PNWD-3029 BNFL-RPT-023 Rev. 0

Mixing of Process Heels, Process Solutions, and Recycle Streams: Results of the Small-Scale Radioactive Tests

G. J. LumettaM. A. MannJ. P. BramsonM. J. SteeleO. T. Farmer IIIR. T. SteeleL. R. GreenwoodR. G. SwobodaF. V. HoopesM.W. Urie

April 2000

Prepared for BNFL, Inc. under Project 29952/29953 Battelle, Richland, Washington, 99352

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

CONTENTS

1.0	Introduction	
2.0	Experimental	
3.0	Results	
4.0	Conclusions	
5.0	References	
Append	dix A. Test Plan	A.Error! Bookmark not defined.
Append	dix B. Analytical Reports	B.1
Append	dix C. Calculations	

Figures

Figure 3.1. Pe	ertechnetate K _d s V	ersus The Nitrate	Pertechnetate Ratio	0
----------------	---------------------------------	-------------------	---------------------	---

Tables

Table 2.1.	Hanford Tank Waste Materials Used in the Mixing Tests	2.1
Table 2.2.	Summary of Mixing Tests	2.2
	Technetium Distribution Coefficients	
Table 3.2.	Anion Concentrations in the Various Mixtures	3.4
Table 3.3.	Composition of the Precipitate from the AN-107 Mixing Tests	3.6

1.0 INTRODUCTION

Various recycle streams will be combined with the low-activity waste (LAW) or the high-level waste (HLW) feed solutions during the processing of the Hanford tank wastes by BNFL, Inc. In addition, the LAW and HLW feed solutions will also be mixed with heels present in the processing equipment. This report describes the results of a test conducted by Battelle to assess the effects of mixing specific process streams. Observations were made regarding adverse reactions (mainly precipitation) and effects on the Tc oxidation state (as indicated by K_d measurements with SuperLig® 639). The work was conducted according to test plan BNFL-TP-29953-023, Rev. 0, *Small Scale Mixing of Process Heels, Solutions, and Recycle Streams.* The test went according to plan, with only minor deviations from the test plan. The deviations from the test plan are discussed in the experimental section.

2.0 EXPERIMENTAL

<u>Sample Description</u>. Five Hanford waste samples were used in this work. These are listed in Table 2.1 along with a description of the samples' origins.

Label	Description
AN107	AN-107 solution after Sr/TRU precipitation and cross- flow filtration
AN107 WASH	Composite solution obtained during washing of the AN- 107 entrained solids
AW101	AW-101 solution after cross-flow filtration
AW101 WASH	Composite solution obtained during washing of the AW- 101 entrained solids
C104 LEACH/WASH	Composite of C-104 washing and caustic leaching solution

Table 2.1. Hanford Tank Waste Materials Used in the Mixing Tests

<u>Procedure.</u> A detailed description of the experimental procedure can be found in Appendix A. Table 2.2 summarizes the specific mixing tests performed. For tests 1 through 5, the solutions were mixed at ambient temperature (~23°C) and three 5-mL aliquots were taken within 4 h of mixing. One aliquot was filtered through a 0.45- μ m nylon membrane and was set aside for analysis. The other two were used for Tc K_d measurements as described below. After standing for a period of 2 weeks, three more 5-mL aliquots were taken. Again, one was filtered and saved for analysis, while the other two were used for Tc K_d measurements.^(a)

For tests 6 through 9, the solutions were mixed and observed for two weeks. No Tc K_d measurements were performed for these mixtures. The solids formed in tests 6 and 7 were collected by centrifuging the mixture and then separating the liquid phase. The solids were dried at 105°C and analyzed by ICP/AES, IC, TIC/TOC, GEA, ⁹⁰Sr, and total alpha. The mass of the dried solids from Test 6 was 0.17 g and that from Test 7 was 0.12 g. These weights include the weight of any dissolved solids present in the interstitial liquid prior to drying.

(a)

In the case of Test 2, one aliquot was lost due to a leak in the syringe filter. Because of this, only a single K_d measurement could be done after 2 weeks.

Test #	Solution 1	Vol., mL	Mass, g	Solution 2	Vol., mL	Mass, g	Observations
1	AN107	3	3.9720	AW101	30	38.2534	Solution cloudy after 1.5 h; small amount of precipitate on the bottom of vial after 4 days. There was no further change after standing for another 10 days.
2	AN107	3	3.8118	C104 LEACH/WASH	30	31.9973	Same as Test 1
3	AN107	20	24.9540	C104 LEACH/WASH	20	20.9489	Solution was cloudy immediately after mixing; a dark brown solid had settled to the bottom of the vial after 1 day. There was no further change after standing for 2 weeks.
4	AW101	3	3.6916	C104 LEACH/WASH	30	32.1748	Clear solution after 2 weeks
5	AW101	20	24.8593	C104 LEACH/WASH	20	21.8070	Clear solution after 2 weeks
6	AN107	~15 ^(a)	18.7667	AN107 WASH	2	2.0545	Solution was cloudy immediately after mixing; a dark solid had settled to the bottom of the vial after 3 days. There was no further change after standing for another 2 weeks.
7	AN107	~7 ^(b)	7.7457	AN107 WASH	10	10.6165	Same as Test 6
8	AW101	20	24.9273	AW101 WASH	2	1.9836	Clear solution after 3 weeks
9	AW101	10		AW101 WASH	10		Clear solution after 3 weeks
				~15 mL used beca ~7 mL used becau			

Table 2.2. Summary of Mixing Tests

<u>Technetium K_d Measurements.</u> The Tc K_ds were determined by stirring 5 mL of solution with 0.05 g of SuperLig® 639 (SL-639). The SL-639 was used as-received from IBC Advanced Technologies, Inc. (American Fork, Utah). For tests 4 and 5, the solution/SL-639 mixtures were stirred for 24 hours; for all other measurements, the mixtures were stirred for 1 week.^(a) After stirring, the solutions were filtered through 0.45-µm nylon syringe filters. The filtered solutions were analyzed for ⁹⁹Tc by ICP-MS, as were aliquots of the solutions taken before contact with the SL-639. The untreated solutions were also analyzed for anions by ion chromatography and for hydroxide ion by titrimetry with standard HCl. The batch K_d was determined according to the following formula:

$$K_{d} = \frac{(C_{o} - C)W_{s}}{W_{c}C'F}$$

where C_o is the initial ⁹⁹Tc concentration (in ng/g), C is the final ⁹⁹Tc concentration (in ng/g), C' is the final ⁹⁹Tc concentration (in ng/mL), W_s is the mass of the solution, W_r is the mass of the resin, and F is mass of the dried resin divided by the mass of the as-received resin; F = 0.956, dried at 95°C.^(a)

^(a) The contact time was extended to 1 week to ensure equilibrium was attained.

^(a) Blanchard, D.L. Jr, D.E. Kurath, and B.M. Rapko., 2000, Small Column Testing of Superlig 639 for Removal of ⁹⁹Tc from Hanford Tank Waste Envelope C (Tank 241-AN-107), BNFL-RPT-022, Rev 0, (DRAFT), Pacific Northwest National Laboratory, Richland, Washington.

3.0 RESULTS

Table 3.1 presents the measured K_d values. Table 3.2 presents the anion concentrations in the various mixtures investigated. The K_d data are presented in terms of total Tc and in terms of TcO₄⁻. The estimated TcO₄⁻ concentrations were determined by first estimating the fraction of the total Tc contributed by each solution mixed. This estimate was made based on the total Tc concentration in each solution and the amount of each solution mixed. The initial TcO₄⁻ concentration was then estimated by determining the fraction of TcO₄⁻ contributed by each solution using previous estimates of the TcO₄⁻ content in each solution (Kurath, Blanchard, and Bontha 1999).^(b) All the Tc sorbed on the resin was assumed to be TcO₄⁻. The final TcO₄⁻ concentration in solution was determined by difference between that estimated to be initially present and that sorbed on the resin.

The total Tc K_d values ranged from about 300 mL/g to 600 mL/g, except for tests 2 and 3 for which the K_d values were an order of magnitude lower. The low K_d values for tests 2 and 3 can be attributed to the fact that the origin of most of the Tc present in these mixtures was the AN-107 feed material. A significant fraction (75%) of the Tc in the AN-107 waste is not pertechnetate ion. Since SL-639 only removes pertechnetate, the K_d values are low for AN-107 (Kurath, Blanchard, and Bontha 1999).

The $TcO_4^-K_d$ data are perhaps more informative. In all cases, the $TcO_4^-K_d$ values were greater than 100 mL/g, but the values tended to be low for solutions where the origin of most of the Tc was AN-107 (Tests 2 and 3). The reason for this has not been definitively determined, but it is perhaps due to competition between sorption of TcO_4^- and the sorption of competing organic anions present in the AN-107 solution.

Information provided by IBC Advanced Technologies, Inc. indicates that NO_3^- is likely to be the most important competing anion present in the waste. Thus, it is of interest to analyze the K_d data as a function of NO_3^- concentration.^(c) Figure 3.1 presents the $TcO_4^- K_d$ values as a function of NO_3^-/TcO_4^- ratio. The values obtained are consistent with those reported for the pure AW-101 and AN-107 solutions (Kurath, Blanchard, and Bontha 1999). Thus, it appears that mixing of the solutions has no significant overall effect on the behavior of Tc. That is, the Tc K_d values are determined largely based on the amount of TcO_4^- present in the solutions to begin with.

^(b) The TcO₄- fraction in C104 LEACH/WASH was unknown; it was assumed to be 100% TcO₄-.

⁽c) The NO₃ /TcO₄ ratio may not be an appropriate indicator of the relative pertechnetate K_d for the AN-107 waste or other similar wastes that contain relatively large concentrations of organic compounds that are complexing agents. This is because the pertechnetate comprised only about 25% of the total technetium present in the AN-107 waste. The non-pertechnetate fraction cannot be absorbed by SL-639 resin or other similar anion exchange materials.

The precipitates that formed when the AN-107 solution was mixed with the AN-107 entrained solids wash solution (at 1:1 and 10:1 ratios) were analyzed by ICP-AES. The solution remaining after the precipitation was also analyzed. Table 3.3 presents the results. The data are presented in terms of the absolute concentrations in the liquids and solids (μ g/mL and μ g/g, respectively). Data are also presented on the amount of each component in the analyzed solids (which includes material contributed by the interstitial liquid). These values were adjusted to account for the material contributed by the interstitial liquid. To make this adjustment, it was assumed that all the Na in the analyzed solids originated in the interstitial liquid.^(b) Finally, the moles of each component in the precipitated solids were determined relative to Al. The results indicated that the precipitated solids contained primarily Al, B, Fe, Mn, and Si.

The solids were taken up in deionized water and were analyzed for ions by ion chromatography. Table 3.3 presents the IC results. The chloride, nitrite, nitrate, and sulfate in the analyzed solids were largely attributable to the interstitial liquid. The primary anions in the precipitate (as determined by IC) were fluoride and oxalate. It should be noted that the hydroxide content of the solids was not determined. It is likely that hydroxide is a major counter anion present.

The TOC analysis of the solids did not corroborate the oxalate results indicated by IC. Indeed the TOC analysis suggested that the organic carbon present in the dried solids was largely attributable to that present in the interstitial liquid. On the other hand, there appeared to be considerable TIC present in the precipitated solids. Because of the discrepancies between the TOC and IC data, caution should be exercised in using these data. A larger scale test would be useful so that enough solids can be collected for thorough characterization.

The radionuclide data are somewhat difficult to interpret, because there was no straight-forward way to correct the data for the contribution of the interstitial liquid. Estimated radionuclide concentrations in the precipitated solids are presented in Table 3.3. These concentrations should be viewed as qualitative because of the number of assumptions made in their determination [see footnote (d) in the table]. The estimated radionuclide concentrations indicate the precipitated solids should be handled as high-activity waste. The precipitated solids contained approximately 500 to 1100 μ Ci/g¹³⁷Cs/g, 100 to 300 μ Ci⁹⁰Sr/g, 1 μ Ci⁹⁹Tc/g and 4 to 10 μ Ci TRU/g.

^(b) There is no rigorous justification for this assumption, but qualitative observation of the amount of liquid carried over with the solids (0.5 to 1 mL) is consistent with the assumption.

			Fraction o	Fraction of ⁹⁹ Tc ^(a) , %	Fraction as			NO ³⁻ /Tc,		NO ₃ -/TcO ₄ -
Test #	Solution 1	Solution 2	Solution 1	Solution 2	TcO ₄ ⁻ , % ^(b)	Time ^(c)	Tc K _d mL/g	mole/mole	TcO_4 K _d mL/g ^(d)	mole/mole
1	AN107	AW101	5	95	93.4	1 day	298	173424	383	3 236418
						1 day	297	173424	382	236305
						2 weeks	290	155268	368	3 209587
						2 weeks	280	148530	348	3 197281
5	AN107	C104 LEACH/WASH	86	14	35.5	1 day	36	86167	292	2 713709
						1 day	25	78781	121	400860
						2 weeks	31	77031	129	9 477828
ю	AN107	C104 LEACH/WASH	98	2	26.5	1 day	28	77659	508	3 1447988
						1 day	22	74396	231	809963
						2 weeks	29	77746	561	1566350
						2 weeks	25	77052	348	3 1100738
4	AW101	C104 LEACH/WASH	92	~	97.2	1 day	394	159516	450) 185289
						1 day	450	182801	527	7 217651
						2 weeks	488	201070	578	3 241646
						2 weeks	564	212687	677	7 258905
5	AW101	C104 LEACH/WASH	66	1	97.0	1 day	457	200998	532	2 241108
						1 day	430	197816	-) 236284
						2 weeks	464	220261	544	4 265786
						2 weeks	435	211648	504	4 252557
(a) Fract.	ion of ⁹⁹ Tc ir	(a) Fraction of ⁹⁹ Tc in the mixture attributed to the individual solutions mixed	the individua	ıl solutions m	ixed.					
(b) Estin	nated as desc.	(b) Estimated as described in the text.								
(c) Time	at which K _d	(c) Time at which K _d measurement was initiated.	d.							
(d) Base	d on the estir	(d) Based on the estimated TcO ₄ ⁻ fractions.								

Table 3.1. Technetium Distribution Coefficients

3.3

Test # ^(a)	F⁻	Cl	NO ₂ ⁻	Br⁻	NO ₃ -	PO ₄ ³⁻	SO4 ²⁻	$C_2 O_4^{2-}$	OH ^{- (b)}
1 - Day 1	830	< 250	46000	< 250	101000	< 500	1100	< 500	1.92
1 - 2 Weeks	970	< 250	45300	< 250	98700	670	1200	< 500	1.91
2 - Day 1	3000	< 25	4800	< 25	12100	430	520	600	0.37
2 - 2 Weeks	3700	< 25	4500	26	11300	420	520	600	0.37
3 - Day 1	1540 ^(c)	430	13900	< 250	55500	< 500	1860	980	0.54
3 - 2 Weeks	2880 ^(c)	430	13700	< 250	54100	< 500	1840	1000	0.54
4 - Day 1 4 - Day 1 Replicate	2600 2600	200 190	4900 4900	< 125 < 125	8400 8400	430 420	360 330	510 500	0.48
4 - 2 Weeks	2700	210	5300	< 125	9000	450	< 250	540	0.45
5 - Day 1	1800	1100	22400	< 125	47000	< 500	< 500	< 500	0.86
5 - 2 Weeks	1800	1200	22700	< 125	47500	< 500	< 500	< 500	0.82

Table 3.2. Anion Concentrations in the Various Mixtures

(b) Determined by titration with standard HCl. Values presented are the average of duplicate runs.

(c) Value should be viewed as qualitative because of matrix interferences.

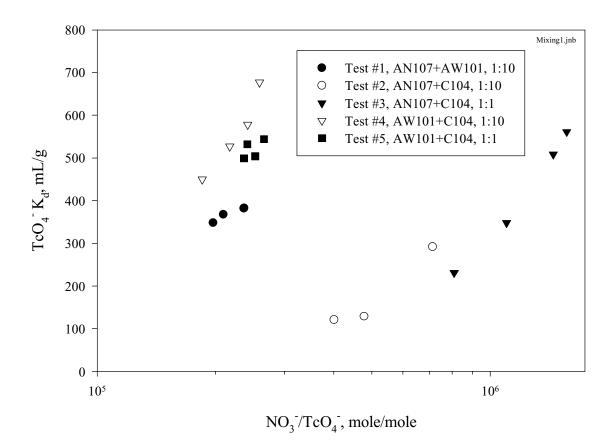


Figure 3.1. Pertechnetate K_ds Versus The Nitrate/Pertechnetate Ratio

	1:1 AN-107 Mix				10:1 AN-107 Mixing Tests					
	Liquid			Solid		Liquid			Solid	
Analyte	µg/mL	µg/g	$\mu g^{(a)}$	Adjusted µg ^(b)	Relative Moles	µg/mL	µg/g	$\mu g^{(b)}$	Adjusted $\mu g^{(b)}$	Relative Moles
Ag	< 0.5	145	17.4	17.4	0.03	< 2.5	185	31	31	0.03
Al	1045	7320	878	128	1.00	2260	8150	1376	292	1.00
В	13	277	33.2	23.9	0.46	(24)	354	59.8	48.2	0.41
Ca	78	500	60.0	4.0	0.02	(180)	474	80.0	-6.3	-0.01
Cd	12.2	74.1	8.9	0.1	0.00	27.1	73.5	12.4	-0.6	0.00
Cr	18.9	141	16.9	3.4	0.01	44.8	135	22.8	1.3	0.00
Cu	9.2	65.2	7.8	1.2	0.00	(19)	59.5	10.0	0.9	0.00
Fe	(3.9)	1460	175	172	0.65	(9.5)	1070	181	176	0.29
K	(325)	(2000)	(240)	(7)	0.04	(750)	(2000)	(338)	-(22)	-0.05
Mn	< 1	3810	457	456	1.75	< 5.0	3150	532	529	0.89
Na		317000		0		107000			0	
Ni	103	662	79.4	5.5	0.02	225	626	106	-2	0.00
Р	128	766	91.9	0.0	0.00	228	787	133	24	0.07
Pb	34	257	30.8	6.4	0.01	(67)	224	37.8	5.7	0.00
Si	(38)	2460	295	268	2.01	(56)	4250	717	691	2.27
Sr	66	426	51.1	3.7	0.01	132	391	66.0	2.7	0.00
Zn	(3.7)	152	18.2	15.6	0.05	(6.9)	447	75.5	72.1	0.10
TOC	8330	39850	4782	-1197	-20.94		44750	7554	-72	-0.55
TIC	4330	38850	4662	1554	27.20	8420	39250		2587	19.91
Cl	380	2130	256	-17.1	-0.10	700	1940	327	-8	-0.02
F⁻	< 250	2290	275	95.4	1.06	< 250	2270	383	263	1.28
NO_2^-	11600	70200	8424	98.3	0.45	24200	68200	11512	-94	-0.19
NO ₃ ⁻	47200	275000	33000	-877.1	-2.97	105000	274000	46251	-4105	-6.12
SO_4^{2-}	1620	9040	1085	-77.9	-0.17	3000	9260	1563	124	0.12
PO_4^{3-}	< 500	< 2000	< 240	< -151	-0.34	< 500	< 1800	< 304	< 64	0.06
$C_2 O_4^{2-}$	2500	16900	2028	233.7	0.56	< 500	7370	1244	1004	1.05
	Liquid			Solid ^(c)		Liquid			Solid ^(c)	
	µCi/g	µCi/g	µCi ^(a)	Adjusted $\mu Ci^{(b)}$	Estimated $\mu Ci/g^{(d)}$	µCi/g	µCi/g	$\mu Ci^{(a)}$	Adjusted $\mu Ci^{(b)}$	Estimated $\mu Ci/g^{(d)}$
Cs-137	62.9	420	50.4	5.3	2204	117	430	72.6	16.5	3432
Sr-90	0.509	8.55	1.0	0.7	275	0.723	5.18	0.9	0.5	110
Tc-99 ^(e)	0.0210	0.152	0.018	0.003	1.3	0.0425	0.152	0.026	0.005	1.1
Am-241	< 0.07		0.028	-0.023	1.0	< 0.2		0.084		
Eu-154	0.014	0.269		0.023	9	0.0301		0.040	0.026	5
Eu-155	< 0.07		0.032	-0.020	,	< 0.2		0.084	-0.012	5
Co-60	0.025	0.167		0.0020	1.0	0.0483		0.028	0.0012	
Total "	0.00591		0.020	0.025		0.0101		0.025	0.020	

Table 3.3. Composition of the Precipitate from the AN-107 Mixing Tests

(a) Mass (or activity) of each component determined to be in the dried solids. This was determined by multiplying the concentration (in $\mu g/g$) by the mass of the dried solids (0.12 g for the 1:1 mix and 0.1688 g for the 10:1 mix).

