trans)	0.234		0.345	0.296			13.7	
Phenacetin Diallate (trans) 4-Aminobiphenyl	0.280			0.331				
Pronamine	1 0.34/				0.453	0.415		
Isodrin	0.147			0.178	0.200			
Isodrin Chlordane (alpha)	0.095	0.116						
Benzidine	0.021				0.020			
p-Dimethylaminoazobenzene	0.338		0.318					
Chlorobenzilate	0.425		0.428	0.422	0.487			
3.3'-Dimethylbenzidine	0.261		0.204	0.207	0.211	0.226	11.5	
2-Acetylaminofluorene	0.238			0.219	0.256			
3-Methylcholanthrene	0.751			0.575	0.712			
2-Methylpyridine	0.984							
	0.064							
Kepone Chlordane (gamma)	0.095	0.116	0.129	0.127	0.139	0.121	13.8	2

* Compounds with required minimum RRF and maximim %RSD values. All other compounds must meet a minimim RRF of 0.010.

•

6C SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

Lab Name: PNNL	(	Contract: C104	
Lab Code: PNNL	Case No.:	SAS No.:	SDG No.: 000811
Instrument ID: HP1	Calibration	n Date(s): 08/14/0	08/15/0
	Calibration	n Time(s): 1734	0127

RRF80 =00081109 RRF120=00081110 RRF160=00081111								
COMPOUND	RRF20	RRF50	RRF80	RRF120		RRF	% RSD	
Methyl methane sulfonate Hexachlorophene	0.154	0.124	0.125	0.149	0.150	0.140	10.3	
2,6-Dichlorophenol	0.235		0.309	0.373	0.404	0.290 0.378	13.4 8.3	
2-Fluorophenol Phenol-d5 2-Chlorophenol-d4	* 2.283 * 2.989 *	2.634	2.678 3.622	1	2.762 3.520	2.579	=====  7.1* 8.4*	
1,2-Dichlorobenzene-d4 Nitrobenzene-d5 2-Fluorobipheny1 2,4,6-Tribromopheno1 Terpheny1-d14	* 1.272 * 1.371 0.298 * 0.926		1.339 1.670 0.360 1.014			1.334 1.568 0.339 0.949	5.1* 9.3* 11.3  5.4*	
· · · · · · · · · · · · · · · · · · ·	-   -   -							
	-							
· · · · · · · · · · · · · · · · · · ·	-			·				

All other compounds must meet a minimim RRF of 0.010.

page 5 of 5

1

r,

#### 7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: PNNL Contract: C104 Lab Code: PNNL Case No.: SAS No.: SDG No.: 000819 Instrument ID: HP1 Calibration Date: 08/19/0 Time: 1553 Lab File ID: 00081902 Init. Calib. Date(s): 08/14/0 08/15/0 Init. Calib. Times: 1734 0127

COMPOUND	RRF	RRF25	MIN RRF	%D	MAX %D
					====
Methoxychlor	1.029	1.084		-5.3	
Bis(2-Ethylhexyl)phthalate	0.868		0.050	-0.1	10.0
Di-n-octylphthalate	2.046	1.827		10.7	
Benzo(b)fluoranthene	1.916		0.700		25.0
Benzo(k) fluoranthene	1.872		0.700		25.0
Benzo (a) pyrene	1.333		0.700		25.0
Indeno(1,2,3-cd) pyrene	1.301		0.500		25.0
Dibenz(a,h) anthracene	1.260		0.400		25.0
Benzo(g,h,i)perylene	1.174				25.0
Pyridine	0.967			3.1	
Tributyl phosphate	1.677			11.2	
N-Nitrosodimethylamine	0.525	0.538		-2.5	
Acetophenone	1.815	1.848		-1.8	l Í
1-Chloro-4-nitrobenzene	0.240			23.3	
Biphenyl	2.862		ļ	19.6	
1,4-Dinitrobenzene		0.135			
Butylated Hydroxytoluene	1.968		ļ	16.0	
Pentachloronitrobenzene	0.175	0.156		10.8	
Dinoseb	0.283		ļ	8.8	{
Octachloronaphthalene	0.001	0.002		-99.9	
N-Nitrosomethylethylamine	0.452	0.458		-1.3	
N-Nitrosodietĥylamine	0.604	0.675	ĺ	-11.8	
Ethyl methane sulfonate	0.812			-6.2	
Analine	1.438	1.539		-7.0	
Pentachloroethane	0.714			5.9	ļ
N-Nitrosopyrolidine	0.655			~6.9	
N-Nitrosopiperidine	0.179			-0.6	
Hexachloropropene	0.350			10.3	í
N-Nitrosodi-n-butylamine	0.227			-4.8	
Safrole	0.310			5.2	
1,2,4,5-Tetrachlorobenzene	0.827		1	10.3	
Isosafrole	0.679	1		2.6	
1,4-Naphthoquinone	0.053			1.9	
Pentachlorobenzene	0.636			2.8	
1-Naphthylamine	0.357			-9.8	
2,3,4,6-Tetrachlorophenol	0.361	0.334		7.5	

page 3 of 4

.

