PNWD-3027 BNFL-RPT-021 Rev. 0

C-104 High-Level Waste Solids: Washing/Leaching and Solubility Versus Temperature Studies

G. J. Lumetta D. J. Bates J. P. Bramson L. P. Darnell O. T. Farmer III S. K. Fiskum L. R. Greenwood

F. V. Hoopes C. Z. Soderquist M. J. Steele R. T. Steele M.W. Urie J. J. Wagner

April 2000

Prepared for BNFL, Inc. under Project 29952/29953 Battelle, Richland, Washington, 99352

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION,

EXPRESS OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Contents

1.0	Introduction	
2.0	Personnel	
3.0	Experimental	
4.0	Results	4.1
4.1	Solubility Versus Temperature	4.1
4.2	Dilute Hydroxide Washing	4.1
4.3	Caustic Leaching	4.3
5.0	Conclusions and Recommendations	5.1
6.0	References	6.1
Append	dix A. Test Plan	A.1
Append	dix B. Raw Data	B.1
Append	dix C. Calculations	C.1
Append	dix D. Statistical Analysis of the Data	D.1

Figures

Tables

4.5
4.6
4.7
4.8
4.9
1
4.10
4.12
4.14
4.16
4.18
4.20
D.3
D.4

1.0 Introduction

This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing and caustic leaching on the composition of the C-104 HLW solids. The objective of this work was to determine the composition of the C-104 solids remaining after washing with 0.01 <u>M</u> NaOH or leaching with 3 <u>M</u> NaOH. Another objective of this test was to determine the solubility of the C-104 solids as a function of temperature. The work was conducted according to test plan BNFL-TP-29953-8, Rev. 0, *Determination of the Solubility of HLW Sludge Solids*.

2.0 Personnel

The key Battelle personnel and their responsibilities in performing this test are given below.

Staff Member	Responsibilities
G.J. Lumetta	Cognizant scientist. Prepared test plan and designed experiment. Supervised performance of the test. Prepared analytical service request. Interpreted data and reported results.
F.V. Hoopes	Hot cell technician. Performed test.
D.J. Bates	Statistical analysis of data.
M.W. Urie	Managed chemical and radiochemical analytical work.
B.M. Rapko	Technical reviewer.
K.P. Brooks	Task Leader.

3.0 Experimental

Sample Description. The sample used in this test was labeled as C104-GL. The C-104 HLW sample was composited as described in test plan BNFL-29953-031, *C-104 Sample Compositing*. Figure 3.1 summarizes the compositing and sub-sampling scheme. The C-104 sample was received from Hanford's 222-S Laboratory on March 3, 1999. This material was received in 14 glass jars. Figure 3.1 lists the sample numbers along with the mass of material recovered from each jar. The material in the jars was transferred to a stainless steel mixing vessel equipped with a motorized impeller. Before being used, all components of the mixing vessel were rinsed with methanol and then dried at 102°C for 12 h. Materials in the vessel were mixed for 1 h and 20 min before collecting sub-samples. The materials were actively mixed while sub-samples were collected through a 1.9-cm (.75-in.) ball valve located on the bottom of the vessel. The hot-cell temperature during the mixing process was 34°C.

The first three sub-samples (C-104 COMP A, B, and GL) were collected and allowed to settle. After approximately 10 days, the volume of settled solids in these three samples was measured to determine the effectiveness of the sub-sampling technique at collecting samples with representative solids/liquid ratios. The three sub-samples contained 88.9, 89.2, and 89.9 vol% settled solids indicating that the sampling technique provided representative sub-samples.

Figure 3.1. Compositing and Sub-Sampling Scheme For the Tank C-104 Sample

Apparatus. The apparatus used consisted of an aluminum heating block placed on a hot plate/stirrer, which was modified so that separate power could be applied to the heating and stirring functions. This allowed for continuous stirring, while the hot plate was powered by a temperature controller. The temperature controller used was a J-KEM Model 270 (J-KEM Electronics, Inc., St. Louis, MO). This temperature controller consists of two separate circuits. One is the temperature control circuit, while the other serves as an over-temperature device, which shuts down the system if a preset temperature is exceeded. The set point for the over-temperature circuit was set at 100°C for this test. A dual K-type thermocouple (model number CASS-116G-12-DUAL, Omega Engineering, Stamford, CT) was used to provide inputs to the temperature controller and over-temperature circuits. Both the J-KEM Model 270 and the dual thermocouple were calibrated before use. The aluminum heating block contained two wells. A vial containing water was placed in one of the wells, with the thermocouple wedged between this vial and the aluminum block. The vessel containing the sample was placed in the other well.

<u>Procedure.^(a)</u> Because the stock C-104 HLW sample was very thick and not very fluid, 20 mL of 0.1 <u>M</u> NaOH was added to assist in homogenization. The sample was then placed on a shaker to homogenize immediately before use.

Solubility Versus Temperature. A 31.0459-g aliquot was transferred from C104 GL to a 60-mL high density polyethylene (HDPE) bottle (this bottle also contained a Teflon®coated magnetic stir bar). Correcting for the 0.1 M NaOH added to fluidize the sample, this corresponded to 27.4 g of the as-received C-104 HLW sample. The sample bottle was sealed, then was heated and stirred at 30 ± 2 °C for 18 h. Two aliquots (4-mL each) were taken for analysis. Each aliquot was immediately filtered through a 0.45-µm nylon syringe filter that had been preheated by immersion in a boiling water bath. The filter was preheated to reduce the possibility of precipitation during the filtration step. The sample was very difficult to filter; less than 1 mL of clarified liquid was obtained from each aliquot. The temperature was increased to 40 ± 2 °C and the sample was stirred for 24 h. The mixture was sampled in the same manner as described above, except that only 2-mL aliquots were used (this actually yielded more liquid sample than when 4-mL aliquots were used, probably because there were less solids present to plug the filter). The temperature was increased to 50 ± 2 °C and the sample was stirred for 21 h. Again, the mixture was sample in the same manner as described above (2-mL aliquots). Because of the small volumes of each of the liquid samples take, only inductively-coupled plasma atomic emission spectroscopy (ICP/AES) analysis was performed (following acid digestion).

Determination of Aqueous-Insoluble Fraction. A 50.8765-g aliquot (44.8 g of as-received C-104 sample) was filtered through a 0.45-µm nylon filter membrane. As was observed in the solubility versus temperature test, the filtration process was relatively slow. The filtered solids were transferred to a 125-mL high density polyethylene (HDPE) bottle (this bottle also contained a Teflon®-coated magnetic stir bar) using a spatula.^(b) The residual solids were transferred from the filter to the HDPE bottle using numerous portions of aqueous 0.01 <u>M</u> NaOH. The bottle was filled to capacity with

^(a) See Appendix A for a copy of the test plan and procedural notes.

^(b) The wet solids were very sticky.

0.01 M NaOH. The bottle was equipped with a condenser tube, which allowed the system to vent during heating, but minimized evaporation. The mixture was heated and stirred at 85 ± 2 °C for 16.5 h. The test plan indicated that the washing slurry should be cooled prior to filtration, but as per instructions from BNFL, the slurry was filtered while hot. The hot washing slurry was filtered through a pre-weighed 0.45-µm nylon filtration unit. The weight of the filtrate was 100.13 g while the weight of the filtered solids was 41.64 g.

The filtered solids were transferred back into the HDPE bottle using a spatula. Again, the residual solids were transferred from the filter to the HDPE bottle using numerous portions of aqueous 0.01 <u>M</u> NaOH, then the bottle was filled to capacity with 0.01 <u>M</u> NaOH yielding ~123 g of slurry. The mixture was heated and stirred at 85 ± 2 °C for 22.5 h. The washing slurry was again filtered while hot yielding 82.79 g of washing solution and 40.49 g of wet solids. This process was repeated a third time. For the final washing step, the slurry was heated at 85 ± 2 °C for 24 h; 93.11 g of washing liquid was collected and the weight of the wet solids was 48.55 g. A composite sample of the three wash solutions was prepared for analysis.

After the final washing step, the filtered solids were transferred to a pre-weighed glass jar using deionized water. Excess water was evaporated at 80°C, then the solids were dried overnight at 105°C yielding 14.3589 g of dried washed solids.

Determination of Caustic-Insoluble Fraction. A 45.8422-g aliquot (40.4 g of as-received C-104 sample) was filtered through a 0.45- μ m nylon filter membrane. The filtered solids were transferred to a 125-mL high density polyethylene (HDPE) bottle (this bottle also contained a Teflon®-coated magnetic stir bar) using a spatula. The residual solids were transferred from the filter to the HDPE bottle using numerous portions of aqueous 3 <u>M</u> NaOH. The bottle was filled to capacity with 3 <u>M</u> NaOH yielding ~140 g of slurry. The bottle was equipped with a condenser tube, which allowed the system to vent during heating, but minimized evaporation. The mixture was heated and stirred at 85 ± 2 °C for 21.5 h. As per instructions from BNFL, the leaching slurry was filtered while hot. The hot slurry was filtered through a pre-weighed 0.45- μ m nylon filtration unit. The weight of the filtrate was 98.84 g and the wet solids weighed 41.47 g. A sample of the leaching solution was taken for analysis.

Most of the filtered solids were transferred back into the HDPE bottle using a spatula. Several ~10-mL aliquots of 0.01 <u>M</u> NaOH were used to transfer the remaining filtered solids back into the HDPE bottle. The slurry volume was made to ~100 mL with additional 0.01 <u>M</u> NaOH (total slurry weight ~123 g). The mixture was heated and stirred at 85 ± 2 °C for 21 h. The washing slurry was again filtered while hot yielding 92.45 g of washing solution and 33.35 g of wet solids. The washing process was repeated. For the final washing step, the slurry was heated at 85 ± 2 °C for 22.5 h, 88.31 g of washing liquid was collected, and the weight of the wet solid was 33.92 g. A composite sample of the two wash solutions was prepared for analysis.

After the final washing step, the filtered solids were transferred to a pre-weighed glass jar using deionized water. Excess water was evaporated at 80°C, then the solids were dried overnight at 105°C yielding 7.6051 g of dried leached solids.

4.0 Results

4.1 Solubility Versus Temperature

Tables 1, 2, and 3 present the concentrations of various C-104 waste components at 30, 40, and 50°C, respectively. Two sets of values are presented in each table. The first set of values is the analyte concentrations as determined directly on the aliquots analyzed. In the second set of values, the concentrations have been adjusted for loss in the sample weight that occurred between the time the aliquot was taken and the time the analyses were initiated. These adjustments were made assuming the weight losses were due to evaporation.

Tables 4 and 5 show the changes in the concentrations at 40 and 50°C relative to those at 30°C. Appendix D discusses a graphical analysis of the data, as well as regression results of fitting the component concentrations versus temperature. Based on this data set, only limited conclusions can be drawn. The following discussion will be limited to those analytes for which meaningful conclusions can be drawn.

The regression analysis of the adjusted data indicated statistically significant concentration changes only for Ag, Cd, Cr, Fe, and P (Appendix D). The Ag concentration was below detection limit at 30°C, but appeared to increase when the temperature was raised to 40 and 50°C. Similarly, the Cr concentration increased steadily with increasing temperature up to 50°C. Interestingly, the Cd, Fe, and P concentrations decreased with increasing temperature. The reason for this trend is not clear.

4.2 Dilute Hydroxide Washing

Table 6 presents the concentration of the C-104 components in a composite of the three wash solutions. The composite wash sample was prepared by mixing measured quantities of each wash solution; the relative weight of each wash solution corresponded to the fraction of the total wash solution represented by each. The composite wash solution was weighed immediately before analytical work was begun. The total weight of the sample had decreased 0.2% since the time the composite was first prepared. The concentrations determined were adjusted for this weight loss, assuming the weight loss was due to evaporation. The adjusted concentrations were then multiplied by the total combined weight of the three wash solutions (293.515 g) to yield the quantity of each component present in the wash solutions.

Table 7 presents the results of the analysis of the dilute hydroxide-washed C-104 solids. The solids were solubilized for ICP/AES analysis by KOH and Na_2O_2 fusion methods. Duplicate fusions and ICP/AES analyses were done for each type of fusion. Mean values from these determinations are presented in the table along with the standard deviation from the mean and the relative error. The relative error was obtained by the following formula: %RSD = 100(Std.Dev./Mean). For all the elements determined by ICP/AES the relative error was #10%, indicating good agreement between the duplicate measurements. Except where noted in the table, the mean values from all four measurements were used to determine the quantity of each component in the washed solids.

The Hg concentration was determined on the washed solids by cold vapor atomic absorption spectrophotometry following an oxidative acidic leaching of the solids. The mean Hg concentration was 96 μ g/g and good agreement was achieved between duplicates.

TIC/TOC determination was performed using the hot persulfate method. This analysis was performed directly on the washed solids (not on fused material). Good reproducibility (5%) was achieved between duplicate TIC/TOC analyses. To date, no reliable method has been developed to quantify the anions present in Hanford tank solids. Anion (Cl⁻, F⁻, NO₃⁻, SO₄²⁻, PO₄³⁻, and C₂O₄²⁻) analysis was done by IC on a solution obtained by leaching the washed solids with deionized water. This in essence yielded the water-soluble anions not completely removed by the washing test. Only small amounts of soluble NO₃⁻ and perhaps PO₄³⁻ were found in the washed sludge. The low PO₄³⁻ concentration revealed by IC suggests that P found by ICP is indeed due to some water-insoluble P-containing phase(s). The chromatograms suggested interference in the F⁻ peak by organic anions. Hence, the fluoride values are viewed as unreliable.

Cyanide analysis on the washed solids revealed 13 μ g CN⁻/g. Reproducibility between duplicate CN⁻ analyses was good. Ammonia was determined by ion-selective electrode using water-slurries of the solids. Ammonia was not detected (< 9 μ g/g) in the dried washed solids; however the value should be treated with caution since the solids were dried at 105°C prior to analysis.

Radiochemical analyses were performed on the solutions prepared by KOH fusion. Cesium-137, ²⁴¹Am, ¹⁵⁴Eu, and ¹⁵⁵Eu were determined by gamma spectroscopy. Americium-241 was also determined by alpha spectroscopy following Pu separation , as were ²³⁸Pu, ²³⁹⁺²⁴⁰Pu, ²⁴²Cm, and ²⁴³⁺²⁴⁴Cm. Technetium-99, ¹²⁹I, ²³⁵U, ²³⁸U, ²³⁷Np, ²³⁹Pu, and ²⁴⁰Pu were determined by ICP-MS. Strontium-90 was determined by proportional beta-counting following separation of this isotope.

Agreement between duplicate measurements was good. The values obtained for ²⁴¹Am by gamma and alpha spectroscopies agreed within 10%. Agreement between the ICP-MS results and the alpha spectroscopic results was also good. The combined activities for ²³⁹Pu and ²⁴⁰Pu as determined by ICP-MS were 7.01 μ Ci/g and the ²³⁹⁺²⁴⁰Pu value obtained by alpha spectroscopy was 7.07 μ Ci/g. There was some inconsistency regarding the U analysis. The ICP-MS analysis revealed 54,800 μ g/g (²³⁵U + ²³⁸U), but only 25,550 μ g total U was indicated by laser fluorimetry analysis. To be conservative, the higher U value should probably be used. This use of the higher value is supported by the ICP-AES data, which indicated 44500 μ g U/g.

Table 8 presents the composition of the dilute hydroxide-washed C-104 solids and the percent of each component removed by dilute hydroxide washing. In addition, the composition of the "untreated" C-104 sample used in this test is presented. These values were obtained by summing the amount of the given component found in the wash solutions (Table 6) and the washed solids (Table 7), then dividing this total by the weight of the C-104 sample used. The washed solids were dominated by Al (15.2 wt%), Zr (5.1 wt%), Fe (4.6 wt%), Na (1.8 wt%), Si (1.3 wt%), and Mn (1.1 wt%). The concentrations of the major radionuclides contained in the washed solids were 17 μ Ci TRU/g (as indicated by the

total alpha concentration), 7 μ Ci ²⁴¹Am/g, 5 μ Ci ²³⁹Pu/g, 784 μ Ci ⁹⁰Sr/g, and 44 μ Ci ¹³⁷Cs/g, indicating the solids should be treated as HLW.

The wash solutions were stable over a period of \sim 5.5 months. No precipitates were observed in the solutions after this period of time.

4.3 Caustic Leaching

Table 9 presents the concentration of the C-104 components in the caustic leach solution and in a composite of the two wash solutions. The composite wash sample was prepared by mixing measured quantities of each wash solution; the relative weight of each wash solution corresponded to the fraction of the total wash solution represented by each. The samples were weighed immediately before analytical work was begun. The weight of the leach solution sample had decreased 0.06% and that of the composite wash solution sample had decreased 0.23% since the time the samples were first prepared. The concentrations determined were adjusted for this weight loss, assuming the weight loss was due to evaporation. The adjusted concentrations were then multiplied by the weight of the leach solution (98.8366 g) or the combined weight of the two wash solutions (180.7635 g) to yield the quantity of each component present in the leach and the wash solutions, respectively.

Table 10 presents the results of the analysis of the caustic leached C-104 solids. Analysis of these solids was conducted in the same way as for the dilute hydroxide-washed solids. Generally, excellent agreement between duplicate measurements was obtained for the analytes determined by ICP/AES. The single exception being Mg. Again, the mean values from all four measurements were used to determine the amount of each component in the leached solids, except where noted in the table.

As with the dilute hydroxide-washed solids, the IC results indicated only small amounts of soluble NO_3^{-1} and perhaps $PO_4^{-3^{-1}}$ were in the leached sludge. The low $PO_4^{-3^{-1}}$ concentration revealed by IC suggests that P found by ICP is indeed due to some water-insoluble P-containing phase(s). The chromatograms suggested interference in the F⁻ peak by organic anions. Hence, the fluoride values are viewed as unreliable. TIC/TOC analyses of the leached solids yielded very good reproducibility between duplicates.

Cyanide analysis on the leached solids revealed 23 μ g CN⁻/g, with good reproducibility between duplicates. Ammonia was determined by ion-selective electrode using water-slurries of the solids. Ammonia was not detected (< 9 μ g/g) in the dried leached solids; however the value should be treated with caution since the solids were dried at 105°C prior to analysis.

The relative uncertainties for the radionuclides, except for ²⁴²Cm and ²⁴³⁺²⁴⁴Cm, were less than 10% indicating good reproducibility between duplicates. The values obtained for ²⁴¹Am by gamma and alpha spectroscopies agreed within 2% indicating good agreement between the two methods. However, the ICP-MS and the alpha spectroscopic results were inconsistent. The combined activities for ²³⁹Pu and ²⁴⁰Pu as determined by ICP-MS were 13.0 μ Ci/g and the ²³⁹⁺²⁴⁰Pu value obtained by alpha spectroscopy was 26.1 μ Ci/g. To be conservative, the higher value should probably be used. In contrast, the U value obtained by ICP-MS [96,560 μ g/g (²³⁵U + ²³⁸U)] agreed well with the value of 100,100 μ g total U indicated by laser fluorimetry analysis and 90,600 μ g U/g determined by ICP-AES (Na₂O₂ fusion prep).

Table 11 presents the composition of the caustic-leached C-104 solids and the percent of each component removed by caustic leaching. In addition, the composition of the "untreated" C-104 sample used in this test is presented. These values were obtained by summing the amount of the given component found in the leaching and washing solutions (Table 9) and the leached solids (Table 10), then dividing this total by the weight of the C-104 sample used. The leached solids were dominated by Th (11.6 wt%), Zr (10.2 wt%), U (10.0 wt%), Fe (8.1 wt%), Na (3.5 wt%), Al (3.4 wt%), Si (2.2 wt%) and Mn (1.9 wt%). The concentrations of the major radionuclides contained in the washed solids were 58 μ Ci TRU/g (as indicated by the total alpha concentration), 26 μ Ci ²⁴¹Am/g, 26 μ Ci ²³⁹⁺²⁴⁰Pu/g, 2820 μ Ci ⁹⁰Sr/g, and 136 μ Ci ¹³⁷Cs/g, indicating the solids should be treated as HLW.

It should be noted that the composition for the original C-104 solid listed in Table 8 should agree with that listed in Table 11. The composition generally agrees, however the Al value obtained from the washing test is much less than that obtained in the leaching test. This was perhaps due to sample inhomogeneity, but a more likely reason is incomplete Al dissolution in the fusion preparations for the washed solids. Significant solids remained when the fused material from the washed solids was taken up in solution for analysis. These solids were suspended by stirring and an aliquot of the resulting suspension was diluted with 2% HCl, yielding a clear solution. However, it is possible that the solids were not suspended in a homogeneous manner. Thorium and U are other key components that do not agree very well.

The caustic leach solution was not stable. Although the solution remained clear after one day, a gel-like material had formed on the bottom of the container after ~ 20 days. Considerable solids were present after 5.5 months. The wash solutions were stable for ~ 1.5 months, but white solids had formed in the second wash solution after 5.5 months. Interestingly, the first wash solution was clear after 5.5 months. It is not clear why solids formed in the second wash solution, but not the first. It could be due to the lower hydroxide concentration in the second wash solution. Table 1. C-104 Component Concentrations in Solution at $30^{\circ}C^{(i)}$

	-	Concentration at 30)°C, Unadji	ısted			Coi	ncentration at 2	30°C, Adjus	sted ^(b)	
	C104-SOL-30-		, ,			1		C104-SOL-30-	e `		
Analyte	1	C104-SOL-30-2	Mean ^(c)	Std. Dev.	% RSD	0	3104-SOL-30-1	2	Mean	Std. Dev.	% RSD
Ag	< 1	< 0.3	$\stackrel{\wedge}{-}$	ł	1		< 0.3	< 0.2	< 0.3	ł	1
Al	(14)	17.9	(16)	(3)	17		(6.3)	9.1	(8)	2	26
Ba	5.02	(1.1)	(3.1)	(2.8)	91		2.27	(0.6)	1.42	1.21	85
Са	(12)	74.4	(43)	(44)	102		(5)	38.0	21.7	23.1	106
Cd	6.36	5.01	5.69	0.95	17		2.88	2.56	2.72	0.22	8
Co	(2.0)	(1.6)	(1.8)	(0.3)	16		(06.0)	(0.82)	(0.86)	0.06	7
Cr	63.4	50.0	56.7	9.5	17		28.7	25.6	27.1	2.2	8
Cu	6.89	5.72	6.31	0.83	13		3.12	2.92	3.02	0.14	4
Fe	(4.2)	(3.1)	(3.7)	(0.8)	21		(1.9)	(1.6)	(1.7)	0.2	13
K	(560)	452	(206)	(20)	15		(253)	231	242	16	9
La	< 1	< 0.5	$\sim \frac{1}{2}$	1	1		< 0.5	< 0.3	< 0.5	ł	1
Mg	4 >	29.2	29.2	ł	1		< 2	14.9	14.9	ł	1
Mn	< 0.2	< 0.1	< 0.2	1	1		< 0.1	< 0.1	< 0.1	ł	1
Mo	(7.8)	6.63	(7.2)	0.8	11		(3.5)	3.39	(3.5)	0.1	3
Na	72900	59700	66300	9334	14		32967	30514	31741	1734	5
Ni	126	9.66	113	19	17		57.0	50.9	53.9	4.3	8
Р	1400	1120	1260	198	16		633	572	603	43	7
Pb	< 2	< 1	< 2	1	1		< 1	< 1	\sim	ł	1
Si	405	663	534	182	34		183	339	261	110	42
Ti	< 0.2	(0.22)	(0.22)	ł	ł		< 0.1	(0.11)	(0.11)	ł	ł
U	< 83	< 40	< 61	ł	1		< 37	< 20	< 37	ł	ł
Zn	12.1	8.0	10.1	2.9	29		5.5	4.1	4.8	1.0	20
Zr	< 1.0	< 0.5	< 1	:	1		< 0.5	< 0.3	< 1	:	1
	hus to look of com			our one one	1 an those		loc Wolves in now	in one seasthere		4-1000 0414	100.

(a) Due to lack of sample, only ICP-AES analyses were performed on these samples. Values in parentheses are within 10 times the analytical detection limit, and thus have uncertainties >15%.

(b) Values corrected for mass loss (evaporation) that occurred during interim storage of the samples.(c) For analytes that were only detected in one duplicate sample, the detected value is given as the mean.

Table 2. C-104 Component Concentrations in Solution at 40°C^(a)

		Concentration at 40)°C, Unadji	usted			Cot	ncentration at	40°C, Adjus	sted ^(b)	
	C104-SOL-40-					Į		01-SOL-40-			
Analyte	1	C104-SOL-40-2	Mean ^(c)	Std. Dev.	% RSD	U U	<u>104-SOL-40-1</u>	2	Mean	Std. Dev.	% RSD
Ag	(0.69)	(0.59)	(0.64)	0.07	11		(0.46)	(0.40)	(0.43)	0.04	10
Al	(3.4)	(4.4)	(3.9)	0.7	18		(2.3)	(3.0)	(2.6)	0.5	19
Ba	(0.34)	< 0.1	< 0.4	ł	1		(0.23)	< 0.1	< 0.4	ł	ł
Ca	43.5	50.6	47.1	5.0	11		29.0	34.1	31.5	3.6	12
Cd	3.16	3.09	3.13	0.05	2		2.10	2.08	2.09	0.02	1
Co	(1.3)	(1.3)	(1.3)	0.0	0		(6.0)	(0.0)	(0.0)	0.0	1
Cr	51.4	48.9	50.2	1.8	4		34.2	33.0	33.6	0.9	б
Cu	4.57	4.46	4.52	0.08	2		3.04	3.01	3.02	0.03	1
Fe	(2.5)	(1.9)	(2.2)	0.4	19		(1.7)	(1.3)	(1.5)	0.3	18
K	382	362	372	14	4		254	244	249	L	С
La	< 0.4	< 0.2	< 0.4	:	ł		< 0.2	< 0.2	< 0.2	ł	ł
Mg	16.4	19.6	18.0	2.3	13		10.9	13.2	12.1	1.6	13
Mn	< 0.1	(0.06)	< 0.1	ł	ł		< 0.05	(0.04)	< 0.05	ł	1
Mo	5.40	5.26	5.33	0.10	2		3.60	3.55	3.57	0.04	1
Na	55500	54000	54750	1061	2		36959	36401	36680	394	1
Ni	79.3	75.4	77.4	2.8	4		52.8	50.8	51.8	1.4	б
Ρ	851	829	840	16	2		567	559	563	9	1
Pb	~ 1	\sim	$\sim \frac{1}{2}$	ł	ł		\sim 1	< 0.4	$\sim \frac{1}{2}$	ł	I
Si	507	562	535	39	7		338	379	358	29	8
Ti	< 0.1	< 0.05	< 0.1	1	1		< 0.05	< 0.03	< 0.05	ł	1
U	< 29	< 19	< 29	ł	1		< 19	< 13	< 19	ł	ł
Zn	3.45	3.31	3.38	0.10	б		2.30	2.23	2.26	0.05	2
Zr	< 0.4	< 0.2	< 0.4	:	1		< 0.2	< 0.2	< 0.2	:	ł
(a) L	ue to lack of sam	ple. only ICP-AES	analyses wo	ere performe	d on these	sampl	es. Values in pare	entheses are w	ithin 10 time	es the analyti	ical

2 detection limit, and thus have uncertainties >15%. È

(b) Values corrected for mass loss (evaporation) that occurred during interim storage of the samples.
 (c) For analytes that were only detected in one duplicate sample, the detected value is given as the mean. Barium is an exception, where the detected value in one aliquot was greater than the detection limit for the other analyte, For Ba, a conservative value of < 0.4 was used.

