PNWD-3004 BNFL-RPT-016, Rev. 0

Small Column Testing of SuperLig[®] 639 for Removing ⁹⁹Tc from Hanford Tank Waste Envelope A (Tank 241-AW-101)

D. L. Blanchard Jr. D. E. Kurath J. R. Bontha

August 2000

Prepared for BNFL, Inc. Under Contract W375-LC-98-4168

LEGAL NOTICE

This report was prepared by Battelle Memorial Institute (Battelle) as an account of sponsored research activities. Neither Client nor Battelle nor any person acting on behalf of either:

MAKES ANY WARRANTY OR REPRESENTATION, EXPRESS

OR IMPLIED, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, process, or composition disclosed in this report may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, process, or composition disclosed in this report.

References herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by Battelle. The views and opinions of authors expressed herein do not necessarily state or reflect those of Battelle.

Small Column Testing of SuperLig[®] 639 for Removing ⁹⁹Tc from Hanford Tank Waste Envelope A (Tank 241-AW-101)

D. L. Blanchard Jr. D. E. Kurath J. R. Bontha

August 2000

Prepared for BNFL, Inc. Under Contract W375-LC-98-4168

Battelle, Pacific Northwest Division Richland, Washington 99352

SUMMARY

The current BNFL Inc. flow sheet for the pretreatment of the Hanford High-Level tank wastes includes the use of SuperLig[®] 639 (SL-639) in a dual column system for the removal of technetium-99 (⁹⁹Tc) from the aqueous fraction of the waste. This sorbent material has been developed and supplied by IBC Advanced Technologies, Inc., American Fork, UT.

The report documents the results of testing the SL-639 sorbent in a small dual column system (4.7 mL each; L/D = 6.0). Approximately 1.2 L of diluted waste ([Na+] = 4.6 <u>M</u>) from tank 241-AW-101 (envelope A) was processed in the test. This waste had been previously clarified in a single tube cross-flow filtration unit, and Cs had been removed by ion exchange using SuperLig[®]644. All Tc removal process steps were tested including resin bed preparation, loading, feed displacement, water rinse, elution, eluant rinse and resin regeneration. A ^{95m}Tc pertechnetate tracer (^{95m}TcO₄⁻) was used to follow the progress of the test. Technetium-99 concentrations were determined after the test.

A summary of performance measures is shown in Table S1. The λ values are the number of bed volumes processed when the concentration of pertechnetate (or total Tc) reaches 50% of the feed concentration $(C/C_0=0.5)$ and represent a measure of the effective capacity of the SL-639 resin. The values for pertechnetate (as measured by the ^{95m}Tc tracer using GEA) and total Tc (as measured by ⁹⁹Tc using ICP-MS) are within the experimental error (+/- 10%). The λ values for the lag column could not be determined as they were only at approximately 15% breakthrough. The maximum decontamination factors (DFs) for pertechnetate and total Tc are based on analysis of the first samples collected from each column and the concentration in the feed. The total Tc maximum DFs are much lower than the maximum DFs observed for pertechnetate, and reflect approximately 3% breakthrough of ⁹⁹Tc on both columns. This breakthrough is believed to be due to non-pertechnetate, and is very similar to the fraction of ⁹⁹Tc breakthrough observed by the Savannah River Technology Center during Phase 1A testing of SL-639 with a sample of the same waste. A total of approximately 260 bed volumes of the 241-AW-101 waste were processed through the SuperLig[®] 639 columns, reaching about 60% ⁹⁹Tc breakthrough on the lead column and 16.5% on the lag column. The concentration of 99 Tc in the effluent composite is 5.1µCi/L (0.298 mg/L), less than 1/5 the expected maximum allowed concentration (26.8 µCi/L at 4.6 M Na) needed to meet the LAW glass ⁹⁹Tc limit of 0.1 Ci/m³.

	Flow rate	λ		Comp DF,	Comp DF,	Maximum	DF
	(BV/hr)	Pertechnetate (^{95m} Tc)	Total Tc (⁹⁹ Tc)	Pertech (^{95m} Tc)	Total Tc (⁹⁹ Tc)	Pertechnetate (^{95m} Tc)	⁹⁹ Tc
Col 1	6.1	213	235	NA	NA	180	31
Col 2	6.1	NA	NA	24.4	12.6	433	35

Table S1. Summary of Column Loading Performance Measures

Only the lead column was eluted. The elution proceeded very slowly, requiring 70 BV of eluant (0.5 <u>M</u> nitric acid) for the Tc concentration to drop to $C/C_0 = 0.01$. The peak ⁹⁹Tc concentration was 7.4 times the ⁹⁹Tc concentration in the feed, and was found in the 16th bed volume.

TERMS AND ABBREVIATIONS

AEA	alpha energy analysis
ALARA	as low as reasonably achievable
BNFL	BNFL, Inc; subsidiary of British Nuclear Fuels, Ltd.
BV	Bed Volume
DF	decontamination factor, C ₀ /C
DL	detection limit
EQL	estimated quantitation level
GEA	gamma energy analysis
HLRF	High Level Radiation Facility
IC	ion chromatography
ICP	inductively coupled plasma/atomic emission spectrometry
ICP-MS	inductively coupled plasma/mass spectrometry
λ	lambda; the number of BV processed at 50% breakthrough
MDL	method detection limit
MRQ	minimum reportable quantity
RPL	Radiochemical Processing Laboratory
SAL	Shielded Analytical Laboratory
TC	total carbon
TIC	total inorganic carbon
TOC	total organic carbon
TRU	transuranic

CONTENTS

1.0	INTRODUCTION	
2.0	EXPERIMENTAL	2.1
2.1	Technetium Removal Column System	
2.2	SL-639 Resin and Bed Preparation	
2.3	Feed Preparation	2.3
2.4	Experimental Procedure and Conditions	2.4
3.0	RESULTS AND DISCUSSION	
3.1	Feed Composition	
3.2	Loading (Tc Breakthrough Curves), Feed Displacement and Water Wash	
3.3	Elution, Eluant Rinse and Regeneration	
3.4	Mass Balance for ⁹⁹ Tc and Estimate of ⁹⁹ Tc Remaining on Columns	
4.0	CONCLUSIONS AND RECOMENDATIONS	4.1
5.0	REFERENCES	
APPE	NDIX A	A.1

FIGURES

Figure 2.1.	Technetium Removal Column System	2.2
Figure 3.1.	⁹⁹ Tc and ^{95m} Tc Breakthrough Curves, First and Second Columns	3.3
Figure 3.2.	⁹⁹ Tc and ^{95m} Tc C/C ₀ , for Feed Displacement and DI Water Rinse	3.5
Figure 3.3.	Component Concentrations in Feed Displacement and DI Water Rinse Samples	3.6
Figure 3.4.	Elution, Eluant Rinse and Regeneration of Lead Column	3.7

TABLES

Table S1.	Summary of Column Loading Performance Measures	iii
Table 2.1.	Experimental Conditions	2.4
Table 2.2.	Sampling Interval and Analyses	2.5
Table 3.1.	Composition of Envelope A (AW-101) Tc Column Feed	
Table 3.2.	Analysis of Eluant Composite and Minimum Reportable Quantities	
Table 3.3.	Composition of Regeneration Solution	
Table 3.4.	Mass Balance for ⁹⁹ Tc	
Table 3.5.	Estimates of ⁹⁹ Tc Left on Columns 1 and 2	

1.0 INTRODUCTION

The current BNFL Inc. flow sheet for the pretreatment of the Hanford High-Level tank wastes includes the use of SuperLig[®] 639 (SL-639) in a dual column system for the removal of technetium–99 (⁹⁹Tc) from the aqueous fraction of the waste. This material has been developed and supplied by IBC Technologies, Inc., American Fork, UT.

The work contained in this report involves the small column testing of the SL-639 sorbent. The sample processed was approximately 1.2 L of diluted waste (@ 4.6 <u>M</u> Na) from Tank 241-AW-101 (the 241 prefix, which is common to all Hanford tanks, will not be used hereafter). This waste had been previously clarified in a single tube cross-flow filtration unit (Brooks et al., 1999) and Cs was removed by ion exchange using SuperLig[®]644 (Kurath et al., 1999a). The Tc removal process steps tested include resin bed preparation, loading, feed displacement, water rinse, elution, and eluant rinse and resin regeneration.

The objectives of this work were to:

- Demonstrate the ⁹⁹Tc decontamination of Envelope A (Tank AW-101) and provide a technetium decontaminated sample for downstream process testing (i.e. corrosion testing, Low Activity Waste (LAW) melter feed testing and vitrification).
- Demonstrate the effectiveness of all SL-639 process steps including loading, feed displacement, DI water washing, elution and resin regeneration.
- Obtain process performance data for SL-639 at conditions different than those previously tested.
- Investigate SL-639/waste chemistry.
- Investigate the potential for resin and/or column fouling.

2.0 EXPERIMENTAL

2.1 Technetium Removal Column System

A schematic of the Tc removal column system is shown in Figure 2.1. The system, which is mounted in a radiological fume hood, consists of 2 small columns containing the sorbent resin, a small metering pump, 3 valves, a pressure gauge and a pressure relief valve. The pump inlet tube was manually switched between the waste feed and various process solutions. Valves 1, 2 and 3 are three-way valves that can be turned to a flow position, a sample position or a no-flow position. Valve 1 is placed at the outlet of the pump and is used to eliminate air from the system, purge the initial volume of the system or isolate the columns from the pump. Valves 2 and 3 are primarily used for obtaining samples and may also be used to isolate the columns from the rest of the system.

The columns are Kontes Chromaflex chromatography columns made of glass with adjustable plungers on the bottom and the top. The inside diameter of the columns is 1.0 cm which corresponds to a volume of 0.785 mL/cm of length. The connecting tubing is a polyfluorinated plastic with 1/8-in OD and 1/16-in ID. The columns are connected in series with the first column referred to as the lead column and the second column referred to as the lag column. A piston pump (Fluid Metering, Inc., Oyster Bay NY) was used to deliver feed to the columns. The flow rate was controlled from outside of the hood with a stroke rate controller for the pump. The pump was calibrated with the controller and can provide pumping rates of approximately 0-50 mL/hr. The volume actually pumped is determined using the mass of the fluid and the fluid density. The pressure relief valve is set at 40 psi which is below the maximum operating pressure for the columns. The pressure indicated on the pressure gauge remained below 5 psi during the run. The total holdup volume of the system was estimated to be 14 mL (3 BV) with the holdup volume to valve 1 being approximately 4 mL (0.8 BV).

2.2 SL-639 Resin and Bed Preparation

SuperLig[®] 639 resin consists of a proprietary organic compound (ligand) attached to spherical, styrene beads. The mean diameter of the resin beads (D_p) is reported by the manufacturer as 0.5mm. SuperLig[®] 639 resin functions by extracting the sodium-pertechnetate salt pair from either acidic or basic solutions. Capacities of \approx 15 mg of Re per gram of dry resin were observed for perrhenate (ReO₄⁻) removal from 2.35 <u>M</u> NaNO₃ solutions at pH 9 and pH 12 (Bruening, 1999a). The solutions contained 120 mg/L Re (added as NaReO₄), 3.57 m<u>M</u> Na₄Fe(CN)₆ and 0.577 m<u>M</u> Na₂CrO₄, and were pH adjusted using NaHCO₃ and Na₂CO₃.

The resin was slurried into the columns in DI water. The bed height was 6.0 cm, giving a bed volume of 4.7 mL, and a length-to-diameter ratio (L/D) of 6. The ratio of the test column diameter (D_c) to the diameter of the resin beads (D_p) was approximately 20:1, which is consistent with the minimum D_c/ D_p ratio to avoid wall-effects during small-scale column tests. When received, duplicate portions (0.5 g each) of the wet resin were dried in an oven at 85 °C until the mass of successive weightings was reasonably constant. This allowed a determination of the F factor, which is the ratio of the mass of the dried exchanger to the mass of the wet exchanger. The bed density was determined previously (Kurath et al., 1999b) by weighing approximately 10 ml of exchanger in a 50 mL graduated cylinder. Based on an as-received bed density of 0.5 g/mL and an F factor of 0.978 the dry mass of SL-639 in each column is estimated to be 2.3 g. The columns were prepared for loading by flushing them with 14.4 BV (67.5 mL) of 1 <u>M</u> NaOH. This was done primarily to flush water from the beds to prevent precipitation of solids on introduction of the feed.

Figure 2.1. Technetium Removal Column System

2.3 Feed Preparation

The Department of Energy acquired a sample of the waste from tank AW-101 during May 1998, taking samples through a single riser and from five different depths within the waste liquid phase. These were received at Battelle's High Level Radiation Facility (HLRF) during the 4th quarter of 1998. The homogenization, dilution, and subsampling of this sample is described in Urie et al. (1999). The diluted AW-101 sample was then processed in a single tube cross-flow filter to remove entrained solids using a 0.1 micron sintered metal Mott filter (Brooks et al., 1999). The diluted feed added to the filtration unit had a sodium concentration of 6.5 <u>M</u> as determined by ICP-AES (Urie et al. 1999). Due to dilution from residual water in the filtration unit, the permeate was determined to have a sodium concentration of 6.05 <u>M</u> (Brooks et al. 1999). The clarified AW-101 sample was then transferred from the HLRF to the Shielded Analytical Laboratory (SAL) hot cells and diluted with DI water to a target concentration of 4.6 <u>M</u> sodium in preparation for Cs ion exchange testing. Following Cs ion exchange, described in Kurath et al. (1999a), the feed was removed from the hot cell and transferred to a radiological hood containing the Tc removal column system. The density of the technetium removal feed was determined with a 25 mL volumetric flask and a 4 place analytical balance.

Approximately 0.5 mCi of 95m Tc ($t_{1/2} = 61$ days, decays to stable 95 Mo) was added to 2.2L of feed as ammonium pertechnetate (NH₄TcO₄) in 1 <u>M</u> NH₄OH to act as a tracer to follow the progress of pertechnetate (TcO₄⁻) removal. The amounts of NH₄TcO₄ and NH₄OH added to the waste (4.1E-05 g and 0.875 g) are not expected to significantly change the physical or chemical properties of the waste. The amount of 95m Tc added to the waste (2.2E-05 g) is small relative to the 99 Tc already in the waste sample (8.4E-03 g), and is not expected to change the Tc removal behavior of the waste. The additional 95 Mo produced by decay is also not expected to change the waste properties.

Previous work has indicated that there may be 15% - 20% inextractable ⁹⁹Tc in AW-101 that is assumed to be a non-pertechnetate Tc species (Blanchard et al., 2000a). This work also showed that there was little or no conversion of a ^{95m}Tc pertechnetate tracer to non-pertechnetate species for several months after addition to the feed. Because the amount of the ^{95m}Tc tracer added to the samples is very small relative to the amount of ⁹⁹Tc already present (less than 0.3%) the added tracer is not expected to change the observed K_d's. It acts only as an indicator of the pertechnetate behavior.

2.4 Experimental Procedure and Conditions

The experimental conditions for each process step are shown in Table 2.1. In general the flow rates were maintained as close as possible to the values recommended in the test specifications (Johnson, 1999, Rev. 0). In some steps process solution volumes used were greater than those recommended in an attempt to ensure adequate flushing of the system, as, for instance, in the column preparation with 1.0 <u>M</u> NaOH. The total lead column eluant volume was also increased in order to achieve the cutoff criteria of $C/C_0 = 0.01$ for elution, where C_0 is the concentration of ⁹⁹Tc in the feed, and C is the concentration of ⁹⁹Tc in the sample of interest. Only the lead column was eluted. The bed preparation, loading, feed displacement and DI water rinse steps were conducted by passing these solutions through both resin beds connected in series. The elution and elution rinse were conducted on only the lead column, but the final step, regeneration, was again conducted on both columns in series. The second column was left loaded with ⁹⁹Tc in order to investigate, in a subsequent test (Blanchard et al., 2000b), the effect of changing the waste feed while loading a bed of SL-639, as per BNFL test specifications (Johnson, 1999, Rev. 0).

		Total Vol,	Flow Rate,	Time
Process step	Solution	BV (mL)	BV/hr (mL/hr)	(hr)
Column prep	1.0 <u>M</u> NaOH	14.3 (67.5)	10.6 (50)	1.4
Loading	AW-101 Feed	262 (1232)	6.1 (28.8)	42.8
Feed displacement	0.1 <u>M</u> NaOH	8.5 (40)	7.3 (34.2)	1.2
DI water rinse	DI water	6.7 (100)	3.1 (47)	2.1
Elution (lead col)	0.5 <u>M</u> HNO ₃	69.8 (329)	1.0 (4.9) / 3.0 (13.9)	39.4
1 st Eluant rinse (lead col)	DI water	6.2 (29.2)	6.1 (28.6)	1.0
2 nd Eluant rinse (lead col)	DI water	6.0 (28.1)	6.0 (28.1)	1.0
Regeneration	0.25 <u>M</u> NaOH	5.9 (27.9)	5.9 (27.9)	1.0

All steps generally proceeded as expected, with the exception of the elution. This was expected to require approximately 10 hours to reach $C/C_0 = 0.01$, based on the test specifications (Johnson, 1999, Rev. 0), but was found to proceed much more slowly. The elution rate was increased after approximately 24 hours to limit the cost of the run, as per discussion with the BNFL Pretreatment Technical Manager. The elution was halted after approximately 33 hours, at the end of normal business hours on a Friday afternoon before a long holiday weekend, again to limit the costs incurred, and again as per discussion with the BNFL Pretreatment Technical Manager. The column was rinsed with DI water to prevent the possibility of reaction of the acid eluant with the organic resin over the long weekend. The elution was restarted and completed after a four-day shutdown on the next business day.

The adjustable plungers at the top of each column were used to minimize the volume of solution above each of the resin beds. The bed volumes changed less than 0.2 cm (0.16 mL or 3.3 %) during the run. The height of liquid above the beds was kept to less than 0.5 cm (0.4 mL).

The sampling and analysis protocol is shown in Table 2.2. The TcO_4^-C/C_0 was determined in all samples by counting the ^{95m}Tc gamma emission at 205 KeV with a portable GEA instrument. The C/C₀ were determined by taking the ratio of the peak areas of the feed and the effluent samples. The feed sample was recounted periodically (at least every 24 hours) to minimize the effects of the ^{95m}Tc decay on the C/C₀ calculations. This method allowed near real time analysis of the samples. The response time was limited by the rate at which samples could be removed from the hood. The ⁹⁹Tc activities were determined in selected samples by ICP-MS after the run was concluded. The sodium and other metal concentrations were determined with ICP-AES. The OH⁻ concentration was determined by titration with hydrochloric acid.

Process Step	Lead Column	Lag Column	Approx Sample	Analyses	
	BV	BV	Vol (mL)		
Column prep	-	-	-	-	
Loading	Every 20 BV	Every 40 BV	2	ICP-MS	
Feed displmt	-	Every 1 BV	5	ICP, ICP-MS, OH-	
DI water rinse	-	Every 1 BV	5	ICP, ICP-MS, OH-	
Elution	Every 1 BV/ 3 BV	-	5/15	ICP-MS	
Eluant rinse	Every 1 BV	-	5	ICP-MS	
Regeneration	-	1 composite	28	ICP, ICP-MS, OH-	
Composite Samples					
Effluent	-	-	5	ICP-MS	
Eluate	1 composite	-	17.5	ICP-AES, TOC, ICP-MS	

During the loading phase, the treated effluent was collected in an effluent bottle except for the small (2 mL) analytical samples that were taken. A composite sample from the effluent bottle was analyzed for ⁹⁹Tc by ICP-MS. The rest of the samples were collected in approximately 1 BV aliquots, except that the eluant samples collected while running at 3 BV/hr were collected in approximately 3 BV increments. A composite sample of the eluate was prepared and submitted for ICP-MS, ICP-AES and TOC.

Batch contacts of the SL-639 resin with the AW-101 feed were performed to assess the equilibrium distribution of pertechnetate between the feed and resin. The contacts were performed at a phase ratio of approximately 100 (liquid volume to exchanger mass). Typically, 0.05 g of exchanger was contacted with 5 mL of solution. The exchanger mass was determined to an accuracy of 0.0001 g. The waste volume was transferred by pipette and the actual volume was determined using the mass difference (accuracy of 0.0001 g) and the solution density. Agitation was provided by a back-and-forth shaker set at 250 - 300 cycles per minute for 72 hours. The temperature was not controlled but was generally $24 (\pm 1)^{\circ}$ C over the course of the 3-day contacts.

Solutions were analyzed by GEA to determine the initial and final ^{95m}Tc activities, which were assumed to be proportional to the corresponding pertechnetate concentrations. Only the ^{95m}TcO₄⁻ distribution was assessed – none of the samples were analyzed for ⁹⁹Tc. Contacts were performed using the feed as received and also spiked with ⁹⁹TcO₄⁻ to make two additional feed samples with higher concentrations of ⁹⁹Tc. Results of previous contacts of SL-639 with AW-101 feed (Kurath et al., 1999b; $[Na^+] = 6.59 \text{ M}$, more concentrated than the feed used in the tests reported here) were used to estimate the ⁹⁹Tc spike required to give a final ⁹⁹Tc concentration close to the initial, unspiked feed. The second spike was chosen to give a final ⁹⁹Tc concentration approximately 10X larger than this. All contacts were run in duplicate and blank samples (i.e., without the ion exchange resin) were used to determine the initial ^{95m}Tc activities. The batch distribution coefficient, K_d (with units of mL/g), was determined for each contact using the relationship;

$$K_d = \frac{(C_0 - C_1)}{C_1} * \frac{V}{M * F} \quad ,$$

where C_0 and C_1 are the initial and final activities, respectively, of the ^{95m}Tc, V is the volume of the liquid sample (mL), <u>M</u> is the mass of the ion exchanger (g), and F is the mass of a sample of the resin after drying divided by the mass before drying. Two samples were used for the F factor determination, and were collected when the resin samples for the contacts were prepared in order to eliminate mass differences due to atmospheric conditions.

The λ value is the number of column volumes of feed processed in a column flow test when C/C₀ = 50%, and is a direct indicator of the effective capacity of the resin. It may be predicted from a batch contact distribution coefficient, K_d, by the relationship $\lambda = K_d * \rho_B$, where ρ_B is the bed density of the resin in the waste. The bed density was previously found to be 0.5 g/mL (Kurath et al., 1999b). The experimental λ values from breakthrough curves were determined from a fit of the breakthrough data on a probability plot above 120 CV, where the data appeared to form a straight line on the plot. Initial DF's were calculated as C_0/C_1 , where C_1 is the concentration in the first sample collected from each column.

3.0 RESULTS AND DISCUSSION

3.1 Feed Composition

The composition of the Tc removal feed is shown in Table 3.1. The concentrations of Na, K, Al, and Cr were determined by analysis of a sample of the Cs ion exchange feed by ICP-AES. The effluent from the Cs ion exchange was used as feed for the Tc removal test. The only significant change is expected to be Cs removal. The Al and Cr are assumed to be oxo-anions on the basis of the waste chemistry. Other anion concentrations were determined in a sample of the Tc removal feed by IC, except carbonate and hydroxide, which are estimated on the basis of the known sample dilution from component concentrations given in the characterization report (Urie et al. 1999). The feed had a light yellow color, probably due to the presence of chromate (CrO_4). The ⁹⁹Tc activity was determined in a sample of the Tc removal feed by ICP-MS. The total anion normality, 5.5 N, is 10% higher than the total cation normality, 5.0 N. This difference is within the experimental and analytical error.

Cations, <u>M</u>				
Na ⁺	4.59			
K ⁺	0.39			
	Anions, <u>M</u>			
AlO_2 (2)	0.411			
Br	<3E-3			
Cl	7.53E-2			
CO ₃ ²⁻	0.13 (1)			
$CrO_{4}^{-2}(2)$	8.4E-4			
F	5.37E-2			
NO ₂	1.01			
NO ₃	1.50			
OH	2.2 (1)			
PO ₄ -3	<4E-3			
SO4 ⁻²	7.2E-3			
Oxalate	< 5E-3			
⁹⁹ Tc a	and Competing Ion Ratios			
⁹⁹ Tc, μCi/L (mg/L)	64.1 (3.75)			
NO ₃ ^{-/99} Tc mole ratio	3.78E+4			
$CrO_4^{-2/99}$ Tc mole ratio	22.2			
Solution Density, g/mL	1.228			
1) Estimated from the dilu BNFL-RPT-003, Rev 0	ted feed characterization data reported in PNWD-2463,			
2) Al and Cr determined b	by ICP-AES. Anionic form is assumed on the basis of			
waste chemistry.				
3) The raw analytical results may be found in the appendix.				

Table 3.1. Composition of Envelope A (AW-101) Tc Column Feed

3.2 Loading (Tc Breakthrough Curves), Feed Displacement and Water Wash

Column loading with the diluted AW-101 sample was started immediately after the column preparation with 1.0 <u>M</u> NaOH. The initial 1.8 BV of effluent was not collected. This prevented most of the holdup of approximately 3 BV of 1.0 <u>M</u> NaOH in the system from being mixed with the AW-101 effluent. Small samples (about 2 mL) were collected from the lead column every 20 BV of feed and from the lag column every 40 BV of feed. The initial samples were collected from the columns after just 10 BV to determine the maximum decontamination factors (DFs). The DF of a sample is defined as C_0/C . The loading phase generally went well except for some leakage of air into the lag column, as indicated when the air-liquid interface dropped below the top of the bed. (The air most likely leaked in around the adjustable plunger seal, since feed was observed to leak past this seal in the opposite direction in previous tests.) At approximately 12 BV the loading was stopped for 27 minutes to remove this air from the lag column. The air did not appear to get into the resin beds and there was no discernable discontinuity in the breakthrough curve.

The ⁹⁹Tc and ^{95m}Tc concentrations in the load effluent samples are shown in Figure 3.1 as C/C₀ (as %) vs. the bed volumes of feed processed through each column. The C₀ value for ⁹⁹Tc was found to be 64.1 μ Ci/L (3.75 mg/L). The initial ^{95m}Tc C₀ measured with the portable GEA was 1820 counts/min/mL of sample. This decayed to 1664 counts/min/mL of sample by the end of the run. The raw ⁹⁹Tc ICP-MS data and ^{95m}Tc GEA data and associated calculations may be found in the appendix. The C/C₀ % values are plotted on a log-probability scale. Ideal breakthrough curve data for an ion exchange resin under diffusion limited conditions gives a straight line when plotted on this scale (Buckingham, 1967). The C/C₀ value of 0.42 (i.e., 42%) is marked on the plot. This corresponds to the expected maximum allowed effluent concentration needed to meet the LAW glass ⁹⁹Tc limit of 0.1 Ci/m³.