(b) Mass (or activity) of each component calculated to be in the dried solids, subtracting out the contribution from the interstitial liquid. For this calculation, it was assumed that all Na in the dried solids was attributed to that dissolved in the interstitial liquid.

(c) The analytical process blank for the solids analysis indicated relatively high radionuclide concentrations. The concentrations in the blank were as follows (in μCi/g): Cs-137 3.38, Eu-154 0.0137, Eu-155 0.0178, Am-241 0.0328, and total alpha 0.0241.

(d) Determined by dividing the adjusted μCi values by the estimated mass of the precipitated solids. The mass of the precipitated solids was estimated to be 2400 μg and 4800 μg for the 1:1 AN107 Mix and the 10:1 AN107 Mix, respectively. The following assumptions were made in determining these estimates: 1) oxalate is present as Al₂(C₂O₄)₃4H₂O, 2) the remaining aluminum is present as Al(OH)₃, 3) fluoride is present as FeF₃4.5H₂O, 4) the remaining iron is present as Fe(OH)₃, 5) manganese is present as MnO₂, and 6) silicon is present as SiO₂.

4.0 CONCLUSIONS

A series of tests has been conducted in which different Hanford tank waste solutions (AN-107, AW-101, and C-104 sludge washing/leaching solutions) were mixed in varying proportions. The effects of mixing these solutions on Tc sorption on SuperLig® 639 were evaluated. The results indicate little or no adverse effect of mixing on the Tc K_d. The K_d values are largely dictated by the amount of TcO_4^- originally present in each solution before mixing. There does not appear to be appreciable reduction (or oxidation) of Tc(VII) in any of the cases examined.

A precipitate formed when the AN-107 LAW sample was mixed with the solution generated by washing the AN-107 entrained solids. This precipitate was rich in Al, B, Fe, Mn, and Si. Solids formation was also observed upon mixing the AN-107 sample with the AW-101 sample and upon mixing the AN-107 sample with the C-104 leach/wash solution. During plant operations, mixing of these solutions should be avoided to prevent formation of solids.

Future testing should focus on preventing solids formation and methods to dissolve solids that form upon mixing process solutions. Work should also be conducted to understand the mechanisms for the stabilization of the non-pertechnetate species in the AN-107 waste, with the intent to convert this to the pertechnetate form.

5.0 **REFERENCES**

Kurath, D.E., D.L. Blanchard, and J.R. Bontha. 1999. Ion Exchange Distribution Coefficients for ¹³⁷Cs and ⁹⁹Tc Removal from Hanford Tank Supernates AW-101 (Envelope A) and AN-107 (Envelope C), PNWD-2467, Pacific Northwest National Laboratory, Richland, Washington.

Appendix B. Analytical Reports

Appendix C. Calculations

Appendix A. Test Plan

8

Workplace Copy

PNNL Test Plan	Document No.: BNFL-TP-29953-023 Rev. No.: 0					
Title: Small Scale Mixing of Process Heels, Solutions, and F	lecycle Streams					
Work Location: RPL/SAL/511/516	Page 1 of 33					
Author: GJ Lumetta Use Category Identification: Mandatory	Effective Date: Supersedes Date: New					
Identified Hazards: X. Radiological X. Radiological X. Technical Reviewers: X. Hazardous Materials Building Manager Physical Hazards Radiological Control Hazardous Environment X. Project Manager Other: Z. Quality Engineer Arc One-Time Modifications Allowed to this Procedure? X. YesNo NOTE: If Yes, then modifications are not anticipated to impact safety. For documentation requirements of a modification see SBM or the controlling Project QA Plan as appropriate. On-The Job Training Required? Yes or _x No FOR REVISIONS: Is retraining to this procedure required? Yes _x No Does the OJT package associated with this procedure require revision to reflect procedure changes? Yes No No						
Approval: Author I. Internation Technical Reviewer Brian M. Rackon RPL Manager DT Auto Project Manager PE Kurath RPG QE BNFL Multiple E Armagn	$ \frac{Date}{3/5/99} \\ = \frac{3-5-99}{3/11/99} \\ = \frac{3/9/99}{3/11/99} \\ = \frac{3/9/99}{3/11/99} $					

Applicability

This test plan is to be used to fulfill the requirements of BNFL Test Specification No. 001580. The work will be conducted in the SAL hot cells and, if the radiological properties of the samples allow, in labs 511 and 516 in the RPL. The work will be conducted by Radiochemical Processing Group staff. This work is being done as part of the Technical Support to BNFL for Phase 1B project.

Test Objectives

Justification: BNFL Inc. process engineering will use the information derived from this task to validate or modify the BNFL Inc. process flowsheet.

Objective: Battelle personnel will conduct small-scale tests using radioactive samples from candidate low-activity waste (241-AW-101 and 241-AN-107 liquid fractions) and high-level waste (241-C-104) tanks. The test objectives are to mimic planned operating conditions to determine, through qualitative observations, if chemical reactions (e.g., color change, foaming, gassing) and/or precipitation occur from mixing selected radioactive solutions. An additional test objective is to determine the Tc batch distribution value for solution mixtures, which will quantify the conversion of pertechnetate to the non-pertechnetate species.

Acronyms

BNFL	British Nuclear Fuels Ltd.
HDPE	High-density polyethylene
HLW	High-level waste
RPL	Radiochemical Processing Laboratory
SAL	Shielded Analytical Laboratory

Quality Control

Quality assurance for work conducted under this Test Plan is governed by the Standards-Based Management System (SBMS). The quality control for each analysis indicated in Table 1 will be established per Quality Assurance Plan MCS-033. MCS-033 specifies the minimum calibration and verification requirements for analytical systems, as well as batch processing quality control samples to monitor preparations (i.e., blanks, duplicates, matrix spikes, and laboratory control standards).

A work place copy of this document shall be present at the work location. Specific information regarding each test (e.g., sample numbers) will be recorded on the work place copy and kept as project records.

As discussed in the Prerequisites section, calibrated balances must be used in performing this test. The calibration ID, date of calibration, and calibration expiration date must be recorded on the work place copy for each balance used.

Measured weights will be recorded on the work place copy at the indicated spot in the work instructions.

Hand written changes or corrections made to the work place copy will be made by means of a single line-out. Such changes or corrections shall be initialed and dated by the staff member making the change and by the cognizant scientist.

Equipment Description

No special equipment is required for this work.

Prerequisites

Staff performing the work must read and understand the entire test plan prior to beginning work.

All work in labs 511 or 516 will be conducted according to PNNL Operating Procedure RPG-OP-511, Routine Research Operations.

Label^(a)

The following radioactive tank samples are required:

	60T	AN107
AN-107 solution after Sr/TRU precipitation	50 mL	
AW-101 solution after cross-flow filtration	75 mL	AW101
C-104 permeate	100 mL	C104L
AN-107 entrained solids wash solution	3 mL	AN107Wash
AW-101 entrained solids wash solution	3 mL	AW101Wash

The following are items that should be staged prior to start of the test.

20-mL HDPE vial (50) 25-mL glass vials (2) 40-mL glass vials (4) Hot plate/stirrer 0.45-µm nylon syringe filters (30) 5-mL syringes (30) 0.45-µm nylon disposable filter units (4) 5-mL pipette SuperLig 639 (1 g)

A calibrated balance is required for this test. Record the following information regarding the balance(s) used.

balance(s) used.				R		Rm 511 #	003
384-06-01-008	Calibration ID:	360 - 06 - 01	1-016	Calibration ID:	362-06-01-043	384-06-01	n.1.2.
- 8/27/99	Calibration Date:	3/2/99	18-12-94	Calibration Date:	8/17/19	\$/18/99	9/21/44
8/2000	Expiration Date:	8/99	5 2/2000	Expiration Date:	8/00	8/00	

Before beginning work, a routine performance check should be performed and documented in the space below.

These labels will be used throughout this test plan to refer to these samples.

(a)

Also before beginning work, a routine performance check should be performed the 5-mL pipettor to be used to transfer the solutions for the K_d measurements. The performance check should include pipetting and weighing at least three 5-mL aliquots of deionized water. The results of the performance check shall be documented in the space below. The temperature shall also be recorded.

Work Instructions

Note Where practical, catch pans should be used when working with the tank waste samples, so that they can be recovered if spilled.

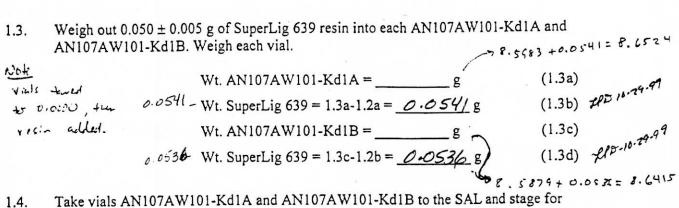
Part 1. Mixing AN-107 With AW-101

1.1. Prepare the sample vials according to the following table. All vials should be HDPE.

Sample ID	Vial Tare wt	75
ANI07AWI01-1A	8.0235 9.	1
AN107AW101-1B	8.07915.	
AN107AW101-1C	8.0235 g. 8.0791 g. 8.1000 g.	
AN107AW101-2A	8. 1173 5.	
AN107AW101-2B	8.0313 5.	۱ ۱۳
AN107AW101-2C	8.1156 9.	J. J. 29-17
14	Ø	- - -

1.2. Label two 20-mL HDPE vial as "AN107AW101-Kd1A" and "AN107AW101-Kd1B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir bar.

Wt. AN107AW101-Kd1A =
$$\frac{8.5983}{g} g p \theta_{9.9} q (1.2a)$$


...

20 mL

Wt. AN107AW101-Kd1B = 8.5879 g

(1.2b) 200 10-29-99

. 04

- 1.4. Take vials AN10/AW101-Kd1A and AN10/AW101-Kd1B to the SAL and sta subsequent steps.
- 1.5. Label a 40-mL glass vial as "AN107AW101-TEST" and place a magnetic stir bar in this vial. Weigh the vial with cap and stir bar.

Wt. AN107AW101-TEST =
$$24.5668$$
 g $p.11.$ (1.5a) H^{0} (1.5a) H^{0}

w/1/49 1.6. Transfer 3 mL of sample AN107 to AN107AW101-TEST, then weigh the vial.

Wt. AN107AW101-TEST =
$$28.5388$$
 g^(G) (1.6a)

Wt. AN107 Added =
$$1.6a - 1.5a = 3 \cdot \frac{4720}{g} g$$
 (1.6b)

- GL - 060499B

1.7. Transfer 30 mL of sample AW101 to AN107AW101-TEST, then weigh the vial.

$$\begin{array}{l} \text{Wt. AN107AW101-TEST} = \underline{66.7922} g^{(R)} \\ \text{Wt. AN107AW101-TEST} = \underline{66.7922} g^{(R)} \\ \end{array}$$
(1.7a)

Wt. AW101 Added =
$$1.7a - 1.6a = 38.2534$$
 g (1.7b)

Record the date and time at which the AW101 was mixed with the AN107.

Also record the cell temperature.

$$Temperature = \underbrace{23^{bC}}_{(1.7d)}$$

n.1.1. of mik mann

1.8. Stir the contents of AN107AW101-TEST. Record any immediate observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

1/1/99	No impediate venction. A	t Isie	> 74° S	alutim	keted	(losely
11/5/44	A slight amount of precipitate	dusting	the botto.	m of	the viel	•

1.8A. After 24 h, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

÷

5

Notes

The first Tc K_d measurement must be started within 4 hours of mixing the AW101 and AN107 solutions.

5 mL portions of the AN107/AW101 mixture are to be transferred to vials AN107AW101-1A, AN107AW101-Kd1A, and AN107AW101-Kd1B as indicated below. These transfers are to be done in such a manner that the exterior of the vials will be free of smearable contamination. Appropriate steps should be taken by the SAL personnel to ensure this.

- Filter 5.0 mL of the AN107/AW101_mixture through a 0.45-µm nylon membrane and 1.9. place the filtered solution in AN107AW101-1A and remove the vial from the hot cell. ANIO7 AWOITIAX = 8-0315
 - Have an RCT determine the dose characteristics of sample AN107AW101-1A 1.10.

Radiological Hold Point

11/1/49

RCT perform radiological dose survey of sample AN107AW101-1A. Corrected doses at contact, 15 cm, and 30 cm are required.

-> Wt=14.292

Note Based on radiological dose of sample AN107AW101-1A, a determination will be made as to whether to perform the K_d measurements in the lab or hot cell.

- Contact CSM (G.J. Lumetta) to determine whether samples are to be transferred to lab 1.11. 511 or 516.
- Transfer 5.0 mL of the AN107/AW101 mixture to AN107AW101-Kd1A. Remove the 1.12. vial from the hot cell, if the Kd measurement is to be done in the lab.
- Transfer 5.0 mL of the AN107/AW101 mixture to AN107AW101-Kd1B. Remove the 1.13. vial from the hot cell, if the K_d measurement is to be done in the lab.
- If appropriate, transfer AN107AW101-1A, AN107AW101-Kd1A, and AN107AW101-1.14. Kd1B to lab 511 or 516 (as directed by the cognizant scientist).

1.15. Weigh AN107AV	V101-Kd1A and AN107AW101-Kd1B.	
384-06-01-608	Wt. AN107AW101-Kd1A = 14.904 g	(1.15a)
	Wt. Solution = $1.15a-1.3a = 4.252$ g	(1.15b)
	Wt. AN107AW101-Kd1B = 14.823 g	(1.15c)

Wt. Solution = 1.15c-1.3c = 6.182 g (1.15d)

Stir AN107AW101-Kd1A and AN107AW101-Kd1B for a minimum of 24 h 1.16.

Start date/time:	11/1/19	16:30
Stop date/time:	11/8/19	14 .45

Note: The fait

5 ml we to it to filter wes lost (sy-inge tipter leaked). Note in wro-9

n.1.2.

11/1/95

- 1.17. Stop the stirrer and allow the resin to settle to the bottom of the vials.
 - 1.18. Withdraw as much of the liquid as practical from AN107AW101-Kd1A and filter through a 0.45-µm nylon membrane. The filtered solution is to be placed in sample vial AN107AW101-1B.
 - 1.19. Withdraw as much of the liquid as practical from AN107AW101-Kd1B and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AN107AW101-1C.
 - 1.20. Allow the mixture in AN107AW101-TEST to stand for two weeks
 - 1.21. After 2 weeks, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

1.22. Label two 20-mL HDPE vial as "AN107AW101-Kd2A" and "AN107AW101-Kd2B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir bar.

Wt. AN107AW101-Kd2A =
$$\frac{8.5704}{9}$$
 g (1.22a) $\frac{46}{10.22}$ Wt. AN107AW101-Kd2B = $\frac{8.4876}{9}$ g (1.22b) $\sqrt{}$

1.23. Weigh out 0.050 ± 0.005 g of SuperLig 639 resin into each AN107AW101-Kd2A and AN107AW101-Kd2B. Weigh each vial.

Wt.	AN107A	W101-Kd2A =	= ¥.	6238 g	(1.23a)

- Wt. SuperLig 639 = 1.23a 1.22a = 0.0534 g (1.23b)
- Wt. AN107AW101-Kd2B = 8.5401 g (1.23c)

Wt. SuperLig 639 = 1.23c - 1.22b = 0.0 sc g (1.23d)

- 1.24. Filter 5.0 mL of the AN107/AW101 mixture through a 0.45- μ m nylon membrane and place the filtered solution in AN107AW101-2A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 1.25. Transfer 5.0 mL of the AN107/AW101 mixture to AN107AW101-Kd2A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 1.26. Transfer 5.0 mL of the AN107/AW101 mixture to AN107AW101-Kd2B. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.

ň.

1.27. If appropriate, transfer AN107AW101-2A, AN107AW101-Kd2A, and AN107AW101-Kd2B to lab 511 or 516 (as directed by the cognizant scientist).

1.28. Weigh AN107AW101-Kd2A and AN107AW101-Kd2B.

- Wt. AN107AW101-Kd2A = 14.872 g (1.28a)
- Wt. Solution = $1.28a 1.23a = \frac{2.48}{2.48}g$ (1.28b)
- Wt. AN107AW101-Kd $\mathbf{PB} = 14.546$ g (1.28c)
- Wt. Solution = $1.28c-1.23c = \frac{6.306}{g}$ (1.28d)

1.29. Stir AN107AW101-Kd2A and AN107AW101-Kd2B for a minimum of 24 h

 Start date/time:
 11/15749
 15-20

 Stop date/time:
 11/22/99
 12:30

1.30. Stop the stirrer and allow the resin to settle to the bottom of the vials.

- - 32. Withdraw as much of the liquid as practical from AN107AW101-Kd2B and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AN107AW101-2C. > ω+ - 17.79 Z
- 1.33. Samples AN107AW101-1A, AN107AW101-1B, AN107AW101-1C, AN107AW101-2A, AN107AW101-2B, and AN107AW101-2C will be submitted for the analyses outlined in Table 1.

Part 2. Mixing C-104 Leachate With AN-107 At 10:1 Ratio

2.1. Prepare the sample vials according to the following table. All vials should be HDPE.

Sample ID	Tare Wt.	212 09
AN107C104-1A	8.0999 9.	£15-99
AN107C104-1B	8.0999 7. 8.1214 5.	
AN107C104-1C	8.1455 5	
AN107C104-2A	8.1049 5.	
AN107C104-2B	8,1018 5.	
AN107C104-2C	8.0205 5.	V

2.2. Label two 20-mL HDPE vial as "AN107C104-Kd1A" and "AN107C104-Kd1B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir bar.

70-mL

w/22/44

10-1-2-1.32.

Wt. AN107C104-Kd1A = $\frac{8.5639}{g}$ g	(2.2a)	20.29.99
Wt. AN107C104-Kd1B = <u>8, 5379</u> g	(2.2b)	1-

2.3. Weigh out 0.050 ± 0.005 g of SuperLig 639 resin into each AN107C104-Kd1A and AN107C104-Kd1B. Weigh each vial.

	- 8	.5639 + 0.0534 = 8.6173
Vigis tend to care.	Wt. AN107C104-Kd1A = g	(2.3a)
then resin added.	Wt. SuperLig $639 = 2.3a - 2.2a = 0.0534$ g	(2.3b)
Balance 360.06-01-040	Wt. AN107C104-Kd1B = g	(2.3c)
C1. D.D 8/17/99 D.H Z/2000	Wt. SuperLig $639 = 2.3c - 2.2b = 0.05zs$ g	(2.3d)
-0. 07200		58.5379+0.0525= 8.5-904

2.4. Take vials AN107C104-Kd1A and AN107C104-Kd1B to the SAL and stage for subsequent steps.

2.5. Label a 40-mL glass vial as "AN107C104-TEST" and place a magnetic stir bar in this vial. Weigh the vial with cap and stir bar.

Wt. AN107C104-TEST =
$$\frac{24.4266}{24.92}$$
 g^(2.5a) (2.5a)

N^{1/47} 2.6. Transfer 3 mL of sample AN107 to AN107C104-TEST, then weigh the vial.