Table 3. C-104 Component Concentrations in Solution at 50°C^(a)

	-	Concentration at 50	°C, Unadj	usted			Con	centration at	50°C, Adjus	sted ^(b)	
	C104-SOL-50-						C	104-SOL-50-			
Analyte	1	C104-SOL-50-2	Mean	Std. Dev.	% RSD	C104-SC	0L-50-1	2	Mean	Std. Dev.	% RSD
Ag	(1.2)	(1.1)	(1.2)	0.1	6	(0.8	8)	(0.8)	(0.8)	0.0	2
AI	11.1	(4.6)	(6.7)	4.6	59	7.L	4	(3.4)	(5.4)	2.8	52
Ba	(0.34)	< 0.2	< 0.4	1	1	(0.2	(2)	< 0.1	< 0.3	1	ł
Ca	45.8	71.4	58.6	18.1	31	30.	Γ.	53.4	55.0	16.1	29
Cd	2.70	2.20	2.45	0.35	14	1.8	11	1.64	1.73	0.12	7
Co	(1.3)	(1.1)	(1.2)	0.1	12	(0.5	(6	(0.8)	(0.8)	0.0	4
Cr	63.1	49.9	56.5	9.3	17	42.	.2	37.3	39.8	3.5	6
Cu	4.41	3.48	3.95	0.66	17	2.9	15	2.60	2.78	0.25	6
Fe	(1.7)	(1.9)	(1.8)	0.1	8	(1.1	1)	(1.4)	(1.3)	0.2	16
K	371	300	336	50	15	24	8	224	236	17	7
La	< 0.4	< 0.4	< 0.4	;	1	0 >	.3	< 0.3	< 0.3	1	ł
Mg	21.9	28.6	25.3	4.7	19	14.	Γ.	21.4	18.0	4.8	26
Mn	(0.10)	< 0.1	< 0.15	1	1	(0.0)	(20	< 0.1	< 0.10	1	ł
Mo	5.22	(4.1)	(4.7)	0.8	17	3.4	6	(3.1)	(3.3)	0.3	6
Na	52100	44900	48500	5091	10	348	74	33564	34219	926	З
Ni	75.3	59.6	67.5	11.1	16	50.	4.	44.6	47.5	4.1	6
Ρ	784	624	704	113	16	52:	5	466	496	41	8
Pb	~ -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\sim \frac{1}{2}$	1	1	V	1	$\sim \frac{1}{2}$	$\sim \frac{1}{2}$	ł	I
Si	506	678	592	122	21	33	6	507	423	119	28
Ti	(0.26)	(0.25)	(0.26)	0.01	1	(0.1	(2)	(0.19)	(0.18)	0.01	ł
U	< 32	< 14	< 32	ł	1	4	12	< 11	< 16	ł	ł
Zn	6.77	(2.2)	(4.5)	3.2	72	4.5	33	(1.6)	(3.1)	2.0	99
Zr	< 0.4	< 0.4	< 0.4	1	ł	0 >	.3	< 0.3	< 0.3	ł	ł
2)) Due to lack of	sample only ICP-A	ES analys	es were nerfi	ormed on th	ese samnles	Values in 1	narentheses a	re within 10	times the	

(a) Due to lack of sample, only ICP-AES analyses were performed on these samples. Values in parentheses are within 10 times the analytical detection limit, and thus have uncertainties >15%.
(b) Values corrected for mass loss (evaporation) that occurred during interim storage of the samples.

	Pooled		40°C			50°C	
Analyte	%RSD ^(a)	% Change ^(b)	Std. Dev. ^(c)	90% C.I. ^(d)	% Change ^(b)	Std. Dev. ^(c)	90% C.I. ^(d)
Ag	(e)	(e)			(e)		
Al	37	-76	13	± 30	-51	26	± 60
Ba		(e)			(e)		
Ca	62	9	95	± 224	36	119	± 279
Cd	13	-45	10	± 23	-57	8	± 18
Co	11	-28	12	± 27	-33	11	± 25
Cr	14	-12	17	± 40	0	19	± 45
Cu	12	-28	12	± 29	-37	11	± 26
Fe	17	-40	15	± 35	-51	12	± 28
K	12	-26	13	± 30	-34	12	± 28
La	(e)	(e)			(e)		
Mg		-38			-14		
Mn	(e)	(e)			(e)		
Mo	12	-26	12	± 29	-35	11	± 26
Na	10	-17	12	± 28	-27	11	± 25
Ni	14	-31	13	± 31	-40	12	± 27
Р	13	-33	12	± 29	-44	10	± 24
Pb	(e)	(e)			(d)		
Si	23	0	33	± 78	11	37	\pm 86
Ti	(e)	(e)			(e)		
U	(e)	(e)			(e)		
Zn	45	-66	21	± 50	-55	28	± 67
Zr	(e)	(e)			(e)		

Table 4. Unadjusted Concentration Changes Relative to 30°C

(a) Pooled %RSD is the pooled percent relative standard deviation, obtained as the root mean square of the %RSD values at 30°C, 40°C, and 50°C.

(b) The percent change is given by: %Change = $100*(C_T - C_{30})/C_{30}$, where C_T is the average concentration at temperature T (40 or 50°C) and C_{30} is the average concentration at 30°C.

(c) Std.Dev. of % Change is the standard deviation of the % Change values at 40°C and 50°C, both relative to 30°C. It is computed as C_T/C₃₀*Sqrt(2)*%RSD.

(d) 90% two-sided confidence intervals were constructed assuming a statistical t-distribution with 3 degrees of freedom. % Change values larger than their 90% C.I. are considered significant evidence of a change due to temperature. Such values are shown in boldface.

(e) Analyte not detected in solution for at least one temperature.

	Pooled		40°C			50°C	
Analyte	%RSD ^(a)	% Change ^(b)	Std. Dev. ^(c)	90% C.I. ^(d)	% Change	e ^(b) Std. Dev. ^(c)	90% C.I. ^(d)
Ag	(e)	(e)			(e)		
Al	35	-66	17	± 40	-30	35	± 82
Ba		(e)			(e)		
Ca	64	45	131	± 309	153	229	± 538
Cd	6	-23	7	± 16	-37	5	± 13
Со	5	1.1	7	± 16	-1.7	7	± 15
Cr	7	24	12	± 29	47	15	± 35
Cu	6	0.2	8	± 19	-8.0	8	± 18
Fe	16	-15	19	± 44	-27	16	± 39
К	6	2.9	9	± 20	-2.4	8	± 19
La	(e)	(e)		- 20	(e)		- 19
Mg		-19			21		
Mn	(e)	(e)			(e)		
Mo	(0)		8	+ 10	-5.2	8	+ 18
Na		16	6	± 19	-3.2	5	± 10 ± 12
INA Ni	7	2.0	0	± 14	12	9	± 15
D	6	-5.9	>	± 22	-12	7	± 20
Г Dl	0	-0.0	0	± 20	-10	/	±1/
PD Si	(e) 30	(e) 37		 + 125	(e) 62		 + 160
Ti	(e)	(e)		± 155	(e)		± 100
U	(e)	(e)			(e)		
Zn	40	-53	27	± 63	-35	36	± 86
Zr	(e)	(e)			(e)		

Table 5. Adjusted Concentration Changes Relative to 30°C

(a) Pooled %RSD is the pooled percent relative standard deviation, obtained as the root mean square of the %RSD values at 30°C, 40°C, and 50°C.

(b) The percent change is given by: %Change = $100*(C_T - C_{30})/C_{30}$, where C_T is the average concentration at temperature T (40 or 50°C) and C_{30} is the average concentration at 30°C.

(c) Std.Dev. of % Change is the standard deviation of the % Change values at 40°C and 50°C, both relative to 30°C. It is computed as C_T/C_{30} *Sqrt(2)*%RSD.

(d) 90% two-sided confidence intervals were constructed assuming a statistical t-distribution with 3 degrees of freedom. % Change values larger than their 90% C.I. are considered significant evidence of a change due to temperature. Such values are shown in boldface.

(e) Analyte not detected in solution for at least one temperature.

			Amount (µCi or µg)
Analyte	Direct	Adjusted ^(b)	in Wash Solutions
Ag	0.654	0.653	192
Al	126	126	36901
Ba	(0.053)	(0.053)	(16)
Ca	11.7	11.7	3426
Cd	(0.52)	(0.52)	(152)
Co	(0.19)	(0.19)	(56)
Cr	12.5	12.5	3661
Cu	0.638	0.637	187
Fe	(0.33)	(0.33)	(97)
Hg	Not Measured	-	
Κ	(51)	(51)	(14936)
La	< 0.1	< 0.1	< 26
Mg	4.6	4.5	1335
Mn	< 0.02	< 0.02	< 5
Mo	(0.72)	(0.72)	(211)
Na	10800	10776	3162901
Ni	9.79	9.77	2867
Р	107	107	31336
Pb	< 0.2	< 0.2	< 62
Si	112	112	32800
Th	< 3	< 3	< 879
Ti	(0.035)	(0.035)	(10)
U	14.7	14.7	4305
Zn	(0.56)	(0.56)	(164)
Zr	< 0.1	< 0.1	< 26
TOC	775	773	226967
TIC	680	678	199146
Cl	150	150	43929
F ^{- (c)}	5000	4989	1464306
NO ₃ ⁻	1450	1447	424649
SO_4^{2-}	400	399	117144
PO ₄ ³⁻	< 250	< 249	< 73215
CN	Not Measured	-	
NH ₃	Not Measured	-	

Table 6. Dilute Hydroxide Washing of C-104 Sludge: Analysis of the Composite Wash Solution^(a)

			Amount (µCi or µg)
Analyte	Direct	Adjusted ^(b)	in Wash Solutions
¹³⁷ Cs	3.84E+00	3.83E+00	1.12E+03
⁹⁰ Sr	2.91E-03	2.90E-03	8.52E-01
⁹⁹ Tc	1.39E-03	1.38E-03	4.06E-01
²⁴¹ Am(()	< 5E-03	< 5E-03	< 1E+00
²⁴¹ Am(")	Not Measured		
¹⁵⁴ Eu	< 3E-04	< 3E-04	< 9E-02
¹⁵⁵ Eu	< 5E-03	< 5E-03	< 1E+00
¹⁴ C ^(e)	Not Measured		
¹²⁹ I	Not Measured		
²³⁵ U	Not Measured		
²³⁸ U	Not Measured		
²³⁷ Np	Not Measured		
²³⁸ Pu	Not Measured		
²³⁹ Pu	Not Measured		
²⁴⁰ Pu	Not Measured		
²³⁹⁺²⁴⁰ Pu	Not Measured		
²⁴³⁺²⁴⁴ Cm	Not Measured		
²⁴² Cm	Not Measured		
Total Alpha	1.16E-04	1.16E-04	3.40E-02

Table 6. Dilute Hydroxide Washing of C-104 Sludge: Analysis of the Composite Wash Solution (con't)

- (a) Concentrations for radionuclides are in units of μ Ci/g; all other components are in units of μ g/g. Values in parentheses are within 10 times the analytical detection limit, and thus have uncertainties >15%.
- (b) Value adjusted for the 0.2% loss in sample weight that occurred before analysis; this weight loss was assumed to be due to evaporation.
- (c) Quantified by IC system as fluoride, but slight retention time peak shift and peak shape suggest significant organic anion interference. It is highly probable that there is little or no fluoride actually present in the sample.

			$T_{\tilde{s}}$	ıble 7. An	alysis o	f the C-104 W	Vashed Solids ^(a)				
		KOH Fu	sion				Na ₂ O ₂ Fu	sion			Amount (µCi or µg)
Analyte	C104-AQ-8	C104-AQ-8DUP	Mean	Std Dev. 9	% RSD	C104-AQ-8	C104-AQ-8DUP	Mean S	td Dev.	% RSD	in C104-AQ-8
$Ag^{(b)}$	066	984	987	4	0	(630)	(720)	(675)	(64)	6	14172
Al	145000	147000	146000	1414	1	163000	152000	157500	7778	5	2178963
Ba	198	192	195	4	2	183	184	184	1	0	2717
$Ca^{(c)}$	4740	4790	4765	35	1	4830	4931	4881	71	1	69249
Cd	922	872	897	35	4	898	885	892	6	1	12840
Co	< 126	< 125	< 130	ł	ł	< 48	< 52	< 52	1	1	< 1810
Cr	1550	1500	1525	35	2	1460	1470	1465	7	0	21467
$Cu^{(d)}$	< 807	< 801	< 810	ł	1	(230)	(200)	(215)	(21)	10	(3087)
Fe	47900	46700	47300	849	7	44900	45700	45300	566	1	664817
Hg	95.4	96.8	96.1	1	1	1	1	ł	1	ł	1380
K			I	ł	ł	< 1935	< 2068	< 2070	1	1	< 29694
$La^{(b)}$	(130)	(130)	(130)	0	0	< 73	(80)	< 85	ł	ł	(1867)
$Mg^{(d)}$	< 3529	< 3505	< 3530	I	1	(096)	(020)	(965)	(2)	1	(13856)
Mn	11100	10800	10950	212	7	10500	10500	10500	0	0	153999
Mo	< 81	< 80	< 81	ł	1	< 48	< 52	< 52	I	ł	< 1158
$Na^{(e)}$	17964	17484	17724	339	7	1	1	ł	I	1	254497
Ni	-	1	I	ł	1	2900	2910	2905	7	0	41713
$\mathbf{P}^{(d)}$	2230	2570	2400	240	10	4740	4990	4865	177	4	69856
Pb	1840	1730	1785	78	4	1730	1770	1750	28	2	25379
Si	12900	13200	13050	212	2	12000	12000	12000	0	0	179845
$\operatorname{Th}^{(b)}$	34600	41100	37850	4596	12	9750	18700	14225	6329	44	543484
$Ti^{(b)}$	2740	2760	2750	14	1	(160)	(180)	(170)	(14)	8	39487
Ŋ	26100	25000	25550	778	ω	1	1	ł	I	1	366870
Zn	(240)	(210)	(225)	21	6	(240)	(230)	(235)	(2)	ŝ	3303
Zr	51300	50500	50900	566	1	1	1	ł	I	1	730868
TOC	0066	10600	10250	495	5	1	I	ł	ł	ł	147179
TIC	2560	2380	2470	127	5	1	1	ł	1	ł	35466
CI ⁻	120	< 130	120	ł	1	1	I	ł	I	ł	1723
$F^{-(h)}$	2900	2600	2750	212	8	1	1	ł	I	ł	39487
NO_3	1500	1300	1400	141	10	1	1	ł	ł	ł	20102
SO_4^{2-}	570	< 250	< 600	ł	1	!	1	ł	1	1	< 8615
PO_4^{3-}	640	620	630	ł	1	1	1	ł	1	1	9046
CN	13.4	12.1	12.8	1	7	1	I	1	1	1	183
	~ 0 \ \		00 \					1	1	1	001 /
NI 13	, o	~ >.U	~ 7.U	1	Γ	1	:	1	1	1	< 127

		KOH Fusion			Na ₂ (D ₂ Fusion		Amount (µC	i or μg)
Analyte	C104-AQ-8 C10 ²	4-AQ-8DUP Mean	Std Dev. %	RSD	C104-AQ-8 C104-AQ-8DU	JP Mean Std	I Dev. Rel% Er	or in C104-/	AQ-8
^{137}Cs	4.53E+01	4.27E+01 4.40E+01	1.84E+00	4	1	: ;	ł		32E+02
90 Sr	7.78E+02	7.90E+02 7.84E+02	8.49E+00	-	:	: :	1		13E+04
$^{99}\mathrm{Tc}$	3.68E-02	3.70E-02 3.69E-02	1.41E-04	0	1	:	-		.30E-01
²⁴¹ Am(()	7.07E+00	6.89E+00 6.98E+00	1.27E-01	7	:	: :	I		00E+02
²⁴¹ Am(")	7.80E+00	7.21E+00 7.51E+00	4.17E-01	6	:	: :	I		08E+02
$^{154}\mathrm{Eu}$	2.24E+00	2.17E+00 2.21E+00	4.95E-02	7	:	:	I	 	17E+01
$^{155}\mathrm{Eu}$	1.38E+00	1.28E+00 1.33E+00	7.07E-02	5	:	: :	I		91E+01
^{14}C	< 7E-03	< 4E-03 < 7E-03	1	1	:	: :	1		< 1E-01
I ²⁹ I	6.64E-04	5.80E-04 6.22E-04	5.94E-05	10	:	: :	-	×.	.93E-03
²³⁵ U	8.88E-04	8.38E-04 8.63E-04	3.54E-05	4	:	: :	1		.24E-02
$\mathrm{U}^{238}\mathrm{U}$	1.88E-02	1.82E-02 1.85E-02	4.24E-04	7	1	:	-	-	.66E-01
²³⁷ Np	7.00E-03	6.12E-03 6.56E-03	6.22E-04	6	:	: :	1	.9	.42E-02
²³⁸ Pu	7.82E-01	7.98E-01 7.90E-01	1.13E-02	-	:	: :	1		13E+01
239 Pu	5.24E+00	5.12E+00 5.18E+00	8.49E-02	7	:	:	I		44E+01
240 Pu	1.80E+00	1.86E+00 1.83E+00	4.24E-02	2	1	:	I		63E+01
$^{239+240}{ m Pu}$	7.11E+00	7.02E+00 7.07E+00	6.36E-02	-	:	: :	I		01E+02
²⁴³⁺²⁴⁴ Cm	1.09E-01	9.63E-02 1.03E-01	8.98E-03	6	:	: :	1		47E+00
²⁴² Cm	1.24E-02	1.49E-02 1.37E-02	1.77E-03	13	:	: :	1		.96E-01
Total Alpha	1.67E+01	1.67E+01 1.67E+01	0.00E+00	0	:	:	!	- 2.	40E+02

Table 7. Analysis of the C-104 Washed Solids (con't)

(a) Concentrations for radionuclides are in units of $\mu Ci/g$ dry solids; all other components are in units of $\mu g/g$ dry solids. Values in parentheses are within 10 times the analytical detection limit, and thus have a potential experimental uncertainty >15%. TIC/TOC and cyanide analyses was performed directly on the washed solids. Anion (IC) analysis was done on a water leachate of the washed solids, so this does not accurately represent the anions present in the solids.

Only the mean value from the KOH fusions were used to determine the amount of Ag, La, Th, and Ti in the washed solids. 9

(c) The Ca values from the Na₂O₂ fusion were corrected for the high process blank.
(d) Only the mean value from the Na₂O₂ fusions were used to determine the amount of Cu, Mg, and P in the washed solids.
(e) The Na values from the KOH fusion were corrected for the high process blank.
(h) Quantified by IC system as fluoride, but slight retention time peak shift and peak shape suggest significant organic anion

Quantified by IC system as fluoride, but slight retention time peak shift and peak shape suggest significant organic anion interference. It is highly probable that there is little or no fluoride actually present in the sample.

	Wa	shed Solids ^(a)	Original S	Sample ^(c)				
	$\mu g \text{ or}$	Pseudo 95% C L (if		Pseudo 95%		Pseudo 95% C I		
Analyte	solids	%RSDs=10) ^(b)	sample	%RSDs=10) ^(b)	Removed,% ^(d)	$(if %RSDs=10)^{(c)}$		
Ag	987	\pm 140r	321	$\pm 45r$	1	$\pm 0.3r$		
Al	151750	$\pm 21476r$	49461	$\pm 6885r$	2	$\pm 0.4r$		
Ba	189	$\pm 27r$	61	$\pm 9r$	1	$\pm 0.14r$		
Ca	4823	$\pm 682r$	1622	± 219r	5	± 1.1r		
Cd	894	± 126r	290	$\pm 41r$	1	$\pm 0.3r$		
Co	< 126		< 42		3			
Cr	1495	$\pm 211r$	561	$\pm 70r$	15	$\pm 3r$		
Cu	215	$\pm 30r$	73	$\pm 10r$	6	± 1.4r		
Fe	46300	$\pm 6549r$	14842	$\pm 2099r$	0	$\pm 0.004r$		
Hg	96	$\pm 14r$	31	$\pm 4r$				
Κ	< 2068		< 996		> 33			
La	130	$\pm 18r$	42	$\pm 6r$	1	$\pm 0.3r$		
Mg	965	$\pm 136r$	339	$\pm 44r$	9	± 2.1r		
Mn	10725	$\pm 1517r$	3437	$\pm 486r$	0	$\pm 0.0008r$		
Mo	< 81		< 31		15			
Na ^(e)	17724	$\pm 2507r$	76281	$\pm 14143r$	93	$\pm 25r$		
Ni	2905	$\pm 411r$	995	$\pm 132r$	6	± 1.5r		
Р	4865	$\pm 688r$	2259	$\pm 261r$	31	$\pm 7r$		
Pb	1768	± 250r	567	\pm 80r	0	$\pm 0.06r$		
Si	12525	$\pm 1773r$	4747	$\pm 587r$	15	$\pm 4r$		
Th	37850	$\pm 5353r$	12131	± 1716r	0	$\pm 0.04r$		
Ti	2750	$\pm 389r$	882	± 125r	0	$\pm 0.006r$		
U	25550	\pm 3613r	8285	$\pm 1158r$	1	$\pm 0.3r$		
Zn	230	$\pm 33r$	77	$\pm 10r$	5	± 1.1r		
Zr	50900	± 7198r	16314	$\pm 2307r$	0	$\pm 0.0009 r$		
TOC	10250	± 1450r	8351	± 1115r	61	± 14.6r		
TIC	2470	$\pm 349r$	5237	± 896r	85	± 22.3r		
Cl	120	$\pm 17r$	1019	± 196r	96	$\pm 26.7r$		
F	2750	$\pm 389r$	33567	$\pm 6538r$	97	$\pm 27.2r$		
NO ₃ ⁻	1400	$\pm 198r$	9927	$\pm 1897r$	95	$\pm 26.4r$		
SO4 ²⁻	< 600		2810 > x > 2615		93			
PO ₄ ³⁻	630	\pm 89r	202	$\pm 29r$	< 89			
CN	13	$\pm 2r$	4	± 1r				
NH ₃	< 9		< 3					

Table 8. Concentrations in the Washed and Untreated C-104 Solids and the Relative Amount of Each Component Removed by Dilute Hydroxide Washing

	Washed Solids ^(a)		Origin	al Sample ^(c)		
Analyte	μg or μCi/g dry solids	Pseudo 95% C.I. (if %RSDs=10) ^(b)	μg or μCi/g sample	Pseudo 95% C.I. (if %RSDs=10) ^(b)	Removed,% ^(d)	Pseudo 95% C.I. (if %RSDs=10) ^(c)
¹³⁷ Cs	4.40E+01	± 6.22E+00r	3.92E+01	± 5.40E+00r	64	± 16r
⁹⁰ Sr	7.84E+02	± 1.11E+02r	2.51E+02	± 3.55E+01r	0.0076	$\pm 0.0019r$
⁹⁹ Tc	3.69E-02	± 5.22E-03r	2.09E-02	$\pm 2.47\text{E-}03r$	43	$\pm 10r$
²⁴¹ Am(()	6.98E+00	± 9.87E-01r	2.27E+00	± 3.16E-01r	< 1.4	$\pm 0.4r$
²⁴¹ Am(")	7.51E+00	$\pm 1.06E+00r$				
¹⁵⁴ Eu	2.21E+00	± 3.12E-01r	7.09E-01	\pm 9.99E-02r	< 0.28	$\pm 0.07 r$
¹⁵⁵ Eu	1.33E+00	± 1.88E-01r	4.59E-01	$\pm 6.06\text{E-02r}$	< 7.1	$\pm 1.7r$
¹⁴ C	< 7E-03		< 2E-03			
¹²⁹ I	6.22E-04	\pm 8.80E-05r	1.99E-04	$\pm 2.82\text{E-}05r$		
²³⁵ U	8.63E-04	± 1.22E-04r	2.77E-04	± 3.91E-05r		
²³⁸ U	1.85E-02	$\pm 2.62\text{E-03r}$	5.93E-03	\pm 8.39E-04r		
²³⁷ Np	6.56E-03	$\pm 9.28\text{E-}04r$	2.10E-03	$\pm 2.97\text{E-}04r$		
²³⁸ Pu	7.90E-01	± 1.12E-01r	2.53E-01	$\pm 3.58\text{E-}02r$		
²³⁹ Pu	5.18E+00	± 7.33E-01r	1.66E+00	± 2.35E-01r		
²⁴⁰ Pu	1.83E+00	± 2.59E-01r	5.87E-01	\pm 8.29E-02r		
²³⁹⁺²⁴⁰ Pu	7.07E+00	± 9.99E-01r	2.26E+00	± 3.20E-01r		
²⁴³⁺²⁴⁴ Cm	1.03E-01	± 1.45E-02r	3.29E-02	$\pm 4.65\text{E-03r}$		
²⁴² Cm	1.37E-02	± 1.93E-03r	4.37E-03	± 6.19E-04r		
Total Alpha	1.67E+01	$\pm 2.36E+00r$	5.35E+00	± 7.57E-01r	0.014	$\pm 0.003r$

Table 8. Concentrations in the Washed and Untreated C-104 Solids and the Relative Amount ofEach Component Removed by Dilute Hydroxide Washing (con't)

(a) The concentration in the washed solids was determined by summing the quantity found in the washed solids (Table 7) and dividing by the total weight (14.3589 g) of the washed solids (dry basis at 105°C).

(b) Pseudo 95% Confidence Intervals (C.I.) were approximated using propagation of error techniques for the case where the %RSD of all analytical measures used is 10% and all measures are independent The reader can review other potential %RSD values by multiplying the cell value by r, where r is %RSD/10.

- (c) The concentration in the as-received sample was determined by summing the quantity found in the wash solution (Table 6) and the washed solids (Table 7) and dividing by the total weight (44.8 g) of sample used. Exceptions to this are cyanide, ammonia, mercury, C-14, I-129, U-235, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-239+240, Cm-242, and Cm243+244. For these analytes only that found in the washed solids was included in the calculation (the wash solutions were not analyzed for these).
- (d) The percent removed was determined by the following formula: $\[Memoved = 100*F_w/(F_w+F_s)\]$; where F_w is the fraction in the wash solution and F_s is the fraction in the washed solids. The exception is Hg, where only that found in the solids was considered.

(e) The values for Na are not corrected for Na added as NaOH during the washing process.