Results for ^{95m}Tc and ⁹⁹Tc are significantly different early in the run. The first ⁹⁹Tc C/C₀ value for the lead column and the first two for the lag column are all very near 3% (3.2%, 2.9% and 3.4%, respectively). These are significantly higher than the corresponding ^{95m}Tc C/C₀ values (0.6%, 0.2%, and 1.3%, respectively). The ⁹⁹Tc is believed to be present in both pertechnetate and non-pertechnetate species, as shown previously for samples from this and other tanks (Schroeder et al., 1995; Blanchard et al., 1997; Blanchard et al., 2000a; Blanchard et al., 2000b). In these studies it was shown that ReillexTM–HPQ anion exchange resin (Reilly Industries, Inc.), ABEC 5000 sorbent (Eichrom Industries, Inc.) and SL-639 (IBC Advanced Technologies, Inc.) are partly or completely ineffective for removal of these non-pertechnetate species. The results shown in Figure 3.1 corroborate this result for SL-639. Most of the 3% initial breakthrough of ⁹⁹Tc is probably due to the non-pertechnetate species that are present, while the lower values for the ^{95m}Tc pertechnetate tracer indicate that the initial pertechnetate breakthrough was less than 1%. Removal of the non-pertechnetate by the second column was not significant, as the ⁹⁹Tc values for the first samples from the first and second column (0.2%) than on the first column (0.6%) for these first samples, indicating additional removal of pertechnetate by the second column.

Figure 3.1. ⁹⁹Tc and ^{95m}Tc Breakthrough Curves, First and Second Columns

The maximum DFs for ⁹⁹Tc for the first and second columns (derived from the ⁹⁹Tc concentration in the first sample from each column) are 31 and 35. The corresponding maximum DFs for pertechnetate (similarly derived from the ^{95m}Tc C/C₀ in the first sample from each column) are 180 and 433. The large difference between the ⁹⁹Tc and the ^{95m}Tc maximum DFs is a result of ⁹⁹Tc in the non-pertechnetate that passes unextracted through both columns, as discussed above.

The ⁹⁹Tc λ value for the lead column is 235; the ^{95m}Tc λ value for the lead column is 213. These are the same within the experimental error, indicating that the effect of the relatively low non-pertechnetate concentration on the Tc λ was not observable at 50% breakthrough in this test. Breakthrough on the second column at the conclusion of the loading phase was sufficiently low (approximately 15%) that extrapolation to determine the λ values for the second column is not practical.

The distribution coefficient for pertechnetate was estimated from batch contacts to be between 470 mL/g and 660 mL/g. (See Appendix A for data). The predicted pertechnetate lead column λ value is therefore calculated to be between 235 and 330. The observed λ value for ^{95m}Tc is at the low end of this range and that for ⁹⁹Tc is below the range. The latter result is expected, since the ⁹⁹Tc results include the effect of any non-pertechnetate Tc present. The presence of non-pertechnetate Tc reduces the number of column volumes processed before reaching C/C₀ = 0.5, since the gradually increasing pertechnetate breakthrough rides on top of a constant breakthrough of non–pertechnetate Tc that begins immediately on loading.

The breakthrough curves are linear on the log-probability scale after the first few points. The deviation for the first few points is toward higher C/C₀ than expected based on extrapolation of the linear region observed later in the run. This is probably mostly due to mixing of the feed with the residual conditioning solution (1 <u>M</u> NaOH) in the bed. The conditioner is much lower ionic strength than the feed, and SL-639 is less effective for pertechnetate removal at lower feed ionic strengths. The ⁹⁹Tc curves also deviate from linearity due to the presence of non-pertechnetate ⁹⁹Tc, which breaks through immediately.

The overall ⁹⁹Tc DF was 12.6, as determined from the concentration of ⁹⁹Tc in the feed and in the composite from the loading effluent. The overall pertechnetate DF was 24.4, and was determined from the activity of ^{95m}Tc in the feed and the composite from the loading effluent. The concentration of ⁹⁹Tc dropped from 64.1 μ Ci/L (3.75 mg/L) in the feed (Table 3.1) to 5.1 μ Ci/L (0.298 mg/L) in the effluent composite. The concentration in the effluent composite is less than 1/5 the expected maximum allowed concentration needed to meet the LAW glass ⁹⁹Tc limit of 0.1 μ Ci/m³.

The initial ⁹⁹Tc breakthrough observed in this test (approximately 3%) is very close to that observed during Phase IA testing by Hassan and McCabe (1997; 2.4% to 2.9%). A comparison of pertechnetate results from this test with corresponding results of Hassan and McCabe cannot be made, as a pertechnetate tracer was not used in their test. Similarly, λ values cannot be compared, as a C/C₀ of only 11.3% was reached in that test.

Both beds were flushed with 8.5 BV of 0.1 <u>M</u> NaOH at 7.3 BV/hr to displace the feed prior to elution. (Direct contact of the feed and the eluant, 0.5 <u>M</u> HNO₃, would result in precipitation of some of the feed components.) The feed displacement was followed by a de-ionized (DI) water rinse of 6.2 BV at 6.2 BV/hr. The ⁹⁹Tc and ^{95m}Tc concentrations in feed displacement and DI water rinse effluent samples taken after the second column are shown in Figure 3.2 as C/C_0 % vs. the bed volumes of feed processed through the columns. The C/C_0 % values of the feed displacement samples drop off slightly from the last load value from the second column. It appears that some of the Tc is being removed from the columns during this phase. Technetium removal is significant during the DI water rinse - the C/C_0 % values rise rapidly after a 3 - 4 BV lag as the caustic feed displacement solution is flushed from the columns. The observed Tc removal during the DI water rinse is consistent with information provided by the SL-639

resin manufacturer that decreasing the ionic strength of the solution contacting the resin will elute it. Savannah River Technology Center personnel (Westinghouse Savannah River Company, Aiken SC) have demonstrated water elution of rhenium (King et al., 2000) and technetium (Hassan and McCabe, 1997) from SL–639 resin.

Figure 3.2. ⁹⁹Tc and ^{95m}Tc C/C₀, for Feed Displacement and DI Water Rinse

The concentrations of sodium (Na), potassium (K), aluminum (Al) and hydroxide (OH) in the feed displacement and DI water rinse are shown in Figure 3.3. The concentrations of the Na, K, and Al are indicated on the left axis in μ g/mL; the OH molarity (M) is shown on the right axis. Both axes are logarithmic scales in order to clearly show the roughly 100 fold decrease in concentrations. The samples were taken from the effluent line after the lag column, after the solutions had passed sequentially through both columns. Every other sample was analyzed. Analytical results and calculations may be found in the appendix.

No effort was made to clear the holdup from the column system before collection of the feed displacement samples. The concentrations of Na, K, and Al in the first two feed displacement samples (corresponding to the first 4 BV) are the same, within error, as they are in the feed. The color of the first few samples was also the same color as the feed. Based on these observations, the first 4 BV were relatively pure feed being flushed from the system. This is slightly more than the estimated 3 BV system holdup volume (Section 2.1), and may indicate that the estimate is slightly low.

The displacement of the feed is reasonably sharp, with the concentrations of K, Al, P and Cr dropping by 85% during the 8.5 BV caustic wash. The concentrations of these elements dropped by another 85% during the 6 BV DI water rinse.

Figure 3.3. Component Concentrations in Feed Displacement and DI Water Rinse Samples

3.3 Elution, Eluant Rinse and Regeneration

The lead column was eluted with 0.5 <u>M</u> nitric acid at the completion of the DI water rinse. The eluate was collected initially in 1 BV increments, and later in 3 BV increments, as described below. The lead column was rinsed with DI water before a break in its elution, and then again at the completion of the elution. Both columns were flushed with 0.25 <u>M</u> NaOH (6 BV, 6 BV/hr) for regeneration following the final rinse of the lead column. All the regeneration effluent was collected in a single batch. The ^{95m}Tc C/C₀ for each sample was determined soon after collection (generally within an hour). The ⁹⁹Tc concentrations in selected samples were determined later by ICP-MS. The elution, elution rinse and regeneration data are shown in Figure 3.4. The Y axis is a logarithmic scale to clearly show the large range of C/C₀ values. (Note that these are <u>not</u> %C/C₀ values.)

The elution was interrupted for 20 minutes after the first BV when it appeared that the eluant level had dropped below the top of the bed. (This proved to be an optical illusion - the bed was well covered.) The subsequent sample had a very high C/C_0 , probably due to buildup of Tc in the eluant as it sat in the bed during the interruption.

Figure 3.4. Elution, Eluant Rinse and Regeneration of Lead Column

The elution proved very slow, with the ^{95m}Tc C/C₀ peaking at 6.6 in the 16th BV, and still at 4.9 in the 23rd BV. (The ⁹⁹Tc C/C₀ also peaked in the 16th BV, at 7.4, and was 4.4 in the 24th sample. Every fourth sample was analyzed for ⁹⁹Tc.) The flow rate was increased to 3 BV/hr after the 23rd BV, as described in Section 2.4 above, and samples were collected in 3 BV batches. There does not appear to be a significant change in the elution rate on a bed volume basis. Therefore if time is a concern, it appears that the bed may be eluted three times faster without decreasing the amount of Tc eluted per BV of eluant. The elution was stopped after 49 BV (approx. 33 hours after the elution was begun), at a ^{95m}Tc C/C₀ of 0.23 (⁹⁹Tc C/C₀ of 0.30). The lead column was rinsed with 4 BV of DI water at 6 BV/hr before shutting down for just over 110 hours (4 1/2 days). The Tc C/C₀ values in the 1 BV samples drop off significantly during this rinse, suggesting that water is not as effective an eluant as the 0.5 <u>M</u> HNO₃.

The ^{95m}Tc C/C₀ of the first sample (3 BV) collected when the acid elution was restarted after the break is the same as the last rinse sample before the break (0.054 and 0.051, respectively). This first sample is mostly rinse water left in the bed during the break. The ^{95m}Tc C/C₀ of the second sample (which should be mostly acid eluant) collected after the break rises dramatically to 0.1. Both the low C/C₀ of the first (water) sample (which had 110 hours to extract Tc from the resin) and the much higher C/C₀ of the second (acid eluant) sample support the initial observation that the acid is a better eluant than water. However, tests by the manufacturer (Bruening, 1999a; Bruening, 1999b) show that DI water at elevated temperature elutes perrhenate (ReO₄⁻, a surrogate for TcO₄⁻) faster than either acid or water at room temperature.

The Tc C/C₀'s dropped an order of magnitude over the next 7 hours of the elution to reach 0.01 (both ^{95m}Tc and ⁹⁹Tc) at 70 BV of the acid eluant. (The water rinse before the break added 6 BV to the total volume of liquid through the bed.) The flow rate was again 3 BV/hr and samples were collected in 3 BV batches. The columns were then rinsed with 6 BV of DI water at 6 BV/hr, and the rinse effluent was collected in 1 BV increments. The ^{95m}Tc C/C₀ dropped almost two orders of magnitude during this rinse, while the ⁹⁹Tc C/C₀ dropped only one order of magnitude. This difference is probably due to error in the ^{95m}Tc data, as the count rates were extremely low. The ^{95m}Tc C/C₀ values during the rinse are below the elution cutoff of C/C₀ = 0.01. The concentration of ⁹⁹Tc in the last eluate sample was 0.70 μ Ci /L (0.041 mg/L) and 0.12 μ Ci /L (0.007 mg/L) in the last rinse sample.

The eluate samples were combined to produce a 344.2 mL (73.2 BV) composite, and a subsample of this composite was submitted to the analytical laboratory for a number of analyses. The results are shown in Table 3.2. Sodium (Na), at 108 ug/mL or 4.7 mM, was the dominant component found by ICP-AES, and was the only one present above the BNFL specified minimum reportable quantity (MRQ). Other significant components may have leached from the glassware used to hold the samples (Si, B). The total organic carbon was 43 μ g C/mL, which falls below the MRQ. Analysis for total inorganic carbon (i.e., carbonate) was not performed, as the eluate was 0.5 M nitric acid and no appreciable inorganic carbon is expected to be found in a solution of this acidity. The MRQ levels for the anionic components determined by IC were met except for F and Cl. The detection limits for these anions were relatively high due to the high nitrate concentration. Nitrate, at 30,600 ug/mL (0.49 M), was the only anion detected. Technetium-99, ^{95m}Tc and ⁹⁰Sr were the dominant radionuclides, and only ⁹⁹Tc, at 136 μ Ci /L (7.98 mg/L), was above the MRQ. The detection limits for all radionuclides not detected were below their MRQ levels. The ^{95m}TcO₄⁻ C/C₀ was 2.44, as determined using the portable GEA.

ICP		BNFL			
(Components	MRQ	Anions a	nd Carbon	BNFL MRQ
	µg/mL	µg/mL		µg/mL	µg/mL
Al	7.46	7.50E+01	TOC	43	1.50E+03
Ba	[0.030]	7.80E+01	TIC	Not determined	1.5E+02
Ca	< 0.250	1.50E+02	F	<500	1.5E+02
Cd	< 0.015	7.50E+00	Cl	<500	3.0E+00
Со	< 0.050	3.00E+01	NO ₂	<1000	NMRQ
Cr	1.51	1.50E+01	Br	<500	NMRQ
Cu	< 0.025	1.70E+01	NO ₃	3.06E+04	3.0E+03
Fe	10.7	1.50E+02	SO ₄	<1000	2.3E+03
Κ	23.8	7.50E+01	PO ₄	<1000	2.5E+03
La	< 0.050	3.50E+01	C ₂ O ₄	<1000	NMRQ
Mg	[0.13]	1.50E+02	1		
Mn	[0.15]	1.50E+02			
Мо	< 0.050	9.00E+01	Radio	nuclides	BNFL MRQ
Na	108	7.50E+01	1	µCi/mL	µCi/mL
Ni	1.34	3.00E+01	Cs -137	6.61E-05	9.00E+00
Pb	< 0.100	3.00E+02	Cs -134	<2.E-05	NMRQ
Si	16.7	1.70E+02	Sr-90	1.47E-03	1.50E-01
Sn	<1.500	1.50E+03	Тс-99	1.36E-01	1.50E-03
Ti	< 0.025	1.70E+01	Tc-95m	9.76E-02	NMRQ
U	<2.000	6.00E+02	Am-241	<6.E-05	7.20E-04
Zn	[0.12]	1.65E+01	Eu-154	<5.E-06	2.00E-03
В	8.41	NMRQ	Eu-155	<7.E-05	9.00E-02
Р	[0.24]	NMRQ	Total Alpha	<2.E-03	2.30E-01
Notes:	aluma of aluata - 25	2.5 mI			

Table 3.2. Analysis of Eluant Composite and Minimum Reportable Quantities

Total volume of eluate = 353.5 mL

MRQ = minimum reportable quantity

NMRQ = no minimum reportable quantity

Overall error is estimated to be within +/-15%

Values in brackets are within 10-times the detection limit and errors are likely to exceed +/- 15%

Tc-95m (61 day half-life) activity measured as of 11/17/99, 3:00 PM PST

Both beds were regenerated with 6 BV of 0.25 <u>M</u> NaOH at a flow rate of 6 BV/hr. The regeneration effluent was collected in one batch. The ⁹⁹Tc concentration was found to be 0.07 μ Ci /L (0.004 mg/L), for a C/C₀ of 0.001. The pertechnetate (^{95m}Tc) C/C₀ was found to be 0.002. Results of various analyses of a sample of the regeneration effluent batch are shown in Table 3.3.

	Concentration, µg/mL	Concentration, M
Na	3226	0.14
K	Not detected	-
Al	3.3	1.2E-4
OH	-	0.115
⁹⁹ Tc	0.067 nCi/mL	4.0E-8
Density, g/mL	-	1.005

Table 3.3. Composition of Regeneration Solution

3.4 Mass Balance for ⁹⁹Tc and Estimate of ⁹⁹Tc Remaining on Columns

A mass balance for ⁹⁹Tc is shown in Table 3.4. Total ⁹⁹Tc recovery is only 73% since the second column was loaded but not eluted, as discussed in Section 2.1. Even so, the majority (63%) of the ⁹⁹Tc was found in the eluate stream from the first column.

Sample	⁹⁹ Tc, mg	% of ⁹⁹ Tc in Feed Sample
Feed	4.62	100
Effluent	0.37	7.95
Load Samples	0.04	0.80
Feed Displacement	0.03	0.54
DI Water Rinse	0.01	0.31
Column #1 Eluate	2.92	63.3
Column #1 DI Water Rinse	0.00	0.00
Column #1 Regeneration	0.00	0.00
Total ⁹⁹ Tc Recovered	3.37	72.9

Гаble 3.4.	Mass	Balance	for	⁹⁹ Tc
------------	------	---------	-----	------------------

An estimate of the amount of ⁹⁹Tc left on columns 1 and 2 is given in Table 3.5. The total ⁹⁹Tc loaded was determined from the ⁹⁹Tc in the feed sample processed minus the ⁹⁹Tc in the effluent composite and the effluent samples. The total eluted was taken as the total removed by the feed displacement, the DI rinse, elution, elution rinse, and regeneration. The calculation shows that after regeneration 27% of the Tc originally in the feed sample processed remains on the columns.

The amount of Tc initially loaded on column 1 was estimated by integrating the breakthrough curve, and is shown in the table (with the "calc'd" notation to indicate a calculated value). Subtracting the total eluted gives the amount of ⁹⁹Tc left on column 1 after elution: 0.28 mg, or 6.1% of that in the feed sample processed. (The error due to elution of the second column by the feed displacement, DI rinse and regeneration should be small.)

An estimate for the amount of 99 Tc on column 2 may also be made by subtracting the estimate for column 1 from the total left on both columns. The 0.97 mg estimate is a significant percentage (21%) of the 99 Tc in the feed sample.

Source Term	⁹⁹ Tc, mg	% of ⁹⁹ Tc in Feed Sample
Total loaded (both columns)	4.21	91.3
Total eluted	2.96	64.2
Left on columns (both)	1.25	27.1
Loaded on Col 1 (calc'd)	3.24	70.3
Total eluted	2.96	64.2
Left on Col 1	0.28	6.10
Left on Col 2	0.97	21.0

Table 3.5.	Estimates	of ⁹⁹ Tc	Left on	Columns	1 and 2

The capacity of SL-639 for Tc-99 when loading from the AW-101 feed used is calculated as approximately 2.5 mg Tc-99 per gram of dry resin.

4.0 CONCLUSIONS AND RECOMENDATIONS

- Small column testing with SL-639 indicates that sufficient ⁹⁹Tc decontamination of Tank 241-AW-101 (Envelope A) waste can be obtained to easily meet the LAW glass limit of 0.1 Ci/m³. An overall DF of 12.6 was obtained using two 4.7 mL columns in series, providing an effluent with 5.1 μ Ci /L (0.298 mg/L) ⁹⁹Tc. This is less than 1/5 the expected maximum allowed concentration needed to meet the LAW glass ⁹⁹Tc limit of 0.1 Ci/m³.
- The maximum pertechnetate DFs for the first and second columns were 180 and 433, as determined from the C/C_0 of the ^{95m}Tc pertechnetate tracer in the first samples taken from the columns (after approx. 10 BV). The overall pertechnetate DF, determined from the C/C_0 of ^{95m}Tc for a sample of the effluent composite, was 24.4.
- The maximum ⁹⁹Tc DFs for the first and second columns were 31 and 35, as determined from the C/Co of ⁹⁹Tc in the first samples taken from the columns at 10 BV. The ⁹⁹Tc DFs are much lower than the corresponding ^{95m}TcO₄⁻DFs; the difference is attributed to non-pertechnetate ⁹⁹Tc in the sample.
- The feed displacement (0.1 <u>M</u> NaOH) volume of 8.5 BV followed by the 6 BV DI water rinse was sufficient to adequately flush feed and residual caustic from the columns prior to the start of elution. The concentrations of feed components dropped by 85% during the feed displacement, and by another 85% during the DI water rinse. While these volumes are larger than the assumed flow sheet volumes, it should be noted that the test system has a total system holdup in the pumps, valves and tubing equal to at least 3 bed volumes of resin. A smaller holdup volume would likely allow a reduction in the required amount of feed displacement and DI water rinse solutions. The DI water rinse was observed to elute Tc. Therefore it is recommended that the DI water rinse be terminated at a volume equal to the system holdup (3 4 BV for the system used in these tests).
- Elution of the technetium-loaded columns with 0.5 <u>M</u> nitric acid was very slow. The concentration of ⁹⁹Tc peaked in the 16^{th} BV at $C/C_0 = 7.4$. A total of 70 BV were required to reach the elution end point of $C/C_0 = 0.01$. Testing of elution with DI water or nitric acid at elevated temperature is recommended to determine if this will increase the elution rate.
- The SL-639 was regenerated with 6 BV of 0.25 <u>M</u> NaOH. The regeneration effluent was collected in one batch, in which the ⁹⁹Tc concentration was found to be 0.07 μ Ci /L.
- Fouling of the resin bed or exchanger was not observed.

5.0 REFERENCES

Blanchard, D.L., G.N. Brown, S.D. Conradson, S.K. Fadeff, G.R. Golcar, N.J. Hess, G.S. Klinger, and D.E. Kurath, 1997. *Technetium in Alkaline, High-Salt, Radioactive Tank Waste Supernate: Preliminary Characterization and Removal.* PNNL-11386, January 1997, Pacific Northwest National Laboratory, Richland, Washington.

Blanchard Jr., D.L., W.E. Lawrence, D.E. Kurath, and G.R. Golcar, 2000a. *Technetium Removal from Hanford Tank Wastes: Results of Ion Exchange and Sorption Tests*. PNNL-xxxx, Pacific Northwest National Laboratory, Richland, Washington. (In preparation.)

Blanchard Jr., D.L., D.E. Kurath, and B.M. Rapko, 2000b. *Small Column Testing of SuperLig 639 for Removing* ⁹⁹*Tc from Hanford Tank Waste Envelope C (Tank 241-AN-107)*. PNNL-3028, Pacific Northwest National Laboratory, Richland, Washington.

Brooks, K.P., P.R. Bredt, G.R. Golcar, S.A. Hartley, M.W. Urie, J.M. Tingey, K.G. Rappe, and L.K. Jagoda, 1999, *Ultrafiltration and Characterization of AW-101 Supernatant and Entrained Solids*, April 1999, BNFL-RPT-002, Pacific Northwest National Laboratory, Richland, Washington.

Bruening, R.L., 1999a. *Initial Report to Dr. J.D. McKinney, BNFL, on Tasks* 1 - 5. IBC Advanced Technologies, Inc, American Fork, Utah.

Bruening, R.L., 1999b. *Final Report to Dr. J.D. McKinney, BNFL, on Phase A ReO*⁴ Work. IBC Advanced Technologies, Inc, American Fork, Utah.

Buckingham, J.S., 1967. *Waste Management Technical Manual*. ISO-100 DEL, Hanford Atomic Products Operation, Richland, Washington.

Hassan, N.M., and D.J. McCabe, 1997. *Hanford Envelope A Tank Waste Ion Exchange Column Study*. SRTC-BNFL-019, Rev 0. Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, South Carolina.

King, W.D., D.J. McCabe, and N.M. Hassan, 2000. *Evaluation of SuperLig 639 Resin for the Removal of Rhenium from Hanford Envelope A Simulant*. BNF-003-098-0140, Rev 0. Savannah River Technology Center, Westinghouse Savannah River Co. Aiken, South Carolina.

Kurath D.E., D.L. Blanchard, and J.R. Bontha, 1999a. *Small Column Ion Exchange Testing of SuperLig* 644 for Removal of Cs-137 from Hanford Tank Waste Envelope A (241-AW-101). PNWD-3001, Battelle, Pacific Northwest Division, Richland, Washington.

Kurath D.E., D.L. Blanchard, and J.R. Bontha, 1999b. *Ion Exchange Distribution Coefficients for* ¹³⁷Cs and ⁹⁹Tc removal from Hanford Tank Supernatants AW-101 (Envelope A) and AN-107 (Envelope C). PNWD-2467, Battelle, Pacific Northwest Division, Richland, Washington.

Johnson, M.E., 1999. *River Protection Project Ion Exchange Test Specification*. TSP-W375-99-00013, BNFL Inc., Richland, Washington.

Schroeder, N. C., S. D. Radzinski, J. R. Ball, K. R. Ashley, S. L. Cobb, B. Cutrell, and G. Whitener. 1995. *Technetium Partitioning for the Hanford Tank Waste Remediation System: Anion Exchange Studies for Partitioning Technetium From Synthetic DSSF and DSS Simulants and Actual Hanford Waste (101-SY and 103-SY) Using Reillex™-HPQ Resin.* LA-UR-95-4440, Los Alamos National Laboratory, Los Alamos, New Mexico.

Urie, M.W., J.J. Wagner, L.R. Greenwood, O.T. Farmer, S.K. Fiskum, R.T. Ratner, and C.Z. Soderquist, 1999. *Inorganic and Radiochemical Analysis of AW-101 and AN-107 "Diluted Feed" Materials*. PNWD-2463, Battelle, Pacific Northwest Division, Richland, Washington.

