
Course Scheme

Introduction | some inadequacies of nonrelativistic theory.
The course itself also attempts to provide an introduction to
many aspects of the subject.

Relativistic | review of classical relativistic mechanics and
dynamics, to provide background for relativistic quantum
theory.

Quantum| quantization of the relativistic Hamiltonian,
both �rst and second. Quantum electrodynamics is also
introduced in the derivation of a Hamiltonian.

Chemistry| focussing in the end on what is of importance
to quantum chemists, and eventually, giving evidence and
understanding of e�ects of relativity on bonding, structure
and energetics.
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What's wrong with nonrelativistic theory?

Nonrelativistic theory works well for light elements, but fails
to predict or adequately explain some phenomena for heavy
elements:

� Trends in ionization potential and electron a�nity with n
and occupation number

� Spin-orbit splitting of p, d, : : : subshells

� Spin and magnetic e�ects

� Stabilization of lower valence states for 6p block, and
higher valence for 5d block

� Trends in dissociation energy with n

If accurate properties are required even for light elements, or
spin-dependent properties are required, a relativistic theory
of some description is essential.
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Ionization potential trends
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Ionization potential trends
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Classical Mechanics

The equations of motion for a particle can be derived from
the principle of least action. The action S is de�ned by

S =

Z tb

ta

L(qn; _qn; t)dt

where L is the Lagrangian. The equations of motion are

d

dt

�
@L
@ _qn

�
�
�
@L
@qn

�
= 0

The momentum conjugate to qn is given by

pn =

�
@L
@ _qn

�

and the force by

Fn = _pn =

�
@L
@qn

�
:

The Hamiltonian is given by

H =
X
n

_qnpn �L

The value of the Lagrangian approach is that it does not
invoke Galilean relativity except to de�ne the speci�c form
of the Lagrangian, so it may be transferred to use in special
relativity.
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Special relativity

We de�ne two frames of reference, frame K which is at rest
with respect to an observer, and frame K0 which is moving
with velocity v in the x direction. The Galilean coordinate
transformation between frames is

x0 = x� vt

Under such a transformation

� Newton's laws are invariant

� Maxwell's equations are not invariant

Consequently, either

� There is a preferred (absolute) frame of reference for elec-
tromagnetic phenomena, which should be experimentally
observable,

or

� Newton's or Maxwell's equations need to be reformu-
lated.

Experiments negated the former. Of the latter, it was found
that it was Newton's laws which needed reformulation.
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Special relativity

The basic postulates of special relativity are:

� All physical laws are invariant, i.e. there is no preferred
frame of reference.

� The speed of light is the same in all frames.

The second of these may be expressed in terms of the dis-
tance travelled by light between two points in a given frame:

(x2 � x1)2 + (y2 � y1)2 + (z2 � z1)2 � c2(t2 � t1)
2 = 0

(x02 � x01)2 + (y02 � y01)2 + (z02 � z01)2 � c2(t02 � t01)
2 = 0

Assuming a transformation of general form between the
coordinates, including the time coordinates, the Lorentz
transformations between the frames K and K0 may be
deduced:

x0 =
x� vtp
1� v2=c2

; y0 = y; z0 = z;

t0 =
t� vx=c2p
1� v2=c2

from which it follows that

� Length contracts with increasing speed

� Time dilates with increasing speed

� Length and time are interrelated
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Special relativity

The symmetry between the length and time coordinates can
be seen if we de�ne a new length coordinate:

w = ct;

and dimensionless quantities � and 


� = v=c; 
 =
1p

1� �2

and rewrite the Lorentz transformation as:

x0 = 
(x� �w)
w0 = 
(w � �x):

Thus, length and time must always appear in the same way
in physical laws.

Similarly, for a particle moving with velocity u in K and u0

in K0 the transformation is

u0x = (ux � v)=(1� uxv=c2)
u0y = uy=
(1� uxv=c2)
u0z = uz=
(1� uxv=c2)

Note that here, the y and z components of velocity are
a�ected, where in the coordinate transformations there was
no e�ect. This is because of the appearance of the di�erential
of the time in the velocity expression.
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Special relativity

For a frame K0 moving with arbitrary velocity v with respect
to frame K, the general forms of the coordinate, time and
velocity transformations are

r0 = 
(r� vt) + (
 � 1)
v� (v � r)

v2

= r+ v[
(
 � 1)v � r

v2
� 
t]

t0 = 
(t� (v � r)=c2)

u0 =
u� v

1� u � v=c2 +

 � 1


v2
� v � (v� u)

1� u � v=c2

These reduce to the Galilean transformations in the limit c!
1 - this is the nonrelativistic limit of classical relativity.
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4-vectors

Since w = ct can be considered as a coordinate like the
three space coordinates, and since the Lorentz transforma-
tion mixes all four, it is convenient to work in terms of 4-
component vectors, or 4-vectors. The conventions used are

� 4-vectors: normal roman type: a,

� Space-like (3-)vectors: bold face: a,

� Scalar variables: italics: a.

The time-like component is written either as the zeroth
component of a 4-vector, a0, or the fourth component, a4.
In the latter position it is usually multiplied by i. Here we
will adopt the former convention.
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4-vectors

4-vectors are classi�ed into covariant and contravariant
forms.

� The components of covariant vectors transform like
derivatives @=@x. Their indices are given as subscripts,
e.g. a�. The covariant form of a is a� = (a0;�a).

� The components of contravariant vectors transform like
coordinates x. Their indices are given as superscripts, e.g.
a�. The contravariant form of a is a� = (a0;a).

The notation a� represents the whole vector in terms of
a general component of the vector. 4-vectors are usually
written in row form for convenience, but they should be
considered as column vectors in normal matrix algebra. Thus
the contravariant form

a� = (a0;a)

should be considered the equivalent of

a =

�
a0
a

�
:

The covariant form can be considered a row vector. To avoid
any possibility of confusion, the subscript or superscript will
always be included when using the \4-vector" notation, and
it will be omitted when using the \matrix" notation.
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4-vectors

In expressions involving more than one 4-vector, repeated
indices are summed over; one of the summation indices must
be subscript and the other superscript. Thus the scalar
product of two 4-vectors is

a�b
� = a0b0 � a � b:

The transformation between contravariant and covariant
forms is made by using the metric tensor g�� .

g�� = g�� =

0
B@
1 0 0 0
0 �1 0 0
0 0 �1 0
0 0 0 �1

1
CA

Thus
a� = g��a

� ; a� = g��a�:
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4-vectors

The connection with with matrix algebra can now be seen.
The scalar product of 4-vectors

a�b
� = a�g��b

�

is equivalent in matrix form to the norm of a vector with the
metric g

aT g b;

or to the product of a co- and contravariant vector

(a0 �aT )
�
b0
b

�
:

Note: Moss does not make use of the metric or the distinc-
tion between covariant and contravariant vectors. Instead, he
adopts a simple index summation convention, and the neg-
ative sign is accounted for by the use of an imaginary time
coordinate. However, the connection of this algebra with
the normal matrix algebra is not obvious, because the scalar
product of two vectors in Moss's scheme does not involve the
conjugate transpose of one of the vectors.
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4-vectors

We may now de�ne a world point in terms of a position 4-
vector

x� = (ct; x; y; z)

The squared length of this vector is

s2 = x�x
� = c2t2 � x2 � y2 � z2

This quantity is zero for the propagation of a photon from
the origin, de�ning the \light cone".

� Positive values correspond to time-like 4-vectors, and
negative values to space-like vectors.

� A Lorentz transformation cannot transform a spacelike
vector into a time-like vector.

� The direction of time | future or past | is determined
by the sign of ct, as expected.
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Relativistic dynamics

The principle of least action can now be applied to obtain a
relativistic Lagrangian. The action is taken to be a minimum
between two world points. The conditions to be applied are

� The action must be independent of the frame of reference,
and therefore must be a scalar,

� The integrand must be a scalar as well as a �rst-order
di�erential.

The only scalar that �ts is

ds =
p
c2dt2 � dx2 � dy2 � dz2

= c dt
p
1� u2=c2

and the action is

S = k

Z tb

ta

ds:

The constant k is found to be �mc, and the Lagrangian is

L = �mc2
p
1� u2=c2:
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Relativistic dynamics

From the Lagrangian may be deduced the relativistic momen-
tum

p =

�
@L
@u

�
=

mup
1� u2=c2

and the Hamiltonian

H = p � u� L =
mc2p

1� u2=c2
:

Squaring this and substituting for the velocity from the
momentum expression,

H2 = m2c4 + c2p2

De�ning the relativistic 4-momentum as

p� = (H=c;p)

we see that the magnitude of the relativistic 4-momentum is
conserved, since

p�p
� = H2=c2 � p2 = (mc)2

Note: In the de�nition of p, the mass is sometimes taken to
be a relativistically variant quantity, M = m=

p
1� u2=c2.

Then the Hamiltonian, or energy, is simply H = E = Mc2.
Here m will always be taken to be the rest mass.
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Electromagnetic interactions

So far we have dealt only with a free particle. The introduc-
tion of electromagnetic �elds requires an addition to the ac-
tion. The additional term is found to be

Sem = �q
Z b

a

A�dx
�

where q is the charge and A� is the covariant 4-potential

A� = (�=c;�A):

Converting the di�erential to one involving only the time,

dx� = dt(c;u)

we may de�ne a new Lagrangian,

L = �mc2
p
1� u2=c2 + qA � u� q�:
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Electromagnetic interactions

The canonical momentum derived from this Lagrangian is

p =

�
@L
@u

�
=

mup
1� u2=c2

+ qA = � + qA

where � is the mechanical momentum, and the Hamiltonian
is

H = p � u� L =
mc2p

1� u2=c2
+ q�;

which, when replacing u using the canonical momentum,
gives

H = c
p
m2c2 + [p� qA]2 + q�

where the square of the vector quantity is to be taken as a
scalar product.
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Electromagnetic �elds

The electric �eld strength E and the magnetic 
ux density B
are related to the potentials by

B = r�A

E = �r�� @A

@t

These can be seen to form the components of an antisymmet-
ric contravariant second-rank 4-tensor F

F�� = @�A� � @�A�

where @� is the covariant gradient 4-vector

@� = (
@

@(ct)
;r)

This tensor is the electromagnetic �eld tensor, and can be
written explicitly as

F�� =

0
B@

0 Ex=c Ey=c Ez=c

�Ex=c 0 Bz �By

�Ey=c �Bz 0 Bx

�Ez=c By �Bx 0

1
CA

It gives rise to a relativistic invariant:

F��F
�� = 2(B2 � E2=c2)

which is related to the Lagrangian for an electromagnetic
�eld:

Lem = �1

2
�0(c

2B2 �E2)
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Electromagnetic �elds

Straightforward application of the gradient operator on the
de�nition of E and B give two of Maxwell's equations,

r �B = 0

r�E = �
�
@B

@t

�

which may be written in terms of the electromagnetic �eld
tensor,

@F��

@x�
+
@F��

@x�
+
@F��

@x�
= 0:

The remaining pair of equations is

r �E = �=�0

r�B =
1

c2

�
j

�0
+
@E

@t

�

where � is the charge density and j is the current 
ux. These
may also be expressed in terms of 4-vectors and tensors as

@�F
�� = �j�=c2�0

where the contravariant 4-current is

j� = (c�; j)
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Gauge transformations

The electromagnetic �eld vectors are de�ned up to a gauge
transformation by the vector potential. If we make the
transformation

~A� = A� + @�f

which is equivalent to

~A = A �rf ; ~� = �+
@f

@t

it can be shown that E and B are invariant to this transfor-
mation. The Lagrangian changes by

�qu � rf � q
�
@f

@t

�
= �q

�
df

dt

�
:

The equations of motion are not altered by addition of a
total time derivative, but of course since the Lagrangian is
di�erent in form, so will the Hamiltonian be also. The choice
of gauge is therefore important for the form of the equations
to be used. The common gauge choice is the Coulomb gauge,

r �A = 0:

Another choice, which is relativistically invariant, is the
Lorentz (or Feynman) gauge

@�A
� = r �A+

1

c2
@�

@t
= 0:
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Relativistic potentials

For a stationary point charge, the potential is given by

A = 0; � = q=4��0r

The potential seen by an observer due to a moving charge
is obtained by a Lorentz transformation of the 4-potential,
which gives

A0 = u�=c2; �0 = 
�

The coordinates in � are given with respect to the frame
of the moving charge; we require them in the frame of the
observer, which is achieved by the following method.

� In order for the observer to observe the charge and hence
its potential, a signal must be transmitted from the charge
to the observer, which propagates at velocity c.

� The time of observation of the signal is taken to be t =
t0 = 0. The signal was therefore emitted at times t = �r=c
and t0 = �r0=c.

� At these times, a Lorentz transformation may be per-
formed to relate the two:

t = 
(t0 � u � r0=c2):
Therefore the distance in the frame of the charge is

r = �ct = 
(r0 + u � r0=c)
� The potential can then be expressed in the observer's

frame as
� = q=4��0(r

0 + u � r0=c)
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Relativistic potentials

The potential derived above is called the Li�enard-Wiechert
potential, and is expressed in terms of the distance to the
charge at the time of emission of the signal, not at the time
of observation, for which the velocity of the charge may have
changed. The potential is thus expressed in terms of the so-
called retarded values of r and u, i.e. at a time earlier than
that of observation.

The concept of the �nite speed of propagation of potentials is
a fundamental one in relativistic electrodynamics, and will be
met again later; in particular the propagation of potentials at
the speed of light.
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Relativistic interactions

The interaction between two charged particles can be derived
from the Lagrangian. Making use of the expression for A
from above, the Lagrangian for particle 1 is

L = �m1c
2

q
1� u21=c

2 + q1�(u2 � u1=c2 � 1):

Addition of a term involving particle 2 only cannot a�ect the
equation of motion for particle 1, so we may write

L = �m1c
2

q
1� u21=c2 �m2c

2

q
1� u22=c

2

+ q1q2V (u2 � u1=c2 � 1):

Now, V q2 = � is the retarded potential for particle 1 due to
particle 2, and as V q1 is not in general equal to the retarded
potential for particle 2 due to particle 1, it cannot be the
complete Lagrangian for the interacting system.
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Relativistic interactions

An approximate Lagrangian may be derived by assuming

� The velocities do not change signi�cantly during the time
of transmission, therefore the Lorentz transformation can
be performed at the time of observation, giving

� =

q

4��0r

�
1 +

�
u � r
cr

�2��1=2

� The velocities are small compared to c so that an expan-
sion with truncation at low order is valid. This gives

A =
q

4��0cr
[u=c+O((u=c)3)]

� =
q

4��0r
[1 + u2=2c2 � (u � r)2=2c2r2 +O((u=c)4)]

� The Coulomb gauge is employed; with a gauge transfor-
mation with f = q(u � r)=2c2r the potentials are

A =
q

8��0cr
[u=c+ (u � r)r=r2c+O((u=c)3)]

� =
q

4��0r
[1 +O((u=c)4)]
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Relativistic interactions

Making use of these potentials, the Lagrangian can now be
written as

L = �m1c
2

q
1� u21=c

2 �m2c
2

q
1� u22=c

2

� q1q2

4��0

�
1

r
� u1 � u2

c2r
� (u1 � r)(u2 � r)

c2r3
+O((u=c)4)

�

It is obvious that this Lagrangian, derived for particle 1 and
its interaction with particle 2, is unchanged on interchange of
the coordinates of the two particles, and therefore will serve
for both. It is a total Lagrangian for the system.

From this Lagrangian, the momenta of the two particles
and the Hamiltonian may be derived. The inversion of the
expression for the momenta to obtain the velocities for
substitution in the Hamiltonian expression is complicated;
since we have already approximated the potentials, this
inversion may also be approximated to an appropriate order,
giving the approximate Hamiltonian

H =
X
i=1;2

[mic
2 + p2i =2mi � p4i =8m

3
i c

2] +
q1q2

4��0r

� q1q2

8��0m1m2c2

�
p1 � p2
r

+
(p1 � r)(p2 � r)

r3

�
:

which is correct to approximately O(mc2(p=mc)6).
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Relativistic interactions

For a charge distribution it is more useful to derive the
contribution to the Lagrangian from the current 4-vector.
This contribution is

Lint =
Z

j�A
� d�

where the integration is taken over the spatial variables.
Note that charge conservation is given by the equation

@� j� = r � j+ @�

@t
= 0:
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Quantization and invariance conditions

Quantum mechanical equations are obtained from the classi-
cal equations by use of the correspondence principle,

p� ! i�h@� � H ! i�h
@

@t
; p! �i�hr:

In the transition from classical to quantum mechanics, we
still require that the equations are invariant to a Lorentz
transformation, and also are gauge invariant. The Lorentz
invariance is guaranteed if the equations can be expressed
in terms of 4-vectors and relativistic invariants. The gauge
invariance is assured if the wave function in the new gauge is
multiplied by a phase factor,

~ =  exp(�iqf=�h);

provided also that the equations are expressed in terms of
4-vectors, since this ensures the cancellation of the phase
factors.
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Quantization

The nonrelativistic Hamiltonian in a static potential is

H = T + V = p2=2m+ q�:

Using the correspondence principle, we get the time-
dependent Schr�odinger equation

� �h2

2m

�
@2	

@x2
+
@2	

@y2
+
@2	

@z2
+ V	

�
= i�h

@	

@t
:

This equation has x, y and z appearing quadratically, but t
appearing linearly, which violates the principle of equivalence
of spatial and temporal variables, and thus cannot be Lorentz
invariant.