	Lead	ch Solution C	С104-ОН-3	Composite Wash Solution C104-OH-9				
Analyte	Direct	Adjusted ^(b)	Amount (µCi or µg)	Direct	Adjusted ^(c)	Amount (µCi or µg)		
Ag	< 1.2	< 1.2	< 116	(0.47)	(0.46)	(84)		
Al	45900	45873	4533915	2065	2060	372430		
Ba	< 0.8	< 0.8	< 77	(0.05)	(0.05)	(9.2)		
Ca	< 20	< 20	< 1931	(4.2)	(4.2)	(757)		
Cd	(5.8)	(5.8)	(573)	(0.09)	(0.09)	(16)		
Со	< 2	< 2	< 193	< 0.1	< 0.1	< 17		
Cr	157	157	15508	19.0	18.9	3418		
Cu	(2.4)	(2.4)	(237)	(0.13)	(0.12)	(23)		
Fe	(2.6)	(2.6)	(257)	(0.35)	(0.35)	(63)		
Hg	Not Measured			Not Measured				
Κ	(260)	(260)	(25682)	(13)	(12)	(2254)		
La	< 2	< 2	< 193	< 0.1	< 0.1	< 17		
Mg	< 8	< 8	< 772	(1.9)	(1.8)	(334)		
Mn	< 0.4	< 0.4	< 39	< 0.02	< 0.02	< 3.4		
Mo	(4.1)	(4.1)	(405)	(0.28)	(0.27)	(50)		
Na	153000	152909	15113049	13550	13519	2443793		
Ni	(7.9)	(7.9)	(780)	(0.79)	(0.79)	(142)		
Р	814	814	80405	32.8	32.7	5916		
Pb	(25)	(25)	(2469)	(1.2)	(1.1)	(207)		
Si	(72)	(72)	(7112)	65.3	65.2	11777		
Th	< 63	< 63	< 6223	< 3.1	< 3.1	< 559		
Ti	< 0.4	< 0.4	< 39	(0.027)	(0.026)	(4.8)		
U	10.9	10.9	1073	3.42	3.41	617		
Zn	(0.6)	(0.6)	(55)	(0.50)	(0.50)	(90)		
Zr	< 2	< 2	< 193	< 0.1	< 0.1	< 17		
TOC	1300	1299	128412	215	215	38776		
TIC	1200	1199	118534	275	274	49597		
Cl	360	360	35560	< 130	< 130	< 23446		
F ^{- (d)}	5500	5497	543280	6600	6585	1190335		
NO ₃ ⁻	1700	1699	167923	400	399	72141		
SO4 ²⁻	500	500	49389	< 250	< 249	< 45088		
PO4 ³⁻	1000	999	98778	< 250	< 249	< 45088		
CN	Not Measured			Not Measured				
NH ₃	Not Measured			Not Measured				

Table 9. Caustic Leaching of C-104 Sludge: Analysis of the Leaching Solution and the Composite Wash Solution^(a)

	Leac	h Solution C	2104-ОН-3	Composite Wash Solution C104-OH-9				
Analyte	Direct	Adjusted ^(b)	Amount (µCi or µg)	Direct	Adjusted ^(c)	Amount (µCi or µg)		
¹³⁷ Cs	5.69E+00	5.69E+00	5.62E+02	1.49E+00	1.49E+00	2.69E+02		
⁹⁰ Sr	7.03E-03	7.03E-03	6.94E-01	1.14E-03	1.14E-03	2.06E-01		
⁹⁹ Tc	2.20E-03	2.20E-03	2.17E-01	7.78E-04	7.76E-04	1.40E-01		
²⁴¹ Am(()	< 7E-03	< 7E-03	< 7E-01	< 2E-03	< 2E-03	<4E-01		
²⁴¹ Am(")	Not Measured			Not Measured				
¹⁵⁴ Eu	< 4E-04	<4E-04	< 4E-02	< 2E-04	< 2E-04	< 4E-02		
¹⁵⁵ Eu	< 7E-03	< 7E-03	< 7E-01	< 2E-03	< 2E-03	<4E-01		
¹⁴ C	Not Measured			Not Measured				
¹²⁹ I	Not Measured			Not Measured				
²³⁵ U	Not Measured			Not Measured				
²³⁸ U	Not Measured			Not Measured				
²³⁷ Np	Not Measured			Not Measured				
²³⁸ Pu	Not Measured			Not Measured				
²³⁹ Pu	Not Measured			Not Measured				
²⁴⁰ Pu	Not Measured			Not Measured				
²³⁹⁺²⁴⁰ Pu	Not Measured			Not Measured				
²⁴³⁺²⁴⁴ Cm	Not Measured			Not Measured				
²⁴² Cm	Not Measured			Not Measured				
Total Alpha	1.77E-04	1.77E-04	1.75E-02	1.03E-04	1.03E-04	1.86E-02		

Table 9. Caustic Leaching of C-104 Sludge: Analysis of the Leaching Solution and the Composite Wash Solution (con't)

(a) Concentrations for radionuclides are in units of μ Ci/g; all other components are in units of μ g/g. Values in parentheses are within 10 times the analytical detection limit.

(b) Value adjusted for the 0.06% loss in sample weight that occurred before analysis; this weight loss was assumed to be due to evaporation.

(c) Value adjusted for the 0.23% loss in sample weight that occurred before analysis; this weight loss was assumed to be due to evaporation.

(d) Quantified by IC system as fluoride, but slight retention time peak shift and peak shape suggest significant organic anion interference. It is highly probable that there is little or no fluoride actually present in the sample.

			T_a	able 10. An:	alysis	of the C-104 Leached	l Solids ^(a)				
		KOH Fus	sion				Na ₂ O ₂ Fus	ion			Amount (µCi or µg)
Analyte	C104-OH-8	C104-OH-8DUP	Mean St	d Dev. % R	SD	C104-OH-8 C104-O	H-8DUP	Jean Std	I Dev. 9	6 RSD	in C104-OH-8
$Ag^{(b)}$	1810	1770	1790	28	2	(062)	(170)	(780)	(14)	7	13613
AI	32600	32600	32600	0	0	36100	35700	35900	283	1	260475
Ba	319	322	321	2	1	359	357	358	1	0	2580
$Ca^{(c)}$	7260	2060	7175	120	2	8962	9212	9087	177	7	61837
Cd	1590	1560	1575	21	1	1750	1740	1745	7	0	12624
$C_{0}^{(d)}$	< 62	< 62	< 62	ł	ł	(09)	(99)	(63)	(4)	1	(479)
Cr	1810	1790	1800	14	1	1980	2000	1990	14	1	14412
$Cu^{(d)}$	< 396	< 395	< 396	ł	ł	445	458	452	6	7	3434
Че	77500	77800	77650	212	0	85300	84800	85050	354	0	618675
Hg	153	164	159	8	5	1	1	ł	ł	1	1205
K ^(e)	1	1	ł	ł	ł	< 2056	(2700)	< 3000	ł	1	(20534)
$La^{(d)}$	(210)	(210)	(210)	0	0	(260)	(270)	(265)	(2)	S	(2015)
$Mg^{(d)}$	< 1731	< 1728	< 1731	ł	ł	2630	1730	2180	636	29	16579
Mn	17900	17900	17900	0	0	19700	19600	19650	71	0	142786
Mo	< 40	< 40	< 40	ł	ł	< 51	< 50	< 51	ł	1	< 388
Na ^(f)	34600	35100	34850	354	1	1	1	ł	ł	1	265038
iz	1	1	ł	I	ł	5540	5560	5550	14	0	42208
(p)	2050	1840	1945	148	8	4650	4730	4690	57	1	35668
6h	2900	2830	2865	49	2	3190	3250	3220	42	1	23139
Si	22000	22000	22000	0	0	22800	22800	22800	0	0	170354
$\Gamma h^{(d)}$	61800	61600	61700	141	0	114000	119000	116500	3536	ŝ	885994
Γi	359	362	361	2	1	(430)	(430)	(430)	0	0	3006
C	101000	99200	100100	1273	1	-	!	1	ł	1	761271
Zn	322	316	319	4	1	(340)	(340)	(340)	0	0	(2506)
Zr	101000	104000	102500	2121	7	ł	1	ł	ł	ł	779523
TOC	17000	16900	16950	71	0	I	1	ł	ł	ł	128906
TIC	0069	6840	6870	42	1	1	1	ł	ł	1	52475
CI-	150	170	160	14	6	1	1	1	ł	1	1217
г- (g)	2900	2800	2850	71	7	-	!	1	ł	1	21675
NO ³⁻	1200	1300	1250	71	9	-	1	1	ł	1	9506
SO_4^{2-}	< 240	< 230	< 240	1	ł	1	1	ł	ł	1	< 1825
PO_4^{3-}	< 240	< 230	< 240	1	ł	1	1	ł	ł	1	< 1825
CN	22.0	24.7	23.4	2	8	1	1	ł	ł	1	178
								ł	ł	1	
$\rm NH_3$	< 8.5	< 8.5	< 8.5	:	1	:	:	:	1	1	< 65
						4.18					

Table 10. Analysis of the C-104 Leached Solids (con't)

Amount (µCi or µg)	in C104-OH-8	1.03E+05	2.14E+0 ²	4.52E-01	2.00E+02	1.97E+02	5.05E+01	3.20E+01	< 3E-02	< 2E-05	1.14E-02	2.48E-01	2.48E-01	2.14E+01	7.31E+01	2.54E+01	1.98E+02	2.75E+0(5.57E-01	4.44E+02	nes the analytical
	Error	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	/ithin 10 tim
	. Rel%	1	1	1	1	1	1	1	1	1	1	1	ł	ł	1	1	1	1	1	:	leses are w
	Std Dev																				in parenth
E Fusion	Mean	•	i 	i	1	1	1	•	i	i	i	i	i	i 	i 	1	i	i	i	•	S. Values
Na_2O_2	C104-OH-8DUP		·						·	·							·	·			nits of μg/g dry solids
	C104-OH-8				1	!	!	1			!	!	!	!	!	!			!	:	ponents are in u
	% RSD	1	4	8	ω	9	6	8	1	ł	1	1	1	9	2	5	1	25	15	3	other com
	Std Dev.	7.07E-01	1.13E+02	5.02E-03	8.49E-01	1.63E+00	6.15E-01	3.54E-01	ł	1	1.41E-05	3.54E-04	3.54E-04	1.63E-01	1.77E-01	1.63E-01	2.12E-01	9.05E-02	1.11E-02	1.98E+00	y solids; all e
usion	Mean	1.36E+02	2.82E+03	5.95E-02	2.63E+01	2.60E+01	6.64E+00	4.21E+00	< 5E-03	< 3E-04	1.50E-03	3.26E-02	3.26E-02	2.82E+00	9.62E+00	3.34E+00	2.61E+01	3.61E-01	7.33E-02	5.84E+01	ts of μCi/g dı
KOH F	C104-OH-8DUP	1.35E+02	2.90E+03	6.30E-02	2.69E+01	2.71E+01	7.07E+00	4.46E+00	< 3E-03	< 3E-04	1.49E-03	3.23E-02	3.23E-02	2.93E+00	9.74E+00	3.22E+00	2.59E+01	4.25E-01	6.54E-02	5.98E+01	lionuclides are in uni
	C104-OH-8	1.36E+02	2.74E+03	5.59E-02	2.57E+01	2.48E+01	6.20E+00	3.96E+00	< 5E-03	< 3E-04	1.51E-03	3.28E-02	3.28E-02	2.70E+00	9.49E + 00	3.45E+00	2.62E+01	2.97E-01	8.11E-02	5.70E+01	centrations for rac
	Analyte	^{37}Cs	0 Sr	$^{9}\mathrm{Tc}$	⁴¹ Am(()	⁴¹ Am(")	⁵⁴ Eu	⁵⁵ Eu	4 C	I_{67}	$\Omega_{s\epsilon}$	$\Omega_{8\epsilon}$	^{37}Np	³⁸ Pu	^{39}Pu	40 Pu	$^{39+240}Pu$	$^{43+244}$ Cm	⁴² Cm	Fotal Alpha	(a) Conc

detection limit, and thus have a potential experimental uncertainty >15%. TIC/TOC and cyanide analyses was performed directly on the washed solids. Anion (IC) analysis was done on a water leachate of the washed solids, so this does not accurately represent the amons present in the solids.

Only the mean value from the KOH fusions were used to determine the amount of Ag in the washed solids.

The Ca values from the Na₂O₂ fusion were corrected for the high process blank.

Only the mean value from the Na₂O₂ fusions were used to determine the amount of Co, Cu, La, Mg, P, and Th in the washed solids.

Only the single value from the duplicate Na₂O₂ fusion was used to determine the amount of K in the washed solids.

The Na values from the KOH fusion were corrected for the high process blank.

Quantified by IC system as fluoride, but slight retention time peak shift and peak shape suggest significant organic anion interference. It is highly probable that there is little or no fluoride actually present in the sample.

	Leac	thed Solids ^(a)	Original	Sample ^(c)			
	µg or			Pseudo 95%		Pseudo 95%	
Analyte	μCi/g dry solids	Pseudo 95% C.I. (if %RSDs= 10) ^(b)	μg or μCi/g sample	C.I. (if %RSDs=10) ^(b)	Removed,% ^(d)	C.I. (if %RSDs=10) ^(c)	
Ag	1790	± 253r	339	$\pm 48r$	1	± 0.3r	
Al	34250	$\pm 4849r$	127892	\pm 22539r	95	$\pm 24r$	
Ba	339	$\pm 48r$	64	± 9r	3	$\pm 0.7r$	
Ca	8131	± 1158r	1549	$\pm 218r$	4	$\pm 0.9r$	
Cd	1660	$\pm 235r$	327	$\pm 44r$	4	± 1.1r	
Co	63	$\pm 9r$	12	$\pm 2r$	30	$\pm 8r$	
Cr	1895	$\pm 268r$	825	$\pm 93r$	57	± 11r	
Cu	452	$\pm 64r$	91	± 12r	7	± 1.6r	
Fe	81350	$\pm 11517r$	15322	$\pm 2168r$	0	$\pm 0.0r$	
Hg	159	$\pm 22r$	30	$\pm 4r$			
Κ	2700	$\pm 382r$	1200	$\pm 146r$	58	± 13r	
La	265	$\pm 37r$	50	$\pm 7r$	9	$\pm 2.2r$	
Mg	2180	$\pm 308r$	419	$\pm 58r$	6	± 1.3r	
Mn	18775	$\pm 2658r$	3534	\pm 500r	0	$\pm 0.01r$	
Mo	< 51		< 11		> 54		
Na ^(d)	34850	$\pm 4929r$	441136	\pm 75795r	99	$\pm 24r$	
Ni	5550	$\pm 785r$	1068	$\pm 148r$	2	$\pm 0.5r$	
Р	4690	$\pm 663r$	3020	$\pm 418r$	71	± 16r	
Pb	3043	$\pm 431r$	639	$\pm 82r$	10	$\pm 2r$	
Si	22400	\pm 3168r	4684	$\pm 600r$	10	$\pm 2r$	
Th	116500	$\pm 16476r$	21931	$\pm 3102r$	1	$\pm 0r$	
Ti	395	$\pm 56r$	75	$\pm 11r$	1	$\pm 0.3r$	
U	100100	$\pm 14156r$	18885	$\pm 2665r$	0	$\pm 0.05 r$	
Zn	330	$\pm 47r$	66	$\pm 9r$	5	± 1.1r	
Zr	102500	\pm 14496r	19295	$\pm 2729r$	0	$\pm 0.01 r$	
TOC	16950	$\pm 2397r$	7329) ± 451r	56	± 10r	
TIC	6900	$\pm 972r$	5461	$\pm 183r$	76	± 12r	
Cl	160	$\pm 23r$	910	$\pm 211r$	97	$\pm 26r$	
F	2850	$\pm 403r$	43448	$\pm 6478r$	99	± 21r	
NO ₃ ⁻	1250	$\pm 177r$	6177	$\pm 905r$	96	$\pm 20r$	
SO4 ²⁻	< 240		2384 > x > 1223	;	> 51		
PO4 ³⁻	< 240		3606 > x > 2445	;	> 67		
CN	23	$\pm 3r$	4	± 1r			
NH ₃	< 9		< 2				

 Table 11. Concentrations in the Leached and Untreated Solids and the Relative Amount of Each

 Component Removed by Caustic Leaching

	Leach	ed Solids ^(a)	Origina	al Sample ^(c)		
Analyte	μg or μCi/g dry solids	Pseudo 95% C.I. (if %RSDs=10) ^(b)	μg or μCi/g sample	Pseudo 95% C.I. (if %RSDs=10) ^(b)	Removed,% ^(d)	Pseudo 95% C.I. (if %RSDs=10) ^(c)
¹³⁷ Cs	1.36E+02	± 1.92E+01r	4.61E+01	$\pm 4.75E {+}00r$	45	$\pm 8r$
⁹⁰ Sr	2.82E+03	\pm 3.99E+02r	5.31E+02	\pm 7.51E+01r	0.004	$\pm 0.001r$
⁹⁹ Tc	5.95E-02	\pm 8.41E-03r	2.00E-02	$\pm 2.04\text{E-03r}$	44	$\pm 8r$
²⁴¹ Am(()	2.63E+01	\pm 3.72E+00r	4.98E+00	\pm 7.00E-01r	< 0.5	$\pm 0.1r$
²⁴¹ Am(")	2.60E+01	\pm 3.67E+00r				
¹⁵⁴ Eu	6.64E+00	± 9.38E-01r	1.25E+00	$\pm 1.77\text{E-}01r$	< 0.1	$\pm 0.03r$
¹⁵⁵ Eu	4.21E+00	± 5.95E-01r	8.19E-01	± 1.12E-01r	< 3	$\pm 1r$
¹⁴ C	< 4E-03		< 8E-04			
¹²⁹ I	< 3E-04		< 6E-05			
²³⁵ U	1.50E-03	$\pm 2.12\text{E-}04r$	2.82E-04	$\pm 3.99\text{E-}05r$		
²³⁸ U	3.26E-02	$\pm 4.60\text{E-03r}$	6.13E-03	\pm 8.67E-04r		
²³⁷ Np	3.26E-02	$\pm 4.60\text{E-03r}$	6.13E-03	\pm 8.67E-04r		
²³⁸ Pu	2.82E+00	± 3.98E-01r	5.30E-01	\pm 7.49E-02r		
²³⁹ Pu	9.62E+00	± 1.36E+00r	1.81E+00	± 2.56E-01r		
²⁴⁰ Pu	3.34E+00	± 4.72E-01r	6.28E-01	\pm 8.88E-02r		
²³⁹⁺²⁴⁰ Pu	2.61E+01	\pm 3.68E+00r	4.90E+00	± 6.93E-01r		
²⁴³⁺²⁴⁴ Cm	3.61E-01	± 5.11E-02r	6.80E-02	± 9.61E-03r		
²⁴² Cm	7.33E-02	$\pm 1.04\text{E-}02r$	1.38E-02	± 1.95E-03r		
Total Alpha	5.84E+01	± 8.26E+00r	1.10E+01	± 1.55E+00r	0.01	$\pm 0.002r$

Table 11. Concentrations in the Leached and Untreated Solids and the Relative Amount of Each Component Removed by Caustic Leaching (con't)

(a) The concentration in the leached solids was determined by summing the quantity found in the leached solids (Table 10) and dividing by the total weight (7.6051 g) of the leached solids (dry basis at 105°C).

(b) Pseudo 95% Confidence Intervals (C.I.) were approximated using propagation of error techniques for the case where the %RSD of all analytical measures used is 10% and all measures are independent The reader can review other potential %RSD values by multiplying the cell value by r, where r is %RSD/10.

(c) The concentration in the as-received sample was determined by summing the quantity found in the leach and wash solutions (Table 9) and the leached solids (Table 10) and dividing by the total weight (40.4 g) of sample used. Exceptions to this are cyanide, ammonia, mercury, C-14, I-129, U-235, U-238, Np-237, Pu-238, Pu-239, Pu-240, Pu-239+240, Cm-242, and Cm243+244. For these analytes only that found in the leached solids was included in the calculation (the wash solutions were not analyzed for these).

(d) The percent removed was determined by the following formula: %Removed= $100*F_w/(F_w+F_s)$; where F_w is the fraction in the wash and leach solutions, and F_s is the fraction in the leached solids.

(e) The values for Na are not corrected for Na added as NaOH during the leaching process.

5.0 Conclusions and Recommendations

The solubility versus temperature test indicated that the concentrations of Ag and Cr increased with increasing temperature and the concentrations of Cd, Fe, and P decreased with increasing temperature. Data for many of the other analytes were scattered to the point that statistically meaningful conclusion could not be drawn. The considerable variability observed for many of the components might have been due to precipitation of these components. It is recommended that the solubility versus temperature test plan be revised for future tests. The revised test should allow for larger sample sizes, immediate acidification of analytical samples (where appropriate), and should describe actions to be taken to minimize sample evaporation during interim storage of samples.

Dilute hydroxide washing largely removed most of the Na salts from the C-104 sludge. Dilute hydroxide washing was largely ineffective at removing Al (2%), Cr, (15%), or P (31%) from the C-104 sludge sample. Cesium-137 (64%) and ⁹⁹Tc (43%) were appreciably removed by dilute hydroxide washing, whereas the transuranic elements (as represented by the total alpha data) showed little solubility in the washing solutions.

Caustic leaching resulted in significantly better Al removal, with a total of 95% being removed. Improved Cr (57%) and P (71%) removals were also achieved by caustic leaching. Interestingly, caustic leaching did not result in additional ¹³⁷Cs or ⁹⁹Tc removal. The leached solids had very high concentrations (~10 wt%) of Th, U, and Zr.

The solutions generated by washing the C-104 solids with 0.01 <u>M</u> NaOH were stable over a period of ~5.5 months. However, the caustic leaching solution was not stable. A gel-like material had formed from the caustic leaching solution after ~20 days and considerable solids were present after 5.5 months.

6.0 References

Brooks, K.P., R.L. Myers, and K.G. Rappe. 1997. Bench-Scale Enhanced Sludge Washing and Gravity Settling of Hanford Tank C-104 Sludge, PNNL-11432, Pacific Northwest National Laboratory, Richland, Washington.

Lumetta, G.J., M.J. Wagner, F.V. Hoopes, and R.T. Steele. 1996. *Washing and Caustic Leaching of Hanford Tank C-104 Sludge*, PNNL-11381, Pacific Northwest National Laboratory, Richland, Washington.

Appendix A. Test Plan

Appendix B. Raw Data

Appendix C. Calculations

Appendix D. Statistical Analysis of the Data
Statistical analyses were performed on the data included in this report. In general, simple summary statistics were provided throughout that included estimates of the average (Mean), standard deviation (Std. Dev.) and percent relative standard deviation (%RSD = 100*Std. Dev./Mean) of aliquots. If one or both of the duplicate values were within 10 times the detection limit (values in parentheses in the tables) their mean and standard deviation are also marked in parentheses in the tables. By convention values less than the detection limit ("<") are formatted with 1 significant digit, values within 10 times the detection limit are formatted with 2 significant digits, and all other values are formatted with 3 significant digits.

More detailed statistical analyses included:

- Solubility versus Temperature Study Regression & Modeling Analyses
- Solubility versus Temperature Study Tests for Changes due to Temperature
- Washing and Leaching Studies Estimates of Uncertainty for analyte concentrations in the washed and original untreated solids and the percent removal

For all of the following analyses, it should be kept in mind that all data in each study are taken from one run of the experiment on a single sample. This means that the conclusions may be limited to this particular sample for this particular run. The data provide no information about the additional uncertainty that would result from running different samples or from repeating the experiment on similar samples. The only sources of variability present in these studies are sub-sampling variability and measurement variability. Consequently, the uncertainty statements developed in this report probably underestimate the variability that will be experienced in the real world application of these conclusions.

Solubility vs Temperature Study Regression & Modeling Analyses

The statistical analyses performed here are quantitative assessments of the nature of the relationship between analyte concentrations and temperature. These analyses were performed using the evaporation-adjusted concentrations from Tables 1, 2 and 3. The data were taken from the original Excel spreadsheet and may have additional digits compared to the formatted table values. Only those analytes that had two or fewer of their reported values below the detection limit were used. These statistical analyses were performed using linear and non-linear regression procedures in the Statistical Analysis System (SAS Institute Inc. Cary, North Carolina). Two approaches were used: polynomial regressions that attempt to fit the data without a specified mechanistic model, and a psuedo-Arrhenius model.

Since there are only three temperature points (30, 40, and 50°C), the maximum polynomial regression model that can be fit as a function of temperature is a quadratic. The two concentration values per temperature provide for estimating sub-sampling and measurement uncertainty and for testing the lack-of-fit of the linear regression. The general approach taken was to first fit and test a linear regression, i.e., is a linear regression statistically better than no model. This was followed by a test of the lack-of-fit of the linear regression model, or equivalently in this case, whether adding the quadratic term would be useful in describing the solubility-temperature relationship. It should be noted that no model

can fit this data better than a quadratic model, so if the quadratic model is not significantly better than the linear model, then no other model will be significantly better either.

		Estimated	P-value		
	Estimated	Increase per	Simple	Quadratic/	
Analyte	Intercept	°C	Linear	Lack-of-Fit	
Ag	-0.707	0.0298	0.001	0.188	
Al	9.87	-0.115	0.468	0.107	
Ba	3.07	-0.0621	0.154	0.373	
Ca	-8.82	1.01	0.225	0.983	
Cd	4.16	-0.0496	0.002	0.382	
Со	0.889	-0.000740	0.705	0.656	
Cr	8.18	0.633	0.004	0.946	
Cu	3.43	-0.0122	0.203	0.438	
Fe	2.42	-0.0231	0.085	0.864	
K	254	-0.292	0.687	0.471	
Mg	-6.42	0.481	0.143	0.842	
Мо	3.79	-0.00893	0.419	0.297	
Na	29,256	124	0.353	0.035	
Ni	64.0	-0.323	0.108	0.742	
Р	768	-5.36	0.026	0.681	
Si	23.8	8.09	0.123	0.855	
Zn	6.77	-0.0848	0.318	0.236	

Table D.1. Linear and Quadratic Polynomial Regression Analyses

The regression estimates are grayed-out (judged unusable) if: the estimated increase is not significantly different from zero (linear p-value > 0.1) or the lack-of-fit of the linear regression is significant (lack-of-fit p-value < 0.1).

Table D.1 presents the results of the linear and quadratic polynomial regression analyses. Included are the estimates of the intercept and slope for the linear regression. Also included are the probabilities (p-values) for the test of the linear regression and for the test of the lack-of-fit of the linear regression. A significance level of 0.10 was used. Those analytes that have a significant linear regression have a simple linear p-value < 0.10. Those analytes that have a significant lack-of-fit from the linear regression have a lack-offit/quadratic p-value < 0.10. Those analytes that did not have a significant linear regression or had a significant lack-of-fit are grayed-out in the table to indicate that their linear regression estimates are not considered useable.

The proposed psuedo-Arrhenius dissolution model has the following form:

Concentration = $e^{B-A/Temperature}$

or the algebraically equivalent form

 $\ln(\text{Concentration}) = B-A/\text{Temperature}.$

Although these two forms are algebraically equivalent, the estimates of A and B can be different depending on which form is fit due to the least-squares criterion for fitting being applied in regular space (the first form) or log space (the second form). If there is not much variability in the data the estimates of A and B should be close by either form, if there is large variability in the data the estimates of A and B can be quite different between the two forms. Review of the data did not indicate any particular reason to use the second form, such as increasing variability with increasing concentrations, so the first form was used. This will also make the results more comparable to the polynomial regressions, which were done in regular space.