APPENDIX A

Sample ID	Description
A1-Tc-0	Initial feed sample
A1-Tc-L1 through L14	Loading samples from lead column
A1-Tc-P1 through P7	Loading samples from lag column
AW-101 Tc IX Effluent – 1	Effluent composite container
A1-Tc-PW1 through PW7	Feed displacement samples
A1-Tc-PR1 through PR6	DI water rinse samples
A1-Tc-E1-1 through E1-32	Lead column eluate samples before break
	(1-23 @ 1BV/hr, 24-32 @ 3 BV/hr)
A1-Tc-E1-R1 through R4	Lead column eluant rinse samples before break
A1-Tc-E1-R5	First eluant sample after break (mostly water)
A1-Tc-E1-33 through E1-39	Lead column eluate samples after break
	(all @ 3 BV/hr)
A1-Tc-E1-R6 through R11	Lead column eluant rinse samples after break
A1-Tc-RN01, Regen Comp	Regeneration effluent composite samples

Appendix A: Sample Identification

Distribution

No. of Copies

OFFSITE

No. of Copies

ONSITE

1	R. Bruening
	IBC Technologies
	856 E. Utah Valley Drive
	American Fork, UT 84003

1 P. McGinnis Oak Ridge National Laboratory PO Box 2008 Oak Ridge, TN 37831-6273

- 1 B. Moyer Oak Ridge National Laboratory PO Box 2008 Oak Ridge, TN 37831
- N. C. Schroeder Los Alamos National Laboratory PO Box 1663 MSIN J514 CST11 Los Alamos, NM 87545

5	British Nuclear Fuels, Limited		
	M. E. Johnson (4)	BN-FL	
	A. Thompson	BN-FL	
13	Pacific Northwest National Lab	ooratory	

3Pacific Northwest National Laboratory
D. L. Blanchard Jr. (2)P7-25J. R. BonthaK6-24D. E. Kurath (2)P7-28E. V. MorreyP7-28Information Release Office (7)K1-06

APPENDIX A

Sample ID	Description
A1-Tc-0	Initial feed sample
A1-Tc-L1 through L14	Loading samples from lead column
A1-Tc-P1 through P7	Loading samples from lag column
AW-101 Tc IX Effluent – 1	Effluent composite container
A1-Tc-PW1 through PW7	Feed displacement samples
A1-Tc-PR1 through PR6	DI water rinse samples
A1-Tc-E1-1 through E1-32	Lead column eluate samples before break
	(1-23 @ 1BV/hr, 24-32 @ 3 BV/hr)
A1-Tc-E1-R1 through R4	Lead column eluant rinse samples before break
A1-Tc-E1-R5	First eluant sample after break (mostly water)
A1-Tc-E1-33 through E1-39	Lead column eluate samples after break
	(all @ 3 BV/hr)
A1-Tc-E1-R6 through R11	Lead column eluant rinse samples after break
A1-Tc-RN01, Regen Comp	Regeneration effluent composite samples

Appendix A: Sample Identification

A B			0	0		4	9	I	-	1	×	-	M	2	0	4	¢
a of SL-639 with AW-101 feed for Tc removal.	9 with AW-101 feed for Tc removal.	01 feed for Tc removal.	Tc removal.	+	1		,			2	4	-	Σ	z	0	2	3
1 fracer used to follow progress of various process ste Start Date and Time: Bad volume col 1-	ed to follow progress of various process ste Start Date and Time: Bad volume col 1-	rogress of various process ste nd Time: 6	6 6	ste 6	ps. /29/99	9:00 		The effluent v pumped throu taken from co column # 2 th sample of inte	volumes on wi ugh the colum olumn # 1 and he effluent vole erest (sample	hich the bed vol ins at the time o # 2 prior to the ume includes th s taken from co	furmes are base of sampling. Fo sample of inte in mass of the fumn # 1 did no	id were determin in column #1 this rest (the mass or waste in the effu of go through col	includes the f the effluent t uent bottle + th umn # 2.	ining the total r mass of the wa ottle was reco	nass and calc liste in the effu rded during ea	ulating the volun tent bottle + the tch sample even n #2 prior to the	ne of was samples t). For the
Bed volume col 2= Bed volume col 2= Empty Eff Bit w/ cap(w / hole) = 4 Empty Eff Bit w/ cap(w / hole) = 1 Supernate Density = 1 Feed analyses: Tc-99, uC/mL Tracer: Tc-95m, activity at various time	Bed volume col =	col =	hole) = 4 vaste = 1 //mL various time	time 4 - 1 - 4	.7 565.4 .8 1.228	mL g BV (g/ml) m in table.		The system F effluent was (flush out the I been approx too high for th	oldup is estin diverted into th holdup volum 8.3 mL = 1.8 he 2nd columr	nated to be 2 BV ne waste jug for e. The mass of BV. So given th samples.	V to the sample 10 minutes wi effluent from the estimates for	the for the 1s the term of the terms of the terms and the holdup, the the holdup, the the holdup, the the terms of t	tt column, and at 50 mL/hr (c determined, b BV scale sho	3 BV to the sa ontroller set at It from the pun uld be about rig	mple valve for 99) at the star up speed and pht for the 1st	the 2nd column t of the loading , the duration, it n column samples	The sycle to tust have and 1 B
Pump Speed: 60 (approx 30 mL/	Pump Speed: 60 (approx 30 mL/	60 (approx 30 mL/	60 (approx 30 mL/l		nr or	6 CV/hr)											
dose rate, Vial column 1 Sample date sample time time	dose rate, column 1 Sample date sample time time	elaps Sample date sample time time	elaps sample time time	elaps	pe	sample vial + cap (tare)	mass of sample + vial + cap	sample mass counted	sample volume counted	Count date	Count start time	file name	count time	gross counts	Net counts	back ground	Tot cts bck
mRem/hr (hr:mm:s)	mRem/hr (hr:mm:s)	(hr:mm:s)	(hr:mm:s)	ľ	(hr)	6	Б	8	шL		•••		min				
) (Ct only)	0/23/33 3:00:00	0/23/33 3:00:00	9:00:00	ö	000	16.8532	23.0428	6.1896 6.1896	5.0404	06/29/99	12:02:48	A1TcF01 A1TcF02	ທີ່	53215 54298	45247	00	4524
D (Ct only)						16.8532	23.0428	6.1896	5.0404	06/30/99	22:22:44	A1TcF0R	15	160680	137072	0	137075
0 (Ct only)				-		16.8532	23.0428	6.1896	5.0404	07/01/99	6:39:22	A1TcF03	5	52982	45059	0	45059
6/29/99 10:45:30 1.7	6/29/99 10:45:30 1.7	6/29/99 10:45:30 1.7	10:45:30 1.7	1.1	58	16.5044	18.9227	2.4183	1.9693	06/29/99	13:31:39	A1TcL01	S	1860	86	0	6
L2 6/29/99 14:32:00 5.0	6/29/99 14:32:00 5.0	6/29/99 14:32:00 5.0	14:32:00 5.0	5.0	683	16.2144	18.5044	2.2900	1.8648	06/29/99	13:47:30	A1TcL02	S	2273	130	0	73
	7 6/29/99 17:53:00 8.42 7 6/20/00 21112:00 117	6/29/99 17:53:00 8.40 6/20/00 21:12:00 11 7	17:53:00 8.40	8.4.8	23	16.4306	18.7387	2.3081	1.8796	06/23/99	19:09:44	A1TcL03	ŝ	3345	1517	0	151
11 0/23/33 21/12/00 11/12 15 7 6/20/00 0-32-00 15 00	7 6/20/00 0.32-00 15 00	6/20/00 0.33-00 12.00	0-32-00 15 06	15.051	2 2	10.21/0	18.002/	2.3257	1.8939	66/67/90	19:50:20	AllcL04	ω,	4350	2341	0	234
L6 7 6/30/99 3:52:00 18.41	7 6/30/99 3:52:00 18.41	6/30/99 3:52:00 18.41	3:52:00 18.41	18.41	2 1	16.3493	18 7523	2 4030	1 9568	66/62/90	10:60:52	A11CL05	2 4	13060	8501	0 0	850
L7 - 6/30/99 7:16:00 21.81	- 6/30/99 7:16:00 21.81	6/30/99 7:16:00 21.81	7:16:00 21.81	21.81	1	16.2651	18.6965	2.4314	1.9800	06/30/99	9:03:19	A1TcL07	0 10	8161	5940		165
L8 8 6/30/99 10:32:00 25.0	8 6/30/99 10:32:00 25.0	6/30/99 10:32:00 25.00	10:32:00 25.01	25.01	83	16.3878	18.2649	1.8771	1.5286	06/30/99	8:56:27	A1TcL08	ۍ ا	7170	4958	0	495
L9 - 6/30/99 13:52:00 28.4	- 6/30/99 13:52:00 28.4	6/30/99 13:52:00 28.4	13:52:00 28.4	28.4	17	16.2774	18.6649	2.3875	1.9442	06/30/99	15:36:27	A1TcL09	2	9734	7382	0	738
	11 6/30/99 17:12:00 31.7	6/30/99 17:12:00 31.7	17:12:00 31.7	31.7	20	16.3582	18.7376	2.3794	1.9376	06/30/98	15:44:38	A1TcL10	5	10546	7894	0	789
	10 6/30/99 20:32:00 35.0 12 6/30/00 23-52:00 38.4	6/30/99 20:32:00 35.0	23-52-00 35.0	30.0	11	16.5041	18.8904	2.3863	1.9432	06/30/99	19:25:50	A1TcL11	ı م	11743	9053	0	306
113 12 7/1/00 3-12-00 41 75	12 7/1/00 3-19-00 41 75	7/1/00 3-12-00 30.41	3-12-00 41 75	41 75		16 2170	0020.01	2.3809	1.9388	00/30/88	22:15:14	ATTCL12	n n	12279	9526	0	62
L14 - 7/1/99 4:14:00 42.78	- 7/1/99 4:14:00 42.78	7/1/99 4:14:00 42.78	4:14:00 42.78	42.78		16.2699	19.2995	3.0296	2.4671	07/01/99	3-55-55	ATTCL13	م ر	13398	10609	00	106
					1. 1971.						(*) compute	time is incol	rrect but tim	e just needs	to be refer	enced to time	of te
Dose Rate elapsed	Dose Rate elapsed	elapsed	elapsed	elapsed		sample vial + cap	mass of sample +	sample mass	sample volume	Date of	Time of			Gross			tet
Vial column 2 Sample date sample time time mR/hr (hr:mm:s) (hr)	column 2 Sample date sample time time mR/hr (hr:mm:s) (hr)	Sample date sample time time (hr)	sample time time (hr:mm:s) (hr)	time (hr)		(tare) g	vial + cap 9	counted	counted mL	counting	counting	file name	count time min	counts	Net counts	back ground	bck
0 6/29/99 9:00:00 0.00 (Ct only)	6/29/99 9:00:00 0.00	6/29/99 9:00:00 0.00	9:00:00 0:00:6	00.00	0	16.8532	23.0428	6.1896 6.1896	5.0404	06/29/99	13:20:59	A1TcF01	u ع	53215	45247	00	4524
(Ct only)						16.8532	23.0428	6.1896	5.0404	06/30/99	22:22:44	A1TCF0R	15	160680	137072	00	13707
6/29/99 10:50:00 1.83	6/29/99 10:50:00 1.83	6/29/99 10:50:00 1.833	10:50:00 1.833	1.83	-	16.3474	18.8926	2.5452	2.0726	06/29/99	13:39:46	A1TcP01	2	1683	43	0	4
PZ 2.5 6/29/99 17:57:00 8.950	2.5 6/29/99 17:57:00 8.950	6/29/99 17:57:00 8.950 6/20/00 0.00 0.00 17 000	17:57:00 8.950	8.950		16.3012	18.6924	2.3912	1.9472	06/29/99	19:18:29	A1TcP02R	15	1825	318	0	30
	2.2 0/23/33 0.36:00 15:6	0.29/99 0.30:00 15.6	0.36.00 15.6	15.6	8	16.3423	18.6720	2.3297	1.8971	06/29/99	23:01:33	A1TcP03	15	5761	662	0	99
0130/39 /:16:15 21.1 05 357 6/30/00 13:58:00 75	357 6/30/90 13-56-00 21.1	6/30/99 13-56-00 21.1	13-56-00 21.1	21.12	16	16.3094	18.7727	2.4633	2.0059	06/30/99	8:47:35	A1TcP04	ن م	2206	680	0 0	69
PG 6 6/30/99 20:36:00 34.55	6 6/30/99 20:36:00 34.52	6/30/99 20:36:00 34.52	20:36:00 34.52	34.5	200	16.3257	18.7268	2.4011	1.9553	06/30/99	19:32:00	ATTCPOR	م ر	3661	1225	20	122
P7 7/1/99 3:16 41.1	7 7/1/99 3:16 41.1	7/1/99 3:16 41.1	3:16 41.1	41.1	87	16.3195	18.8083	2.4888	2.0267	07/01/99	1:52:56	A1TcP07	о с	4909	2715	, o	271

4	æ	5	F	-	>	M	>	>	-	VV	AD AD	VU UV	24	14	
1 Testing of SL-	635							-	-	Ę	2			2	Ŷ
2 Tc-95m tracer L	ISE													-	
														1011	
4 Loading															
10															
															-
	-					-									
,															
-															
2															
3	-														
4			-				1				+	1		-	
					+	4							-	-	
1															
													Tc-99	Total	
				Effluent									Conc ir	n Tc-99	.5
	counts/a of	C/Co	Fff Btt	Mass4		Bed			ICP.MC	CICo			24	14	
Vial	sample/min	Tr-95m	Mace	camplee	Ett Vol		dow well	flow web	Topo	Topo			5	5	
			CCDIM	conduine		AUTINES	albi woll	AND INIT		66-01			Sample	as sample	S
			6	(6)	(mL)		BV/hr	mL/hr	Jm/pu		Notes		ng/mL	6n .	Notes
3 A1-TC-0	1462	1.000	665.4	•	0.0	0.0			3 75		Tiles AM feed	sampa count			
A1-Tc-0 (Ct on	1502	1 000		1							Mind and here				1
		000.							-		ael noon bev	a sample cour	=		
UO IO 0-01-14	IV) 14/10	000.1													
A1-10-0 (CI ON	ly) 1456	1.000													
A1-TC-L1	8	0.006	722.3	59.3	48.3	10.3 -	8 5	275	0 120	0 032	Cap C38 for M	tav DEe	Ċ		
A1-Tc-12	64	0 044	830	180.0	C 111	0 1 0		0.00	2	100.0		0011 00111			
	5	1000		0.001		0.10	2.0	0.62			17 UMON	02:11-20:11)	2.0	0.5	22 Interpolated
AI-10-L3	151	0.090	955	299.2	243.6	51.8	6.1	28.8	0.436	0.116			0.4	4 0.5	22
A1-TC-L4	201	0.138	1066.6	415.5	338.3	72.0	6.1	28.6					90	1 1 2	O Internolater
A1-Tc-L5	298	0 204	1181 9	533 6	A 24 G	00 5		0 80	0 830	0000					
At To Lo				0.000	0.404	0.76		20.3	0.032	0.222			0.8	1.1	4
	200	0.203	1294.5	0.1.00	1.056	112.8	6.1	28.7					1.0	5 2.0	6 Interpolated
A1-1C-L7	489	0.325	1408.2	767.1	624.7	132.9	5.9	27.8	1.27	0.339			1.2	7 2.5	
A1-Tc-L8	528	0.352	1520.8	884.0	719.9	153.2	6.2	29.2					1 3	0	1 Internolated
A1-Tc-L9	618	0.412	1636.5	1002 1	816 1	173 G	1.9	980	1 40	1 207					
A1.To.110	100		0.000			0.001		0.02	Dr	160.0			4.	N	2
	004	0.442	1/40.0	7.6111	811.4	193.9	0	0.82					1.6	3.	3 Interpolated
AI-1C-L11	159	0.514	1864.5	1237.3	1007.6	214.4	6.1	28.8	1.74	0.464			1.7	4 3.5	8
A1-Tc-L12	800	0.542	1978.2	1355.8	1104.1	234.9	6.2	28.9					1.8	7 36	2 Interpolated
A1-TC-L13	900	0.610	2095.2	1475.2	1201 3	255 6	6.9	0 00	1 99	0 531			d		
A1-Tc-L14	849	0 583	2126.0	1512 4	12316	0 0 0 0	0.9	2 00							
	count		2.2.1		2		4.5	2.04					0.2	4.4	o duessimate
		Crom Dow	otop 60	Mou To DE	10.1	00 001		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ļ	10.10				and the second se	
		HOH HOM	23 0313.	Max IC-95	= 12 =	180.39		Max 1c-99	0F =	31.25			Tota	1: 33.2	2 ug
	net		1										Tc-99	Total	
	counts/g of			Effluent									Conc in	Tc-99	-
	sample	C/Co.Tc-	Eff Btl	Mass+		Bed			ICP-MS				112		
Vial	Counted/	95m	Mase	alumes	Eff Vol	volume	flow rate	flow rate	TC-DD	010					
			(T)	aidine		Callinica	Didw Idle	AIPI MOII		00/0		1	sample	s sample	s
A + T - A			(6)	(6)	(mr)		BV/N	mL/nr	ng/mL	ICP-MS	Notes		ng/mL	Bn	
A1-10-0	1462	1.000	665.4						3.750	1.000	Tues AM feed	sample count			
A1-1c-0 (Ct on	y) 1502	1.000									Wed noon feed	1 sample coun			
A1-Tc-0 (Ct on	y) 1476	1.000													
															-
A1-Tc-P1	6	0.002	722.3	59.4	48.4	10.3	5.6	26.4	0.108	0 020	See S54 for Ma	av DFe	.10	1 0.2	0
A1-Tc-P2	0	0.006	955	294.5	0 020	51.0	57	0 90				2			Potological C
A1.Tc-P3		0.013	11010	0 0 0 0	1 20 1	1.00			007.0					2.0	o maipondiani
A1.To.DA					0.074	1.00	2.0	1.02	0.123	0.034				3.0	4
A1 To Dr		100.0	1.0001	0.301	0.210	1.00.4		0.00					0.2	2 0.4	4 Interpolated
	5	100.0	0.0501	203.2	800.7	1/0.4	9.0	2.82	215.0	0.083			0.3	1 0.6	-
A1-TC-P6	156	0.106	1864.5	1213.7	988.3	210.3	6.0	28.1					. 0.4	7 0.9	1 Interpolated
A1-TC-P7	218	0.148	2095.2	1446.8	1178.2	250.7	6.1	28.5	0.620	0 165			0.6.	010	
			ALL DATE OF STREET	and the second second second			and the second se						· · ·		D
		Erom Row	AG data.	May Tr.05	- 20 -	103 001		TO.00		000000			Tatal		-
			TU Vata.	MAA IV VO	- 10 1	400.004		Max IC-JU L	1 = 1	34.122226			10101	100	2 ng

a	net cnts bck	45247 N/A	16183				count time,	22	5	5	5	n u	n n	2				count time.	min	5	ŝ	ŝ	s	20	n u	,
ď	back ground	0 N/A	00					A1TcF03	A1TcPW01	A1TcPW02	A1TcPW03	ATTCPW04	A1TcPW06	A1TcPW07					file name	A1TcF03	A1TcPR01	A1TcPR02	A1TcPH03	A1TcPR04	ATTCPR06	
0	Net counts	45247 N/A	16183				Time of	6:39:22	4:11:12	4:21:25	4:29:38	4:44:43	5:05:55	5:18:46				Time of	counting	6:39:22	5:25:18	5:33:39	5:41:06	5:50:10	8-39-27	
z	gross counts	53215 N/A	22446 39042				Date of	07/01/99	07/01/99	07/01/99	07/01/99	66/10//0	07/01/99	07/01/99	a			Date of	counting	07/01/99	07/01/99	07/01/99	07/01/99	07/01/99	07/01/99	
Σ	count time min	5 N/A	90				Flow Rate,	0.00	8.35	7.67	7.64	CU.1	7.16	6.32				Flow Rate,	BV/hr	0.00	6.58	6.10	5.62	6.11	6.09	
_	file name	A1TcF01 N/A	A1TCF09 A1TCLC03				Eff Vol	0.00	1.39	2.54	3.94	5.12 6.25	7.45	8.50				Eff Vol	(BV)	0.00	1.10	2.11	3.05	4.07	6.22	
×	Time of counting	13.20.59 N/A	9:23:17 10:27:46				Flow Rate,	0.000	39.23	36.06	35.89	32.02	33.66	29.72				Flow Rate,	mL/hr	0.000	30.95	28.65	26.42	28.72	28.64	
7	Date of counting	06/29/99 N/A	09/24/99 09/24/99				Eff Vol	0.000	6.54	11.95	18.53	68 66	35.00	39.95				Eff Vol	(mL)	0.000	5.16	9.93	14.34	19.12	29.22	
-	sample volume counted mL	5.0404 5.0000	20.1028 20.0273				Vol of Waste	5.0404	6.5391	5.4092	6.5805	5.3371	5.6105	4.9528				Vol of Waste	Sample	5.0404	5.1575	4.7749	4.4032	4.7865	4.7740	4.8700
H	sample mass counted	6.1896 N/A	24.6862 24.5935				mass of waste	6.1896	6.5456	5.4146	6.5871	5.3424	5.6161	4.9578 Avg vol:				mass of waste	counted	6.1896	5.1575	4.7749	4.4032	4.7865	4.7740	Avg vol:
σ	mass of sample + vial + cap	23.0428 N/A	41.5158 41.4692				mass of vial + cap + semple	23.0428	22.9638	21.6758	22./3//	22.1591	22.469	21.8615				mass of vial + cap +	sample	23.0428	22.0877	21.6727	21.1590	21.6342	21.6338	
L.	sample vial + cap (tare) g	16.8532 N/A	16.8296			6 CV/hr)	mass of	16.8532	16.4182	16.2612	16.1506	16.8167	16.8529	16.9037			6 CV/hr)	mass of	vial + cap	16.8532	16.9302	16.8978	16.7558	16.8477	16.8598	
ш	elapsed time (hr)	0.000 N/A	N/A N/A		4:29	g/mL mL/hr or	Sampling time (hr)		0.167	0.150	0.167	0.167	0.167	0.167		5:40	0 mL/hr or	Sampling	time (hr)		0.167	0.167	0.167	0.167	0.167	
	sample time (hr:mm:s)	9:00:00 N/A	N/A N/A		7/1/99	1.001 60 (approx 3	sample finish time		4:39	4:48	4:04	5:19	5:29	5:39		7/1/99	60 (approx 3	sample	finish time		5:50	6:00	6:10	02:90	6:40	
υ	Sample date	6/29/99 7/21/99	9/24/99 9/24/99		d Time:	M NaOH @ 21	sample start time (hr:mm:s)		4:29	4:39	4.59	5:09	5:19	5:29		l time		ample start time	(hr:mm:s)		5:40	5:50	6:00	6:20	6:30	
e Analysis	Dose Rate column 2 mR/hr	N/A N/A	N/A N/A	M NaOH	Start Date and	Pump Speed:	Sample date		7/1/99	7/1/99	66/1/2	7/1/99	7/1/99	7/1/99		start date and	num speed:		Sample date		7/1/99	7/1/99	66/1/2	00/1/2	7/1/99	
Effluent Composit	Vial	A1-Tc-0 Effluent	A1-Tc-F01 A1-Tc-LC	Caustic Wash: 0.1			Vial/Bottle	A1-Tc-0 (Ct only)	A1-TC-PW1	A1-IC-PW2	A1-Tc-PW4	A1-Tc-PW5	A1-TC-PW6	A1-1C-PW7	DI water rinse				Vial/Bottle	A1-Tc-0 (Ct only)	A1-Tc-PR1	A1-TC-PR2	A1-IC-PH3	A1-TC-PR5	A1-Tc-PR6	

•

H																	
AG	(F)											1					
AF																	
¥														pa	ha	2	
R					pe	3	D	pe						nterpola	nternolat		ç
P.	Comp DF, Tc-45m	24.4317			Interpolate		Interpolati	Interpolate		5	Total Tc-99 in Eff Samples	Ro	2.61	3.18	4 99 1		14.4.1
8	Comp DF, Tc-90	N/A N/A N/A	Total Tc-99 in Eff Samples	1 64	3.68	4.42	3.06	3.18	2.77	25.08	Tc-99 Conc in Eff Samples		0.506	0.667	1.044		Total:
£	C/Co ICP-MS	0.079 N/A 0.079	Tc-99 Conc in Eff Samples	0 600	0.681	0.672	0.574	0.567	0.560	Total:							
-	ICP-MS Tc-99 ua/mL	3.750 0.298 N/A N/A	A								3	~ ~	1.215083	003006 1	600770.1	1.327037	
-	flow rate mL/hr	A/A A/A A/A	C/Co, Tc-99	1.000	5	0.179	0.153		0.149		C/Co,	1.000	0.135	100.0	177.0	0.336	
<	flow rate BV/hr	A/A A/A A/A	Tc-99, ICP-MS (ug/mL)	3.750	2000	0.672	0.574		0.560		Tc-99, ICP-MS	3.750	0.506	0 827	170.0	1.260	
	Bed volumes	N/A 250.7 N/A 250.7	C/Co, Tc-95m	1.000	0.124	0.122	0.133	0.106	011.0		C/Co,	1.00	0.11	0.13	0.18	0.25	5.5
	Eff Vol (mL)	N/A 1178.2 1178.2	net cnts per mL of sample per min	1788	222	219	237	189	181		net cnts per mL of sample	1788	199	230	330	453	
	Effluent Mass+ sample (q)		per g of sample per min	1456	222	219	237	189	06		net cnts per g of sample	1456	199	230	330	453	233
	Eff Bil Mass (g)	665.4 N/A N/A N/A	Net Area	45059	5999	7203	6330	5314	40/1		Net Area	45059	5120	5490	7891	12050	
	C/Co,Tc- 95m	1.000 N/A 1.000 0.041	Tot	10865	8871	10891	8624	7866	0100		Total	52982	7066	7657 8353	10265	15509	
	net counts/g of sample counted/	1462 N/A 66 3	ack-ground	o o	0	• •	0	0 0	5		backaround	0	0	0 0	0	00	
Effluent Composi	Vial	A1-Tc-0 Effluent A1-Tc-F01 A1-Tc-LC A1-Tc-LC Caustic Wash: 0.1	Vial/Bottle t	A1-TC-PW1	A1-TC-PW2	A1-TC-PW3 A1-TC-PW4	A1-Tc-PW5	A1-TC-PW6		DI water rinse	Vial/Bottle	1-Tc-0 (Ct only)	A1-Tc-PR1	A1-IC-PH2 A1-TC-PR3	A1-Tc-PR4	A1-TC-PR5 A1-TC-PR6	