The relativistic Hamiltonian in a static potential is

H = c
p
m2c2 + p2 + V

Use of the correspondence principle gives

[mc2
p
1 +r2=(mc)2 + V ]	 = i�h

@	

@t

This presents a problem: how to interpret the square root?
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Perturbation series approach

One possible approach is to expand the square root in a
power series. Thus, the Hamiltonian function becomes

H = mc2 + p2=2m� p4=8m3c2 + : : :+ V

The �rst two terms in the expansion are the rest energy and
the nonrelativistic kinetic energy.

But does this expansion converge? The series is only valid if
p < mc, which is not the case if the velocity exceeds c=

p
2,

which is bound to happen to a particle moving in a Coulomb
potential.

The expansion of the Hamiltonian in terms of the velocity
is valid, but the substitution of the velocity in terms of the
momentum must still be made in order to use the correspon-
dence principle, and this leaves the momentum in the denom-
inator. In this case we would arrive at an operator

H = mc2 +
p2

2m[1 + p2=m2c2]
+

3p4

8m3c2[1 + p2=m2c2]2

+ : : :+ V

Then the problem is to interpret, or apply, the inverse of the
momentum operator.
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The Klein-Gordon equation

The use of the Hamiltonian with its square-root operator, in
its original or expanded form, does not transparently display
the equivalence of length and time coordinates, and hence the
Lorentz invariance of the Hamiltonian.

An alternative is to take the Hamiltonian in squared form.
The relativistic invariance of the equations is better displayed
if a general electromagnetic potential is considered. The
classical form is

(H� q�)2 = (mc2)2 + c2 (p� qA)2 :

Use of the correspondence principle gives the Klein-Gordon
equation

�
(i�h

@

@t
� q�)2 � c2(�i�hr� qA)2

�
	 = (mc2)2	

or in 4-vector form,

c2(i�h@� � qA�)(i�h@
� � qA�)	 = (mc2)2	
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The Klein-Gordon equation

The Klein-Gordon equation is a second-order di�erential
equation, with the following properties:

� It is manifestly Lorentz invariant.

� For a particle of zero mass and charge, it reduces to the
electromagnetic �eld equations.

� Because of the square, it admits solutions of both positive
and negative mass/energy.

� The square also means that for a single particle, the
potentials are two-body potentials, and for many particles,
a four-body potential would be introduced. This is clearly
not useful!

� 	�	 is in general time-dependent, and therefore cannot be
interpreted as a probability density.

� The charge is conserved but the particle number is not.

� It does not introduce the concept of spin.

Thus, although it has been used successfully to describe
mesons, it is not generally useful as a relativistic quantum
mechanical equation.
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The Dirac equation

Dirac postulated that the argument of the square root
operator could be written as a perfect square,

�2 +m2c2 = (� � � + �mc)2 ;

where � is the mechanical momentum operator. Thus, the
relativistic Hamiltonian can be written

H� q� = c� � (p� qA) + �mc2

Then using the correspondence principle the Dirac equation
is �

i�h
@

@t
� q�

�
	 = c� � (�i�hr� qA)	 + �mc2	

which may be displayed in Lorentz invariant form as

c��(i�h@� � qA�)	 = �mc2	

where
�� = (1;�):

Comparison of the free-particle Dirac Hamiltonian, c� � p +
�mc2, with the classical relativistic Hamiltonian, suggests
that c� should be interpreted as the velocity operator.
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The Dirac matrices

In order for the perfect square to be obtained, the quantities
� and � must obey the following:

�2i = �2 = 1

�i�j = ��j�i; i 6= j;

�i� = ���i:

or, with � = �4,
�i�j + �j�i = 2�ij

� Since the algebra of the � matrices is non-commutative,
scalars cannot satisfy these relations. Therefore an appro-
priate non-commutative algebra must be found to satisfy
these conditions.

� Matrix algebra is non-commutative, and hence is appro-
priate. The minimum matrix rank required by these condi-
tions is 4.

� An alternative is to use a Cli�ord algebra with the appro-
priate order. In this case it would have to be order 8, i.e.
one would use octernions.

The use of a Cli�ord algebra will be returned to later. The
standard choice is that of the 4� 4 matrices.
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The Dirac matrices

The matrix representation of � and � is

�k =

�
02 �k
�k 02

�
; k = 1; 2; 3; � =

�
12 02
02 �12

�

where 12 and 02 are the 2 � 2 unit and null matrices, and �k
are the Pauli spin matrices,

�x =

�
0 1
1 0

�
; �y =

�
0 �i
i 0

�
; �z =

�
1 0
0 �1

�
:

The 4-vector a� must therefore be a vector of 4 � 4 matrices,
and the zeroth component must be interpreted as 14, the 4�4
unit matrix. Note that the 4-vector does not contain �; it is
de�ned as �4 only for the purposes of the algebra above.

This representation of the alpha matrices is called the stan-

dard representation, and is de�ned only up to a similarity
transformation,

�0� = Q�1��Q

which for invariance requires that

	0 = Q�1	
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The Dirac wave function

Because of the appearance of 4 � 4 matrices in the Dirac
equation, the wave function must be a 4-component vector:

	 =

0
B@
 0
 1
 2
 3

1
CA =

�
	L

i	S

�

� 	L and 	S are termed the large and small components of
the wave function. The reason for this nomenclature will
become clear later.

� The factor of i has been introduced for convenience
in atomic calculations. At other stages it will not be
introduced.

� Spin has been introduced in vector form. Components 0
and 2 represent � spin, and components 1 and 3 represent
� spin.

� 	L and 	S are two-component spinors, or 2-spinors, also
simply called spinors. 	 is a four-component spinor, or
4-spinor, also called a bispinor.
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The Dirac and Klein-Gordon equations

Writing the Dirac equation as

[c���� � �mc2]	 = 0

and the Klein-Gordon equation as

c2���
�	 = (mc2)2	

we can see that the two are related, by operating on the
Dirac equation with the operator corresponding to a particle
of negative mass

[c����
� + �mc][c���� � �mc2]	 = 0:

where
��� = (E=c;�p):

Thus a solution of the Dirac equation is also a solution of the
Klein-Gordon equation.
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The time-independent Dirac equation

For a stationary state, the temporal part of the Dirac equa-
tion can be factored out just as in the Schr�odinger equation,
to leave a time-independent Dirac equation. This must be
done in a particular frame of reference, which is chosen to be
the Born-Oppenheimer frame. In a static potential A = 0,

�i�hc�:r	+ (�mc2 + V )	 = E	

Writing 	 in terms of large and small components,

0
@ (V � E +mc2) �i�hc(�:r)

�i�hc(�:r) (V � E �mc2)

1
A
0
@ 	L

i	S

1
A = 0

or as a pair of coupled equations,

(V � E +mc2)	L + �hc(�:r)	S = 0;

��hc(�:r)	L + (V � E �mc2)	S = 0:
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Nonrelativistic limit of the Dirac equation

If we eliminate the small component using

	S = �hc(V � E �mc2)�1(�:r)	L;

we obtain an equation for the large component,

(V � E +mc2)	L = ��h2c2(�:r)(V � E �mc2)�1(�:r)	L

Noting that

(A�B)�1 = �B�1 +B�1A(A �B)�1

we may write, with 2mc2 = B and (V � E +mc2) = A,

[(V �E +mc2)� �h2

2m
(�:r)(�:r)]	L

=
�h2

2m
(�:r)

�
V � E +mc2

V � E �mc2

�
(�:r)	L

Noting that (�:r)2 = 12r2, we arrive at the equation

(T + V � E +mc2)	L =
�h2

2m
(�:r)

�
V � E +mc2

V � E �mc2

�
(�:r)	L
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Nonrelativistic limit of the Dirac equation

The left hand side (LHS) of this equation is the Schr�odinger
equation with the rest mass included. To align the energy
scale, a phase factor may be introduced into the wave func-
tion (which is only de�ned up to an arbitrary phase)

	0 = 	exp(�imc2t=�h)

so that
E0 = E �mc2

and
�0 = � � 14

Then we may write

(T + V � E0)	L =
�h2

2m
(�:r)

�
V � E0

V � E0 � 2mc2

�
(�:r)	L

The right hand side (RHS) now clearly vanishes as c ! 1,
and the LHS reduces to the Schr�odinger equation. Thus,
the large component of the wave function reduces to the
nonrelativistic wave function in spinor form in the limit of
in�nite velocity of light.

One note of caution needs to be added to this statement.
If the potential V is a Coulomb potential, V � 1=r, the
RHS does not vanish for in�nite c at r = 0. Thus for a
point nuclear model, the nonrelativistic limit is only obtained
asymptotically.
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Nonrelativistic limit of the Dirac equation

Rewriting the small component equation, the nonrelativistic
limit for the small component is

lim
c!1

c	S = � �h

2m
(�:r)	L:

Thus the small component vanishes in the nonrelativistic
limit. The same proviso applies here regarding a Coulomb
potential.

Taking for example the NR hydrogenic atom wave function
as an approximation to 	L, we �nd that

	S � Z

2mc
	L:

thus giving meaning to the names \large" and \small"
components.
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Dirac wave function for atoms

For atoms, the wave function may be factored in spherical
polar coordinates

	 =
1

r

�
Pn�(r) ��;m(�; �)
iQn�(r) ���;m(�; �)

�

P and Q are the radial large and small components of the
wavefunction; the angular functions � are 2-component
spinors:

��;m(�; �) =
X

ms=�1=2

h`m`smsjjmi Y m`

` (�; �) �(ms)

h`m`smsjjmi is a Clebsch-Gordan coe�cient, Ym`

` (�; �) is a
spherical harmonic, de�ned with the Condon and Shortley
phase conventions,

Ym`

` (�; �) = (�1)m`+jm`jPm`

` (cos �)eim`�

and the spin functions � are

�(1=2) =

�
1
0

�
; �(�1=2) =

�
0
1

�
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Atomic quantum numbers

For atoms, the wavefunction is an eigenfunction of Ĥ , ĵ2, ĵz,
�P̂, and �K̂, with quantum numbers n, j, m, (�1)` and �
respectively. P̂ is the inversion operator, and K̂ is de�ned by

K̂ = ^̀2 + ŝ2 � ĵ2 � 1 = �1� � � ^̀

K̂ ��;m(�; �) = � ��;m(�; �)

K̂ is thus related to the spin-orbit interaction operator. The
values of � are related to j and `:

� = 2(`� j)(j + 1=2)

2(j � `) = �1 is given the symbol a. Values of j, ` and � are
given below:

` 0 1 1 2 2 3 3

j 1/2 1/2 3/2 3/2 5/2 5/2 7/2

� �1 1 �2 2 �3 3 �4
label s �p p �d d �f f

or s p� p+ d� d+ f� f+
or s1=2 p1=2 p3=2 d3=2 d5=2 f5=2 f7=2
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Angular wave functions

With explicit expressions for the Clebsch-Gordan coe�cients,
and omitting the angular variables,

��;m =
1p

2`+ 1

0
B@a

q
`+ 1

2
+ am Y

m�1=2
`q

`+ 1
2
� am Y

m+1=2

`

1
CA

For a=+1, i.e. j=`+ 1
2
, and with m`=m� 1

2
,

��;m =
1p

2`+ 1

0
@
p
`+m` + 1 Y m`

`

p
`�m` Y

m`+1
`

1
A

and for a=�1, i.e. j=`� 1
2
,

��;m =
1p

2`+ 1

0
@ �p`�m` Y

m`

`

p
`+m` + 1 Ym`+1

`

1
A
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Angular wave functions

s

p
3 �p

p
3 p

p
5 �d

p
5 d

0
@ s

0

1
A

0
@ �p0
p
2p1

1
A

0
@
p
2p0

p1

1
A

0
@�

p
2d0

p
3d1

1
A

0
@
p
3d0

p
2d1

1
A

0
@ p1

0

1
A

0
@�d1

2d2

1
A

0
@ 2d1

d2

1
A

0
@d2

0

1
A
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Properties of angular wave functions

� Densities depend on j and not on `. Thus s and �p 2-
spinors are both spherical.

� Relativistic �lled shell is spherical.

� Mixture of m` and m`+1 character approaches equality as
` increases: loss of spatial directionality.

� Loss of nodal structure: \fat" orbitals. Large and small
components will have nodes in di�erent places, and spin-
up and spin-down components of each of these will also
have di�erent nodal structure.
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Polar density plots
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Radial Dirac equation

By use of the relation

(�:r)
�
F (r)

r
��m

�
=
�1
r

�
dF

dr
+
�F

r

�
���m

we obtain the radial Dirac equation in Hartree atomic units
�h = e = m = 10

BB@
E � V c

�
d

dr
� �

r

�

�c
�
d

dr
+
�

r

�
2c2 + E � V

1
CCA
0
@P (r)

Q(r)

1
A = 0

or as a pair of coupled equations:

(E � V ) P + c

�
dQ

dr
� �Q

r

�
= 0

�c
�
dP

dr
+
�P

r

�
+ (2c2 + E � V )Q = 0

Here the prime on the energy has been dropped, and hence-
forth the shifted energy will be employed unless otherwise
speci�ed.

Note: In many physics texts the units used are �h = c =
e = 1. This is more convenient when particles of di�erent
masses are being considered. Here however we are interested
in electrons, and possibly the use of c as a perturbation
parameter, so Hartree atomic units are preferred.
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Dirac radial wave functions

For a point nucleus, V = �Z=r, the solutions of the Dirac
equation are

0
@P (r)

Q(r)

1
A = N e��=2�


0
@NP (F1 + F2)

NQ(F1 � F2)

1
A

where
NP =

p
2 + E=c2; NQ = �

p
�E=c2;

� = 2�r; � = �c2NPNQ =
p
�E(2c2 + E):

We de�ne the radial quantum number nr by

nr = n� j�j:

The apparent angular quantum number 
 is


 = +
p
�2 � Z2=c2 < j�j;

and the apparent principal quantum number N is

N =
p
(nr + 
)2 + Z2=c2

=
p
n2 � 2nr(j�j � 
)

� n:
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Dirac radial wave functions

F1 and F2 are polynomials in �, given by

F1 = (N� �)F (�nr; 2
 + 1; �);

F2 = �nrF (1� nr; 2
 + 1; �):

F (a; b; r) is a con
uent hypergeometric function.

The normalization factor is

N =
�

�(2
 + 1)

�
2�

N(N� �) :
�(nr + 
)

�(nr + 1)

� 1
2

:

� The normalization factors for P and Q display the \large"
and \small" character of these functions.

� E = �2c2 is a limiting value, at which the large compo-
nent vanishes. Similarly, at E = 0 the small component
vanishes.

� 
 is less than ` + 1: s and �p functions will have a singular-

ity at the origin.
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Dirac radial wave functions

The orbital eigenvalue �n� is given by

�n� = �c2
2
41�

s
1�

�
Z

cN

�2

3
5

= �Z
2

N2

2
41 +

s
1�

�
Z

cN

�2

3
5
�1

< � Z2

2n2

since N � n. The mean radius is given by

hrin� = 1

2Z

�

 + nr

N
(3N2 � �2)� �

�

<
1

2Z

�
3N2 � �(�+ 1)

�
<

1

2Z

�
3n2 � `(`+ 1)

�
since `(`+1) = �(�+1). A simple explanation of the decrease
in the mean radius is found by considering the old quantum
theory. Here, the angular momentum had to be an integer
multiple of �h. Given that ` = r� p and that p increases with
the velocity of the electron, r must decrease with velocity to
maintain the quantization condition.
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Properties of eigenstates

It is instructive to compare the solutions of the Schr�odinger
equation with those of the Dirac equation. The radial solu-
tion of the Schr�odinger equation is

PNR(r) = NNRe��=2�`L2`+1n+` (�)

where � = 2r
p�2E; the Dirac solution (repeated here) is

�
P (r)
Q(r)

�
= N e��=2�


�NP (F1 + F2)
NQ(F1 � F2)

�

where � = 2r
p
�E(2c2 + E). The nature of the spectrum is

contained in these radial variables.

� For E > 0, � is imaginary in both cases. The solutions are
oscillatory and represent a free electron.

� For E < 0, � is real in both cases. The solutions are
decaying and represent bound electron states.

� For E < �2c2 in the Dirac solutions, � is again imagi-
nary. The solutions are oscillatory - but what do they rep-
resent?

Thus, in contrast to the Schr�odinger spectrum, the spectrum
of the Dirac Hamiltonian has two continua, one of positive
energy and one of negative energy. If the external �eld
(nuclear potential) is strong enough that an electron is in a
state with E < �2c2, there is enough energy to create an
electron-positron pair. Thus they can be considered as states
in which spontaneous pair production occurs.

52



Spectrum of Schr�odinger and Dirac Hamiltonians
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Large Z behaviour

But is it possible for an electron to have enough energy in
a Coulomb �eld for pair production? Consider the Dirac
eigenvalue, rewritten as

�n� = �c2
�
1� nr + 


N

�
:


 =
p
�2 � Z2=c2 becomes zero if Z = cj�j and is imaginary

for higher Z. Thus for Z=j�j > c ' 137,

� The energy, and consequently the radial variable �, be-
comes complex.

� A continuum component has entered the wavefunction, i.e.
it has become a decaying rather than a bound state.