Wt. AN107C104-TEST =
$$\frac{28.2384}{g}$$
 g (2.6a)

Wt. AN107 Added =
$$2.6a-2.5a = \frac{3 \cdot 3 \cdot 18}{2.6b}g$$
 (2.6b)

" CIOY Composite Lundty"

 $6 \times 5 \text{ mL}$ HT Wt. AN107C104-TEST = $\frac{60.2357}{g}$ (2.7a)

Wt. C104 Added =
$$2.7a-2.6a = \frac{21.9175}{g}$$
 (2.7b)

Record the date and time at which the C104 was mixed with the AN107.

Also record the cell temperature.

$$Temperature = \underbrace{23^{\circ}C} (2.7d)$$

(b) Balance 320-06-01-016

nit of

Mike Minun

2.8. Stir the contents of AN107C104-TEST. Record any immediate observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

1/1199 No immediate reaction. At 15:00, the solution looked cloudy.

2.8A. After 24 h, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

11/5/99 A small amount of privipitate on the bottom of the vicil Notes

The first Tc K_d measurement must be started within 4 hours of mixing the C104 and AN107 solutions.

5 mL portions of the AN107/C104 mixture are to be transferred to vials AN107C104-1A, AN107C104-Kd1A, and AN107C104-Kd1B as indicated below. These transfers are to be done in such a manner that the exterior of the vials will be free of smearable contamination. Appropriate steps should be taken by the SAL personnel to ensure this.

2.9. Filter 5.0 mL of the AN107/C104 mixture through a 0.45-μm nylon membrane and place Nota: The first the filtered solution in AN107C104-1A and remove the vial from the hot cell. The filtered solution in AN107C104-1A and remove the vial from the hot cell. The off. AN107/Auio1-1A* = 8.0315 (Relation as AN107C104-1A*)

WT= 14.043

2.10. Have an RCT determine the dose characteristics of sample AN107C104-1A

Radiological Hold Point

RCT perform radiological dose survey of sample AN107C104-1A. Corrected doses at contact, 15 cm, and 30 cm are required.

Note Based on radiological dose of sample AN107C104-1A, a determination will be made as to whether to perform the K_d measurements in the lab or hot cell.

- 2.11. Contact CSM (G.J. Lumetta) to determine whether samples are to be transferred to lab 511 or 516.
- 2.12. Transfer 5.0 mL of the AN107/C104 mixture to AN107C104-Kd1A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 2.13. Transfer 5.0 mL of the AN107/C104 mixture to AN107C104-Kd1B. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 2.14. If appropriate, transfer AN107C104-1A, AN107C104-Kd1A, and AN107C104-Kd1B to lab 511 or 516 (as directed by the cognizant scientist).

2.15. Weigh AN107C104-Kd1A and AN107C104-Kd1B.

Balan 384-06-01-008	Wt. AN107C104-Kd1A = (3.960) g	(2.15a)
384-00-11	Wt. Solution = $2.15a-2.3a = 5.343$ g	(2.15b)
	Wt. AN107C104-Kd1B = <u>13.967</u> g	(2.15c)
	Wt. Solution = 2.15c-2.3c = <u>\$.377</u> g	(2.15d)

2.16. Stir AN107C104-Kd1A and AN107C104-Kd1B for a minimum of 24 h

Start date/time:	11/1/95	16.30
Stop date/time:	11/8/95	14:45

BNFL-TP-29953-023, Rev. 0

5 ml we tried to filter was lost (syring filter leaked).

- 2.17. Stop the stirrer and allow the resin to settle to the bottom of the vials.
- Withdraw as much of the liquid as practical from AN107C104-Kd1A and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AN107C104-1B. w+ = 12.927
- Withdraw as much of the liquid as practical from AN107C104-Kd1B and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AN107C104-1C. ωt = 13.051
- 2.20. Allow the mixture in AN107C104-TEST to stand for two weeks
- 2.21. After 2 weeks, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

11/15/99 NC Significant change from 11/5/99. 31.2.

2.22. Label two 20-mL HDPE vial as "AN107C104-Kd2A" and "AN107C104-Kd2B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir bar.

Wt. AN107C104-Kd2A =
$$\frac{8.5628}{8.5289}$$
 g (2.22a)
Wt. AN107C104-Kd2B = $\frac{8.5289}{8.5289}$ g (2.22b)

2.23. Weigh out 0.050 ± 0.005 g of SuperLig 639 resin into each AN107C104-Kd2A and AN107C104-Kd2B. Weigh each vial.

	Wt. AN107C104-Kd2A = g	(2.23a)	
0.0511	5 Wt. SuperLig 639 = 2.23a-2.22a = <u>0.0511</u> g	(2.23b)	APN 10-29-99
	Wt. AN107C104-Kd2B = g	(2.23c)	
0.0500	8 Wt. SuperLig 639 = 2.23c-2.22b = <u>0.050</u> g	(2.23d)	412 10.70 49

- 2.24. Filter 5.0 mL of the AN107/C104 mixture through a 0.45- μ m nylon membrane and place the filtered solution in AN107C104-2A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab. $\neg \neg \psi + z = 12.35$
- 2.25. Transfer 5.0 mL of the AN107/C104 mixture to AN107C104-Kd2A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 2.26. Transfer 5.0 mL of the AN107/C104 mixture to AN107C104-Kd2B. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.

BNFL-TP-29953-023, Rev. 0

Page 13 of 33

- 2.27. If appropriate, transfer AN107C104-2A, AN107C104-Kd2A, and AN107C104-Kd2B to lab 511 or 516 (as directed by the cognizant scientist).
- 2.28. Weigh AN107C104-Kd2A and AN107C104-Kd2B.

Wt. AN107C104-Kd2A =	= 13,933 g	(2.28a)
	6	(2.204

- Wt. Solution = 2.28a-2.23a = 5.3/5 g (2.28b)
- Wt. AN107C104-Kd1B = _____g (2.28c) Wt. Solution = $2.28c-2.23c = ____g$ (2.28d)

		(1.202)
2.29.	Stir AN107C104-Kd2A and AN107C104-Kd2B for a minimum of 24 h	-ce bottom ch]], 13.
	Start date/time: 11/15/19 15-20	m. f. k.
	Stop date/time: 11/12/54 12:20	11/15-199

2.30. Stop the stirrer and allow the resin to settle to the bottom of the vials.

2.31. Withdraw as much of the liquid as practical from AN107C104-Kd2A and filter through a 0.45-µm nylon membrane. The filtered solution is to be placed in sample vial

2.32. Withdraw as much of the liquid as practical from AN107C104-Kd2B and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AN107C104-2C.

2.33. Samples AN107C104-1A, AN107C104-1B, AN107C104-1C, AN107C104-2A, AN107C104-2B, and AN107C104-2C will be submitted for the analyses outlined in Table 1.

Part 3. Mixing C-104 Leachate With AN-107 At 1:1 Ratio

3.1. Prepare the sample vials according to the following table. All vials should be HDPE.

Sample ID	Tare wt.	
AN107C104-3A	8.0570c.	AN 10-29-99
AN107C104-3B	8.0570g. 7.8562g.	1
AN107C104-3C	8.0884 2.	
AN107C104-4A	8.01613.	1
AN107C104-4B	8.1188 5.	
AN107C104-4C	8.1273 g.	L

20.ml

3.2. Label two 20-mL HDPE vial as "AN107C104-Kd3A" and "AN107C104-Kd3B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir bar.

Wt. AN107C104-Kd3A =
$$\frac{8.5905}{9}$$
 g (3.2a) 405 (3.2b)

- 4.99

wt. AN10/C104-Kd3B =
$$3.3662$$
 g (3.20)

Wt. AN107C104-Kd3A =
$$g$$
 (3.3a)
0.05378 Wt. SuperLig 639 = 3.3a-3.2a = 0.0537 g (3.3b) $410 \ 10^{-29.99}$
Wt. AN107C104-Kd3B = $g^{-3.5662+0.07-53}$ (3.3c)
0.0553 S Wt. SuperLig 639 = 3.3c-3.2b = 0.0553 g (3.3d) $477 - 10^{-29.99}$

- 3.4. Take vials AN107C104-Kd3A and AN107C104-Kd3B to the SAL and stage for subsequent steps.
- 3.5. Label a 40-mL glass vial as "AN107C104-TEST2" and place a magnetic stir bar in this vial. Weigh the vial with cap and stir bar.

Wt. AN107C104-TEST2 =
$$\frac{24.7654}{9}$$
 g (3.5a) $\frac{12.74.97}{12.74.97}$
3.6. Transfer 20 mL of sample AN107 to AN107C104-TEST2, then weigh the vial.
Privily a cell = $24.7058'$
(Balance 360-06.01-016) Wt. AN107C104-TEST2 = $\frac{1}{9}$ (3.6a)
Wt. AN107 Added = $3.6a-3.5a = \frac{149.6596}{9.6596}$ g (3.6b)
 $544.6586 - 24.7058' = 24.7058'$

3.7. Transfer 20 mL of sample C104L to AN107C104-TEST2, then weigh the vial.

Wt. AN107C104-TEST2 =
$$70, 6087$$
 g (3.7a)

Wt. C104 Added =
$$3.7a - 3.6a = 20.9489 g$$
 (3.7b)

Record the date and time at which the C104 was mixed with the AN107.

Also record the cell temperature.

$$Temperature = 23.5^{\circ}C \qquad (3.7d)$$

3.8. Stir the contents of AN107C104-TEST2. Record any immediate observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

11/29/99 11:00 Solution cloudy

3.8A. After 24 h, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

11/20/44 14:30 Dave brown solid had settled to the bottom of the vial.

12/7/59 14:00 No change.

e.

Notes

The first Tc K_d measurement must be started within 4 hours of mixing the C104 and AN107 solutions.

5 mL portions of the AN107/C104 mixture are to be transferred to vials AN107C104-3A, AN107C104-Kd3A, and AN107C104-Kd3B as indicated below. These transfers are to be done in such a manner that the exterior of the vials will be free of smearable contamination. Appropriate steps should be taken by the SAL personnel to ensure this.

N/24/94

3.9. Filter 5.0 mL of the AN107/C104 mixture through a 0.45-μm nylon membrane and place the filtered solution in AN107C104-3A and remove the vial from the hot cell.

3.10. Have an RCT determine the dose characteristics of sample AN107C104-3A

-> LU4. = 13,929 (G)

Radiological Hold Point

RCT perform radiological dose survey of sample AN107C104-3A. Corrected doses at contact, 15 cm, and 30 cm are required.

Note Based on radiological dose of sample AN107C104-3A, a determination will be made as to whether to perform the K_d measurements in the lab or hot cell.

- 3.11. Contact CSM (G.J. Lumetta) to determine whether samples are to be transferred to lab 511 or 516.
- 3.12. Transfer 5.0 mL of the AN107/C104 mixture to AN107C104-Kd3A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 3.13. Transfer 5.0 mL of the AN107/C104 mixture to AN107C104-Kd3B. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 3.14. If appropriate, transfer AN107C104-3A, AN107C104-Kd3A, and AN107C104-Kd3B to lab 511 or 516 (as directed by the cognizant scientist).
- 3.15. Weigh AN107C104-Kd3A and AN107C104-Kd3B.

Wt. AN107C104-Kd3A = 14.348 g (3.15a) (3.15a)

- Wt. Solution = 3.15a-3.3a = 5.7038 g (3.15b)
- Wt. AN107C104-Kd3B = 14.390 g (9) (3.15c)
- Wt. Solution = 3.15c-3.3c = 5.7475 g (3.15d)
- 3.16. Stir AN107C104-Kd3A and AN107C104-Kd3B for a minimum of 24 h

Start date/time: 11/29/49 (4:00) Stop date/time: 12/6/49 14:15

BNFL-TP-29953-023, Rev. 0

(R) Beliner 384 -06-01-008

12/6/59 1.12.

- 3.17. Stop the stirrer and allow the resin to settle to the bottom of the vials.
- 3.18. Withdraw as much of the liquid as practical from AN107C104-Kd3A and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AN107C104-3B.
 AN107C104-3B.
- 3.19. Withdraw as much of the liquid as practical from AN107C104-Kd3B and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AN107C104-3C.
- 3.20. Allow the mixture in AN107C104-TEST2 to stand for two weeks
- 3.21. After 2 weeks, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

3.22. Label two 20-mL HDPE vial as "AN107C104-Kd4A" and "AN107C104-Kd4B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir bar.

Wt. AN107C104-Kd4A =
$$\frac{8.606}{g}$$
 (3.22a) (3.22b) (3.22b)

3.23. Weigh out 0.050 ± 0.005 g of SuperLig 639 resin into each AN107C104-Kd4A and AN107C104-Kd4B. Weigh each vial.

Wt. AN107C104-Kd4A = _____ g (3.23a) $o. \ o550$ J Wt. SuperLig 639 = 3.23a-3.22a = 0.0550 g (3.23b) 10.24-99Wt. AN107C104-Kd4B = _____ g 7.5252+0.0551 = 8.58+3 $o. \ o5557$ Wt. SuperLig 639 = 3.23c-3.22b = $0.0557/_{-}$ g (3.23d) 700 10.24-9c

- 3.24. Filter 5.0 mL of the AN107/C104 mixture through a 0.45- μ m nylon membrane and place the filtered solution in AN107C104-4A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab. $\mu = 13.487$ 13.1-2 $384.06-01-\alpha \in$ 12/14/46
- 3.25. Transfer 5.0 mL of the AN107/C104 mixture to AN107C104-Kd4A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 3.26. Transfer 5.0 mL of the AN107/C104 mixture to AN107C104-Kd4B. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.

-4.99

- 3.27. If appropriate, transfer AN107C104-4A, AN107C104-Kd4A, and AN107C104-Kd4B to lab 511 or 516 (as directed by the cognizant scientist).
- 3.28. Weigh AN107C104-Kd4A and AN107C104-Kd4B.
 - Wt. AN107C104-Kd4A = [4.607 g] (3.28a)
 - Wt. Solution = $3.28a-3.23a = 5^{-946} g$ (3.28b)
 - Wt. AN107C104-Kd4B = 14.323 g (3.28c)

Wt. Solution =
$$3.28c-3.23c = 5.739$$
 g (3.28d)

3.29. Stir AN107C104-Kd4A and AN107C104-Kd4B for a minimum of 24 h

 Start date/time:
 12/14/94
 10:30

 Stop date/time:
 12/21/44
 10:30

- 3.30. Stop the stirrer and allow the resin to settle to the bottom of the vials.
- 3.31. Withdraw as much of the liquid as practical from AN107C104-Kd4A and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AN107C104-4B.
- 3.32. Withdraw as much of the liquid as practical from AN107C104-Kd4B and filter through a 0.45- μ m nylon membrane. The filtered solution is to be placed in sample vial AN107C104-4C.
- 3.33. Samples AN107C104-3A, AN107C104-3B, AN107C104-3C, AN107C104-4A, AN107C104-4B, and AN107C104-4C will be submitted for the analyses outlined in Table 1.

Part 4. Mixing C-104 Leachate With AW-101 At 10:1 Ratio

4.7. Prepare the sample vials according to the following table. All vials should be HDPE.

Sample ID	
AW101C104-1A	-
AW101C104-1B	
AW101C104-1C	
AW101C104-2A	
AW101C104-2B	
AW101C104-2C	

(1) Beliner 384.06-01-008

BNFL-TP-29953-023, Rev. 0

4.2. Label two 20-mL HDPE vial as "AW101C104-Kd1A" and "AW101C104-Kd1B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir bar.

Wt. AW101C104-Kd1A =
$$7.1795$$
 g⁽¹⁾ (4.2a)

Wt. AW101C104-Kd1B =
$$-1681$$
 g (4.2b)

 A:3.
 Weigh out 0.050 ± 0.005 g of SuperLig 639 resin into each AW101C104-Kd1A and

 A:4.
 AW101C104-Kd1B. Weigh each vial.

 9/12/45
 (4)

Wt. AW101C104-Kd1A =
$$7.2293$$
 g⁽¹⁾ (4.3a)

Wt. SuperLig
$$639 = 4.3a - 4.2a = 0.0498$$
 g (4.3b)

Wt. AW101C104-Kd1B =
$$7.2504$$
 g⁽⁵⁾ (4.3c)

Wt. SuperLig
$$639 = 4.3c - 4.2b = 0.05 230$$
 g (4.3d)

 $\gamma_{21/55}$ A.4. Take vials AW101C104-Kd1A and AW101C104-Kd1B to the SAL and stage for subsequent steps.

1.1.2

4.5. Label a 40-mL glass vial as "AW101C104-TEST" and place a magnetic stir bar in this vial. Weigh the vial with cap and stir bar.

Wt. AW101C104-TEST =
$$24.8567$$
g (4.5a)

~ GL - 0604 59B

4.6. Transfer 3 mL of sample AW101 to AW101C104-TEST, then weigh the vial.

Wt. AW101C104-TEST =
$$28.5483$$
 g (4.6a)

Wt. AW101 Added =
$$4.6a - 4.5a = \frac{2 \cdot 44}{b} g$$
 (4.6b)

4.7. Transfer 30 mL of sample C104L to AW101C104-TEST, then weigh the vial.

Wt. AW101C104-TEST =
$$60.7231$$
 g (4.7a)

Wt. C104 Added =
$$4.7a - 4.6a = \frac{32.1748}{2}g$$
 (4.7b)

Record the date and time at which the C104 was mixed with the AW101.

Also record the cell temperature.

$$Temperature = 23°C$$
(4.7d)

(A) Balance 362-06-01-043

BNFL-TP-29953-023, Rev. 0

4.8. Stir the contents of AW101C104-TEST. Record any immediate observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

No immediate reaction.

p.1.L.

4.8A. After 24 h, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

4/22/19 12:50 -> No change in the solution.

Page 21 of 33

Notes

The first Tc K_d measurement must be started within 4 hours of mixing the C104 and AW101 solutions.

5 mL portions of the AW101/C104 mixture are to be transferred to vials AW101C104-1A, AW101C104-Kd1A, and AW101C104-Kd1B as indicated below. These transfers are to be done in such a manner that the exterior of the vials will be free of smearable contamination. Appropriate steps should be taken by the SAL personnel to ensure this.

Filter 5.0 mL of the AW101/C104 mixture through a 0.45- μ m nylon membrane and place the filtered solution in AW101C104-1A and remove the vial from the hot cell.

4.10. Have an RCT determine the dose characteristics of sample AW101C104-1A

Radiological Hold Point

9/21/45

RCT perform radiological dose survey of sample AW101C104-1A. Corrected doses at contact, 15 cm, and 30 cm are required.

Note Based on radiological dose of sample AW101C104-1A, a determination will be made as to whether to perform the K_d measurements in the lab or hot cell.

- 4.11. Contact CSM (G.J. Lumetta) to determine whether samples are to be transferred to lab 511 or 516.
- A.12. Transfer 5.0 mL of the AW101/C104 mixture to AW101C104-Kd1A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 4.13. Transfer 5.0 mL of the AW101/C104 mixture to AW101C104-Kd1B. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 4.14. If appropriate, transfer AW101C104-1A, AW101C104-Kd1A, and AW101C104-Kd1B to lab 511 or 516 (as directed by the cognizant scientist).
- 4.15. Weigh AW101C104-Kd1A and AW101C104-Kd1B.

Wt. AW101C104-Kd1A =
$$12.342$$
 g (4.15a)

- Wt. Solution = 4.15a 4.3a = 5.113 g (4.15b)
- Wt. AW101C104-Kd1B = 12.426 g (4.15c)
- Wt. Solution = 4.15c-4.3c = 1.5c-1.76 g (4.15d)

4.16. Stir AW101C104-Kd1A and AW101C104-Kd1B for a minimum of 24 h

stive set at	Start date/time:	9/21/59	2:45
1000 rpm	Stop date/time:	9/22/99	2:45

Balance: 384-06-01-005

Page 22 of 33

Nate: Cap to -14 band had to be changed because 1st are was containinter. 9122197

4.17. Stop the stirrer and allow the resin to settle to the bottom of the vials.

- 4.18. Withdraw as much of the liquid as practical from AW101C104-Kd1A and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AW101C104-1B.
- 4.19. Withdraw as much of the liquid as practical from AW101C104-Kd1B and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AW101C104-1C.
 AW101C104-1C.
- 4.20. Allow the mixture in AW101C104-TEST to stand for two weeks
- 4.21. After 2 weeks, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

10/6/49 No change - Solution Clean

A.22. Label two 20-mL HDPE vial as "AW101C104-Kd2A" and "AW101C104-Kd2B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir a/n/4 bar.