*

#### 7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: PNNL	Contract: C104	
Lab Code: PNNL Case No.	SAS No.:	SDG No.: 000819
Instrument ID: HP1	Calibration Date: 08/19/0	Time: 1553
Lab File ID: 00081902	Init. Calib. Date(s): 08/14/	/0 08/15/0
	Init. Calib. Times: 1734	0127

COMPOSITION			MIN		MAX
COMPOUND		RRF25	RRF	₽\$D	%D
2-Naphthylamine	0.358			-9.5	
5-Nitro-o-toluidine		0.392		-1.8	
Azeobenzene	1.009		1	r	
1,3,5-Trinitrobenzene	1.009	0.166		9.1	
Diallate (cis)	0.300	0.293		2.3	
Phenacetin	0.300			10.3	ļ
Diallate (trans)	0.300		}	2.3	
4-Aminobiphenyl	0.329			3.3	
Pronamine	0.329			6.7	}
Isodrin	0.177		ļ	9.6	
Chlordane (alpha)	0.121			10.7	
Benzidine	0.021		ł	-9.5	
p-Dimethylaminoazobenzene	0.323			-7.4	
				1.8	
3,3'-Dimethylbenzidine	0.226			-9.3	
2-Acetylaminofluorene	0.237			-1.7	
3-Methylcholanthrene	0.684			3.1	
2-Methylpyridine	0.869			-6.7	
Kepone	0.060			-5.0	
Chlordane (gamma)	0.121			-2.5	
Methyl methane sulfonate	0.140			2.8	
Hexachlorophene					
1,3-Dinitrobenzene	0.290	0.271		6.6	] [
1,3-Dinitrobenzene	0.378			10.3	
	======		=====	======	====
2-Fluorophenol	2.579	2.544	0.600	1.4	25.0
Phenol-d5	3.406				25.0
Nitrobenzene-d5	1.334	1.418	0.200	-6.3	25.0
2-Fluorobiphenyl	1.568		0.700		25.0
2-Fluorobiphenyl 2,4,6-Tribromophenol	0.339			10.3	
	0.949		0.500		

page 4 of 4 :

FORM VII SV-4

•

# 7B

# SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name	PNNL			Cont	tract: Cl(	04			
Lab Code	PNNL	Case No	. :	SAS	5 No.:		SDG No	.:	000819
Instrumer	nt ID: HP1		Calib	ration I	Date: 08/2	19/0	Time:	16	45
Lab File	ID: 000819	03	Init.	Calib.	Date(s):	08/14/	0 0	8/1	5/0
			Init.	Calib.	Times:	1734	0	127	

			MIN		MAX
COMPOUND	RRF	RRF25	RRF	%D	%D
Phenol	1.660	=======	1	*====	1
bis(2-Chloroethyl)ether					25.0
	1.414				
2-Chlorophenol 1,3-Dichlorobenzene	1.446		0.800	3.3	25.0
	1.718		0.600		25.0
1,4-Dichlorobenzene	1.853		0.500	2.3	25.0
1,2-Dichlorobenzene	1.634		0.400		25.0
Benzyl alcohol	1.086				25.0
2-Methylphenol	2.756		0.700		25.0
2,2'-oxybis(1-Chloropropane)	1.311			-8.2	
N-Nitroso-di-n-propylamine	0.945		0.500		
4-Methylphenol	1.355		0.600		25.0
4-Methylphenol Hexachloroethane	0.754	0.736	0.300	2.4	25.0
Nitrobenzene	1.433		0.200		
Isophorone	0.655	0.706	0.400	-7.8	
2-Nitrophenol	0.229	0.222	0.100	3.0	25.0
2,4-Dimethylphenol	0.351		0.200		25.0
bis(2-Chloroethoxy)methane	0.397	0.406	0.300	-2.3	25.0
2,4-Dichlorophenol	0.322		0.200		25.0
1,2,4-Trichlorobenzene	0.424		0.200		25.0
Naphthalene	1.280				25.0
4-Chloroaniline	0.391			~0.5	
Hexachlorobutadiene	0.285			6.3	
4-Chloro-3-methylphenol	0.303		0.200		25.0
2-Methylnaphthalene	0.822		0.400		25.0
Hexachlorocyclopentadiene	0.453		0.100	4.4	
2,4,6-Trichlorophenol	0.448		0.200		25.0
2,4,5-Trichlorophenol	0.432				25.0
2-Chloronaphthalene	1.361		0.800		25 0
2-Nitroaniline	0.308		0.000	-4.9	25.0
3-Nitroaniline	0.328		0.050	1	40.0
Dimethylphthalate	1,454				
2,6-Dinitrotoluene	0.397		0.200		25.0
	2.155		1.300		25.0
	1.310		0.800		25.0
Acenaphthene2,4-Dinitrophenol				2.0	
	0.204				
Dibenzofuran	1.808		0.800		25.0
4-Nitrophenol	0.172	0.167		2.9	
All other compounds must me	1				I

All other compounds must meet a minimum RRF of 0.010.

page 1 of 4

#### FORM VII SV-1

•

7B

#### SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: PNNL Contract: C104 Lab Code: PNNL Case No.: SAS No.: SDG No.: 000819 Instrument ID: HP1 Calibration Date: 08/19/0 Time: 2347 Lab File ID: 00081911 Init. Calib. Date(s): 08/14/0 08/15/0 Init. Calib. Times: 1734 0127