At the point where this happens, the energy is only �mc2,
not �2mc2, so the decaying component is not due to spon-
taneous pair production. Rather it is due to the inadequate
physics in the pure Coulomb �eld and the Dirac equation,
which is addressed by quantum electrodynamics. The incor-
poration of a �nite nuclear size removes the singularity at the
origin and with it the decaying component for Z=j�j > c. The
eigenvalues then decrease smoothly as a function of Z until
they dive into the negative continuum. Attempts have been
made to observe this phenomenon by high-energy collisions of
heavy ions.
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Eigenvalues as a function of Z
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Small r behaviour

We now turn to consider the behaviour of the solutions of the
Dirac equation at the origin. We expand the radial functions
in a power series:

P (r) = r
p(p0 + p1r + p2r
2 + : : :)

Q(r) = r
q (q0 + q1r + q2r
2 + : : :)

(note that P and Q do not necessarily have the same lowest
order term), and also the potential V :

�rV (r) = v0 + v1r + v2r
2 + : : : :

For a point nucleus, v0 = Z; vi = 0; i > 0, while for a �nite
nucleus, v0 = v2 = 0; v1 6= 0. Substituting in the radial Dirac
equation gives

r
p�1[v0p0] + r
p [(v1 + E)p0 � v0p1] + : : :

+ r
q�1[c(
q � �)]q0 + r
q [c(
q � �+ 1)]q1 + : : : = 0

r
q�1[v0q0] + r
q [(2c2 + v1 +E)q0 � v0q1] + : : :

� r
p�1[c(
p + �)]p0 � r
p [c(
p + �+ 1)]p1 � : : : = 0

Equating powers of r, there are 3 cases to consider: 
p = 
q,

p < 
q and 
p > 
q.
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Small r behaviour

Case 1. 
p = 
q = 
.

Equating lowest powers of r gives

v0p0 + c(
 � �)q0 = 0

v0q0 � c(
 + �)p0 = 0

from which, by eliminating q0,

v20 = c2(�2 � 
2)

This is the point nucleus case. Since v0 = Z, we obtain the
de�nition of 
 given earlier. Note that if v0 = 0, we have

 = �� and 
 = � at the same time!

Case 2. 
p < 
q.

Then v0p0 = 0, and thus v0 = 0. We must have 
q = 
p + 1,
and then

(v1 + E)p0 + c(
q � �)q0 = 0

c(
p + �)p0 = 0

from which 
p = ��, and thus � < 0. This is the �nite

nucleus case for � < 0.

Case 3. 
p > 
q.

Then v0q0 = 0, and again v0 = 0. Here 
p = 
q + 1, and

c(
q � �)q0 = 0

(2c2 + v1 + E)q0 + c(
q + �)p0 = 0

from which 
q = �, and thus � > 0. This is the �nite nucleus
case for � > 0.
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Properties of solutions

We now consider some of the features of the solutions for
point and �nite nuclear charge distributions.

Point nucleus case.

� P and Q have the same behaviour at origin.

� Both are series in r (not r2).

� The solutions for j�j = 1 have a singularity at the
origin. This could be a serious problem in quantum
chemistry where Gaussian basis functions are used to
expand the wave function. The cusp which has to be
represented in the Schr�odinger solutions is now replaced by
a singularity, which will inevitably make greater demands
on the 
exibility of the basis.

� For 
 > 1=2, there is only one normalizable solution, i.e.
the regular solution with leading power r
 . This is called
the \limit point" case.

� For 
 < 1=2 both the regular (r
) and irregular (r�
)
solutions are normalizable, and the general solution is a
linear combination of the two. This is called the \limit
circle" case. The extra condition that the integral over
the potential must also be �nite eliminates the irregular
solution.
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Properties of solutions

Finite nucleus case.

� P and Q have the same lowest order term as the corre-
sponding nonrelativistic function at the origin. This means
that the large component behaves like the NR function,
P=r � r`, but the small component behaviour depends on
�. For � < 0 Q=r � r`+1, for � > 0, Q=r � r`�1. The
spin-orbit splitting can then be understood in terms of the
expectation of the potential over the small component,
which is larger for positive � than for negative �.

� For at least the �rst few terms, the solutions are either
odd or even functions of r. If the nuclear potential is an
even function for all r (e.g. for a Gaussian nuclear charge
distribution), P and Q are odd or even for all r.

� At least inside the nucleus, P and Q are essentially
Gaussian in shape. This means that in a method using
a Gaussian basis set a nuclear charge distribution with a
�nite radius is preferred to a point nucleus: the basis then
has the right behaviour at the origin, and the demands
on the basis are smaller because of the cuto� in the
potential.
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Nuclear models

If a nuclear charge distribution with a �nite radius is to be
used, the question of the functional form of the distribution
must be raised. The point nuclear model was simple: now
one has to consider some form of the nuclear charge distribu-
tion which bears some relation to experimentally determined
distributions. Some commonly used models are:

� The uniformly charged sphere,

�nuc(r) = �0; r < rnuc

= 0; r > rnuc:

This is the simplest model, and gives rise to a quadratic
potential inside the nucleus and a Coulombic potential
outside:

Vnuc(r) =� Z

2rnuc

"
3�

�
r

rnuc

�2
#
; r < rnuc

=� Z

r
; r > rnuc:
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Nuclear models

� The Fermi two-parameter distribution,

�nuc(r) =
�0

1 + exp[(r � rnuc)=s]
;

which introduces a smooth decay of the nuclear distribu-
tion rather than a sudden drop to zero. The potential is
di�cult to represent in closed form. It reduces to the uni-
form distribution in the limit s ! 0. A variant of this
distribution, the three-parameter distribution, multiplies it
by a quadratic function of r. This model has been used to
�t a range of nuclear scattering data.

� The Gaussian distribution,

�nuc(r) = �0 exp[��nucr2];

which is a convenient choice for quantum chemical calcu-
lations, since the integrals are readily evaluated. For this
choice, the nuclear charge distribution falls o� too slowly
for heavy atoms, but the e�ect is not large. The potential
is simply

Vnuc(r) = �Z
r
erf(�1=2nucr):
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Nuclear models

The principal parameter used in these distributions is the
nuclear radius. For many nuclei the rms radius has been de-
termined. These data could be used directly in calculations,
but it is probably more useful in quantum chemistry, where
the accuracy of the nuclear model is not very important, to
use a �tted value. Two common �ts to the cube root of the
mass number are used:

rnuc = 1:2A1=3

rnuc = 0:836A1=3 + 0:57

where rnuc is given in fm. This value may be used directly
in the uniform and Fermi distributions; for the Gaussian
distribution it may be used to determine the exponent by
matching the rms radii, so that

�1=2nuc = 3=2rnuc:

In addition, the Fermi distribution has the parameter s
which can be taken to be constant, determined from �ts to
scattering data.
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Nuclear models

The di�erence between the models is not large, as shown by
the following data for hydrogen-like mercury. The e�ect of
the �nite radius is approximately 2 Eh, but the di�erence
between the models is only 0.01 Eh.

Nuclear model Eigenvalue Di�erence

Point �3532:191 849
2.017 574

Uniform �3530:174 275
0.007 881

Fermi �3530:182 156
0.011 843

Gaussian �3530:193 999
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Negative energy states

We now return to the problem of the negative energy contin-
uum. If the negative continuum is empty, why doesn't the
H atom decay radiatively into it? The radiative transition
moment would connect the large component of the positive
energy solution with the small component of the negative en-
ergy solution, both of which should be large in magnitude,
giving a large transition moment. Dirac postulated that the
negative continuum is fully occupied. The implications of this
postulate are signi�cant and wide-ranging:

� The excitation of an electron from the negative contin-
uum leaves a positively-charged hole in the vacuum |
a positron. The phenomenon of pair creation is thereby
explained, and the energy required to create a pair with
zero kinetic energy is 2mc2. The negative energy states are
therefore connected with positrons.

� However, the �lling of the negative continuum implies that
the \vacuum" state is in�nitely charged.

� As a consequence, what we measure is the di�erences
between a state and the vacuum.

� The hydrogen atom then becomes an in�nitely many-body
problem! This is clearly not a satisfactory state of a�airs.

The Dirac interpretation of the vacuum nevertheless has
many features which are in fact correct. For a more satis-
factory approach to the interpretation of the vacuum we must
turn to quantum �eld theory and quantum electrodynamics.

64



Classical �eld theory

For a continuous mechanical system, the Lagrangian is
expressed as an integral over a Lagrangian density, L,

L =

Z
L(�; _�;r�; t)d3r

where � is the amplitude of the motion, and are functions of
r and t. The equations of motion derived from L are

@L

@�
� @�

@L

@(@��)
= 0:

Note that the 4-vector @L=@(@��) is a contravariant vector.
The equations of motion are Lorentz invariant provided
L is a scalar density, which is also Lorentz invariant. The
canonical momentum density and Hamiltonian density are
de�ned in terms of � as

� =
@L

@ _�
; H = � _� � L

Thus the � take the place of the generalized coordinates
in the mechanics of particles. The � are the variables of a
scalar �eld. One can similarly de�ne a vector �eld in which
each �eld variable has equations of motion and momenta
as described, and in which the Hamiltonian has a sum over
components of the �eld variables - thus

H = �� _�
� � L

One example of a vector �eld is the electromagnetic �eld,
with �� = A�.
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Quantization of a �eld

The quantization conditions for a particle may be expressed
in commutator form as

[qi; pj] = i�h�ij; [qi; qj] = [pi; pj] = 0; i; j = x; y; z:

For a �eld, one then requires a pair consisting of a �eld
variable and its conjugate momentum variable. These are
then interpreted as operators with the same commutation
relations. Thus we have � replacing q and � replacing p,
but now these are functions, so the appropriate commutator
relations are

[�s(r; t); �s0(r
0; t)] = i�h�ss0�

3(r� r0);
[�s(r; t); �s0(r

0; t)] = [�s(r; t); �s0(r
0; t)] = 0:

To determine � we need the Lagrangian density, and there-
fore we need a representation of the �eld variable. Since � is
the amplitude of the motion, it is natural to take the wave
function,  , as the �eld variable. The Lagrangian density for
the Dirac equation is taken to be

L = i�h y _ � V  y � c y� � (i�hr� qA) 

The canonical momentum is then

� =
@L

@ _ 
= i�h y:

Note that this is the same for both the Schr�odinger and Dirac
equations, in which the only term which contains _ is the
same. This is not true for the Klein-Gordon equation.

66



Picture change

To develop further, it is necessary also to transform from
the Schr�odinger picture to the Heisenberg picture. In the
Schr�odinger picture, a state vector jaS(t)i is related to the
vector at time t = 0 by

jaS(t)i = e�iĤt=�hjaS(0)i;

and the time derivative of a matrix element by

d

dt
hbS(t)j
jaS(t)i =

d

dt
hbS(0)jeiĤt=�h
e�iĤt=�hjaS(0)i

= hbS(0)jeiĤt=�h
d


dt
e�iĤt=�hjaS(0)i

+
1

i�h
hbS(0)j

h
eiĤt=�h
e�iĤt=�h; Ĥ

i
jaS(0)i:

The operators in the Schr�odinger picture, e.g. Ĥ, are gener-
ally time-independent.

In the Heisenberg picture, it is the state vectors which are
taken to be time-independent,

jaH(t)i = eiĤt=�hjaS(t)i = jaS(0)i;

and the time-dependence is transferred to the operators,


H = eiĤt=�h
Se
�iĤt=�h:

The matrix elements in the Schr�odinger and Heisenberg
pictures are of course identical.
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Picture change

Since the state vectors in the Heisenberg picture do not
depend on time, the time derivative can be taken inside the
matrix element, so that

d

dt
hbH j
H jaHi = hbH j _
H jaHi+

1

i�h
hbH j[
H ; Ĥ]jaHi:

where
_
H = eiĤt=�h

@
S

@t
e�iĤt=�h � @
H

@t
:

This is valid for a general bra and ket, so that Heisenberg's
equations of motion can be written

d
H

dt
=
@
H

@t
+

1

i�h
[
H ; Ĥ]:

This is the quantized equivalent to the classical mechanics
formulation in terms of Poisson brackets,

dF

dt
=
@F

@t
+ fF;Hg:

Heisenberg's equations of motion as given above are appro-
priate for bosons; for fermions, the commutator must be re-
placed with an anticommutator, and the �eld variables must
obey anticommutation relations:

d
H

dt
=
@
H

@t
+

1

i�h
[
H ; Ĥ]+:

[�s(r; t); �s0(r
0; t)]+ = i�h�ss0�

3(r� r0);
[�s(r; t); �s0(r

0; t)]+ = [�s(r; t); �s0(r
0; t)]+ = 0:
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Quantized wave equations

The Hamiltonian is derived from the Hamiltonian density,

Ĥ =

Z
H d3r =

Z
 yĤ d3r

This is now the energy of the �eld, not the same as the
Hamiltonian for a particle. The equations of motion are

d 

dt
=
@ 

@t
+

1

i�h
[ ; Ĥ]+:

Since  is the amplitude in the Heisenberg picture, it does
not depend explicitly on time, and therefore the partial
derivative is zero. The anticommutator is easily evaluated
to give

[ ; Ĥ]+ =

Z
[ ; ( y)0]+ Ĥ 0 d3r0

=

Z
�3(r� r0) Ĥ 0 d3r0

= Ĥ 
and thus the time-dependent wave equation is obtained,

i�h
d 

dt
= Ĥ :

This holds for both the Dirac and Schr�odinger Hamiltoni-
ans.
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Representation of �eld operators

We now consider a speci�c representation of the �eld opera-
tors  (r; t). If we have a complete orthonormal set of spatial
functions uk(r) we may expand the �eld in terms of these
functions with time-dependent coe�cients,

 (r; t) =
X
k

ak(t)uk(r);  y(r; t) =
X
k

a
y
k(t)u

�
k(r)

However, since we are working in the Heisenberg picture,
the �eld operators are time-independent, so that ak can be
considered to be operators in some space. This space is called
Fock space. The Hamiltonian may be written

Ĥ =
X
kl

ayk

Z
u�kĤul d3r al =

X
kl

aykHklal

In this representation the equivalence with the matrix formu-
lation of quantum mechanics is obvious.

Note that the �eld operator represents the entire wave �eld,
not just one particular solution. Therefore it is independent
of the particular representation chosen for the expansion.
Transformation between representations may be achieved by
rotating the spatial functions and counter-rotating the time-
dependent coe�cients.
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Summary of QFT

We now summarize some of the ideas and implications of
quantum �eld theory.

� The quantization of a �eld is called second quantization,
in contrast to the quantization of particle motion, which
is called �rst quantization. The particular form of the
operators introduced above is only one realization of the
second quantized operators, but it is the most common.

� The operators ak and ayk are called annihilation and
creation operators. These obey the anticommutation
relations for fermions and the commutation relations for
bosons. They are often written for convenience in terms of
the indices as k and ky.

� Any �rst-quantized operator can be represented by the
space integral of its density with the �eld operators. One
important operator is the number operator, N , which gives
the total number of particles in the system.

N =

Z
 y d3r =

X
kl

a
y
k

Z
u�kul d

3r al

=
X
kl

a
y
k�klal =

X
k

a
y
kak

� If the set of functions used to expand the �eld operators is
not complete, then the second quantized operators are not
an exact representation of the �rst quantized operators but
a projection onto a �nite subspace.
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N-particle states

The (one-electron) operators derived from QFT consist of
a product of a creation operator, a matrix element and an
annihilation operator, in that order. For an interaction to
exist, there must be a particle in the state which corresponds
to the annihilation operator. Thus we can represent a state
K containing n particles by a product of creation operators
acting on the vacuum state.

jKi =
nY
k

aykjvaci

Here, the vacuum state will be represented jvaci or j i to
save confusion later with a reference state with index 0,
j0i. For bosons, a creation operator can occur more than
once in the product, but for fermions the appearance of a
creation operator more than once gives a zero result due to
the anticommutation rules.
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Some important results

We quote here some important results of QFT, which will
be used later. The rotation of an orthonormal basis can be
achieved by the use of the unitary operator

Û = ei�̂

where �̂ is a Hermitian operator,

�̂ =

Z
 y� d3r =

X
rs

�rsar
yas :

The operators are transformed by

Ô = Û Ô Û y

= ei�̂ Ô e�i�̂

= 1 + i[�̂; Ô] +
i2

2!
[�̂; [�̂; Ô]] + : : :

The annihilation operators transform to

a0p =
X
q

Upqaq ;

the creation operators transform according to the hermitian
conjugate. The transformation Û applied to an N -particle
state generates a state with the same occupation numbers
with respect to the new basis.
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Negative energy states

We now return to the negative energy states of the Dirac
equation. If we take the complex conjugate of the Dirac
equation for an electron, we have

c(��)�[�i�h@� + eA�]	
� = �mc2	�

Although �� is Hermitian, the complex conjugate is not the
same as the original because ��y = ��y. If we de�ne an
operator

Ĉ0 = i��y

we �nd that

Ĉ0� = ��Ĉ0; Ĉ0(��)� = ��Ĉ0

and applying this to the conjugated Dirac equation,

c��[i�h@� � eA�]Ĉ0	� = �mc2Ĉ0	�:

which is the Dirac equation for a positron. Thus, Ĉ0	� is
the wave function for a positron, and Ĉ = Ĉ0K̂0 is called the
charge conjugation operator. K̂0 is the complex conjugation
operator.