	υ	٥	ш	ш	B	H	-	٦	×	٢	Σ	z	а 0	o
and Time:		7/1/99	8:21											
ed (start):		11 (approx 5	mL/hr or 1	CV/hr)								1		
f eluant (0.5 M	-	nitric) density @	a 25 °C =	1.014	g/mL									
sample start time		sample	Sampling	mass of vial + cap,	mass of vial + cap +	Mass of	Vol of	Eff Vol	Flow Rate,	Eff Vol	Flow Rate	e, Date of	Time of	count time,
Ite (hr:mm:s)		finish time	time (hr)	6	sample, g	sample, g	Sample	(mL)	mL/hr	(BV)	BV/hr	counting	counting file narr	e min
				16.8532	23.0428	6.1895 6.1896	5.0404	0.000	0.000	0.00	0.00	7/1/99	6:39:22 A1TcF0	°.
				16.8532	23.0428	6.1896	5.0404					66/1//	12:19:05 A11cF0	
				16.8532	23.0428	6.1896	5.0404					217/99	5:21:53 A1TcF0	22.0
6:41		7:41	1.000	16.9643	22.8229	5.8586	5.7777	5.78	5.78	1.23	1.23	7/1/99	8:50:01 altcle0	1
8:06		9:06	1.000	16.8431	22.1519	5.3088	5.2355	11.01	5.24	2.34	1.11	7/1/99	8:58:01 a1tc1e0	2
9:06		10:06	1.000	16.8640	21.5584	4.6944	4.6296	15.64	4.63	3.33	0.99	7/1/99	9:07:26 a1tc1e0	3 5
10:06		11:06	1.000	16.8821	21.5941	4.7120	4.6469	20.29	4.65	4.32	0.99	7/1/99	11:36:37 a1tc1e0	4
90:11		90:21	000.1	16.9240	21.2043	4.2803	4.2212	24.51	4.22	5.22	0.90	7/1/99	11:43:26 a1tc1e0	5
13:06		14-06	1 000	16 8700	7070 10	5 1027	4./168	29.23	4.72	6.22	1.00	7/1/99	11:50:30 a1tc1e0	9 I
14:06		15:06	1.000	16.7595	22.3180	5.5585	5.4818	39.74	5.48	R 46	1.07	66/1//	14:49:04 altcle0	5
15:06		16:06	1.000	16.9156	22.4207	5.5051	5.4291	45.17	5.43	9.61	1 16	7/1/99	14-41-52 attrie0	0 U
16:06		17:06	1.000	16.8998	22.0637	5.1639	5.0926	50.26	5.09	10.69	1.08	7/1/99	15:29:20 altcle1	
17:06		18:06	1.000	17.0360	21.4885	4.4525	4.3910	54.65	4.39	11.63	0.93	7/1/99	16:39:57 a1tc1e1	- -
18:06		19:08	1.033	16.9120	21.7621	4.8501	4.7831	59.44	4.63	12.65	0.98	7/1/99	17:28:12 a1tc1e1	2
80.81		80:02	000.1	16.7441	21.4833	4.7392	4.6738	64.11	4.67	13.64	0.99	7/1/99	18:27:22 a1tc1e1	3
22:18		23:18	1 000	16 8534	21.5418	4 6884	4.0098	79 74	4.81	14.49	1.02	7/2/99	8:27:50 a1tc1e1	10 U
23:18		0:18	1.000	16.6656	21.3797	4.7141	4.6490	77.39	4 65	16.47	06.0	00/0/2	8-34-55 attole1	0 u
0:18		1:18	1.000	16.8305	21.5678	4.7373	4.6719	82.07	4.67	17.46	0.99	7/2/99	8:41:46 a1tc1e1	20
1:18		2:18	1.000	16.9069	21.7336	4.8267	4.7601	86.83	4.76	18.47	1.01	7/2/99	8:51:49 a1tc1e1	8
2:18		3:18	1.000	16.8585	21.6108	4.7523	4.6867	91.51	4.69	19.47	1.00	7/2/99	2:51:26 a1tc1e1	9 5
3.10		4:18	000.1	16.7079	21.3900	4.6821	4.6175	96.13	4.62	20.45	0.98	7/2/99	2:43:52 a1tc1e2	0
4.10 5.18		0.10 81.9	0001	16.9226	21.9600	5.03/4	4.9679 5 3067	101.10	4.97	21.51	1.06	7/2/99	8:03:58 a1tc1e2	1 5
6:18		7:18	1.000	16.9966	22.4677	5.4711	5.3956	111.80	5.40	23 79		66/2//	4:38:00 a1101e2	
7:20		8:20	1.000	16.8983	30.4297	13.5314	13.3446	125.14	13.34	26.63	2.84	7/2/99	7:50:35 attc1e2	
8:20		9:22	1.033	16.9015	31.2079	14.3064	14.1089	139.25	13.65	29.63	2.91	7/2/99	8:10:56 a1tc1e2	5
9:22		10:20	0.967	16.9629	30.6240	13.6611	13.4725	152.73	13.94	32.49	2.97	7/2/99	12:06:46 a1tc1e2	6 5
10:20		11:20	1.000	16.7488	30.0158	13.2670	13.0838	165.81	13.08	35.28	2.78	7/2/99	12:15:17 a1tc1e2	7 5
11:20		12:18	0.967	16.8425	30.2694	13.4269	13.2415	179.05	13.70	38.10	2.91	7/2/99	12:23:27 a1tc1e2	8
12.10		07.01	1111	10.9140	32.5045	10.0905	15.4/39	194.53	13.86	41.39	2.95	7/2/99	11:48:50 a1tc1e2	9
01.11		4.14	0.900	10.90691	29.5409	12.6340	12.4596	206.98	13.84	44.04	2.95	7/2/99	12:40:14 a1tc1e3	0 5
01-4-		2.0	000.1	10.83/4	31.0484	14.2110	7 0001	221.00	14.01	47.02	2.98	7/2/99	13:42:47 a1tc1e3	5
81.01		20:01	0.550	16.7769	24.7880	8.0111	7.9005	228.90	14.36	48.70	3.06	66/2/2	6:32:09 a1tc1e3	2
1:35		6:30	000.1	16.8321	31.0153	14.1832	13.9874	242.89	13.99	51.68	2.98	66/2/2	8:03:51 a1tc1e3	о С
0.00		9.30	10.1	10.7288	31.0254	14.2966	14.0992	256.99	13.87	54.68	2.95	117/99	8:11:46 a1tc1e3	4
90.9		10.00	0.900	10.9/20	31.0854	14.1106	13.9158	270.90	14.15	57.64	3.01	1/7/99	10:02:15 aftcfe3	5
36.11	1	70-01	000.1	10.0404	30.300.90	14.11/5	13.9226	284.82	26.61	60.60	2.96	66/1/1	9:55:03 a1tc1e3	с С
12:37	Ľ	13-42	1 083	16 7350	10 2637	15 5287	15 2142	214 44	13.84	63.64 66 00	2.94	66/1/1	10:55:50 a1tc1e3	5
13:42		14-40	0 967	16 7611	30 4650	13 7048	12 5156	30 7 06	100 01	00.30	0.0	BRILL P	12:01:03 allCle3	n 1
	1	2			0001-000	01010	00000	06.120	02.01	03.10	2.31	BRITI	13:44:23 3110103	0
	10			+			+		Ť					

8 - - - - - - - - - - - - B

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	•		×	s	-	n	>	N	×	>	-	44	AR	AC 1	AD 1	AE T	AC AC	20	VIN
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	07 Flution - 1	et Col.									-	Ę	2	2	2	J.	2	AU.	F
Bit Control Co		INA IS	14																
B Control for many b Contro for many b Control for many b	86	1																	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	66																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	8														-				
Mathematical fragment Train for the sector of	6																		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						net	net cnts											-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $						counts/	per mL of		Tc-99,										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				Total		6	sample	C/C0,	ICP-MS	C/Co,									
Marticle (10 m) 0 3332 4481 1980 1000 Marticle (10 m) 0 3332 4481 1980 1000 Marticle (11 m) 0 3332 4481 3139 1010 Marticle (12 m) 0 4467 3732 1981 1000 3736 1010 Marticle (13 m) 0 3467 3933 3931 3139 1010 1739 1010 Marticle (13 m) 0 4467 3933 3101 2445 3012 3101 1230 Marticle (14 m) 0 19334 1000 3133 1100 2445 3101 1010 1100 Marticle (14 m) 0 13344 1000 1334 1010 1100 <t< td=""><td>00/ DI T 0 10</td><td>e i i</td><td>Dackground</td><td>COUNTS</td><td>Net Area</td><td>sample/</td><td>per min</td><td>I C-95m</td><td>(ng/mL)</td><td>I C-99</td><td>Comments</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	00/ DI T 0 10	e i i	Dackground	COUNTS	Net Area	sample/	per min	I C-95m	(ng/mL)	I C-99	Comments				-				
Mill (1)		(Aluo)		52982	45059	1456	1788	1.000	3.750	1.000									
Bit Trie (1 cm/l) 0 5144 4437 1436 1100 Bit Trie (1 cm/l) 0 5144 4433 1430 1430 1430 1430 1430 1430 1431 1530 1430 1431 1530 1431 1530 1431 1530 1431 1530 1431 1530 1431 1530 1431 1530 1431 1530 1431 1531	NA A1-1C-0 (C	(Aluo 1	0	53547	45441	1468	1803	1.000											
Mart Tree (10 O G0146 4.233 1386 1600 1000 5170 1373 Sample inducedraft and calculate angles collected after (11, 0.000 f) The and all subsequent samples collected after (11, 0.000 f) The and all subsequent samples collected after (11, 0.000 f) Coll Coll <thcoll< th=""> <thcoll< th=""> Coll</thcoll<></thcoll<>	05 A1-Tc-0 (CI	t only)	0	52487	44564	1440	1768	1.000											
MITTEET 0 0775 5307 1916 1437 5110 1373 Sample indovertently collected after 741 to 6006 to check bed 1 MATTEET 0 00047 3373 3319 3110 2445 This and aff subsequent amples collected after 1st column. Funn 741 to 6006 to check bed 1 MATTEETS 0 00047 3373 31033	06 A1-Tc-0 (CI	t only)	0	50146	42333	1368	1680	1.000					F					1	
Bit 17:61:1 0 0001 5327 1493 1332 Sample indeveloped after 1 arrows collected after 372 to column. 21.11:61:1 0 0001 2333 343 233 343 2343 21.11:61:1 0 10314 1103 513 233 341 245 21.11:61:1 0 10314 1103 513 233 341 243 21.11:61:1 0 13314 1103 513 233 341 523 3114 21.11:61:1 0 13314 1120 513 523 353 313 21.11:61:10 0 2133 1130 523 331 523 331 531<	07																		
M1.176 M1.176<	08 A1-TC-E1-1	-	0	60776	3 53207	1816	1842	1 030	5 170	1 379	Sample inad	vertently coll	arted after	and colum	Dumo o	H from 7.1	11 10 8-06	to chock	+ poq
Image: Number of the state of the	09 A1-Tc-E1-2	~	C	446677	7 397578	14078	15188	8 405			This and all	enhearing con	conclusion on	the beter	a data tata a			In check	- nan
Million Band	10 A1-TO-E1-5			10000	70500			0000				manhasnns	samples co	incred and	I ISI COIN	.un			
A. 17-61-13 1 <th< td=""><td></td><td></td><td></td><td>11000</td><td>08081 0</td><td>1600</td><td>0400</td><td>1.923</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td></th<>				11000	08081 0	1600	0400	1.923										1	
Artricete District				+006	010001	0005	1000	620.2	8.170	2.445		+							
Art 1: 6=1:7 0 13314 11303 5501 2.730 5511 2.740 Art 1: 6=1:7 0 13934 10303 5501 5371 5416 6.20 Art 1: 6=1:10 0 25734 19315 6723 3319 105 6.20 Art 1: 6=1:10 0 25730 19375 733 5360 5610 4.320 Art 1: 6=1:12 0 25430 19375 1933 6.20 7.440 Art 1: 6=1:13 0 23434 1911 10043 5.560 5.361 6.427 Art 1: 6=1:13 0 23434 1911 10043 5.560 7.400 4.400 6.627 Art 1: 6=1:14 0 23434 1011 1024 4.400 6.437 M. Art 1: 6=1:16 0 23810 11025 1103 15.700 4.400 6.437 M. Art 1: 6=1:16 0 2381 5201 2440 14.00 14.400 14.		0		123/96	0 109319	5108	5180	2.873		-									
ArtriceTi-7 0 19333 1103 52.0 52.0 53.0 74.0 10.0	13 A1-10-E1-C	9	0	133144	4 118209	4943	5012	2.780											
Altrice[1:9 0 1233(1) 1650 4.320 Altrice Altrice[1:0 2.4773(1) 19193 7163 2433 2413 2410 Altrice[1:1 0 2.4753(1) 19193 7053 5363 5500 6.437 Pump off from &19 to 939 to 1004 5561 6.437 Pump off from &19 to 939 to 1004 515 Altrice[1:1 0 2.4463 1166 1142 6.437 Altrice[1:1 0 2436 516 6.437 Altrice[1:1 0 2437 Altrice[1:1 0 2436 519 1147 Pump off from &19 to 939 to theek bed for air. Altrice[1:3 0 30430 5513 1150 1156 519 15700 4.187 Altrice[1:2 2437 Altrice[1:2 23391 5610 5331 5211 15700 4.187 Altrice[1:2 2437 Altrice[1:2 23391 5513 5211 2440 Altrice[1:2 23391 5513 5211 5411 Altrice[1:2 2437 Altrice[1:2 <t< td=""><td>14 A1-TC-E1-7</td><td>-</td><td>0</td><td>159158</td><td>9 140830</td><td>5520</td><td>5597</td><td>3.104</td><td></td><td></td><td>Pump speed</td><td>increased to</td><td>12 at 1:30 F</td><td>W.</td><td></td><td></td><td></td><td></td><td></td></t<>	14 A1-TC-E1-7	-	0	159158	9 140830	5520	5597	3.104			Pump speed	increased to	12 at 1:30 F	W.					
Altreff:10 0 21736 19186 6806 705 3919 Altreff:11 0 22455 19193 715 6807 506 551 25.600 6.87 Pump coff from 619 to 9.39 to check bed for alt. Altreff:12 0 23455 5504 1064 551 25.600 6.87 Pump coff from 619 to 9.39 to check bed for alt. Altreff:13 0 23455 55104 1064 5514 2001 2446 911 1075	15 A1-TC-E1-8	8	0	192383	3 171058	6155	6241	3.461	16.200	4.320									
Altricelet10 2 2475 1913 713 733 333 506 536 25600 6.827 Pump speed decreased to 11. Altricele11 0 23485 19913 7145 526 25600 6.827 Pump off form 8:19 to 9:39 to check bed for air. Altricel114 0 23485 27109 1126 6.807 7400 Altricel116 0 34385 27109 1126 6.805 27300 7440 Altricel118 0 39436 27109 1126 6.805 27300 7.440 Altricel19 0 39330 27109 1126 6.805 27300 7.440 Altricel19 0 39330 27109 1126 4.100 Pump speed increased to 12 at 4.37 AM. Altricel120 0 27303 5930 5730 4.100 Pump speed increased to 12 at 4.37 AM. Altricel120 0 27303 5930 5740 4.100 Pump speed increased to 30 at 7.20 AM. Approx 15 m/hr. Altricel120	16 A1-TC-E1-5	6	0	215794	1 191826	6969	7067	3.919											
B 11-16-E1-11 0 24465 9973 9073 506 506 6827 Pump off form 8:19 to 339 to check bed for air. 0.4.10-EE-13 0 24468 25644 9911 10043 5574 5560 6827 0.4.10-EE-13 0 23438 1919 1102 1126 1004 556 5560 6.827 0.4.10-EE-13 0 33436 51193 11226 11449 1105 5180 7.440 0.4.10-EE-13 0 30490 52813 1011 11465 5180 7.440 0.4.10-EE-12 0 30490 52139 11011 11465 5190 7.440 0 30490 27304 10011 11465 1570 4.187 15.700 4.187 0 23381 5128 975 15.700 4.100 Pump oped increased to 12.814.37 AM. 0 23381 5128 975 1020 5231 5297 040 1400 1401	17 A1-TC-E1-1	10	0	224753	3 199193	7715	7823	4 339						1					
B Interline D Seeka Sint Sint <th< td=""><td>18 A1-TC-E1-1</td><td>11</td><td>0</td><td>224585</td><td>5 199752</td><td>8973</td><td>9008</td><td>5 046</td><td></td><td></td><td>Pumo speed</td><td>decreased tr</td><td>11</td><td></td><td>-</td><td>1</td><td></td><td>P</td><td></td></th<>	18 A1-TC-E1-1	11	0	224585	5 199752	8973	9008	5 046			Pumo speed	decreased tr	11		-	1		P	
OIL OIL Clice Clice <thclice< th=""> <thclice< th=""> Clice</thclice<></thclice<>	19 A1-TC-E1-1	12	0	254800	1 226645	9346	9477	5 256	25,600	6 827	nondo duna	200000000		-		-			
Intrefertation 0 23355 21680 1055 6087 7.440 7.440 7.440 7.440 7.440 7.440 7.440 7.440 7.440 7.441 7.442 6.500 7.442 6.500 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 7.442 <td>20 A1-TC-E1-1</td> <td>13</td> <td>0</td> <td>264684</td> <td>1 234844</td> <td>9911</td> <td>10049</td> <td>5 574</td> <td></td>	20 A1-TC-E1-1	13	0	264684	1 234844	9911	10049	5 574											
Zitter Eitie 0 20336 5416 1120 <t< td=""><td>21 A1-TC-E1-1</td><td>14</td><td>0</td><td>243252</td><td>215804</td><td>10615</td><td>10764</td><td>6 087</td><td></td><td></td><td>Pumo off fro</td><td>m 8-10 to 0.</td><td>30 to check</td><td>in the bod</td><td></td><td>-</td><td>-</td><td></td><td></td></t<>	21 A1-TC-E1-1	14	0	243252	215804	10615	10764	6 087			Pumo off fro	m 8-10 to 0.	30 to check	in the bod		-	-		
3 1	22 A1-TC-E1-1	15	0	295951	1 264158	11269	11426	6 462											
Alt To ET 17 0 30430; 27313; 11439; 11550; 5380 15700 4.187 Alt To ET 19 0 29397; 27164; 1011; 11166; 5130 4.187 Alt To ET 19 0 29393; 27164; 1011; 11166; 5140 4.187 Alt To ET 120 0 27331; 231643; 1071; 5721 24419 9233 9235 <t< td=""><td>23 A1-TC-E1-1</td><td>16</td><td>0</td><td>304358</td><td>3 271099</td><td>11502</td><td>11663</td><td>6 505</td><td>000 26</td><td>7 440</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	23 A1-TC-E1-1	16	0	304358	3 271099	11502	11663	6 505	000 26	7 440									
Edit Tote E1 18 0 290316 25833 1077 11106 6.134 15.700 4.167 A1.Tote E1 -19 0 293337 261043 1011 11166 6.314 15.700 4.167 A1.Tote E1 -21 0 293331 25163 9976 1011 5.721 Pump speed increased to 12 at 4.37 AM. A1.Tote E1 -22 0 273312 233245 53263 5327 2221 221 2403 165 165 0 450 172 174 402 165 0 450 176 172 174 402 165 0 450 172 174 402 165 0 450 172 174 402	24 A1-TC-E1-1	17	0	304920	72137	11489	11650	6 588						1		-	1		
B A1-Te-E1:19 0 233337 261649 11011 11166 6.314 5.70 4.187 Am A1-Te-E1:20 0 233381 251283 9976 1011 11166 6.314 15.700 4.187 Am A1-Te-E1:22 0 233381 251283 9976 1015 5.295 5295 52334 53245 5626 53334 16.500 4.400 Pump speed increased to 12 at 4.37 Am A1-Te-E1:23 0 53509 47683 7147 4.042 16.500 4.400 Pump speed increased to 12 at 4.37 Am A1-Te-E1:23 0 53509 5395 5295 <td>25 A1-TC-E1-1</td> <td>18</td> <td>0</td> <td>290916</td> <td>3 258838</td> <td>10725</td> <td>10875</td> <td>6.150</td> <td></td>	25 A1-TC-E1-1	18	0	290916	3 258838	10725	10875	6.150											
7 7 1	26 A1-Tc-E1-1	19	0	293937	7 261649	11011	11166	6 314							-			-	
8 11-CE1-21 0 283881 251263 9976 1016 5721 Pump speed increased to 12 at 4:37 AM. 0 17-CE1-22 0 279312 24849 9233 9545 5895 6595 5293 0 17-CE1-24 0 573345 8556 6546 4802 147 402 14.00 Pump speed increased to 30 at 7:20 AM. Approx 15 mL/n. 2 17-CE1-28 0 29573 25215 19673 2547 202 2 17-CE1-28 0 29673 26473 2647 2947 202 2 17-CE1-28 0 29673 2645 389 3590 0.957 2 17-CE1-28 0 14014 10067 1667 3.590 0.957 3 17-CE1-28 0 14014 10067 188 1407 3.590 0.957 3 17-CE1-30 0 14014 10067 284 3030 1.110 0.295 1.110	27 A1-TC-E1-2	50	0	273257	7 242884	10375	10520	5.949	15.700	4.187				·					
9 31-TC-E1-22 0 273312 248419 9233 9362 5 255 0 31-TC-E1-23 0 265316 5 23345 6546 4889 7400 Pump speed increased to 30 at 720 AM. Approx 15 mL/hr. 2 31-TC-E1-24 0 536316 5 3393 5211 2 947 4.400 Pump speed increased to 30 at 720 AM. Approx 15 mL/hr. 2 31-TC-E1-25 0 23673 2393 3001 1.657 3.590 0.957 3 17-C-E1-26 0 23073 2221 2347 2221 3440 1.657 3.590 0.957 5 17-C-E1-28 0 14014 100767 1284 1302 0.727 3.590 0.957 5 17-C-E1-29 0 14014 100767 1284 1302 0.727 3.590 0.957 5 17-C-E1-29 0 14014 100767 1284 1302 0.720 1.110 0.7299. Elution rinse samples collected subsequently on 7/299. 5 17-C-E1-32 0 1766 586 594 0.03 1.	28 A1-TC-E1-2	12	0	283881	1 251263	9266	10116	5 721			Pumo sneed	increased to	17 at 4.37	W				10.0	
Image: Name of the state of the st	29 A1-Tc-E1-2	22	0	279312	248419	9233	9362	5.295			and the						ľ		
I All TC-E1-24 0 535809 47683 7049 7147 4.042 16.500 4.400 Pump speed increased io 30 at 7.20 AM. Approx 15 mL/hr. 2 All TC-E1-25 0 243311 367629 5133 5211 2.947 2 All TC-E1-25 0 243731 367629 5133 5211 2.947 2 All TC-E1-26 0 222155 19652 3133 3001 1.697 2 All TC-E1-29 0 140014 100765 1288 3001 1.697 2 All TC-E1-29 0 140014 100765 1288 1060 3540 0.737 2 All TC-E1-29 0 0 140014 100767 1284 1302 0.737 2 All TC-E1-29 0 140014 100767 1289 0.037 1310 0.2366 1110 0.2366 Last elution sample collected on 77/99. Flution rinse samples collected subsequently on 7/ 2 All TC-E1-31 0 177 168 170 0.101 110 0.2366 Last elution sample coll	30 A1-TC-E1-2	23	0	262516	3 233245	8526	8646	4.889											
AltTo-EI-25 0 413511 367629 5139 5211 2947 AltTo-EI-26 0 296731 264326 3873 3227 2221 AltTo-EI-27 0 296731 264326 3873 3297 2221 AltTo-EI-27 0 296731 264326 3873 3390 0.957 AltTo-EI-27 0 14095 12489 1302 0.737 3590 0.957 AltTo-EI-29 0 14014 100767 1284 1302 0.737 AltTo-EI-29 0 140610 2495 831 843 0.477 AltTo-EI-30 0 60610 52495 831 843 0.477 AltTo-EI-31 0 1793 1.110 0.296 1.110 0.296 AltTo-EI-132 0 15270 12517 177 179 0.107 AltTo-EI-135 0 1567 0.101 0.296 1.110 0.296 1.110 1.110	31 A1-TC-E1-2	24	0	535809	9 476883	7049	7147	4.042	16.500	4.400	Pump speed	increased to	30 at 7.20	AM Anoro	c 15 ml /hr				
3 3 17-C=E1-26 0 296731 264526 3873 3927 2.21 4 17-C=E1-28 0 222155 12489 1667 3.590 0.957 5 17-C=E1-28 0 14014 100767 1284 1302 0.77 5 17-C=E1-29 0 14014 100767 1284 1302 0.77 5 17-C=E1-29 0 14014 1286 1302 0.77 5 17-C=E1-29 0 14014 1286 1302 0.77 5 140 526 534 0.336 1.110 0.296 Last elution sample collected on 7/299. Elution rinse samples collected subsequently on 7/ 6 17-C=E1-33 0 15270 12517 177 179 0.101 2 17-C=E1-33 0 15270 12517 177 179 0.101 2 17-C=E1-33 0 1520 12817 177 0.101 0.101	32 A1-TC-E1-2	25	0	413511	367629	5139	5211	2.947											
4 1-Tc-E1-27 0 222155 1962 1697 1.667 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.957 3.590 0.356 3.31 3.33 0.71 3.591 3.587 3.587 3.83 0.477 3.590 0.957 5.51 0.71 3.591 0.71/99 First elution sample collected on 7/299. Elution rinse samples collected subsequently on 7/3 3.71/10 3.71/99 9.017 3.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107 7.71/99 9.0107	33 A1-Tc-E1-2	26	0	296731	1 264526	3873	3927	2.221											
A1-TC-E1-28 0 140952 12489 1860 1865 1.067 3.590 0.957 A1-TC-E1-29 0 114014 100767 1284 1302 0.737 0.477 A1-TC-E1-30 0 0 14014 100767 1284 1302 0.737 A1-TC-E1-30 0 0 147657 1284 1302 0.737 A1-TC-E1-31 0 147657 168 9.30 0.316 1.110 0.296 Last elution sample collected on 7/7/99. Funp speed 30, approx 15 mL/hr. A1-TC-E1-32 0 15270 12517 177 179 0.101 A1-TC-E1-32 0 15270 1297 168 170 0.101 A1-TC-E1-32 0 1570 1297 168 170 0.101 A1-TC-E1-32 0 1460 11977 168 170 0.101 A1-TC-E1-35 0 9520 1297 168 170 0.101 0.205 A1-TC-E1-35 <td>34 A1-TC-E1-2</td> <td>27</td> <td>0</td> <td>222155</td> <td>5 196294</td> <td>2959</td> <td>3001</td> <td>1.697</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>T</td> <td></td> <td></td>	34 A1-TC-E1-2	27	0	222155	5 196294	2959	3001	1.697									T		
A1-TC-E1-29 0 114014 100767 1284 1302 0.737 7 A1-TC-E1-30 0 60610 52495 831 843 0.477 333 A1-TC-E1-31 0 60610 52495 831 843 0.477 A1-TC-E1-32 0 17939 15267 382 387 0.236 A1-TC-E1-32 0 17939 15267 382 387 0.236 A1-TC-E1-33 0 15270 12517 177 179 0.107 A1-TC-E1-34 0 15270 12517 177 179 0.107 A1-TC-E1-35 0 15270 12517 177 179 0.107 A1-TC-E1-35 0 14600 11977 168 170 0.101 A1-TC-E1-35 0 542 0.061 0.001 0.001 0.001 A1-TC-E1-35 0 436 0.010 0.001 0.024 0.010 0.010	35 A1-TC-E1-2	28	0	140952	124889	1860	1886	1.067	3.590	0.957									
Al-TC-E1-30 0 60610 52495 831 843 0.477 0 41-TC-E1-31 0 47-TC 0 47-E1-32 0 15270 15287 382 387 0.336 1.110 0.296 Last elution sample collected on 7/299. Elution rinse samples collected subsequently on 7/ 0 Al-TC-E1-33 0 15270 15287 179 0.107 First elution sample collected on 7/799. Pump speed 30, approx 15 mL/hr. Al-TC-E1-34 0 1527 168 170 0.101 0.296 Last elution sample collected on 7/799. Pump speed 30, approx 15 mL/hr. Al-TC-E1-34 0 15287 168 170 0.101 0.296 Last elution sample collected on 7/799. Pump speed 30, approx 15 mL/hr. Al-TC-E1-35 0 5822 40 0.001 0.001 0.003 0.011 0.011 0.011 0.011 0.011	36 A1-Tc-E1-2	59	0	114014	1 100767	1284	1302	0.737								-			
8 A1-Tc-E1-31 0 47657 41640 586 594 0.336 9 A1-Tc-E1-31 0 17939 15287 382 387 0.336 9 A1-Tc-E1-32 0 17517 177 177 170 0.0296 Last elution sample collected on 7/799. Flution rinse samples collected subsequently on 7/ 0 15270 15317 177 179 0.107 First elution sample collected on 7/799. Pump speed 30, approx 15 mL/hr. 0 15270 1937 168 170 0.101 102 0.601 2A1-Tc-E1-35 0 9148 7091 101 102 0.601 2A1-Tc-E1-35 0 9252 4187 59 60 0.036 40 0.024	37 A1-Tc-E1-3	30	0	60610	52495	831	843	0.477											
9 A1-Tc-E1-32 0 17939 15287 382 387 0.230 1.110 0.296 Last elution sample collected on 7/2/99. Elution rines samples collected subsequently on 7/ 0 A1-Tc-E1-33 0 15270 12517 177 177 0.107 First elution sample collected on 7/7/99. Pump speed 30, approx 15 mL/hr. 0 14600 11977 168 170 0.01 120 2A1-Tc-E1-34 0 91460 11977 168 170 0.101 2A1-Tc-E1-34 0 9148 7091 101 102 0.601 2A1-Tc-E1-35 0 9148 7091 101 102 0.036 2A1-Tc-E1-35 0 59 60 0.036 104 0.024 2A1-Tc-E1-37 0 4268 2872 40 0.024 177 2A1-Tc-E1-37 0 4268 2872 40 0.024 10.024 2A1-Tc-E1-38 0 3411 1913 25 26 0.024 <td>38 A1-Tc-E1-3</td> <td>31</td> <td>0</td> <td>47657</td> <td>41640</td> <td>586</td> <td>594</td> <td>0.336</td> <td></td> <td></td> <td></td> <td></td> <td>14</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	38 A1-Tc-E1-3	31	0	47657	41640	586	594	0.336					14						
0 15270 12517 177 179 0.107 First elution sample collected on 7/7/99. Pump speed 30, approx 15 mL/hr. 1 1 1 1 0 101 100 0.101 1 1 1 10 0.101 101 101 101 1 1 1 10 0.01 101 102 101 2 1 1 102 0.01 102 101 102 2 1 1 1 102 0.024 1036 101 102 101 2 1 <td< td=""><td>39 A1-Tc-E1-3</td><td>32</td><td>0</td><td>17939</td><td>1 15287</td><td>382</td><td>387</td><td>0.230</td><td>1.110</td><td>0.296</td><td>Last elution</td><td>sample colle</td><td>acted on 7/2</td><td>/99. Flutio</td><td>n rinse s</td><td>amples or</td><td>llected su</td><td>hsequent</td><td>7 uo 7</td></td<>	39 A1-Tc-E1-3	32	0	17939	1 15287	382	387	0.230	1.110	0.296	Last elution	sample colle	acted on 7/2	/99. Flutio	n rinse s	amples or	llected su	hsequent	7 uo 7
1A1-TC-E1-34 0 14600 1977 168 170 0.101 2A1-TC-E1-35 0 9148 7091 101 102 0.061 2A1-TC-E1-35 0 9148 7091 101 102 0.061 4A1-TC-E1-36 0 59 60 0.0366 102 0.036 4A1-TC-E1-36 0 4262 40 0.024 10 102 0.036 4A1-TC-E1-36 0 3411 1913 25 25 0.015 11 1913 25 25 0.015 11 10.011 10.11 10.11 10.11 10.11 10.011 1	0 A1-Tc-E1-3	33	0	15270	1 12517	177	179	0.107			First elution	sample colle	cted on 7/7	amud 66	Speed 30	annrox	15 ml /hr		5
2 A1-Tc-E1-35 0 9148 7091 101 102 0.061 3 A1-Tc-E1-36 0 5822 4187 59 60 0.036 4 A1-Tc-E1-37 0 4268 2872 40 40 0.024 4 A1-Tc-E1-37 0 3411 1913 25 26 0.015 5 41 1913 25 25 0.015 0.011 0.011	11 A1-TC-E1-3	34	0	14600	11977	168	170	0.101								un data			
3 1 <th1< th=""> 1 <th1< th=""> <th1< th=""></th1<></th1<></th1<>	42 A1-Tc-E1-3	35	0	9148	1 7091	101	102	0.061											
A1-Tc-E1-37 0 4268 2872 40 60 0.024 5A1-Tc-E1-38 0 3411 1913 25 25 0.015 5A1-Tc-E1-38 0 3411 1913 25 25 0.015 5A1-Tc-E1-39 0 2505 1045 15 0.003 0.011	43 A1-Tc-E1-3	36	0	5822	4187	59	60	0.036										-	
5A1-Tc-E1-38 0 3411 1913 25 26 0.015 6A1-Tc-E1-39 0 2505 1045 15 15 0.041 0.011	14 A1-Tc-E1-3	37	0	4268	3 2872	40	40	0.024											
6 A ¹ T _C -E ¹ -39 0 2505 1045 15 15 0.009 0.041 0.011	15 A1-Tc-E1-3	38	0	3411	1913	25	25	0.015								-			
	6 A1-TC-E1-3	66	0	2505	1045	15	15	0 009	0.041	0.011									
	2	-										•	-		-				