			MIN		MAX
COMPOUND	RRF	RRF25	RRF	%D	%D
	====		=====	=====	
Phenol	1.660				25.0
bis(2-Chloroethyl)ether	1.414				
2-Chlorophenol	1.446				25.0
1,3-Dichlorobenzene	1.718		0.600	-0.8	
1,4-Dichlorobenzene	1.853		0.500		
1,2-Dichlorobenzene	1.634	ſ	0.400		25.0
Benzyl alcohol	1.086		0.100		25.0
2-Methylphenol	2.756		0.700		25.0
2,2'-oxybis(1-Chloropropane)	1.311			-8,5	
N-Nitroso-di-n-propylamine	0.945	1.036	0.500		
4-Methylphenol	1.355	1.418	0.600	-4.6	25.0
Hexachloroethane	0.754		0.300	3.3	25.0
Nitrobenzene	1.433	1.436	0.200	-0.2	25.0
Isophorone	0.655	0.700	0.400	-6.9	
2-Nitrophenol	0.229	0.234		-2.2	25.0
2,4-Dimethylphenol	0.351	0.352	0.200	-0.3	25.0
bis (2-Chloroethoxy) methane	0.397		0.300		
2,4-Dichlorophenol	0.322	0.313	0.200	2.8	25.0
1,2,4-Trichlorobenzene	0.424	0.415	0.200	2.1	25.0
Naphthalene	1.280	1.266	0.700	1.1	25.0
4-Chloroaniline	0.391	0.381		2.6	
Hexachlorobutadiene	0.285	0.271		4.9	
4-Chloro-3-methylphenol	0.303	0.310	0.200	-2.3	25.0
2-Methylnaphthalene	0.822	0.791	0.400	3.8	25.0
Hexachlorocyclopentadiene	0.453	0.428		5.5	
2,4,6-Trichlorophenol	0.448	0.434	0.200	3.1	25.0
2,4,5-Trichlorophenol	0.432	0.402	0.200	6.9	25.0
2-Chloronaphthalene	1.361		0.800		25.0
2-Nitroaniline	0.308	0.327		-6.2	
3-Nitroaniline	0.328	0.335	0.050		40.0
Dimethylphthalate	1.454		0.050		25.0
2,6-Dinitrotoluene	0.397		0.200		25.0
Acenaphthylene	2.155		1.300	1.6	25.0
Acenaphthene	1.310			1.7	25.0
2,4-Dinitrophenol	0.204			-3.4	
Dibenzofuran	1.808		0.800		25.0
4-Nitrophenol	0.172	0.161		6.4	
All other compounds must me			l		

All other compounds must meet a minimum RRF of 0.010.

page 1 of 4

}

#### FORM VII SV-1

#### 7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: PNNL	Contract: C104	
Lab Code: PNNL Case No.	: SAS No.:	SDG No.: 000819
Instrument ID: HP1	Calibration Date: 08/19/0	Time: 2347
Lab File ID: 00081911	Init. Calib. Date(s): 08/14	/0 08/15/0
	Init. Calib. Times: 1734	0127

COMPOUND	RRF	RRF25	MIN RRF	°€D	MAX %D
2 A-Dipitrotoluene	0.442	§			
2,4-Dinitrotoluene Diethylphthalate	1.518		0.200	2.8	25.0
Fluorene			0.900	2.0	25.0
4-Chlorophenyl-phenylether	0.747				
	0.315		10.400	4.4	23.0
4.6-Dinitro-2-methylphenol	0.289			-1.4	
N, N-Diphenylamine	0.806			7.3	
Heptachlor	0.172	0.147	0.050	2 9	40.0
alpha-BHC	0.235	0.213	0.050		40.0
4-Bromophenyl-phenylether	0.324		0.100		25.0
Hexachlorobenzene	0.405		0.100		25.0
beta-BHC	0.179		0.050		40.0
Pentachlorophenol	0.194		0.050		25.0
delta-BHC	0.179				40.0
delta-BHC Phenanthrene	1.319				25.0
Anthracene	1 1 210		0.700		25.0
gamma-BHC (Lindane)	0.155		0.050		40.0
	1.142		0.050	7.4	
Di-n-butylphthalate	1.704		}	6.7	
	0 101		1		40.0
Heptachlor Epoxide	0.090		0.050	0.0	(
Fluoranthene	1.414		0.600		25.0
	1.377				
Endosulfan I	0.065			-1.5	
	0.297				40.0
4,4'-DDE	0.183				
The sheet of	0.059				
Endosulfan II	0.046		0.050	-2.2	
	0.472		0.050		
Butylbenzylphthalate	0.599		0.050	-5.5	
Endosulfan Sulfate	0.073			-9.6	
	0.402		0.050		40.0
	0.064				40.0
Endrin Ketone Benzo(a)anthracene	1.146				
3,3'-Dichlorobenzidine	0.386			-12.4	
Chrysene	1.077				
	1	1.166	5.700	7.2	123.0
All other compounds must me	et a min	nimum R	RF of	0.010.	I

All other compounds must meet a minimum RRF of 0.010.

page 2 of 4

٠ ۴

SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: PNNL	Contract: C104						
Lab Code: PNNL Ca	Se No.: SAS No.:	SDG No.: 000819					
Instrument ID: HP1	Calibration Date: 08/1	9/0 Time: 2347					
Lab File ID: 00081911	<pre>Init. Calib. Date(s):</pre>	08/14/0 08/15/0					
	Init. Calib. Times:	1734 0127					

COMPOUND	RRF	RRF25	MIN RRF	۶D	MAX %D
Methoxychlor	1.029	1	(	1	40.0
Bis(2-Ethylhexyl)phthalate	0.868			-3.7	
Di-n-octylphthalate	2.046			6.4	
Benzo(b)fluoranthene	1.916		0.700		25.0
Benzo(k)fluoranthene	1.872		0.700		25.0
Benzo (a) pyrene	1.333				25.0
Indeno (1, 2, 3-cd) pyrene	1.301				25.0
Dibenz(a,h)anthracene	1.260				25.0
Benzo(g,h,i)perylene	1.174				25.0
Pyridine	0.967			-2.2	
Tributyl phosphate	1.677			-12.6	Ì
N-Nitrosodimethylamine	0.525			-0,6	[
Acetophenone	1.815	1.873		-3.2	
1-Chloro-4-nitrobenzene	0.240	0.227		5.4	
Biphenyl	2.862	2.862		0.0	ł
1,4-Dinitrobenzene		0.142			l I
Butylated Hydroxytoluene	1.968	1.904		3.2	
Pentachloronitrobenzene	0.175			10.3	}
Dinoseb	0.283	0.265	ļ	6.4	]
Octachloronaphthalene	0.001			0.0	1
N-Nitrosomethylethylamine	0.452			-10.4	
N-Nitrosodiethylamine	0.604	1		-3.8	l
Ethyl methane sulfonate	0.812			-9.4	}
Analine	1.438			-3.5	
Pentachloroethane	0.714			3.4	
N-Nitrosopyrolidine	0.655			-11.4	
N-Nitrosopiperidine	0.179			-9.5	
Hexachloropropene	0.350			10.8	
N-Nitrosodi-n-butylamine	0.227			-7.5	
Safrole	0.310			1.9	
1,2,4,5-Tetrachlorobenzene	0.827			3.9	
Isosafrole	0.679			5.4	
1,4-Naphthoquinone	0.053			-1.9	
Pentachlorobenzene	0.636	1		0.0	
1-Naphthylamine	0.357	1	ļ	-12.3	
2,3,4,6-Tetrachlorophenol	0.361	0.343	-	5.0	