We may therefore interpret the negative energy solutions as
solutions of the Dirac equation for positrons. The appearance
of a negative sign for the mass can be reinterpreted by this
means as a positive sign of the charge, and this is what is
done in quantum electrodynamics. The explicit development
of this idea in second quantization follows.
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QED �eld operator

In the representation of the second-quantized Dirac Hamil-
tonian, the complete set of states must be used to obtain a
proper representation of the �rst-quantized Dirac Hamilto-
nian. This includes the negative energy states. Thus the �eld
operator sums over both:

	 =
X
p+

ap+up+ +
X
p�

ap�up�:

Now, the negative energy solutions are to be reinterpreted as
the complex conjugates of positron solutions in a representa-
tion that maintains orthogonality to the electron solutions.
The complex conjugation converts the annihilation operator
into a creation operator. Thus, the �eld operator becomes

	 =
X
p

�
apup + ~ap

y ~up
�

where the tildes indicate positronic entities. This opera-
tor conserves charge, because it combines the creation of
positrons with the annihilation of electrons.
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QED Hamiltonian operator

The Hamiltonian operator is

Ĥ =
X
pq

�
Hpq ap

y aq +Hp~q ap
y ~aq

y +H~pq ~apaq +H~p~q ~ap ~aq
y
�

There are several points to be noted about this operator:

� The second term creates an electron-positron pair, and
the third term annihilates an electron-positron pair. This
means that the Hamiltonian connects states with di�erent
particle numbers, i.e. particle number is not conserved,
though charge is. The existence of these terms embodies
the idea of an in�nitely many-body problem which arose
from the �lling of the negative energy states in Dirac's
interpretation.

� The order of the operators in the fourth term means that
the vacuum expectation value of this operator is not zero,
but

h jĤj i =
X
pq

H~p~qh j~ap ~aqy j i =
X
pq

H~p~q�pq =
X
p

H~p~p

Thus the vacuum has an energy which is equal to the
sum of the energies of the negative solutions of the Dirac
equation, as is expected from Dirac's interpretation. Note
that the matrix elements are the same as in the Dirac
equation, so the sum is negative and in�nite.
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QED Hamiltonian operator

To avoid the negative in�nite vacuum energy, the vacuum
expectation value is subtracted from the Hamiltonian to
de�ne a new, QED Hamiltonian

ĤQED =
X
pq

�
Hpq ap

y aq +Hp~q ap
y ~aq

y +H~pq ~apaq

+H~p~q (~ap ~aq
y � h j~ap ~aqy j i)

�
The last term can be rewritten using the anticommutation
relations as

~ap ~aq
y � h j~ap ~aqy j i = ~ap ~aq

y � �~p~q = �~aqy ~ap

and thus the Hamiltonian is

ĤQED =
X
pq

�
Hpq ap

y aq+Hp~q ap
y ~aq

y+H~pq ~apaq�H~p~q ~aq
y ~ap

�

The subtraction of the vacuum expectation value is therefore
equivalent to permuting all annihilation operators to the
right as if all anticommutators vanished. This is called
normal ordering, and operators which are normal-ordered are
often enclosed in colons, thus

ĤQED = :Ĥ :
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QED Hamiltonian and charge operators

Note that the vacuum expectation of the Hamiltonian is now
zero (by construction), i.e. the vacuum has zero energy. Note
also that the positronic term now has a negative sign. The
energy of a positron state j~pi = ~ap

y j i is now

h~pjĤQEDj~pi = �H~p~p > 0:

Thus, the negative energy (or mass) electron solutions have
now become positive energy positron solutions.

To gain some more insight into the transition to the QED
picture, we de�ne the total charge operator

Q̂ = �e
Z

	y	 d3r

= �e
X
pq

�
�pq ap

y aq + �p~q ap
y ~aq

y + �~pq ~apaq + �~p~q ~ap ~aq
y
�

= �e
X
p

�
ap
y ap + ~ap ~ap

y
�

The vacuum expectation of this operator is in�nite because
of the last term: the negative energy states are all �lled.
However, the normal-ordered operator,

:Q̂:= �e
X
p

�
ap
y ap � ~ap

y ~ap
�

has a zero vacuum expectation, and correctly gives the charge
of a state with a given number of electrons or positrons.
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Vacuum de�nition

The subtraction of the vacuum expectation value from the
Hamiltonian makes the operator vacuum dependent, i. e. the
de�nition of the vacuum depends on the de�nition of the
basis in the expansion of the �eld operator. The argument
may be developed as follows.

� If the Hamiltonian is diagonal, the terms which create and
annihilate pairs vanish, and we are left with an operator
which conserves particle number. It is in this basis that
the interpretation of particles is made.

� A transformation of the basis may be made with the
exponential operator û = exp(i�̂). The normal-ordered

form of �̂ is

:�̂:=
X
pq

�
�pq ap

y aq + �p~q ap
y ~aq

y + �~pq ~apaq � �~q~p ~ap
y ~aq

�

which contains pair creation and destruction terms. Ex-
ponentiating this operator will give an operator containing
terms which create one, two, ... pairs.

� The vacuum state in the new basis is derived by operating
on the vacuum in the old basis with this exponential
operator. Therefore the new vacuum contains a whole
series of pair states from the old basis. The structure of
the vacuum has changed.
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Vacuum de�nition

� This may be seen by evaluating the number of \old"
electrons and positrons in the new vacuum, which gives
a non-zero result.

hvac0jN̂ejvac0i = hvacjÛ y
X
p

ap
y ap Û jvaci

The number of electrons is however equal to the number of
positrons, so that charge is conserved.

� The energy of a particle in the new vacuum becomes a
weighted sum of energies of states with one particle, a
particle and one pair, etc., in the old vacuum.

� With respect to the old vacuum, the new vacuum is called
a dressed vacuum and the states in it are called dressed

states. The new particles are called quasiparticles because
they are a composite of an \old" particle and a series of
\old" pairs { they are dressed with a series of pairs rather
than being bare particles.

� The new vacuum is also called a polarized vacuum because
with respect to the old vacuum there is a charge polar-
ization expressed by the presence of undressed pairs. The
concept of vacuum polarization will be dealt with later.

� Finally, another way of looking at the change in the
vacuum is that because the transformation mixes creation
and annihilation operators, a normal-ordered operator in
the new basis will de�nitely not be normal-ordered in the
old basis.
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Summary of QED concepts

Adoption of the QED picture has the following bene�ts:

� The negative energy states are reinterpreted as positrons.

� Positrons appear as positive energy particles with positive
charge.

� The in�nite vacuum energy is removed from the Dirac
reinterpretation.

� There is no danger of radiative decay of electrons.

While doing this, it introduces the following features:

� Operators must be used in normal-ordered form.

� Charge is conserved but particle number is not necessarily
conserved.

� Particles are therefore de�ned in a basis in which the
Hamiltonian is diagonal. Such a basis is one in which
particle number is conserved.

� The vacuum is de�ned relative to a given representation of
the one-particle states.

� No prescription is given for choosing a representation.
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The electron-electron interaction

From the discussion of classical relativity, it was clear that
the Coulomb interaction between charged particles was not
Lorentz invariant. We therefore wish to �nd an interaction
which is invariant.

As foreshadowed in our consideration of classical relativity,
the interaction of charged particles in QED is mediated by
the emission and absorption of photons. The derivation
of the Hamiltonian for the interaction is obtained from
perturbation theory. This is usually expressed in terms of
Feynman diagrams, which are a pictorial way of representing
the interaction as a function of time.

Feynman diagrams are written with time on the vertical axis.
Straight lines represent electrons. The direction of propaga-
tion is given by an arrow: an electron which is propagating
backwards in time is interpreted as a positron. Squiggly lines
represent photons. The number of particles at any given time
can be found by drawing a horizontal line across the diagram.
In some cases it is useful to distinguish between bare parti-
cles (i.e. free particles) and dressed particles. The dressed
particles appear with a double line.
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Feynman diagrams
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Feynman diagrams

There are three possible diagrams for the exchange of one
photon. The �rst is the \normal" interaction, where a parti-
cle interacts with another particle. The second incorporates
the creation of an electron-positron pair (the closed loop).
This represents the interaction of the electron with the vac-
uum, and is known as vacuum polarization. In the third di-
agram, the electron is interacting with itself. This term is
called the self energy term. The self energy and vacuum po-
larization terms together make up what is called the Lamb
shift.

The diagrams for two-photon exchange are numerous and
much more complicated. A few of these are also given.
The �rst is a \ladder" diagram: two electrons exchange
a photon at one time, and then exchange another a bit
later. These ladder diagrams can be summed to in�nite
order by incorporating the one-photon interaction into a
variational procedure. The second is a diagram in which a
pair is created and annihilated. One electron emits a photon
which creates a pair. The positron from this pair annihilates
the second electron, creating a photon which is reabsorbed
by the second electron. In the third diagram, two electrons
simultaneously emit a photon each, and later each absorbs
the photon from the other electron.
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Time-dependent perturbation theory

We now turn to the mathematical form which these embody,
and to do this we use time-dependent perturbation theory in
the interaction picture, where

i _ = V (t) 

The potential for the interaction can be given in Lorentz
invariant form as

V = �q
Z

j�A�d
3r

We must deal with the time-dependence, which is achieved in
the following manner. Taking a small time increment,

 (t+ �t) = e�i�t V (t) (t)

For any time interval, we may take the product of the opera-
tors and allow the interval to go to zero:

 (t2) =
Y
ti

e�i�ti V (ti) (t1)! exp

�
�i
Z t2

t1

V (t) dt

�
 (t1):
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Time-dependent perturbation theory

However, this transition requires that the time intervals and
the operators commute, which is not necessarily the case.
Therefore, we introduce a time-ordering operator T̂ which
ensures the correct chronological sequence of perturbations.
Writing the operator which carries  from t1 to t2 as Ŝ, we
have

Ŝ = T̂ exp

�
�i
Z
V (t) dt

�

=
X
k

(�i)k
k!

Z
dt1

Z
dt2 : : :

Z
dtkT̂fV (t1)V (t2) : : : V (tk)g

Substituting the form of the interaction we get

Ŝ = T̂ exp

�
iq

Z
j�A�d

4x

�

The integrand is clearly Lorentz invariant - but what of T̂?

If the world points x2 and x1 are separated by a time-like
interval (x2 � x1)2 > 0 then t2 > t1 in any frame of refer-
ence. However if the interval is space-like, there can be no
causal connection between them, and therefore the operators
referring to them must commute, because non-commutativity
implies that the quantities cannot be measured simultane-
ously and therefore the events must be connected. Thus in
the space-like region the chronological order can be restored
if it gets out of order in a Lorentz transformation.
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Electron-electron interaction

Now, the lowest term in the sum involves the interaction of
only one current with the electromagnetic �eld, which would
correspond to photon emission. Therefore the second term
in the sum corresponds to the lowest order electron-electron
interaction,

Ŝ(2) = �qq
0

2

Z Z
d4x d4x0T̂

�
j�(x)A�(x)j

�(x0)A�(x
0)
�

This corresponds to the lowest order Feynman diagram
for photon exchange. The photon and electron operators
commute, so we may write

Ŝ(2) = �qq
0

2

Z Z
d4x d4x0T̂

�
j�(x)j�(x0)

�
T̂
�
A�(x)A�(x

0)
�

Now, to calculate the Fock space matrix element of this oper-
ator we consider the initial and �nal states of the interaction.
The inital state has two electrons, as has the �nal state, and
neither has any photons. Therefore the matrix element for
the photons is

D��(x� x0) = ih jT̂ �A�(x)A�(x
0)
�j i;

which is called the photon propagator.
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Electron-electron interaction

Similarly one may expand the current density in terms of the
wave operators. A factor of 2 arises from the expansion, and
the exchange due to the anticommutation of the creation and
annihilation operators also appears, so that we get

h34jT̂�j�(x)j�(x0)�j12i = c2
�
( 4

y�� 2)( 
0
3

y
�� 01)

�( 4y�� 1)( 03y�� 02)
�

where the numbers label the incoming and outgoing particles.

Thus we have the interaction of two current densities via
a photon propagator, which must be integrated over 4-
space to give the interaction matrix element and hence the
potential for the interaction. The development of this is long
and involves the Green's functions for the photon and the
electron in momentum space. The �nal result is an e�ective
interaction matrix element which can be given as

S(2)pr;sq =

Z
d3r1

Z
d3r2 u

y
p(r1)u

y
r(r2) V (!; r12)us(r2)uq(r1):

where ! is the frequency of the exchanged photon.
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Electron-electron interaction

The potential for the interaction is derived in the Feynman
(or Lorentz) gauge. It is given by

V F (!; r12) =
e2

4��0

1��1 ��2

r12
eij!jr12=c

Although the results should be independent of the gauge, the
Coulomb gauge is usually preferred in calculations. Thus the
Coulomb gauge form of the interaction is

V C(!; r12) = V F (!; r12)+
e2

4��0
(�1 �r1)(�2 �r2)f(j!j=c; r12)

where the function f is

f(�; r) =
1 + i�r � ei�r

�2r

The additional term in the Coulomb interaction is properly
called the gauge term because it arises from the gauge trans-
formation of the 4-potential.

The interaction has a real and an imaginary part. The
imaginary part gives the energy levels a width, and is often
neglected, leaving the real interaction operator.
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Electron-electron interaction

The frequency of the exchanged photon in this interaction is
given by conservation of energy in terms of the one-particle
eigenvalues as

! � !rs = �s � �r;
This is the interaction of the current of electron 1 with the
potential generated by electron 2. It is a retarded potential,
and is not symmetric to the interchange of electrons 1 and
2. One could equally derive the retarded potential for the
interaction of the current of electron 2 interacting with the
potential generated by electron 1, which has the frequency

! � !qp = �p � �q

A procedure which is at least correct to (1=c2) is to take the
real part of the average potential

�V (!; r12) =
1

2
Re[V (!rs; r12) + V (!qp; r12)]
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The Breit and Gaunt interactions

The Lorentz invariant electron-electron interaction opera-
tor just derived contains di�erences of orbital energies. This
means that each matrix element will have di�erent photon
frequencies, and the calculation of integrals is then an enor-
mous task. The oscillatory term in the interaction is only
large if !r12 is large. For the interaction of electrons, and in
particular for chemical energies, the frequencies are small,
and the contributions from large r12 will be damped by the
1=r12 operator, becoming negligible. Thus, to obtain the ef-
fect in lowest order, it is reasonable to let !=c ! 0. The
result is

V F (0; r12) =
1��1 ��2

4��0r12

V C(0; r12) =
1��1 ��2

4��0r12
+
(�1 � r12) � (�2 � r12)

8��0r312

The last term is the gauge term. The addition to the
Coulomb interaction in the Feynman gauge is the Gaunt in-
teraction, and in the Coulomb gauge it is the Breit interac-
tion.

Note that if one is interested in pair creation e�ects, such
as in the second of the two-photon diagrams, the frequency
will always be of order 2c2, and therefore the use of the full
frequency dependence is mandatory.
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The Breit interaction

Rewriting the Coulomb gauge interaction as

V C(0; r12) =
1

4��0r12
� 1

8��0r12

�
�1 ��2 +

(�1 � r12)(�2 � r12)
r212

�
;

a clear connection with the retarded potential from classical
relativity can be seen, with � = u=c.

In some places, the last term in square brackets is referred to
as the retardation correction, but this is not correct, because
the whole term in square brackets arises from a retarded
interaction. Moreover, the retardation is expressed here by
the �nite photon frequency, which does not contribute to
this interaction. It is better to describe the Coulomb gauge
interaction as a sum of the Coulomb interaction, a current-
current interaction and an interaction derived from the
interaction of two angular momenta.

One further point about the Feynman and Coulomb gauge
interactions. It has been shown that the Coulomb-Breit inter-
action is correct to O(c�2). The Coulomb-Gaunt interaction
is not correct to this order, and does not become correct by
summing ladder diagrams. The missing term comes from the
crossed two-photon exchange diagram. Thus, in a situation
where one is interested in an accurate calculation of low-order
e�ects, the Coulomb gauge interaction is preferable.
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The Lamb shift

We have dealt with the �rst of the one-photon diagrams.
The other two are the vacuum polarization and self-energy
terms. Since the classical self-energy of an electron is in�nite,
and the vacuum is in�nitely charged in the Dirac picture,
it is not surprising that these terms are di�cult to handle.
The operators derived for the self energy and the vacuum
polarization have divergences in the photon frequency, either
at large k or at small k. The divergences are removed by
rede�ning the mass and charge of the electron, a process
called renormalization. Since the mass and charge measured
experimentally incorporate these terms, but in the equations
derived they do not, there is an extra term to be included
in the Hamiltonian density which arises from the di�erence
between the measured and the bare charge. In essence,
this involves subtracting a term which arises from the bare
vacuum. Put another way, one is measuring not the absolute
values of these terms, but the di�erence in them imposed by
the presence of a �eld. This in fact solves a problem in QED,
in which the vacuum is rede�ned in the presence of a �eld,
so that as the �eld changes, the vacuum changes too. There
is then a problem of comparison of the energies of states in
di�erent external �elds (for example, di�erent molecular
geometries). This is solved by taking the bare vacuum as a
reference. The di�erences in energy are very small, and for
molecular calculations can be neglected. It should be noted
that QED e�ects are of lowest order �3, whereas the Breit
interaction contains terms of order �0 and �2 (� is the �ne
structure constant).
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Variational theory

No satisfactory means of deriving a variational theory based
on QED has yet been achieved. However, it is always possible
to construct a one-particle basis by variational methods,
since these can be represented as the summation of certain
perturbation series to in�nite order. Thus one may proceed
with safety to construct a mean-�eld theory which can
be used as a basis for the perturbation theory of QED.
In particular, the inclusion of the Breit interaction in the
mean-�eld calculations ensures that the terms of O(�2) are
included to in�nite order in QED.
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Conjugated Dirac equation

Earlier, when we considered charge conjugation, we took the
complex conjugate of the Dirac equation, and interpreted the
negative energy solutions as positrons. But what about the
positive energy solutions?