	<	B	υ	٥	ш	F	9	т	-	7	×	ſ	W	z	0	4	0
149 Elutio	on rinse DI	water Start Date a Pump Speed:	nd Time:	7/2/99 60 (approx 30	15:57 0 mL/hr or	6 CV/hr)											
152 Vié	al/Bottle	Sample Date	sample start time (hr:mm:s)	sample finish time	Sampling time (hr)	mass of vial + cap	mass of vial + cap + sample	Mass of sample	Vol of Sample	Eff Vol (mL)	Flow Rate, mL/hr	Eff Vol (BV)	Flow Rate, BV/hr	Date of counting	Time of counting	file name	count time,
53 A1-To	-0 (Ct only) -0 (Ct only)					16.8532 16.8532	23.0428 23.0428	6.1896 6.1896	5.0404 5.0404	0.000	0.000	00.00	0.00	07/07/99	5:21:53 5:49:35	A1TcF06 A1TcF07	ω w
556 1st rit 556 1st rit 558 A1-Tc 559 A1-Tc 60 A1-Tc	nse - 7/2/95 -E1-R1 -E1-R2 -E1-R2 -E1-R3 -E1-R4 -E1-R5	7/2/99 7/2/99 7/2/99 7/2/99	15:57 16:07 16:17 16:27 6:55	16:07 16:17 16:27 16:37 7:35	0.167 0.167 0.167 0.167 0.167 0.667	16.7912 16.7268 16.9852 16.7851 16.8606	21.5907 21.4222 21.7578 21.5930 26.0810	4.7995 4.6954 4.7726 4.8079 9.2204	4.7995 4.6954 4.7726 4.8079 9.2204	4.80 9.49 14.27 19.08 28.30	28.80 28.17 28.64 28.85 13.83	1.02 2.02 3.04 4.06 6.02	6.13 5.99 6.09 6.14 2.94	07/07/0 99/70/70 99/70/70 99/70/70	6:43:37 6:50:35 6:57:48 7:24:45 7:34:24	not saved not saved not saved not saved not saved	ດດດດດ
200 665 A1-Tc 665 A1-Tc 665 A1-Tc 665 A1-Tc 69 A1-Tc 70 A1-Tc	rinse - 7/7/95 ≻:E1-R6 ≻:E1-R7 ≻:E1-R8 ≻:E1-R9 ≻:E1-R10 ≻:E1-R10	66/2/2 66/2/2 66/2/2 66/2/2	14:40 14:50 15:00 15:10 15:20 15:30	14:50 15:10 15:10 15:20 15:20 15:30	0.167 0.167 0.167 0.167 0.167 0.167 0.167	16.8815 17.0319 16.8614 16.8737 16.7674 16.9511	20.9464 21.6228 21.7121 21.7121 21.7311 21.7311 21.9388	4.0649 4.5909 4.8507 4.5944 4.9637 4.9637	4.0649 4.5909 4.8507 4.5944 4.9637 4.9637	4.06 8.66 13.51 18.10 23.06 28.05	24.39 27.55 29.10 29.78 29.93	0.86 1.84 2.87 3.85 4.91 5.97	5.19 5.86 6.19 5.87 5.87 6.34	07/08/99 07/08/99 07/08/99 07/08/99 07/08/99 07/08/99	6:00:49 6:09:53 6:19:35 6:19:35 6:37:40 6:43:54 6:50:16	A1Tc1R06 A1Tc1R07 A1Tc1R08 A1Tc1R08 A1Tc1R109 A1Tc1R10 A1Tc1R110	ດດດດດດ
80082222222222222222222222222222222222	n Composit	e Analysis Samples cor Composite s Density of co Volume of co Volume of co Volume of co Volume of co Volume of co Volume of co	nposited: ample bottle mposite (89.5° mposite (1 no of composite vol of composite	label: % 0.5 M HNO3 samples were site:	3, 10.5% DI e removed:	water)	- A1-Tc-PR5, SL639/AW10 1.013 366.55 348.65 344.18	A1-Tc-PR6, D1 Eluate C g/mL g1 mL	A1-Tc-E1-1 omposite (Estimated (77.949 73.229	through -39 assuming ide BV BV	, and A1-Tc aal mixing.)	EI-R1 throug	E SF				
50	Vial	Dose Rate column 2 mR/hr	Sample date	sample time (hr:mm:s)	elapsed time (hr)	sample vial + cap (tare) q	mass of sample + vial + cap q	sample mass counted q	sample volume counted mL	Date of counting	Time of counting	file name	count time	gross counts	Net counts	back ground	net cnts bck
33 A1-Tc 34 A1-Tc 35 A1-Tc	-F01 -EC1	N/A N/A	9/24/99 9/24/99	N/A N/A	NIA NIA	16.8296	41.5158 37.1562	24.6862 20.4042	20.1028 20.1423	10/01/99	14:49:28	A1TCF10 A1TcEC01	a a	26684 38702	19383 32568	00	19383 32568
21 Hegen	teration - 0.2	5 M NaOH Start Date ar Pump Speed: Regeneration	id Time: and diluent (0.	7/9/99 60 (approx 30 25 M NaOH) d	14:55 0 mL/hr or density @ 25	6 CV/hr) 5 °C =	1.008	g/mL									
33 Via 94 A1-Tc-(al/Bottle 0 (Ct only)	Sample Date	sample start time (hr:mm:s)	sample finish time	Sampling time (hr)	mass of vial + cap 16.8532	mass of vial + cap + sample 23.0428	Mass of sample 6.1896	Vol of Sample 5.0404	Eff Vol (mL) 0.000	Flow Rate, mL/hr 0.000	Eff Vol (BV) ⁻ 0.00	Flow Rate. BV/hr 0.00	Date of counting 07/09/99	Time of counting 14:06:38	file name A1TcF08	count time, 5
S S S S S S S S S S S S S S S S S S S	чi	2/9/99				16.8576	22.1407	5.2831 Total Reger	5.2412 neration Efflu	5.24	- 27.9 5.9	1.12 mL BV	•	07/09/99.	15:05:04	AITCRN01	S
00														-			

AW1 SL639.xls

Page 7 of 9

A	æ	s	-	n	>	3	×	>	~	44	AB	J	AD AD	AF.	AC 1	VV	
149 Elution rinse DI									-	Ę	2	2	2	¥	AL	AG	AH
150																	
152 Vial/Bottle	backaround	Total	Net Area	net cnts per g of sample	net cnts per mL of sample	C/Co. Tc.95m	Tc-99, ICP-MS	C/Co,	*								
153 A1-Tc-0 (Ct only)	C	50146	EFFCA	1368	1680	100-01	103/101	66-01									
154 A1-Tc-0 (Ct only)	• •	49359	41931	1355	1664	• -	22.0	000-1									
156 1st rinse - 7/2/99					•												
157 A1-Tc-E1-R1	0	10254	8362	348	348	0.207	0.702	0.187				1					
158 A1-Tc-E1-R2	0	6992	5261	224	224	0.133											
159 A1-TC-E1-H3	00	5814	4097	172	172	0.102											
161 A1-Tc-E1-R5	00	5819	4211	91	910	0.054	0.184	0.049									
162				5		1000											
163 2nd rinse - 7/7/99																	
164 A1-1C-E1-H6	0 0	1501	337	17	17	0.010											
165 A1-1C-E1-H/		1430	236	5 r	2	0.006											
167 A1-TC-E1-R0		0/01	101	- 0		0.004						- 5					
168 A1-Tc-E1-R10		1220				500.0						-					
169 A1-Tc-E1-R11	00	1188		0		00000	0.007	0 000				-					
170								100.0									
171												-					
172 Elution Compositi			-														
1/3			1														
175																	
176	1											0			-		
111				-	1									-			
178		•															
1/9																	
100	net												Î				
	counts/g of			Effluent													
181 Vial	sample counted/	C/Co, Tc-95m	Eff Btl Mass	Mass+	Eff Vol	Bed	flow rate	four rate	ICP-MS	C/Co							
182			(6)	(6)	(mL)		BV/hr	mL/hr	ng/mL	66-21							
183 A1-Tc-F01	131	1.000	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A							
185	2	PC+.7	E M	NIA	344.18	13.2	NIA	NIA	7.980	2.128							
187																	
189 Regeneration - 0.2				1													
190																	
191																	
20				net cnts	net cuts			-					I				
		Telet T		per g of	per mL of		ICP-MS					э					
193 Vial/Bottle	backoround	counts	Net Area	sample ner min	sample	C/C0,	10-99	C/Co,	Victor								
194 A1-Tc-0 (Ct only)	0	48783	41749	1349	1657	-	3.750	1.000									
190 Dan Colo	•	0101															
1100 601 261	5	0/01	32	ŋ	4	0.002	0.004	100.0	Hegeneratio	n effluent co	mposite sai	nple	ł				
86		-	Total Tc-96	9 in Regen	neration Ef-	fluent:	0.1116 L	Đ									
000																	

Tc-99 Mass Balance	Total vol of feed processed:	4 Sample	5 Feed processed:	7 Effluent composite:	8 Effluent samples:	9 Feed Displacement:	0 DI Water Rinse:	1 Elution:	2 Elution Rinse: 3 Regeneration:	5 Total Tc-99 Recovery:	7 Total loaded on both columns:	8 Total eluted:	I C-99 IET ON COLUMNS:	Tc-99 loaded on Col 1:	2 Total eluted:	1 Ic-99 left on Col 1:	5 Tc-99 on Col 2:	Estimate of Tc-99 Loaded on	Dates under Col 1 Tc-99 loading curve 1 Total area: 2 Area above curve (Tc-99 loaded): 3 Tc-99 loaded, Col 1:	Estimate of SL-639 Tc-99 Ca	Area under Col 1 Tc-99 loading curve 8 Total area:	Area above curve (Tc-99 loaded): Tc-99 loaded, Col 1, at 53% BT:	Tc-99 capacity for AW-101:
,	1231.6																	Column 1	0	ipacity for A	e, 53% BT:		
2	h mL	Tc-99 (ua)	4618.40	367	37	25	14	2924	00	3367	4214	2963	1251	3242	2963	279	972		367.1 m 1231.6 m 864.5 m 3241.9 ug	W-101 feed	350.9 m 1201.3 ml	850.4 ml 3189.0 ug	2773.1 ug
,												•							L x C/Co L x C/Co L x C/Co		L × C/Co	L × C/Co	= b/i
		Tc-99 (ma)	4.62	0.37	0.04	0.03	0.01	2.92	0.00	3.37	4.21	2.96	1.25	3.24	2.96	0.28	0.97		3.24			3.19	2.77 n
,		% of Tc-99 in Sample		7.95%	0.80%	0.54%	0.31%	63.30%	0.00%	72.91%	91.25%	64.16%	27.09%	70.20%	64.16%	6.04%	21.05%		70.20%				ng/g dry resin
		Comments						Using total elu	First rinse (R1		Feed process	Sum of Feed	Difference	By integration	Sum of Feed	Difference. Qt	Total loaded n		Simple trapez Total volume I Total minus ar Area above cu				Assuming tota
								ution composite	I - R5) was inc		ed minus Eff o	Displmt, DI Rir		of BT curve; s	Displmt, DI Rir	uite a bit of Tc-	minus that on C		oidal integratic times Co/Co ea under curv. trve times Co.				I capacity is at
2								e volume (ie, p	cluded in Elutio		omp and Eff st	rse, Elution, El		tee below.	rse, Elution, El	-99; over 8.6%	Col 1. Note the		on, see Kaleid: e = Tc-99 load				bout twice that
4				-				rior to analytic	n Comp. Assur		amples.	ution Rinse, ar			ution Rinse, ar	of capacity for	it this is almost		graph file AW1 ed on column.				at 53%, and di
-								al sample remo	me Tc-99 in sec			hd Regeneration			nd Regeneration	50% BT when	11/3 capacity fo		1_99LoadAreas				v hed mass is
Σ								val) and assumi	ond rinse is nee							loading AW-101	r 50% BT when		kg. C/Co for la:				230
z								ng Tc-99 conc	jligible.								loading AW-10		st point was gu				
5								would have be									01.		esstimated.		·		
ч								en the same.															

Tc-95 Kds for AW-101, SL-639

6/27/003:43 PM

Batch Cont: Performed 6/2 The contact so The Kd's were Distribution coe Estimates for fi	acts: AW the Kds Of 1/99 through lution is a sa determined 1 afficient calcu nitial [Tc-99] b nal [Tc-99] b	-101 Cont NLY (from 6/25/99, as ample of AW for a Tc-95r for a Tc-95r ulation: Kd = in S1 and S: based on Kd [*]	acted with Tc-95m p per "BNFL A per "BNFL A -101 describe pertechneta (C0-C1) / C 2 based on si s and using t	Superlig-(ertechneta w-101/Tc Ba ed in PNWD-: te tracer ONI the tracer ONI the approxima	639 (SL-63 ate tracer) att Contact T, ttch Contact T, 2463, Rev. 1, LY. Tc-99 Kd's M × F)] s and known [ation that only	 est Instructions", BN following Cs decon t s were NOT determin Tc-99] in feed. Detai pertechnetate is pre 	IFL-TI-29953-0 Jsing SL-644 () ned. Is in BNFL-TI-2 sent.	44. PNWD-3001 29953-044.	Ċ
Density of AW- F for SL-639 = Initial [Tc-99] in [NO3] in feed =	101 superna unspiked fe	ate after Cs I sed =	" ×	1.228 0.77 3.90E-05 1.4	g/mL M M	(Determined with 25	mL volumetric	flask.)	
sample	solution mass	solution	sample mass counted	Tc-95m counts	exchanger mass	PX	Initial [Tc-99] (est'd)	Final [Tc-99] (est'd)	Final [NO3]/[Tc-99] (esť'd)
	D	mL	D	cnts	D	mL/g	Σ	Σ	
2W	6.1871	5.04	•	18181	•	•	3.90E-05	3.90E-05	3.59E+04
2W39-F	6.1979	5.05	5.7702	2742	0.0456	745	3.90E-05	6.31E-06	2.22E+05
2W39-D-F	6.1988	5.05	5.7659	2882	0.0554	577	3.90E-05	6.63E-06	2.11E+05
2W-TcS1	2.5448	2.07		2699			3.76E-04	3.76E-04	3.72E+03
2W39-S1-F	6.2005	5.05	5.7384	2952	0.0503	636	3.76E-04	6.39E-05	2.19E+04
2W39-S1D-F	6.1806	5.03	5.7677	3847	0.048	482	3.76E-04	8.29E-05	1.69E+04
2W-TcS2	2.5913	2.11		8122	•		1.39E-03	1.39E-03	1.01E+03
2W39-S2-F	6.1844	5.04	5.7439	5460	0.0489	307	1.39E-03	4.22E-04	3.32E+03
2W39-S2D-F	6.1843	5.04	5.8068	5576	0.047	315	1.39E-03	4.26E-04	3.29E+03

file name = BC_AW101/SL-639

 $(g/Im) \stackrel{h}{\sim} X \stackrel{h}{\sim} O_{2}T^{m}$

1981

	Volume Processed (mL)	Tc-99 C/C ₀ from ICP-MS data, Col 1	Area under Col 1 Load Curve (mL*C/C ₀)
0	0.000000	0.032000	
1	48.41000	~€.032000	
2	243.4600	0.11600	
3	434.7500	0.22200	1
4	624.6300	0.33900	
5	815.9200	0.39700	
6	1007.680	0.46400	
7	1201.320	0.53100	350.8555
8	1231.600	0.53900	367.0553

Page #1 - "AW1_99LoadArea.kg"

Monday, July 24 4:30 PM 2000

Area shown on line 7 is based on integration of first 7 points. Area shown on line 8 is based on integration of all 8 points. The 8th point is a guesstimate based on the Tc-95m data and a rough extrapolation of the Tc-99 data. Probably not too far off. C/Co for the 1st point is taken as the same as the second point, as this relatively high value is attributed to immediate breakthrough of non-pertechnetate Tc-99.

Project Number

Internal Distribution

329/4 File

July 29, 1999

To Dean Kurath

Tom Farmer

From IOM

Date

RECORD COPY

Subject ICP/MS Analysis of Submitted Samples for Tc-99

Pursuant to your request, the 34 samples that you submitted for analysis were analyzed by ICPMS for ⁹⁹Tc. The results of this analysis are reported on the attached pages.

An Amersham ⁹⁹Tc standard was used to generate the calibration curve. An independent Amersham ⁹⁹Tc was used as the continuing calibration verification (CCV) standard. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at ±10%, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Approximate ¹⁰¹Ru concentrations are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0700 or James Bramson at 372-0624.

Dean Kurath Tc-99 Analysis

July 28, 1999

Results are reported in μ g analyte/ml (ppm) of solution submitted. The uncertainty of the results is estimated at ±10%.

Sample Number	ICP/MS Number	Tc-99	*Ru-101
1%HNO3 1%HNO3 1%HNO3 1%HNO3 1%HNO3	9727a1 9727a23 9727a40 9727a56	<0.0001 <0.0001 <0.0001 <0.0001 <0.0001	2 9
A1-Tc-0	9727a10	3.75	0.8
A1-Tc-L1 A1-Tc-L1 Dup. A1-Tc-L3 A1-Tc-L3 Dup. A1-Tc-L5 A1-Tc-L7 A1-Tc-L9 A1-Tc-L11 A1-Tc-L13	9727a20 9727a30 9727a24 9727a48 9727a25 9727a26 9727a27 9727a28 9727a28 9727a29	0.120 0.12±0.03 0.438 0.434 0.832 1.27 1.49 1.74 1.99	0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
A1-Tc-P1 A1-Tc-P3 A1-Tc-P5 A1-Tc-P7	9727a36 9727a37 9727a38 9727a39	0.108 0.129 0.312 0.620	0.6 0.7 0.6 0.6
A1-Tc-PW1 A1-Tc-PW3 A1-Tc-PW5 A1-Tc-PW7	9727a49 9727a32 9727a31 9727a50	0.690 0.672 0.574 0.560	0.6 0.6 0.3 0.09
A1-Tc-PR1 A1-Tc-PR3 A1-Tc-PR5	9727a53 9727a51 9727a52	0.506 0.827 1.26	0.04 0.01 0.01
A1-Tc-E1-1 A1-Tc-E1-1 + Spike Spike Recovery	9727a12 9727a55	5.17 11.5 113%	0.2
A1-Tc-E1-4 A1-Tc-E1-8 A1-Tc-E1-8 Dup. A1-Tc-E1-12 A1-Tc-E1-16 A1-Tc-E1-20 A1-Tc-E1-20 + spike Spike Recovery	9727a15 9727a17 9727a54 9727a18 9727a14 9727a21 9727a22	9.17 16.7 15.7 25.6 27.9 15.7 30.4 118%	0.05 0.2 0.02 0.08 0.05 0.08 0.1

*Based on Response of Indium

DATA REVIEW Reviewed by Authilemostanment

Date: 9Aug 99 Pages: 142

A127/51

Dean Kurath Tc-99 Analysis

July 28, 1999

Results are reported in µg analyte/ml (ppm) of solution submitted. The uncertainty of the results is estimated at $\pm 10\%$.

Sample Number	ICP/MS Number	Tc-99 μg/ml	*Ru-101 μg/ml
A1-Tc-E1-24	9727a13	16.5	0.04
A1-Tc-E1-28	9727a43	3.59	0.01
A1-Tc-E1-32	9727a16	1.11	<0.01
A1-Tc-E1-39	9727a44	0.041±0.005	<0.01
A1-Tc-E1-R1	9727a47	0.702	<0.01
A1-Tc-E1-R4	9727a45	0.184	<0.01
A1-Tc-E1-R11	9727a57	0.007±0.001	<0.01
Effluent	9727a9	0.298	0.7
Reg Soln	9727a8	0.00393	<0.01
5ppb Tc-99	9727a4	5.08	
5ppb Tc-99	9727a41	4.51	
10ppb Tc-99	9727a19	10.6	
15ppb Tc-99	9727a58	16.2	
*Based on Besponse of Ir	adium		

DATA REVIEW Reviewed by Ault Domos Farmeret Date: 9/Aug99 Pages: 20/2

390 390	Battelle	Task at 2 File lat 2	L.G.3.3 Project Number
	Pacific Northwest Labor	atories \ es	Internal Distribution
			V
Date	October 11, 1999	REPART	329/4 File LSO Project File
То	Dean Kurath	nanv	Larry Greenwood
From	Tom Farmer	<u> </u>	
Subject	ICP/MS Analysis of	Submitted Samples	
	(ALO#99-2289 throu	ugh 99-2621)	

4111

Pursuant to your request, the 2 samples that you submitted for analysis were analyzed by ICPMS for ⁹⁹Tc. The results of this analysis are reported on the attached page.

An Amersham ⁹⁹Tc was used to generate the calibration curve. An independent Amersham ⁹⁹Tc standard was used as the continuing calibration verification (CCV) standard. Unless otherwise specified, the overall uncertainty of the values is conservatively estimated at ±10%, and is based on the precision between consecutive analytical runs as well as the accuracy of the CCV standard results.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. The fingerprint we're seeing for Ru is obviously not natural, and is consistent with that observed in previous tank waste analyses. Approximate ¹⁰¹Ru concentrations are provided for your information.

If you have any questions regarding this analysis, feel free to call me at 372-0700 or James Bramson at 372-0624

H1Derman 9/30/99

Kurath Tc-99 Analysis

September 20, 1999

Results are reported in ng analyte/ml (ppb) of solution submitted. The uncertainty of the results is estimated at $\pm 10\%$.

Sample	ICP/MS	Tc-99	*Ru-101
Number	Number	ng/ml	ng/ml
1%HNO3	9a15a1	<1	
1%HNO3	9a15a6	<1	
1%HNO3	9a15a22	<1	
1%HNO3	9a15a39	• <1	
A1-Tc-F	9a15a32	4080	1100
A1-Tc-F Dup.	9a15a33	3860	1000
A1-Tc-F + spike	9a15a38	5680	
Spike Recovery		86%	
A1-Cs-E1-Composite	9a15a30	50±6	. 4
A1-Cs-E1-Composite Dup.	9a15a34	56.5	4
2ppb Tc-99	9a15a4	1.89	
2ppb Tc-99	9a15a40	2.08	
5ppb Tc-99	9a15a21	5.01	
20ppb Co	9a15a41	<1	

*Based on Response of Indium, for information only.