Wt. AW101C104-Kd2A =
$$7.2422$$
 g⁽⁴⁾ (4.22a)

Wt. AW101C104-Kd2B =
$$7.1915$$
 g^(G) (4.22b)

A:23. Weigh out 0.050 ± 0.005 g of SuperLig 639 resin into each AW101C104-Kd2A and AW101C104-Kd2B. Weigh each vial. $n/1^{2/1^{4}}$

Wt. AW101C104-Kd2A = $7 \cdot 24^{2} \cdot 3^{-5} g^{(4)}$ (4.23a)

Wt. SuperLig 639 = 4.23a - 4.22a = 0.0513 g (4.23b)

Wt. AW101C104-Kd2B = 7.2414 g^(%) (4.23c)

Wt. SuperLig
$$639 = 4.23c - 4.22b = 0.0499$$
 g (4.23d)

F. 144 Aw.010104 -TEST through a 0.45-tim maler members of place Giltered colorism. 4.24. Transfer 5.0 mL of the AW101/C104 mixture to AW101C104-2A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.

- 4.25. Eilter 5.0 mL of the AW101/C104 mixture through a 0.45-μm nylon membrane and place the filtered solution in AW101C104-Kd2A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 4.26. Transfer 5.0 mL of the AW101/C104 mixture to AW101C104-Kd2B. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.

BNFL-TP-29953-023, Rev. 0

,27.4.

,016/44

Page 23 of 33

- 4.27. If appropriate, transfer AW101C104-2A, AW101C104-Kd2A, and AW101C104-Kd2B to lab 511 or 516 (as directed by the cognizant scientist).
- 4.28. Weigh AW101C104-Kd2A and AW101C104-Kd2B.

Wt. AW101C104-Kd2A =
$$12.501$$
 g⁽³⁾ (4.28a)

Wt. Solution =
$$4.28a-4.23a = 5.208$$
 g (4.28b)

Wt. AW101C104-Kd
$$\mu B = \frac{12.70}{g} g^{(L)}$$
 (4.28c)

Wt. Solution =
$$4.28c-4.23c = 5.465$$
 g (4.28d)

4.29. Stir AW101C104-Kd2A and AW101C104-Kd2B for a minimum of 24 h

Start date/time:	10/6/99	12135-
Stop date/time: _	10/7/99	12:35-

Nok: 10/7/44 @ 8:20 it was discovered that Aw101C104-Kd?A hand "welked" off the shirrow. Placed book on stirrow and stirred until 10/8/97 8:50

4.30. Stop the stirrer and allow the resin to settle to the bottom of the vials.

- 4.31. Withdraw as much of the liquid as practical from AW101C104-Kd2A and filter through a 0.45- μ m nylon membrane. The filtered solution is to be placed in sample vial AW101C104-2B.
- 4.32. Withdraw as much of the liquid as practical from AW101C104-Kd2B and filter through a
 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial

AW101C104-2C. , w+= 11,763(5)

4.33. Samples AW101C104-1A, AW101C104-1B, AW101C104-1C, AW101C104-2A, AW101C104-2B, and AW101C104-2C will be submitted for the analyses outlined in Table 1.

Part 5. Mixing C-104 Leachate With AW-101 At 1:1 Ratio

5.1. Prepare the sample vials according to the following table. All vials should be HDPE.

Sample ID
AW101C104-3A
AW101C104-3B
AW101C104-3C
AW101C104-4A
AW101C104-4B
AW101C104-4C

(1) Balance 384-06-01-008

5.2. Label two 20-mL HDPE vial as "AW101C104-Kd3A" and "AW101C104-Kd3B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir bar.

Wt. AW101C104-Kd3A =
$$7.2155$$
 g⁽⁴⁾ (5.2a)

....

Wt. AW101C104-Kd3B =
$$7.2650 g^{(4)}$$
 (5.2b)

5.3. Weigh out 0.050 ± 0.005 g of SuperLig 639 resin into each AW101C104-Kd3A and AW101C104-Kd3B. Weigh each vial.

9/17/45

'n

9/21/99

M.1.L.

Wt. AW101C104-Kd3A =
$$7.2655 g^{(5)}$$
 (5.3a)

Wt. SuperLig
$$639 = 5.3a - 5.2a = 0.0500$$
 g (5.3b)

Wt. A.W101C104-Kd3B =
$$7 \cdot 3174$$
 g^(a) (5.3c)

Wt. SuperLig
$$639 = 5.3c-5.2b = 0.05 zH g$$
 (5.3d)

5.4. Take vials AW101C104-Kd3A and AW101C104-Kd3B to the SAL and stage for subsequent steps.

5.8. Label a 40-mL glass vial as "AW101C104-TEST2" and place a magnetic stir bar in this vial. Weigh the vial with cap and stir bar.

(Balance in SAL)

Wt. AW101C104-TEST2 =
$$25.2172$$
 g (5.5a)

5.6. Transfer 20 mL of sample AW101 to AW101C104-TEST2, then weigh the vial.

Wt. AW101C104-TEST2 =
$$50.0765$$
 g (5.6a)

Wt. AW101 Added =
$$5:6a-5.5a = 2.4 \cdot 85.93g$$
 (5.6b)

5.7. Transfer 20 mL of sample C104L to AW101C104-TEST2, then weigh the vial.

Wt. AW101C104-TEST2 =
$$71.8835$$
 g (5.7a)

Wt. C104 Added =
$$5.7a - 5.6a = 21.8070$$
 g (5.7b)

Record the date and time at which the C104 was mixed with the AW101.

Also record the cell temperature.

$$Temperature = 23 °C$$
(5.7d)

(9) Balance 367-06-01-043

BNFL-TP-29953-023, Rev. 0

Page 25 of 33

5.8. Stir the contents of AW101C104-TEST2. Record any immediate observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

M.1.2. No immediate reaction

5.8A. After 24 h, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

9/22/19 12:50 No change in the solution

£

Notes

The first Tc Kd measurement must be started within 4 hours of mixing the C104 and AW101 solutions.

5 mL portions of the AW101/C104 mixture are to be transferred to vials AW101C104-3A, AW101C104-Kd3A, and AW101C104-Kd3B as indicated below. These transfers are to be done in such a manner that the exterior of the vials will be free of smearable contamination. Appropriate steps should be taken by the SAL personnel to ensure this.

9/21/99 A.9.1.

5.9. Filter 5.0 mL of the AW101/C104 mixture through a 0.45-µm nylon membrane and place the filtered solution in AW101C104-3A and remove the vial from the hot cell.

5.10. Have an RCT determine the dose characteristics of sample AW101C104-3A

Radiological Hold Point

RCT perform radiological dose survey of sample AW101C104-3A. Corrected doses at contact, 15 cm, and 30 cm are required.

Note Based on radiological dose of sample AW101C104-3A, a determination will be made as to whether to perform the Kd measurements in the lab or hot cell.

- 511. Contact CSM (G.J. Lumetta) to determine whether samples are to be transferred to lab 511 or 516.
- 5.12. Transfer 5.0 mL of the AW101/C104 mixture to AW101C104-Kd3A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- \$.13. Transfer 5.0 mL of the AW101/C104 mixture to AW101C104-Kd3B. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 5.14. If appropriate, transfer AW101C104-3A, AW101C104-Kd3A, and AW101C104-Kd3B to lab 511 or 516 (as directed by the cognizant scientist).
- 5.15. Weigh AW101C104-Kd3A and AW101C104-Kd3B.

Wt. AW101C104-Kd3A =
$$12.857$$
 g (5.15a)

Wt. Solution =
$$5.15a-5.3a = 5.588$$
 g (5.15b)

Wt. AW101C104-Kd3B =
$$12.944$$
 g (5.15c)

Wt. Solution =
$$5.15c-5.3c = \frac{5.627}{2}g$$
 (5.15d)

Stir AW101C104-Kd3A and AW101C104-Kd3B for a minimum of 24 h 5.16.

stirver set	Start date/time:	9/21/99	2:45	_
of 1000rpm	Stop date/time:	9/22/59	z:45	

BNFL-TP-29953-023, Rev. 0

Bulance: 384.06.01-005

Note: Had to change cap or -3A because 1st on contaminated

- a 122194
 - 5.17. Stop the stirrer and allow the resin to settle to the bottom of the vials.
 - 5.18. Withdraw as much of the liquid as practical from AW101C104-Kd3A and filter through a 0.45-μm nylon membrane. The filtered solution is to be placed in sample vial AW101C104-3B.
 - 5.19. Withdraw as much of the liquid as practical from AW101C104-Kd3B and filter through a 0.45-µm nylon membrane. The filtered solution is to be placed in sample vial AW101C104-3C.
- .5.20. Allow the mixture in AW101C104-TEST2 to stand for two weeks
- 5.21. After 2 weeks, record any observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation.

10/6/49 No change - solution clear

5.22. Label two 20-mL HDPE vial as "AW101C104-Kd4A" and "AW101C104-Kd4B." Place a Teflon-coated magnetic stir bar in each of these vials. Weigh the vials with cap and stir 5/17/45 bar.

Wt. AW101C104-Kd4A =
$$7.2163 \text{ g}^{(2)}$$
 (5.22a)

Wt. AW101C104-Kd4B =
$$7.2179 \text{ g}^{(6)}$$
 (5.22b)

5.23. Weigh out 0.050 ± 0.005 g of SuperLig 639 resin into each AW101C104-Kd4A and AW101C104-Kd4B. Weigh each vial.

0/17/44

Wt. AW101C104-Kd4A = 7.2673 g ^(G)	(5.23a)
--	---------

- Wt. SuperLig 639 = 5.23a 5.22a = 0.0510 g (5.23b)
- Wt. AW101C104-Kd4B = 7.2717 g^{fl} (5.23c)
- Wt. SuperLig 639 = 5.23c-5.22b = 0.0538 g (5.23d)

AWINICION - TESTZ

- 5.24. Filter 5.0 mL of the AW101/C104 mixture through a 0.45-μm nylon membrane and place the filtered solution in AW101C104-4A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 5.25. Transfer 5.0 mL of the AW101/C104 mixture to AW101C104-Kd4A. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 5.26. Transfer 5.0 mL of the AW101/C104 mixture to AW101C104-Kd4B. Remove the vial from the hot cell, if the K_d measurement is to be done in the lab.
- 5.27. If appropriate, transfer AW101C104-4A, AW101C104-Kd4A, and AW101C104-Kd4B to lab 511 or 516 (as directed by the cognizant scientist).

(a) Balance 362-06-01-043

BNFL-TP-29953-023, Rev. 0

Wt. AW101C104-Kd4A =
$$12.854$$
 g⁽²⁾ (5.28a)

Wt. Solution =
$$5.28a-5.23a = 5.587$$
 g (5.28b)

Wt. AW101C104-Kd4B =
$$13.013$$
 g⁽⁵⁾ (5.28c)

Wt. Solution =
$$5.28c-5.23c = 5.811$$
 g (5.28d)

Stir AW101C104-Kd4A and AW101C104-Kd4B for a minimum of 24 h 5.29.

Start date/time:	10/6/99	12:35		
Stop date/time:	197/91	12:35		

- 5.30. Stop the stirrer and allow the resin to settle to the bottom of the vials.
- 5.31. Withdraw as much of the liquid as practical from AW101C104-Kd4A and filter through a 0.45-µm nylon membrane. The filtered solution is to be placed in sample vial AW101C104-4B. - 12.277 - 6
- 5.32. Withdraw as much of the liquid as practical from AW101C104-Kd4B and filter through a 0.45-µm nylon membrane. The filtered solution is to be placed in sample vial AW101C104-4C. UN WH: 12.147 (6)
- Samples AW101C104-3A, AW101C104-3B, AW101C104-3C, AW101C104-4A, 5.33. AW101C104-4B, and AW101C104-4C will be submitted for the analyses outlined in Table 1.

Part 6. Mixing Entrained Solids Wash Liquors With AN-107 and AW-101

6.1. Label four 25-mL glass vials as indicated below and place a magnetic stir bar in each vial. Weigh the vials with caps and stir bars.

vials as indicated below and place a magnetic stir bar in each
th caps and stir bars.
Wt. AN107Mix@1:10 =
$$17.0885$$
 g (6.1a)
Wt. AN107Mix@1:1 = 17.0463 g (6.1b)
Wt. AW101Mix@1:10 = 22.1108 g (6.1c)
Wt. AW101Mix@1:1 = 22.2261 g (6.1d)
 $4/22/69$
 $5.1.6.$
 $4/22/69$
 $5.1.6.$
 $4/22/69$
 $5.1.6.$

6.2. Transfer 2 mL of sample AN107WASH to vial <u>AN107Mix@1:10</u> then weigh.

Wt. AN107Mix@1:10 =
$$14.1430$$
 g (6.2a)

Wt. Added =
$$6.2a - 6.1a = 2.0545$$
 g (6.2b)

(+) Beline 384-06-01-008

BNFL-TP-29953-023, Rev. 0

Page 29 of 33

11/29/99

¥

~7ml

6.3 Transfer 10 mL of sample AN107WASH to vial <u>AN107Mix@1:1</u> then weigh.

Wt. AN107Mix@1:1 =
$$27.6628$$
 g (6.3a)

Wt. Added =
$$6.3a-6.1b = 10.6165$$
 g (6.3b)

6.4. Transfer 20 mL of sample AN107 to vial <u>AN107Mix@1:10</u> then weigh.

 $\frac{Mit}{2}: Dut to held us Wt. AN107Mix@1:10 = <u>37,9097</u> g (6.4a)$ mta::al, only 15ml

Could be used. Wt. Added =
$$6.4a - 6.2a = \frac{18.7667}{g}$$
 (6.4b)

6.5 Transfer 10 mL of sample AN107 to vial <u>AN107Mix@1:1</u> then weigh.

$$f = \frac{1}{25} \frac{1}{40} \frac{1}{5} \frac{1}{9} g$$
 (6.5a)

Wt. Added =
$$6.5a - 6.3a = 7.7457$$
 g (6.5b)

6.6. Transfer 2 mL of sample AW101WASH to vial <u>AW101Mix@1:10</u> then weigh.

Wt. AW101Mix@1:10 = 24.0944 g (6.6a)

Wt. Added =
$$6.6a-6.1c = 1.9834$$
 g 4^{4} (6.6b)

6.7 Transfer 10 mL of sample AW101WASH to vial <u>AW101Mix@1:1</u> then weigh.

Wt. AW101Mix@1:1 =
$$44.9612$$
 g (6.7a)

Wt. Added =
$$6.7a - 6.1d = 10.181L$$
 g (6.7b)

Wt. Added =
$$6.8a - 6.6a = 2N + 4173$$
 g (6.8b)

Wt. AW101Mix@1:1 =
$$34.7752$$
 g 4.724 (6.9a)

Wt. Added =
$$6.9a - 6.7a = 12.5535$$
 g (6.9b)

6.10. Stir the contents of <u>AN107Mix@1:10</u>, <u>AN107Mix@1:1</u>, <u>AW101Mix@1:10</u>, and AW101Mix@1:1. Record any immediate observations concerning chemical reactions (e.g., color change, foaming, gassing) and/or precipitation. Then monitor these solutions once every 24-h period (excluding weekends and holidays) for two weeks. Record observations below.

Date/Time Observations AN: 6/ 22/44 1:20 Awior this @ 1:10 Nothing unusual - (lear solution Aminimia e 1:1 •• .. 8:70 n.1.4 . 4/23/49 8:00 No dango := AMIOI MAR @ 1:10 . AWIOI mix @ 1:1 7.1.2. 6/24/41 840 A.J.L 6/25/49 11100 11 7.1.7. 6/28/49 3:30 PM 11 A.1. 7/2/55 2130 7.1.1. 7/10/19 2:15-PM .. ANIONMIX @ 1:10 - - - Nute: The Anion solution append Cloudy - - - to be cloudy to begin 1.1.1. (1/25/19 13:30 ANIOT Mirel'1 cloudy. A lighter word with. layer floated an top at first. M.] L. 11/20/44 14:30 Cloudy, two "layers" Cloudy had mixed. Stinking stopped. D.1.2. 12/2/99 15:00. Solutions no longer cloudy, solids had settled to the pottom of the visits. 12/7/19 14:00 ANIOTHIX @ 1:1 appears appears the same, but 7.1.1. the deposition for an a 1:10 appear to have discover.) Wo. Solid still present on 12/17/99.

6.11. Prepare the sample vials according to the following table. Vials with the "-L" suffix should be HDPE, while those with the "-S" suffix should be glass.

Sample ID
AN107Mix@1:10-S
AN107Mix@1:1-S
AW101Mix@1:10-S
AW101Mix@1:1-S

- 6.12. Filter each mixture through a vacuum filtration unit with a 0.45-μm nylon membrane.
- 6.13. Place the filtered liquid fractions in the appropriate "-L" vials.
- 6.14. If solids are present on the filter, transfer these to the appropriate "-S" vial. Deionized water can be used to slurry the solids for transfer

See P. 33A

- 6.15. Dry the solids to a constant weight at 105°C.
- 6.16. The samples are to be submitted for the analyses listed in Table 1.

(who immediately before submitting for analysis.

TABLE 1. Sample Matrix

				IA		Sample N	viauix						
		V Acid	KOH	Na ₂ O ₂		IC			ICP-MS			Total	
	Sample ID	Digestion	Fusion	Fusion	ICP/AES	(anions)	TOC	TIC	(⁹⁹ Tc)	GEA	90Sr	Alpha	OH/pH
s.1.4.	ANTOTAWIOI-IA	1.5				<u> </u>			- <u>x</u>				- <u>x</u> -
J	AN107AW101-1B								х				
11/23/""	AN107AW101-1C					×.			x				
.(4)	AN107AW101-2A					x			x				x
(+2.512	AN107AW101-2B								x				
	AN107AW101-2C								x				
1	AIII0/A 101-20	A							~				
	AN107C104-1A	X FIG L				х			х				x
	AN107C104-1B					~			x				
\	AN107C104-1C								x				
1	AN107C104-1C					х			x				x
	AN107C104-2B	7.944 X-1	1.1.6. 11	23/91		~			x				~
- 1 -	AN107C104-2C	X X	'						x				
¥	AN107C104-2C 5								~				
AJ.A.	AN107C104-3A 3	.923 X				x			х				x
12/21/97	AN107C104-3A 13					~			x				~
(5)	AN107C104-36 13			•	S				x				
1	AN107C104-4A 13					x			x				x
	AN107C104-4B i					~			x				~
L	AN107C104-46 /								x				
	ANIO/CIO44C 1	3.33 T A				•			A				
10/8/95	AW101C104-1A	1.818 X				x			х				x
 Control 	AW101C104-1B /								x				
n.1.2.	AW101C104-1C //								x				
(9)	AW101C104-2A	A CONTRACTOR OF				x			x				x
١	AW101C104-2B								x				
	AW101C104-2C //.								x				
	/////oreio+20 //.												
1	AW101C104-3A /	2-21 X				x			х			•	x
	AW101C104-3B /					1 (7 (7)			x				
	AW101C104-3C								x				
1	AW101C104-4A /					x			x			8	х
	AW101C104-4B					~			x				
V.	AW101C104-4C								x				
									2				
	AN107Mix@1:10-L	. x			x	x	х	х	х	x	х	x	
	AN107Mix@1:1-L	x			x	x	x	x	x	x	x	x	
	AW101Mix@1:10-1				x	x	x	x	x	х	x	x	
	AW101Mix@1:1-L				x	x	x	x	x	x	х	x	
	AN107Mix@1:10-S	5	х	x	x	х	x	x		x	х	x	
	AN107Mix@1:1-S		x	x	x	x	x	x		x	х	x	
	AW101Mix@1:10-	S	x	x	x	x	x	x		x	x	x	
	AW101Mix@1:1-S		x	x	x	x	x	x		x	x	х	
	0		812 I	1.000			7975						

(9) Balance 384.06-01-008

12/17/44

1.1.2.