If we take the conjugated Dirac equation,

c(��)�[�i�h@� + eA��]	
� = �mc2	�

and apply to this the operator

K̂0 = �i�(4)y ;

where �
(4)
y is the 4� 4 matrix

�(4)y =

�
�y 02
02 �y

�
;

and for which

K̂0�� = ��K̂0; K̂0� = �K̂0

the result is

c��[�i�h@� + eA��]K̂0	� = �mc2K̂0	�:
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Time-reversal

If we de�ne a new time coordinate which is the negative of
the original, �t = �t, we �nd that the momentum p stays the
same, but p0 changes sign. If the vector potential changes
sign, A(�t) = �A�(t), and the scalar potential A0 stays the
same, the above equation becomes

c��[i�h�@
� + e�A�]K̂	 = �mc2K̂	

where K̂ = K̂0K̂0 is called the time-reversal operator, and the
bars indicate that the time-reversed form of the operator is
to be taken. Thus the function �	 = K̂	 is a solution of the
time-reversed Dirac equation.

Now, in the absence of a vector potential, i.e. A = 0, the
time-independent Dirac operator commutes with K̂. Thus �	
is a solution of the time-independent Dirac equation with the
same energy as 	. The one-electron solutions of the Dirac
equation are therefore doubly degenerate. This is Kramers'
theorem, and the pairs of such states are called Kramers

pairs.

For future reference, it should be noted that the double-
degeneracy at the one-electron level depends on the forward-
and backward-time solutions being determined in the same
potential.
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Time-reversal operator

The presence of the complex conjugation operator in K̂
means that it is an antilinear operator, i.e.

K̂(a	) = a�K̂	;

and even though it commutes with the Dirac Hamiltonian,
it does not give rise to any observable and thus has no
eigenvalues.

If we apply K̂ a second time to the Dirac equation, we would
expect to return to the original equation | for, after all, a
double reversal of time should give the original equation?
However, the square of K̂ is

K̂2 = �i�(4)y K̂0(�i�(4)y )K̂0 = (�i�(4)y )2K̂2
0 = �14

Thus, although the original equation is indeed obtained, it is
with a sign change of the wave function. This will be pursued
further in the section on double groups.
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Time-reversal and spin

At this point, it is of value to examine the e�ect of K̂ on a
spin function. We may write K̂ = �i�y 
 12K̂0. The spin
functions in vector form were written

� � �(1=2) =

�
1
0

�
; � � �(�1=2) =

�
0
1

�
:

Obviously, the only part of the operator that matters for the
purpose of the spin functions is

K̂S = �i�y =
�
0 �1
1 0

�

from which we deduce that

K̂S � = �; K̂S � = ��

Thus, time-reversal corresponds to a spin-
ip, and the con-
struction of many-particle states is made from combinations
of both forward- and backward-time wave functions.
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Field operators

As for the case of charge conjugation, we may construct a
new �eld operator from the solutions of the Dirac equation
for both positive and negative time,

	 =
X
p

�
apup(r) + a�pu�p(r)

�

where the operator is now in the un-reinterpreted Dirac
picture. In the QED picture, we would need to reinterpret
the positron solutions.

The �eld operator is invariant under time reversal, because
we have

K̂ap = a�p ; K̂a�p = �ap
and also

K̂up = u�p; K̂u�p = �up:
Second-quantized Kramers-restricted operators may now be
determined with this �eld operator in the usual manner,

F̂ =

Z
	yF̂	 d3r:
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Operators with time reversal

Before considering the e�ect of time reversal on the second-
quantized operators, we consider the behaviour of some �rst
quantized operators under time reversal.

� The scalar potential for a Coulomb �eld, A0, is symmet-
ric.

� The Dirac velocity operator � is antisymmetric. This
means that K̂ converts the current operator from covariant
to contravariant form and vice versa.

� The momentum operator is antisymmetric, and hence the
combination c� � p is symmetric, as it should be.

� The � matrix is symmetric.

� For a radiation �eld in the Coulomb gauge, the vector
potential is real and hence symmetric under time-reversal.
The interaction of a current with the vector radiation �eld
is therefore antisymmetric.

� For a product of two � matrices, time reversal of both
gives a symmetric result, but time reversal of only one
of them gives an antisymmetric result. Thus the Gaunt
interaction is symmetric under time reversal as a whole,
but the interaction with a nuclear spin, for example, gives
an antisymmetric result unless time reversal of the nuclear
spin is also included.
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Operators with time reversal

The second quantized form of a single-particle operator F̂ in
this basis of Kramers pairs, is

F̂ =
X
pq

�
fpq ap

y aq + fp�q ap
y a�q + f�pq a�p

y aq + f�p�q a�p
y a�q

�

The �rst-quantized operator F̂ may by symmetric or anti-
symmetric under time reversal, and in addition may be
hermitan or anti-hermitian, i.e.

F̂y = hF̂ ; K̂F̂K̂�1 = tF̂ ; h; t = �1

Under time-reversal the matrix elements of F̂ have the
following behaviour

K̂fpq = hK̂pjK̂F̂K̂�1jK̂qi = tf�p�q = f�pq = hfqp

K̂fp�q = �tf�pq = f�p�q = hf�qp:

We may therefore collect the matrix elements in F̂ , with
reindexing, to obtain

F̂ t;h =
X
pq

�
fpq (ap

y aq + th a�q
y a�p ) +

1

2
fp�q (ap

y a�q � th aq
y a�p )

+
1

2
f�pq (a�p

yaq � th a�q
yap )

�
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Kramers replacement operators

The operators in parentheses de�ne some operators that are
termed are termed the Kramers single replacement operators

Xs
pq = ap

y aq + s a�q
y a�p

Xs
p�q = ap

y a�q � s aq
y a�p

Xs
�pq = a�p

yaq � s a�qyap

so that the one-electron operator can be written

F̂ t;h =
X
pq

�
fpq X

th
pq +

1

2
fp�q X

th
p�q +

1

2
f�pq X

th
�pq

�

These are not the same as the one-particle excitation opera-
tors,

Es
pq = i(1�s)=2(ap

y aq + s a�p
ya�q )

Es
p�q = i(1�s)=2(ap

y a�q � s a�p
yaq ):

In terms of these operators, the one-electron operator is

F̂ t;h =
X
pq

�
Refpq E

t
pq+Imfpq E

�t
pq +Refp�q E

t
p�q+Imfp�q E

�t
p�q

�

The symmetry with respect to Hermitian conjugation is con-
tained entirely in the matrix elements in this representation.

Note also that the E operators are de�ned with respect to
spinors, and not spin-orbitals, and are therefore not the same
as the nonrelativistic one-particle excitation operators.
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Comparison of X and E

The X operators have the following features:

� They give the most compact representation of an opera-
tor.

� There is no division of matrix elements into parts.

� The symmetry under time-reversal and hermitian conjuga-
tion is transparently displayed in the sign index of X.

� Therefore only one kind of X operator needs to be consid-
ered for a given property of the �rst quantized operator.

� The behaviour under time reversal is

K̂Xs
pq = s Xs

qp; K̂Xs
p�q = s Xs

�pq

i.e. they transform into their conjugates.

The E operators have the following properties

� They give a representation of an operator in terms of real
matrices.

� They are genuine excitation operators which can be used
in the same way as in nonrelativistic theory.

� They are symmetric under time reversal:

K̂Es
pq = Es

pq; K̂Es
p�q = Es

p�q

The di�erences and uses of these operators will be pursued
later.
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Replacement operators

The single replacement operators may be de�ned in an ele-
gant and compact manner through two auxiliary operators,
the single bar replacement operator, K̂p, which is the time-
reversal operator for a spinor with index p, and the Kramers

permutation operator, T̂pq whose action is given by

T̂pq ap
y aq = a�q

ya�p ; T̂pq a�p
yaq = �a�qyap

and which may be considered as the application of the time-
reversal operator followed by Hermitian conjugation. These
two operators commute. The Kramers single replacement
operators Xs

pq are then de�ned by

Xs
pq =

�
1 + sT̂pq

�
ap
y aq

and the operation of K̂p and K̂q on this expression.

The commutator of two single replacement operators is given
by application of single bar replacement operators to�
Xs1
pq ; X

s2
rs

�
= (1+s2T̂pq)(1�s1s2T̂psT̂rq)(�rqapy as��psary aq );

The Kramers permutation operator must be taken to apply
to the Kronecker delta as well as the operators. Thus, for
s1 = s2 = +1 we have�

X+
pq ; X

+
rs

�
= �rqX

�
ps � �psX

�
rq:
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Replacement operators

Kramers double replacement operators may be de�ned in
analogous manner:

xs1s2pq;rs =
�
1 + s1T̂pq

��
1 + s2T̂rs

�
ap
y ar

y as aq = xs2s1rs;pq;

and the x operators with bars derived from the application
of the single bar replacement operators. The double replace-
ment operators can be expressed in terms of the single re-
placement operators, but not in the same simple manner as
in nonrelativistic theory:

xs1s2pq;rs = Xs1
pqX

s2
rs � �rq ap

y as � s1 �r�p a�q
yas

� s2 ��sq ap
y a�r � s1s2 ��p�s a�q

ya�r :

The Kronecker delta terms with an odd number of bars have
been retained both to show the structure and to enable the
expressions for the other x operators to be derived using the
single bar replacement operator.

The commutator of a single and a double replacement opera-
tor is given by

�
Xs1
tu ; x

s2s3
pq;rs

�
= (1 + s2Tpq)(1 + s3Trs)��

(1 + s1s2TpuTtq)(�puat
y ar

y asaq � �tqapy ary as au )
+(1 + s1s3TruTts)(�ruat

y ap
y aq as � �tsar

y ap
y aq au )

�
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Matrix elements

We have already examined the matrix elements of a one-
particle operator. The integrals have the following relations

f�p�q = th fqp = t f�pq; f�pq = �th f�qp = �t f�p�q:

Thus, the application of time reversal reduces the number of
unique matrix elements by a factor of 2.

The Kramers permutation operator is e�ectively a unit
operator when applied to a charge density, for

T̂pq up
yuq = (u�p

yu�q)
� = u�q

yu�p

= K̂(u�pyu�q) = K̂(K̂upyuq) = up
yuq

because a charge density behaves as a boson, for which
K̂2 = 1. The relations between the 16 types of two-electron
integrals arising from all possible combinations of barred and
unbarred spinors can then be determined with the use of this
operator and the single bar replacement operator. Thus, for
the Coulomb interaction,

(pqjrs) = T̂rs(pqjrs) = T̂pq(pqjrs) = T̂pqT̂rs(pqjrs)
= (pqj�s�r) = (�q�pjrs) = (�q�pj�s�r)

giving a reduction of a factor of 4. Application of the single
bar replacement operator to this expression yields expressions
for all the other integral types, and time reversal reduces the
number of unique integrals by a factor of 4.
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Matrix elements

When applied to a current density, the Kramers permutation
operator gives

T̂pq up
y� uq = (u�p

y� u�q)
y = u�q

y� u�p

= K̂(u�py� u�q) = �K̂(K̂upy� uq) = �upy� uq

Thus, for the Gaunt (or Breit) interaction,

(p�qjr�s) = �(p�qj�s��r) = �(�q��pjr�s) = (�q��pj�s��r)

The number of integrals is again reduced by a factor of 4.

If the Coulomb and Gaunt interactions are combined into
a single interaction, there is of course a loss of one of these
relations, and then the only relation between the integrals
involves permutation of both pair indices. However, the
factor of 2 lost by this procedure is regained by the use of
a single interaction instead of two separate interactions.

Note: The permutational symmetry of the integrals is
reduced relative to the nonrelativistic case because the
functions are complex. Thus we have

(pqjrs) = (qpjsr)� 6= (qpjrs)

Particle interchange symmetry is of course retained.
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Kramers-restricted Hamiltonian

With the use of these relations, the Kramers-restricted
Hamiltonian may be written as

Ĥ =
X
pq

h
hpqX

+
pq +

1

2

�
h�pqX

+
�pq + hp�qX

+
p�q

� i

+
1

2

X
pqrs

h
(pqjrs)x++pq;rs � (p�qjr�s)x��pq;rs

+(�pqjrs)x++�pq;rs � (�p�qjr�s)x���pq;rs

+(p�qjrs)x++p�q;rs � (p��qjr�s)x��p�q;rs
i

+
1

4

X
pqrs

h
(�pqjr�s)x++�pq;r�s � (�p�qjr��s)x���pq;r�s

i

+
1

8

X
pqrs

h
(�pqj�rs)x++�pq;�rs � (�p�qj�r�s)x���pq;�rs

+(p�qjr�s)x++p�q;r�s � (p��qjr��s)x��p�q;r�s
i

108



Many-particle states

A many-particle (Fock space) state in unrestricted form is
given by

jKi =
nY
k

a
y
kjvaci:

In Kramers-restricted form we may partition the creation
operators into barred and unbarred sets, and anticommute
the barred operators to the right, so that

jKi =
Y
p

ayp

Y
q

ay�qjvaci:

The two products of creation operators are in nonrelativistic
theory termed alpha and beta strings. To avoid confusion
with these operators but also to retain the similarity between
Kramers pairs and spin-orbital pairs, we will term these A
and B strings:

Â(NA) =
NAY
p

ayp

B̂(NB) =
NBY
p

ay�p:

Then the many-particle state can be written

jKi = Â(NA)B̂(NB)jvaci:
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Many-particle states

For a closed shell system, it is often convenient to reorder
these so that the Kramers pair operators are together. Thus
we de�ne a Kramers pair creation operator

Ôp = ap
y a�p

y

and a closed-shell state is then

jKi =
Y
p

Ôpjvaci:

It is clear that Ôp is symmetric under time-reversal, for

K̂Ôp = K̂apy a�py = �a�pyapy = ap
y a�p

y = Ôp

Thus, all closed-shell states are symmetric under time-
reversal.
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Many-particle states

We now consider time-reversal on a general many-particle
state (determinant), which we write in terms of A and B
strings,

jI;NA;J;NBi = Â(NA)B̂(NB)jvaci:
where I and J index a particular selection of A and B
spinors. Operating with K̂ on this determinant produces the
result

K̂ jI;NA;J;NBi = (�1)NB B̂(I;NA) Â(J;NB) jvaci
= (�1)NB(NA+1) Â(J;NB) B̂(I;NA) jvaci
= (�1)NB(NA+1) jJ;NB; I;NAi:

Operating again produces the result

K̂2 jI;NA;J;NBi = K̂ (�1)NB B̂(I;NA) Â(J;NB) jvaci
= (�1)NA+NB Â(I;NA) B̂(J;NB) jvaci
= (�1)N jI;NA;J;NBi:
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Many-particle states

From the above, the following points can be made about time
reversal of many-electron states.

� Double time reversal produces a phase which depends on
the number of electrons. If N is odd, there is a change of
phase; if N is even, there is no change of phase.

� This is because a system with an odd number of fermions
behaves like a fermion, but a system with an even number
of fermions behaves like a boson.

� If we de�ne j �Mi = K̂jMi, then K̂j �Mi = (�1)N jMi de�nes
the phase relation for time-reversal of the time-reversed
many-electron state.

For the de�nition of j �Mi, the phase is also determined by
whether N is even or odd. If N is even, then

� NB = NA + 2k for integer k

� NB can be replaced by NA

� NA(NA + 1) must be even and the phase is +1

If N is odd,

� NB = NA + 2k + 1 for integer k

� NB can be replaced by NA + 1

� NB(NA + 1) di�ers from the even case by NA + 1 which
determines the phase.
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N-particle Hamiltonian

We now consider the behaviour of matrix elements of the
Hamiltonian under time reversal.

K̂2 hLjĤjMi = h�LjĤj �Mi� = hLjĤjMi
K̂2 hLjĤj �Mi = (�1)N h�LjĤjMi� = hLjĤj �Mi

Thus the relations between the matrix elements of Ĥ are also
determined by the parity of N .

For the case of N even, it is possible to construct a real basis,
i.e. one in which the Hamiltonian matrix is real.

jMsi =
i(1�s)=2q

2(1 + �M; �M)

� jMi+ sj �Mi �

Both of these functions are symmetric under time reversal, by
construction. Transforming the Hamiltonian matrix elements
into this basis and making use of their behaviour under time
reversal, we have

HL+M+ = Re (HLM +HL �M)=GLM

HL+M� = �Im (HLM �HL �M )=GLM

HL�M+ = Im (HLM +HL �M)=GLM

HL�M� = Re (HLM �HL �M)=GLM

where GLM = [(1 + �L;�L)(1 + �M; �M)]1=2 is a normalization
factor required when one or both of the determinants is a
closed shell.
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Mean-�eld theory

Having developed much of the machinery for relativistic
calculations, we now turn to the question of determining
the one-particle functions in which the various operators
are expanded. In other words, we are now concerned with
developing a mean-�eld theory.

We will use the exponential operator Û = exp(i�̂) which
expresses a general rotation of the basis, but instead of the
Hermitian �̂ we will use the anti-Hermitian �̂ = i�̂. We
choose a reference state (initial guess), j0i, and apply the
general rotation to it to obtain a new state, j00i = Û j0i. The
energy of the reference state in the rotated basis is simply

E0 = h00jĤj00i = h0je��̂Ĥe�̂j0i

The operator can be expanded using the Baker-Campbell-
Hausdor� expansion,

e��̂Ĥe�̂ = Ĥ +
�
Ĥ; �̂

�
+

1

2!