page 3 of 4

1 -

, r

#### 7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name:	PNNL	INL Contract: C104							
Lab Code:	PNNL	Case No	• :	SAS	3 No.:		SDG N	Io.:	000819
Instrument	ID: HP1		Calib	ration I	Date: 08/2	19/0	Time	23	347
Lab File 1	D: 000819	11	Init.	Calib.	Date(s):	08/14/	0	08/1	.5/0
			Init.	Calib.	Times:	1734		0127	7

			MIN		MAX	{
COMPOUND		RRF25	RRF	%D	%D	
2-Naphthylamine		0.401		-12.0		
5-Nitro-o-toluidine	0.341			-12.0		ł
Azeobenzene	1.009		f			
1,3,5-Trinitrobenzene	1 1.009			8.2		Ì
Diallato (dia)	0.300	0.192			1	<
Diallate (cis)			1	3.3		
	0.487			7.8		
Diallate (trans)	0.300			3.3		
4-Aminobiphenyl	0.329			8.5	{	ļ
Pronamine	0.415			6.3		
Isodrin	0.177			10.2	[	ļ
Chlordane (alpha)	0.121			5.8	ļ	
Benzidine	0.021			0.0		ł
p-Dimethylaminoazobenzene	0.323		J	-6.2		
Chlorobenzilate	0.439			-0.4		ĺ
3,3'-Dimethylbenzidine	0.226			9.3	Í .	ļ
2-Acetylaminofluorene		0.248		-4.6		
3-Methylcholanthrene	0.684			9.8	}	ļ
2-Methylpyridine		0.902		-3.8		Ì
Kepone	0.060			1.7		
Chlordane (gamma)	0.121			-10.7		1
Methyl methane sulfonate	0.140	0.126	i	10.0	ł	
Hexachlorophene			l			<
1,3-Dinitrobenzene	0.290	0.284		2.1		ļ
2,6-Dichlorophenol	0.378	0.342		9.5	ļ	
***************************************				=====		
2-Fluorophenol				-4.3	25.0	1
Bhonol-d5	3.406	3.346	0.800	1.8	25.0	
Nitrobenzene-d5	1.334		0.200	-7.3	25.0	1
2-Fluorobiphenyl	1.568		0.700			
2,4,6-Tribromophenol	0.339			3.8		
Terphenyl-d14	0.949	1.056	0.500	-11.3	25.0	
All other compounds must me	et a min	himum R	F of	010.		•

All other compounds must meet a minimum RRF of 0.010.

`•r

## 7B SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: PNNLContract: C104Lab Code: PNNLCase No.:SAS No.:SDG No.: 000819Instrument ID: HP1Calibration Date: 08/19/0Time: 1553Lab File ID: 00081902Init. Calib. Date(s): 08/14/008/15/0Init. Calib. Times: 17340127V

	J		MIN		MAX
COMPOUND	RRF	RRF25	RRF	%D	%D
*======================================	222222	=====	=====	1	
Phenol	1.660				
bis(2-Chloroethyl)ether	1.414				25.0
2-Chlorophenol	1.446			3.3	25.0
1,3-Dichlorobenzene	1.718	1.636		4.8	25.0
1,4-Dichlorobenzene	1.853	1.810	0.500	2.3	25.0
1,2-Dichlorobenzene	1.634			3.3	25.0
Benzyl alcohol	1.086			9.0	25.0
2-Methylphenol	2.756	2.547	0.700		25.0
2,2'-oxybis(1-Chloropropane)	1.311	1.419		-8.2	
N-Nitroso-di-n-propylamine	0.945		0.500	-7.2	25.0
4-Methylphenol	1.355		0.600		25.0
Hexachloroethane	0.754				25.0
Nitrobenzene	1.433	1.464			25.0
Isophorone	0.655	0.706	0.400	-7.8	25.0
2-Nitrophenol	0.229	0.222	0.100		25.0
2,4-Dimethylphenol	0.351	0.329			25.0
bis(2-Chloroethoxy)methane	0.397				
2,4-Dichlorophenol	0.322	0.293	0.200	9.0	25.0
1,2,4-Trichlorobenzene	0.424	0.398		6.1	25.0
Naphthalene	1.280	1.220	0.700	4.7	
4-Chloroaniline	0.391			-0.5	
Hexachlorobutadiene	0.285			6.3	
4-Chloro-3-methylphenol	0.303		0.200		25.0
2-Methylnaphthalene	0.822	0.770			25.0
Hexachlorocyclopentadiene	0.453	0.433		4.4	
2,4,6-Trichlorophenol	0.448	0.411	0.200		25.0
2,4,5-Trichlorophenol	0.432	0.443			
2-Chloronaphthalene	1.361	1.439		~5.7	
2-Nitroaniline	0.308			-4.9	
3-Nitroaniline	0.328	0.317	0.050		40.0
Dimethylphthalate	1.454		0.050	-7.6	
2,6-Dinitrotoluene	0.397				25.0
Acenaphthylene	2.155	2.014			25.0
Acenaphthene	1.310				25.0
2,4-Dinitrophenol	0.204			2.0	
Dibenzofuran	1.808	1.739	0.800	3.8	25.0
4-Nitrophenol	0.172	0.167	5.500	2.9	

All other compounds must meet a minimum RRF of 0.010.