ANIOT MIX @ 1:1 and ANIOT Mix @ 1:10 both had don't solids on the bottom of the viol.

Because there was not a lot of solids, we decided a so centrifuge/decant would be a better approach than filtration.

					Tari	Lyvir
Two	Utals	labeled	45	AN107 M&@ 1.1 Liquid"	17.3338	34, 8176
				" ANIOT MixE 1:10 Liquid"	17.2936	37.4460

Centrifuged ANIOTMIXE 1:1 and ANIOT Mix Q1:10. Using pipette, liquid decented to ANIOTMIX Q1:1 Liquid and ANIOTMIXE 1:10 Liquid, respective (y.

why after transfe

ANION Mix Q 1:1 = 17.8240 e 1:10 = 17.6865

(Probably a me or so liquid convised over with the solids.)

Note: When liquids submitted for analysis, indicate on ASR that they should be filtered with ays-un prior to analysis.

Solids in ANIOT mix @ 1:1 and ANIOT mix @ 1:10 de at 105°C

Wt. after drying : ANIONMIX@1:1 = 17.1663 ANION Mix@1:10 = 17.2573

201. Sovids: ANION ANA @1:11 = 17.1662 - 17.0463 = 0.1200 g ANION ANX@1:10 = 17.2573 - 17.0885 = 0.1688 g ut - w

Appendix B. Analytical Reports

Project Number

Pacific Northwest Laboratories

Internal Distribution

329/4 File Mike Urie

Date November 23, 1999

To Gregg Lumetta

Tom Farmer

Subject

From

ICP/MS Analysis of Submitted Samples (ACL #00-0043 through 00-0054)

Pursuant to your request, the 13 samples that you submitted for analysis were analyzed by ICPMS for ⁹⁹Tc. The results of this analysis are reported on the attached page.

An Amersham ⁹⁹Tc standard was used to generate the calibration curve and an independent Amersham ⁹⁹Tc standard was used as the continuing calibration verification (CCV) standard. The 1% high-purity nitric acid solution used to dilute the standards and samples was used as a reagent blank. The samples were diluted an extra 10x to 50x from the dilutions received. The results include your dilutions and are reported in ng analyte/ g (ppb) of the original sample. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at ±10%, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Ru counts, corrected for sample dilution, are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0624 or Tom Farmer at 372-0700.

11/23/99

Gregg Lumetta Tc-99 Analysis

November 23, 1999

Results are reported in ng analyte/ g (ppb) of original sample. Uncertainty of the results is estimated at ±10%.

Sample ID	Client ID	ICP/MS Number	Tc-99 * ng/g	Ru-101 ng/g
1%HNO3 1%HNO3		9b22b1 9b22b22	<2 <2	ing, g
00-0054PB	Process Blank	9b22b7	2.7±0.8	0.7
00-0043	AW101C104-1A	9b22b17	386	180
00-0044	AW101C104-1B	9b22b8	77.7	210
00-0045	AW101C104-1C	9b22b9	67.5	190
00-0046	AW101C104-2A	9b22b16	394	180
00-0047 00-0047 + spike Spike Recovery	AW101C104-2B AW101C104-2B	9b22b10 9b22b20	65.7 269 111%	190 190
00-0048	AW101C104-2C	9b22b11	61.8	190
00-0049 00-0049 Dup.	AW101C104-3A AW101C104-3A	9b22b18 9b22b21	1810 1750	530 510
00-0050	AW101C104-3B	9b22b13	321	550
00-0051	AW101C104-3C	9b22b14	328	550
00-0052	AW101C104-4A	9b22b19	1690	490
00-0053	AW101C104-4B	9b22b12	296	560
00-0054	AW101C104-4C	9b22b15	313	530
CCV results are rep 2.5ppb Tc-99 CCV 2.5ppb Tc-99 CCV		9b22b4 9b22b23	2.60 2.60	
5ppb Co		9b22b24	<2	

*Calculated using response from indium. For information only.

DATA BEVIEW Reviewed by hull amos fume DE. 3:2310099 Pages: 10/1

Gregg Lumetta Tc-99 Analysis

November 23, 1999(Revised 11/30/99)

Results are reported in ng analyte/ ml (ppb) of original sample. Uncertainty of the results is estimated at $\pm 10\%$.

Sample ID	Client ID	ICP/MS Number	Tc-99 ng/ml	*Ru-101 ng/ml		
1 %HNO3 1 %HNO3		9b22b1 9b22b22	<2 <2			
00-0054PB	Process Blank	9b22b7	2.8±0.8	0.7		
00-0043	AW101C104-1A	9622617	418	190		
00-0044	AW101C104-1B	962268	84.0	230		
00-0045	AW101C104-1C	962269	73.3	210		
00-0046	AW101C104-2A	9622616	430	200		
00-0047 00-0047 + Spike Recover	AW101C104-2B AW101C104-2B y	9b22b10 9b22b20	71.4 292 110%	210 210		
00-0048	AW101C104-2C	9622611	67.5	210		
00-0049 00-0049 Du	AW101C104-3A AW101C104-3A	9b22b18 9b22b21	2100 2030	610 590		
00-0050	AW101C104-3B	9622613	373	640		
00-0051	AW101C104-3C	9b22b14	379	640		
00-0052	AW101C104-4A	9b22b19	2010	580		
00-0053	AW101C104-4B	9622612	344	650		
00-0054	AW101C104-4C	9b22b15	358	610		
CCV results are reported in ng/ml (ppb)						
2.5ppb Tc-9 2.5ppb Tc-9		9b22b4 9b22b23	2.60 2.60			
5ppb Co		9622624	<2			

*Calculated using response from indium. For information only.

Project Number

Internal Distribution

329/4 File Mike Urie

Date January 24, 2000

To Gregg Lumetta

From

Tom Farmer Quill I Komas Jaimer

ICP/MS Analysis of Submitted Samples

Subject

(ACL #00-00770 through 00-00775, 00-00778 through 00-00779)

Pursuant to your request, the 12 samples that you submitted for analysis were analyzed by ICPMS for ⁹⁹Tc. The results of this analysis are reported on the attached page.

An Amersham ⁹⁹Tc standard was used to generate the calibration curve and an independent Amersham ⁹⁹Tc standard was used as the continuing calibration verification (CCV) standard. The 1% high-purity nitric acid solution used to dilute the standards and samples was used as a reagent blank. The samples were diluted an extra 5x to 10x from the dilutions received. The results include your dilutions and are reported in both ng analyte/ ml (ppb) and ng analyte/ g (ppb) of the original sample ± one standard deviation.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Ru counts, corrected for sample dilution, are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0700 or James Bramson at 372-0624.

Lumetta Tc-99 Analysis January 24, 2000

9/125/100

Results are reported in ng/ml (ppb) and ng/g (ppb) of original sample.

Sample	Client	ICP/MS	Tc-99		Tc-99	P. Astro	¹⁰¹ Ru/ ¹⁰² Ru	† ¹⁰¹ Ru	
D	Q	Number	ng/ml ± 1SD		± g/gu	1SD	(*.541)	ng/ml	
1%HNO3		00121a1	<0.1		<0.1				
1%HNO3		00121a21	<0.1	am	<0.1				
Blank		00121a23	<2.2		<2.2				
Blank Filter		00121a24	<1.5		<1.5				
00-00170	AN107C104-3A	00121a10	1490 ±	5	1310 ±	5	1.120	1700	
00-00770 DUP	AN107C104-3A	00121a11	1430 ± 5	50	1260 ±	44	1.091	1600	
00-00771	AN107C104-3B 00121a12	00121a12	1140 ± 81	-	998 ±	71	1.097	1600	
						(x),29x †			
00-00772	AN107C104-3C	00121a13	1190 ± 5	57	1040 ±	50	1.114	1700	
00-00773	AN107C104-4A	00121a14	1430 ± 4	44	1240 ±	38	1.120	1700	
00-00774	AN107C104-4B	00121a15	1110 ± 8	82	959 ±	71	1.091	1600	
00-00775	AN107C104-4C	00121a16	1120 + 1	13	980 ±	11	1.088	1700	
00-00775 + spike	AN107C104-4C	00121a20	+1	O		96			
Spike Recovery			110%		111%				
00-00778	AN107Mix@1:1 Liquid		+1	43	1100 ±	38	1.124	1500	
00-00778 DUP	AN107Mix@1:1 Liquid	00121a18	1240 ± 4	44	1110 ±	40	1.103	1400	
00-00779	AN107Mix@1:10 Liquid	00121a19	2500 ± 4	49	2040 ±	40	1.098	2900	
CCV results are reported in ng/ml (ppb)	id in ng/ml (ppb)								
5ppb Tc-99 CCV		00121a5	+1	.	4.79 ±	0.1			
5ppb Tc-99 CCV		00121a25	5.00 ± 0.1	. .	5.00 ±	0.1			
50ppb Co		00121a22	<0.1	·	<0.1	inin f			
501 FOF									

Reviewed by JU1 WEIVER ATAD

1050:35 0000 FEGes:

†Based on response from indium * Natural ¹⁰¹Ru/¹⁰²Ru ratio.

Radioanalytic	Radioanalytical Applications Team	D				MP#	W45526			Print Date: 11/24/99	1/24/99	
Hydroxide an Governing Pr	Hydroxide and Alkalinity Determination Governing Procedures: PNL-ALO-228: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Lee and Operation of Brinkman 636 Auto-Ti Equip # WB76843 Lab Loc. 525	Determination Alkalinity o 1 Operation o Equip # Lab Loc.	ı of Hydroxy f Aqueous S f Brinkman (WB76843 525	on 8: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Leachates and Supernates and Operation of Brinkman 636 Auto-Titrator Equip # WB76843 Lab Loc. 525	hates and Su ator	upernates			Analyst:	the we	seed 11	11/24/99
	Titrant	Molarity	_	Std. & Spike	Molarity			011				
	HCI	0.2034		NaOH	0.1018			1st Equivalence	lce			
						Titrator	Initial	Point		Found		
RPG #	Sample ID		Sample Vol. (mL)	Sample Wt. (g)	Density g/mL	Routine #	pH reading	pH Titrant reading Vol. (mL)	Hq	millimoles base	Molarity base	millimole RPD
00-0043	AW101C104-1A		0.100	0.1066	1.066	4	10.837	0.242	9.473	0.049	0.49	
00-0043	AW101C104-1A	Replicate	0.200	0.2105	1.053	9	11.205	0.459	9.695	0.093	0.47	
00-0043	AW101C104-1A	Replicate	0.300	0.3149	1.050	7	11.417	0.633	10.162	0.129	0.43	13.69%
00-0046	AW101C104-2A		0.300	0.3171	1.057	8	11.531	0.663	10.242	0.135	0.45	
00-0046	AW101C104-2A	Replicate	0.300	0.3182	1.061	6	11.619	0.683	9.889	0.139	0.46	2.97%
00-0049	AW101C104-3A		0.300	0.3399	1.133	10	11.763	1.292	10.436	0.263	0.88	
00-0049	AW101C104-3A	Replicate	0.300	0.3422	1.141	Ξ	11.753	1.254	10.417	0.255	0.85	2.99%
00-0052	AW101C104-4A		0.300	0.3403	1.134	12	11.587	1.241	10.307	0.252	0.84	
00-0052	AW101C104-4A	Replicate	0.300	0.3415	1.138	13	11.733	1.162	10.415	0.236	0.79	6.58%
Reag. Blk.			5.00			-					OH % Recovery	ry
Standard 1	0.1018 N NaOH		5.000	5.0281	1.006	2	11.663	2.208	10.358	0.4491	88.2%	Std 1
Standard 2	0.1018 N NaOH		5.000	5.0178	1.004	3	11.89	2.206	10.366	0.4487	88.2%	Std 2
00-0043MS	C104-1A + 2mL 0.1N NaOH	НО	0.200	0.2109	1.055	6	11.403	1.09	10.354	0.222	63.4%	MS
							Per	Performance checks	cks			
Buffer	Fisher Lot #	+	CMS#	Expire Date				Balance #	36001-06-037	17	Vol.	Wt.
10	SB115-500		179557	May-01					Pipet #	H30762	5.00	4.944
4	SB101-500		179554	May-01					Pipet #	2734494	0.500	0.496
7	SI3107-500		179555	May-01					Pipet #	120737	0.100	0.1013
									Pipet #	120737	0.200	0.1997
	-				Dage	Dana Lof 7					11	0001/00/11

File: L:\radchem\hydroxide\ast5533

5533

ASR #

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Page 1 of 2

11/24/1999

ASR5533.vls

Radiochemical Processing Group-325 Building Battelle Pacific Northwest Laboratory Radioanalytical Applications Team

5533 ASR #

W45526 WP#

Governing Procedures: PNL-ALO-228: Determination of Hydroxyl (OH-) and · Analyst:_

Hydroxide and Alkalinity Determination

Alkalinity of Aqueous Solutions, Leachates and Supernates

Operation of Brinkman 636 Auto-Titrator

Equip # WB76843

11/17/1999 File: L:\radchem\hydroxide\asr5533 Print Date: 11/24/99 Analysis Date:

pp/te/11_ 11/24/99 - surved 1202 S Reviewer:

	Lab Lo	525								•		
Titrant	Molarity		CO3					HC03		2		
HCI	0.2034		2nd Equivalence	valence				3rd Equivalence	alence			
			Point		Found			Point		Found		
	201	Sample	Titrant	. с	millimoles	olarity	illimole	Titrant		millimoles	Molarity	Molarity millimole
RPG #		Vol. (mL	ol. (mL)	Ηd	base	base	RPD	ol. (mL)	рН	base	base	RPD
00-0043	0	0.100	0.422	6.816	0.037	0.366		0.501	4.891	0.016	0.16	
00-0043	Replicat	0.200	0.807	7.000	0.071	0.354		0.899	5.685	0.019	0.09	
00-0043	Replicat	0.300	1.145	7.803	0.104	0.347	5.32%	1.356	5.756	0.043	0.14	41.8%
00-0046	0	0.300	1.211	7.325	0.111	0.372		1.350	5.868	0.028	0.09	
00-0046	Replicat	0.300	1.192	7.393	0.104	0.345	7.38%	1.394	5.521	0.041	0.14	37.0%
00-0049	0	0.300	2.253	7.778	0.195	0.652		2.692	4.719	0.089	0.30	
00-0049	Replicat	0.300	2.220	7.937	0.196	0.655	0.52%	2.649	5.050	0.087	0.29	2.30%
00-0052	0	0.300	2.221	7.727	0.199	0.664		2.678	4.761	0.093	0.31	
00-0052	Replicat	0.300	2.187	7.876	0.208	0.695	4.49%	2.695	4.741	0.103	0.34	10.57%
						CO3 %	CO3 % Recovered	p		HCO3 % recovered	ecovered	
Standard 1		5.000	2.439	7.825	0.04699	9.2%	9.2% sample	2.652	3.74	0.0433	8.5%	
Standard 2		5.000	2.436	7.836	0.04678	9.2%	9.2% sample	2.648	3.579	0.0431	8.5%	
00-0043MS		0.200	1.648	7.683	0.1135	159.5% sample	sample	1.997	5.226	0.0710	279.2% sample	sample
Matrix spike recovery is calculated as follows: Snike = 2 00 ml 0 1018 N NaOH was added to	ke recover	y is calcu	very is calculated as follows: 1018 N NaOH was added to the 0 100-m1_of sample_for each matrix snike	Ilows: Ied to the	0 100-m1	of sample	e for each	matrix sni	ike			
Spike Fitrant vol. (sample @ .1mL + spike) - Sample Titrant vol. (average sample only equated to .1mL) * 0.2034 N (HCl titrant) =	t vol. (sam	iple @ . Ir	nL + spike) - Sample	eTitrant vo	dune to	ge sample	only equat	ed to .1n	ıL) * 0.203.	4 N (HCI ti	trant) =

Prep record on 0.2034 M HCl is on following page.

meq OH / 2.00 mL added = meq OH/mL found / 0.1018 N OH added * 100 = % recovered.

meq. OH

Page 2 of 2

	x			domillin	RPD		0.25%		0.07%		0.62%		4.69%]		Std 1	Std 2	MS	MS						
asr5606 00 7/00	Þi-þb			Molarity	•	1.92	16.1	1.90	16.1	0.37	0.37	0.37	0.36		OH % Recovery	97.0%	95.5%	94.2%	95.1%	7	Wt.	4.9796	0.2971	0.0992	0.5009
File: L:\radchem\hydroxide\asr5606 nalysis Date: Print Date: 1/7/00	12			Found	base	0.575	0.574	0.571	0.381	0.111	0.184	0.186	0.178		% HO	0.4939	0.4863	0.383	0.376	36001-06-037	Vol.	5.00	0.300	0.100	0.500
File: L:\radche Analysis Date:	A covered		ce		ЬН	10.491	10.535	10.495	10.576	10.452	10.586	10.493	10.553			10.457	109.01	10.142	10.462		Pipet #	H30762	288618	120737	120737
Η VU	Analyst: V	но	1st Equivalence	Point	reading Vol. (mL)	2.827	2.82	2.809	1.874	0.547	0.906	0.916	0.874			2.428	2.391	1.884	1.847	Performance checks using Balance #				L	
5606 a W45526			<u> </u>	Initial	reading	12.330	12.267	12.361	12.164	11.803	11.902	11.903	11.889	2.697	4.328	11.426	12.088	11.650	11.818	Performanc					
ASR # Client: G. Lumetta WP# [V]	upernates 525			Titrator	#	4	5	9	7	8	6	10	=	-	14	2	3	15	16						
Client:	l chates and S ator Lab Loc.	Molarity	0.1018	Dancity	g/mL	1.234	1.242	1.231	1.218	1.060	1.065	1.070	1.072			1.007	1.009	1.250	1.067		18				
	 28: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Leachates and Supernates and Operation of Brinkman 636 Auto-Titrator Equip # WB76843 	Std. & Spik	NaOH	Samle	Wt. (g)	0.3702	0.3727	0.3692	0.2435	0.3181	0.5327	0.5352	0.5361			5.034	5.0464	0.1250	0.5337		Expire Date	May-01	May-01	May-01	
	n of Hydro Aqueous S Brinkman WB76843			Samle	Vol. (mL)	0.300	0.300	0.300	0.200	0.300	0.500	0.500	0.500	5.00	5.00	5.000	5.000	0.100	0.500		CMS#	179557	179554	179555	
lding	Determinatio Alkalinity of Operation of Equip #	Molarity	0.2034	6.92			Replicate		Replicate		Replicate		Replicate					Н	Н						
Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building	Governing Procedures: RPG-CMC-228: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Leac and Operation of Brinkman 636 Auto-Titr Equip # WB76843	Titrant	HCI	pH 7.0 reading =	Sample ID	AN107AW101-1A	AN107AW101-1A	AN107AW101-2A	AN107AW101-2A	AN107C104-1A	AN107C104-1A	AN107C104-2A	AN107C104-2A			0.1018 N NaOH	0.1018 N NaOH	00-0499 + 2mL 0.1N NaOH	00-0508 + 2mL 0.1N NaOH		Fisher Lot #	SB115-500	SB101-500	SB107-500	
Battelle Pacific Radiochemical	Governing Pro				RPG #	00-0499	00-0499	00-0502	00-0502	00-0505	00-0505	00-0508	00-0508	Reag. Blk.1	Reag. Blk.2	Standard 1	Standard 2	00-0499MS	00-0508MS		Buffer	10	4	7	