			Asymptotic 90%			
			Confidence Interval			
Analyte	Estimated B	Estimated A	Lower	Upper		
Ag	1.98	110	79.1	141		
Al	0.317	-49.7	-130	30.6		
Ba	-7.17	-226	-687	236		
Ca	4.74	50.4	-32.1	133		
Cd	-0.109	-33.4	-42.6	-24.2		
Со	-0.178	-1.02	-7.80	5.76		
Cr	4.25	28.9	17.9	39.9		
Cu	0.936	-5.44	-14.4	3.56		
Fe	-0.192	-22.5	-43.6	-1.49		
К	5.46	-1.25	-10.1	7.61		
Mg	4.08	60.8	-19.4	141		
Mo	1.16	-3.03	-12.5	6.4		
Na	10.6	6.49	-3.80	16.8		
Ni	3.70	-8.87	-18.9	1.13		
Р	5.96	-13.6	-23.2	-3.96		
Si	6.77	36.0	-5.37	77.3		
Zn	-0.0536	-47.2	-111	16.8		

Table D.2. Dissolution on Kinetics Model [Concentration = exp (B-A/Temperature)]

The kinetic model estimates are grayed-out (judged unusable) if: the asymptotic 90% confidence interval of the temperature related parameter A includes zero.

Table D.2 presents the results for the proposed psuedo-Arrhenius dissolution model. Included are estimates of the B and A parameters. Also included are 90% confidence intervals on the temperature related A parameter. Those analytes whose confidence interval on A includes zero (i.e., those for which the lower value is negative and the upper value is positive) are grayed out in the table to indicate that their psuedo-Arrhenius dissolution estimates are not considered useable.

Plots for all analytes assessed are included. The following plotting symbols are used for the data:

• filled diamond—data that was $\exists 10$ -times the detection limit

- empty diamond—data that was <10-times the detection limit
- descending triangle—detection limit

The plots also show the linear regression with a solid line, 90% confidence intervals on the mean with dashed lines, and the psuedo-Arrhenius dissolution model with a dotted line. Occasionally, a confidence interval is so wide it goes off the plot.

The aliquot variability is relatively large for some analytes and, along with small sample numbers, leads to "non-significant" regressions for some analytes that may appear to show a relationship. Five of the analytes in Table D.1 had linear p-values <0.1 and quadratic p-values >0.1 and produced useable linear regression equations. These same five analytes showed useable psuedo-Arrhenius dissolution models in Table D.2. Visual comparison of the linear regression model and psuedo-Arrhenius dissolution model indicated they would produce very similar results in most cases. This may be an indication that, even if the psuedo-Arrhenius dissolution model might be better over a larger range of temperatures, the relationships can be closely approximated by a simple straight line over the 30 to 50°C range.

Solubility vs Temperature Study Tests for Changes Due to Temperature

Concentration changes in the Solubility versus Temperature study are expressed as the concentration change at each temperature relative to the concentration at 30°C. This is calculated as $100*(C_T-C_{30})/C_{30}$, where C_T is the average concentration at temperature = T (40 or 50°C) and C_{30} is the average concentration at 30°C. Table 4 shows these estimates of the change in concentrations for detected analytes for the unadjusted data and Table 5 shows them for the adjusted data.

The following method was used to judge whether the reported changes were significantly different from zero or could instead simply be an artifact of sub-sampling and measurement uncertainty. There is very little data here to estimate the variability at any one temperature with any confidence so a pooled estimate of uncertainty was obtained by pooling the %RSDs at the three temperatures. This assumes the RSDs are relatively constant at each temperature. This result in turn was used as input to standard propagation-of-errors calculations for the variance of the estimation formula $100*(C_T/C_{30})-100$. This results in an estimate of the standard deviation of the % Change as $C_T/C_{30}*sqrt(2)*Pooled %RSD$. This in turn, was used to generate the range of a two-sided 90% confidence interval using a t-table value of 2.353 for 3 degrees of freedom. Any % Change that is larger than the range indicates the % Change is probably different from zero and is considered strong evidence of a change in concentration. These significant temperature-related changes are bold-faced in Tables 4 and 5.

Washing and Leaching Studies Estimates of Uncertainty for Analyte Concentrations in the Washed and Original Untreated Solids and the Percent Removed

The ability to derive estimates of uncertainty for the values reported in Tables 8 and 11 was even more hampered than it was for the % Change estimates discussed in the previous section. The calculation of the concentrations in Washed or Leached Solids and the

Original Sample were made using a number of sample weights and fraction constituent amounts. Only one of these inputs, namely the solids fraction, had duplicate aliquot data that could be used to estimate sub-sampling and measurement variability. The % Removed calculation in these two tables is even more problematic because of the use of even more terms and because it is the ratio of two other estimates.

To get at least some handle on the uncertainty of these estimates the following approach was taken:

- Treat all weights used in the estimation formulas as constants (without error) under the assumption that their uncertainties are much smaller than the uncertainties in the concentration measurements and can be safely ignored.
- Assume that duplicate aliquots had a common variability.
- Present a "pseudo" 95% confidence interval for at least one value of a %RSD that is assumed to be equal for all measurements that were used in any equation. A %RSD of 10 was chosen as the initial candidate as it appeared to be near the median of %RSDs seen in this study and seems to represent a reasonable starting point. This selected estimate on the uncertainty can be adjusted to determine the effects of other %RSD values by multiplying the "pseudo" 95% confidence interval values by the ratio of any other practicable %RSD divided by 10.

As input to the "pseudo" 95% confidence intervals, it was necessary to again use propagation of errors techniques to develop approximate standard deviations. These standard deviations were then multiplied by 2 (close to 1.96 from a standard normal distribution) to give the "pseudo" confidence interval half widths. Note that the use of the standard normal distribution does not account for the minimal amount of data available for these estimates, and provides much smaller confidence intervals than those that would be obtained using a Student's t distribution with only a few degrees of freedom.

For concentrations in Washed or Leached Solids and the Original Sample, the calculations are simple additions of fraction amounts divided by the sum of the corresponding fraction weights. The following propagation-of-error rules were used to develop propagation-of-errors formulas for their standard deviations:

- Variance of a mean is the variance of the measurement/n (the number of values used in the mean)
- The variance of a sum is the sum of the variances
- Constants (sample weights in this case) carry through.

This resulted in a general form for these two concentration estimates as:

Std.Dev. = sqrt $(\Sigma_f(var(f)/n_f))/weights,$

where f= each fraction used in the calculation of the concentration. Each var(f) term in the propagation-of-errors formula can be replaced, by definition, with $(\text{mean}_{f}^{*0}/\text{RSD})^{2}$. Since the same %RSD is assumed for all measurements, %RSD can be factored out, resulting in the following general formula:

Std.Dev. =
$$\%$$
RSD*sqrt ($\Sigma_{f}(mean_{f}^{2}/n_{f})$)/weights

The actual version of this general formula used for each analyte for each concentration estimate depends on the fractions that were used to calculate it and the number of subsamples available for each fraction. Certain calculations used the same sample weights in the numerator and denominator. These were cancelled out and removed in the actual error propagation formulas.

For % Removal, the calculations involve 100 times the ratio of two terms, each of which is the sum of fraction amounts. The initial standard propagation-of-errors form of the Std.Dev. for this ratio of two terms is:

Std.Dev. =
$$100*num/den*sqrt(var(num)/num^2 + var(den)/den^2)$$

where num = the numerator term, den= the denominator term, and var() is the variance of each.

Both the numerator and denominator also need to have propagation-of-errors applied to them.

Again, each var() term in their propagation-of-errors formula can be replaced, by definition, with (mean*%RSD)². Since the same %RSD is assumed for all measurements, %RSD can again be factored out, resulting in the following general formula:

$$\begin{aligned} \text{Std.Dev.} &= 100*\Sigma_{\text{f}}\text{mean}_{\text{f}}/\Sigma_{\text{d}}\text{mean}_{\text{d}}*% \text{RSD}*\\ & \text{sqrt}(\Sigma_{\text{f}}(\text{mean}_{\text{f}}^{2}/n_{\text{f}})/(\Sigma_{\text{f}}\text{mean}_{\text{f}})^{2} + \Sigma_{\text{d}}(\text{mean}_{\text{d}}^{2}/n_{\text{d}})/(\Sigma_{\text{d}}\text{mean}_{\text{d}})^{2}) \end{aligned}$$

where f = each fraction used in the numerator and d = each fraction used in the denominator. As for the concentration estimates discussed above, the actual version of this general formula used for each analyte depends on the fractions that were used to calculate the numerator and denominator and the number of sub-samples available for each fraction. Certain calculations use variances that have been calculated in prior steps, so these were put directly into the formulas instead of recalculating them.

Appendix A. Test Plan

Work Place Co	PY
---------------	----

N.J. Sumetta 7/7/99

PNNL Test Plan	Document No.: BNFL-TP-29953-8 Rev. No.: 0
Title: Determination of the Solubility of HLW Sludge Solid	3
Work Location: RPL/SAL	Page 1 of 21
Author: GJ Lumetta	Effective Date:
Use Category Identification: Mandatory	Supersedes Date: New
Identified Hazards: Radiological Hazardous Materials Physical Hazards Hazardous Environment Other:	Required Reviewers: X_Technical Reviewer X_Other: Client Building Manage X_Other: Project Manager Radiological Control X_Other: RPL Manager ES&H X_Quality Engineer
<u>x</u> Yes <u>No</u> <u>NOTE:</u> If Yes, then modifications are not anticipated to impact sa or the controlling Project QA Plan as appropriate. <u>On-The Job Training Required?</u> <u>Yes or <u>x</u> No FOR REVISIONS: Is retraining to this procedure required? <u>Yes</u> <u>No</u> Does the OJT package associated with this procedure require</u>	Tety. For documentation requirements of a modification see SBMS
Approval: Author <u>signature</u> Author <u>rechnical Reviewer</u> <u>Rusin M. Racha</u> RPL Manager <u>DE Kurath</u> Project Manager <u>DE Kurath</u> RPG QE <u>Second</u>	$ \frac{Date}{1/13/99} \frac{11-14-99}{1/19/99} \frac{1/19/99}{1/14/99} \frac{1/14/99}{1/14/99} \frac{1/15/94}{1/15/94} $
BNFL FS-formation BNFL	QA: PU2/ 226/98/

Applicability

This test plan is to be used to determine 1) the aqueous-insoluble fraction of BNFL HLW sludge samples, 2) the caustic-insoluble fraction of BNFL HLW sludge samples, and 3) the effect of temperature on the solubility of solids in the BNFL HLW sludge samples. The work will be conducted in the SAL hot cells. The work will be conducted by Radiochemical Processing Group staff. This work is being done as part of the Technical Support to BNFL for Phase 1B project.

Test Objectives

Justification: This activity supports confirmation of the process sequence, equipment performance and design basis for the HLW entrained solids removal process. BNFL must complete research and testing activities conducted to confirm system design bases before 14 April 1999.

Objective: The purpose of this task is to obtain the information needed in the filtration and washing of the Envelope D material. The specific objective of this test is to determine the relative mass and composition of the water-insoluble solids and of the caustic-insoluble solids (at 85°C) and to determine the components in the liquid portion of the HLW sample at 30, 40, and 50°C and their concentrations.

Definitions

BNFL	British Nuclear Fuels Ltd.
HDPE	High-density polyethylene
HLW	High-level waste
RPL	Radiochemical Processing Laboratory

Emergency Response

In the event of building audible alarms (e.g., fire or criticality) personnel should proceed in accordance with the RPL Building Emergency Procedure. If time permits, ensure that test materials are secured from spilling prior to exiting the area.

Quality Control

Quality assurance for work conducted under this Test Plan is governed by the Standards-Based Management System (SBMS). The quality control for each analysis indicated in Table 1 will be established per Quality Assurance Plan MCS-033. MCS-033 specifies the minimum calibration and verification requirements for analytical systems, as well as batch processing quality control samples to monitor preparations (i.e., blanks, duplicates, matrix spikes, and laboratory control standards).

A work place copy of this document shall be present at the work location. Specific information regarding each test (e.g., sample numbers) will be recorded on the work place copy and kept as project records.

As discussed in the Prerequisites section, calibrated balances must be used in performing this test. Likewise, a calibrated temperature controller is required. The calibration ID, date of calibration, and calibration expiration date must be recorded on the work place copy for each balance used and for the temperature controller. Measured weights will be recorded on the work place copy at the indicated spot in the work instructions.

Hand written changes or corrections made to the work place copy will be made by means of a single line-out. Such changes or corrections shall be initialed and dated by the staff member making the change and by the cognizant scientist.

Equipment Description

A standard laboratory hot plate/magnetic stirrer will be used for this test. An aluminum heating block will be placed on the hot plate/stirrer to heat the sample. The apparatus will be equipped with two thermocouples. One of the thermocouples will be connected to a temperature controller, while the other will be connected to an over-temperature shut-off device. The latter will be used to ensure the sample is not over heated, which could result in lose of sample.

Prerequisites

Staff performing the work must read and understand the entire test plan prior to beginning work.

The following are items that should be staged prior to start of the test.

Wide-mouth HDPE bottle; size to be determined (2) 30-mL HDPE bottle 20-mL HDPE vial (8) 30- to 40-mL glass vials (2) Hot plate/stirrer Aluminum heating block Temperature controller with temperature read-out Over-temperature shut-off device 0.45-µm nylon syringe filters (6) 5-mL syringes (6) 0.45-µm nylon disposable filter units (8) Adjustable 5-mL pipette Boiling water bath Small plastic bag

The temperature controller shall be calibrated by maintenance services. Record the following information regarding the temperature controller used.

Calibration ID:	0 2093	62855	02900
Calibration Date:	1/12/19	1/57	1/49
Expiration Date:	1/2000	1/2001	1/2001

A calibrated balance is required for this test. Record the following information regarding the balance(s) used.

Calibration ID:	360-06-01-016	Calibration ID:	
Calibration Date: _	3/2/95	Calibration Date:	¥.

BNFL-TP-29953-8

Page 3 of 21

Expiration Date: <u><u><u>8</u>/91</u> Expiration Date:</u>

Before beginning work, a routine performance check should be performed and documented in the space below.

std. mus	Reading	*
1	1.0000	
10	9.9995-	
50	49.999 3	(•)
001	99.9972 99.999	s. 1. purette
150 (100+50)	1 50.000 8	7/19/99

(G) Rom balance through calibration proceedure.

Work Instructions

Note Where practical, catch pans should be used when working with the tank waste samples, so that they can be recovered if spilled.

Part 1. Solubility Versus Temperature

1.1. Prepare the sample vials according to the following table. All vials should be HDPE.

Sample ID ^(a)	
	CIDY-SOL-30-1
	CIDY -SOL-30-2
	C104 -SOL-40-1
	C104 -SOL-40-2
	C104 -SOL-50-1
	CION -SOL-50-2
(a) The prefix to the	e sample IDs should be

the tank number, e.g. "C106."

1.2. Label a 30-mL HDPE bottle as "(-104 - SOL-TEST")place a magnetic stir bar in this bottle. $\omega_{4.} = 15.3308$

1.3. Mix the stock HLW sample to give a homogeneous slurry

= tank number) and

(cerment poge)

User a shaker to mix the sumple. The sumple was very thick - like neolassas.

BNFL-TP-29953-8

n.l. huntte 7/14/54 Page 4 of 21

Stanted a

Note If the HLW sample does not contain a liquid fraction, then add ~ 5 g of sludge to 25 mL of 0.1 <u>M</u> NaOH. 1.4. CI 64 -SOL-TEST Wt. = 46. 3767 21.04595 slorry Place ______SOL-TEST into an aluminum heating block thermostatted at 30°C 1.5. 1.6. Stir the contents of <u>CIOH</u>-SOL-TEST Once the temperature has equilibrated at 30°C, stir the sample for 1 h 1.7. T=31 4 (for some reven would not settle Start date/time: 7-19-99 3:45 Lick to 30%) Stop date/time: 7-20-99 10:00 AM. 1.8. Preheat two syringe/filter assemblies by placing them in a plastic bag and submersing the plastic bag with the syringe/filters into a boiling water bath 1.9. Withdraw a 2-mL aliquot of the slurry and filter into vial ______-SOL-30-1 6.5218 7.407. Withdraw a second 2-mL aliquot of the slurry and filter into vial _______SOL-30-2 6.4870 1.10. 7,3496 NUH Adjust the temperature of aluminum heating block assembly to 40°C Just to 61th 1.11. Gross Jts. ell 4 mL. 1.12. Once the temperature has equilibrated at 40°C, stir the sample for 1 h Film plassed. Start date/time: 7/20/79 ~13:00 Stop date/time: 7/21/47 13:10 Preheat two syringe/filter assemblies by placing them in a plastic bag and submersing the 1.13. plastic bag with the syringe/filters into a boiling water bath Tours with 4" L N. 1. 2. 7/21/45 1.14. Withdraw a 2-mL aliquot of the slurry and filter into vial ______SOL-40-1 6.5451 7.4937 4 2 N.1.2 7/21/45 Withdraw a second 2-mL aliquot of the slurry and filter into vial ______-SOL-40-2 64873 7.5410 1.15. Adjust the temperature of aluminum heating block assembly to 50°C 1.16. Once the temperature has equilibrated at 50°C, stir the sample for 1 h 1.17. Start date/time: 7/21/99 13:30 Stop date/time: 7-32-99 10:30 Preheat two syringe/filter assemblies by placing them in a plastic bag and submersing the 1.18. plastic bag with the syringe/filters into a boiling water bath Withdraw a 2-mL aliquot of the slurry and filter into vial <u>CIOY</u>-SOL-50-1 bruss Wr. Tome wt 1.19. 7.6962 6.4773

Page 5 of 21

42 n.1.1. 1/21/44 1.20. The samples collected during the test are to be submitted for the analyses listed in Table 1.21. 1. The cognizant scientist will prepare the required ASR. 7127159 Part 2. Determination of Aqueous-Insoluble Fraction Homogenize the stock HLW sample by stirring Pot on shaker for nis min A.1.L. 2.1. 2.2 Label a disposable filter unit (0.45-µm nylon) as CIOY -AQ-1 2.3 Weigh CIOY -AQ-1 Wt. <u>CIOY AQ-1 = 64.9436</u> (with hid on) (Wt. <u>CIOY AQ-1 = 64.9436</u> (2.3A) (4.9425 (reweighed after wranch well to Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap 1000 top) Wt. receiving bottle&cap = 41.7325(2.3B) Connect ______AQ-1 to the vacuum line, but do not yet apply vacuum 2.4 ~youl of the slorry. 2.5 Transfer enough of the homogenized HLW sample to give ~25 g solids to the filter funnel of CIOH -AQ-1 2.6 Apply vacuum to the filter unit. Disconnect from the vacuum once the liquid has filtered. Filtration was slow. 2.7 Place the cap on the top of the filter unit and weigh CIOY -AO-1 Wt. CIOY -AQ-1 = 115.8190 g (2.7A) Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh. Wt. receiving bottle&cap = 59.2175g(2.7B)2.8 Determine the total weight of the sample Wt. Sample = $2.7A-2.3A = 50.8765^{\circ}g$ (2.8A) Determine the weight of the filtered liquid Wt. Liquid = 2.7B-2.3B = 17.4850 g (2.8B) Determine the weight of the filtered solids Wt. Solids = $2.8A - 2.8B = 3^{3.3615}$ g (2.8C)2.9 Measure out the appropriate volume of 0.01 M NaOH as instructed by the cognizant scientist into a plastic bottle 71: 2/99

BNFL-TP-29953-8

Page 6 of 21

$$Vol. Used = -IBO mL (2.9A)$$

$$If C = ML (2.9A)$$

$$I$$

BNFL-TP-29953-8

Page 7 of 21

2.22 Filter the wash slurry Again, filt-ation we slow.

- 2.23 Disconnect from the vacuum once the liquid has filtered
- 2.24 Place the cap on the top of the filter unit and weigh <u>C104</u> -AQ-3 Too heavy to weigh in one picc. 141. 7225 + 64. 7063 wf. funnel of solide = 64. 263Wt. <u>C104</u> -AQ-3 = <u>206.4288</u> g (2.24A)

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

Monitor the clarified solution for precipitate formation.

Wt. receiving bottle&cap = $\underline{141.7225}_{g}$ (2.24B)

2.25 Determine the total weight of the slurry

Wt. Slurry =
$$2.24A - 2.20A = 141.7697$$
 g (2.25A)

Determine the weight of the filtered liquid

Wt. Liquid =
$$2.24B-2.20B = 100.1341g$$
 (2.25B)

Determine the weight of the filtered solids

Note: Solide apparently weigh more than before Wt. Solids = 2.25A - 2.25B = 41.6356 g (2.25C) (see 2.8C)

2.26 Measure out the appropriate volume of 0.01 <u>M</u> NaOH as instructed by the cognizant scientist into a plastic bottle

Vol. Used =
$$\sim 100$$
 mL (2.26A)

2.28 Weigh CIDY -AQ-2

Wt.
$$CIOY -AQ-2 = 8$$
 (2.28A) - (2.28A)

Wt.
$$\underline{C104} - AQ - 2 = \underline{155} \cdot 0752 g$$
 (2.31A)

Determine the weight of the slurry

Wt. Slurry =
$$2.31A - 2.28A = 123.2713 g (2.31B)$$

2.32 Equip <u>_____</u>-AQ-2 with a condenser, then place in an aluminum heating block at 85°C

2.31

Page 8 of 21

2.33 Stir the sample in <u>CIOY</u> -AQ-2 at 85°C for a minimum of 8 hours

Start date/time: 7/28/19 12:00 Stop date/time: 7/29/19 8:30

2.34 Allow to cool to ambient temperature

Wt.

Determine mass loss due to evaporation

Wt. Lost = 2.35A-2.31A = _____g (2.36B)

2.36 Label a disposable filter unit (0.45-µm nylon) as <u>CIOH</u>-AQ-5

2.37 Weigh _____ -AQ-5

Wt. c104 - AQ-5 =
$$k4.7197$$
 g (2.37A)

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

Wt. receiving bottle∩ =
$$\frac{41.573}{g}$$
 (2.37B)

2.38 Connect <u>croy</u>-AQ-5 to the vacuum line

- 2.39 Filter the wash slurry
- 2.40 Disconnect from the vacuum once the liquid has filtered
- 2.41 Place the cap on the top of the filter unit and weigh <u>croy</u> -AQ-5 is well consists of balance. Wt. <u>croy</u> - AQ-5 = <u>46.1</u>, <u>3634 g</u> (2.41A)

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

formition of solids. Wt. receiving bottle∩ =
$$124.3234$$
 g (2.41B)

42 Determine the total weight of the slurry

Determine the weight of the filtered liquid

Wt. Liquid = 2.41B-2.37B = 82.7963g (2.42B)

BNFL-TP-29953-8

Page 9 of 21

Cut determine because

2.41 A.

8/4/49

(2.42A) we didn't get

2.42

7/28/49

Determine the weight of the filtered solids

Wt. Solids =
$$2.42A-2.42B = 40.49/0$$
 g (2.42C)

2.43 Measure out the appropriate volume of 0.01 <u>M</u> NaOH as instructed by the cognizant scientist into a plastic bottle

Vol. Used =
$$\sim / 00$$
 mL (2.43A)

2.44 <u>Label an appropriately sized wide-mouthed HDPE bottle as ______AQ-2</u> step. at needed. AQ-2 step. at needed.

2.45 Weigh <u>CIOY</u> -AQ-2

Wt.
$$CIDY - AQ-2 = /59.0003e$$
 (2.45A)

2.46 Slurry the filtered solids using a portion of 0.01 <u>M</u> NaOH (volume = 2.43A + 5); transfer this slurry to <u>CIOY</u>-AQ-2

Wt.
$$C104$$
 -AQ-2 = 159.000 (2.48A)

Determine the weight of the slurry

Wt. Slurry =
$$2.48A - 2.45A = 127.2063 g$$
 (2.48B)

2.49 Equip <u>CIOH</u> -AQ-2 with a condenser, then place in an aluminum heating block at 85°C

2.51 Allow to cool to ambient temperature

2.52 — Remove the condenser and replace the original cap on ______AQ-2. Weigh ______AQ-2-

Determine mass loss due to evaporation-

2.53 Label a disposable filter unit (0.45-µm nylon) as <u>C104</u> -AQ-7

2.54 Weigh CIOY -AQ-7

$$Wt. \underline{\ \ C104-AQ-7} = \underbrace{\frac{1}{43} \cdot \frac{3}{4990}}_{497-3447}$$
(2.54A)

BNFL-TP-29953-8

Page 10 of 21

(2.52A)

7/7/99 54 mite 54 mite 54 mite 54 mite

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap 41.6380 20 8-4-99. Wt. receiving bottle&cap =40,456 3-g (2.54B)2.55 Connect C104 -AQ-7 to the vacuum line Filter the wash slurry 2.56 2.57 Disconnect from the vacuum once the liquid has filtered 2.58 Place the cap on the top of the filter unit and weigh ______ -AQ-7 Combined wit Wt. _____ AQ-7 = 71.7640 g = 71.7640 (2.58A) +134.7436 Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap TOP half on the receiving bottle and weigh. Monitor the classified liquid for the formation of solids. Wt. receiving bottle&cap =/34,7436.g (2.58B)See p. 20 2.59 Determine the total weight of the slurry Not: This is inconsistent with 2.483 Wt. Slurry = 2.58A-2.54A = 141.6574 g (2.59A) Determine the weight of the filtered liquid Wt. Liquid = 2.58B-2.54B = 93.1056 g (2.59B)Determine the weight of the filtered solids Wt. Solids = 2.59A - 2.59B = 48.5520 g (2.59C)2.60 Label a glass vial as <u>CIOY</u>-AQ-8 2.61 Dry C104 -AQ-8 at 105°C for a minimum of 1 h 2.62 Cool <u>CI04</u>-AQ-8 to ambient temperature in a desiccator 2.63 Weigh CIOY -AQ-8 Wt. <u>CIOY</u> -AQ-8 = 128.2633 g (2.63A) 2.64 Using several portions of deionized water, quantitatively transfer the washed solids from the filter membrane to CIPY -AQ-8 Heat _____AQ-8 at 80°C to evaporate excess water 2.65 2.66 Heat <u>CION</u>-AQ-8 at 105°C overnight 2.67 Cool _____AQ-8 to ambient temperature in a desiccator

2.68 Weigh _____AQ-8

Wt. <u>c104</u> -AQ-8 = <u>142.6237</u> g $\frac{22}{348}$ (2.68A)

2.69 Determine the dry weight of the washed solids

Wt. Dry Solids =
$$2.68A - 2.63A = 14.3$$
 spin g(2.69A)

	2.70	Determine the relative amounts of each wash solution needed to prepare the colliquid sample	omposite
8/4/66 All S	11:10 Smothel	Total Wt. Liquids = $2.8B + 2.25B + 2.42B + 2.59B = 253.5150 g$	(2.70A)
wers	clean.	Wt Fraction AQ-1 = $2.8B/2.70A = 0.057L$	(2.70B)
	•	Wt Fraction AQ-3 = $2.25B/2.70A = 0.3512$	(2.70C)
		Wt Fraction AQ-5 = $2.42B/2.70A = 0.2821$	(2.70D)
		Wt Fraction AQ-7 = $2.59B/2.70A = 0.3172$	(2.70E)
	2.71	Label a 20-mL HDPE sample vial as <u>C104</u> -AQ-9 Tore wit : 8.	1397
	2.72	PlaceAQ-9 on the balance and tare to 0.000g	
	2.73	Add the following quantity of the solution in bottle <u></u> -AQ-1 to <u></u>	-AQ-9
	•	Quantity from $-209 - AQ - 1 = 10 + 2.70B = -0.51 co g$	(2.73A) .
		Record the weight of <u>C104</u> -AQ-9	
		Wt. <u>$C104$</u> -AQ-9 = <u>0.5978</u> g	(2.73B)
	2.74	Place $_C104$ -AQ-9 on the balance and tare to 0.000g	
	2.75	Add the following quantity of the solution in bottle	-AQ-9
		Quantity from $\underline{C104}$ -AQ-3 = 10*2.70C = $\underline{3.412}$ g	(2.75A)
		Record the weight of <u>CIPY</u> -AQ-9	
		Wt. $(-404) - AQ - 9 = 3.4310$ g	(2.75B)
	2.76	PlaceAQ-9 on the balance and tare to 0.000g	
	2.77	Add the following quantity of the solution in bottleAQ-5 toA	-AQ-9
		Quantity from $(-10Y) - AQ-5 = 10*2.70D = (-2.821) g$	(2.77A)

N.1. hundte 8/4/99

BNFL-TP-29953-8

Page 12 of 21

Record the weight of ______ -AQ-9

Wt.
$$\underline{C104} - AQ - 9 = \underline{2.8756} g$$
 (2.77B)

- 2.78 Place <u>CION</u>-AQ-9 on the balance and tare to 0.000g
- 2.79 Add the following quantity of the solution in bottle <u>CIOY</u> -AQ-7 to <u>CIOY</u> -AQ-9

Quantity from
$$C104$$
 -AQ-7 = 10*2.70E = 3.172 g (2.79A)

Record the weight of CIOY -AQ-9

Wt.
$$CIPY - AQ - 9 = 3.3297 g$$
 (2.79B)

2.73 The washed solids and the composite wash solution are to be submitted for the analyses listed in Table 1. The cognizant scientist will prepare the required ASR.