DATA REVIEW Roviowed by: O.J. Jamerik Deto: 3050099 Pegos: Lof/

Date of Report:	ICP/MS Data Report Cover Sheet Date of Analysis: 9/15-199
QA IL: ()	Default QA Plan: MCS-033 Rev. 5 Default Tech. Procedure: PNL-ALO-280
Additional QAP's or TP's:	JASL
ALO Sample Numbers:	99-2289 + 99-0267 2621 10-8-99
PM (or Requestor), Company:	DEAN KURATH, PUNL
Project #: 299	53 WP #: 6548413, 648409
LRB(s) (Include page #):	56923 pg 35; 56922 pp 40,44 pra

M&TE Used (Check all that apply)

\checkmark	Item	329 Bldg Room #	ID #	Calib.	Frequency	LRB
1	VG ICP/MS PQI	130	WB36913	By User	Before Use	
	VG ICP/MS PQII+	129	WB62779	By User	Before Use	
	Rainin Elec Pipet 1-10 ml	129	D21825	By User	6 mos / Before Use	
	Rainin Elec Pipet 1-10 ml	129	E18077	By User	6 mos / Before Use	
~	Rainin Elec Pipet 1-10 ml	130	J21956	By User	6 mos / Before Use	
	Rainin Elec Pipet 100-1000 µl	129	H30300	By User	6 mos / Before Use	<u> </u>
	Rainin Elec Pipet 100-1000 µl	129	H30083	By User	6 mos / Before Use	
	Rainin Elec Pipet 100-1000 µl	130	B302820	By User	6 mos / Before Use	
	Rainin Elec Pipet 100-1000 µl	129	C400507	By User	6 mos / Before Use	
0	Rainin Elec Pipet 100-1000 µl	130	1024651	By User	6 mos / Before Use	
	Rainin Elec Pipet 25-100 µl	129	D403005	By User	6 mos / Before Use	
	Rainin Elec Pipet 25-100 µl	130	C210852	By User	6 mos / Before Use	

	DATA PACKAGE CHECKLIST	SIGNED	& DATED	PAGE	NUMBERS	HAND DESC., S	CALCS SIGN, DATE
1	COVER SHEET	•	1/				
2	COVER LETTER	•			1		
3	DATA SUMMARY	•	V	•	10	•	
4	RAWDATA	•	1/	•		•	
5	INTDATA	•	1/	•			
6	PROCEDURE FILE	•	V	•			
7	ELEMENT MENU	•		•	1		
8	SAMPLE LOG-IN LRB COPIES *	•	NA				1
9	ICP/MS LOG LRB COPIES*	•	NA				
10	STD PREP/CALIB. LRB COPIES *	•	NA				

*Impact level 1 and 2 only.

Les 1 55/22/15

ICP/MS Number	Sample Number	In-115 Cts	Ru-101 Cts	Ru-102 Cts	Ru-101/Ru-102	[Ru-101] no dilution	dilution	[Ru-101] /dilution (ng/ml	~
9a15a30	A1-Cs-E1-Composite	208076	75	76	0.9868	0.0360445	100	4	
9a15a32	A1-Tc-F	168252	1857	1631	1.1386	1.1037016	1000	1104	
9a15a33	A1-Tc-F	173908	1773	1876	0.9451	1.0195046	1000	1020	
9a15a34	A1-Cs-E1-Composite	196958	70	91	0.7692	0.0355406	100	4	

5

Project 29953 Tush 9 T2,9.3.3 Page 1 of 7 Battelle PNNL/325 Bldg/RPG/Inorganic Analysis ... ICPAES Data Report

Project: Client:

1

29953 D. E. Kurath

ACL Number(s): 99-2276 through 99-2284

Client ID: "A1-Tc-0" through "regeneration"

NECCES | COINY

ASR Number: 5461

Total Samples: 9

Procedure: PNL-ALO-211, "Determination of Elements by Inductively Coupled Argon Plasma Atomic Emission Spectrometry" (ICP-AES).

Analyst: J. J. Wagner

Analysis Date (Filename): 08-03-99 (A0537)

See Chemical Measurement Center 98620: ICP-325-405-1 File for Calibration and Maintenance Records.

M&TE Number:

ICPAES instrument -- WB73520 Mettler AT400 Balance -- Ser.No. 360-06-01-029

Reviewed by

Concur

8/30/99

Page 1

Battelle PNNL/325 Bldg/RPG/Inorganic Analysis ... ICPAES Data Report

Nine radioactive liquid samples, A1-Tc-0 (ACL# 99-2276) through 'regeneration' (ACL# 99-2284), were analyzed by ICPAES after processing by SRPL using PNL-ALO-128 digestion procedure using plastic labware and diluting to a final volume of approximately 10 to 12.5 ml. The samples were prepared using about 1 ml to 2.5 ml of sample (weighed). After processing the sample aliquots were diluted using 2% v/v nitric acid to a pre-marked position on the plastic vial. After completing the dilution it was observed that some of the sample volumes appeared to be slightly above the mark. Plastic vials used to contain the processed sample were somewhat opaque making it difficult to see the liquid meniscus. The estimated final volume of each processed sample was later determined by observing the liquid level using a strong light. The final volume was noted by comparing a similar vial marked at 0.5 ml increments starting at 10 ml. Because of the way in which the volume was determined the final volume may differ by about 0.5 ml or less resulting in an overall error of 5% or less. The volume error should not affect the reported concentration by more than about 5%.

Sodium was the main analyte of interest requested. Other analytes requested include Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Ni, Pb, Si, Sn, Ti, U, and Zn.

All quality control checks met tolerance requirements for analytes of interest except as noted below. Following is a list of quality control check measurement results relative to ICPAES analysis tolerance requirements under MCS-033.

Five fold serial dilution:

(Aqueous samples)

-- All results were within tolerance limit of $\leq 10\%$ after correcting for dilution.

Duplicate RPD (Relative Percent Difference):(Aqueous samples)-- All results were within tolerance limit of $\leq 20\%$.

<u>Post-Spiked Samples (Group A):</u> (Aqueous samples) -- All results were within tolerance limit of 75-125% recovery.

Post-Spiked Samples (Group B):

(Aqueous samples) -- All results were within tolerance limit of 75-125% recovery.

Blank Spike:

(Aqueous samples) -- All results were within tolerance limit of 80-120% recovery.

8/30/99

Battelle PNNL/325 Bldg/RPG/Inorganic Analysis ... ICPAES Data Report

Matrix Spiked Sample:

(Aqueous samples)

-- Matrix spike not prepared due to limited sample material.

Quality Control Check Standards:

-- Concentration of all analytes of interest is within tolerance limit of $\pm 10\%$ accuracy in the standards: QC_MCVA and QC_MCVB. Calibration Blank (ICP98.0) concentration was less than two times IDL.

High Calibration Standard Check:

-- Verification of the high-end calibration concentration for all analytes of interest is within tolerance of \pm 5% accuracy except for potassium and uranium determination at the end of the analytical measurement run. Potassium measured +6.7% high and uranium measured -5.9% low in check standard QC_SST.

Process Blank: (Aqueous samples)

-- Sodium and calcium were the only analytes measured that was above detection limit in the process blank. Both analytes were within acceptable tolerance limit of < EQL and < 5% of sample concentration.

<u>Laboratory Control Standard (LCS)</u>: (Aqueous samples) -- None prepared.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%. See attached ICPAES data results.

Battelle PNNL/325 Bldg/RPG/Inorganic Analysis ... ICPAES Data Report

Comments:

1)

- "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically $\pm 15\%$ or better for samples in dilute, acidified water (e.g. $2\% \text{ v/v} \text{ HNO}_3$ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight).
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

Battelle PNNL/RPG/Inorganic Analysis ... ICPAES Data Report Page 1 of 3

	Multiplier=	4.8	1	46.6	7	48.7		18.6]	19.4	
	ALO#=	99-2276-BL		99-2276 @5		99-2276-D	€5	99-2277 @5		99-2278 @5	
	Client ID=	Process Bla	nk	A1-TC-0	~	A1-TC-0	1	A1-TC-PW1		A1-Tc-PW3	
Det Limit	Run Date=	8/3/99	T	8/3/99		8/3/99		8/3/99		8/3/99	
(ug/ml.)	(Analyte)	un/a		10/0		10/0		ua/a		ua/a	
0.015						299			1		
0.015	Ag			10.500	1	10 200	1	9.810	1	10 800	-
0.060	AI		1	10,500	-	10,300	-	5,010	-	10,800	1
0.080	As			[7.3]	<u> </u>	[0.4]		[7.3]	+	[0.2]	<u> </u>
0.050	в			37.0	-	36.7		31.0	-	35.0	
0.010	Ва		4	-	-	-	-	-	-		-
0.010	Be	-		[0.87]		[0.86]		[0.81]	+	[0.89]	
0.100	Bi	-			1		-	-		-	-
0.100	Ca	[1.1]		[8.0]	1	[8.0]	-	[6.5]	4 1	[7.3]	1
0.015	Cd	-		[1.5]	_	[1.5]	<u> </u>	[1.4]		[1.5]	
0.100	Ce	-		-		-	1				
0.025	Co	-		-		-	1	-		-	
0.020	Cr	-		38.3		38.0		35.6		38.9	
0.015	Cu	-		[1.1]		[1.3]		[1.9]		[2.1]	
0.050	Dy	-		-		-		-			
0.100	Eu	-		-		-				-	
0.025	Fe	. —		[5.6]	1	[5.6]	1	5.18		5.41	
2.000	к	-		14,500	1	14,300	1	13,200	1	14,500	1
0.025	La	-		-			1			-	
0.005	Li	-				-	1	[0.18]	11	[0.20]	
0.100	Ma				1		1	-	1 1	-	1
0.005	Mn								1 1	*	1
0.030	Mo			22.0		21.9	1	21.0	1	23.1	
0.100	Na	[2 6]		92 300		93 300	1	82 200	1 1	94 000	
0.100	Nd	[2:0]		52,000					•••••••••		
0.100	NU			[2.5]		[2 6]	1	[2 5]	1 1	[2 7]	
0.030				206		206		106		215	
0.100	P			200		[200		10.0	<u>+</u> +	213	
0.060	PB			[19]		[20]		19.0		21.5	
0.300									{ }		
0.300	Rn -									-	
0.075	Ru			-				[2.5]	{ }	[2.7]	
0.050	Sb			-		-				-	
0.050	Se	-		[3.4]		[4.0]		[3.6]		[3.9]	
0.100	Si			95.2		95.5		91.6	4 -	108	
1.000	Sn	-						[44]		[49]	
0.005	Sr	-		-		-		-			
0.500	Те	-		-		-		-			
0.800	Th	-		-		-		-		-	
0.005	Ti			-		-		-	ļ	-	
0.250	TI	-		-		-		-		-	
2.000	υſ	-		-		-		-		-	
0.015	v	-		-		-		-	[[-	•
0.500	W	-		[45]		[44]		[39]	I	[42]	
0.010	Y	-		·		-		-		-	
0.020	Zn	[0.31]		[7.4]		[7.6]		5.92	Γ	6.57	
0.025	Zr	-		[1.5]		[1.8]		[0.52]	T	[0.57]	
Concernence and the second second second										and the second sec	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) *--* indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNL/RPG/Inorganic Analysis ... ICPAES Data Report Page 2 of 3

	Multiplier=	21.5		4.9	1	5.0	1	4.8		4.8	
	ALO#=	99-2279 @5		99-2280 @1		99-2281 @1	- C-	99-2282 @1	10000	99-2283 @1	
	Client ID=	A1-TC-PW5	ب ب	A1-TC-PW7		A1-TC-PR1		A1-TC-PR3		A1-TC-PR5	
Det Limit	Run Date=	8/3/99		8/3/99		8/3/99		8/3/99		8/3/99	
(un/ml.)	(Analyte)	10/0		ug/g		ua/a		ua/a		ua/a	
0.015	(citaryte)									-	
0.015	~9 Al	5 600		1.060		445	17.7	138	1	63.7	· ·
0.080	AI	5,000		1,000					1		
0.080	AS	[4.1]		125		10.4		12.2		10.4	
0.050	в	27.3		13.5		10.4		12.5		10.4	
0.010	Ba	-		[0.054]		[0.052]	4	[0.086]	{	[0.068]	010.0
0.010	Be	[0.43]		[0.082]							
0.100	Bi			-		-		-		-	
0.100	Ca	[4.7]		[1.4]		[1.2]		[1.5]		[1.4]	
0.015	Cd	[0.77]		[0.15]							
0.100	Ce	-		-		-		-			
0.025	Co	-				-	1	-			
0.020	Cr	20.3		4.05		1.73		[0.56]		[0.27]	
0.015	Cu	[1.2]		[0.72]		[0.36]		-			
0.050	Dy	-		-		-					
0.100	Eu	-		-		-		-		-	
0.025	Fe	[2.6]		[0.65]		[0.54]		[0.49]		[0.33]	
2.000	к	8,450		1,800	_	998		417		214	
0.025	La	-		-		-		-		-	
0.005	Li			-		-]	-		-	
0.100	Mg	-		-		-		-		-	
0.005	Mn	-				-		-		-	
0.030	Мо	11.8		2.36		[0.88]		[0.17]		-	
0.100	Na	56.900		11.800		6,410		3,350		2,430	
0.100	Nd	-	••••••	-		-		-		_	
0.030	Ni	[1.4]		[0.33]				-		-	
0.100	P	122		28.5		12.6		[4.6]	-	[2.2]	
0.100	Ph	rg 11	••••••	[1.0]		10.301		-		-	
0.000	Pd	[0.1]		[]				-		[2.2]	
0.300	Pu							-			
0.300	 		•••••				•••••			-	
0.075	Ru										
0.050	50	10.11					-				
0.050	58	72.7		26.6		22.2		41.9		37.5	
0.100	51	13.7		30.0		33.2		41.5		57.5	
1.000	Sn	[24]	·								
0.005	Sr										
0.500	Te					-					
0.800	Th	-		-		-		-			
0.005	Ti					-		-			
0.250	TI	-				-	- ^	-			
2.000	U	-		-	-	-		-			
0.015	<u>v</u>	-		-		-				-	
0.500	W	[24]		[4.7]		-	-	-		-	
0.010	Y	-		-		-		-		-	
0.020	Zn	[3.6]		[0.94]		[0.59]		[0.56]		[0.44]	
0.025	Zr	[1.0]		[0.15]						(e) 	

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

2) "--" indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNL/RPG/Inorganic Analysis ... ICPAES Data Report Page 3 of 3

Det. Limit (ug/mL)	Multiplier= ALO#= Client ID= Run Date= (Analyte)	5.2 99-2284 @1 <u>regeneration</u> 8/3/99 ug/g									
0.015	Δα			-		-		-		-	-
0.060	AL	3.29				-		-	1	-	1
0.080	Δe			-			1	-		-	1
0.050	A3	13.3			<u> </u>	-					
0.050	Bo	10.191			A CONTRACT OF	-		-			
0.010	Da	[0.10]				-				-	1.1241
0.010	De Bi							_		-	
0.100	В	-								-	
0.100	Ca	[3.1]			-						
0.015	Cd										
0.100	Ce	-									
0.025	Co						· ·				
0.020	Cr	[0.34]		ļ							
0.015	Cu	-								-	
0.050	Dy	-		-							1.01
0.100	Eu	-									
0.025	Fe	[1.1]		-		-	1995				
2.000	к	-		-		-	1999 B			-	
0.025	La	-									
0.005	Li	-		-		-		-		-	
0.100	Mg	-		-		-		-		-	a. 1
0.005	Mn	[0.060]		-		-					
0.030	Мо	-		-	1	-		-	1.12	-	omi -
0.100	Na	3,200		-		-		-			
0.100	Nd	-		-		-		-		-	
0.030	Ni	- 1		-			A BIT	-	1.00	-	2011 C
0.100	P	-		-		-		-		-	
0.060	РЬ	-		-				-		-	
0.300	Pd	-		- 1		-				-	
0.300	Bh	-		-		-		-		-	
0.075	Bu	- 1				-		-		-	
0.050	Sb	-		-				-		-	· · ·
0.050	Se			-		-		- 1		-	
0 100	Si	68.6		_		-		_		-	
1 000	Sn	-						-		-	
0.005	Sr				3 1 1			-		-	
0.005		<u> </u>				_				-	
0.500	Th					_		-			
0.800								-		-	
0.005										_	
0.250						_					
2.000	U			-							
0.015	V	·	•••••								
0.500	w						15 M 1		ңы ₁ , 1		
0.010	Y	-		-		-		-			
0.020	Zn	[0.71]									
0.025	Zr	-		-	21 N		100.00	-		-	1000

Note: 1) Overall error greater than 10-times detection limit is estimated to be within +/- 15%.

2) Values in brackets [] are within 10-times detection limit with errors likely to exceed 15%.

3) *--* indicate measurement is below detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

Battelle PNNL/RPG/Inorganic Analysis --- IC Report 72.9.3.3 Page 1 of (

WO/Project: Client: W48412/29953 D. Kurath

> ACL Numbers: 99-02276 ASR Number 5461

Results:

		F	Cl	NO ₂	Br	NO,	PO,	SO,	C ₂ O ₄
Lab ID	Sample ID	ug/ml	ug/ml	ug/ml	ug/ml	ug/ml	ug/ml	ug/ml	ug/ml
99-02276	A1-Tc-0	1,020	2,670	46,500	< 200	92,800	< 400	690	< 400
99-02276 MS	A1-Tc-0 Spike	3.6	3.7	25.0	3.3	37.1	13.6	13.4	13.5
-	Spike Recovery	111%	102%	112%	110%	116%	113%	111%	112%

Comments:

All sample and analytical QC was within acceptance criteria; however, no duplicate was provided to assess precision. The sample was analyzed at various analytical dilutions providing RPDs for F, Cl, and NO_2 of 47%, 9%, and 3%, respectively. The NO_3 was measured at only one dilution that provided results within the calibration range. Significant coeluting interferences were prominent at the F and Cl retention times; most likely from organic anions. These interferences make the quantitation of F and Cl difficult, and the reported values should be considered upper bounds for the F and Cl concentrations.

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography" Analyst: MJ Steele

Analysis Date: August 5, 1999

M&TE: IC system (WD25214); Mettler AT400 Balance (360-06-01-031) See Chemical Measurement Center 98620 RIDS for IC File for Calibration, Standards Preparations, and Maintenance Records.

Analyst: My Steel Approval: Mile Uni

Notes:

- "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
 The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- 3) Routine precision and bias is typically ± 15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

	66/	20/192 - 39		millimole	e RPD	3	5	5 1.10%	4	4 0.05%	8	0 1.87%	1	3.06%	4	5 1.98%	1	1 2.27%	6	1.42%		201 10 78%
	Aasr5461 8/2 8/4/99	un real		Molarity	bas	2.0	2.0	2.0	2.0	2.0	1.0	1.1	0.2	0.2	0.1	0.1	0.1	0.1	0.0	0.0	0.1	10
	m\hydroxide alysis Date: Print Date: 8	Maria		Found millimoles	base	0.203	0.411	0.411	0.407	0.407	0.216	0.220	0.063	0.108	0.071	0.145	0.108	0.074	0.087	0.085	0.105	211.0
	le: L:∖radche An	nalyst:		9	ЬH	10.496	10.218	10.265	10.29	10.362	10.055	9.978	9.497	9.766	9.346	10.039	10.227	10.149	8.938	9.000	10.378	
	Ε	A N	HO	t Equivalenc Point Titrant	ol. (mL)	0.999	2.02	2.02	2.003	2.002	1.061	1.081	0.309	0.531	0.350	0.714	0.529	0.362	0.426	0.420	0.518	
	5461 W48412		Ŀ	Is Initial DH	reading	11.442	12.020	11.998	12.187	12.158	11.536	11.855	11.355	11.648	11.320	11.623	11.333	11.245	11.221	11.510	11.446	
	ASR # WP#	nates		Titrator Routine	#	4	5	9	7	8	9	10	11	12	13	14	15	16	17	18	19	A. 77
~		d es and Super	Molarity	0.1018 Density	g/mL	1.193	1.235	1.221	1.234	1.194	1.118	1.128	1.007	1.034	0.993	1.009	0.996	1.011	0.994	1.004	0.991	
SPACE +	2 2	oxyl (OH-) and utions, Leachat 5 Auto-Titrator	Std. & Spike	Sample	Wt. (g)	0.1193	0.2469	0.2441	0.2467	0.2388	0.2236	0.2255	0.3021	0.5168	0.4966	1.0091	0.9963	0.7075	0.9936	1.004	0.9905	
Purcher	7.9.2	ation of Hydr Aqueous Solu Brinkman 63 WB76843 525		Sample	Vol. (mL)	0.100	0.200	0.200	0.200	0.200	0.200	0.200	0.300	0.500	0.500	1.000	1.000	0.700	1.000	1.000	1.000	
	ry 25 Building	ation 228: Determin Alkalinity of d Operation of Equip # Lab Loc.	Molarity	0.2034			Replicate	Replicate														
	ic Northwest Laborato Il Processing Group-32 al Applications Team	d Alkalinity Determin: ocedures: PNL-ALO- anc	Titrant	HCI	Sample ID	1-Tc-PW1	1-Tc-PW1	1-Tc-PW1	1-Tc-PW3	1-Tc-PW3	1-Tc-PWS	1-Tc-PWS	1-Tc-PW7	1-Tc-PW7	1-Tc-PR1	1-Tc-PR1	1-Tc-PR3	1-Tc-PR3	1-Tc-PR5	1-Tc-PRS	Regenerate	
	Battelle Pacifi Radiochemica Radioanalytic	Hydroxide an Governing Pri			RPG #	99-2277	99-2277	99-2277	99-2278	99-2278	99-2279	99-2279	99-2280	99-2280	99-2281	99-2281	99-2282	99-2282	99-2283	99-2283	99-2284	

Page 1 of 4

ASR5461R.xls

8/4/99

Battelle Pacifi Radiochemica Radioanalytici	ic Northwest Laboratory Il Processing Group-325 al Applications Team	Building				ASR # WP#	5461 W48412		File: L:\radch An	em\hydroxide alysis Date: Print Date: 1	\asr5461 8/2/9 8/4/99	
Hydroxide an Governing Pro	d Alkalinity Determinati ocedures: PNL-ALO-22 / and C	on 28: Determina Alkalinity of <i>i</i> Dperation of I Equip # Lab Loc.	ation of Hydr Aqueous Sol Brinkman 63 WB76843 525	oxyl (OH-) an utions, Leachai 6 Auto-Titrato	d tes and Superr r	nates			Analyst: Y	2 Demen	an 8/	<u> 419</u>
	Titrant	Molarity		Std. & Spike	Molarity			НО				Ward and
	HCI	0.2034		NaOH	0.1018			1st Equivaler	nce			
						Titrator	Initial	Point		Found		
RPG #	Sample ID		Sample Vol. (mL)	Sample Wt. (g)	Density g/mL	Routine #	pH reading	Titrant Vol. (mL)	Hq	millimoles base	Molarity base	RPD
QC Data:												E Ba
Reag. Blk.			5.00			1	6.143				OH % Reco	/ery, Acc
Standard 1	0.1018 N NaOH		5.000	5.0036	1.001	2	12.026	2.492	7.918	0.5069	99.6%	Std 1
Standard 2	0.1018 N NaOH		5.000	5.0196	1.004	3	11.89	2.486	7.578	0.5057	99.3%	Std 2
99-2277MS	PW 1 + 2mL 0.1N NaC	НС	0.100	0.1218	1.218	21	11.922	1.928	10.210	0.392	92.3%	MS
99-2278MS	PW 3 + 2mL 0.1N Nac	НС	0.100	0.121	1.210	22	11.995	1.879	10.244	0.382	87.7%	MS
99-2279MS	PW 5 + 2mL 0.1N Nac	НС	0.200	0.2245	1.123	23	12.123	1.923	10.284	0.391	85.1%	MS
99-2280MS	PW 7 + 2mL 0.1N Nac	НС	0.300	0.2923	0.974	24	11.624	1.208	9.151	0.246	89.3%	MS
* Volume I	restrictions existed											
							Per	formance chei	cks			
Buffer	VWR Lot	#	CMS#	Expire Date				Balance #	36001-06-0	37	Vol.	Wt.
10	981659-24	#	144109	Jul-00					Pipet #	H30762	5.00	4.944
4	981583-24	4	144107	Jun-00					Pipet #	2734494	0.500	0.496
7	981894-24	4	144108	Aug-00					Pipet #	120737	0.100	0.1013
									Pipet #	120737	0.200	0.1997
						à						

Page 2 of 4

ASR5461R.xls

8/4/99

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building Radioanalytical Applications Team

Hydroxide and Alkalinity Determination

Governing Procedures: PNL-ALO-228: Determination of Hydroxyl (OH-) and

Alkalinity of Aqueous Solutions, Leachates and Supernates Operation of Brinkman 636 Auto-Titrator Equip # WB76843

and

	WB76843	525
-	Equip #	Lab Loc.