Page 1 of 2

ASR5606.xls

1/7/2000

Radiochemical Processing Group-325 Building Battelle Pacific Northwest Laboratory

Governing Procedures: RPG-CMC-228: Determination of Hydroxyl (OH-) and Analyst:

Alkalinity of Aqueous Solutions, Leachates and Supernates

Operation of Brinkman 636 Auto-Titrator

5606 ASR #

W45526

WP#

01/04/2000 File: L:\radchem\hydroxide\asr5606 Analysis Date:

-6-2-00 Print Date; 1/6/00 Q,

00-9-Reviewer:

	Equip #	Equip # WB76843										
Titrant	Molarity		CO3					HC03				
HCI	0.2034		2nd Equivalence	ivalence				3rd Equivalence	alence			
			Point		Found			Point		Found		
		Sample	Titrant	Ξ.	millimoles	olarity	illimole	Titrant		millimoles	Molarity millimole	millimole
RPG #		Vol. (mL	ol. (mL)	Hd	base	base	RPD	ol. (mL)	Hd	base	base	RPD
00-0499	0	0.300	3.899	7.610	0.218	0.727		4.187	5.071	0.059	0.20	
00-0499	Replica	0.300	3.902	7.615	0.220	0.734	0.93%	4.195	5.055	0.060	0.20	1.7%
00-0502	0	0.300	3.866	7.616	0.215	0.717		4.153	5.049	0.058	0.19	
00-0502	Replica	0.200	2.613	7.557	0.150	0.752	4.76%	2.805	5.055	0.039	0.20	0.3%
00-0505	0	0.300	1.076	7.513	0.108	0.359		1.306	5.720	0.047	0.16	
. 00-0505	Replica	0.500	1.723	8.188	0.166	0.332	7.61%	2.236	5.389	0.104	0.21	28.93%
00-0508	0	0.500	1.756	7.878	0.171	0.342		2.234	5.366	0.097	0.19	
00-0508	Replica	0.500	1.704	8.172	0.169	0.338	1.20%	2.683	3.792	0.199	0.40	68.77%
						70 205	Decorored //			HCO3 % recovered	Perovered	
						0/ CON	Necover e				כרחגכובת	
Standard 1		5.000	2.598	7.926	0.03458	6.8%	6.8% sample	2.735	3.909	0.0279	5.5%	
Standard 2		5.000	2.588	7.826	0.04007	7.9%	7.9% sample	2.738	4.144	0.0305	6.0%	
00-0499MS		0.100	2.269	6.899	0.07831	107%	107% sample	2.375	4.713	0.0216	109%	109% sample
00-0508MS		0.500	2.686	8.141	0.17065	100%	100% sample	3.358	4.778	0.1367	92%	92% sample
Matrix spike recovery	ke recove	ery is calc	is calculated as follows:	follows:								
Spike = 2.00 mL 0.1018 N NaOH was added to the 0.100-mL of sample for each matrix spike.	0 mL 0.1	018 N Na(OH was ac	ided to the	0.100-mL	, of samp	le for eac	ch matrix sp	oike.			
Spike Titrant vol. (sample @ .1mL + spike) - Sample Titrant vol. (average sample only equated to .1mL) * 0.2034 N (HCl titrant) =	t vol. (sa	mple @ .1	mL + spik	(e) - Samp	leTitrant v	ol. (avera	ge sample	e only equa	ted to . Ir	nL)*0.20	34 N (HCI	titrant) =

Prep record on 0.2034 M HCl is on following page.

meq OH / 2.00 mL added = meq OH/mL found / 0.1018 N OH added * 100 = % recovered.

meq. OH

Page 2 of 3

	00/									,	,				,					
5644	2/10/00		millimole			5.27%		14.58%		very	Std 1	Std 2	MS		Wt.	5.008	0.4953	0.2018		
00	Courses		Molarity	base	0.55	0.52	0.50	0.57		OH % Recovery	96.9%	96.1%	90.4%		Vol.	5.00	0.500	0.100	0.200	
chem\hydroxide\asr# Analysis Date: Print Date: 2/10/00	A A A		Found	base	0.109	0.260	0.248	0.172			0.4932	0.4894	0.291		12	H30762	2734494	120737	120737	11
File: L:\radchem\hydroxide\asr# Analysis Date: Print Date: 2/10/0	Analyst:			рН	9.808	10.128	10.659	9.849			7.877	7.396	10.083	ks	36001-06-037	Pipet #	Pipet #	Pipet #	Pipet #	
-		OH OH	rst Equivalence Point Titrant	reading Vol. (mL)	0.538	1.276	1.217	0.845			2.425	2.406	1.429	Performance checks	Balance #					
5644 W45526			Initial	reading	10.680	11.194	11.501	11.491		2.309	10.217	11.376	11.338	Perf						
ASR # [WP# [imates		Titrator Routine	#	4	5	6	7		-	2	3	8							41 540
	d ates and Supe or	Molarity	Density	g/mL	1.170	1.165	1.156	1.159			0.999	1.000	1.156		ĸ				2	
	nation D-228: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Leachates and Supernates and Operation of Brinkman 636 Auto-Titrator Equip # WB76843 Lab Loc. 525	Std. & Spike	Sample	Wt. (g)	0.2339	0.5824	0.5779	0.3478			4.9959	5.0017	0.2311		Expire Date	May-01	May-01	May-01		
	ation of Hydr f Aqueous So f Brinkman 6 WB76843 525		Sample	Vol. (mL)	0.200	0.500	0.500	0.300		5.00	5.000	5.000	0.200		CMS#	179557	179554	179555		
Building	on 28: Determins Alkalinity of Operation of Equip # Lab Loc.	Molarity	+CU2.U			Replicate		Replicate					AOH		#	0	0	0		
Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team	Hydroxide and Alkalinity Determination Governing Procedures: PNL-ALO-228: Determination of Hydroxyl (OH-) Alkalinity of Aqueous Solutions, Lee and Operation of Brinkman 636 Auto-Tit Equip # WB76843 Lab Loc. 525	Titrant	IN	Sample ID	AN107-C104-3A	AN107-C104-3A	AN107-C104-4A	AN107-C104-4A			0.1018 N NaOH	0.1018 N NaOH	An-107 + 2mL 0.1N NaOH		Fisher Lot #	SB115-500	SB101-500	SB107-500		
Battelle Pacific Radiochemical Radioanalytical	Hydroxide and Governing Prov			RPG #	00-00110	00-00110	00-00773	00-00773	QC Data:	Rcag. Blk.	Standard 1	Standard 2	00-0773MS		Buffer	10	4	7		

Page 1 of 2

ASR5644.xls

02/10/2000

00			millimole RPD		0.1%		5.9%				mple			02/10/2000
Aasr# 01/00/1900	2/10/00		Molarity base	0.49	0.49	0.49	0.52	-		vered	109.7% sample		ຍ. ອີກ	02/1
File: L:\radchem\hydroxide\asr# Analysis Date: Print Date: 02/10/2000	course 3	Found	millimoles base	0.097	0.243	0.244	0.156			HCO3 % recovered	0.1066	q. OH	Prep record on 0.2034 M HCl is on following page.	
ile: L:\radc An	A A	ence	ЬН	4.474	4.608	4.617	4.438				4.49	trant) = me	M HCl is o	
<u></u>	Analyst: K	HCO3 3rd Equivalence Point	Titrant Vol. (mL)	1.619	3.991	3.978	2.422				2.607	4 N (HCl ti	l on 0.2034	
5644 W45526	~ "		millimole RPD		0.89%		14.12%	covered	0.002 sample	sample	sample	ıL) * 0.203	Prep record	
ASR # [WP# [se		Molarity base	0.613	0.619	0.634	0.551	CO3 % Recovered	0.002	0.003	108.0% sample	spilke. lated to .1r red.		of 2
	id Supernat	Found	millimoles base	0.123	0.309	0.317	0.165		0.01139	0.01322	0.13302	ach matrix le only equ % recove		Page 2 of 2
	JH-) and achates an itrator		n Hq	7.008	7.381	7.474	7.401		4.32	4.136	7.246	nple for e rage samp ed * 100 =		
	Hydroxyl ((olutions, Le 536 Auto-T	CO3 2nd Equivalence Point	Titrant Vol. (mL)	1.141	2.797	2.776	1.657		2.481	2.471	2.083	0-mL of sar mt vol. (ave t N OH add		
εŋ	nation -228: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Leachates and Supernates Operation of Brinkman 636 Auto-Titrator Equip # WB76843 Lab Loc. 525		Sample Vol. (mL)	0.200	0.500	0.500	0.300		5.000	5.000	0.200	ows: d to the 010 - SampleTitra und / 0.1018		
tory 325 Buildir n	nation D-228: Dete Alkalinity Operation Equip # Lab Loc.	Molarity 0.2034		0	Replicate	0	Replicate			12	N NaOH	lated as foll H was adde L + spike) OH/mL fo		
Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team	Hydroxide and Alkalinity Determination Governing Procedures: PNL-ALO-228: Determination of Hydroxyl (OH-) and Alkalinity of Aqueous Solutions, Leachates a and Operation of Brinkman 636 Auto-Titrator Equip # WB76843 Lab Loc. 525	Titrant HCI	Sample ID	AN107-C104-3A	AN107-C104-3A	AN107-C104-4A	AN107-C104-4A		0.1018 N NaOH	0.1018 N NaOH	An-107 + 2mL 0.1N NaOH	Matrix spike recovery is calculated as follows: Spike = 2.00 mL 0.1018 N NaOH was added to the 0100-mL of sample for each matrix spilke. Spike Titrant vol. (sample @ .1mL + spike) - Sample Titrant vol. (average sample only equated to .1mL) * 0.2034 N (HCl titrant) = meq. OH meq OH / 2.00 mL added = meq OH/mL found / 0.1018 N OH added * 100 = % recovered.		4.xls
Battelle Pacifi Radiochemica Radioanalytic	Hydroxide an Governing Pr		RPG #	00-00770	00-00770	00-00773	00-00773		Standard 1	Standard 2	00-0773MS	Matrix spi Spike = 2.00 SpikeTitran meq OH / 2.		ASR5644.xls

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Client:	G. Lumetta	Charge Code/Project:	W45526 / 29953
ACL Numbers:	00-0043, -0046, -0049, -0052	ASR Number:	5533
Analyst:	MJ Steele	Analysis Date: Nov	ember 01-03, 1999

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography"
 M&TE: IC system (WD25214); Balance (360-06-01-031) --- See Chemical Measurement
 Center 98620 RIDS IC File for Calibration, Standards Preparations, and Maintenance Records.

Final Results:

		\gtrsim $\mathbf{F}_{\pm 1}$	Cl	NO ₂	Br	NO ₃	PO4	SO4	C204
Lab ID	Sample ID	µg/ml	µg/ml	µg/ml	µg/ml	-μg/ml	µg/ml	µg/ml	µg/ml
00-0043	AW101C104-1A	2,600	200	4,900	< 125	8,400	430	360	510
00-0043 Rép	AW101C104-1A Rep	2,600	190	4,900	< 125	8,400	420	330	500
	RPD	0%	5%	0%	n/a	0%	2%	7%	0%
00-0046	AW101C104-2A	2,700	210	5,300	< 125	9,000	450	< 250	540
00-0049	AW101C104-3A	1,800	1,100	22,400	< 125	47,000	< 500	< 500	< 500
00-0052	AW101C104-4A	1,800	1,200	22,700	< 125	47,500	< 500	< 500	< 500
	00-0052 MS Rec	94%	98%	104%	101%	112%	104%	107%	105%
	Blank Spike Rec	101%	98%	104%	106%	106%	106%	108%	106%

RPD = Relative Percent Difference (between sample and duplicate/replicate) MS Rec = Matrix Spike Standard % recovery

Blank Spike Rec = Blank Spike Standard % recovery

The samples were analyzed by ion chromatography (IC) for inorganic anions as specified in the governing ASR. The liquid samples were diluted at the IC workstation up to 2,000-fold to ensure that all anions were within the calibration range.

Q.C. Comments:

<u>Duplicates</u>: No actual sample duplicates were provided to the laboratory for analysis. However, the relative percent differences (RPD) between replicates are well within the acceptance criteria of 20% for all anions measured above the EQL.

<u>Matrix Spike</u>: A matrix spike was prepared and measured for sample AW101C104-4A. The spike recoveries for all anions are within the 75% to 125% recovery acceptance criteria.

<u>Blank Spike</u>: The blank spike is used as the laboratory control sample and recovered within the acceptance criteria of 80% to 120%.

<u>System Blank/Processing Blanks:</u> Approximately ten system blanks were process during the analysis of the samples. With the exception of only single nitrate value, no anions were detected above reportable concentrations in the system blanks. Since the nitrate results are high, this single QC failure does not affect the reported nitrate results.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

<u>Quality Control Calibration Verification Check Standards</u>: Approximately ten mid-range verification standards were analyzed throughout the analysis runs. Except for a single phosphate value, the reported results for all analytes of interest were recovered within the acceptance criteria of $\pm 10\%$ for the verification standard. The one phosphate result recovered at +11% above the true value. This single phosphate failure has no impact on the reported results.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- Routine precision and bias are typically ±15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

Analyst: ` Approval:

Date 11-12-99

Archive Information:

Files: ASR 5533 Lumetta.doc

ASR 5463 5533 -36 -68 -71.xls

Project Number

Internal Distribution

329/4 File Mike Urie

Date November 23, 1999

To Gregg Lumetta

Jul Domas Jaime R 13,00099 Tom Farmer

Subject

From

ACL #00-0499 through 00-0509)

Pursuant to your request, the 13 samples that you submitted for analysis were analyzed by ICPMS for ⁹⁹Tc. The results of this analysis are reported on the attached page.

An Amersham ⁹⁹Tc standard was used to generate the calibration curve and an independent Amersham ⁹⁹Tc standard was used as the continuing calibration verification (CCV) standard. The 1% high-purity nitric acid solution used to dilute the standards and samples was used as a reagent blank. The samples were diluted an extra 20x from the dilutions received (10x). The results include your dilutions and are reported in ng analyte/ ml (ppb) of the original sample. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at \pm 10%, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Semiquantitative Ru concentrations, corrected for sample dilution, are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0700 or James Bramson at 372-0624.

JP 12/13/99

Lumetta Tc-99 Analysis

December 9, 1999

Results are reported in ng analyte/ ml (ppb) of original sample. Unless otherwise specified, the uncertainty of the results is estimated at ±10%.

Sample ID	ICP/MS Number	Tc-99 ng/ml	¹⁰¹ Ru/ ¹⁰² Ru (*0.541)	† ¹⁰¹ Ru ng/ml
1%HNO3 1%HNO3 1%HNO3	9c08a1 9c08a7 9c08a23	2.6±0.9 6.2±3.9 8.1±2.9		
00-00499 PB1	9c08a8	4.4±2.2	2.318	2
00-00499 PB2	9c08a9	6.24	0.659	1
00-00499	9c08a21	3760	1.169	1100
00-00500	9c08a15	929	1.186	1200
00-00501	9c08a16	929	1.178	1200
00-00502	9c08a22	3970	1.167	1200
00-00503 00-00503 DUP	9c08a17 9c08a19	998 1030	1.187 1.189	1200 1200
00-00504	9c08a18	1060	1.176	1200
00-00505 00-00505 + spike Spike Recovery	9c08a13 9c08a20	308 1370 106%	1.152 1.185	530 520
00-00506	9c08a11	224	1.148	560
00-00507	9c08a12	245	1.104	560
00-00508	9c08a14	310±50	1.166	540
00-00509	9c08a10	234	1.110	560
4.5ppb Tc-99 CCV 4.5ppb Tc-99 CCV	9c08a24 9c08a5	4.34 4.29	Congele device on el concerto de	r dat år ≱r t
30ppb Co	9c08a26	4.6±1.2		

* Natural ¹⁰¹Ru/¹⁰²Ru ratio.

†Based on response from indium

DATA REVIEW

Reviewed ty OJ. Farmerin

12/13/99

Lumetta Tc-99 Analysis

December 9, 1999

Results are reported in ng analyte/ ml (ppb) of original sample. Unless otherwise specified, the uncertainty of the results is estimated at $\pm 10\%$.

2
2
1
1100
1200
1200
1200
1200 1200
1200
530 520
560
560
540
560
and the second

* Natural ¹⁰¹Ru/¹⁰²Ru ratio.

+Based on response from indium

DATA REVIEW

Reviewed by: O.J. Farmerin Las: 1300099 1000. 1071

Lumetta Tc-99 Analysis December 9, 1999 (revised 12/16/99)

Results are reported in ng analyte/ ml (ppb) of original sample. Unless otherwise specified, the uncertainty of the results is estimated at $\pm 10\%$.

Sampla ID	ICP/MS Number	Density (g/ml)	Tc-99 ng/g	¹⁰¹ Ru/ ¹⁰² Ru (*0.541)	t ¹⁰¹ Ru ng/g
1%HNO3	9c08a1		2.6±0.9	-	
1 %HNO3	9c08a7		6.2±3.9		
1%HNO3	9c08a23		8.1 ± 2.9		
00-00499 PB1	9c08a8	1	4.4 ± 2.2	2.318	2
00-00499 PB2	9c08a9	1	6.24	0.659	1
00-00499	9c08a21	1.2354	3040	1.169	890
00-00500	9c08a15	1.2346	753	1.186	970
00-00501	9c08a16	1.2325	754	1.178	970
00-00502	9c08a22	1.2341	3220	1.167	970
00-00503	9c08a17	1.2366	807	1.187	970
00-00503 DUP	9c08a19	1.2366	833	1.189	970
00-00504	9c08a18	1.2327	860	1.176	970
00-00505	9c08a13	1.0642	289	1.152	500
00-00505 + spike	9c08a20	1.0642	1290	1.185	490
Spike Recovery			107%	- 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10	
00-00506	9c08a11	1.0547	212	1.148	530
00-00507	9c08a12	1.0573	232	1.104	530
00-00508	9c08a14	1.0631	290±50	1.166	510
00-00509	9c08a10	1.0498	223	1.110	530
CCV results are reporte	d in ng/ml (ppb)			
4.5ppb Tc-99 CCV	9c08a24		4.34		
4.5ppb Tc-99 CCV	9c08a5		4.29		
30ppb Co	9c08a26		4.6±1.2		

Natural ¹⁰¹Ru/¹⁰²Ru ratio.
 †Based on response from indium

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Client:	G. Lumetta	Charge Code/Project:	W45526 / 29953
ACL Numbers:	00-0499, -0502, -0505, -0508	ASR Number:	5606
Analyst:	MJ Steele	Analysis Date: De	cember 18-20, 1999

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography"
 M&TE: IC system (WD25214); Balance (360-06-01-031) --- See Chemical Measurement
 Center 98620 RIDS IC File for Calibration, Standards Preparations, and Maintenance Records.

Final Results:

		- F	Cl	NO2	Br	NO3	PO4,	504	C2O4
Lab ID	Sample ID	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml	µg/ml
00-00499	AN107-AW101-1A	830	< 250	46,000	< 250	101,000	< 500	1,100	< 500
00-00502	AN107-AW101-2A	970	< 250	45,300	< 250	98,700	670	1,200	< 500
00-00505	AN107-C104-1A	3,000	< 25	4,800	< 25	12,100	430	520	600
00-00508	AN107-C104-2A	3,700	< 25	4,500	26	11,300	420	520	600
Analytical Ru	Matrix Spike Results								
00-00615 MS	N7-Tc-Elu-Comp MS Rec	94%	OvrRng	101%	103%	103%	103%	103%	101%
00-00626 MS	N7-Tc-0 MS Rec	112%	105%	122%	108%	OvrRng	111%	114%	111%
00-00741 MS	1-1 Rad MS Rec	OvrRng	113%	110%	111%	OvrRng	109%	114%	110%
N/0	Pec - Matrix Spile Stand	and 0/ rec	AVPEN'						

MS Rec = Matrix Spike Standard % recovery

The samples were analyzed by ion chromatography (IC) for inorganic anions as specified in the governing ASR. The liquid samples were diluted at the IC workstation up to 4,000-fold to ensure that all anions were within the calibration range.