Part 3. Determination of Caustic-Insoluble Fraction

- 3.1. Homogenize the stock HLW sample by stirring
- 3.2 Label a disposable filter unit (0.45-µm nylon) as <u>C104</u>-OH-1
- 3.3 Weigh <u>CION</u>-OH-1

Wt.
$$CIO 4 - OH - 1 = C4.5038g$$
 (3.3A)

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

Wt. receiving bottle∩ =
$$\frac{41.742}{g}$$
 (3.3B)

3.4 Connect <u>CIOY</u>-OH-1 to the vacuum line, but do not yet apply vacuum

- 3.5 Transfer enough of the homogenized HLW sample to give ~25 g solids to the filter funnel of <u>CIOY</u>-OH-1
- 3.6 Apply vacuum to the filter unit. Disconnect from the vacuum once the liquid has filtered.
- 3.7 Place the cap on the top of the filter unit and weigh <u>CIOY</u>-OH-1

Wt.
$$\underline{CIPY}$$
-OH-1 = // ∂_13460 g (3.7A)

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh.

Wt. receiving bottle∩ =
$$53.3086$$
 g (3.7B)

n.1. hundt 8/4/99

Page 13 of 21

8/24/44

BNFL-TP-29953-8

3.8 Determine the total weight of the sample

Wt. Sample =
$$3.7A - 3.3A = 45.8422$$
 g (3.8A)

Determine the weight of the filtered liquid

Wt. Liquid =
$$3.7B-3.3B = 11.5624$$
 g (3.8B)

Determine the weight of the filtered solids

Wt. Solids =
$$3.8A-3.8B = 34.2768$$
 g (3.8C)

3.9 Measure out the appropriate volume of 3 <u>M</u> NaOH as instructed by the cognizant scientist into a plastic bottle

Vol. Used =
$$\sim 100$$
 mL (3.9A)

3.10 Label an appropriately sized wide-mouthed HDPE bottle as <u>C104</u>-OH-2

3.11 Weigh _____ -OH-2

Wt.
$$c_{104}$$
 -OH-2 = 31, 8847 g (3.11A)

3.12 Slurry the filtered solids using a portion of 3 M NaOH (volume = 3.9A + 5); transfer this slurry to <u>_____</u>-OH-2

3.13 Repeat step 3.12 four times to ensure complete transfer of the solids to ______OH-2

3.14 Weigh C104 -OH-2

Exceeded capacity of calibrated below. Used Some belows over in $Wt. \underline{CIOY}-OH-2 = \underline{j71.8} g$ (3.14A) Step 2.14 Determine the weight of the slurry

Wt. Slurry =
$$3.14A-3.11A = 134.9$$
 g (3.14B)

3.15 Equip <u>COM</u>-OH-2 with a condenser, then place in an aluminum heating block at 85°C

3.16 Stir the sample in <u>CIOY</u>-OH-2 at 85°C for a minimum of 8 hours

Start date/time: <u>8/4/49</u> 11:10 Stop date/time: <u>8/5/49</u> 8:30

OH-2

3.17 Allow to cool to ambient temperature

3.18 Remove the condenser and replace the original cap on _____OH-2. -Weigh _____OH-2.

Wt.

s.1. hun 815149

BNFL-TP-29953-8

Page 14 of 21

17. June 199

814144

Determine mass loss due to evaporation-

815199

Label a disposable filter unit (0.45-µm nylon) as _____OH-3 3.19

3.20 Weigh CIOY -OH-3

Wt.
$$C104$$
 -OH-3 = 64, 3851 g (3.20A)

3.1. hu

(3.18B)

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

Wt. Lost = 3.18A-3.14A

Wt. receiving bottle&cap = 41.5677 g (3.20B)

3.21 Connect CIOY -OH-3 to the vacuum line

3.22 Filter the leaching slurry

3.23 Disconnect from the vacuum once the liquid has filtered

Aust the filter funnel 3.24 Place the cap on the top of the filter unit and weigh _____ -OH-3 SU total at 140.4643 (3.248) 64-210 Wt. CIOY AQ-3 = 64.2910g (3.24A 204.6953 e/s/94

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh. Monitor the Clumified liquid for

solids tormation. Wt. receiving bottle&cap = /40.4043 g (3.24B) 816199 8:50 solution clean. 8/26/15 4 gel -like methical had formed on the bottom of the bottle (See p. 20

Determine the total weight of the slurry 3.25

Wt. Slurry =
$$3.24A-3.20A = 140.310^{2} g$$
 (3.25A)

Determine the weight of the filtered liquid

Wt. Liquid =
$$3.24B-3.20B = 48.8364 g$$
 (3.25B)

Determine the weight of the filtered solids

Wt. Solids =
$$3.25A-3.25B = 4^{1.473}$$
 g (3.25C)

3.25a Label a 20-mL HDPE sample vial as CIUY -OH-3A - Tare wt. = 8.4965

3.25b Transfer ~15 mL of the filtered leachate solution to _____ -OH-3A ""+ = 26.0674

Measure out the appropriate volume of 0.01 M NaOH as instructed by the cognizant 3.26 scientist into a plastic bottle

Vol. Used =
$$\underline{\sim / 0U}$$
 mL (3.26A)

N.1. hunt 8/5/49

BNFL-TP-29953-8

Page 15 of 21

815/44

3.28 Weigh _____ -OH-2

Wt. <u>CIOY</u>-OH-2=

- 3.29 Slurry the filtered solids using a portion of 0.01 <u>M</u> NaOH (volume = 3.26A + 5); transfer this slurry to <u>CIOY</u>-OH-2
- 3.30 Repeat step 3.29 four times to ensure complete transfer of the solids to <u>CIOY</u>-OH-2
- 3.31 Weigh C104 -OH-2

Wt.
$$C_{104}$$
-OH-2 = $/55$, g (3.31A)

>> Did nerg

n.l. (3.28A)

Determine the weight of the slurry

Wt. Slurry =
$$3.31A - 3.28A = 123 \cdot 2 g = (3.31B)$$

3.32 Equip <u>C104</u>-OH-2 with a condenser, then place in an aluminum heating block at 85°C

3.33 Stir the sample in <u>CIVY</u>-OH-2 at 85°C for a minimum of 8 hours

Start date/time:
$$\frac{8-5-99}{11:30}$$
 11:30
Stop date/time: $\frac{8/6/44}{8:30}$ 21 h

-OH-2

3.34 Allow to cool to ambient temperature-

3.35 Remove the condenser and replace the original cap on _____OH-2.

Determine mass loss due to evaporation

Wt.

-Wt. Lost = 3.35A 3.31A = (3.35B)

3.36 Label a disposable filter unit (0.45-µm nylon) as <u>_____</u>-OH-5

3.37 Weigh _____ -OH-5

Wt.
$$\underline{-104}$$
 -OH-5 = $\underline{64.6340}$ (3.37A)

Also weigh just the bottom part of the filter unit; i.e., the receiving bottle and cap

Wt. receiving bottle&cap = $\frac{41.4917}{g}$ (3.37B)

3.38 Connect <u>CIOY</u>-OH-5 to the vacuum line
3.39 Filter the wash slurry very just the gol M North with is caustic line with perturps to (part filter childs). (But filtration was shill slaw.)
3.40 Disconnect from the vacuum once the liquid has filtered

n1. 1. 8/ 6/94

Page 16 of 21

3.41 Place the cap on the top of the filter unit and weigh ____OH-5 Tuto 1 55.4813

Wt.
$$\underline{-04} - 0H - 5 = 53 \cdot 4883 g$$
 (3.41A)

134.4445

Carefully remove the funnel part of the apparatus from the receiving bottle, place the cap on the receiving bottle and weigh. Monitor the clusified solution

Wt. receiving bottle∩ =
$$134.4443g$$
 (3.41B)

3.42 Determine the total weight of the slurry

+ -

Wt. Slurry =
$$3.41A - 3.37A = \frac{125.7587}{9}g$$
 (3.42A)

Determine the weight of the filtered liquid

Wt. Liquid =
$$3.41B-3.37B = 92.4528g$$
 (3.42B)

Determine the weight of the filtered solids

Wt. Solids =
$$3.42A-3.42B = 33.3420 g$$
 (3.42C)

Measure out the appropriate volume of 0.01 M NaOH as instructed by the cognizant 3.43 scientist into a plastic bottle

Vol. Used =
$$\frac{100}{\text{mL}}$$
 mL (3.43A)

3.45 Weigh CIOY -OH-2

Wt.
$$\underline{C104}$$
 -OH-2 = $\underline{/60.0}$ g (3.45A)

Slurry the filtered solids using a portion of 0.01 M NaOH (volume = 3.43A + 5); transfer 3.46 this slurry to _____ -OH-2

Repeat step 3.46 four times to ensure complete transfer of the solids to _____OH-2 3.47

3.48 Weigh CIOY -OH-2

Wt. C104 OH-2 =
$$g_{x/y/y/y}$$
 (3.48A)

Determine the weight of the slurry

3.114

Equip _____OH-2 with a condenser, then place in an aluminum heating block at 85°C 3.49

Stir the sample in ____OH-2 at 85°C for a minimum of 8 hours 3.50

> Start date/time: 8-9-99 10:00 22.5h Stop date/time: 8/10/14 ~ 8:30

BNFL-TP-29953-8

Page 17 of 21

Inadvertently

Ust leter in

BNFL-TP-29953-8

- 3.61 Dry CIOH -OH-8 at 105°C for a minimum of 1 h
- 3.62 Cool <u>CIOY</u>-OH-8 to ambient temperature in a desiccator
- 3.63 Weigh <u>CION</u>-OH-8

Wt.
$$c_{104}$$
 -OH-8 =/27.4270g (3.63A)

- 3.64 Using several portions of deionized water, quantitatively transfer the washed solids from the filter membrane to <u>CION</u>-OH-8
- 3.65 Heat <u>CIOY</u>-OH-8 at 80°C to evaporate excess water
- 3.66 Heat CION -OH-8 at 105°C overnight
- 3.67 Cool _____OH-8 to ambient temperature in a desiccator
- 3.68 Weigh <u>C104</u>-OH-8

Wt.
$$c_{104}$$
 -OH-8 = $/35.032/g$ (3.68A)

- 3.69 Determine the dry weight of the washed solids
- Wt. Dry Solids = 3.68A-3.63A = 7.605 / g(3.69A)3.70 Determine the relative amounts of each wash solution needed to prepare the composite liquid sample
 - $42.452^{6} g_{8}.36^{7}$ Total Wt. Liquids = $3.42B + 3.59B = 180.7135^{6} g$ (3.70Å)
 - Wt Fraction OH-5 = 3.42B/3.70A = 0.5115 (3.70B)

Wt Fraction OH-7 =
$$3.59B/3.70A = 3.48 rs^{-4}$$
 (3.70C)

- · 3.71 Label a 20-mL HDPE sample vial as _____ OH-9 ____ Tare w = 8.3703
- 3.72 Place <u>CIOY</u> -AQ-9 on the balance and tare to 0.000g

3.73 Add the following quantity of the solution in bottle <u>_____</u>-OH-5 to <u>____</u>-OH-9

Quantity from $(-10^4) - 0H-5 = 10^{+}3.70B = (3.73A)$

Record the weight of _____ -OH-9

Wt.
$$c_{1}$$
 -OH-9 = 5.1276 g (3.73B)

3.74 Place <u>CION</u>-AQ-9 on the balance and tare to 0.000g

3.75 Add the following quantity of the solution in bottle <u> c_{104} </u>-OH-7 to <u> c_{104} </u>-OH-9 Quantity from <u> c_{104} </u>-OH-7 = 10*3.70C = <u> 4.883^{-} </u> g (3.75A)

Record the weight of _____-OH-9

Wt. CIOY -OH-9= 4.8844 g (3.75B) Determine the gross weight of CIOY-OH-9 -> Gruss wt. CIOY-OH 9 = 3.76 The washed solids, the leaching solution, and composite wash solution are to be submitted for the analyses listed in Table 1. The cognizant scientist will prepare the required ASR. Forget to Forget to Bat weights Bat anolytical work Stanked within 2 Days. Stanked within 2 END of Work Instructions Con calulate as follows : 5-1271 4.286L 8.7703 (ture) 18.3845 8113/49 Chik for precipitates 1/18/2000 1.1. Junitta 9/29/99 C104-AR-3 - Clear - Clear {----- All still clan (10 WES (104-AR-1) C104 - AQ -7 -> Clear C104 - 014 - 3 - precipitat -0H-3 4 -0H-7 both here CIOH - OH-5 - Clear lots of solids. Solids C104-014-7 -> clear formed a film on the bottom of - olt - 7. Interestingly, -DH-S was still fai-ly clear.

TABLE 1. Sample Matrix

1

	VIIIIIIII						×	×	×	×	×	
	TOINI CIN						×	×	×	×	×	
CVAA	3						×	×	×	×	×	
			•				×	×	×	×	×	
. =	2						×	×	×	×	×	
Am/ Am/	5						×	×	×	×	×	
Laser Fluorimetry	X	×	×	×	×	×	×	×	×	×	×	
Total	X	×	×	×	×	×	×	×	×	×	×	
80.	۶×	×	×	×	×	×	×	×	×	×	×	
Vit	×	×	×	×	×	×	×	×	×	×	×	
ICP-MS							×	×	×	×	×	
ICP-MS	X	×	×	×	×	×						
	<u>i</u> ×	×	×	×	×	×	×	×	×	×	×	
5	<u>i</u> ×	×	×	×	×	×	×	×	×	×	×	
IC	X	×	×	×	×	×	×	×	×	×	×	
ICD/AFC	X	×	×	×	×	×	×	×	x	×	×	u-isotopic
Na ₁ O ₁	Initial I						×			×		-isotopic, I
KOH	INICH I						×			×		Np-237, U
Acid	X	×	×	×	×	×		×	×		×	Tc-99, I-129,
Cample ID	SOL-30-1	SOL-30-2	SOL-40-1	SOL-10-2	SOL-50-1	SOL-50-2	AQ-8	4Q-9	A6-HO	8-HO	6-HO	(a) Includes]

.

Page 21 of 21

BNFL-TP-29953-8

Appendix B. Raw Data

Radiochemical Process Group Shielded Facility Operations Team	U	Page <u>1</u>	of <u>1</u>		
Shielded An SAMPLE CON	nalytical Labora FIRMATORY W	atory EIGHTS			
Tank <u>C104</u>	Core(s) <u>N/A</u>				
Project Id:		WP	Number:	W48486	
I/ASR Number:ASR 5478		**			
Sample Ident.	Sample Weight (g)				
C104-SOL-30-1	6.9222				326
C104-SOL-30-2	6.9279				
C104-SOL-40-1	7.1768			•	
C104-SOL-40-2	7.1976				
C104-SOL-50-1	7.2932	-			
C104-SOL-50-2	7.5184				
C104-AQ-9	18.3523				
04-0H-3A	26.0570				
С104-ОН-9	18.3618				
· ·····		0 			
·				· · · · · · · · · · · · · · · · · · ·	
	•				
4&TE: _X_ Cell 2 (360-06-01-016)		Other			
Cell 5 (360-06-01-019)					
Denver (360-06-01-040)					
Uchtel (000 00 01 010)					
Mettler Al201 (510-06-01-014)			6-16		
Analyst: Date:	Reviewer:	111		Date:	
Maughanthorper 8-12-99	- Ald	Aule		8/12/99	<u>.</u>
				8	

Project: Client:

29953 G. J. Lumetta

ACL Number(s): 99-2340 through 99-2350 & 99-2346, 99-2349

Client ID: "C104-SOL-30-1" through "C104-OH-9" & "C104-AQ-8", "C104-OH-8"

ASR Number: 5478.01

Total Samples: 11

PNL-ALO-211, "Determination of Elements by Inductively Coupled Procedure: Argon Plasma Atomic Emission Spectrometry" (ICP-AES).

Analyst: JJ Wagner

8-19-99 (A0540 K/Ni), 8-24-99 (A0541 Na/Zr), Analysis Date (Filename): 8-27-99 (A0542 ALO-128)

See Chemical Measurement Center 98620: ICP-325-405-1 File for Calibration and Maintenance Records.

M&TE Number:

ICPAES instrument -- WB73520 Mettler AT400 Balance -- Ser.No. 360-06-01-029

<u>--14-99</u> Reviewed by Concur

9/14/99

Page 1

Nine radioactive liquid samples, C104-SOL-30-1 through C104-SOL-50-2, C104-AQ-9, C104-OH-3A and C104-OH-9 (ACL# 99-2340 through 99-2345, 99-2347, 99-2348, and 99-2350), were analyzed by ICPAES after preparation by the Sample Receiving and Preparation Laboratory (SRPL). Samples were prepared by SRPL using PNL-ALO-128 acid digestion procedure and plastic vials. Approximately 0.1 ml to 5.0 ml of sample (weighed) was processed and diluted to a final volume of 5 ml, 10 ml, or 20ml. The final volume was calculated by measuring the net weight and dividing by an estimated density. Density of each prepared sample was estimated by weighing a one ml aliquot of each processed sample. Samples received prior to digestion were clear solutions except C104-SOL-30-1 and C104-SOL-30-2. These two samples contained visible solids. The containers in the hot cell also had crystals in the liquids. After digestion all samples were clear and did not require filtering. Although sample C104-OH-3A (ACL# 99-2348) was received as a clear solution it formed a precipitate when acidified. After processing the sample was diluted to 10 ml final volume but some precipitate remained. The sample was then evaporated to near dryness, heated with 0.75 ml of concentrated hydrochloric acid and 0.25 ml of concentrated nitric acid. A precipitate still remained so 5 ml of water and 0.050 ml of concentrated (48%) hydrofluoric acid was added and warmed. After several minutes of continued warming, the precipitate dissolved and the sample was diluted to final volume of about 20 ml. The sample volume (18.7ml) was estimated as above using weight and density measurements.

Two radioactive <u>solid samples</u> each prepared in duplicate, C104-AQ-8 & C104-OH-8 (ACL# 99-2346 & 99-2349), were analyzed by ICPAES after preparation by SAL. Approximately 0.2g aliquots were used to prepare samples using both fusion procedures PNL-ALO-114 (Na₂O₂/Zr), and PNL-ALO-115 (KOH/Ni). After samples were fused they were diluted to a final volume of 100 ml. Samples were diluted an additional 2.01 or 2.03-fold by SAL using 2% v/v HCl because of ALARA radiation dose concerns. Additional dilution up to 25-fold was performed during ICPAES analysis because of high sodium, iron, thorium, uranium and/or zirconium concentration. Both fusion sample preparations required HCl to dissolve the fused samples. All solutions remained soluble after final dilution.

Measurement results reported have been corrected for preparation and analytical dilution. Specific analytes of interest requested by the client include Al, Cr, Fe, Na, Ni, Si, and U. Other required analytes include (table 4.2, page 27 "Analytical Requirements for Filtrate, Washed Solids, and Wash Solutions") Ag, Ba, Ca, Cd, Co, Cu, K, La, Mg, Mn, Mo, Na, Pb, Ti, Zn and Zr. All results reported are in $\mu g/g$ including liquid samples as requested by the client. Volumes and weights have been recorded on bench sheets and included with final data report. A single element 1,000 ug/ml sodium standard was measured at a frequency of every ten sample measurements and varied from start to end by less than 4% (936, 973, 969, 962, and 945 ug/ml). Worse case bias for sodium is approximately -6%.

9/14/99

Although not a requested analyte of interest it should be noted that thorium was present in the solid samples at high concentration. Thorium concentration is quite variable between the two fusion prepared samples. For example, in sample C104-AQ-8 (99-2346) thorium concentration between duplicates in the sodium peroxide/Zr fusion is nearly 50% different. There is also a difference in thorium concentration between the two types of fusion. Thorium concentration in sample C104-OH-8 (99-2349) for the sodium peroxide/Zr fusion is about 12 Wt% while the concentration of thorium is about half that for the same sample pair in the potassium/Ni fusion. The large differences may be due to in-homogeneity. Thorium was not detected in the acid digested aqueous samples.

Quality control check-standard results met tolerance requirements for analytes of interest except as noted below. Following is a list of quality control measurement results relative to ICPAES analysis tolerance requirements under MCS-033. Please note the final quality control check measurements at the very end of the run for the aqueous prepared samples (8-27-99 A0542) were somewhat higher than the tolerance limit. It is suspected that the hydrofluoric acid used to dissolve sample C104-OH-9 (ACL# 99-2348) caused the background measurement in the instrument to rise. As a result, the final concentrations in the check standards were typically 11% to 15% too high for many of the analytes measured in the quality control check standards and was particularly high for sodium which was about 47%. A longer clean-out time might have improved the measurement results. The concentration of sodium was very high in the last sample measured (> 500 µg/ml) and likely was the cause of the high residual sodium measured in the check standards. Quality control check standards MCVA and MCVB were analyzed immediately before the sample was measured. All measurements for the check standards at that time were within acceptable tolerance. The three dilutions performed on the sample were in good agreement with each other after adjusting for dilution and the two post-spike sample measurements that followed were also within tolerance limits. Therefore sample concentration results are not likely affected as might be indicated by the results of the final check standard measurements.

Five fold serial dilution:

(Solid samples)

Results were generally within tolerance limit of $\leq 10\%$ after correcting for dilution except as follows. Iron, chromium, lead and uranium were also somewhat high in KOH/Ni fusion samples (approximately 11% to 14%). The discrepancy in the KOH/Ni fusion samples may be related to the high aluminum, thorium and uranium concentrations. All three analytes cause interference to the analytes mentioned.

(Aqueous samples)	All results were within tolerance limit of $\leq 10\%$ after correcting for dilution except Silicon. Three of the aqueous samples measured approximately 11% to 17%. The discrepancy may be related to the very high concentration of sodium present in the samples.
Duplicate RPD (Relativ	e Percent Difference):
(Solid samples)	All analytes of interest were recovered within tolerance limit of $\leq 20\%$ relative percent difference (RPD).
(Aqueous samples)	All analytes of interest were recovered within tolerance limit of $\leq 20\%$ relative percent difference (RPD).
Post-Spiked Samples (C	Group A):
(Solid samples)	All analytes of interest were recovered within tolerance of 75% to 125%.
(Aqueous samples)	All analytes of interest were recovered within tolerance of 75% to 125%.
Post-Spiked Samples (Group B):	
(Solid samples)	All analytes of interest were recovered within tolerance of 75% to 125%.
(Aqueous samples)	All analytes of interest were recovered within tolerance of 75% to 125%.
Blank Spike:	
(Solid samples)	A blank spike is not require for fusion prepared samples.
(Aqueous samples)	All analytes of interest in the blank spike were recovered within tolerance limit of 80% to 120% except Ag (34%) in sample C104-SOL-30-1 (ACL# 99-2340-BS). Chloride from the sample or from the hydrochloric acid used to prepare the sample using PNL-ALO-128 digestion procedure may have precipitated the silver resulting in low recovery.

9/14/99

Page 4

Matrix Spiked Sample:

(Solid samples)

A matrix spike is not require for fusion prepared samples.

(Aqueous samples)

All analytes of interest in the matrix spiked sample C104-AQ-9 (ACL# 99-2347-MS) were recovered within tolerance limit of 75% to 125% except Ag (56%). Chloride from the sample or from the hydrochloric acid used to prepare the sample using PNL-ALO-128 digestion procedure may have precipitated the silver resulting in low recovery.

Quality Control Check Standards:

Concentration of all analytes of interest in the Na/Zr and KOH/Ni fusion prepared analytical runs were within tolerance limit of $\pm 10\%$ accuracy in the standards: QC_MCVA, QC_MCVB, and QC_SSTMCV. Calibration Blank (ICP98.0) concentration was less than two times IDL

Concentration of all analytes of interest in the aqueous prepared analytical runs was within tolerance limit of \pm 10% accuracy in the standards: QC_MCVA, QC_MCVB, and QC_SSTMCV except as follows. Sodium, nickel, and lead were high by 47%, 12% and 14% respectively in QC_MCVA check standard at the end of the run. Concentration of aluminum, sodium, lead and silicon were greater than 2 * IDL in the calibration blank ICP98.0 at the end of the run. Calcium, chromium, iron, manganese and sodium were also high by 11%, 12%, 33%, 15% and 14% respectively in QC_SSTMCV check standard at the end of the run. A suggested reason for the discrepancy is noted earlier (HF acid in the last sample analyzed).

High Calibration Standard Check:

Verification of the high-end calibration concentration for all analytes of interest in the three analytical measurement runs was within tolerance of \pm 5% accuracy except for U in the KOH/Ni fusion prepared sample analytical run. Uranium was slightly below the minimum. It was low by 5.9%.