CO3

Molarity

Titrant

	HCI	0.2034		2nd Equiva	llence				srd Equival	ence			
			71	Point		Found			Point		Found		
			Sample	Titrant	- 2	nillimoles	Molarity	millimole	Titrant		millimoles	Molarity	millimole
RPG #	Sample ID		Vol. (mL)	Vol. (mL)	Ηd	base	base	RPD	Vol. (mL)	рН	base	base	RPD
99-2277	I-Tc-PW1	0	0.100	1.355	6.724	0.072	0.724		1.396	5.238	0.008	0.08	
99-2277	1-Tc-PW1	Replicate	0.200	2.664	7.952	0.131	0.655		2.698	7.067	0.007	0.03	
99-2277	I-Tc-PW1	Replicate	0.200	2.692	7.424	0.137	0.683	5.78%					
99-2278	I-Tc-PW3	0	0.200	2.682	7.345	0.138	0.691		2.808	5.090	0.026	0.13	
99-2278	1-Tc-PW3	Replicate	0.200	2.682	7.393	0.138	0.692	0.15%	2.764	5.644	0.017	0.08	42.3%
99-2279	1-Tc-PW5	0	0.200	1.392	6.550	0.067	0.337		1.433	4.895	0.008	0.04	
99-2279	1-Tc-PW5	Replicate	0.200	1.411	6.100	0.067	0.336	0.30%	1.451	5.053	0.008	0.04	2.47%
99-2280	1-Tc-PW7	0	0.300	0.410	5.323	0.021	0.068						
99-2280	1-Tc-PW7	Replicate	0.500	0.688	6.083	0.032	0.064	6.97%					
99-2281	1-Tc-PR1	0	0.500	0.428	5.529	0.016	0.032						
99-2281	1-Tc-PR1	Replicate	1.000	0.871	6.444	0.032	0.032	0.64%	0.911	4.936	0.008	0.01	÷
99-2282	1-Tc-PR3	0	1.000	0.608	7.502	0.016	0.016		0.650	4.591	0.009	0.01	
99-2282	1-Tc-PR3	Replicate	0.700	0.429	7.249	0.014	0.019	19.13%	0.464	4.537	0.007	0.01	17.39%
99-2283	1-Tc-PR5	0	1.000	0.446	7.343	0.004	0.004		0.475	4.643	0.006	0.01	
99-2283	1-Tc-PR5	Replicate	1.000	0.432	8.231	0.002	0.002	50.00%	0.480	4.304	0.010	0.01	49.35%
99-2284	Regenerate	0	1.000	0.574	7.933	0.011	0.011		0.607	4.205	0.007	0.01	
99-2284	Regenerate	Replicate	1.000	0.620	4.186	0.009	0.009	26.26%					

Page 3 of 4

8/4/99

5461 W48412

ASR #

WP#

File: L:\radchem\hydroxide\asr5461 Analysis Date: Print Date: 8/4/99

8/2/99

64 79

lour tel

Reviewer:

Analyst:

HC03

194

Battelle Pacifi Radiochemica Radioanalytic	ic Northwest Labor 1 Processing Group al Applications Tee	atory p-325 Buildin am	a				ASR # [WP# [5461 W48412	Ŀ	ile: L:\radc An	hem\hydroxide alysis Date: Print Date: 8/4	\asr5461 8/2/9 8/2/9	9
Hydroxide an Governing Pro	d Alkalinity Detern ocedures: PNL-AL and	nination O-228: Deter Alkalinity c Operation c	rmination of of Aqueous S of Brinkman (Hydroxyl (C olutions, Lei 636 Auto-Ti)H-) and achates and trator	d Supernat	es		Analyst: Reviewer:	A CONTRACTOR	rear of	6-4-2	
		Equip # Lab Loc.	WB76843 525										14 691 19
21	Titrant	Molarity		CO3					HC03				
	HCI	0.2034		2nd Equiva Point	lence	Found			3rd Equival Point	ence	Found		
RPG #	Sample ID		Sample Vol. (mL)	Titrant Vol. (mL)	m Hd	nillimoles base	Molarity base	millimole RPD	Titrant Vol. (mL)	Нq	millimoles base	Molarity base	millimole RPD
											1		
racy							CO3 % Re	covered	- 19-1				
Standard 1	0.1018 N NaOH		5.000	2.559	4.054	0.01363	0.003	sample					
Standard 2	0.1018 N NaOH		5.000	2.566	3.879	0.01627	0.003	sample			HCO3 % reco	vered	
99-2277MS	PW 1 + 2mL 0.1N	I NaOH	0.100	2.341	6.99	0.084	122.2%	sample	2.450	4.816	0.0222	563.8%	ample
99-2278MS	PW 3 + 2mL 0.1N	I NaOH	0.100	2.306	7.072	0.08685	125.7%	sample	2.432	4.738	0.0256	242.3%	ample
99-2279MS	PW 5 + 2mL 0.1N	I NaOH	0.200	2.347	7.096	0.08624	128.3%	sample	2.495	4.665	0.0301	365.4%	ample
99-2280MS	PW 7 + 2mL 0.1N	I NaOH	0.300	1.313	7.100	0.02136	107.6%	sample	1.441	4.260	0.0260		ample
Matrix spik Spike = 2.00 SpikeTitrant	ke recovery is calc) mL 0.1018 N Na(t vol. (sample @ .1;	ulated as follo OH was addeo mL + spike) -	ows: d to the 010 · SampleTitra	0-mL of sarr int vol. (aver	the for ear rage sample	ach matrix le only equ	spilke. ated to .1m	ıL)* 0.203	4 N (HCl ti	trant) = me	q. OH		
meq OH / 2.	.00 mL added = me	eq OH/mL for	und / 0.101	8 N OH adde	= 100 =	% recover	red.						
						9		Prep recor	l on 0.2034	M HCl is o	n following pa	Be	

Page 4 of 4

ASR5461R.xls

8/4/99

Chem Rec_51a

4/18/99 Prep date:

Preparation of Standardized 0.2 M HCI

WP# K51300

Standardized 0.1021 M NaOH will be re-checked and then used to standardized the ~ 0.1 M HCI solution. The 0.1021 M NaOH was prepared in Chem Rec_37 (see Chem Rec_37 -- prep.date 2-25-98 for original data) and re-verified against NIST SRM84j Potassium Acid Phthalate KHC8H404 (KAP) = 204.23 g/mole -- Barcode # 52232 --- (see below verification check).

The re-standardized value of 0.1018 M NaOH was reassigned to this NaOH solution with a revised Expiration Date of Feb. 2000.

Prepared 1- liters of ~0.2 M HCl by diluting 100 mL of 1.029M HCl (Chemrec_10) to 0.5 L with DI. H2O.

20 mL aliquots of 0.2 M HCI were were neutralized to the phenopthalien endpoint using the re-standardized 0.1018 M NaOH. The volume of NaOH is accurate to +/- 0.02mL and the pipitting error is estimated to be < 1% @ 1s. Thus total error is < 3 % for the measurements

NaOH Molarity veification

Verification Test #	Wt. of KAP	Vol. of 0.1021M NaOH to neutralize	NaOH Molarity =a * 1000 / b * 204.23	Molarity Erro
1	0.80894	38.95	0.1017	
2	0.80582	38.84	0.1016	
3	0.96233	46.12	0.1022	
an a		Ave=	0.1018	0.0003
			re-certified value	

Titration Id.	aliquot of sample	Vol. of 0.1018M NaOH to neutralize	Molarity of Acid in Sample	Molarity Error +/- @ 1 s
1	20.00	39.88	0.2030	
2	20.00	39.92	0.2032	
3	20.00	40.04	0.2038	
		Ave Molarity HCI =	0.2034	0.00042

8/4/91

Analyst/Date

Project Number

Pacific Northwest Laboratories

Internal Distribution

329 File Mike Urie

Date December 22, 1999

To Dean Kurath

From Tom Farmer

Subject ICPMS Analysis BNFL samples

(ALO# 00-00348)

Pursuant to your request, the sample that you submitted for analysis was analyzed on our radioactively-contained ICPMS for the selected analytes. The concentration results for the isotopes of interest are displayed on the attached spreadsheet.

Dilutions of Isotope Products standards for ²³⁷Np and ²³⁹Pu, an Amersham ⁹⁹Tc standard were used to generate the calibration curves. Independent standards, from the same vendors, of each analyte were used as the continuing calibration verification (CCV) standards. The 1% high-purity nitric acid solution used to dilute the standards and samples was used as a reagent blank. The results are reported in ng analyte/ ml (ppb) of sample submitted ± one standard deviation.

The ⁹⁹Tc values reported assume that the Ru present is exclusively fission-product Ru, and therefore does not have an isotope at m/z 99; i.e., everything observed at m/z 99 is due to ⁹⁹Tc. From the appearance of the Ru isotopic abundance, this appears to be a reasonable assumption; the fingerprint exhibited is obviously not natural.

A uranium hydride interference correction was performed for ²³⁹Pu.

If you have any questions regarding this analysis, please give me a call at 372-0700 or James Bramson at 376-0624.

1/10/00

Kurath Analysis

December 22, 1999

Sample	ICP/MS	* ⁹⁹ Tc		²³⁷ Np		²³⁹ Pu		
ID	Number	ng/ml :	± 1SD	ng/ml ±	1SD	ng/ml ±	1SD	
1%HNO3	9c20a1	0.035±0.005	0.005	<0.03		<0.01		
1%HNO3	9c20a10	<0.024		<0.03		<0.01		
1%HNO3	9c20a45	<0.024		<0.02		<0.008		
00-348	9c20a13	7980 :	± 210	<0.26		<0.11		(AI-TC-ECI)
5ppb Tc-99	9c17a4	4.72 :	± 0.15					
5ppb Tc-99	9c17a19	5.13 :	± 0.03					
5ppb Tc-99	9c17a52	4.79 :	± 0.39					
100ppb Co	9c17a53	<0.024						
1ppb Np CCV	9c20a6			0.996 ±	0.049			
1ppb Np CCV	9c20a47		1	0.968 ±	0.080			
1ppb Pu CCV	9c20a7				and a second	1.02 ±	0.09	
1ppb Pu CCV	9c20a48	A CONTRACTOR AND				0.979 ±	0.013	

Results are reported in ng analyte/ ml of sample submitted.

*Results are from procedure 9c17a.

DATA REVIEW Reviewed by OJ. Jarment Date: Olon 00 Pages: 10/1

Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

~i

Client:	D. Kurath	Charge Code/Project:	W48409 / 29953
ACL Numbers:	00-0348	ASR Number:	5571
Analyst:	MJ Steele	Analysis Date:	December 9, 1999

Procedure: PNL-ALO-381, "Direct Determination of TC, TOC, and TIC in Radioactive Sludges and Liquids by Hot Persulfate Method" M&TE: Carbon System (WA92040): Polonee (360, 06, 01, 023)

M&TE: Carbon System (WA92040); Balance (360-06-01-023).

Final Results:

		Vol	TIC	TIC RPD	TOC	TOC RPD
Lab Number	Sample ID	(ml)	(ug C/ml)	(%)	(ug C/ml)	(%)
00-0348	A1-Tc-EC1	1.00	n/m		46	
00-0348 Rep	A1-Tc-EC1 Rep	1.00	n/m		40	n/a
00-0348 MS	A1-Tc-EC1 MS Rec	1.00			96%	

RPD = Relative Percent Difference (between sample and duplicate/replicate)

The analysis of the subject samples submitted under ASR 5571 was performed by the hot persulfate wet oxidation method. The hot persulfate method uses acid decomposition for TIC and acidic potassium persulfate oxidation at 92-95°C for TOC, all on the same sample, with TC being the sum of the TIC and TOC. Per the ASR and since the sample is acidic only TOC analyses were performed.

The table above shows the results, rounded to two significant figures. The raw data bench sheets and calculation work sheets showing all calculations are attached. All sample results are corrected for average percent recovery of system calibration standards and are also corrected for contribution from the blank

Q.C. Comments:

The TIC standard is calcium carbonate and TOC standard is α -Glucose (the certificates of purity are attached). The standard materials were used in solid form for system calibration standards as well as matrix spikes (TOC only)

The QC for the methods involves calibration blanks, system calibration standards, sample duplicates, and one matrix spike per matrix type.

<u>Calibration Standards</u>: The QC system calibration standards were all within acceptance criteria, with the average recovery being 100.2% for TIC and 99.7% for TOC.

<u>Calibration Blanks</u>: The three calibration blanks run at the beginning and end of the analysis run were acceptable, averaging 13 μ gC TIC and 40 μ gC TOC.

<u>Duplicates</u>: No actual sample duplicate was provided to the laboratory for analysis. However replicates of the sample were analyzed. The relative percent differences (RPD) between replicates
Battelle PNNL/RPG/Inorganic Analysis --- TOC/TIC Report

was not calculated since the TOC concentration in the sample and replicate are less than five times the method detection limit.

<u>Matrix Spike</u>: The accuracy of the carbon measurements can be estimated by the recovery results from the matrix spike. The matrix spike for this sample recovered at 96.5% for TOC, well within the 75% to 125% recovery acceptance criteria.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- Routine precision and bias are typically ±15% or better for non-complex samples that are free of interferences.
- The estimated quantitation limit (EQL) is defined as 5 times the MDL. Results less than 5 times the MDL have higher uncertainties, and RPDs are not calculated for any results less than 5 times the MDL.
- Some results may be reported as less than ("<") values. These less than values represent the sample MDL (method detection limit), which is the system MDL adjusted for the volume of sample used for the analysis. The system MDL is based on the attached pooled historical blank data. The evaluation and calculation of the system MDL is included in the data package.

Report Prepared by:

Date 1-11-00

Date H14-00

Review/Approval by:

Archive Information:

Files: ASR 5571 Kurath.doc

ASR 5478 5536 5571 Liq+Solids.xls

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

	and the state of the second		The second state of the second	
Client:	D. Kurath		Charge Code/Projec	t: W48409 / 29953
ACL Numbers:	99-2289, 00-0348 .	a a ser a	ASR Number:	5463, 5571
Analyst:	MJ Steele		Analysis Date: N	ovember 01-03, 1999

Procedure: PNL-ALO-212, "Determination of Inorganic Anions by Ion Chromatography" IC system (WD25214); Balance (360-06-01-031) --- See Chemical Measurement M&TE: Center 98620 RIDS IC File for Calibration, Standards Preparations, and Maintenance Records.

Final Results:

	$\mathbf{F}_{\mathbf{F}}$	Cl	NO ₂	Bran	NO ₃	PO ₄	SO4	C201
Sample ID	µg/ml -	µg/ml .	µg/ml -	µg/ml	μg/ml	µġ/ml	-µg/ml=	µg/ml
CS-IX	< 500	< 500	< 1000	< 500	33,000	< 1000	< 1000	< 1000
CS-IX Rep	< 500	< 500	< 1000	< 500	33,000	< 1000	< 1000	< 1000
RPD	n/a	n/a	n/a	n/a	0%	n/a	n/a	n/a
99-2289 MS Rec	100%	98%	103%	103%	97%	103%	105%	105%
Blank Spike Rec	102%	97%	103%	106%	106%	105%	106%	105%
A1-Te-LEECI	< 500	< 500	< 1000	< 500	30,400	< 1000	< 1000	< 1000
A1-Tc-LC Rep	< 500	< 500	< 1000	< 500	30,800	< 1000	< 1000	< 1000
(B) ELI RPD	n/a	n/a	n/a	n/a	1%	n/a	n/a	n/a
00-0348 MS Rec	107%	103%	108%	114%	113%	112%	113%	113%
	Sample ID CS-IX CS-IX Rep RPD 99-2289 MS Rec Blank Spike Rec A1-Tc-JC Ec1 A1-Tc-LC Rep B Ca RPD 00-0348 MS Rec	Sample ID µg/ml CS-IX < 500	F: CI Sample ID $\mu g/m1$ $\mu g/m1$ CS-IX < 500	F. Cl NO2 Sample ID $\mu g/m1$ $\mu g/m1$ $\mu g/m1$ CS-IX < 500	FClNO2BrSample ID $\mu g/ml$ $\mu g/ml$ $\mu g/ml$ $\mu g/ml$ $\mu g/ml$ CS-IX< 500	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	FClNO2Br µg/mlNO3PO3Sample IDµg/mlµg/mlµg/mlµg/mlµg/mlCS-IX< 500	FClNO3Br µg/mlNO3PO3SO4 µg/mlCS-IX ≤ 500 ≤ 500 ≤ 1000 ≤ 500 $33,000$ < 1000 < 1000 CS-IX Rep ≤ 500 ≤ 500 ≤ 1000 ≤ 500 $33,000$ < 1000 < 1000 CS-IX Rep < 500 < 500 < 1000 < 500 $33,000$ < 1000 < 1000 RPDn/an/an/an/an/an/an/a99-2289 MS Rec100%98%103%103%97%103%105%Blank Spike Rec102%97%103%106%106%105%106%A1-Tc-LC Rep < 500 < 500 < 1000 < 500 $30,800$ < 1000 < 1000 M -Tc-LC Rep < 500 < 500 < 1000 < 500 $30,800$ < 1000 < 1000 M -Tc-LC Rep < 500 < 1000 < 500 $30,800$ < 1000 < 1000 M -Tc-LC Rep < 500 < 1000 < 500 $30,800$ < 1000 < 1000 M -Tc-LC Rep < 500 < 1000 < 1000 $< 102%$ 113% 112% 113%

RPD = Relative Percent Difference (between sample and duplicate/replicate)

MS Rec = Matrix Spike Standard % recovery

Blank Spike Rec = Blanks Spike Standard % recovery

The samples were analyzed by ion chromatography (IC) for inorganic anions as specified in the governing ASRs. The liquid samples were diluted at the IC workstation up to 2,000-fold to ensure that all anions were within the calibration range.

Q.C. Comments:

Duplicates: The relative percent difference (RPD between duplicates/replicates could only be determined for nitrate, since all other anions were below the detection limit at the dilutions measured. The nitrate RPDs are well within the acceptance criteria of 20%.

Matrix Spike: Spikes were prepared and measured for both samples. The matrix spike recoveries for all anions are well within the 75% to 125% recovery acceptance criteria.

Blank Spike: The blank spike is used as the laboratory control sample and recovered within the acceptance criteria of 80% to 120%.

System Blank/Processing Blanks: Approximately ten system blanks were process during the analysis of the samples. With the exception of only single nitrate value, no anions were detected

Battelle PNNL/RPG/Inorganic Analysis --- IC Report

above reportable concentrations in the system blanks. Since the nitrate results are very high, this single QC failure does not affect the reported nitrate results.

<u>Quality Control Calibration Verification Check Standards</u>: Approximately ten mid-range verification standards were analyzed throughout the analysis runs. Except for a single phosphate value, the reported results for all analytes of interest were recovered within the acceptance criteria of $\pm 10\%$ for the verification standard. The one phosphate result recovered at $\pm 11\%$ above the true value. This single phosphate failure has no impact on the reported results.

General Comments:

- The reported "Final Results" have been corrected for all dilution performed on the sample during processing or analysis.
- The low calibration standards are defined as the estimated quantitation limit (EQL) for the reported results and assume non-complex aqueous matrices. Actual detection limits or quantitation limits for specific sample matrices may be determined, if requested.
- Routine precision and bias are typically ±15% or better for non-complex aqueous samples that are free of interference and have similar concentrations as the measured anions.

Min / Analyst: Approval:

Date 11-12-99

Archive Information: Files: ASR 5463 5571 Kurath.doc

ASR 5463 5533 -36 -68 -71.xls

Project: Client:

29953 D. Kurath

ACL Number(s): 00-0295 through 00-0348

Client ID: "C1-Cs-ICP" through "A1-Tc-EC1" _____

ASR Number: 5571

.....

Total Samples: 16

PNL-ALO-211, "Determination of Elements by Inductively Coupled Procedure: Argon Plasma Atomic Emission Spectrometry" (ICP-AES).

Analyst: D.R. Sanders

Analysis Date (Filename): 12-02-99 (A0563)

See Chemical Measurement Center 98620: ICP-325-405-1 File for Calibration and Maintenance Records.

M&TE Number:

-- WB73520 **ICPAES** instrument Mettler AT400 Balance -- Ser.No. 360-06-01-029

12-15-99 Reviewed by 2-16-99 Čoncur

Sixteen radioactive <u>liquid samples</u>, C1-Cs-ICP through A1-Tc-EC1 (ACL# 00-0295 through 00-0348), were analyzed by ICPAES after preparation by the Sample Receiving and Preparation Lab (SRPL). All samples except ACL# 00-0295, 00-0331 and 00-0348 were prepared by SRPL using PNL-ALO-128 acid digestion procedure. Approximately 2 to 4 ml of sample (weighed) was processed and diluted to a final volume of approximately 10ml. Density of the final solution will be determined using a 1ml aliquot taken from each processed sample, weighed and the density estimated by dividing the aliquot weight by the weight of water using the same pipette. The final volume of each processed sample may then be calculated using the final weight of processed sample divided by the estimated density. Results of the density estimates for the samples will be sent as a separate report. Several samples required analytical dilution of 5-fold or more because of high sodium concentration. Concentration for samples ACL# 00-0306 through 00-0318 are reported in ug/ml and corrected for analytical dilution and sample processing (diluted by mass: weight of final solution divided by weight of sample aliquot).

Sample ACL# 00-0295 was not processed, only diluted about 10-fold before analysis using 2% v/v nitric acid. Also samples ACL# 00-0331 and 00-0348 were not processed and analyzed as received except for analytical dilution analysis using 2% v/v nitric acid as needed. Concentration for samples ACL# 00-0295, 00-0331, 00-0348 are reported in **ug/g** and corrected for dilution (final solution volume divided by weight of sample aliquot).

Volumes and weights have been recorded on bench sheets and included with this report. Specific analytes of interest requested in table 6-1 attached to ASR-5571 include: Al, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, La, Mg, Mn, Mo, Na, Ni, Pb, Si, Sn, Ti, U, and Zn.

Most of samples contained high concentrations of sodium. A few samples had moderately high concentrations of aluminum. All other analytes measured were much lower in concentration. Please note that sample C1-Cs-PR3-A (ACL# 00-0315) appears to be quite different than those in the series of six samples C1-Cs-PR1-A through C1-Cs-PR6-A (ACL# 00-0313 through 00-0318). Several analytes such as aluminum, cadmium, sodium, phosphorus, lead, and strontium are higher in concentration than those in the previous or later sample series.

Quality control check-standard results met tolerance requirements for all analytes of interest except as noted below. Following is a list of quality control measurement results relative to ICPAES analysis tolerance requirements under MCS-033.

Five fold serial dilution:

(Aqueous samples)

All results for analytes of interest were within tolerance limit of $\leq 10\%$ after correcting for dilution.

12/14/99

Duplicate RPD (Relative Percent Difference):

(Aqueous samples) All analytes of interest were recovered within tolerance limit of $\leq 20\%$ relative percent difference (RPD) except for barium and zinc. The original sample aliquot did not have any significant amount (detectable but below EQL) of either barium or zinc. However the replicate processed sample had about twice as much zinc and thirty times more barium than the original sample. Also noted was the concentration of barium and zinc in the process blank. Only sample "C1-Cs-PR4-A" (ACL# 00-0316) had as much barium as the process blank. It appears that the preparation blank had become contaminated during sample processing.

Post-Spiked Samples (Group A):

(Aqueous samples)

All analytes of interest were recovered within tolerance of 75% to 125%.

Post-Spiked Samples (Group B):

(Aqueous samples)

All analytes of interest were recovered within tolerance of 75% to 125%.

Blank Spike:

(Aqueous samples) None prepared.

Matrix Spiked Sample: (Aqueous samples) No

None prepared.

Quality Control Check Standards (aqueous samples):

Concentration of all analytes of interest was within tolerance limit of \pm 10% accuracy in standards: QC_MCVA, QC_MCVB, and QC_SSTMCV. Calibration Blank (ICP98.0) concentration was acceptable, less than two times IDL.

High Calibration Standard Check (aqueous samples):

Verification of the high-end calibration concentration for all analytes of interest is within tolerance of $\pm 5\%$ accuracy except nickel. Nickel was slightly low (6.4%) at the end of the run in QC_SST however it was within 5% (low) when measured at the start of the run.

12/14/99

Process Blank: (Aqueous samples)

All analytes of interest were within tolerance limit of \leq EQL or < 5% of sample concentration except barium. As noted above for the %RPD quality control check, barium was above EQL (0.5 ug/ml) and appeared to be about the same concentration as that measured in the replicate sample (ACL# 00-0313REP) and (ACL# 00-316). It would appear that the process blank was contaminated during sample processing.

Laboratory Control Standard (LCS):

(Aqueous samples) No LCS was prepared for PNL-ALO-128 acid digested samples.

Analytes other than those requested by the client are for information only. Please note bracketed values listed in the data report are within ten times instrument detection limit and have a potential uncertainty much greater than 15%.

Comments:

- 1) "Final Results" have been corrected for all laboratory dilution performed on the sample during processing and analysis unless specifically noted.
- 2) Detection limits (DL) shown are for acidified water. Detection limits for other matrices may be determined if requested.
- 3) Routine precision and bias is typically $\pm 15\%$ or better for samples in dilute, acidified water (e.g. $2\% \text{ v/v} \text{ HNO}_3$ or less) at analyte concentrations greater than ten times detection limit up to the upper calibration level. This also presumes that the total dissolved solids concentration in the sample is less than 5000 µg/mL (0.5 per cent by weight).
- 4) Absolute precision, bias and detection limits may be determined on each sample if required by the client.
- 5) The maximum number of significant figures for all ICP measurements is 2.

12/14/99

Page 4 of 4

			1		1	4.0	1		1		
	Multiplier=	40.5		1.0		1.0					
	ALO#=	00-0295 @5		00-0331	1	00-0348					
	Client ID=	C1-Cs-ICP	1.1.1.1.1.1.1.1	Regeneration	n soln	A1-TC-EC1					
Det. Limit	Run Date=	12/2/99		12/2/99	·	12/2/99					
(ug/mL)	(Analyte)	ug/g		ug/g		ug/g					
0.025	Aq	-	1	-				-		-	
- 0.060	AI	1,960	1	0.870	1	7.46		-	1		
0.250	As	.,			1	-		-	1	-	
0.050	R	28.8		3.74		8.41		-			•••••••
0.030	D Ro	20.0				10 0301		-		-	
- 0.010	Da					[0.000]					
0.010	De D'										
0.100	В	-					{		1		
0.250	Ca	137									1
0.015	Cd	23.1									
0.200	Ce	-				-					
0.050	Co	-									
0.020	Cr	36.6		0.252		1.51					
0.025	Cu	15.5		0.282							
0.050	Dy	-		-	1.	-	•	-		-	
0.100	Eu	-									
0.025	Fe	[8.3]]	0.488		10.7		-		-	
2.000	к	[630]		-		23.8		-		-	
0.050	La							-		-	
0.030	Li	-		-			1	-			
0 100	Ma	-		-		[0.13]	1				
0.050	Mo		6			10.151	1	-			
0.050	Mo	[12]						-			
0.050	No	(12)		1 700		108		-		-	
0.150	Na	90,100		1,750							
0.100	NO	-		10 111		1.24					
0.030	NI	188		[0.11]		1.34					
0.100	Р	249				[0.24]					
0.100	Pb	53.0		-							
0.750	Pd	-				-					
0.300	Rh	-						-		-	
1.100	Ru	-		-				-			
0.500	Sb	-		-				-		-	
0.250	Se	-		-		-				-	
0.500	Si	[59]		18.8		16.7				-	
1.500	Sn			-						-	
0.015	Sr	107		-		-		-		-	
1.500	Te	-		-		-		-		-	
1.000	Th	-		-		-		-		-	
0.025	ті	÷		-		-		-		-	
0.500	TI	-		-		-	=	-	1	-	
2.000	U	-		-				-		· _	
0.050	v	-		-				-		-	
2 000	w	-		-				_		-	
0.050	v			_		-	1	-	1		
0.050	70	[5.4]		0.532		[0,12]		-	1	-	
0.050	20	[3.4]		0.332		[0.12]		-	1		
0.050	21	-		-	and the second se		the second se	and the second se			

Note: 1) Overall error <u>greater than</u> 10-times detection limit is estimated to be within +/- 15%. 2) Values in brackets [] are <u>within</u> 10-times detection limit with errors likely to exceed 15%. 3) "--" indicate measurement is <u>below</u> detection. Sample detection limit may be found by

multiplying "det. limit" (far left column) by "multiplier" (top of each column).