Q.C. Comments:

Duplicates: No actual sample duplicates were provided to the laboratory for analysis.

<u>Matrix Spike</u>: No matrix spikes were prepared from the samples submitted under this ASR. However, samples from other ASR analyzed within the analytical run were within the 75% to 125% recovery acceptance criteria for those anions measured within the calibration range.

Blank Spike: No blank spikes were analyzed within the analytical runs.

System Blank/Processing Blanks: Twelve system blanks were process during the analysis of the samples. No anions were detected in the system blanks above the estimate quantitation level (i.e., the lowest calibration standard).

<u>Quality Control Calibration Verification Check Standards</u>: Seven mid-range verification standards were analyzed throughout the analysis runs. Except for only two oxalate values, the

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

reported results for all anions of interest were recovered within the acceptance criteria of $\pm 10\%$ for the verification standard.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- Routine precision and bias are typically ±15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

Analyst: Approval:

Date Date

.

Archive Information: Files: ASR 5606 Lumetta.doc

ASR 5606 5626 5642.xls

Project: Client: 29953 G. Lumetta

RPL ID#: 00-00776 through 00-00779

Client ID: "AN107 MIX @ 1:1" through "AN107 MIX @ 1:10 LIQUID"

ASR Number: 5644

Total Samples: 4

Procedure: PNL-ALO-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICP-AES).

Analyst: D.R. Sanders

Analysis Date (Filename): 01-27-00 (A0577)

See Chemical Measurement Center 98620: ICP-325-405-1 File for Calibration and Maintenance Records.

M&TE Number:

ICPAES instrument -- WB73520 Mettler AT400 Balance -- Ser.No. 360-06-01-029

2-22-00 agner Reviewed by

2-22.00 Concur

Two radioactive <u>solid samples</u>, AN107 MIX @ 1:1 and AN107 MIX @ 1:10 (RPL ID# 00-00776 and 00-00777), were analyzed by ICPAES after preparation by the 325 Shielded Analytical Laboratory (SAL). Samples were prepared using PNL-ALO-129 acid digestion of solids procedure. Approximately 0.1 grams of sample were processed and diluted to a final volume of about 16ml. Concentrations reported for solids in $\mu g/g$ have been corrected for process and analytical dilution. See attached bench sheet included with this report for actual weight and volumes used. The process blank for solids was calculated using the average weight of the two solid samples (0.1092 g) and a final volume of 17.48 ml. Solid samples contained mostly high concentrations of sodium and moderately high aluminum, manganese and silicon. Other analytes measured were generally lower in concentration.

Two radioactive liquid samples and a duplicate, AN107-MIX @ 1:1 LIQUID and AN107 MIX @ 1:10 LIQUID (RPL ID# 00-00778 and 00-00779), were analyzed by ICPAES after preparation by the Sample Receiving and Processing Laboratory (SRPL). Samples were prepared using PNL-ALO-128 acid digestion of solids procedure. Approximately 1.1 grams (1 ml) of sample was processed and diluted to a final volume of about 20ml and weighed. Concentration reported for liquids is in $\mu g/ml$ (volume of sample/ final volume after processing) and $\mu g/g$ (weight of sample/ final volume after processing) as requested by client for liquid samples only. Concentration reported is corrected for process and analytical dilution. See bench sheets included with this report for actual weight and volumes used. The process blank for liquids include reagents and water used to prepare samples. A 0.45 μ m filter was also prepared using PNL-ALO-128 procedure and analyzed. Liquid samples contained high concentration of sodium and a moderate amount of aluminum. Other analytes measured were much lower in concentration.

Specific analytes of interest requested are listed in table 2 "Analytical Requirements for Solids and Liquids. Analytes include: Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, Ti, U, and Zn.

Quality control check-standard results met tolerance requirements for analytes of interest except as noted below. Following is a list of quality control measurement results relative to ICPAES analysis tolerance requirements under former MCS-033.

Five fold serial dilution:

Analytes of interest were within tolerance limit of $\leq 10\%$ after correcting for dilution.

Duplicate RPD (Relative Percent Difference):

All analytes of interest were recovered within tolerance limit of $\leq 20\%$ relative percent difference (RPD).

Post-Spiked Samples (Group A):

All analytes of interest were recovered within tolerance of 75% to 125%.

Post-Spiked Samples (Group B):

All analytes of interest were recovered within tolerance of 75% to 125%.

Blank Spike:

None.

Matrix Spiked Sample:

None.

Quality Control Check Standards:

Concentration of all analytes of interest is within tolerance limit of \pm 10% accuracy in the standards: QC_MCVA, QC_MCVB, and QC_SSTMCV.

High Calibration Standard Check:

Verification of the high-end calibration concentration in QC_SST for all analytes of interest is within tolerance of \pm 5% accuracy.

Process Blank:

All analytes of interest is within tolerance limit of \leq EQL or < 5% of sample concentration except as follows. All analytes of interest in the liquid samples processed using ALO-128 acid digestion were within tolerance limit. Only a small amount of nickel and zinc were detected in the liquid process blank (about 0.1 µg/ml each all below EQL). Iron, sodium, nickel, and silicon were above EQL in the ALO-129 acid digested solid samples. Iron concentration in the process blank is less than about 27% of any iron found in the solid samples. Sodium in the blank is much less than 5% of the sodium in any of the solid samples. Nickel concentration in the process blank is less than about 13% of any

nickel found in the solid samples. Silicon concentration in the process blank is less than about 45% of that found in the solid samples.

Laboratory Control Standard (LCS): None.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- 2) Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically $\pm 15\%$ or better for samples in dilute, acidified water (e.g. $2\% \text{ v/v} \text{ HNO}_3$ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight).
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

	Multiplier= ALO#=	160.1 00-0776-PB	194.1 00-0776	122.2 00-0777	Γ]
Det. Limit (ug/mL)	<i>Client ID= Run Date=</i> (Analyte)	<u>Process</u> <u>Blank / ALO-</u> <u>129</u> 1/27/00 ug/g		<u>AN107 Mix</u> <u>@ 1:10</u> 1/27/00 ug/g		
0.025	Ag	-	145	185		 -
0.060	AI	[56]	7,320	8,150	 -	 -
0.250	As	-		-	 	 +
0.050	В	498	277	354		 -
0.010	Ba	[3.1]	[12]	13.9	 -	 -
0.010	Be	-	-	-	 	 -

				077		354					
0.050	в	498		277		13.9				-	
0.010	Ba	[3.1]		[12]		-					
0.010	Be	-		-							
0.100	Bi	-								-	
0.250	Ca	-		500		474				-	
0.015	Cd	[5.5]		74.1		73.5		-			
0.200	Ce	-				-				-	
0.050	Co	-		-		[7.1]				-	1
0.020	Cr	[11]		141		135		_			
0.025	Cu	[12]		65.2		59.5		-			1
0.050	Dy		1	-				-			1
0.100	Eu	-		-		-					
0.025	Fe	287	1	1,460		1,070					
2.000	к	-	1	[2,000]		[2,000]				-	i
0.050	La	-		-		-					
0.030	LI	-		-		-			*	-	1
0.100	Mg	-		-		[20]	4		1		1
0.050	Mn	-		3,810		3,150			+	-	
0.050	Мо	-		[43]		[42]			1	-	1
0.150	Na	706		317,000		304,000	1	<u> </u>			1
0.100	Nd	- 5		[20]		[19]	.			<u> </u>	
0.030	Ni	79.0		662	1	626	4		4	-	
0.100	P	-		766		787	-		-	-	2.1
0.100	Pb			257	.	224	4		+		
0.750	Pd	-		-		-	4		1		-
0.300	Rh	-		-	4		4	-			-1
1.100	Ru	-							+	-	-
0.500	Sb	-		-			4		4	-	1
0.250	Se	-		-	4		-		-	-	-1
0.500	Si	1,110		2,460		4,250	4		+		-
1.500	Sn	-		-			-		-		-1
0.015	Sr	-		426		391	-	-	-	-	-
1.500	Те	-		-			4				-
1.000	Th	-		-			-	-	4		
0.025	ті	-		-		-	-	-	-		
0.500	TI	-]	-	1	-			4		-
2.000	U	-		-		-	4	-	-		-
0.050	v	-		-	1	-	-				-
2.000	w	-		-					+		-
0.050	Y	-		-		-	_		4	-	
0.050	Zn	[42]		152		447	_	-	-	-	
0.050	Zr			[56]		[39]	-	-		-	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Data (1) from `A0577 G.Lumetta ASR-5644 TA.VanderHoogt ASR-5636 tclp-leach ICP98 hi.XLS

Page 1 of 1

Page 1 of 1

Multiplier= 17.4 17.4 17.8 18.0 61.5 ALO#= BLANK DDI:-	
ALO#= BLANK DDI: ALO-128 BLK Filter DDI0.45u tilter ALO-128 00-0778 00-0778-DUP AN107 Mix AN107 Mix	
DDI: ALO-128 ALO-128 LIQUIDS DDI/0.45u filter ALO-128 LIQUIDS AN107 Mix 1:1 LIQUID AN107 Mix 1:1 LIQUID AN107 Mix 1:1 LIQUID AN107 Mix 1:1 LIQUID AN107 Mix 1:10 LIQUID Det. Limit (ug/mL) (Analyte) ug/g	
Client ID= INDUIDS Internet	
Det. Limit Run Date= 1/27/00	
Left Linit Holy Date Harder Harder Harder Harder (ug/mL) (Analyte) ug/g ug/g ug/g ug/g ug/g ug/g 0.025 Ag - - - - - - 0.060 Al - - 940 939 1,840 0.250 As - - - - - 0.050 B - - - - - 0.050 B - - - - - - 0.010 Ba - - - - - - - 0.100 Bi -	2
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.025 Ag $ 940$ 939 $1,840$ 0.250 As $ 0.050$ B $ 0.050$ B $ 0.010$ Ba $ 0.010$ Be $ 0.010$ Bi $ 0.100$ Bi $ 0.250$ Ca $ -$ </td <td></td>	
0.000 A_1 $ -$	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
0.010 Be -	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
0.200 Ce - <td></td>	
0.050 Co - [1.0] [1.0] - 0.020 Cr - - 17.0 17.0 36.5 0.025 Cu - - 8.32 8.27 [15] 0.050 Dy - - - - - - 0.100 Eu - - - - - -	
0.020 Cr - 17.0 17.0 36.5 0.025 Cu - - 8.32 8.27 [15] 0.050 Dy - - - - - - 0.100 Eu - - - - - -	1
0.020 Cu - - 8.32 8.27 [15] 0.050 Dy -	1
0.050 Dy <u></u>	-
0.000 Eu	1
	-
0.025 Fe - [- [] [3.5] [3.5]	-
10/01	-
	-
0.050 La	-
0.030 Li	-
0.100 Mg	-
0.050 Mn	_
0.050 Mo [6.3] [6.3]	-
0.150 Na 47,800 47,300 86,900	-
0.100 Nd	4
0.030 Ni [0.95] [0.94] 92.3 92.2 184	
0.100 P 115 116 235	-
0.100 Pb 30.5 30.5 [55]	
0.750 Pd	
0.300 Rh – – – – – –	
1.100 Ru – – – – –	
0.500 Sb	
0.250 Se	
0.500 Si – – [34] [34] [45]	
1.500 Sn	
0.015 Sr 58.7 58.8 107	
1,500 Te	
1.000 Th	
0.025 Ti	1
	1
	-
	-
	-
0.050 Y	-
0.050 Zn [0.97] – [3.3] [3.4] [5.7]	
0.050 Zr – – – – – – – – – – – – – – – – – –	-

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) *--* indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

2/17/00 @ 5:18 PM

2

Page 1 of 1

									r	
	Multiplier=	20.0		20.0		20.0	-	20.0	100.0	
	ALO#=	BLANK		BLK Filter		00-0778		00-0778-DUP	00-0779 @5	
		DDI:		DDI/0.45u filter					A1/107 10/1	
	Olivert ID	ALO-128 LIQUIDS		ALO-128 LIQUIDS		AN107 MIX 1:1 LIQUID		AN107 MIX 1:1 LIQUID	AN107 MIX 1:10 LIQUID	
Date	Client ID=			and the second se				1/27/00	1/27/00	
Det. Li		1/27/00		1/27/00		1/27/00	Mean	1 100 - 000		
(ug/m		ug/mL		ug/mL		ug/mL	Trees	ug/mL	 ug/mL	
0.02		-		-		-			-	
0.06						1,050	1045	1,040	2,260	×
0.25						-		-	 	
0.05		-			-	13.1	12.0	12.9	[24]	
0.01		-						[0.20]		
0.01				-					 	
0.10		-		-						19
0.25		-		-		78.9	78.45	78.0	[180]	
0.01	5 Cd	-		-		12.3	12.2	12.1	 27.1	
0.20		-		-		-				
0.05		-		-		[1.1]		[1.2]		
0.02	0 Cr	-		-		19.1	18,95	18.8	 44.8	
0.02	5 Cu [·]	-		-		9.33	9.25	9.17	[19]	
0.05	0 Dy	-		-		-				
0.10	0 Eu	-		-		-		-	 -	
0.02	5 Fe	-		-		[3.9]	р. с	[3.9]	[9.5]	
2.00	о к	-		-		[330]	325	[320]	[750]	
0.05	0 La			-		-		-	 	
0.03	0 LI	-		-		-		-	-	
0.10	0 Mg	-		-		-		-	-	
0.05	0 Mn			-		-		-	 -	
0.05	0 Mo	-	14	-		[7.1]	7.05	[7.0]	[15]	
0.15	0 Na	-		-		53,600	53000	52,400	107,000	
0.10	0 Nd	-		-		-		-	 	
0.03	0 Ni	[1.1]		[1.1]		104	103	102	225	
0.10	0 Р	-				129	128.5	128	288	
0.10	0 Pb	-		-		34.2	34.0	33.8	 [67]	
0.75	0 Pd	-		-		-		-	-	
0.30	0 Rh	-		-		-		-	-	
1.10	0 Ru	-		-		-	[-	
0.50	0 Sb	-		-				-	-	
0.25	0 Se	-		-				-	-	
0.50	0 Si	-		-		[38]	38	[38]	 [56]	
1.50	0 Sn	-		-		-		-	-	
0.01		-				65.9	65.55	65.2	132	
1.50	0 Te	-		-		-	l	-	 -	
1.00		-		-		-		-	-	
0.02		-		-		-		-	-	
0.50	о ті	-		-		-		-	 -	
2.00		-					J	-	 -	
0.05		-		-		-]	-	-	1
2.00		-		-			1	-	-	
		_		-				-	 -	
0.05										
0.05		[1.1]		-		[3.7]	3.75	[3.8]	[6.9]	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is <u>below</u> detection. Sample detection limit may be found by multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Data (1) from `A0577 G.Lumetta ASR-5644 TA.VanderHoogt ASR-5636 tclp-leach ICP98 hi.XLS

2/17/00 @ 5:23 PM

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center

C

Client : Lumetta

Cognizant Scientist:

Concur :

LR Themas 1 kang - le J

a/ 16/00 27600 Date : Date :

2/16/2000

00-0776

Procedure: PNL-ALO-450 Equipment: Gamma detectors G Measured Activities (uCi/g) with 1-sigma error

_

ALO ID Client ID	Co-60 Error %	Sb-125 Error %		Cs-134 Cs-137 Eu-154 Error % Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
00-0776PB Process Blank	<9.E-4	1.60E-2 18%	4.86E-3 8%	3.38E+0 2%	1.37E-2 6%	1.78E-2 10%	3.28E-2 10%
00-0776 AN107Mix @1:1	1.67E-1 3%	<4.E-1	1.90E-2 20%	4.20E+2 2%	2.69E-1 4%	2.53E-1 20%	2.30E-1 30%
00-0777 An107Mix@1:10	1.63E-1 5%	<7.E-1	<2.E-2	4.30E+2 2%	2.37E-1 7%	<5.E-1	<5.E-1
00-0778 An107-C104(1:1) Liquid	2.57E-2 4%	<2.E-1	<3.E-3	6.32E+1 2%	1.50E-2 14%	<7.E-2	<7.E-2
00-0778Dup An107-C104(1:1) Liquid	2.34E-2 5%	<2.E-1	<3.E-3	6.25E+1 2%	1.20E-2 14%	<7.E-2	<7.E-2
RPD	. %6			1%	22%		
00-0779 An107-C104(1:10) Liquid	4.83E-2 5%	<3.E-1	<7.E-3	1.17E+2 2%	3.01E-2 14%	<2.E-1	<2.E-1

Page 1

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Chemical Measurements Center 00-0776

3/10/00

Client : Lumetta			
Cognizant Scientist:	L. R. Greenwood	Date :	3/10/00
Concur :	T Trang-le	Date :	3/10/00

Procedure: PNL-ALO-420

Measured Activities (uCi/g) with 1-sigma error

ALO ID	Alpha
Client ID	Error +/-
00-0776PB	2.41E-2
Process Blank	3%
00-0776	2.50E-1
AN107Mix @1:1	4%
00-0776 REP	2.39E-1
AN107Mix @1:1	4%
RPD	4%
00-0777	1.51E-1
An107Mix@1:10	4%
00-0778PB Process Blank	<3.E-5
00-0778	5.64E-3
An107-C104(1:1) Liquid	8%
00-0778Dup	6.17E-3
An107-C104(1:1) Liquid	8%
RPD	9%
00-0779	1.11E-2
An107-C104(1:10) Liquid	5%
Matrix Spike	98%
Blank Spike	102%
Blank	<3.62E-4

Battelle Pacific Northwes Radiochemical Processing			00-0776
Chemical Measurements (3/23/00
Client : Lumetta	Λ		
Cognizant Scientist:	IR Greenned	Date :	3/23/00
Concur :	T Trang-le	Date :	3/23/00

Procedure: PNL-ALO-476

Measured Activities (uCi/g) with 1-sigma error

	ALO ID Client ID	Sr-90 Error +/-
4	00-0776 AN107Mix @1:1	8.55E+0 3%
	00-0777 An107Mix@1:10	5.18E+0 3%
	00-0778PB Process Blank	<1.E-4
	00-0778 An107-C104(1:1) Liquid	5.03E-1 3%
•••••	00-0778Dup An107-C104(1:1) Liquid	5.14E-1 3%
	RPD	2%
	00-0779 An107-C104(1:10) Liquid	7.23E-1 3%
	Matrix Spike	104%
	Blank Spike	104%
	Blank	<5.E-5

à

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

Client:	G. Lumetta	Charge Code/Project:	W45526/29953
ACL Numbers:	00-0770 to 00-0779	ASR Number:	5644
Analyst:	MJ Steele	Analysis Date:	March 15, 2000

 Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography"
 M&TE: IC system (WD25214); Balance (360-06-01-031) --- See Chemical Measurement Center 98620 RIDS IC File for Calibration, Standards Preparations, and Maintenance Records.

Final Results:

The submitted AN107/C104 samples were analyzed by ion chromatography (IC) for inorganic anions as specified in the governing ASR. The liquids samples (reported in μ g/ml) were analyzed following appropriate analytical dilutions to ensure that all reported anions were within the IC calibration range. The two solids samples were processed in the hot cells by leaching with a 100:1 ratio of water. The leachates were filtered prior to IC analysis and the results are reported in μ g/g of as received solid.