page 1 of 4

#### 7C SEMIVOLATILE CONTINUING CALIBRATION CHECK

Lab Name: PNNL

Contract: C104

Lab Code: PNNL Case No.: SAS No.: SDG No.: 000819

Instrument ID: HP1 Calibration Date: 08/19/0 Time: 1553

SDG No.: 00081 Time: 1553

Lab File ID: 00081902 Init. Calib. Date(s): 08/14/0 08/15/0

Init. Calib. Times: 1734 0127

'n

COMPOUND			MIN	í	MAX
	RRF		RRF	۶D	%D
	======	======	=====		
2,4-Dinitrotoluene Diethylphthalate	0.442	0.441	0.200	0.2	25.0
Diethylphthalate	1.518	1.443		4.9	
Fluorene	1.463	1.357	0.900	7.2	25.0
Fluorene4-Chlorophenyl-phenylether	0.747	0.698	0.400	6.6	25.0
4-Nitroaniline	0.315	0.302		4.1	
4.6-Dinitro-2-methylphenol	0.289	0.280		3.1	
N,N-Diphenylamine	0.806	0.730	Į	9.4	
Heptachior	0.172	0.166	0.050	3.5	40.0
alpha-BHC	0.235	0.212	0.050	9.8	40.0
4-Bromophenyl-phenylether	0.324	0.290	0.100	10.5	25.0
Hexachlorobenzene	0.405	0.362	0.100	10.6	25.0
beta-BHC	0.179		0.050		40.0
beta-BHC Pentachlorophenol	0.194	0.187	0.050	3.6	25.0
delta-BHC Phenanthrene	0.179		0.050		40.0
Phenanthrene	1.319	1.206	0.700	8.6	25.0
	1.319	1.184	0.700		
gamma-BHC (Lindane)	0.155	0.139			
Carbazole	1.142			8.2	
Carbazole Di-n-butylphthalate	1.704			10.0	
Aldrin	0.164		0.050	1.2	40.0
Aldrin Heptachlor Epoxide	0.090	0.080		11.1	
Fluoranthene	1.414	1.254	0.600	11.3	25.0
Pyrene	1.377	1.421	0.600	-3.2	
Endosulfan I	0.065	0.066		-1.5	
4,4'-DDE	0.297	0.301	0.050	-1.3	40.0
Dieldrin	0.183	0.202	0.050	-10.4	40.0
Fndrin	0.059	0.060	0.050	-1.7	
Endosulfan II	0.046			-2.2	
(1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (1 (	0.472	0.457	0.050	3.2	40.0
Butylbenzylphthalate	0.599			-2.5	
Endosulfan Sulfate	0.073	0.080		-9.6	
4,4'-DDT	0.402	0.426	0.050	-6.0	
	0.064	0.070	0.050	-9.4	40.0
Benzo (a) anthracene	1.146	1.233	0.800	~7.6	25.0
3,3'-Dichlorobenzidine	0.386	0.415		-7.5	
Chrysene	1.077		0.700		25.0

All other compounds must meet a minimum RRF of 0.010.

page 2 of 4

#### FORM VII SV-2

8B

Case No.:

### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: PNNL

Lab Code: PNNL

Instrument ID: HP1

Contract: C104

SAS No.:

SDG No.: 000819

Lab File ID (Standard): 00081903

Date Analyzed: 08/19/0

.

Time Analyzed: 1645

',

		ISI(DCB)		IS2 (NPT)		TOO (ANTO)	I
		AREA #	RT #	AREA #	RT #	IS3 (ANT) AREA #	
			++ 171 ++		RT #	AREA #	RT #
	12 HOUR STD	405874	11.65	1550257	±=====================================		======
	UPPER LIMIT	811748	12.15	3100514	15.80	822337	20.48
	LOWER LIMIT	202937	11.15	775129	14.80	1644674	20.98
		202957		//5129		411169	19.98
	EPA SAMPLE				=======	==========	======
	NO.						
	NO.						
01	C104-SLB	508801	====≡≡= 11 <i>.</i> 67	1837266			
02	C104-SLS	501731	11.66	1849797	15.31	995635	20.50
02	C104-SLD	639416	11.68	2388827	15.31 15.31	1018382 1293409	20.49
04	C104-SLMS	500483	11.65	1895372	15.31	1007930	20.51
05	C104-SLMSD	501643	11.66	1908361	15.30	976494	20.48
06	C104-SLE	537135	11.67	1955787	15.30 15.33	976494	20.49
07		JJ/1JJ	11.07	1972/01	T2.22		
08				<u> </u>			·
09						<u> </u>	
10	· · _ · _ · _ · _ · _ · _ · _ /	·					
11			<u> </u>				
12							<u> </u>
13							
14				<u> </u>			
15						<u> </u>	
16	·						
17						·	
18							
19							
20							
21				<u> </u>			
22							
	I 1	f	I			· [	l

IS1 (DCB) = 1,4-Dichlorobenzene-d4 IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.
* Values outside of QC limits.

page 1 of 1

1.

FORM VIII SV-1

8C

Case No.:

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: PNNL

Lab Code: PNNL

Instrument ID: HP1

Contract: C104

SAS No.: SDG No.: 000819

Lab File ID (Standard): 00081903

Date Analyzed: 08/19/0

Time Analyzed: 1645

. .