��
Ĥ; �̂;

�
; �̂
�
+ : : :

so that the energy may �nally be written

E0 = h0jĤj0i+ h0j�Ĥ; �̂�j0i+ 1

2!
h0j��Ĥ; �̂; �; �̂�j0i+ : : :
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Structure of �

We must now choose an explicit form for �. In the �rst in-
stance, we will take the Dirac picture, in which the negative-
energy states are not reinterpreted as positrons; thus

�̂ =
X
pq

�pq ap
y aq

where the sum extends over both positive and negative
energy states. Substituting �̂ into the �rst term in the energy
expansion,

h0j�Ĥ; �̂�j0i =X
pq

�pq
�h0jĤ ap

y aq j0i � h0japy aq Ĥj0i
�
;

we may make the following observations:

� If p and q are both unoccupied indices, the action on the
reference produces zero, and hence the term in square
brackets will be zero.

� If p and q are both occupied indices, the action on the
reference produces zero unless p = q. But in this case the
result is the reference and again the term vanishes.

Similar arguments can be marshaled for the higher order
terms.
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Structure of �

The conclusion is that the energy is invariant to rotations
within the occupied spinor space and within the unoccupied
space. The matrix elements of � within these spaces may
therefore be set to zero, and the only matrix elements to be
considered are those which connect occupied and unoccupied
spinors.

Now, the de�nition of the occupied and unoccupied spinors
depends on the interpretation used.

� If the negative energy states are empty (the original or
\empty Dirac" picture), the occupied spinors are the
electron states, and the unoccupied spinors consist of the
virtual electron spinors and the positron spinors.

� If the negative energy states are �lled (the reinterpreted or
\�lled Dirac" picture), the occupied spinors must include
these states, and the only empty spinors are the virtual
electron spinors.

Thus the structure of �̂ will depend on whether the negative
energy states are �lled or not. Since the reinterpreted Dirac
picture was unsatisfactory due to the in�nitely charged
vacuum, we must now look at the QED picture.
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Structure of �

In the QED picture, the normal-ordered operator is

:�̂:=
X
pq

�
�pq ap

y aq + �p~q ap
y ~aq

y + �~pq ~ap aq � �~p~q ~aq
y ~ap

�
:

We now substitute each term in �̂ in turn into the �rst term
in the energy expansion. For the �rst term, we draw the
same conclusions as for the Dirac picture, (whether �lled or
empty). For the second term,

X
pq

�pq
�h0jĤ ap

y ~aq
y j0i � h0japy ~aqy Ĥj0i

�
;

� The �rst integral will be zero unless p is an unoccupied
index.

� The second integral is always zero.

For the third term in �̂, the converse holds. The strange re-
sult for these two terms is that the energy apparently de-
pends on the de�nition of the unoccupied orbitals. However,
these terms involve pair creation and destruction, and there-
fore must involve empty orbitals. The fourth term is identi-
cally zero.

The conclusion from these arguments is the same as in the
reinterpreted Dirac picture: the elements of � are non-zero
only when one index is a virtual electron index and the other
is either an occupied electron or a positron index.
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Structure of �

However, there is a problem with this approach. The product
of two normal-ordered operators is not itself a normal-ordered
operator, but must be put into normal order. Therefore, to
consider the e�ect of �̂ only on the reference | even though
it is normal-ordered | is not consistent with QED, in which
all operators must be placed in normal order before their
matrix elements are taken.

We must therefore consider the commutator as a whole. For
simplicity, we choose the one-particle Dirac Hamiltonian, but
the idea can be extended to the many-particle Hamiltonian.
Here, the QED picture gives

:
�
ĥ; �̂

�
:=
X
pqr

�
ar
y aq + ar

y ~aq
y + ~ar aq � ~aq

y ~ar
��
hpq�rp + h~pq�r~p

�
+
X
pqs

�
ap
y as + ap

y ~as
y + ~apas � ~as

y ~ap
��
hpq�qs + hp~q�~qs

�

and the Dirac picture gives

�
ĥ; �̂

�
=
X
pqr

�
ar
y aq + ar

y ~aq + ~ar
y aq + ~ar

y ~aq
��
hpq�rp + h~pq�r~p

�
+
X
pqs

�
ap
y as + ap

y ~as + ~ap
y as + ~ap

y ~as
��
hpq�qs + hp~q�~qs

�
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Structure of �

If we now take the reference expectation of this operator, we
�nd that in the QED picture and in the empty Dirac picture,
all terms except the �rst vanish, because the reference con-
tains only electrons. But in the �lled Dirac picture, all terms
in principle survive. Thus the properly normal-ordered QED
picture gives the same result for this term as the empty Dirac
picture, and not the �lled Dirac picture.

Furthermore, the reference expectation value ensures that
one index of the matrix elements of � must be an occupied
index, and here the empty Dirac and the QED picture have
the same occupied spinors, whereas the �lled Dirac picture
has the negative energy states occupied.

Comparing the normal-ordered operator with the Dirac
picture operator, we may formulate the following rules for
the picture change:

� Determine the operator in the empty Dirac picture.

� Re-interpret the negative energy operators.

� Place them in normal order.

119



Conclusions about pictures

The conclusion of this analysis is that the normal-ordered
QED picture as presented here is equivalent to the empty
Dirac picture. Since the reference expectation of the �rst
commutator gives the same results in both pictures, the
remaining commutators must also give the same result. Put
another way, if the gradient of the energy with respect to the
parameters is the same, all the higher derivatives must be the
same as well. We may therefore proceed with the standard
Dirac-Hartree-Fock method.
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Stationarity conditions

We now consider the operators with time-reversal symmetry
included. The energy is stationary when the gradient with
respect to the parameters is zero, i.e.

@E0

@�tu
= h0j�Ĥ;X�

tu

�j0i
+
1

2

X
vw

�vw

h
h0j��Ĥ;X�

tu

�
; X�

vw

�j0i
+h0j��Ĥ;X�

vw

�
; X�

tu

�j0ii+ : : : = 0

At the stationary point, the values of the parameters must be
zero, so the condition for a stationary point is that

gtu = h0j�Ĥ;X�
tu

�j0i = 0:

This is the gradient with respect to spinor rotations.

The nature of the stationary point is determined by the
eigenvalues of the Hessian, which here is given as

Ktu;vw =
1

2

n
h0j��Ĥ;X�

tu

�
; X�

vw

�j0i+ h0j��Ĥ;X�
vw

�
; X�

tu

�j0io

It may be shown (for example by considering the hydrogen
atom) that the Hessian is not positive de�nite, but has
as many negative eigenvalues as there are negative energy
states. Thus the optimization of the wave function becomes a
minimax problem.
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Fock matrices

The gradient may be expressed in terms of the generalized
Fock matrices,

gtu = ftu � f�ut
where the Coulomb Fock matrix is

ftu =
X
q

n
D+
tq huq +D+

t�q hu�q

o

+
X
qrs

n
P++
tq;rs (uq j rs) + P++

t�q;rs (u�q j rs)

+
1

2

�
P++
t�q;�rs (u�q j �rs) + P++

t�q;r�s (u�q j r�s)

+P++
tq;�rs (uq j �rs) + P++

tq;r�s (uq j r�s)
�o
:

and D+
pr and P

++
pr;st are the time-reversal invariant one- and

two-electron Kramers-reduced density matrices, respectively

D+
pq = h0 j X̂+

pq j 0i;

P++
pq;rs = h0 j x̂++pq;rs j 0i:

The Fock matrix for one barred index can be derived by
using the single bar replacement operator.

The addition of the Breit or Gaunt interaction is made by
replacing the integrals and substituting P��pq;rs for P

++
pq;rs.
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Fock matrices

For a closed shell system, the density matrices reduce to

Ds
pq = �pq + s ��q�p;

P s1s2
pq;rs = (�pq + s1��q�p)(�rs + s2��s�r)

� �ps�qr � s1��pr��qs � s2�p�r�q�s � s1s2��p�s��q�r;

with barred density matrices derived as usual by the use of
K̂p. The Fock matrices become

Ftu = hut +
X
r

�
2(utjrr)� (urjrt)� (u�rj�rt)	

Ft�u = h�ut +
X
r

�
2(�utjrr) � (�urjrt)� (�u�rj�rt)	

where ftu = 2Ftu. For the Breit or Gaunt terms, the direct
contribution vanishes due to the appearance of an x��

operator, and the only terms which survive are the exchange
terms analogous to the ones above. Having de�ned the Fock
matrix, the Dirac-Hartree-Fock (DHF) equation

F c = c �;

may be solved by standard methods. These will be discussed
in detail later.

Some results from DHF calculations are now presented, to
give an estimate of the magnitude of relativistic e�ects.
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Small component electron density

The percentage contribution to the electron density of each
spinor from the small component is presented here for Pb.

Spinor Value Spinor Value

1s1=2 9.7819 4d3=2 0.2017

2s1=2 2.2586 4d5=2 0.1940

2p1=2 2.2635 4f5=2 0.1572

2p3=2 1.9923 4f7=2 0.1541

3s1=2 0.7617 5s1=2 0.0663

3p1=2 0.7548 5p1=2 0.0582

3p3=2 0.6771 5p3=2 0.0496

3d3=2 0.6627 5d3=2 0.0324

3d5=2 0.6417 5d5=2 0.0301

4s1=2 0.2595 6s1=2 0.0091

4p1=2 0.2499 6p1=2 0.0052

4p3=2 0.2225 6p3=2 0.0038
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Overlaps of radial functions

The percentage deviation from unit overlap is presented
for the valence large component radial functions for the
Group 14 elements. The overlap discrepancies between the
nonrelativistic and relativistic functions, and between the
spin-orbit components of the p functions are given.

n hsjs1=2i hpjp1=2i hpjp3=2i hp1=2jp3=2i

C 2 0.0428 0.0033 0.0033 0.0033

Si 3 0.0026 0.0015 0.0013 0.0013

Ge 4 0.0552 0.0193 0.0026 0.0262

Sn 5 0.2325 0.1442 0.0062 0.1680

Pb 6 2.4354 1.7052 0.0458 1.8503

Note the following

� The discrepancy for Si is smaller than for C, probably due
to screening

� The p3=2 is much closer to the NR function than the p1=2

� There is less overlap between the spin-orbit components
than with the NR function for the heavier elements.
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Coupling scheme changes

The ground state J = 0 percentage eigenvector composition
in LS and jj coupling is presented for Group 14 elements.

n np2 3P 0 np2 1S 0 np2
1=2 np2

3=2

C 2 99.9997 0.0003 66.8252 33.1748

Si 3 99.9903 0.0097 67.5908 32.4092

Ge 4 99.6877 0.3123 71.8230 28.1770

Sn 5 98.1042 1.8958 78.8923 21.1077

Pb 6 88.9736 11.0264 92.5217 7.4783
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Dynamics vs screening

The orbital eigenvalues in eV for a single electron outside a
closed shell are presented. For each system, the Dirac and
Schr�odinger equations are solved in either a relativistic or a
nonrelativistic (�xed) core potential. This shows how much
of the relativistic changes are due to dynamics and how much
to screening.

Dynamics: Dirac Schr�odinger

Potential: R NR R NR

Au 6s 7.94 7.97 6.18 6.01

Tl 6p1=2 5.81 6.79 4.58 5.24
Tl 6p3=2 4.79 5.63 4.46 5.24

Lu 5d3=2 5.25 7.32 4.74 6.63
Lu 5d5=2 5.01 6.90 4.81 6.63
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Relativistic e�ects on atomic orbitals

Here some of the e�ects of relativity on atomic orbitals are
summarized.

� Contraction due to relativistic dynamics.

� Expansion due to greater screening of nucleus.

� Spin-orbit splitting, increasing with Z.

� Change from LS to jj coupling as Z increases.

For valence orbitals these e�ects balance in di�erent ways:

� s and p1=2 orbitals contract. Both have s-character,
either in the large or the small component. 6s subshell
relatively inert, stabilizing oxidation state q � 2 (q is
valence occupation).

� For p3=2 orbitals the dynamics and screening approxi-
mately cancel. Thus the behaviour of the late p block ele-
ments shows little e�ect of relativity on many properties.

� For orbitals with ` > 1 the screening e�ect dominates.
The 5d expands, for example, and contributes much more
to bonding.
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Basis set expansion

There are several possible choices for the expansion of the
molecular spinors in a basis set. One could expand each
component in a basis, or one could take advantage of the
angular coupling, and expand the radial large and small
components in a basis set. The second can of course be
reduced to the �rst, but it has some advantages which will be
spelled out later. Thus we will start with the second option.

In the early days of basis set DHF calculations, some prob-
lems were encountered obtaining the correct nonrelativistic
limit. Doubts have also been expressed over the variational
safety of the DHF method in a �nite basis set. We will there-
fore examine these questions using the one-electron Dirac
equation as an example.
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2-spinor Dirac equation

We expand the large and small components in a basis of 2-
spinors,

	L
i =

nX
�=1

cL�i �
L
� ; 	S

i =
nX

�=1

cS�i �
S
� ;

and de�ne the potential energy, overlap and kinetic energy
matrices by

V LL
�� = h�L� jV j�L� i; V SS

�� = h�S�jV j�S� i

SLL�� = h�L� j�L� i; SSS�� = h�S�j�S� i

�LS
�� = h�L� j�:rj�S� i; �SL

�� = h�S�j�:rj�L� i:

Note that �SL
�� = �(�LS

�� )
y, so that

� =

�
0 �LS

��SL 0

�

is Hermitian. The one-electron Dirac equation in a basis is

0
@VLL �E SLL c �LS

�c �SL VSS � (2c2 +E) SSS

1
A
0
@ cL

cS

1
A = 0
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Elimination of small component

Writing the 2-spinor Dirac equation as a pair of coupled
equations,

(VLL � ESLL) cL + c �LS cS = 0

�c �SLcL + [VSS � (2c2 + E)SSS] cS = 0

we invert the second equation (valid for E > �2c2 because V
is negative de�nite)

cS = c [VSS � (2c2 +E)SSS ]�1�SLcL

and eliminate the small component from the �rst equation to
obtain

(VLL � ESLL)cL = �c�LS
�
VSS � (2c2 + E)SSS

��1
c�SLcL

Using the matrix relation

(A�B)�1 = �B�1 +B�1A(A �B)�1

with 2c2SSS = B and (VSS � ESSS) = A, we obtain

�
VLL � ESLL � 1

2
�LS

�
SSS

��1
�SL

	
cL

= �1

2
�LS

�
SSS

��1�
VSS � ESSS

�
��VSS � (2c2 + E)SSS

��1
�SLcL
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Kinetic balance

In the nonrelativistic limit c ! 1, the right hand side
vanishes, leaving

�
VLL �ESLL � 1

2
�LS

�
SSS

��1
�SL

	
cL = 0

The kinetic energy is therefore represented by a matrix
product,

T0 = �1

2
�LS

�
SSS

��1
�SL

This is the matrix equivalent of (�:r)(�:r), which is equal
to r2. However, the matrix expression is not equal to the
matrix of r2 unless certain conditions are met.

Writing out the matrix product as

�2T 0�� =
X
��

h�L� j�:rj�S�i [SSS]�1�� h�S� j�:rj�L� i

it is clear that there is a projection operator onto the small
component space between the (�:r) operators. If we choose

�S� = (�:r)�L�

then �SL = SSS and thus �LS = �2T0 = �2T: This
condition, which ensures that the kinetic energy is properly
represented in the NR limit, is known as kinetic balance.
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Lower bound

The second issue is that of a lower bound on the Dirac equa-
tion. If we transform the small component to an orthonormal
basis, and de�ne

P = [SSS ]�1=2�SL; 2T0 = PyP

W = [SSS]�1=2VSS [SSS]�1=2=2c2

the Rayleigh quotient de�ned using the large component
equation is

E =
cLyVLLcL

cLySLLcL
+

1

2

cLyPy[I(1 +E=2c2)�W]�1Pc

cLySLLcL

We are interested in solutions with 0 > E > �2c2, so that
� = 1+E=2c2 > 0. Since W is negative de�nite, the operator
in square brackets is positive. The only non-diagonal matrix
in this operator is W. Now,

[�I�W]�1 = [I�� w]�1 + [W � wI][(I��W)(�I� w)]�1

where w is a number, to be chosen so that W � wI is a
positive de�nite matrix. This will be the case if w is the
largest negative eigenvalue of W. Then the energy satis�es

E >
cLyVLLcL

cLySLLcL
+

1

(�� w)

cLyT0cL

cLySLLcL
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Lower bound

The lower bound therefore depends on the value of � � w.
If this value is large, then the lower bound is the largest
negative eigenvalue of the large component potential. The
bound is therefore not the exact energy, but something more
negative.

But if the virial theorem is approximately satis�ed, then the
value of � � w can be represented as 1 + (�vL � 2vS)=4c2.
Provided �vL � 2vS is not greater than 4c2, this can be
expanded in a series, to give

E >
cLyVLLcL

cLySLLcL
+

cLyT0cL

cLySLLcL

�
1� �vL � 2vS

4c2
� : : :

�

Thus the energy is bounded by a value which is somewhat
smaller than the nonrelativistic energy expression. The �rst
term is O(c�2). It can be shown that with a kinetically
balanced basis, the maximum deviation below the exact
energy is O(c�4).