Lab ID	Liquid Sample ID	F ug/ml	Cl ug/ml	NO2 ug/ml	Br ug/ml	NO3 ug/ml	PO₄ ug/ml	SO₄ ug/ml	C ₂ O ₄ ug/ml	
00-00770	AN107 C104 -3A	1,540	430	13,900	< 250	55,500	< 500	1,860	980	1
00-0770 MS	Matrix Spike Recovery	129%	113%	101%	103%	107%	110%	117%	110%	
Working Spk	Recovery	109%	109%	105%	107%	106%	106%	106%	105%	
00-00773	AN107 C104 -4A	2,880	430	13,700	< 250	54,100	< 500	1,840	1,000	
00-00778	AN107 Mix @1:1 Liquid	< 250	380	11,600	< 250	47,200	< 500	1,620	2,500	
00-00779	AN107 Mix @1:10 Liquid	< 250	700	24,200	< 250	105,000	< 500	3,000	< 500	
a		Solids	F	CI	NO ₂	Br	NO ₃	PO,	SO,	C ₂ O ₄
Lab ID	Solids Sample ID	Dil Fctr	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g	ug/g
00-00776 PB	Leach Process Blank	92.9	< 25	< 25	< 50	< 25	< 50	< 50	< 50	< 50
00-00776	AN107 Mix @1:1	98.9	2,290	2,130	70,200	< 1000	275,000	< 2000	9,040	16,900
00-00777	AN107 Mix @1:10	86.9	2,270	1,940	68,200	< 900	274,000	< 1800	9,260	7,370

Note: Fluoride is considered qualitative due to significant peak interferences making fluoride quantitation difficult.

Q.C. Comments:

Duplicates: No duplicate were provided.

<u>Matrix Spike</u>: A matrix spike was prepared from the AN107 C104-3A sample (00-0770) after the sample was delivered to the IC Workstation. No attempt to spike the supernatant in the hot cells was made. All anion recoveries, except fluoride, were within the 75% to 125% recovery acceptance criteria. The 129% fluoride MS recovery is just outside the acceptance criteria and is most likely due the difficulties in quantifying the fluoride peak (or establishing a good baseline)

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

due to significant interferences (most probably from organic anion, such as formate or acetate). Based on these interferences, the fluoride results are considered qualitative.

<u>Blank Spike</u>: No blank spikes were prepared in the hot cells for either the liquid or the solid leached/dissolved solids. The working spike (i.e., the spike solution used to prepare the matrix spike samples) was measured at the same time as the Matrix Spike samples and demonstrated recoveries within the 90% to 110% acceptance criteria.

<u>System Blank/Processing Blanks</u>: Eleven system blanks were processed during the analysis of the liquid samples. Other than one oxalate system blanks, no anions were detected in the system blanks above the estimate quantitation level. The low level of oxalate detected in the system blank has not affect on the reported oxalate values.

<u>Quality Control Calibration Verification Check Standards:</u> Nine mid-range verification standards were analyzed throughout the analysis runs. For most of the anions recoveries were within the acceptance criteria from 90% to 110% for the verification standard. Two nitrite results recovered below the 90% lower limit; however these recoveries were all greater than 85%.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- Routine precision and bias are typically ±15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

Analyst: Approva

Archive Information:

Files: ASR 5644 Lumetta.doc

ASR 5644 5667-8 5744.xls

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Client:	G. Lumetta	Charge Code/Project:	W45536 / 29953
ACL Numbers:	00-0776 to 00-0779	ASR Number:	5644
Analyst:	MJ Steele	Analysis Date:	April 5, 2000

Procedure: PNL-ALO-381, "Direct Determination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method" M&TE:

Carbon System (WA92040); Balance (360-06-01-023).

Final Results:

Results in ug Carbon / ml of Sample										
		. Vol	TIC	TIC RPD	тос	TOC RPD	тс	TC RPD		
Lab Number	Sample ID	ml	μg C/ml	%	µg C/ml	%	μg C/ml	%		
00-0776 PB	Process Blank	0.50	<14		<36	Ì	<36	ĺ.		
00-0776	AN107 Mix @ 1:1	0.10	410		380		790			
00-0776 Dup	AN107 Mix @ 1:1 Dup	0.50	380	8	430	n/a	810	3		
00-0777	AN107 Mix @ 1:10	0.50	430		480		910			
00-0777 Dup	AN107 Mix @ 1:10 Dup	0.50	490	13	560	15	1,050	14		
00-0778	AN107 Mix @ 1:1 Liquid	0.10	4,440	-	8,500		12,900			
00-0778 Dup	AN107 Mix @ 1:1 Liquid Dup	0.10	4,220	5	8,160	4	12,400	5		
00-0778 MS	AN107 Mix @ 1:1 Liquid MS	0.10	87.4%		96.5%		91.1%			
00-0779	AN107 Mix @ 1:10 Liquid	0.10	8,600		16,200		24,800			
00-0779 Dup	AN107 Mix @ 1:10 Liquid Dup	0.10	8,240	4	15,600	4	23,800	4		

	Results in ug Carbon / g of Sample (wet weight)									
		Wt	TIC	TIC RPD	тос	TOC RPD	тс	TC RPD		
Lab Number	Sample ID	g	μg C/g	%	μg C/g	%	μg C/g	%		
00-0776 PB	Process Blank	0.4986	<14		<37		<37			
00-0776	AN107 Mix @ 1:1	0.1009	410		380		790			
00-0776 Dup	AN107 Mix @ 1:1 Dup	0.5034	380	8	430	n/a	810	3		
00-0777	AN107 Mix @ 1:10	0.5039	420		480		900			
00-0777 Dup	AN107 Mix @ 1:10 Dup	0.5061	480	13	550	15	1,000	14		
00-0778	AN107 Mix @ 1:1 Liquid	0.1129	3,930		7,530		11,500			
00-0778 Dup	AN107 Mix @ 1:1 Liquid Dup	0.1109	3,800	3	7,350	2	11,200	3		
00-0778 MS	AN107 Mix @ 1:1 Liquid MS	0.1112	88.1%		98.5%		92.3%			
00-0779	AN107 Mix @ 1:10 Liquid	0.1233	6,980		13,200		20,200			
00-0779 Dup	AN107 Mix @ 1:10 Liquid Dup	0.1217	6,770	3	12,800	3	19,600	· 3		

RPD = Relative Percent Difference (between sample and duplicate/replicate); calculated from unrounded data.

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

The analyses of the samples submitted under ASR 5644 were performed by the hot persulfate wet oxidation method. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92-95°C for TOC, all on the same sample, with TC being the sum of the TIC and TOC.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank. As requested by the ASR the TIC and TOC results are reported in both μ g/g and μ g/ml.

Q.C. Comments:

The TIC standard is calcium carbonate and TOC standard is α -Glucose (the certificates of purity are attached). The standard materials were used in solid form for system calibration standards as well as matrix spikes. TIC and TOC percent recovery are determined using the appropriate standard (i.e., calcium carbonate for TIC or glucose for TOC) in either solid or liquid form.

The QC for the methods involves calibration blanks, system calibration standards, sample duplicates, and one matrix spike per matrix type.

<u>Calibration Standards</u>: The QC system calibration standards were all within acceptance criteria of 90% to 110%, with the average recovery being about 95% for TIC and 95% for TOC.

<u>Calibration Blanks</u>: The four calibration blanks run at the beginning, middle, and end of the analysis run were acceptable, averaging about 11 μ gC TIC and 33 μ gC TOC. These calibration/system blanks are considered good and the standard deviations for the TIC and TOC blanks is within the historical pooled standard deviation used to establish the method detection limits.

<u>Duplicates</u>: No actual sample duplicates were identified on the ASR. However, the precision between the replicates, as demonstrated by the Relative Percent Difference (RPD), is good. All RPDs are within the acceptance criteria of 20%, with most RPDs being less than 10%.

<u>Matrix Spike</u>: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. A matrix spike was prepared from sample 00-0778. The matrix spike demonstrated recoveries of about 87% for TIC and 97% for TOC; well within the acceptance criteria of 75% to 125% recovery.

le PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

its:

Final Results" have been corrected for all dilution performed on the sample ing or analysis.

ion and bias are typically $\pm 15\%$ or better for non-complex samples that are free of

quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times nigher uncertainties, and RPDs are not calculated for any results less than 5 times

nay be reported as less than ("<") values. These less than values represent the method detection limit), which is the system MDL adjusted for the volume of or the analysis. The system MDL is based on the attached pooled historical blank uation and calculation of the system MDL is included in the data package.

by: MW this s/11/00 1 by: Della

I by:

Date 4-12 00

tion: Lumetta.doc

ASR 5644 5667 5668 5744 Liq+Solids.xls

: Report

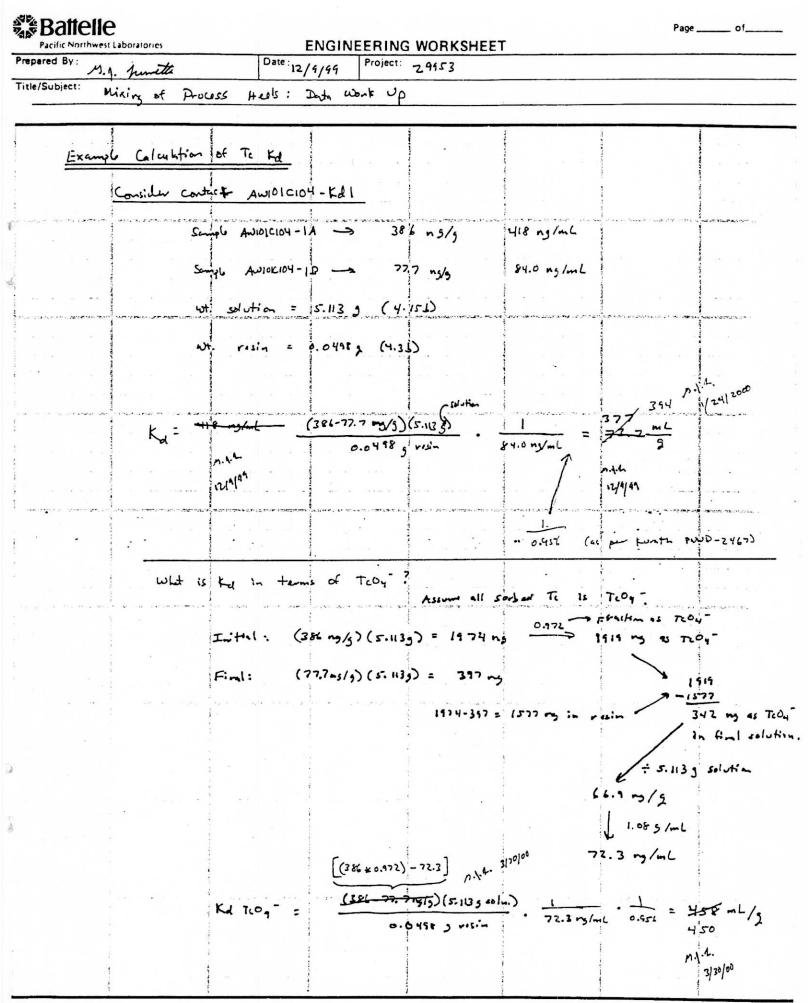
L SAMPLE

N45536 / 29953 5644 April 5, 2000

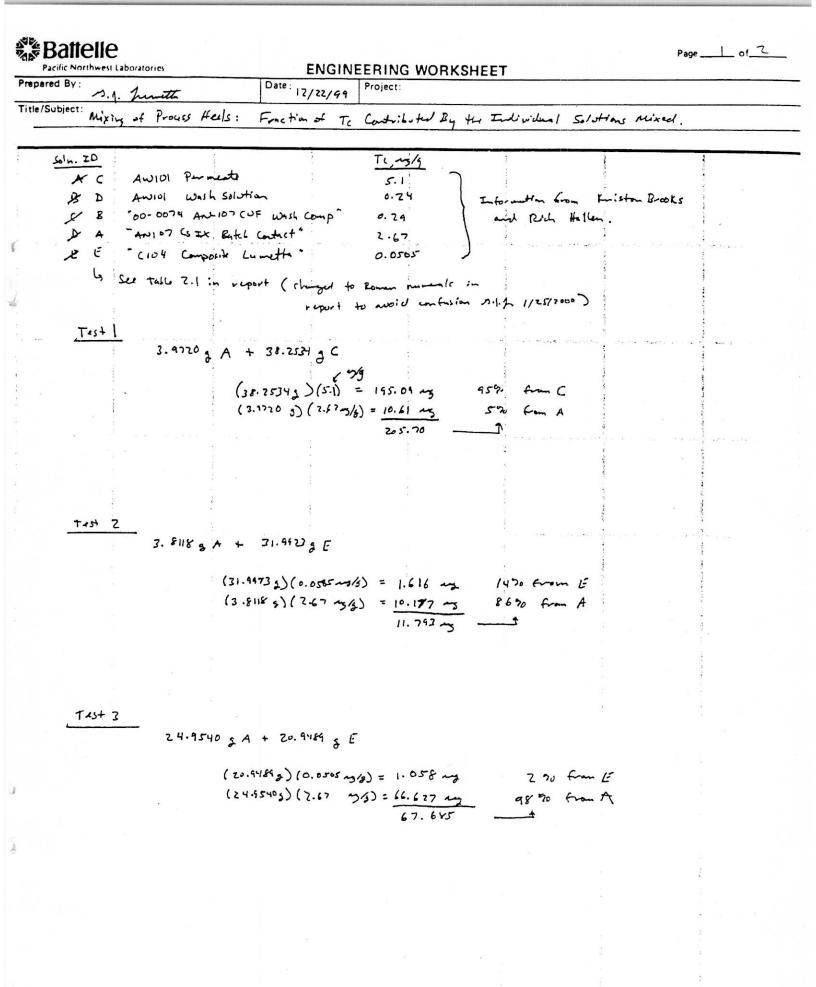
idioactive Sludges

TC (ug C/g)	TC RPD (%)
<37	
790	
810	3
900	¥
1,000	14

тс	TC RPD
(ug C/g)	(%)
<3,500	
77,600	
79,800	3
78,200	
89,800	14


ounded data.

aching processes he same as


'44 Liq+Solids.xls

Appendix C. Calculations

P

DOE-RL Richiand, WA

54-1007-114 (1/83)

Prepared By: S.J. Junste	Date: 12/22/45 Project:		
itle/Subject: Wxing of Process H	eels: TC Fractions (condd.)		
Test 4			
3. 4416	5 C + 37.1748 5 E		
	3)(5.1~3/6) = 18.827 ~3 85)(2.0505~3/6) = <u>1.625~3</u> 21.452~3	6270 from C 8 % from E T	
Test 5			
	5 C + 21.800 5 E	an an an an an an ann an an ann an an an	an a
	(133)(5.1 m/s) = 126.782 mg (0.0505 mg/s) = 1.101 mg 127.883	99.100 from (0.900 from 13	

4

b

Pacific Northwest Laboratorics		NG WORKSH					
epared By: 1). Juntte	Date: 1/24/2000 Proje	BNFL	299 5-3				
tle/Subject: Mixing of Process Heels	: Calculation of	Pertachastate	Fraction	in n	hintures		
V		-					
1					1		
Test # 1					:	1	
5% of Tc	from ANIOT Solu	tion			•		
55 to - C T	Low AWIOI So	iutia					
		*					
		_			3		
Awior Solution -	۲،۵۹ مر ۶۶ خ	{ Kurata a	+ al. PNW	-2467	Sept. 1999)	
AWION Solution -	- 4200 Icon-	2					
	(95,00)				5 - N		
	+ (95 x 0.97)	100 = 43.4%	Tco,-				
13	0						
Tes+ # 2							
	from Ar 107						
	from (104 -	-> 4150-	All TCO.				
14.0 14	trans c	,					
186	(0.25) + (14) =	35,5%0 Tec	- -				
Test #3							
98 m Tc	from And 107			·			
2 7. Te	from CIOY						
(48 ×	0.25) + 2 = 26.5	570 Tedy					
Test # 4							
	~~~ Aw 101						
800-	from C104						
	×						
( 42 × 0.9	+ 8 = 67.2 %	5 TL ⁰ 1					
Test # 5							
9900 fr							
1 20 4	- CION						
	·17) +1 = 47.0	S TO -					
(44 = 0	10 +1 = 1.0						

repared By: n.1. Junt	++	1-	RING WORKS			
		·		1. 6. 1. 4. 6	Presidented 5	olide
Mixin of	Process Hells	· Estimo	of fallounch	le content of 1	rupri	
Assumptions :		present as	A12((204)3.41	i	5/1006	
		For 1:1, Nix	: 73.7 4	C ₂ ^Q Y ⇒	÷3 2772.0	5
			ر	.5544 26. 942 g/m		Ъ <u>ЧР (Co 4)</u> 3.44
				15.0 mg Al	- 15° mg = (112	a Al
	Z. Remain	-5 А1 is А1(он (1		$3 - \frac{1}{100}$	-4 mg A1 (04)3	
i X	3. Flank			ر ا ۱۶3، ۹۱ ح ۱۶۵، ۹۱ ج ۱۰، ۲۰ ۱۰، ۲۰		42 40
		1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (	14 and Fe 5-5- 8 47 g/m/a	L	270 mg FeF3	
		. רד	7 mg Fa -> 172-78	= 94 m Fr		
	4. ¢emri	~'7 Fe is Fa		26. 868 g/wal) = [180	0 mg Fo (0H)3	

DOE BL Richland, WA

54-1007-114 (1/83)

Battelle Pacific Northwest Laboratories		Page of
Prepared By:	Date: Project:	
Title/Subject:	3/20/2000	
Title/Subject: Mixing of Process	Heds.	
	3 5 5 1	1
5- Mn	is AtriCothing MinO2 (454 mg) ( \$6.936 g/mdy ) = 722	- m M-102
6. Si	is stor	
	(269 mg) ( 28.0 86 g Si/mb = 575	- s. o2
Total Ame	لیت 3 = 324 + 324 + 200 + 180 + 227 + 324 + 324	= 2395 mg (0.0024g)
So redianuclid	, constant	
	$\begin{array}{rcrcrcccccccccccccccccccccccccccccccc$	
Repeating the abo	e for the 10:1 mix unfinited:	
1. 456 - (	204 / 88.018 -> 10.8614 moly +3 3.6205	und Alz (GO ) 390.08 + 1-4
	ل 26.9	1412 mg 412(20,7)3, 4 H20
	195 mg A	H => 2+6-195= (1 m A)
٦.	$(\overline{91} \text{ mAV} \left( \frac{76.032}{26.942} \right)$	= 263 mg A1(0H)3
3. 239 mg F,	18.198 g/mel = 12.5803 mmel F = 3 + 1934	2.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41 3.41
ς	(4.1924 mal Fr) (SS. 847) = (234 mg FS	-> 15 mg FeF3 .71/2 H20
4	176-234 = 20 Fe(OH)3	

54-1007-114 (1/83)

DE-RL Richland, WA

By: n.l. Lunt		Date: Proje	NG WORKSH			
	Derecut					
Miking of	Process H.	eels				
1		1	1	1		{
5.	(5-29 mg	$M_{n} \left( \frac{86.931}{54.938} \right)$	= 1837 m	min Oz /		· · · · · · · · · · · · · · · · · · ·
		) (54.938 )				
1	i.				1	
an a	1	and the same	n alexandra and a	and the second	ana an	an a
1	C	1 60.0841		1 ·		l nu i
6.	( 690 mg !	$(\frac{L0.684}{26.086}) =$	1476 - 5 5	·02	•	<b>4</b> 
			· · · · · · · · · · · · · · · · · · ·		1	
				1	1	
					eren and the area	the second second second
Total Estimate	Mars 14	112+ 263+ 813+	0 + 837 + 1	426 - 480	1	0.0048 5
					• •	0
,						
	Cs-137	5.1/ 0.0048	- 1065 -	y ali/s		
	590	0.5/ 0-023/ 0/ 0.019/	: 105			
	En -154	0-023/)	= 5			
	60-60	01	= 0		1	
	TRU	0.019/	. 4			•
	٠.,	•		(*)		•
			•			
		·· .				
					:	
						ł
				1		
					a ay a sa	
						-
2. • >						
					2	
						•
5						
					3	
	1			(k) (1)	ļ	:
i i i i i i i i i i i i i i i i i i i				1		1