9/14/99

Page 5

All analytes of interest were within tolerance limit of \leq EQL or $< 5\%$ of sample concentration except Na ($<7\%$ of sample concentration) in PNL-ALO-115 KOH/Ni fusion prepared samples. Sodium is known to be present in the reagents used to prepare the samples.
No significant blank contribution found for PNL-ALO-114 Na/Zr fusion prepared samples.
All analytes of interest were within tolerance limit of \leq EQL or $< 5\%$ of sample concentration.
undard (LCS):
All analytes of interest at a concentration equal to or greater than EQL were recovered within tolerance limit of 75% to 125% in both fusion prepared LCS standards. SRM-2710 Montana Soil was used for the LCS in both PNL-ALO-114 and PNL-ALO-115 fusion preparations.

(Aqueous samples) No LCS was prepared for PNL-ALO-128 acid digested samples.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

Process Blank.

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically $\pm 15\%$ or better for samples in dilute, acidified water (e.g. $2\% \text{ v/v} \text{ HNO}_3$ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight).
- Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

9/14/99
Page 1 of 3

							1		r i		
	Multiplier=	2.1		41.3		19.9		14.4		9.7	
	ALO#=	99-2340-B @1		99-2340 @1		99-2341 @1	1	99-2342 @1		99-2343 @1	
	Client ID=	Process Blan	<u>ik</u>	C104-SOL-30-1	1	C104-SOL-30	2-2	<u>C104-SOL-40</u>	<u>-1</u>	<u>C104-SOL-40-</u>	<u>·2</u>
st. Limit	Run Date=	8/27/99		8/27/99		8/27/99		8/27/99		8/27/99	
(ug/mL)	(Analyte)	ug/g		ug/g		ug/g		ug/g		ug/g	
0.015	Ag	-		-		- ·		[0.69]		[0.59]	
0.060	AI	-		[14]		17.9		[3.4]		[4.4]	
0.080	As	-		-		-		-		-	
0.050	В	-		125		112		59.6		58.4	
0.010	Ba	-		5.02		[1.1]		[0.34]		-	
0.005	Be	-		-		-	l	-		-	
0.100	Bi	[0.38]		-		-				-	
0.250	Ca	-		[12]		74.4		43.5		50.6	
0.015	Cd	-		6.36		5.01		3.16		3.09	
0.100	Ce	· -		-		-		-		-	
0.025	Co	-		[2.0]		[1.6]		[1.3]		[1.3]	
0.020	Cr	-		63.4		50.0		51.4		48.9	
0.015	Cu	-		6.89		5.72		4.57		4.46	
0.050	Dy	-		-		-		-		-	
0.100	Eu	-		-		-		-		-	
0.025	Fe	-		[4.2]	-	[3.1]		[2.5]		[1.9]	
2.000	к			[560]		452		382		362	
0.025	La	-		-		-		-		-	
0.020	LI	-		27.1		23.6		20.4		19.1	
0.100	Mg	-		-	2 - 2	29.2		16.4		19.6	
0.005	Mn	-		-		-				[0.055]	
0.030	Мо	-		[7.8]		6.63		5.40		5.26	
0.100	Na	-		72,900		59,700		55,500		54,000	
0.100	Nd	-	•	-		-		-		-	
7.030	Ni	-		126		99.6		79.3		75.4	
1.100	P			1,400		1,120		851		829	
0.060	Pb	-						-		-	
0.300	Pd	-		-		-		-		-	
0.300	Rh	-		-		-		-		-	
0.075	Ru	-		[5.2]		[4.3]		[3.6]		[3.4]	
0.050	Sb	-		-		-		-		-	
0.050	Se	-	«	-		-		-		[0.62]	
0.100	Si	-		405		663		507		562	
1.000	Sn	-		-		-		[27]		[25]	152
0.005	Sr	-				-		-		-	
0.500	Те			-		-		-		- '	
0.800	Th	-		-		-		-		-	
0.005	ті	-		-		[0.22]		[0.18]		[0.19]	
0.250	ті	-		-		-		-		-	
2.000	υ	-		-		-		-		-	
0.015	v	-		-		[0.40]		[0.49]		[0.44]	
0.500	w	-		-		-		-		-	
0.010	Y	-		-		-		-		-	
0.020	Zn	[0.081]		12.1		B.01		3.45		3.31	
0.025	Zr	-		-		-	• •			-	3

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

9/13/99 @ 11:33 AM

Page 2 of 3

			7		1		1				
	Multiplier=	16.1		14.1		3.5		78.2		3.8	
	ALO#=	99-2344 @2	1	99-2345 @2	·	99-2347 @2	1	99-2348 @10		99-2350 @2	
	Client ID=	C104-SOL-50	<u>-1</u>	C104-SOL-50	-2	C104-AQ-9		C104-OH-3A		<u>C104-OH-9</u>	
Jet. Limit	Run Date=	8/27/99		8/27/99		8/27/99		8/27/99		8/27/99	
(ug/mL)	(Analyte)	ug/g		ug/g		ug/g		ug/g		ug/g	
0.015	Ag	[1.2]		[1.1]		0.654		-		[0.47]	
0.060	AI	11.1		[4.6]		126		45,900		2,080	
0.080	As	-		-		-		[22]		[0.75]	
0.050	В	53.4		58.5		3.72		[10]		3.85	
0.010	Ba	[0.34]		-		[0.053]		-		[0.052]	
0.005	Be	-		-		[0.021]		[3.9]		[0.057]	
0.100	Bi	-		-		-		-		-	
0.250	Ca	45.8	4	71.4		11.7		-		[5.0]	
0.015	Cd	2.70		2.20		[0.52]		[5.8]		[0.087]	
0.100	Ce	-		_		-		-		-	
0.025	Co	[1 3]		[1 1]		10 191			-	-	
0.020	Cr.	631		49.9	1.1	125		157		191	
0.015	<u> </u>	4.41		3 49		0.638		[2 4]		10.1	
0.015	Cu	4.41		3.40		0.030		[2.4]		[0:12]	
0.050	Dy							— <u> </u>			
0.100	Eu	(4.71		-		(0.22)		-		10 421	
0.025	Fe	(1.7)		[1.9]		[0.33]		[2.0]		[0.42]	
2.000	ĸ	3/1-		300		[51]	1	[260]		[12]	
0.025	La	-		-	•••••••••••••••••••••••••••••••••••••••	-		-		6.91	
0.020	Li	20.1		15.8		10.6		34.9		(1.0)	
0.100	Mg	21.9		28.6		4.55				[1.9]	
0.005	Mn	[0.099]		-		-		-		-	
0.030	Мо	5.22		[4.1]		[0.72]		[4.1]		[0.27]	
0.100	Na	52,100		44,900		10,800		153,000		13,700	
0.100	Nd	-		-		-		-			
0.030	N	75.3		59.6		9.79		[7.9]		[0.80]	
).100	P	784		624		107		814		33.0	
0.060	Pb	-		-				[25]		[1.1]	
0.300	Pd	-		-							
0.300	Rh	-		-		-				-	
0.075	Ru	[3.4]		[2.9]		[0.50]				-	
0.050	Sb			-		-		[4.2]		-	
0.050	Se	-		[0.72]		-		[14]		[0.66]	
0.100	Si	506		678		112		[72]		67.0	
1.000	Sn	[17]		-		-		[190]		[11]	
0.005	Sr	-		-						-	
0.500	Те					-		-		-	
0.800	Th	-		-		-		-		-	
0.005	` T i	[0.26]		[0.25]		[0.035]		-		[0.023]	
0.250	TI	-		-		-		[22]		-	
2.000	U	-		-		[14]		-		-	
0.015	v	[0.53]		[0.43]		[0.13]		[1.4]		[0.13]	
0.500	W	-		-		-		-		-	
0.010	Y	-		-		-		-		-	
0.020	Zn	6.77		[2.2]		[0.56]		18.0		[0.53]	
0.025	Zr	-		-		-		-		-	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

				·							
	Multiplier=	3.6	1								
	ALO#=	99-2350-D @	2								
	Client ID=	<u>C104-OH-9</u>									
-et. Limit	Run Date=	8/27/99									
(ug/mL)	(Analyte)	ug/g									
0.015	Ag	[0.46]		-		- "		-			
0.060	AI	2,050		-		-		-		-	
0.080	As	[0.92]		-		-		-		-	
0.050	В	3.82		-		-		-		-	
0.010	Ba	[0.050]		-		-		-		-	
0.005	Be	[0.056]		. –		-		-		-	
0.100	Bi	-		-		-		-		-	
0.250	Ca	[3.4]		-		-		-		-	
0.015 .	Cd	[0.085]		-		-		-		-	
0.100	Ce	-		-		-		-		-	
0.025	Co	-		-		-		-		-	
0.020	Cr	18.8		-		-		-		-	
0.015	Cu	[0.13]		-	-	-		-		-	
0.050	Dy	_		-		-		-		-	
0.100	Eu	-		·		-		-		-	
0.025	Fe	[0.28]		-		-				-	
2.000	к	[13]-		-		-		-		-	
0.025	La	-		-		- '		-			
0.020	LI	6.69				-		-	an a	-	
0.100	Mg	[1.8]		-		-				-	
0.005	Mn	[0.018]		-		-		-		-	
0.030	Мо	[0.28]		-		-		-		-	
0.100	Na	13,400		-		-		-		-	
0.100	Nd	-		-		-		-		-	
).030	Ni	[0.78]		-		-		-		-	
).100	P	32.6		-		-		-		-	
0.060	Pb	[1.2] .		-		-		-		-	
0.300	Pd			-		· -		-		-	
0.300	Rh	-		-		-		-		-	
0.075	Ru	-		-		-		-		-	
0.050	Sb	[0.21]		-		-		-			
0.050	Se	[0.69]		-		-		-		-	
0.100	Si	63.6		-		-				-	
1.000	Sn	[9.4]		-		-				-	
0.005	Sr	-		-				-		-	
0.500	Te							-		-	
0.800	Th	-		-		-		-		-	
0.005	Ti	[0.030]		-				-		-	
0.250	TI	[0.95]		-						-	
2.000	U	-		-				-		-	
0.015	v	[0.15]		-						-	
0.500	W	-		-		-				-	
0.010	Y	-		-		-					
0.020	Zn	[0.47]		-		. –		-		-	
0.025	Zr	-		-	l	-	· · · · · · · · · · · · · · · · · · ·				

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) *--* indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

9/13/99 @ 11:33 AM

Page 1 of 1

		Multiplier=	1006.8	967.7	1	1034.0	1	1028.1	£	1000.0	1
č		ALO#=	99-2346-PB-Zr @1	99-2346-Zr G	1	99-2346-D-Zr	@1	99-2349-Zr O	1	99-2349-D-Zr	C1
)		Client ID=	Process Blank	C104-AQ-8		C104-AQ-8		C104-OH-8		C104-OH-8	1.1.1
	Det. Limit	Run Date=	8/24/99	8/24/99		8/24/99		8/24/99		8/24/99	
	(ug/mL)	(Analyte)	ua/a	ug/g		ug/g		ug/g		ug/g	
	0.100	Ag		[630]	1	[720]		[790]		[770]	1
	0.060	Al	[86]	163.000		152,000		36,100		35,700	1
	0.250	۸s		-		-	1	-		-	1
	0.050	R		-		-		_		-	
	0.010	Ba		183	1	184	1	359		357	1
	0.075	Be		-	1	-	1	_		-	1
1	0.075	Bi				-		-		-	1
	0.250	C1	[1 800]	6 560		6,780	1	10,800		11.000	1
	0.020	Cd	[1,000]	898		885		1.750		1.740	1
10	1 250	Co		-		-				[1,300]	1
	0.050	00		-		-	1	[60]		[66]	1
	0.050	Cr.		1.460	1	1.470	1	1,980		2.000	1
	0.035	<u> </u>		[230]		12001	1	445		458	1
	0.050	Dv		(200)		-		[76]		[81]	1
	0.050	Eu			1					-	
1	0.100	Eo	376	44 900		45,700	1	85,300	·	84.800	
	2.000	r v	[2 300]	-		-				[2.700]	1
	2.000	1.2	.[2,000]	_	1	[80]	1	[260]		[270]	
10	0.075			[320]		[320]		518	*******	518	1
	0.000	Ma		[960]	1	[970]	1	1.730		1,760	1.
	0.050	Mo		10.500		10,500	1	19,700		19,600	1
12	0.050	Mo		-		-		_		-	1
	0.000	Nd	[100]	[150]		[210]		[570]		[610]	1
	0.050	Ni		2,900	1	2.910		5,540		5,560	1
	0.000	P		4,740	1	4,990	1	4,650		4,730	1
5	0.150	Ph	-	1.730		1,770		3,190		3,250	
	0.750	Pd		-		-				-	
	0.300	Bb		-	1	-				•	1
2	1 100	Ru	-	-		-				-	
	0.150	Sb	-	-	1	-	1	-		[170]]
	0.200	Se		-		-	1	-		-	
1	0.500	Si		12.000		12,000		22,800		22,800]
	0.800	Sn	-	[1,700]	1	[1,700]	1	[2,300]		[2,400]	
	0.050	Sr		[120]	1	[110]	Decourses	[220]		[220]]
9	0.250	Te		-		-		[280]		[310]	
	1.000	Th	_	9,750	1	18,700		114,000		119,000	
	0.050	Ti	-	[160]	1	[180]		[430]		[430]	<u> </u>
	0.250	TI		-		-]	-		-	1
	2.000	U	-	44,000	1	45,100		91,100		90,000	
	0.050	v	-	-		-		[86]		[92]	· .
	0.125	W	- 1	-		-]	[240]		[260]	1
	0.015	Y	-	[20]]	[32]		[78]		[80]	1
	0.050	Zn	-	[240]	1	[230]		[340]		[340]	1

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.
 3) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Data (1) from `A0541 G.Lumetta ASR5478.01 BNFL Na2O2-Zr fusion C104 ICP98 hi.xls

9/8/99 @ 3:57 PM

Page 1 of 1

								101.0	1	403.8	
	Multiplier=	494.6		1008.4		1001.5		494.6		433.0	A1
	ALO#=	99-2346-PB-NI		99-2346-NI @	1	99-2346-D-NI	Q 1	99-2349-NI 01		99-2349-D-NI	.
	Client ID=	Process Blank	1	C104-AQ-8		C104-AQ-8		<u>C104-OH-8</u>		<u>C104-0H-8</u>	
.et. Limit	Run Date=	8/19/99		8/19/99		8/19/99		8/19/99		8/19/99	
(ua/mL)	(Analyte)	ug/g		ug/g		ug/g		ug/g		ug/g	
0.025	Ag	-		990		984		1,810		1,770	
0.060	A	[69]		145,000		147,000		32,600		32,600	
0.250	· As	-		-		-		-		-	
0.100	В	-		-		-					
0.010	Ba	[6.4]		198		192		319		322	
0.110	Be	-		-		-				-	
0.250	Bi	- 1		-		-		-		-	
0.250	Ca	-		4,740		4,790		7,260		7,090	
0.015	Cd	-		922		872		1,590		1,560	
0.075	Ce			-		-		[390]		[350]	
0 125	Co	-		-	1.0	-		-		-	
0.020	Cr	-		1,550		1,500]	1,810		1,790	
-0.800	Cu			-		-		-		-	
0.110	Dv	-	•	-		-]	-		-	1
0.110	Eu	-		_		-				-	
0.025		126		47,900		46,700	1	77,500		77,800	-
0.025	la			[130]		[130]	1	[210]		[210]	
0.030				304		[280]	1	435		441	1
2.030	Ma	-		-		-	1			-	1
3.500	Mo	[120]		11,100		10,800	1	17,900		17,900	<u>.</u>
0.030	Mo		••••••	-		-	1	-			
0.050	Na	1.440		20,900		20,400		34,600		35,100	1
1 000	Nd			-		-		-		-	1
0.100	P	[70]		2,230		2,570	·	2,050		1,840	
0.100	Pb	[62]		1,840		1,730		2,900		2,830	
1.500	Pd			-		-	1	-	•	-	1
0.400	Rb	-		-	1	-		-		-	1
0.400	Bu			-	1	-	1	-		-	1
0.050	Sb			-		-		-	4	-	1
0.250	Se	_		-	1	-]	-		-	1
0.500	Si	-		12,900		13,200		22,000		22,000	1
4 500	Sn			-		-		-		-	
0.015	Sr	-		[88]		[87]		151		151	-
0.600	Te	-		-	1	-	1	-			4
1 000	Th	-		34,600	1	41,100		61,800		61,600	4
0.025	ті	-		[200]		[210]		359		362	-
0 300	TI	-		-]	-		-			4
2 000		-		45,100		44,100		76,300		76,600	4
0.150	v	-		-]	-		-		-	-
0.500	ŵ	-	1 X 1	-]	-	1	-			4
0.500	Y	-		-]	-		-		-	-
0.100	Zn	-		[240]	1	[210]		322		316	4
0.050	71	-		51,300	1	50,500		101,000		104,000	
0.050	,	1 million									

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) --- indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Project Number

Internal Distribution

Date September 14, 1999

To Gregg Lumetta

From Tom Farmer

Subject ICPMS Analysis of submitted samples

(ALO# 99-2346 through 99-2350)

Pursuant to your request, the samples that you submitted for analysis were analyzed on our radioactively-contained ICPMS for the selected analytes; semiquantitative analysis was necessary on certain isotopes for which a standard was not available (see below). The concentration results for the isotopes of interest are displayed on the attached spreadsheets.

Dilutions of Isotope Products standards for ¹²⁹I, ²³³U, ²³⁷Np and ²³⁹Pu, an Amersham ⁹⁹Tc standard and an NIST isotopic uranium standard (4321B) were used to generate the calibration curves. Independent standards, from the same vendors, of each analyte were used as the continuing calibration verification (CCV) standards. A spiked sample was also analyzed. The 1% high-purity nitric acid solution used to dilute the standards and samples was used as a reagent blank.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. From the appearance of the Ru isotopic abundance, this appears to be a reasonable assumption; the fingerprint exhibited is obviously not natural. Approximate ¹⁰¹Ru concentrations have been provided for your information.

Interference corrections were performed on the following isotopes: ¹²⁹I (xenon corrected), ²³⁹Pu (Uranium hydride corrected). Printouts of the spreadsheet calculations for these corrections have been provided in the data package.

The results are reported in μ g analyte /g (ppm) of original sample material for the fusion samples and ng analyte /ml (ppb) of submitted sample for the acid digestion samples. The overall uncertainty of the values is conservatively estimated at ±10%, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

Values for the following isotopes were obtained using responses from related isotopes: ²³⁶U (obtained from ²³⁸U), and ²⁴⁰Pu (obtained from ²³⁹Pu). Because standards were not used and the concentrations of the isotopes were determined indirectly, these results should be considered semiquantitative. Printouts of the spreadsheet calculations are provided in the data package.

If you have any questions regarding this analysis, please give me a call at 372-0700 or James Bramson at 376-0624.

329 File LSO Mike Urie

Greg Lumetta Analysis

September 14, 1999

James Don 9/20/99

Results are reported in ng analyte/ml of submitted sample. The uncertainty of the results is estimated at $\pm 10\%$.

Sample ID	Client ID	ICP/MS Number	Tc-99 ng/ml	•Ru-101 ng/ml
1%HNO3		9a08a1	<0.5	
1%HNO3		9a08a6	<0.5	
1%HNO3		9a08a14	<0.5	
99-2347	C104-AQ-9	9a08a11	83.6	203
99-2347 Dup.	C104-AQ-9	9a08a12	83.7	208
99-2348	C104-OH-3A	9a08a16	149	101
99-2348 Dup.	C104-OH-3A	9a08a17	153	109
99-2348 + spike	C104-OH-3A	9a08a18	236	
Spike Recovery			87%	
99-2350	C104-OH-9	9a08a7	48.0	88
99-2350 Dup.	C104-OH-9	9a08a8	46.5	84
2ppb Tc-99 CCV		9a08a4	2.05	
2ppb Tc-99 CCV		9a08a15	1.92	
2ppb Tc-99 CCV		9a08a19	2.00	

•Calculated using response for indium. For information only.

DATA REVIEW Reviewed by: 2. Januar

Date: 20Sep 99Pages: 10/2

Greg Lumetta Analysis September 14, 1999

Results are reported in μg analyte/g solid sample. The uncertainty of the results is estimated at ±10%.

Genes Cours

								100 111	300 111	000 11	TCC CN.	000	010-004.
Sample ID	D	Number	6/61	101-0H.	1-129 pg/g	119/9	10-234 µg/g	19/9	10-230	19/9 19/9	6/6il	6/6il	μg/g
1%HND3		9a09a1	<0.5		42 42	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
NUN3		9a09a11	<0.5		<2>	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
1%HN03		9a09a20	<0.5		<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
99-2346-PB-Ni	Process Blank	9a09a12	<0.5		<2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
99-2346-Ni	C104-AQ-8	9a09a13	2.17	24	3.81	53.8	2.4±0.7	411	18.9	56000	10±2	84.5	7.92
99-2346-DUP-Ni	C104-AQ-8	9a09a14	2.2±0.3	20 3	3.3±0.5	50.3	2.8±0.9	388	19.6	54000	8.68	82.6	8.19
99-2349-Ni	C104-OH-8	9a09a16	3.30	42	<2×	109	6.1±1.5	698	34.1	97500	17±3	153	15.2
99-2349-DUP-Ni	C104-OH-8	9a09a17	3.7±1.2	43	45 <	114	7.1±1.4	688	33.9	96100	18±2	157	14.2
99-2349-Ni + spike	C104-OH-8	9a09a18	56.4		- 47.7	143				129000	59.9	206	
Spike Recovery			107%		116%	86%				106%	108%	%/01	
SRM 2710-Ni	LCS/99-2346-Ni	9a09a19	0.25±0.04	0.2 3	3.1±1.3	<0.5	<0.5	<0.5	<0.5	24.6	<0.5	0.6±0.2	<0.5
2ppb Tc-99 CCV		9a09a8	2.09										
2.5ppb Tc-99 CCV		9a09a21	2.60										
2.5ppb I-129 CCV 5ppb I-129 CCV		9a09a24 9a09a4			2.41 4.72								
1ppb U-233, Np-237, Pu-239 1ppb U-233, Np-237, Pu-239		9a10a6 9a09a24				1.02 0.980					0.936	0.990	
100ppb U 100ppb U		9a10a8 9a10a23								100 109			
 Results are from procedure 9a1 Po standard availabe. Results o Calculated using response for ir 	10a. calculated from respoi ndium. For informatio	nse of differei n only.	nt isotope.										

An Dato: 20560999 Pages: 10/2 PATA REVIEW Reviewed by

9/29/99

Greg Lumetta Analysis

2ppb Tc-99 CCV

2ppb Tc-99 CCV

September 14, 1999(revised 9/29/99)

Results are reported in μ Ci analyte/ml of submitted sample. The uncertainty of the results is estimated at ±10%.

Sample ID	Client ID	ICP/MS Number	Tc-99 μCi/ml	•Ru-101 ng/ml
1%HNO3 1%HNO3 1%HNO3		9a08a1 9a08a6 9a08a14	<1E-05 <1E-05 <1E-05	_
99-2347	C104-AQ-9	9a08a11	0.00142	203
99-2347 Dup.	C104-AQ-9	9a08a12	0.00142	208
99-2348	C104-OH-3A	9a08a16	0.00253	101
99-2348 Dup.	C104-OH-3A	9a08a17	0.00259	109
99-2348 + spike	C104-OH-3A	9a08a18	0.00400	
Spike Recovery	•		87%	
99-2350	C104-OH-9	9a08a7	0.000814	88
99-2350 Dup.	C104-OH-9	9a08a8	0.000788	84
CCV results are re	ported in ng/ml (p	opb).		
2noh Tc-99 CCV		920824		

9a08a15

9a08a19

•Calculated using response for indium. For information only.

DATA REVIEW Reviewed by Date: <u>295ep99</u> Pages: 10

Gregg Lumetta Analysis September 14, 1999(revised 9/29/99)

Results are reported in μ Ci analyte/g of submitted sample. The uncertainty of the results is estimated at $\pm 10\%$.

Sample ID	Client ID	ICP/MS Number	Tc-99 μCi/g	•Ru-101 ng/g
1%HNO3		9a08a1	<1E-05	
1%HNO3		9a08a6	<1E-05	
1%HNO3		9a08a14	<1E-05	
99-2347	C104-AQ-9	9a08a11	0.00138	198
99-2347 Dup.	C104-AQ-9	9a08a12	0.00139	203
99-2348	C104-OH-3A	9a08a16	0.00217	87
99-2348 Dup.	C104-OH-3A	9a08a17	0.00223	94
99-2348 + spike	C104-OH-3A	9a08a18	0.00343	
Spike Recovery			75%	
99-2350	C104-OH-9	9a08a7	0.000785	85
99-2350 Dup.	C104-0H-9	9a08a8	0.000770	82
CCV results are repo	rted in ng/ml (ppb).	a series de las		1
2ppb Tc-99 CCV		9a08a4		
2ppb Tc-99 CCV		9a08a15		
2ppb Tc-99 CCV		9a08a19		

•Calculated using response for indium. For information only.

62/22/8 mar 5/82/8

Greg Lumetta Analysis

September 14, 1999 (revised 9/29/99)

Results are reported in μCi analyte/g solid sample. The uncertainty of the results is estimated at $\pm 10\%$.

Sample	Client	ICP/MS	*U-235	*†U-236	*U-238	*Np-237	*Pu-239	*†Pu-240
Ð	Q	Number	μCI/g	μCI/g	μCI/g	μCi/g	µCI/g	µCI/g
1%HNO3		9a09a1	<0.00001	<0.00003	<2E-07	<0.0004	<0.03	<0.1
1%HNO3		9a09a11	<0.000001	<0.00003	<2E-07	<0.0004	<0.03	<0.1
1%HNO3		9a09a20	<0.000001	<0.00003	<2E-07	<0.0004	<0.03	<0.1
99-2346-PB-Ni	Process Blank	9a09a12	<0.000001	<0.00003	<2E-07	<0.0004	<0.03	<0.1
99-2346-Ni	C104-AQ-8	9a09a13	0,000888	0.00122	0.0188	0.0070±0.0014	5.24	1.80
99-2346-DUP-Ni	C104-AQ-8	9a09a14	0.000838	0.00127	0.0182	0.00612	5.12	1.86
in-0240-00	C104-OH-8	9a09a16	0.00151	0.00221	0.0328	0.012±0.002	9.49	3.45
09-2349-DUP-Ni	C104-OH-8	9a09a17	0.00149	0.00219	0.0323	0.013±0.002	9.74	3.22
99-2349-Ni + spike	C104-OH-8	9a09a18			0.0434	0.0422	12.8	
Spike Recovery					106%	108%		
SRM 2710-Ni	LCS/99-2346-Ni	9a09a19	<0.000001	<0.00003	<2E-07	<0.0004	0.037±0.012	<0.1
CCV results are reported in ng/ml	(dqd)	-			-		ŝ.	
2ppb Tc-99 CCV 2.5ppb Tc-99 CCV		9a09a8 9a09a21						
			•					
2.5ppb I-129 CCV		9a09a24						
5ppb I-129 CCV		9a09a4	•;					
1ppb U-233, Np-237, Pu-239		9a10a6				0.936	066.0	
1ppb U-233, Np-237, Pu-239		9a09a24				1.00	0.905	
100ppb U		9a10a8			100			
100ppb U		9a10a23			109			
*Results are from procedure 9a1	0a.							