		IS4 (PHN)		IS5(CRY)		IS6 (PRY)	· · · · · · · · · · · · · · · · · · ·
		AREA #	RT #	AREA #	RT #	AREA #	RT #
				============	======	===========	=======
	12 HOUR STD	1370495	24.88	1200694	32.73	1290210	36.62
	UPPER LIMIT	2740990	25.38	2401388	33.23	2580420	37.12
	LOWER LIMIT	685248	24.38	600347	32.23	645105	36.12
		==========	=======	===========	======	==========	=======
	EPA SAMPLE						
	NO.						ľ
	#2===========	=======================================		================	*=*====	2222222222	======
01	C104-SLB	1669795	24.89	1492438	32.73	1608864	36.64
02	C104-SLS	1773468	24.89	1455859	32.73	1444697	36.63
03	C104-SLD	2205207	24.91	1887770	32.74	1835689	36.64
04	C104-SLMS	1640035	24.88	1431404	32.72	1553972	36.63
05	C104-SLMSD	1647350	24.89	1451327	32,73	1557285	36.62
06	C104-SLE	1635345	24.89	1347035	32.73		
07					<u> </u>		
08							
09							
10						. <u> </u>	
11							í
12							
13							
14							
15							
16							
17				<u> </u>			[]
18							·
19					<u> </u>		
20							
21							
22							

IS4 (PHN) = Phenanthrene-d10
IS5 (CRY) = Chrysene-d12
IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.
* Values outside of QC limits.

FORM VIII SV-2

8C

Case No.:

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: PNNL

Lab Code: PNNL

Contract: C104

SDG No.: 000819

7

SAS No.:

Lab File ID (Standard): 00081903

Instrument ID: HP1

Date Analyzed: 08/19/0

Time Analyzed: 1645

		IS7		·····	· · · · · · · · · · · · · · · · · · ·		
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	==========	*=======	=======		========	=========	========
	12 HOUR STD	606704	4.19			ļ	
	UPPER LIMIT	1213408	4.69				
	LOWER LIMIT	303352	3.69				
Ì	=============	=============	======	=======	======	===========	=======
	EPA SAMPLE NO.						
	====zz===	===============	=======	==========	======	==========	====== l
01	C104-SLB	631260	4.23				
02	C104-SLS	656348	4.30				
03	C104-SLD	610012	4.34			i	
04	C104-SLMS	667879	4.20			ļ ———	
05	C104-SLMSD	641620	4.20	·······		<del></del>	
06	C104-SLE	65566*	4.46				
07							i — — — .
08	·		·i				
09							
10							
11	·				·		Í
12							
13					·		
$14^{13}$							
15							
					·		
16		······································					
17				·			
18							
19							
20							
21							
22							
			I		·	•	

IS7 = Pyridine-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.
* Values outside of QC limits.

page 1 of 1

J

FORM VIII SV-3

8B

Case No.:

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: PNNL

Lab Code: PNNL

Contract: C104

SAS No.: SDG No.: 000819

÷,

Lab File ID (Standard): 00081912

Date Analyzad, 00/0/

Instrument ID: HP1

Date Analyzed: 08/20/0

Time Analyzed: 0127

		IS1(DCB)		IS2(NPT)		IS3 (ANT)	(
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	*=*==*==*=*		=======	*=========	======	============	======
	12 HOUR STD	931070	11.66	3493620	15.32	1889843	20.50
	UPPER LIMIT	1862140	12.16	6987240	15.82	3779686	21.00
	LOWER LIMIT	465535	11.16	1746810	14.82	944922	20.00
			2022223	============		============	========
	EPA SAMPLE						
	NO.						
01	C104-SSB	729054	11.65	2591441	15,30	1429683	20.48
02	C104-SSS	745533	11.67	2783562	15.30	1567965	20.50
03	C104-SSD	655203	11.66	2371540	15.29	1340805	20.49
04	C104-SSMS	823709	11.66	3030189	15.31	1705499	20.49
05	C104-SSMSD	1138134	11.67	4086660	15.30	2251435	20.50
06	LCSB	1066862	11.67	3839133	15.31	2076670	20.50
07	LCSMS	960285	11.66	3445517	15.31	1857146	20.49
08							
09							
10 11				<u> </u>			
12		<u> </u>			<u></u>		
13							<u></u>
$14^{10}$				· · · · · · · · · · · · · · · · ·			
15							
16	· · · · · · · · · · · · · · · · · · ·						
17							
18							
19							
20							
21	·						
22	<u></u>				i		I

IS1 (DCB) = 1,4-Dichlorobenzene-d4

IS2 (NPT) = Naphthalene-d8

IS3 (ANT) = Acenaphthene-d10

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.
* Values outside of QC limits.

page 1 of 1

FORM VIII SV-1

8C

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: PNNL

Contract: C104

SDG No.: 000819

•,

Lab Code: PNNL Case No.:

SAS No.:

Lab File ID (Standard): 00081912

Instrument ID: HP1

Date Analyzed: 08/20/0

Time Analyzed: 0127

	1	TOA		TOT (0011)	· · · · · · · · · · · · · · · · · · ·		
		IS4 (PHN)		IS5 (CRY)		IS6 (PRY)	
		AREA #	RT #	AREA #	RT #	AREA #	RT #
	{=====================================		======	*********	======	=======	======
	12 HOUR STD	3154078	24.90	2814819	32,75	3126724	36.66
	UPPER LIMIT	6308156	25.40	5629638	33.25	6253448	37.16
	LOWER LIMIT	1577039	24.40	1407410	32.25	1563362	36.16
						1000002	50.10
	EPA SAMPLE			<b>-</b>			
	NO.						
	=============		=======		*****		
01	C104-SSB	2294301	24.88	1912595	32.73	1973546	36.63
02	C104-SSS	2590384	24.89	2294909	32.73	2442441	36.65
03	C104-SSD	2191288	24.88	1841527	32.72	1944279	36.63
04	C104-SSMS	2725666	24.89	2424394	32.74	2596812	36.65
05	C104-SSMSD	3724929	24.89	3171350	32.74	3343028	36.65
06	LCSB	3432859	24.90	2859302	32.74	2900655	36.67
07	LCSMS	3024823	24.89	2525369	32.74	2620336	36.64
08							00101
09						· · · · · · · · · · · · · · · · · · ·	
10	·						
11						······································	
	·					v	
12						·	
13							
14							
15		~					
16							
17							
18							
19							
20				· · · · · · · · · · · · · · · · · · ·			
21					<u> </u>		
22							
22							I