13					2.00								-					15.0	- And		
WJ Steele DATE DATE											•					×.	10%		101		
ANALYST_		final vol.(ml)	5	10	10	10	10	10	10	10	10	10	10	10	10	10	2	ALTINA.	The second	111	
		1.1 2.1.		10.188	10.0401	9.6714	9.5301	9.9775	10.1627	10.3107	9.9583	10.0992	10.2507	10.0455	9.9384	9.9413			10.9307	10.3507	
DIGEST OD 128	post digest(g)	sample(g)		17.0703	16.9577	16.5048	16.4375	16.8993	17.128	17.254	16.8079	16.9523	17.1594	16.9736	16.8984	16.9131	۷	A	16.865	17.2599	
ACID I METH	post digest(g)	new vial	A	6.8823	6.9176	6.8334	6.9074	6.9218	6.9653	6.9433	6.8496	6.8531	6.9087	6.9281	6.96	6.9718	Z	Z	6.8343	6.9092	
		sample (g)		2.4717	2.4716	2.3563	2.2054	2.1164	2.042	2.0238	3.0186	3, 0115	4.0597	2.0001	2.9879	- 3.0052	5 4.9407 NJ	5, 2, 4.9782 N	3.0145		
\square)	viai+ sample(g)	8.8352	10.6006	10.5321	10.6631	10.3006	10.3261	10.1608	9.9628	11.067	11.1532	12.087	10.1648	11.0747	11.2531 6	13.0325	13.0584	11.1307		HOURS
LAN BITT	M mass.		8.2179	- 8.1289	8.0605	8.3068	8.0952	8.2097	8.1188	7.939	8.0484	1141,9	8.0273	8.1647	8.0868	8.2479	8.0918	8.0802	8.1162	NK	ST = ABOUT 31
Kural 255	N HELL		00-0295	00-0306	00-0307	00-0308 1	00-0309 🗸	00-0310	00-0311 /	00-0312 ./	00-0313	00-0314 • /	00-0315 • /	00-0316 • 2	00-0317 • /	00-0318 • 1	00-0331 /	00-0348	00-0313 REP V	PROCESS BLA	0.5 ML DIGES
CLIENT	Note: dilutions into		C1-Cs-ICP	C1-Cs-FD1-B	C1-Cs-FD2-B	C1-Cs-FD3-B	C1-Cs-FD4-B	C1-Cs-FD5-B	C1-Cs-FD6-B	C1-Cs-FD7-B	C1-Cs-PR1-A	C1-Cs-PR2-A	C1-Cs-PR3-A	C1-Cs-PR4-A	C1-Cs-PR5-A	C1-Cs-PR6-A	regeneration soln	A1-Tc-EC1	C1-Cs-PR1-A	L/CC HCH	SAMPLE ABOUT

L:/IAG/PREP/ ASR5571 VIc

page 1 of 1

.

.

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building

Client : Kurath

Cognizant Scientist:

L R Geenner

Date: $\frac{1/6/00}{1/6/2000}$

1/6/00

Procedure: PNL-ALO-476

Concur :

-		
_	Rang-le	
	()	
	U	

Measured Activities (uCi/g) with 1- σ error

ALO ID	Sr-90
Client ID	Error +/-
00-00348	1.47E-3
A1-Tc-EC1	4%
Matrix Spike	103%
Blank Spike	105%
Blank	3.31E-7
	31%

File: 00-0295

1

Battelle Pacific Northwest Laboratory Radiochemical Processing Group-325 Building

Client : Kurath

~

Cognizant Scientist:

Concur :

Trang-le

<u>1/14/00</u> 1/14/2000 Date :

1/14/00

Date :

Measured Activities (uCi/g) with 1- σ error

ALO ID Client ID	Alpha Error +/-
00-00348 A1-Tc-EC1	<2.E-3
Blank Spike	114%
Blank	<2.E-6

File: 00-0295.xls

Radiochemical Processing Group-325 Building **Battelle Pacific Northwest Laboratory** Radioanalytical Applications Team

12/6/1999

•

Client : Kurath

Cognizant Scientist:

Procedure: PNL-ALO-450

Concur :

& Redresser 200 Richarths

Date : 12/6/99 Date :

12/7/91

Aulioi samples CLAST PAGE Measured Activities (uCi/g) with 1-sigma error

Co-57 Error %

Tc-95M Error %									
Tc-95 Error %								-11	
Y-88 Error %									
Am-241 Error %	<7.E-2	<2.E-3	9.77E-3 17%	<4.E-2	<2.E-2	<2.E-3	<2.E-3	9.03E-4 5%	1.03E-2 7%
Eu-155 Error %	<8.E-2	<2.E-3	1.67E-2 10%	<4.E-2	<2.E-2	<2.E-3	<3.E-3	1.79E-2 3%	1.96E-2 3%
Eu-154 Error %	3.24E-2 6%	3.39E-4 14%	2.80E-2 2%	2.90E-2 5%	2.85E-2 3%	4.01E-4 12%	4.94E-4 12%	2.52E-2 2%	2.83E-2 2%
Cs-137 Error %	1.26E+2 2%	1.60E+0 2%	2.93E+1 2%	5.29E+1 2%	8.81E+1 2%	1.13E+0 2%	1.16E+0 2%	1.08E-3 5%	4.70E-3 3%
Cs-134 Error %	<4.E-3	<6.E-5	2.93E-4 35%	<2.E-3	<1.E-3	<7.E-5	<7.E-5	<2.E-4	<2.E-4
SnSb-126 Error %	<5.E-2	<6.E-4	<3.E-3	<3.E-2	<2.E-2	<1.E-3	<1.E-3	3.20E-4 6%	3.58E-4 8%
Sb-125 Error %	<2.E-1	<2.E-3	<7.E-3	<6.E-2	<3.E-2	<3.E-3	<3.E-3	2.98E-4 28%	5.57E-4 25%
Rurh-106 Error %	<2.E-1	<3.E-3	<2.E-2	<9.E-2	<5.E-2	<5.E-3	<5.E-3	<8.E-4	<2.E-3
Co-60 Error %	4.86E-2 3%	7.10E-4 4%	4.38E-2 2%	4.43E-2 2%	4.69E-2 2%	5.16E-4 6%	5.40E-4 6%	3.52E-2 2%	4.00E-2 2%
ALO ID Client ID	00-00295 C1-Cs-ICP	00-00296 C1-Cs-0A	00-00297 C1-Cs-L1A	00-00298 C1-Cs-L3A	00-00299 C1-Cs-L6A	00-00300 C1-Cs-L9B	00-00301 C1-Cs-L12B	00-00302 C1-Cs-P1A	00-00303 C1-Cs-P2A

Page 1 / 5

File: 00-0295.xls

Measured Activities (uCi/g) with 1-sigma error

ALO ID Client ID	Co-60 Error %	Rurh-106 Error %	Sb-125 Error %	SnSb-126 Error %	Cs-134 Error %	Cs-137 Error %	Eu-154 Error %	Eu-155 Error %	Am-241 Error %	Υ-88 Fror %	Tc-95 Fror %	Tc-95M Frror %	Co-57 Error %
00-00345 A1R-Cs-P2	3.08E-4 2%	2.78E-4 12%	9.85E-5 17%	2.18E-4 2%	4.91E-5 7%	1.97E-2 2%	2.87E-5 15%	<6.E-5	<7.E-5				1
00-00346 A1R-Cs-P7	2.77E-4 2%	2.30E-4 14%	6.97E-5 24%	1.77E-4 3%	7.31E-6 37%	2.91E-2 2%	1.78E-5 21%	<5.E-5	<7.E-5				
00-00347 A1-Cs-E2-CO	<1.E-5	<2.E-3	<7.E-4	<2.E-4	6.76E-5 22%	4.54E-1 2%	<5.E-5	<5.E-4	<6.E-4				
00-00348* A1-Tc-EC1	<2.E-6	<2.E-4	<6.E-5	<2.E-5	<2.E-5	6.61E-5 10%	<5.E-6	<7.E-5	<6.E-5	9.93E-6 7%	4.61E-3 2%	9.76E-2 2%	
00-00349** A1-Tc-LC	2.88E-4 2%	2.83E-4 8%	8.48E-5 20%	2.04E-4 4%	9.00E-6 16%	5.89E-2 2%	2.33E-5 8%	<4.E-5	<6.E-5	2.14E-5 4%	8.52E-5 4%	1.80E-3 2%	6.84E-5 38%
00-00365 C1-Cs-OAR	7.29E-3 3%	<3.E-2	<2.E-2	<6.E-3	<6.E-4	1.81E+1 2%	4.65E-3 8%	<1.E-2	<9.E-3				
*Sample activity **Sample activity	of Tc-95m s y of Tc-95m	as of 11/17/9 as of 11/18/	9 at 15:00 99 at 14:30	1									

Analytical Data a	nd Calc	ulatio	<u>us</u>									
I. Components of Fe	ed Displa	acemen	it and Rinse									
See (III) below	for details	and spre	eadsheet ICP.xis t	for items not four	nd here.							
Sample	BV		Total BV	Na (ug/mL)	K · (ug/mL)	Cr (uq/mL)	AI (ua/mL)	P (ua/mL)	(M) HO	S	(M) E	HCO3 (M)
PW1		1.39	263.43	82282.20	13213.20	35.64	9819.81	196.20		2.04	0.68	
PW3		3.94	265.98	94094.00	14514.50	38.94	10810.80	215.22		2.04	0.69	
PW5		6.25	268.29	56956.90	8458.45	20.32	5605.60	122.12		1.09	0.33	
PW7		8.50	270.54	11811.80	1801.80	4.05	1061.06	28.53		0.215	0.06	WDW >
æ		1.10	271.63	6410.00	998.00	1.73	446.00	12.60		0.145	0.03	
PR3		3.05	.273.59	3350.00	417.00	[0.56]	138.00	[4.60	-	0.11	0.01	
BBG		5.20	275.74	2430.00	214.00	[0.27]	63.70	[2.20		0.09	00.0	
Regen	na		na	3225.60	< MDL	[0.34]	3.32	< MDL		0.115	0.0	0.0
II. Anions in Feed												
Sample A1-Tc	Ģ		Tc-99 =	3.75 ug/mL=	3.79E-05	Σ						
Anion	ua/mL		moles/L	Normality	Mole ratio to To-	00						
ш	2	1020	0.053688723	0.053688723		2						
σ		2670	0.075310975	0.075310975				1		1		
NO2		46500	1.010748715	1.010748715	2.67E+04							
à		200	0.002503004	0.002503004								
NO3	+	92800	1.496655909	1.496655909	3.95E+04							
ğ		400	0.004211796	0.012635388	1.11E+02					1		
SQ4		690	0.00718319	0.01436638	1.90E+02					1		
C204		400	0.004544442	0.009088885	1.20E+02							
Cr04	1		0.000903931	0.001807862	2.39E+01							
AIO2			0.411	4.11E-01								
8			2.17	2.17E+00								
g			0.13	0.26								
Tot Anion Nor	nality			5.52E+00								

Analytical

		Atomic Mass	A1-Tc-PW1 8/3/99	A1-TC-PW1	A1-Tc-PW3 8/3/99	A1-TC-PW3	A1-Tc-PW5 8/3/99	A1-TC-PW5	A1-TC-PW7 8/3/99	A1-TC-PW7	A1-TC-PR1 8/3/99
A 1(7) 863 \dots ∞	Element	g/mole	ua/a	ua/mL	ua/a	ua/mL	001010 na/a	ua/ml		lm/mi	66/010
Al 2.5.90 9.810 919.81 10.800 10.810 510 500.60 10.610 500.60 10.610 10.71 B 10.810 21.3 35.04 27.30 10.81 10.810 10.81 10.81 B 10.810 10.31 35.04 27.33 55.04 27.33 10.81 10.81 B 10.800 10.81 10.81 10.81 10.81 10.81 10.81 10.81 C 40.000 16.5 11.40 11.5 11.50 12.31 12.31 12.31 12.31 C 51.960 5.6 11.50 12.31 13.31	Ag	107.868	:					1	n :		7/57
A: 74,300 $7,330$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,331$ $6,21$ $7,3111$ $7,311$ $7,3111$	A	26.980	9,810	9819.81	10,800	10810.80	5,600	5605.60	1.060	1061.06	446
B 1,0,10 31.0 35.0 35.0 35.0 35.1 <th< td=""><td>As</td><td>74.920</td><td>[7.3]</td><td>[7.31]</td><td>[8.2]</td><td>[8.21]</td><td>[4.1]</td><td>[4.10]</td><td>[0.71]</td><td>10.71</td><td>:</td></th<>	As	74.920	[7.3]	[7.31]	[8.2]	[8.21]	[4.1]	[4.10]	[0.71]	10.71	:
Bas 17.330 (0.11) (0.81) (0.81) (0.92) (0.022) Cold 11.240 11.31 (1.40) (1.3) <	8	10.810	31.0	31.03	35.0	35.04	27.3	27.33	13.5	13.51	10.4
Be 9.012 $\left[0.81\right]$ $\left[0.81\right]$ $\left[0.84\right]$ $\left[0.43\right]$ $\left[0.77\right]$ $\left[0.72\right]$ $\left[0.72\right]$	ß	137.330	:		:		:		[0.054]	10.05	[0.052]
R 200.800 $\left[651 \right]$ $\left[731 \right]$ $\left[731 \right]$ $\left[771 \right]$ <td>8</td> <td>9.012</td> <td>[0.81]</td> <td>[0.81]</td> <td>[0.89]</td> <td>[0.89]</td> <td>[0.43]</td> <td>[0.43]</td> <td>[0.082]</td> <td>10.08</td> <td>•</td>	8	9.012	[0.81]	[0.81]	[0.89]	[0.89]	[0.43]	[0.43]	[0.082]	10.08	•
Calibre 40.080 $[6.5]$ $[1.40]$ $[1.5]$ $[1.20]$ $[1.47]$ $[1.73]$ $[1.47]$ $[0.72]$ <	窗	208.980	:		:		:		:		:
Cd 11.410 [1.40] [1.50] $[0,77]$ $[0,72]$ $[0,72]$ $[0,72]$ $[0,72]$ $[0,72]$ $[0,72]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76]$ $[1,76$	S	40.080	[6.5]	[6.51]	[7.3]	[7.31]	[4.7]	[4.70]	[1.4]	[1.40]	[1.2]
Col 140.120	8	112.410	[1.4]	[1.40]	[1.5]	[1.50]	[0.77]	10.77	[0.15]	10.15	:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	පී	140.120	:				•		;		:
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	58.930					:		:		:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ⴆ	51.996	35.6	35.64	38.9	38.94	20.3	20.32	4.05	4.05	1.73
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	63.546	[1.9]	[1.90]	[2.1]	[2.10]	[1.2]	[1.20]	[0.72]	[0.72	[0.36]
Eu 151.960 \dots 5.42 \dots 5.42 \dots 5.42 \dots \dots 13.3006 \dots 13.200 13.213 14514.50 $\frac{14.514.50}{1.60}$ 14514.50 $\frac{14.514.50}{1.60}$ $\frac{11.811.750}{1.60}$	5	162.500					:		:		
Fe55.8475.185.195.415.195.415.195.415.12 $[2.60]$ $[0.65]$ 15.931 $[0.18]$ $[0.20]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.514.50]$ $[1.516]$ <td>æ</td> <td>151.960</td> <td>:</td> <td></td> <td></td> <td></td> <td>:</td> <td></td> <td>1</td> <td></td> <td>:</td>	æ	151.960	:				:		1		:
K 33.008 13.200 13213.20 14514.50 8458.45 1,800 L 6.941 (0.18) (0.18) (0.20)	ę	55.847	5.18	5.19	5.41	5.42	[2.6]	[2.60]	[0.65]	[0.65]	[0.54]
La 138.906 (0.18) (0.110) (0.110) (0.110) (0.110) (0.110)	¥	39.098	13,200	13213.20	14,500	14514.50	8,450	8458.45	1,800	1801.80	998
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	La	138.906	:				:		:		1
Mg 24.305	-	6.941	[0.18]	[0.18]	[0.20]	[0.20]	:		:	-	:
Mn 55.938 \dots \dots 55.938 \dots	BW	24.305	:		:		:		:		1
Mo 95:940 21.0 21.02 23.11 23.12 11.81 2.36 11.81 2.36 11.81 2.36 11.81 2.36 11.81 2.36 11.81 2.36 11.81 2.36 11.81 2.36 11.81 2.36 11.80 1.81 2.36 11.80 1.81 2.36 11.80 1.81 2.36 1.81 2.36 2.11 2.70 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.11 2.213 2.11 2.213	Mn	54.938	:				:		:		1
Na22.39082.200922.80092.80056.90056956.9011,800Ni58.70012.5112.501 $\frac{1.1}{2.71}$ 12.701 $\frac{1.1}{1.41}$ $\frac{1.1}{1.41}$ Ni58.70019.021.5212.7112.701 $\frac{1.1}{1.41}$ $\frac{1.1}{1.01}$ P30.97019.019.021.521.3219.11 $\frac{1.1}{1.01}$ P207.20019.019.021.321.3221.3219.11P207.20019.019.0221.321.3221.3219.11P207.20019.019.0221.321.3221.3219.11P101.070 $\frac{1.5}{1.1}$ 12.70 $\frac{1.6}{1.1}$ $\frac{1.1}{1.01}$ $\frac{1.1}{1.01}$ P101.07012.512.50121.3221.3221.3221.32Sa138.66013.60113.99110.81173.773.7736.6Sa138.080 $\frac{1.441}{1.41}$ $\frac{1.440.41}{1.491}$ $\frac{1.440.51}{1.4905}$ $\frac{1.490.51}{1.241}$ $\frac{2.11}{1.217}$ $\frac{2.10}{1.2.17}$ Sa138.660 $\frac{1.441}{1.401}$ $\frac{1.440.41}{1.491}$ $\frac{1.490.51}{1.4905}$ $\frac{2.4102}{1.41}$ $\frac{2.4021}{1.21}$ $\frac{2.4021}{1.21}$ Sa138.600 $\frac{1.21.750}{1.221}$ $\frac{1.21.750}{1.221}$ $\frac{1.21.750}{1.221}$ $\frac{1.21.750}{1.221}$ $\frac{1.21.750}{1.221}$ $\frac{1.21.750}{1.221}$ Sa138.600 $\frac{1.21.750}{1.2200}$ $\frac{1.21.750}{1.221}$ $\frac{1.21.750}{1.221}$ $\frac{1.21.750}{1.221}$ $1.21.75$	Ŵ	95.940	21.0	21.02	23.1	23.12	11.8	11.81	2.36	2.36	[0.88]
Nd 144.240 12.501 $\frac{2.71}{2.51}$ $\frac{11.61}{2.51}$	Na	22.990	82,200	82282.20	94,000	94094.00	56,900	56956.90	11,800	11811.80	6,410
Ni 58.700 [2.5] [2.50] [2.7] [2.70] [1.4] [1.40] [0.33] P 30.970 196 215 215 215.22 122 122 28.5 P 106.400 19.02 21.3 21.32 12.1 28.5 Ri 102.906 21.3 21.32 21.3 21.3 21.3 Ri 102.906 25.01 [2.7] 27.1 27.1 28.1 27.1 <td< td=""><td>PZ</td><td>144.240</td><td>:</td><td></td><td>1</td><td></td><td>1</td><td></td><td>1</td><td></td><td>:</td></td<>	PZ	144.240	:		1		1		1		:
P 30.970 196 196.20 215 215.22 122.12 28.5 P 207.200 19.0 19.02 13.02	z	58.700	[2.5]	[2.50]	[2.7]	[2.70]	[1.4]	[1.40]	[0.33]	[0.33]	:
Pb $207,200$ 19.0 19.02 21.32 21.32 $[9.11]$ $[1.0]$ Pd $106,400$ $[2.70]$ $[2.71]$	a . ;	30.970	196	196.20	215	215.22	122	122.12	28.5	28.53	12.6
He 106.400	£	207.200	19.0	19.02	21.3	21.32	[9.1]	[9.11]	[1.0]	[1.00]	[0.30]
m 102.906 102.906 102.906 101.070 12.1750 121.750 121.750 121.750 121.750 121.750 12.1750 12.1750 12.1750 12.1750 12.1750 12.1750 12.1750 12.1750 12.1750 12.1750 12.1750 12.17500 12.17500 12.177 32.77 35.77	P 1	106.400	:		1		:	-	:	- 1	:
Mu 101.070 [2.5] [2.70] <t< td=""><td>£</td><td>102.906</td><td>:</td><td></td><td>:</td><td></td><td>:</td><td></td><td>:</td><td></td><td>:</td></t<>	£	102.906	:		:		:		:		:
30 121.150 \dots (2.10) (2.10) \dots 56 78.960 (3.6) (3.9) (3.9) (2.1) (2.10) \dots 57 81.650 (144) (44) (49) (49) (19) (2.1) (2.10) \dots 57 87.620 \dots (18.690) (144) (149) (149) (149) (149) (24) (2.10) \dots 7 87.620 \dots (13.60) (14) (149) (149) (149) (149) (24) (2.10) \dots 7 73.7600 \dots \dots (12.4) (24) (24) (2.10) \dots 7 73.2038 \dots (147.04) (149.05) (24) (24.02) \dots \dots 7 17 232.038 \dots	₹a	101.070	2.5	[2.50]	[2.7]	[2.70]	1		:		:
Se 78.960 $[3.6]$ $[3.60]$ $[3.9]$ $[3.90]$ $[2.1]$ $[2.10]$ \cdots Si 28.086 91.6 73.7 73.77 73.6 1.08 $1.08.14$ 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27	8	121.750	:		:		:		:		:
X 28.086 91.6 91.69 108 108.11 73.7 73.77 36.6 Sr 118.690 [44] [44.04] [49] [49.05] [24] 23.02 Sr 127.600 Th 232.038 Th 232.038 Ti 47.900 </td <td>% 8</td> <td>18.960</td> <td>3.6</td> <td>13.60</td> <td>[3.9]</td> <td>[3.90]</td> <td>[2.1]</td> <td>[2.10]</td> <td>:</td> <td></td> <td>:</td>	% 8	18.960	3.6	13.60	[3.9]	[3.90]	[2.1]	[2.10]	:		:
Sn 118.690 [44] [44] [44] [49] [49.05] [24] [24.02] Sr 87.620	7 0	28.086	91.6	91.69	108	108.11	73.7	73.77	36.6	36.64	33.2
Sr 87.620	5	118.690	[44]	[44.04]	[49]	[49.05]	[24]	[24.02]	-		:
Ie $127,600$	ה א	81.620	:		:		:		:		:
In 232.038 Ti 47.900 Ti 238.030 Ti 238.030 V 50.942 V 50.942 V 88.906 Zn 65.380 5.92 5.93 6.57 6.58 [3.6] [0.94]	e i	127.600	:		:		:		:		1
Ti 47.900 </td <td>£</td> <td>232.038</td> <td>:</td> <td></td> <td>:</td> <td></td> <td>:</td> <td></td> <td>:</td> <td></td> <td>:</td>	£	232.038	:		:		:		:		:
TI 204.370 <	F	47.900	:		:		:		:		:
U 238.029 V 50.942 <td>F</td> <td>204.370</td> <td>:</td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>:</td>	F	204.370	:		:						:
V 50.942 <th< td=""><td>-</td><td>238.029</td><td>:</td><td></td><td>:</td><td></td><td>:</td><td></td><td>:</td><td></td><td>:</td></th<>	-	238.029	:		:		:		:		:
W 183.850 [39] [39.04] [42] [42] [42] [24.02] [4.02] [4.7] Y 88.906	>	50.942	:		:		:		1		:
T 88.906 Zn 65.380 5.92 5.93 6.57 6.58 [3.60] [0.94]	>;	183.850	[39]	[39.04]	[42]	[42.04]	[24]	[24.02]	[4.7]	[4.70]	:
ZII b9:380 3:92 5:93 6.57 6.58 [3.60] [0.94]	- ,	88.906	: -		:		:		:		:
	ទ	65.380	5.92	5.93	6.57	6.58	[3.6]	[3.60]	[0.94]	[0.94]	[0.59]

Analytical

_
5
õ
÷
5
-
œ
5
∢
-

A1-Tc-PH1	A1-Tc-PR3 8/3/99	A1-Tc-PR3	A1-Tc-PR5 8/3/99	A1-Tc-PR5	regeneration 8/3/99	regeneration	
ng/mL	6/6n	ug/mL	6/6n	ng/mL	6/6n	ng/mL	Σ
446.00	138	138.00	63.7	63.70	3.29	3.32	0.0001229
	:		:		:		
10.40	12.3	12.30	10.4	10.40	13.3	13.41	0.0012402
[0.05]	[0.086]	[0.09]	[0.068]	[0.07]	[0.18]	[0.18]	
	:		:		:		
	: 2	102.12	:		:		
02.11	(c.1)	[06.1]	1.4]	[1.40]	[3.1]	[3.12]	
	•		:		:		
			:		1		
1 73	[0 56]	10 561		120 01			
10 361			1.2.0	1.2.0	0.34	140.04	
00.01					1		
			:		•		
[0 54]	[0 40]	ID 401	LO 321	10 231	: :	11 11	
00 866	417	417 00	100.0				
0				1.1.1	: :		
	:		:				
	:		:				
	:		1		[0.060]	10 061	
[0.88]	[0.17]	[0.17]	:			00.01	
6410.00	3,350	3350.00	2,430	2430.00	3,200	3225.60	0.1403045
	:		:		:		
	;		:		:		
12.60	[4.6]	[4.60]	[2.2]	[2.20]	:		
[0.30]	:		:	-	;		
	:		[2.2]	1 [2.20]	:		
	:		:	-			
	:		:		:		
	:		:		:		
33.20	41.9	41.90	37.5	37 50		60 15	0 000460
	:		:	22.22			204200.0
	:		:		:		
	:		:		:		
	1				:		
	:		:		:		
	:		:		:		
	:		:		:		
	:		:		:		
	:		:				
[ec.0]	00.01		[U.44]	[0.44]	[1/.0]	[0.72]	
	:		:		:		

PNWD-3004 BNFL-RPT-016, Rev. 0

Distribution

No. of Copies

1

OFFSITE

- R. Bruening IBC Technologies 856 E. Utah Valley Drive American Fork, UT 84003
- 1 P. McGinnis Oak Ridge National Laboratory PO Box 2008 Oak Ridge, TN 37831-6273
- 1 B. Moyer Oak Ridge National Laboratory PO Box 2008 Oak Ridge, TN 37831

N. C. Schroeder
 Los Alamos National Laboratory
 PO Box 1663
 MSIN J514 CST11
 Los Alamos, NM 87545

No. of Copies

ONSITE

5	British Nuclear Fuels, Limited	
	M. E. Johnson (4)	BN-FL
	A. Thompson	BN-FL

Pacific Northwest National Laboratory
D. L. Blanchard Jr. (2) P7-25
J. R. Bontha K6-24
D. E. Kurath (2) P7-28
E. V. Morrey P7-28
Information Release Office (7) K1-06