†No standard availabe. Results calculated from response of different isotope.

DENO: 29 Sep 99 10/2-

65/62/6 10100000/0

Greg Lumetta Analysis

September 14, 1999 (revised 9/29/99)

Results are reported in μ Ci analyte/g solid sample. The uncertainty of the results is estimated at ±10%.

Sample ID	Client ID	ICP/MS Number	Tc-99 uCi/g	•Ru-101 µg/g	I-129 μCi/g	•U-233 μCi/g	י†∪-234 µCl/g
1%HNO3 1%HNO3 1%HNO3		9a09a1 9a09a11 9a09a20	<0.01 <0.01 <0.01		<0.0003<0.0003<0.0003<0.0003	<0.005	<0.003<0.003<0.003<0.003
99-2346-PB-Ni	Process Blank	9a09a12	<0.01	1	<0.0003	<0.005	<0.003
99-2346-Ni 99-2346-DUP-Ni	C104-AQ-8 C104-AQ-8	9a09a13 9a09a14	0.0368 0.037±0.005	24 20	0.000664 0.00058±0.00009	0.518 0.485	0.015±0.004 0.017±0.006
99-2349-Ni 99-2349-DUP-Ni	C104-OH-8 C104-OH-8	9a09a16 9a09a17	0.063±0.020	4 2 4 3	<0.0003<0.0003	1.05	0.038 ± 0.009 0.044 ± 0.009
99-2349-Ni + spike Spike Recovery	C104-OH-8	9a09a18	0.956		0.00831	1.38 86%	
SRM 2710-Ni	LCS/99-2346-Ni	9a09a19	<0.01	0.2	0.00054 ± 0.00023	<0.005	<0.003
CCV results are reported in ng/ml	(ppb)						-
2ppb Tc-99 CCV 2.5ppb Tc-99 CCV		9a09a8 9a09a21	2.09 2.66				
2.5ppb 1-129 CCV 5ppb 1-129 CCV		9a09a24 9a09a4			2.41 4.72		
1ppb U-233, Np-237, Pu-239 1ppb U-233, Np-237, Pu-239		9a10a6 9a09a24				1.02 0.980	
100ppb U 100ppb U		9a10a8 9a10a23					
 Results are from procedure 9a1 A standard availabe. Results c Calculated using response for in 	0a. alculated from respor dium. For information	nse of differer n only.	nt isotope.				

merty Detrigger Peges: 2022 Reviewed by

DATA REVIEW

2

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

Client: G. Lumetta

Cognizant Scientist:

Concur:

Bandra K a fisken FRIeen

Date :

Date :

Pu (PNL-ALO-417) Total Alpha (PNL-ALO-420, PNL-ALO-421) Sr-90 (PNL-ALO-476)

> Measured Activities (µCi/g or /mL) 1-sigma propagated error

ALO ID	Total alpha	Sr-90	Pu-238	Pu-239+240	Am-241	Cm242	Cm-243+244
Client ID	Error %	Error %	Error %	Error %	Error %	Error %	Error %
99-2346-Ni C104-AQ-8 —	1.67E+1 3%	7.61E+2 3%	7.38E-1 6%	7.03E+0 4%	7.84E+0 4%	2.91E-2 ^(*) 24%	1.12E-1 13%
99-2346-Ni Rep C104-AQ-8		7.95E+2 3%	8.25E-1 6%	7.18E+0 4%	7.76E+0 4%	1.24E-2 38%	1.06E-1 13%
RPD	Average	4%	11%	2%	1%	80%	6%
99-2346-Ni duplicate C104-AQ-8	1.67E+1 3%	7.90E+2 3%	7.98E-1 7%	7.02E+0 4%	7.21E+0 4%	1.49E-2 36%	9.63E-2 14%
99-2346-Ni-PB Hot cell blank	5.67E-3 18%	2.56E-1 4%	2.49E-3 6%	5.65E-3 4%	8.27E-4 17%	< 4.E-5	7.71E-4 17%
99-2347 * C104-AQ-9	1.19E-4 13%	2.98E-3 12%			*		
99-2348 * C104-OH-3A	2.06E-4 8%	8.20E-3 5%					
99-2349 C104-OH-8	5.70E+1 3%	2.74E+3 3%	2.70E+0 7%	2.62E+1 4%	2.48E+1 4%	8.11E-2 23%	2.97E-1 13%
99-2349-Ni duplicate C104-OH-8	5.98E+1 3%	2.90E+3 3%	2.93E+0 4%	2.59E+1 3%	2.71E+1 5%	6.54E-2 38%	4.25E-1 15%
99-2350 * C104-OH-9	1.31E-4 11%	1.14E-3 31%					
99-2350 Replicate C104-OH-9	8.25E-5 15%						hish
RPD	45%			^(G) This comf	value los	the replicati	and duplicate.

1.1. Lunet 10/8/99

99-2346 10/4/1999

Measured Activities (µCi/g or /mL) 1-sigma propagated error

ALO ID Client ID	Total alpha Error %	Sr-90 Error %	Pu-238 Error %	Pu-239+240 Error %	Am-241 Error %	Cm242 Error %	Cm-243+244 Error %
Reagent Blank	< 3. E-6	<1.E-5	< 2. E-5	3.91E-5 38%	4.43E-5 38%	<6.E-6	< 2.E-5
Reagent Spike	104%	101%		109%	95%		
Matrix Spike	76%	91%		113%	96%		

Note: 99-2346 and 99-2349 are reported as μ Ci/g, the other samples are reported as μ Ci/mL.

14	Dat	tol	10
2.5	Dal		

'ubject:

Pacific Northwest Laboratories

2.

hunth

ENGINEERING WORKSHEET

Prepared By:

Project:

Date: 10/1/99

Redenie (104 Test : Commision of Solution Lott data to milig

Density data for ASR 5478 - G. Lumetta

Acid Digestion in SRPL (lab 525)

Sample	Volume,ml	Wt, g.	Density,g/ml
99-2340	0.1	0.1201	1.201
99-2341	0.2	0.2316	1.158
99-2342	0.3	0.3403	1.134
99-2343	0.4	0.4533	1.133
99-2344	0.5	0.5653	1.131
99-2345	0.6	0.6618	1.103
99-2347	2.5	2.5586	1.023
99-2348	5	5.8278	1.166
99-2350	2.5	2.5903	1.036
99-2350Dup	2.5	2.5593	1.024
Obtained from	hurry G	or cenwood on	9/25/49

n.l. hunte

C104-4Q-9 Total of : (1.19 x10 4 wi/mL)/(1.023 g/mL) = 1.16 x10 4 wi/g 5- - 90 1 (254) - 2010 - 201/(1.023 g/mL) = - - + + + - - 3 wi/g 2.41 ×10'3 willy * (3-137 : (3.93 + W/mL)/(1.02) s/mL) = 3.84 mL'/4 An. 241(1): (< 0.005 mci/LD/ (1.023 3/LAL) = < 0.005 Lig

$$\frac{(101 - 04 - 3/4)}{\text{Total } \alpha : (2.06 \times 10^{-4} \text{ a.G/ml}) / (1.166 g/ml) = 1.77 \times 10^{-7} \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 1.77 \times 10^{-7} \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 1.77 \times 10^{-7} \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 1.77 \times 10^{-7} \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 04 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)}} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)} = 5.69 \text{ a.G/g} \\ \frac{(101 - 3/4)}{(1.06 \times 10^{-3} - 3/4)}$$

$$\frac{C_{104-014-9}}{T_{0}} = \frac{1.02 \times 10^{-9} + 8.25 \times 10^{-5}}{2} / (1.0365/mL) = 1.02 \times 10^{-4} - C_{1/3}$$

$$S_{-90} : \left(\frac{1.04}{2.27 \times 10^{-3}} - C_{1/mL}\right) (1.0365/mL) = \frac{2.45 \times 10^{-2}}{2.45 \times 10^{-2}} - C_{1/3} + C_{1/3}$$

* Corrections made by s. [. function 10/4/94 based on updated information from Sundy Fiskum

of

Page_

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

Client : G. Lumetta

y no Cognizant Scientist: Irang-Concur :

99-2346 9/21/99

9/23/99 Date : 9/21/99 Date :

Gamma Energy Analysis (PNL-ALO-450)

Measured Activities (µCi/g)

ALO ID Client ID	Co-60 Error %	Nb-94 Error %	Sb-125 Error %	Cs-134 Error %	Cs-137 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %
99-2346-Ni PB Hotcell Blank	<5.E-3	<4.E-3	<2.E-2	1.13E-2 14%	1.74E-1 3%	<2.E-2	<2.E-2	<2.E-2
99-2346-Ni C104-AQ-8	2.72E-1 4%	1.32E-1 7%	2.48E-1 31%	<3.E-2	4.53E+1 2%	2.24E+0 2%	1.38E+0 6%	7.07E+0 10%
99-2346-Ni duplicate C104-AQ-8	2.68E-1 3%	1.01E-1 7%	2.70E-1 20%	<3.E-2	4.27E+1 2%	2.17E+0 2%	1.28E+0 6%	6.89E+0 10%
RPD	1%	27%	8%		6%	3%	8%	3%
99-2347* C104-AQ-9	4.26E-3 3%	<2.E-4	<8.E-3	<3.E-4	3.93E+0 2%	<3.E-4	<5.E-3	<5.E-3
99-2348* C104-OH-3A	4.44E-3 3%	<3.E-4	<1.E-2	<3.E-4	6.63E+0 2%	<4.E-4	<7.E-3	<7.E-3
99-2349 C104-OH-8	1.07E+0 2%	2.03E-1 15%	6.54E-1 17%	<5.E-2	1.36E+2 2%	6.20E+0 2%	3.96E+0 4%	2.57E+1 4%
99-2349-Ni duplicate C104-OH-8	1.05E+0 2%	2.71E-1 10%	7.73E-1 13%	<5.E-2	1.35E+2 2%	7.07E+0 2%	4.46E+0 4%	2.69E+1 4%
RPD	2%	29%	17%		1%	13%	12%	5%
99-2350* C104-OH-9	7.72E-4 5%	<7.E-5	<3.E-3	1.40E-4 25%	1.54E+0 2%	<2.E-4	<2.E-3	<2.E-3

Note: * samples are reported in uCi/ml.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

WO/Project: Client: W48486(W51311)/29953 G. Lumetta

ACL Numbers: 99-02346 through 99-02350 ASR Number 5478

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography" Analyst: MJ Steele Analysis Date: September 16-20, 1999

M&TE: IC system (WD25214); Mettler AT400 Balance (360-06-01-031) See Chemical Measurement Center 98620 RIDS for IC File for Calibration, Standards Preparations, and Maintenance Records.

Analyst: Maria Tig Date 10-25-49 Approval:

Notes:

- 1) "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- 2) The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- 3) Routine precision and bias is typically ± 15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

Final Results:

The samples were analyzed by ion chromatography (IC) for inorganic anions as specified in ASR 5478. The liquid samples were diluted at the IC workstation up to 2000-fold to ensure that all anions were within the calibration range, and the solids samples were diluted an additional 10-fold following leaching per procedure ALO-103. The anion results are presented in the table below.

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

		Solids	S F	Cl	NO,	NO,	PO4	SO SO	
Lab ID	Solid Sample ID	Dil Fctr	ug/g	ug/g	ug/g	ug/g -	uĝ/g	ug/g	
99-2346 PB	Solids Process Blank	46.5	< 12	< 12	< 24	< 24	< 24	50	
99-2346	C104-AQ-8	45.4	2,900*	120	320	1,500	640	570	
99-2346 Dup	C104-AQ-8 Dup	48.7	2,600*	< 130	< 250	1,300	620	< 250	
	RPD(%)		11%	n/a	n/a	14%	3%	п/а	
99-2349	C104-OH-8	46.2	2,900*	150	< 240	1,200	< 240	< 240	
99-2349 Dup	C104-OH-8 Dup	45.8	2,800*	170	380	1,300	< 230	< 230	
	RPD(%)		4%	13%	n/a	8%	n/a	n/a	
		Liquid	F	Cl 🚽	NO,	NO, 1-	PO,	SO, Se	
Lab ID	Liquid Sample ID	Dil Fctr	ug/ml	ug/ml	ug/ml	ug/ml	ug/ml -	ug/ml 💒	
99-2347	C104-AQ-9	1	5,300*	150	2,600	1,500	< 250	400	
99-2347 Rep	C104-AQ-9 Rep	1	4,700*	< 130	2,600	1,400	< 250	400	
	RPD(%)		12%	n/a	0%	7%	n/a	0%	
99-2348	C104-OH-3A	1	5,500*	360	3,600	1,700	1,000	500	
99-2350	C104-OH-9	1	6,600*	< 130	500	400	< 250	< 250	

RPD = Relative Percent Difference (between sample and duplicate/replicate)

* = Quantified by IC system as fluoride; however, slight retention time peak shift and peak shape suggest significant organic anion interference. High probability that little or no fluoride is actually present in the samples.

Q.C. Comments:

Following are results of quality control checks performed during IC analyses. In general, quality control checks met the requirements of the governing QA Plan.

Working Blank Spike/Process Blank Spike: Process Blank Spike recoveries ranged from 99% to 113%, well within the acceptance criteria of 80% to 120%.

<u>Matrix Spiked Sample:</u> No matrix spike was performed on the samples submitted under this ASR. However, matrix spikes processed and analyzed with this batch of sample had recoveries within the acceptance criteria of 75% to 125%, except for nitrate which produced over range condition due to the high nitrate concentrations in the samples.

<u>Duplicate:</u> Except for one oxalate duplicate which demonstrated an RPR of 22%, the RPDs which ranged from 3% to 14% which is within the acceptance criteria of 20%.

<u>System Blank/Processing Blanks:</u> Over 20 system blanks were process during the analysis of the sample. With the exception of only 3 nitrate values and 1 sulfate value, no anions were detected above reportable concentrations in the system blanks or in the processing/dilution blank.

<u>Quality Control Calibration Verification Check Standards</u>: Over 20 mid-range verification standards were analyzed throughout the analysis run. Except for a few case the reported results for all analytes of interest were recovered within the acceptance criteria of $\pm 10\%$ for the verification standard. For the few failures, no recoveries exceeded $\pm 15\%$.

Battelle PNNL/RPG/Inorganic Analysis ---Hg Report

WO/Project: Client: W48486/29953 G. Lumetta

ACL Numbers: 99-02346 and 99-02350 ASR Number 5478.01

Procedure: PNNL-ALO-131, "Mercury Digestion" PNNL-ALO-201, "Mercury Analysis"

Analyst: J. J. Wagner

Digestion Date: October 21, 1999 Analysis Date: October 27, 1999

M&TE: Hg system (WD14126); Mettler AT400 Balance (360-06-01-029) See Chemical Measurement Center 98620 RIDS for Hg File for Calibration, Standards Preparations, and Maintenance Records.

Analyst: Date 11-5-99 Approval:

Final Results:

The samples were analyzed by cold vapor atomic absorption spectrophotometry for inorganic mercury as specified in ASR 5478.01. The solids samples were diluted an additional 250 to 500-fold following sample digestion per procedure ALO-131. The mercury concentration results are presented in the table below.

page 1 of 2

Battelle PNNL/RPG/Inorganic Analysis ---Hg Report

		Solids	Solids	Solids	: Hg
Lab ID	Solid Sample ID	Grams-	Dig Fetr	Anal Fetr	ug/g
99-2346 PB	Solids Process Blank	0.2084	120.0	1	< 0.024
99-2346	C104-AQ-8	0.2102	118.9	250 .	95.4
99-2346 Dup	C104-AQ-8 Dup	0.2138	116.9	250	96.8
	RPD(%)				1.5%
99-2349	C104-OH-8	0.2077	120.4	500	153
99-2349 Dup	C104-OH-8 Dup	0.2018	123.9	500	164
	RPD(%)				6.9%

RPD = Relative Percent Difference (between sample and duplicate/replicate) "Sample weight" used for the process blank is an average weight of the samples.

Notes:

- 1) "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- 2) The low calibration standard is defined as the estimated quantitation limit (EQL) for the reported results and assumes non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- Routine precision and bias is typically ± 15% or better for non-complex aqueous samples that are free of interference.

Q.C. Comments:

Following are results of quality control checks performed during Hg analyses. In general, quality control checks met the requirements of the governing QA Plan.

Working Blank Spike/Process Blank Spike: Process Blank Spike recovery is 112%, well within the acceptance criteria of 80% to 120%.

<u>Matrix Spiked Sample:</u> A matrix spike was prepared for the samples submitted under this ASR. However, the concentration of the matrix spike processed and analyzed with this batch of sample was too low in concentration relative to the high concentration of mercury in the samples measured. As a result, matrix spike recovery could not be assessed.

Duplicate: All RPDs were within the acceptance criteria of 20%.

<u>System Blank/Processing Blanks:</u> A system blank was process during the analysis of the sample. All reportable sample concentrations were many times greater than that measured in the system blank or in the processing/dilution blank.

<u>Quality Control Calibration Verification Check Standards:</u> Over 4 mid-range verification standards were analyzed throughout the analysis run. All were within the acceptance criteria of 80% to 120% recovery for the verification standard.

Battelle, Pacific Northwest National Laboratory Richland, WA Radiochemical Processing Group

filename 99-2346 11/15/99

Client: Lumetta

Cognizant Scientist: <u>Alfreenced 11-15-99</u> Concur: <u>C. Sederguns</u> 14-15-99

Procedure: PNL-ALO-4014

Uranium Analysis by Kinetic Phosphorescence

	Lab	Uranium Concentratio							
Sample	Number	Units		±1s					
			4						
Process Bik	99-2346PB NI	hð\ð	1.60E+0	± 2%					
C104-AQ-8	99-2346Ni	µg/g	2.61E+4	± 4%					
C104-AQ-8	99-2346Ni DUP	µg/g	2.50E+4	± 4%					
	RPD		4%						
C104-AQ-9	99-2347	µg/mL	1.47E+1	± 4%					
C104-OH-3A	99-2348	µg/mL	1.05E+1	± 4%					
C104-OH-3A	99-2348-Rep	µg/mL	1.08E+1	± 3%					
C104-OH-3A	99-2348-Rep	µg/mL	1.13E+1	± 3%					
C104-OH-8	99-2349	µg/g	1.01E+5	± 4%					
C104-OH-8	99-2349 DUP NI	µg/g	9.92E+4	± 4%					
	RPD		2%						
C104-OH-9	99-2350	µg/mL	3.42E+0	±4%					

	Standard	Observed	Expected	Yield
Pefero	Rec-282-e2	1.05E-2	1.00E-2	1.050
Bun	Rec-282-d2	1.06E-1	1.00E-1	1.060
Run	Blank	<2.E-5		
After	Rec-282-e2	1.07E-2	1.00E-2	1.070
Run	Rec-282-d2	1.06E-1	1.00E-1	1.060
	Blank	<2.E-5		

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

Client:	G. Lumetta
ACL Numbers:	99-2346 to 99-2350
Analyst:	MJ Steele

 Charge Code/Project:
 W48486/ 29953

 ASR Number:
 5478

 Analysis Date:
 12/09/99 and 01/07/00

Procedure: PNL-ALO-381, "Direct Determination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method"
 M&TE: Carbon System (WA92040); Balance (360-06-01-023).

Final Results:

Liquids		TIC	TIC RPD	TOC	TOC RPD	TC	TC RPD	
Lab Number	Sample ID	ug C/ml	(%)	ug C/ml	ug C/ml (%)		(%)	
00-2347	C104-AQ-9 -	610		790		1,400		
99-2347 Rep	C104-AQ-9 Rep	750	21	760	4	1,500	7	
99-2348	C104-OH-3A	1,200		1,400		2,600		
99-2348 Rep	C104-OH-3A Rep	1,200	0	1,200	15	2,400	8	
99-2350	C104-OH-9	270		210		480		
99-2350 Rep	280	4	220	5	500	4		
99-2350 MS	C104-OH-9 MS Rec.	101%		97%		100%		
	Results	on a per g	ram dry w	eight basi	S			
Solids		TIC	TIC RPD	TOC	TOC RPD	TC	TC RPD	
Lab Number	Sample ID	ugC/g	(%)	ugC/g	(%)	ugC/g	(%)	
99-2346	C104-AQ-8	2,560		9,900		12,460		
99-2346 Dup C104-AQ-8 Dup		2,380	7	10,600	7	12,980	4	
99-2346 MS C014-AQ-8 MS		95%		87%		92%		
99-2349 C104-OH-8		6,900		17,000		23,900		
99-2349 Dup C104-OH-8 Dup		6,840	1	16,900	0	23,740	1	

RPD = Relative Percent Difference (between sample and duplicate/replicate)

The analysis of the subject samples submitted under ASR 5478 was performed by the hot persulfate wet oxidation method. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92-95°C for TOC, all on the same sample, with TC being the sum of the TIC and TOC.

The table above shows the results, rounded to two to three significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the instrument calibration blanks.

Q.C. Comments:

The TIC standard is calcium carbonate and TOC standard is α -Glucose (the certificates of purity are attached). The standard materials were used in solid form for system calibration standards as well as matrix spikes. TIC and TOC percent recovery are determined using the appropriate standard (i.e., calcium carbonate for TIC or glucose for TOC).

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

The QC for the methods involves calibration blanks, system calibration standards, sample duplicates, and one matrix spike per matrix type.

<u>Calibration Standards</u>: The QC system calibration standards for the 12/09/99 and 01/07/00 analysis runs were all within acceptance criteria, with the average recoveries being 100.2% and 98.4% for TIC and 99.7% and 98.1% for TOC, respectively.

<u>Calibration Blanks</u>: The six calibration blanks run at the beginning and end of the analysis runs were acceptable. The standard deviation calculated from the calibration blanks is less than the estimated method detection limit for both TIC and TOC.

<u>Duplicates</u>: The relative percent differences (RPD) between duplicates are within the acceptance criteria of 20%, except for the TIC for liquid sample 99-2347 (C104-AQ-9). At an RPD of 21%, this sample is only slightly outside the acceptance criteria, and the poor RPD is most likely due to the small sample size (i.e., 0.2 ml) used for the sample. The duplicate was analyzed using a 0.9 ml sample size and is considered to provide the most accurate results.

<u>Matrix Spike</u>: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The matrix spike for liquid sample run (i.e., 99-2350, C104-OH-9 MS) recovered at 101% for TIC and 97% for TIC, well within the 75% to 125% recovery acceptance criteria. The matrix spike for the solids sample run (i.e., 99-2346, C104-AQ-8 MS) recovered at 95% for TIC and 87% for TOC.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- Routine precision and bias are typically ±15% or better for non-complex samples that are free of interferences.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and RPDs are not calculated for any results less than 5 times the MDL.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis. The system MDL is based on the attached pooled historical blank data. The evaluation and calculation of the system MDL is included in the data package.

Report Prepared by:

Date /-17-00

Date 41700

Review/Approval by:

provarby.

Archive Information:

Files: ASR 5478 Lumetta.doc

ASR 5478 5536 5571 Liq+Solids.xls ASR 5478 5626 Liq+Solids.xls

Project No. 29953

Internal Distribution

Date October 28, 1999

То

G. Lumetta

From

M. Urie Malla

Subject

ct Cyanide Results for Samples C104-AQ-8 and C104-OH-8

ALO#	Client ID	Sample (µg CN / g)	Duplicate (µg CN / g)	RPD (%)	Spike Rec (%)	
99-2346	C104-AQ-8	13.4	12.1	10		
99-2349	C104-OH-8	22.0	24.7	12		
99-2346 spike	C104-AQ-8 spike				93	

The CN results for two C104 tank samples analyzed on September 2, 1999 per ASR 5478 are reported in the table above. The sample aliquots were weighed in the Shielded Analytical Laboratory and delivered, ready for distillation, to Laboratory 400 in the Radiochemical Processing Laboratory. The samples were distilled with the addition of sulfamic acid to ensure there would be no interference if nitrates were present in the sample. The samples were analyzed using a Lachat QuickChem AE Autoanalyzer (WC36517). The reporting limit is estimated to be 0.2 mg/kg.

An independent calibration check solution run at the beginning and end of each analysis batch gave an average recovery of 110%. Both samples were prepared and analyzed in duplicate. In addition, a matrix spike sample of C106-OH-8 was prepared. The spike recovery at 93% was within the control limits (\pm 15%). The solid laboratory control standard (ERA-LSC) analyzed at 221 ug/g, well within the certified advisory range of 77 to 301 ug/g.

The relative percent difference (RPD) between the samples and duplicated for both samples was well within the acceptance criteria of 20%. The initial analysis of the samples was performed with no analytical dilutions, which resulted in the absorbences being above the highest calibration standard. The samples were diluted 3-fold and reanalyzed. Although the initial analyses were over range, the results correspond very well with the final results.

All sample preparation sheets, standard preparation information, and analytical data are included with this report.

<u>C Sodeczi ... 1-22-0</u> Concur Date

`Memo File: CN ASR 5478 Lumetta.doc Spreadsheet File: CN ASR 5478 Lumetta.xls

File: Procedure: M&TE:

99090201.RS Client: Lur PNL-ALO-287 & -289 WC36517, Latchat QuickChem AE Autoanalyzer WD04501, Mettler AT400 Balance

Client: Lumetta/ ASR #5478

CYANIDE ANALYSIS REPORT

Analyst: PK Berry Calibration File: 99090201 Date: September 2, 1999

	%	Rec	107%	108%			102%			92%			125%	105%	112%	114%		117%
Dupl.&	or Rep	RPD.							10%			%6						
	Expected	Value	124.87	30.01			166.167			648.73			177.00	200.17	124.87	30.01		5.01
			ng/L	ng/L	ng/L	ng/L	ng/L	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	ng/L	ng/L	ng/L	ng/L	ng/L
	S	in Sample	133.63	32.31	< 2.0	< 2.0	170.28	13.15	11.90	16.35	23.53	25.67	221.29	209.32	140.44	34.11	< 2.0	5.88
	ppb CN	in Aliquot	 133.63	32.31	0.87	1.07	170.28	474.24	578.36	599.99	818.85	814.44	188.10	209.32	140.44	34.11	0.87	5.88
		Absorbance	0.0659	0.0153	-0.0004	-0.0003	0.0842	0.2360	0.2880	0.2988	0.4081	0.4059	0.0931	0.1037	0.0693	0.0162	-0.0004	0.0021
Additional	Dilut.	Factor	٢	-	-	-	-	-	-	-	-	-	10	-	-	-	.	۲
Final Digest	Volume	mi.	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Sample	Volume	mt	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Hot-Cell	Dilution	Factor																
	*	Şolids						100	100	100	100	100	100					
Sample	Mass	(6)						0.2164	0.2915	0.2202	0.2088	0.1904	0.051					
		Client ID						C104-AQ-8	C104-AQ-8	C104-AQ-8	C104-OH-8	C104-OH-8						
		Lab ID	Mid-ICV, 125ppb	Low-ICV, 30ppb	ICB	BL-2346	BS-2346	99-2346	99-2346-DUP	99-2346-MS	99-2349	99-2349-DUP	LCSS	Distilled Cal Std	Mid-CCV, 125ppb	Low-CCV, 30ppb	CCB	5ppb, Quant chk

MS was a 0.1 aliquot of a 9.97ppm CPI Standard Stock Dilution #2 (prep date 6/99) added to solid sample matrix, plus 5.5 mL water. Analyzed distilled. Blank Spike was a 0.1 aliquot of a 9.97ppm CPI Standard Stock Dilution #2 (prep date 6/99) added to 6mL 0.25M NaOH, analyzed distilled. LCSS sample is an ERA Certified Reference Material cyanide standard in soil; Lot # 218, Barcode #95760, Exp. Date 10-17-99. Non-homogeneous sample matrix resulted in differences in duplicate results.