IS4 (PHN) = Phenanthrene-d10 IS5 (CRY) = Chrysene-d12 IS6 (PRY) = Perylene-d12

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.
* Values outside of QC limits.

page 1 of 1

FORM VIII SV-2

8C

Case No.:

#### SEMIVOLATILE INTERNAL STANDARD AREA AND RT SUMMARY

Lab Name: PNNL

Lab Code: PNNL

Instrument ID: HP1

Contract: C104

SAS No.:

SDG No.: 000819

•

Lab File ID (Standard): 00081912

Date Analyzed: 08/20/0

Time Analyzed: 0127

IS7       AREA #       RT #       AREA #       RT #       AREA #       RT #       AREA #       RT #         12 HOUR STD       1185309       4.19								
12 HOUR STD       1185309       4.19								
12 HOUR STD       1185309       4.19			AREA #	RT #	AREA #	RT #	AREA #	RT #}
UPPER LIMIT         2370618         4.69           LOWER LIMIT         592655         3.69           EPA SAMPLE						=====	======================================	=======
LOWER LIMIT       592655       3.69								
EPA SAMPLE NO.       887076       4.26         10 Cl04-SSB       940267       4.23         02 Cl04-SSD       961822       4.21         04 Cl04-SSMS       1118906       4.18         05 Cl04-SSMS       1466057       4.23         06 LCSB       1347406       4.26         07 LCSMS       1181009       4.26         09							ĺ	
EPA SAMPLE NO.		LOWER LIMIT		3.69				
NO.			=======================================	======		======	=======================================	
1       C104 - SSB       887076       4.26								
01       C104-SSB       887076       4.26		1 1				Ì		
02       C104-SSS       940267       4.23	01				=2==3=====	======		*=====
03       C104-SSD       961822       4.21							[	
04       C104-SSMS       1118906       4.18         05       C104-SSMSD       1466057       4.23         06       LCSB       1347406       4.25         07       LCSMS       1181009       4.26         08								
05       C104-SSMSD       1466057       4.23			1				[	
06       LCSB       1347406       4.25	-				<u>_</u> _	]	Ì	
07       LCSMS       1181009       4.26								
08								
09		DCD/ID	1101000	7.20				
10		·						
11		·						
12		(					· · ·	
13							i	
14		i						
15								
16								<del></del> ]
17	16						í	
18								
20 21								
21	19							
	20				·			
22								
	22							

IS7 = Pyridine-d5

AREA UPPER LIMIT = +100% of internal standard area AREA LOWER LIMIT = - 50% of internal standard area RT UPPER LIMIT = + 0.50 minutes of internal standard RT RT LOWER LIMIT = - 0.50 minutes of internal standard RT

# Column used to flag internal standard area values with an asterisk.
* Values outside of QC limits.

page 1 of 1

FORM VIII SV-3

Appendix F: Dioxins and Furans Ion Abundance Ratios and Response Factors

	Native	Mass	Native	Labeled		Average	
Compound	Conc. μg/L	m/z	Ion Ratio	Ion Ratio ⁽¹⁾	RRF	RRF	%RSD
HpCDD	2.5	424	1.06	1.08	1.08	0.96	10.2
	10.0		1.04	1.06	0.94		
	50.0		1.05	1.07	0.96		
	200.0		1.03	1.06	0.85		
HpCDD	2.5	426			1.11	0.98	9.8
	10.0				0.96		
	50.0				0.97		
	200.0				0.88		
HpCDF	2.5	408	0.95	1.07	1.06	0.98	13.1
	10.0		1.06	1.04	1.07		
	50.0		1.07	1.07	1.06		
	200.0		0.88	1.05	0.86		
HpCDF	2.5	410			1.19	1.05	11.8
	10.0				1.05		
	50.0				1.05		
	200.0				0.89		
HxCDD	2.5	390	1.06	1.28	1.20	1.19	11.9
	10.0		1.31	1.27	1.32		
	50.0		1.25	1.27	1.26		
	200.0		1.13	1.27	0.99		
HxCDD	2.5	392			1.42	1.28	9.9
	10.0				1.27		
	50.0				1.29		
	200.0				1.15		
HxCDF	2.5	374	1.29	1.24	1.06	1.16	12.3
	10.0		1.10	1.25	1.10		
	50.0		1.27	1.18	1.11		
	200.0		1.18	1.28	1.40		
HxCDF	2.5	376			1.20	1.13	7.7
	10.0				1.04		
	50.0				1.06		
	200.0				1.21		
OCDD	5.0	458	0.93	0.90	1.21	0.98	22.5
	20.0		0.91	0.92	0.95		
	100.0		1.00	1.00	1.05		
	400.0		0.98	0.95	0.69		