There is therefore no danger of variational collapse in basis
set DHF calculations. In numerical calculations on atoms,
the variational safety is ensured by application of the bound-
ary conditions at the nuclei and at in�nity.
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Matrix DHF equations

For a many-electron system, we �rst need to reduce the
molecular spinor integrals into 2-component form. Thus, for
the Coulomb interaction, the integrals reduce to

(ijjkl) = (iLjLjkLlL) + (iLjLjkSlS)
+ (iSjS jkLlL) + (iSjS jkSlS)

and for the magnetic interactions,

(i�jjk�l) = (iLjS jkSlL) + (iSjLjkLlS)
� (iLjS jkLlS)� (iSjLjkSlL);

where the combinations of sigma matrices are now implied in
the integrals by the fact that each density connects a large
and a small component function. The negative signs result
from the factors of i.

We de�ne the spinor density matrices by

DLL
�� =

NX
i=1

c
Ly
�i c

L
�i DLS

�� =
NX
i=1

c
Ly
�i c

S
�i

DSL
�� =

NX
i=1

c
Sy
�i c

L
�i DSS

�� =
NX
i=1

c
Sy
�i c

S
�i

Note that DLS
�� = DSLy

�� , so that

D =

�
DLL DLS

DSL DSS

�
is hermitian.
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Matrix DHF equations

The 2-spinor matrix DHF equations including the magnetic
interactions have the following form:

FLL
�� = V LL

�� +
X
��

DLL
��

�
2 (�L�L j�L�L )� (�L�L j�L�L )

� (�L��L j ��L�L )	
+
X
��

DSS
��

�
2 (�L�L j�S�S ) + (�L�S j�S�L )

+ (�L��S j ��S�L )	
FLS
�� = �LS

�� �
X
��

DLS
��

�
(�L�S j�L�S ) + (�L��L j ��S�S )	

�
X
��

DSL
��

�
(�L�L j�S�S ) + (�L��S j ��L�S )	

FSS
�� = V SS

�� +
X
��

DLL
��

�
2 (�S�S j�L�L ) + (�S�L j�L�S )

+ (�S��L j ��L�S )	
+
X
��

DSS
��

�
2 (�S�S j�S�S )� (�S�S j�S�S )

� (�S��S j ��S�S )	
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Basis set size

At this point, is is worth considering some of the practical re-
quirements of the solution of the DHF equations as compared
to the nonrelativistic HF equations. The critical issue is the
number of two-electron integrals. The following observations
can be made.

� The spin can be factored out of the NR integrals, but
in the R integrals, the spin is coupled in. Therefore one
expects a factor of 2 increase for each basis function.

� The integrals and the basis is complex, so there is a factor
of 2 increase for the complex integral values and 2 for the
loss of one degree of permutational symmetry.

� The small component basis is the same size as the large
component basis, giving a factor of 2 increase for each
basis function.

The net result is that there would be an increase of a factor
of 1024 more integrals in a DHF calculation than in a NRHF
calculation. However:

� Time-reversal symmetry reduces the integral number by a
factor of 4.

� Integrals with an odd number of large and small compo-
nents never appear, giving a factor of 2 reduction.

� If only the Coulomb interaction is used, there is another
factor of 2 reduction

Thus, for a Dirac-Coulomb SCF calculation there are 64
times as many integrals as in a NR SCF calculation.
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Scalar basis sets

Since the available integral codes almost invariably work
in a basis set of real spherical or Cartesian Gaussians, it
is of value to decompose the 2-spinors into their scalar
components and to represent the DHF equations in the scalar
basis.

We start with the de�nition of the atomic jj-coupled 2-
spinors,

�An�m = Rn�(r) ��;m(�; �)

=
Rn�(r)p
(2`+ 1)

0
B@ a

q
(`+ma+ 1

2
)Y`m�1=2(�; �)q

(`�ma+ 1
2
)Y`m+1=2(�; �)

1
CA :

where a = (�1)`�j+1=2 = ��=j�j. Operating on the atomic
2-spinor with the time-reversal operator produces the spinor
with opposite m value:

K̂�An�m = (�1)`�j+m�An��m:
The 2-spinor basis is chosen to incorporate the phase factor
for the time-reversed spinor,

��LAn�m = (�1)`�j+m�LAn��m;
��SAn�m = (�1)`�j+m+1�SAn��m;

where m > 0. The sign for the small component comes
from the factor of i. This de�nes the phases for the 2-spinor
basis.
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Scalar basis sets

We now consider a more general expansion of the 2-spinor
functions. First, the 2-spinor functions are expressed in terms
of complex scalar functions and spin functions

�X� =

�
�X��
�X��

�
� �X��

�
1

0

�
+�X��

�
0

1

�
=
X
�

�X�� �(�); X = L; S:

The complex scalar functions are further reduced to real
functions:

�X�� = �XR
�� + i�XI

�� �
X
C=0;1

iC�XC
�� ; � = �; �;

where C = 0 and 1 correspond to labels R and I. The real
functions are expressed in terms of spherical harmonic or
Cartesian Gaussian functions �Xa :

�XC
�� =

X
a

T �XC
a� �Xa ; C = R; I;

so that �nally, the 2-spinors may be written in terms of
Gaussian basis functions as

�X� =
X
�Ca

iC T �XC
a� �Xa �(�); X = L; S:
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Scalar basis sets

We may make the following observations about the basis
de�nition.

� The superscript X attached to the scalar basis functions
indicates that in general di�erent scalar functions will
be used for large and small components and the basis
function is indexed accordingly.

� The sum over a is usually limited to a few terms. For real
spherical Gaussians, there is only one term except for the
positive kappa small component spinors which consist of
two terms.

� The coe�cients T �XC
a� include coupling coe�cients and

normalization factors.

� Each real function �a contributes to either the real or the
imaginary part of a spinor, not to both: the sum over C
and a is actually only a single sum, since C is determined
by the properties of �a.
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Integrals in scalar basis

For one-electron operators, the 2-spinor and scalar matrix
elements are

AXY
�� =

X
��

X
CD

X
ab

i (D�C) T �XC
a� T �YDb� AXY ��

ab ; X; Y = L; S:

The expression for two-electron matrix elements follows
by extension. The scalar matrix elements may be real or
complex, but the e�ect of time-reversal goes beyond simple
conjugation because of the implicit spin-dependence and the
component type. By applying K̂ to the above expression, the
following results:

K̂AXY ��
ab = (AXY ��

ab )� = (�1)X+Y+�+�+1AXY����
ab

The one-electron matrix elements from the Dirac operators
are

V XY ��
ab = ����XY h aX jV nuc j bX i;

SXY ��
ab = ����XY h aX j bX i;

�XY ��
ab = (1� �XY )h aX j 2� @

@z
j bY i;

�XY ��
ab = (1� �XY )h aX j @

@x
+ 2� i

@

@y
j bY i:
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Integrals in scalar basis

No comment need be made on the Coulomb integrals but the
reduction of the magnetic integrals to the scalar basis is not
as straightforward. Inserting the spin matrices, we may write
for the Gaunt interaction

(�L��S j�L��S ) = 2
�
(�L��

S
� j�L��S� ) + (�L��

S
� j�L��S� )

�
+
X
�;�

(�1)�+�+1(�L� �S� j�L� �S� )

The remainder of the reduction follows from this. For the
Breit interaction, the form of the integrals needs also to be
considered, because of the structure of the operator. These
will be considerably more complicated in the scalar basis.

For the SCF equations in the scalar basis, we also need the
scalar density matrices,

DXY ��
cd =

X
CD

X
��

iD�C T �XC
c� DXY

�� T �Y Dd�

DXY ��
�c �d

=
X
CD

X
��

iD�C T �XC
c�� DXY

����
T �Y D
d��

;

DXY ��
cd = DXY ��

cd +DXY ��
�c �d

:

These have the same relations under time-reversal as the
matrix elements.
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Scalar Fock matrix

The (Coulomb) Fock matrix elements in the scalar basis are

FXX��
ab = V XX��

ab � 2c2�XSS
XX��
ab

+
X
cd;Y

( aXbX j cY dY )
�
DY Y ��
cd +D

Y Y ��
cd

�

�
X
cd

( aXdX j cXbX )DXX��
cd

FXX��
ab = �

X
cd

( aXdX j cXbX )DXX��
cd :

FLS��
ab = (2�) c���

ab �
X
cd

( aLdL j cSbS )DSL��
cd

FLS��
ab = c���

ab �
X
cd

( aLdL j cSbS )DSL��
cd

Addition of the magnetic integrals is a little more compli-
cated, and does not lead to expressions which are as symmet-
ric as are seen in the 2-spinor basis, but in general, though,
the construction of the Fock matrix may be performed e�-
ciently in either the scalar or the 2-spinor basis.
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Scalar vs. 2-spinor basis.

The question of whether to work in the 2-spinor or in the
scalar basis involves several considerations:

� The length of the scalar basis, and therefore the number
of integrals in the scalar basis

� Whether to use an uncontracted or contracted basis, and
what to do with the spin-orbit splitting in a contracted
basis.

� The scheme used to implement symmetry | the
Dacre/Elder scheme with a petite list of integrals, or the
use of a symmetry-adapted basis.

� Whether to use a direct or a conventional SCF scheme.

� Whether to construct supermatrices or work from ordered
integrals.
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Scalar basis sets

The �rst of these considerations is the length of the scalar
basis set. We have already seen that in a 2-spinor (primi-
tive) basis, there are 64 times as many integrals as in a non-
relativistic calculation. The large component scalar basis is
clearly the same as the NR basis. It is the small component
basis size which must be determined.

� Using the principle of kinetic balance to determine the
small component basis, it can be seen that the small
component basis must contain the derivatives of the large
component basis.

� This means that there are roughly 2.5 times as many
functions in the small component basis.

� The number of (LLjSS) integrals is then 13 times the
number of NR integrals.

� The number of (SSjSS) integrals is then 39 times the
number of NR integrals.

� The total increase for a Dirac-Coulomb calculation over a
NR calculation is a factor of 53 in the scalar basis.

Thus the scalar basis involves fewer integrals than the 2-
spinor basis, and therefore less work in the Fock matrix
construction. This applies to an uncontracted basis set.
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Scalar basis sets

In a contracted basis set, the core spin-orbit splitting must
be accounted for, and the calculations become a little more
di�cult to do directly.

� The worst case for basis set size would be an ANO-type
basis set, where all functions are contracted. Then the
large component basis set would double in size, apart from
the s functions.

� Allowing for a 40% increase in the basis size, the (LLjLL)
set would increase by a factor of 4 and the (LLjSS) set by
a factor of 2, giving 4 + 25 + 39 = 68 as the overall factor,
which is a little more than for the 2-spinor basis.

Thus, the scalar and 2-spinor integral sets come out approxi-
mately the same length in a contracted basis.

There is one further point to be made about the small com-
ponent basis. It was assumed that the derivative functions
would be stored separately. However, for the functions be-
longing to the � > 0 spinors, it would be possible to combine
the two constituents, which have n = `+1 and n = `+3, into
a single function, and thereby reduce the size of the small
component basis. This combination is called minimal or re-
stricted kinetic balance. In some codes, the transformation to
the spinor basis retains both constitutents as separate func-
tions, giving extended or unrestricted kinetic balance.
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Scalar basis sets

Before leaving the topic of basis sets, the question of whether
nonrelativistic basis sets can be carried over to relativistic
calculations should be addressed, in the context of the more
general issue of basis set design.

A balanced basis set is one which as far as possible

� has the same number of primitive functions to represent
each maximum in each atomic function, especially the
outermost maximum, and

� the energy change on addition of a function in any angular
symmetry is the same for all symmetries.

For a relativistic basis, one must decide whether the angular
symmetry is the nonrelativistic symmetry or the relativistic
symmetry.

If a nonrelativistic (primitive) basis set is used in a relativis-
tic calculation without modi�cation, for light elements it per-
forms well but for heavy elements there are serious de�cien-
cies in the core region. The main de�ciencies are in the p1=2
space, due to the s character of the small component. Addi-
tion of at least two extra functions is needed for the 6p block
to reduce this de�ciency to less than 0.5 Eh. These functions
are not needed for the p3=2. It has been found that a bal-
anced basis set for Rn requires as many functions for the p1=2
as for the s space | thus the core is in the relativistic ex-
treme where the good quantum number is j, not `.
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Group theory

The use of symmetry is a powerful means of reducing the
amount of work in a calculation. The symmetry operations
| rotations, re
ections and inversions |which transform
a molecule into an identical structure form a group. The
concepts of group theory are very brie
y summarized here.

� A group consists of a set of elements which may be com-
bined by an operation, denoted multiplication, 
.

� A group is closed under multiplication, i.e. each product
of elements is also an element of the group.

� The elements obey the distributive and associative laws,
i.e. a(b+ c) = ab+ ac and a(bc) = (ab)c.

� The elements however do not obey the commutative law,
ab = ba; if they do the group is called Abelian.

� Each group has an identity element, and each element has
an inverse. This de�nes an abstract group. There are
many realizations of each group, but an important one is
in terms of a set of matrices.

� The matrix representation of the elements of a group
may in general be reduced to block diagonal form. This
is called the irreducible representation, or irrep.

� The trace of the irreducible matrix is called the character
of the irrep.
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Rotation of atomic functions

Since re
ection is a combination of a rotation and an inver-
sion, we consider �rst the rotation of atomic functions as a
precursor to the consideration of molecular rotations and
other operations. An atomic function of a particular angu-
lar momentum is transformed into a linear combination of
functions of the same angular momentum by a �nite rotation

�jm(R) =
X
n

Dj
mn(R)

� �jn

where R = (�; �; 
) is the set of Euler angles de�ning the
rotation. The rotation matrices Dj

mn(R) are given by

Dj
mn(R) = e�i(�m+
n)djmn(�)

where the reduced matrices djmn(�) are real and are functions
of cos�=2 and sin�=2. In particular,

djmn(�) = (�1)j+m�m;�n; djmn(2�) = (�1)2j�m;n:
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Double groups

If the function has integer angular momentum, a rotation
of 2� in any direction returns the function to its original
state. If the function has half-integer angular momentum,
a rotation of 2� in any direction returns the function to its
original state but with a change of sign. Therefore,

� For bosons, the unit operation is a rotation by 2�.

� For fermions, the unit operation is not a rotation by 2�
but a rotation by 4�.

The implications of this for molecular point groups are

� The operation of rotation by 2�, given the label �E, must
be added to the group.

� This doubles the order of the group - hence the name
double groups.

� The extra irreps in the group are the ones that describe
fermions | the original irreps are for bosons. The irreps
will therefore be called boson and fermion irreps.
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Fermion irreps

Though �E is not the time-reversal operator, there is a con-
nection with time reversal in the double groups. The fermion
functions must be doubly-degenerate, and each member of
the Kramers pair must belong to one of the fermion irreps.
We may divide the fermion irreps into three classes for the
simpler groups, according to the distribution of the members
of the Kramers pairs.

Real irreps

� A Kramers pair belongs to a doubly degenerate irrep.
Spinor p belongs to one row and its time-reversed partner,
�p, belongs to the other row.

� Spinor matrix elements are real, hence the name.

� One-electron matrices are block-diagonal in the Kramers
components.

Complex irreps

� The members of a Kramers pair belong to di�erent,
singly degenerate irreps, which together form a doubly
degenerate rep.

� Spinor matrix elements are complex, hence the name.

� One-electron matrices are block-diagonal in the Kramers
components.

Note: This is not the usual group-theoretical designation,
and a more proper name for the \real" irreps would be real-
matrix irreps.
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Fermion irreps

Quaternionic irreps

� The members of a Kramers pair belong to the same irrep
which is singly degenerate.

� Spinor matrix elements are complex

� One-electron matrices are not block-diagonal in the
Kramers components.

However, it is possible to make the one-electron matrix
elements diagonal by a quaternionic transformation, provided
that the operator is symmetric under time-reversal.

Quaternions form a Cli�ord algebra, which consists of the
real unit (i.e. 1) and a series of units whose square is �1.
A quaternionic number is given in terms of two complex
numbers a and b by

q = a+ bj = Rea+ i Ima+ jRe b+ k Im b;

where

i2 = j2 = k2 = �1; ij = k; jk = i; ki = j:

The quaternion units anticommute. The quaternionic conju-
gate of q is

q� = a� � bj = Rea� i Ima� jRe b� k Im b:

Because the units do not commute, quaternionic numbers do
not commute under multiplication: q1q2 6= q2q1.
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Fermion irreps

The matrix of an operator F̂ in a Kramers basis can be
represented as

F =

�
A B

�tB� tA�

�

where Apq = Fpq and Bpq = Fp�q. The quaternionic
transformation which diagonalizes this operator is

U =
1p
2

�
I jI

jI I

�

giving the result

UyFU =

�
A +Bj 0

0 A� �B�j
�
=

�
G 0

0 �kGk
�
:

G is a quaternionic Hermitian matrix, and the eigenvalues of
F are clearly doubly degenerate. Thus, we may restate the
features of quaternionic irreps:

� The members of a Kramers pair belong to the same irrep
which is singly degenerate.

� One-electron matrices may be block-diagonalized into new
Kramers components by a quaternionic transformation.

� Spinor matrix elements are quaternionic.
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More on quaternions

It may be thought that quaternions could be used in the �eld
operators to de�ne a new basis in which all matrices were
block-diagonal in the Kramers pairs. However, because of
the non-commutative algebra, the step in which the creation
operator is permuted over the matrix element to separate
the two does not produce the desired result. Therefore,
quaternions will be used only at the matrix algebra stage,
and not in the formalism.

An important realization of quaternions is to be found in
the Pauli matrices. The set of matrices fI2; i�z; i�y; i�xg is
isomorphic to the set of quaternion units, f1; i; j; kg. This
will be used later in the construction of symmetry spinors.
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Fermion irreps

For the binary groups, D2h and subgroups, whose operations
are all two-fold, the extra irreps all fall into one of the three
categories above.