99090201.RS

Page 1

ASR 5478 Lumetta.xls

Page 2

99090201.RS

	Calibrat	tion Data	B	
	qdd		Calc	% rec
Irue	CN	Abs	Stds	for std
0	00.00	-0.0007	0.27	NA
10	10.02	0.0041	9.88	%66
25	25.02	0.0116	24.90	100%
50	50.05	0.0241	49.93	100%
100	99.76	0.0490	99.79	100%
200	200.17	0.0992	200.31	100%
300	300.10	0.1490	300.03	100%

CPI prepared solutions 06/18/99

Calibration Solution:

Expiration:

1.0000 Correlation Coefficient

-0.000835843 INTERCEPT

0.000499403 SLOPE

_	
_	
_	
_	
~	
_	
_	
_	
_	
_	
_	
-	
_	
-	
	•
-	
	•

LCDW = laboratory control standard, liquid LCSS = laboratory control standard, solid BS = spiked process water blank PBW = process water blank 99-xxxxS = spiked sample 99-xxxxD = duplicate 99-xxxx = sample

CCV = continuing calibration verification CRDL= contract required detection limit ICV = initial calibration verification CCB = continuing calibration blank IDL = instrument detection limit ICB = initial calibration blank PBS = process soil blank

Client: Lumetta/ ASR #5478

CYANIDE ANALYSIS REPORT

WC36517, Latchat QuickChem AE Autoanalyzer WD04501, Mettler AT400 Balance PNL-ALO-287 & -289 99090202.RS Procedure: M&TE:

File:

Calibration File: 99090201 Date: September 2, 1999 Analyst: PK Berry

		Sample		Hot-Cell	Sample F	inal Digest	Additional						Dupl.&	
		Mass	*	Dilution	Volume	Volume	Ditut		ppb CN	S		Expected	or Rep	%
Lab ID	Client ID	(ĝ)	Solids	Factor	щ г	mt	Factor ,	Absorbance	in Aliquot	in Sample		Value	RPD	Rec
Mid-ICV, 125ppb					9	9	-	0.0656	133.03	133.03	ng/L	124.87		107%
Low-ICV, 30ppb					9	9	-	0.0155	32.71	32.71	ng/L	30.01		109%
ICB					9	9	-	-0.0001	1.47	< 2.0	ng/L			
99-2346	C104-AQ-8	0.2164	100		9	9	3	0.0793	160.46	13.35	mg/kg			
99-2346-DUP	C104-AQ-8	0.2915	100		9	9	ი	0.0968	195.51	12.07	mg/kg		10%	
99-2346-MS	C104-AQ-8	0.2202	100		9	9	e	0.1004	202.71	16.57	mg/kg	218.67		63%
99-2349	C104-OH-8	0.2088	100		9	9	ი	0.1264	254.78	21.96	mg/kg			
99-2349-DUP	C104-OH-8	0.1904	100		9	9	б	0.1296	261.18	24.69	mg/kg		12%	
Mid-CCV, 125ppb					9	9	-	0.0689	139.64	139.64	ng/L	124.87		112%
Low-CCV, 30ppb					9	.9	-	0.0161	33.91	33.91	ng/L	30.01		113%
ССВ					9	9	-	-0.0002	1.27	< 2.0	ng/L	5.01		
5ppb, Quant chk		4			9	9		0.0020	5.68	5.68	ng/L	5.01		113%

MS was a 0.1 aliquot of a 9.97ppm CPI Standard Stock Dilution #2 (prep date 6/99) added to solid sample matrix, plus 5.5 mL water. Analyzed distilled. Blank Spike was a 0.1 aliquot of a 9.97ppm CPI Standard Stock Dilution #2 (prep date 6/99) added to 6mL 0.25M NaOH, analyzed distilled. LCSS sample is an ERA Certified Reference Material cyanide standard in soil; Lot # 218, Barcode #95760, Exp. Date 10-17-99. Non-homogeneous sample matrix resulted in differences in duplicate results.

99090202.RS

Calibration Solution: CPI prepared solutions Expiration: 06/18/99 1.0000 Correlation Coefficient 0.000499403 SLOPE -0.000835843 INTERCEPT 100%

24.90

0.0116

25.02 50.05

NA 99% 100% 100% 100%

49.93

0.0241

99.79 200.31

0.0490

99.76

10 50 200 300

0.0992

200.17

100%

300.03

0.1490

300.10

for std

Stds 0.27 9.88

Abs

d N 0.

true

0

-0.0007

0.0041

10.02

% rec

Calc

Calibration Data

Definitions

99-xxxx = sample 99-xxxxD = duplicate 99-xxxxS = spiked sample LCSS = laboratory control standard, solid LCDW = laboratory control standard, liquid PBW = process water blank BS = spiked process water blank

PBS = process soil blank ICV = initial calibration verification CCV = continuing calibration verification ICB = initial calibration blank CCB = continuing calibration blank CRDL= contract required detection limit IDL = instrument detection limit

99090202.RS

Page 2

Battelle, Pacific Northwest National Laboratory Richland, WA **Radiochemical Processing Group**

filename 99-2346 2/24/00

Client: Lumetta

Cognizant Scientist:

2.24-00

C: Soderques R 9 Concur: renned 2-25-00

	Lab	Ammonia Concentration
Sample	Number	ug/g ±1σ
Process Blk	99-2346 PB	<8.0
C104-AQ-8	99-2346	<8.4
C104-AQ-8	99-2346 DUP	<9.0
C104-OH-8	99-2349	<8.5
C104-OH-8	99-2349 DUP	<8.5

Battelle, Pacific Northwest National Laboratory Richland, WA Radiochemical Processing Group

filename 99-2346 3/13/2000

Client: Lumetta

Cognizant Scientist: U. K. Jiskum 3/13/90

Concur: La Green 3-13-00

PNL-ALO-482

	Lab	C-*	14	MDA*
Sample	Number	uCi/g	±1σ	uCi/g
C104-AQ-8	99-2346	6.28E-3	± 4%	<7.E-3
C104-AQ-8	99-2346 DUP	2.87E-3	± 5%	<4.E-3
C104-OH-8	99-2349	3.85E-3	± 5%	<5.E-3
C104-OH-8	99-2349 DUP	-2349 DUP 2.46E-3 ± 5% <3.E-3		
	Blank 1	<3.E-4		
	Blank 2	1.58E-2	± 3%	
	Blank 3	6.32E-3	± 4%	
	Sample spike	87%		
	Blank spike	94%		K 3

*Note: Two of the blanks (2 and 3) analyzed with the samples had more activity than the samples indicating sample contamination as a result of carryover of the C-14 spike run just previous to these blanks. This tailing or memory effect appears to be variable and undefined at this time. Samples were run after a blank was run and thus the carryover of the spike is less severe than that shown for the blank. It is recommended that the listed MDA values be reported. These MDA's are calculated as a function of the obtained sample activity (found activity + 3 times the 1-s error).

Appendix C. Calculations

SE.	_		
N 70	Do	fto	
1	Da	IIC	

pared By:	unith C	Date: 8/13/44 Proje	ect:		
Subject: CIO	H Test Data was	qu. ،			
Sample	weights		-		
Vial Tare wit.	Initial Gross wt.	Initial Sample Wt.	8/12/4 Gross Wt.	8/12/19 sumple wt.	Sampli ID
					S. Statement and a second s
6.5218	7.4072	0.8154	6.9222	0.4004	(104-501-30-1
6.5218 6.4870	7. 346	0.8854	6.9222 6.9279	0.4004	(104-501-30-1
6.5218 6.4870 6.5451	7.4072 7.344 7.4437	0.8854 0.8626 0.9486	6.9222 6.9279 7.1768	0.4004 0.4409 0.6317	(104-502-30-1 -2 -40-1
6.4870 6.4870 6.5451 6.4873	7.4072 7.344 7.4437 7.5410	0.8854 0.8626 0.9486 1.0537	6.9222 6.9279 7.1768 7.1976	0.4004 0.4404 0.6317 0.6313	(104-502-30-1 -z -40-1 -2
6.5218 6.4870 6.5451 6.4873 6.4773	7.4072 7.344 7.4437 7.5410 7.6562	0.8854 0.8626 0.9486 1.0537 1.2189	6.9222 6.9279 7.1768 7.1976 7.2932	0.4004 0.4409 0.6317 0.7103 0.8459	(104-502-300-1 -2 -2 -2 -1
6.5218 6.4870 6.5451 6.4873 6.4773 6.4773	7.4072 7.244 7.4437 7.5410 7.6462 7.8534	0.8854 0.8626 0.9486 1.0537 1.2189 1.3289	6.9222 6.9279 7.1768 7.1976 7.2932 7.51 8 4	0.4004 0.4409 0.6317 0.7103 0.8154	(104-502-300-1 -2 -40-1 -2 -50-1 -2 -2
6.5218 6.4870 6.5451 6.4873 6.4773 6.4773 6.5265 8.1367	7.4072 7.3446 7.4437 7.5410 7.6562 7.8534 18.3751	0.8 854 0.8626 0.9486 1.0537 1.2189 1.3269 10:2354	6.9222 6.9279 7.1768 7.1976 7.292 7.5184 18.3523	0.4004 0.4409 0.6317 0.7103 0.854 0.854 0.9919	(104-502-300-1 -2 -40-1 -2 -50-1 -2 -2 C104-AQ-9
6.5218 6.4870 6.5451 6.4873 6.4773 6.4773 6.5265 8.1367 8.4665	7.4072 7.2446 7.4437 7.5410 7.6462 7.8534 18.3751 26.0674	0.8 854 0.8626 0.9486 1.0537 1.2189 1.3269 10.2354 17.5709	6.9222 6.9279 7.1768 7.1976 7.292 7.5184 18.3523 26.0570	0.4004 0.4409 0.6317 0.7103 0.864 0.9919 10.2122 17.5605	(104-502-300-1 -2 -40-1 -2 -3 -3 -2 -3 -2 C104-AQ-9 C104-AQ-9 C104-04-3A

54-1007-114 (1/83)

Balic Northwest Laboratories	ENGINEERING WORKSHEFT	Page of
pared By: S.J. hunth	Date : 9/24/49 Project:	
Subject: C-104 Test	: Example Calculations	
Dilute Hydros	cide Washing	
Alomnum	Sample CI04-48-9 -> 126 44/8 formal	
and a second representation of the second		Carte de la Carte de Santa Service : .
	Correcting for sample evaporation: $(126 \text{ mg/}_{4})(\frac{10.21269}{10.23549}) = 125$	152 .7" us/g (basi ully no ichange)
and a second	total weight of wesh solutions = 293.5150 'g (2.70A)	NOT THE SECOND CONTRACTOR
	Thus: (125.7 mg/g)(293.55 g) = 3690/ mg Al in the	wesh solutions
dent dan Angeren en I		
	Somple C104-4Q-8 -> 163000 43/3 (NG, 02 fusions	Men 151750 mg/s
	145 000 3/3 } KOH fusions	5H. Dw. 8057 7/2
	147000 mg/g 5	
	Relation Garan = 100 (1517) - 50	<u>(,,,,)</u> = 2.3 d.
	where of divised washed solids = 14.3589 g (2.694)	
	Thus, (151750 m3/g) (14.3589g) = 2178963 mg Al in	the a so lines
	21789(3+3690) = 7215864 and in the C-1	04 50000 (
	2215-564 mg A1 = 49461 mg Al/2 C-104 sample	
		· ·
	100 (36901) = 1.7 % Al removed by washing	5
3		

.e. _

ed By:	Date: 12/P/94 Project: BNFL 79552	
ubject:		
CTOY Test:	Comparison of laser Fluorinetry U dute + ILA-MIS U dute	
•		
Washed Solids		-
i	Lesur Fluerinity -> 2550 mg/s	
		*
	TODAL - 23511 212 10-4 11 11 11 11 11 11 11 11 11	
nan an màrmanaiseachteachte	2 CF MIS 2.2 KIO 2.2 KIO	392 450
	734	
	1.45 ×10 - 1.4×10 - Cilg -	54,412 4 27
		5-4 SM
		31 - 44
وريد ورابي فيعرف فعديهم والمراجع		ĩ
		·····
	Lace floarimetry result ~ 1/2 less the TCP. MC	
	, , , , , , , , , , , , , , , , , , , ,	
1 eached ships		
1	The second se	
	Lim Floor : 100,00 mg/3	
	ICP-MS: 235 U 0.0015 - 12/2 - 2.2x10-2 Ci/g = 682 -	9/9
i i i i i i i i i i i i i i i i i i i		
	235 0.0326 wills - 3.4x10-7 cilg = 95882	-5/5
	96510	and to
		5,5
	Law Fluorentry result within day of Troy at 14	ŀ
	- ···· · ···· · ····· · ··············	
1. N. M. M.	[이다 이 것은 것이 같은 것은 것이 같은 것이 같은 것이 같은 것이 같이 없다.	1
11-11-11-11-11-11-11-11-11-11-11-11-11-	김 사람은 경험을 넣는 것이 같은 것은 것이 많은 것이 같은 것이 같은 것이 없다.	

SIL

54-1007-114 (1/83)
Appendix D. Statistical Analysis of the Data

Statistical analyses were performed on the data included in this report. In general, simple summary statistics were provided throughout that included estimates of the average (Mean), standard deviation (Std. Dev.) and percent relative standard deviation (%RSD = 100*Std. Dev./Mean) of aliquots. If one or both of the duplicate values were within 10 times the detection limit (values in parentheses in the tables) their mean and standard deviation are also marked in parentheses in the tables. By convention values less than the detection limit ("<") are formatted with 1 significant digit, values within 10 times the detection limit are formatted with 2 significant digits, and all other values are formatted with 3 significant digits.

More detailed statistical analyses included:

- Solubility versus Temperature Study Regression & Modeling Analyses
- Solubility versus Temperature Study Tests for Changes due to Temperature
- Washing and Leaching Studies Estimates of Uncertainty for analyte concentrations in the washed and original untreated solids and the percent removal

For all of the following analyses, it should be kept in mind that all data in each study are taken from one run of the experiment on a single sample. This means that the conclusions may be limited to this particular sample for this particular run. The data provide no information about the additional uncertainty that would result from running different samples or from repeating the experiment on similar samples. The only sources of variability present in these studies are sub-sampling variability and measurement variability. Consequently, the uncertainty statements developed in this report probably underestimate the variability that will be experienced in the real world application of these conclusions.

Solubility vs Temperature Study Regression & Modeling Analyses

The statistical analyses performed here are quantitative assessments of the nature of the relationship between analyte concentrations and temperature. These analyses were performed using the evaporation-adjusted concentrations from Tables 1, 2 and 3. The data were taken from the original Excel spreadsheet and may have additional digits compared to the formatted table values. Only those analytes that had two or fewer of their reported values below the detection limit were used. These statistical analyses were performed using linear and non-linear regression procedures in the Statistical Analysis System (SAS Institute Inc. Cary, North Carolina). Two approaches were used: polynomial regressions that attempt to fit the data without a specified mechanistic model, and a psuedo-Arrhenius model.

Since there are only three temperature points (30, 40, and 50°C), the maximum polynomial regression model that can be fit as a function of temperature is a quadratic. The two concentration values per temperature provide for estimating sub-sampling and measurement uncertainty and for testing the lack-of-fit of the linear regression. The general approach taken was to first fit and test a linear regression, i.e., is a linear regression statistically better than no model. This was followed by a test of the lack-of-fit of the linear regression model, or equivalently in this case, whether adding the quadratic term would be useful in describing the solubility-temperature relationship. It should be noted that no model can fit this data better than a quadratic model, so if the quadratic model is not significantly better than the linear model, then no other model will be significantly better either.

Analyte	Estimated Intercept	Estimated Increase per °C	P-value	
			Simple Linear	Quadratic/ Lack-of-Fit
Ag	-0.707	0.0298	0.001	0.188
Al	9.87	-0.115	0.468	0.107
Ba	3.07	-0.0621	0.154	0.373
Ca	-8.82	1.01	0.225	0.983
Cd	4.16	-0.0496	0.002	0.382
Co	0.889	-0.000740	0.705	0.656
Cr	8.18	0.633	0.004	0.946
Cu	3.43	-0.0122	0.203	0.438
Fe	2.42	-0.0231	0.085	0.864
к	254	-0.292	0.687	0.471
Mg	-6.42	0.481	0.143	0.842
Мо	3.79	-0.00893	0.419	0.297
Na	29,256	124	0.353	0.035
Ni	64.0	-0.323	0.108	0.742
Р	768	-5.36	0.026	0.681
Si	23.8	8.09	0.123	0.855
Zn	6.77	-0.0848	0.318	0.236

Table D.1. Linear and Quadratic Polynomial Regression Analyses

The regression estimates are grayed-out (judged unusable) if: the estimated increase is not significantly different from zero (linear p-value > 0.1) or the lack-of-fit of the linear regression is significant (lack-of-fit p-value < 0.1).

Table D.1 presents the results of the linear and quadratic polynomial regression analyses. Included are the estimates of the intercept and slope for the linear regression. Also included are the probabilities (p-values) for the test of the linear regression and for the test of the lack-of-fit of the linear regression. A significance level of 0.10 was used. Those analytes that have a significant linear regression have a simple linear p-value < 0.10. Those analytes that have a significant lack-of-fit from the linear regression have a lack-offit/quadratic p-value < 0.10. Those analytes that did not have a significant linear regression or had a significant lack-of-fit are grayed-out in the table to indicate that their linear regression estimates are not considered useable.

The proposed psuedo-Arrhenius dissolution model has the following form:

Concentration = $e^{B-A/Temperature}$

or the algebraically equivalent form

 $\ln(\text{Concentration}) = B-A/\text{Temperature}.$

Although these two forms are algebraically equivalent, the estimates of A and B can be different depending on which form is fit due to the least-squares criterion for fitting being applied in regular space (the first form) or log space (the second form). If there is not much variability in the data the estimates of A and B should be close by either form, if there is large variability in the data the estimates of A and B can be quite different between the two forms. Review of the data did not indicate any particular reason to use the second form, such as increasing variability with increasing concentrations, so the first form was used. This will also make the results more comparable to the polynomial regressions, which were done in regular space.

	Estimated B	Estimated A	Asymptotic 90% Confidence Interval	
Analyte			Lower	Upper
Ag	1.98	110	79.1	141
Al	0.317	-49.7	-130	30.6
Ba	-7.17	-226	-687	236
Ca	4.74	50.4	-32.1	133
Cd	-0.109	-33.4	-42.6	-24.2
Co	-0.178	-1.02	-7.80	5.76
Cr	4.25	28.9	17.9	39.9
Cu	0.936	-5.44	-14.4	3.56
Fe	-0.192	-22.5	-43.6	-1.49
ĸ	5.46	-1.25	-10.1	7.61
Mg	4.08	60.8	-19.4	141
Мо	1.16	-3.03	-12.5	6.4
Na	10.6	6.49	-3.80	16.8
Ni	3.70	-8.87	-18.9	1.13
Р	5.96	-13.6	-23.2	-3.96
Si	6.77	36.0	-5.37	77.3
Zn	-0.0536	-47.2	-111	16.8

Table D.2. Dissolution on Kinetics Model [Concentration = exp (B-A/Temperature)]

The kinetic model estimates are grayed-out (judged unusable) if: the asymptotic 90% confidence interval of the temperature related parameter A includes zero.

Table D.2 presents the results for the proposed psuedo-Arrhenius dissolution model. Included are estimates of the B and A parameters. Also included are 90% confidence intervals on the temperature related A parameter. Those analytes whose confidence interval on A includes zero (i.e., those for which the lower value is negative and the upper value is positive) are grayed out in the table to indicate that their psuedo-Arrhenius dissolution estimates are not considered useable.

Plots for all analytes assessed are included. The following plotting symbols are used for the data:

• filled diamond-data that was 310-times the detection limit

- empty diamond—data that was <10-times the detection limit
- descending triangle—detection limit

The plots also show the linear regression with a solid line, 90% confidence intervals on the mean with dashed lines, and the psuedo-Arrhenius dissolution model with a dotted line. Occasionally, a confidence interval is so wide it goes off the plot.

The aliquot variability is relatively large for some analytes and, along with small sample numbers, leads to "non-significant" regressions for some analytes that may appear to show a relationship. Five of the analytes in Table D.1 had linear p-values <0.1 and quadratic p-values >0.1 and produced useable linear regression equations. These same five analytes showed useable psuedo-Arrhenius dissolution models in Table D.2. Visual comparison of the linear regression model and psuedo-Arrhenius dissolution model indicated they would produce very similar results in most cases. This may be an indication that, even if the psuedo-Arrhenius dissolution model might be better over a larger range of temperatures, the relationships can be closely approximated by a simple straight line over the 30 to 50°C range.

Solubility vs Temperature Study Tests for Changes Due to Temperature

Concentration changes in the Solubility versus Temperature study are expressed as the concentration change at each temperature relative to the concentration at 30°C. This is calculated as $100*(C_T-C_{30})/C_{30}$, where C_T is the average concentration at temperature = T (40 or 50°C) and C_{30} is the average concentration at 30°C. Table 4 shows these estimates of the change in concentrations for detected analytes for the unadjusted data and Table 5 shows them for the adjusted data.

The following method was used to judge whether the reported changes were significantly different from zero or could instead simply be an artifact of sub-sampling and measurement uncertainty. There is very little data here to estimate the variability at any one temperature with any confidence so a pooled estimate of uncertainty was obtained by pooling the %RSDs at the three temperatures. This assumes the RSDs are relatively constant at each temperature. This result in turn was used as input to standard propagation-of-errors calculations for the variance of the estimation formula $100*(C_T/C_{30})-100$. This results in an estimate of the standard deviation of the % Change as $C_T/C_{30}*sqrt(2)*Pooled %RSD$. This in turn, was used to generate the range of a two-sided 90% confidence interval using a t-table value of 2.353 for 3 degrees of freedom. Any % Change that is larger than the range indicates the % Change is probably different from zero and is considered strong evidence of a change in concentration. These significant temperature-related changes are bold-faced in Tables 4 and 5.

Washing and Leaching Studies Estimates of Uncertainty for Analyte Concentrations in the Washed and Original Untreated Solids and the Percent Removed

The ability to derive estimates of uncertainty for the values reported in Tables 8 and 11 was even more hampered than it was for the % Change estimates discussed in the previous section. The calculation of the concentrations in Washed or Leached Solids and the Original Sample were made using a number of sample weights and fraction constituent amounts. Only one of these inputs, namely the solids fraction, had duplicate aliquot data that could be used to estimate sub-sampling and measurement variability. The % Removed calculation in these two tables is even more problematic because of the use of even more terms and because it is the ratio of two other estimates.

To get at least some handle on the uncertainty of these estimates the following approach was taken:

- Treat all weights used in the estimation formulas as constants (without error) under the assumption that their uncertainties are much smaller than the uncertainties in the concentration measurements and can be safely ignored.
- Assume that duplicate aliquots had a common variability.
- Present a "pseudo" 95% confidence interval for at least one value of a %RSD that is assumed to be equal for all measurements that were used in any equation. A %RSD of 10 was chosen as the initial candidate as it appeared to be near the median of %RSDs seen in this study and seems to represent a reasonable starting point. This selected estimate on the uncertainty can be adjusted to determine the effects of other %RSD values by multiplying the "pseudo" 95% confidence interval values by the ratio of any other practicable %RSD divided by 10.

As input to the "pseudo" 95% confidence intervals, it was necessary to again use propagation of errors techniques to develop approximate standard deviations. These standard deviations were then multiplied by 2 (close to 1.96 from a standard normal distribution) to give the "pseudo" confidence interval half widths. Note that the use of the standard normal distribution does not account for the minimal amount of data available for these estimates, and provides much smaller confidence intervals than those that would be obtained using a Student's t distribution with only a few degrees of freedom.

For concentrations in Washed or Leached Solids and the Original Sample, the calculations are simple additions of fraction amounts divided by the sum of the corresponding fraction weights. The following propagation-of-error rules were used to develop propagation-of-errors formulas for their standard deviations:

- Variance of a mean is the variance of the measurement/n (the number of values used in the mean)
- The variance of a sum is the sum of the variances
- Constants (sample weights in this case) carry through.

This resulted in a general form for these two concentration estimates as:

Std.Dev. = sqrt $(\Sigma_f(var(f)/n_f))/weights,$

where f= each fraction used in the calculation of the concentration. Each var(f) term in the propagation-of-errors formula can be replaced, by definition, with $(\text{mean}_{f}*\%\text{RSD})^{2}$. Since the same %RSD is assumed for all measurements, %RSD can be factored out, resulting in the following general formula:

Std.Dev. = %RSD*sqrt $(\Sigma_f(mean_f^2/n_f))/weights$

The actual version of this general formula used for each analyte for each concentration estimate depends on the fractions that were used to calculate it and the number of subsamples available for each fraction. Certain calculations used the same sample weights in the numerator and denominator. These were cancelled out and removed in the actual error propagation formulas.

For % Removal, the calculations involve 100 times the ratio of two terms, each of which is the sum of fraction amounts. The initial standard propagation-of-errors form of the Std.Dev. for this ratio of two terms is:

Std.Dev. = $100*num/den*sqrt(var(num)/num^2 + var(den)/den^2)$

where num = the numerator term, den= the denominator term, and var() is the variance of each.

Both the numerator and denominator also need to have propagation-of-errors applied to them.

Again, each var() term in their propagation-of-errors formula can be replaced, by definition, with (mean*%RSD)². Since the same %RSD is assumed for all measurements, %RSD can again be factored out, resulting in the following general formula:

Std.Dev. =
$$100 \times \Sigma_{fm} ean_{f} / \Sigma_{dm} ean_{d} \otimes RSD$$

sqrt $(\Sigma_{f} (mean_{f}^{2}/n_{f}) / (\Sigma_{fm} ean_{f})^{2} + \Sigma_{d} (mean_{d}^{2}/n_{d}) / (\Sigma_{dm} ean_{d})^{2})$

where f = each fraction used in the numerator and d = each fraction used in the denominator. As for the concentration estimates discussed above, the actual version of this general formula used for each analyte depends on the fractions that were used to calculate the numerator and denominator and the number of sub-samples available for each fraction. Certain calculations use variances that have been calculated in prior steps, so these were put directly into the formulas instead of recalculating them.