 Table F.1.
 Ion Abundance Ratios and Response Factors for Standards

	Native	Mass	Native	Labeled		Average	
Compound	Conc. µg/L	m/z	Ion Ratio	Ion Ratio ⁽¹⁾	RRF	RRF	%RSD
OCDD	5.0	460			1.18	0.97	22.3
	20.0				0.96		
	100.0				1.05		
	400.0				0.67		
OCDF	5.0	442	0.95	0.90	1.36	1.15	19.6
	20.0		0.92	0.92	1.20		
	100.0		0.92	0.93	1.24		
	400.0		0.96	0.95	0.90		
OCDE	5.0	444			1.29	1 1 4	10.0
OCDF	20.0	444			1.29	1.14	18.8
	100.0				1.18		
	400.0				0.83		
	400.0				0.85		
PeCDD	2.5	356	1.43	1.61	0.92	0.89	14.6
	10.0		1.43	1.55	0.81		
	50.0		1.63	1.57	1.08		
	200.0		1.39	1.62	0.74		
PeCDD	2.5	358			1.03	0.96	9.5
ТСОБ	10.0	550			0.88	0.90	7.5
	50.0				1.04		
	200.0				0.90		
PeCDF	2.5	340	1.38	1.67	1.13	1.02	21.7
	10.0		1.53	1.63	1.04		
	50.0		1.58	1.69	1.11		
	200.0		1.32	1.64	0.81		
PeCDF	2.5	342			1.40	1.15	19.5
	10.0				1.16		
	50.0				1.19		
	200.0				0.85		
TCDD	0.5	322	0.83	0.89	1.06	1.05	18.6
	2.0	344	0.83	0.89	0.82	1.03	10.0
	10.0		0.07	0.79	1.02		
					1.02		
	40.0		0.82	0.80	1.30		
TODD	0.5	22.4			1 1 2	1 1 4	0.7
TCDD	0.5	324			1.13	1.14	9.5
	2.0				1.00		
	10.0				1.15		
	40.0				1.26		

	Native	Mass	Native	Labeled		Average	
Compound	Conc. µg/L	m/z	Ion Ratio	Ion Ratio ⁽¹⁾	RRF	RRF	%RSD
TCDF	0.5	304	0.78	0.80	1.02	1.02	4.1
	2.0		0.78	0.70	1.07		
	10.0		0.75	0.73	0.96		
	40.0		0.82	0.82	1.03		
TCDF	0.5	306			1.04	0.99	4.9
	2.0				0.96		
	10.0				0.94		
	40.0				1.02		

Concentration of labeled compounds: OCDD and OCDF =  $200 \ \mu g/L$ , all other labeled compounds at  $100 \ \mu g/L$ 

Tank Material		C-104 Su				
Sample ID	00-0	00-01360 MS 00-01360 MSD		60 MSD	LCS	
Ion Ratios	Native	Labeled	Native	Labeled	Native	Labeled
Analyte						
HpCDD	1.03	1.08	1.07	1.03	1.04	1.08
HpCDF	1.01	1.02	1.04	1.07	1.06	1.04
HxCDD	1.07	1.26	1.21	1.27	1.27	1.10
HxCDF	1.31	1.32	1.08	1.38	1.28	1.19
OCDD	0.81	0.92	0.87	0.89	0.89	0.90
OCDF	0.89	0.92	0.80	0.89	0.91	0.90
PeCDD	1.56	1.53	1.53	1.60	1.55	1.60
PeCDF	1.58	1.47	1.59	1.71	1.57	1.70
TCDD	0.77	0.76	0.75	0.66	0.89	0.75
TCDF	0.72	0.76	0.86	0.76	0.76	0.80

Table F.2. Ion Abundance Ratios for Supernatant Matrix Spikes

Table F.3. Ion Abundance Ratios for Solids Matrix Spikes

•

Tank Material	C·	-104 Wet Ce	entrifuged S	fuged Solids			
Sample ID	00-013	361 MS	00-01361 MSD				
Ion Ratios	Native Labeled		Native	Labeled			
Analyte							
HpCDD	1.09	1.14	1.05	1.17			
HpCDF	1.08	0.89	1.06	0.91			
HxCDD	1.07	1.33	1.26	1.29			
HxCDF	1.21	1.28	1.18	1.29			
OCDD	0.79	0.98	0.92	1.02			
OCDF	0.80	0.98	0.92	1.02			
PeCDD	1.62	1.40	1.67	1.64			
TCDF	1.63	1.52	1.55	1.46			
PeCDF	0.85	0.82	0.73	0.71			
TCDD	0.78	0.79	0.81	0.79			

Tank Material			C-104 S	upernatan	ıt				
Sample ID	00-01360		00-01360		00-01360				
	Proc. Blk		Sample		Duplicate				
Ion Ratios	Native	Labeled	Native	Labeled	Native	Labeled			
Analyte									
HpCDD		1.10		1.10		1.14			
HpCDF		1.18		1.07		1.12			
HxCDD		1.21		1.27		1.23			
HxCDF		1.11		1.42		1.28			
OCDD		1.00		092		0.91			
OCDF		1.00		0.92		0.90			
PeCDD		1.58		1.58		1.76			
PeCDF		1.46		1.33		1.53			
TCDD		0.84		0.85		0.79			
TCDF		0.82		0.77		0.72			

Table F.4. Ion Abundance Ratios for Supernatant Samples, Duplicates, and Process Blanks

"Blanks" = No signal or peak area detected; ion abundance ratio is zero (0) or undefined.

Table F.5. Ion Abundance Ratios for Solids Samples, Duplicates, and Process Blanks

Tank Material		C-1	04 Wet Centrifuged Solids					
Sample ID	00-01361		00-01361		00-01361			
	Proc. Blank		Sample		Duplicate			
Ion Ratios	Native Labeled		Native	Labeled	Native	Labeled		
Analyte								
HpCDD		1.06		1.20		1.11		
HpCDF		1.00		1.08		1.06		
HxCDD		1.33		1.30		1.17		
HxCDF		1.24		1.16		1.27		
OCDD		0.97		1.02		0.98		
OCDF		0.97		1.02		0.98		
PeCDD		1.57		1.45		1.58		
PeCDF		1.43		*		1.57		
TCDD		0.75		0.67		0.82		
TCDF		0.88		0.82		0.86		

"*" = Ion abundance ratio does not meet QC criteria shown in Table 6.4

"Blanks" = No signal or peak area detected; ion abundance ratio is zero (0) or undefined.

# Distribution

No. of Copies

## OFFSITE

No. of Copies

# ONSITE

- 1 <u>Savannah River National Laboratory</u> Richard Edwards Westinghouse SA Aiken, South Carolina 29808-0001
- 5 Pacific Northwest National Laboratory J. C. Evans K6-96 Project Office (2) P7-28 Information Release (2) K1-06