� The groups D2h, D2 and C2v whose fermion irreps are all
real will be called real groups.

� The groups C2h, C2 and Cs whose fermion irreps are all
complex will be called complex groups.

� The groups Ci and C1 whose fermion irreps are all quater-
nionic will be called quaternionic groups.

Among the higher groups, many have fermion irreps which
fall into these categories. C4v, for example, has two real
fermion irreps, C3v has one real and one complex fermion
irrep. Others have irreps which display higher degeneracies,
and these fall into two categories:

� Genuine 2m-fold degenerate irreps, where the members
of Kramers pairs can be assigned to di�erent rows. An
example is Td, which has two real irreps of degeneracy 2
and one of degeneracy 4.

� 2m-fold degenerate irreps which occur in conjugate pairs,
so that the pair together forms a rep. The members of a
Kramers pair belong to the di�erent irreps. An example is
T , which has 6 fermion irreps, 2 doubly degenerate irreps
which together form a rep, and 4 singly degenerate irreps
which form 2 reps.
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Group chains

In order to classify the irreps of the higher groups | and also
to gain insight into the properties of the lower groups | it is
useful to make use of a group chain.

� The higher group is decomposed into a product of two
groups, one of which is of order 2.

� A correspondence is set up between the fermion irreps in
the higher group and the lower group

� This is used to de�ne the rows of the irreps in the higher
group.

� It is particularly useful to make this de�nition so that real
irreps reduce to complex irreps, where the rows and the
multiplication table is well-de�ned.

A simple example of this is the decomposition C2v = C2 
Cs.
The reduction C2v ! C2 gives the correspondence A1; A2 !
A, B1; B2 ! B for the boson irreps, and (0E;00E)! (E; �E) for
the fermion irreps, where the primes indicate the rows of the
irrep in C2v and the bar indicates the conjugate irrep in C2.
A more extensive example is the reduction Td ! T , which
follows the same pattern.
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Spin-orbitals and spinors

The spin functions � and � must transform according to the
fermion irreps, and the spatial functions according to the
boson irreps. Therefore we ought to be able to classify the
real and imaginary, alpha and beta components of a spinor in
terms of the boson irreps.

We consider the simplest case where we have a clear division
of the spin functions, and that is the group C2, for which the
multiplication table is given, and take � in E and � in �E.

� Since A 
 E = E and B 
 �E = E, a 2-spinor belonging
to E must have functions of A symmetry for � spin and B
symmetry for � spin.

� Similarly, since A 
 �E = �E and B 
 E = �E, a 2-spinor
belonging to �E must have functions of B symmetry for �
spin and A symmetry for � spin.

For a larger group such as C2v, the group chain to C2 gives
some information, but the division between A1 and A2, and
B1 and B2, needs further input. We therefore need a more
general approach.
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Multiplication table for C2
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Symmetry of spinor components

The symmetry of the small components is related to the
symmetry of the large components by the operator

Ĝ = i� � �r � i� � �
r
=

�
[0;�z] [�y;�x]
[�y;�x] [0;�z]

�

where �r = (�x;�y;�z), and the characters in parentheses are
the characters of the real and imaginary parts. Applying this
to a totally symmetric large-component alpha spin-orbital, we
have

Ĝ
�
[�0; 0]
[0; 0]

�
=

�
[0;�z]
[�y;�x]

�

This is not the most general form, but then neither is the
large component. Applying the operator to this small com-
ponent symmetry spinor, we should get the large component
again:

Ĝ
�

[0;�z]
[�y;�x]

�
=

�
[�2

r
;�x 
 �y]

[�x 
 �z;�y 
 �z]

�
=

�
[�0;�Rz

]
[�Ry

;�Rx
]

�

This is now the most general form of a large component
spinor in terms of symmetry types. The most general form
for the small component results from another application of
the operator:

Ĝ
�

[�0;�Rz
]

[�Ry
;�Rx

]

�
=

�
[�xyz;�z]
[�y;�x]

�
= �xyz

�
[�0;�Rz

]
[�Ry

;�Rx
]

�
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Symmetry of spinor components

The basic structure of the spinors is established, and to
generate all possible spinors, these spinor symmetry vectors
can be multiplied by any of the characters of the boson irreps
of the group. However, it should also be noted that time-
reversal symmetry will invert the vectors,

K̂
�

[�0;�Rz
]

[�Ry
;�Rx

]

�
=

�
[�Ry

;�Rx
]

[�0;�Rz
]

�
;

and therefore it is not necessary to work through all boson ir-
reps to obtain all fermion symmetry functions, but only those
for operations which commute with the Dirac Hamiltonian
(when presented in proper form). For D2h and subgroups, it
is only necessary to consider �0 and �xyz.

The basic spinor symmetry vectors for D2h and subgroups
are

C2v :

�
[A1; A2]
[B1; B2]

�
D2 :

�
[A;B1]
[B2; B3]

�

C2 :

�
A

B

�
Cs :

�
A0

A00

�

C1 :

�
A

A

�

from which the Kramers partner symmetries may be obtained
using the above expression, and the symmetries for the
groups with inversion by applying the character for the
inversion operation.
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Symmetries of 2-particle states

Having considered the symmetry of the spinors, we now
consider the symmetries of 2-particle states. These must of
course transform as the boson irreps. We expect that the
product of a spinor and its Kramers partner should give the
totally symmetric irrep, because it represents a closed shell.
From the example of C2, we see that indeed E 
 �E = A,
and also that E 
 E = �E 
 �E = B. Thus for the simple
two-fold groups where the irreps are all singly degenerate, the
symmetries of the 2-particle states are easily determined from
the multiplication table.

To proceed further, we may take the direct product of the
symmetry spinors to form symmetry bisinors. Thus for two
spinors from the same row,

�
[�0;�Rz

]
[�Ry

;�Rx
]

�


�

[�0;�Rz
]

[�Ry
;�Rx

]

�
=

�
[�0;�Rz

] [�Ry
;�Rx

]
[�Ry

;�Rx
] [�0;�Rz

]

�
;

and for two spinors from di�erent rows,

�
[�0;�Rz

]
[�Ry

;�Rx
]

�


�
[�Ry

;�Rx
]

[�0;�Rz
]

�
=

�
[�Ry

;�Rx
] [�0;�Rz

]
[�0;�Rz

] [�Ry
;�Rx

]

�
;

where the rows and columns of the bispinor are labelled with
� and �.
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Symmetries of 2-particle states

To obtain the bispinor symmetry we must also consider the
products of spin functions, which transform like components
of spherical tensors of rank 0 and 1:

�
�� � �� �� + ��

��� �� ��+ ��

�
�
�

[�0; 0] [�Rz
; 0]

[0;�Ry
] [�Rx

; 0]

�

To form these spin functions, we take linear combinations of
the bispinor and its time-reversed partner, which also have
the same symmetry structure. Then we have four cases:

ee0 + �e�e0 :

�
[�Ry

; 0]
 [�0; 0] [0;�Rx
]
 [�Rz

; 0]
[�0; 0]
 [0;�Ry

] [0;�Rz
]
 [�Rx

; 0]

�

ee0 � �e�e0 :

�
[0;�Rx

]
 [�0; 0] [�Ry
; 0]
 [�Rz

; 0]
[0;�Rz

]
 [0;�Ry
] [�0; 0]
 [�Rx

; 0]

�

e�e0 + �ee0 :

�
[0;�Rz

]
 [�0; 0] [�0; 0]
 [�Rz
; 0]

[0;�Rx
]
 [0;�Ry

] [�Ry
; 0]
 [�Rx

; 0]

�

e�e0 � �ee0 :

�
[�0; 0]
 [�0; 0] [0;�Rz

]
 [�Rz
; 0]

[�Ry
; 0]
 [0;�Ry

] [0;�Rx
]
 [�Rx

; 0]

�
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Symmetries of 2-particle states

The four functions clearly transform as

ee0 + �e�e0 � �Ry

i(ee0 � �e�e0) � �Rx

i(e�e0 + �ee0) � �Rz

e�e0 � �ee0 � �0:

They are in fact examples of the real N -particle basis intro-
duced earlier. To obtain other symmetries, where there are
other symmetry operators which commute with the Dirac
Hamiltonian, this result is simply multiplied by the character
factors in front of the symmetry spinors.

The spin functions, which are symmetric under time-reversal,
are

S0 = �� � ��

S1z = i(�� + ��)

S1y = i(��� ��)
S1x = �� + ��
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Matrix elements and symmetry

Having discussed the symmetry of the spinors and products
of spinors, we are now in a position to discuss the symmetries
of the one- and two-electron integrals. In nonrelativistic
programs, the MO integrals are often divided into symmetry
classes for convenient handling of symmetry. We restrict the
discussion here to the binary groups.

The nonrelativistic case is relatively straighforward because
the integrals are real. The one-electron integrals fpq must
have both p and q belonging to the same irrep because the
integral itself must belong to the totally symmetric irrep.
The two electron integrals fall into one of four symmetry
classes, (II jII), (II jJJ), (IJ jJI) and (IJ jKL). In the last
class, not all combinations will give the totally symmetric
irrep, so this class is restricted to only those combinations
which do. Note that the product of boson irreps II belongs
to the totally symmetric irrep, and that the product IJ must
belong to another irrep.
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One-electron matrix elements

The KR relativistic case is a little more complicated. First,
note that if the ket in an integral transforms as one row of
the (ir)rep, the bra must transform as the opposite row.
Thus for the one-electron integrals, p and q must belong
to the same row of the same irrep. (A reference to the C2

multiplication table will establish this point.) The symmetry
reduction for the one-electron integrals results from the
following considerations

� For the quaternionic groups, both fpq and fp�q are non-zero
and complex.

� For the complex groups, the second of these is zero, giving
a reduction of a factor of 2.

� For the real groups, the �rst matrix element is also real,
giving another factor of 2.

� The remaining symmetry reductions arise from the re-
maining symmetry operations, such as inversion, which
provide good fermion quantum numbers.

The same arguments may be applied to the two-electron in-
tegrals. Thus the implementation of time-reversal symmetry
on the integrals is equivalent to the implementation of some
elements of boson symmetry.
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Two-electron matrix elements

For the two-electron integrals it is useful again to consider
the groups separately.

For the quaternionic groups, the only symmetry operations
which give a reduction may be treated in exactly the same
way as for the NR case.

For the complex groups,

� The products of fermion irreps e�e and �e��e belong to the
totally symmetric irrep, and the products e��e and �e�e
belong to another irrep.

� Therefore the integrals (pqjrs) belong to the class (IIjII).
The integrals (pqj�r�s) belong to the class (IIjJJ), but since
they are equivalent to the (pqjrs) integrals, the distinction
is not important.

� The integrals (p�qj�rs) and (p�qjr�s) both belong to the class
(IJ jIJ) if p and r belong to the same irrep, otherwise they
belong to the class (IJ jKL).

Thus the classi�cation according to time-reversal symmetry
into (IIjII) and (I �IjI �I) is equivalent to a symmetry classi�-
cation.

For the real groups, it is necessary to take linear combina-
tions of the products of fermion irreps to form the boson
irreps, but in the end the conclusion is the same as for the
complex groups.
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LCAS diatomic molecular spinors

Having considered the general aspects of symmetry, we
now turn to some speci�c examples which give insight into
relativistic e�ects on bonding. First, we consider the simple
linear combination of atomic spinors (LCAS) in diatomic
molecules.

The simplest combinations are those between spinors with
j = mj. Half-integral subscripts here refer to mj , not j, and
the bar will represent the j = `� 1=2 spin-orbit component.

s1=2 � s1=2 =

0
@ s

0

1
A�

0
@ s

0

1
A!

0
@ s�

0

1
A ;

0
@ s��

0

1
A

p3=2 � p3=2 =
0
@ p1

0

1
A�

0
@ p1

0

1
A!

0
@ p��

0

1
A ;

0
@ p�

0

1
A

d5=2 � d5=2 =

0
@ d2

0

1
A�

0
@ d2

0

1
A!

0
@ d�

0

1
A ;

0
@ d��

0

1
A

and so on. These therefore give the pure bonding and anti-
bonding diatomic MSs.
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LCAS diatomic molecular spinors

The next example is the set of spinors with ! � mj =
1
2
for

the p shell.

�e+
1=2

= �p1=2 + �p1=2 =

0
@ �p0
p
2p1

1
A+

0
@ �p0
p
2p1

1
A!

0
@�p��
p
2p�

1
A

e+
1=2

= p1=2 + p1=2 =

0
@
p
2p0

p1

1
A+

0
@
p
2p0

p1

1
A!

0
@
p
2p��

p�

1
A

Since these two have the same !, we may take a linear
combination of them, e.g. to get pure spin spinors:

p
2

0
@�p��
p
2p�

1
A+

0
@
p
2p��

p�

1
A!

0
@ 0

p�

1
A

�
0
@�p��
p
2p�

1
A+

p
2

0
@
p
2p��

p�

1
A!

0
@ p��

0

1
A

The negative combination gives the same results with bond-
ing and antibonding character reversed. Note that for
homonuclear diatomics, these are the only allowed combi-
nations, giving spinors of g and u symmetry: e+

1=2
� e1=2g,

e�
1=2

� e1=2u.
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LCAS diatomic molecular spinors

For heteronuclear diatomics, we may take the combinations

�p1=2 + p1=2 =

0
@ �p0
p
2p1

1
A+

0
@
p
2p0

p1

1
A!

0
@�p�

p�

1
A

This spinor is not symmetric: the � part is skewed towards
one atom, and the � towards the other. Both components are
bonding, in contrast to the previous cases. The combination
with the functions on the opposite centres gives

p1=2 + �p1=2 =

0
@
p
2p0

p1

1
A+

0
@ �p0
p
2p1

1
A!

0
@ p�

p�

1
A

Note the change of sign for the ms = 1=2 component. Linear
combinations of these will return pure-spin spinors as before.

Combinations such as these will be favoured for the early p-
block heavy elements such as Tl and Pb where the spin-orbit
splitting is large and there is an energetic cost to promote
from �p to p.
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LCAS diatomic molecular spinors

The next example is of s-p bonding. The spinors, which have
! = 1=2, are

s1=2 + �p1=2 =

0
@ s

0

1
A+

0
@ �p0
p
2p1

1
A!

0
@ sp�

np

1
A

s1=2 � p1=2 =

0
@ s

0

1
A�

0
@
p
2p0

p1

1
A!

0
@ sp�

�np

1
A

We may also take linear combinations of these two. Here,
lone-pair character is introduced; the amount depends on the
amount of �p1=2 and p1=2 mixing in the MS.
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LCAS diatomic molecular spinors

We may summarize the e�ects of relativity on bonding for s
and p shells as follows:

� In the NR limit, pure spin and pure bonding type are
returned.

� s� bonds retain pure spin type. They are stronger and
shorter due to the s-orbital contraction e�ect.

� p�� character is introduced into p� bonds (and p�� into
p�), making for weaker bonds. This is especially true in
the homonuclear diatomics.

� The degree of mixing of opposite bonding character is a
function of the spin-orbit splitting of the p shell.

� Strong bonds are retained where a �p1=2 spinor can com-
bine with a p1=2 spinor: here p� and p� character are
mixed. This can be the case for heteronuclear diatomics.

� sp� bonds are slightly weaker due to mixing of lone-pair
character from the atom contributing the p orbital.
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LCAS diatomic molecular spinors

As an example of the p-block bonding, we examine the dis-
sociation energies in eV for homonuclear group 13 diatomics
and the heteronuclear group 13 { group 15 diatomics.

Dimer D0 D0 � 1:5 Dimer D0

Al2 1.55 2.32 AlP 2.20

Ga2 1.40 2.10 GaAs 2.18

In2 1.01 1.51 InSb 1.54

Tl2 �0.1 �0.15 TlBi 1.21

In the relativistic limit:

� Group 13 has a single �p electron outside a closed s shell.

� Group 15 has a single p electron outside a closed �p shell.

� 13-13 bonds approach the weaker �p� �p bonding limit.

� 13-15 bonds approach the stronger �p� p bonding limit.
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LCAS diatomic molecular spinors

Extending these ideas to higher angular momenta, we �nd
that combining p- and d-type spinors with opposite sign of �
gives totally bonding or antibonding results:

p1=2 � �d1=2 =

0
@
p
2p0

p1

1
A�

0
@�

p
2d0

p
3d1

1
A!

0
@ pd�

pd�

1
A

d1=2 � �p1=2 =

0
@
p
3d0

p
2d1

1
A�

0
@ �p0
p
2p1

1
A!

0
@ pd�

�pd�

1
A

while combining p- and d-type spinors with the same sign of
� gives mixed bonding and antibonding character:

p1=2 + d1=2 =

0
@
p
2p0

p1

1
A+

0
@
p
3d0

p
2d1

1
A!

0
@ pd�

pd��

1
A

�p1=2 + �d1=2 =

0
@�

p
2d0

p
3d1

1
A+

0
@ �p0
p
2p1

1
A!

0
@�pd�
pd��

1
A
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LCAS diatomic molecular spinors

In summary, the e�ects of relativity on bonding in diatomics
are:

� Normal strong bonds where contributing spinors are of
opposite sign of � or are of pure spin type.

� Weaker bonds where contributing spinors are of the same

sign of � or where a pure-spin and mixed-spin spinor
combine.

� Mixing of di�erent simple LCAS spinors occurs due to
(double group) symmetry.

� The degree of mixing is a function of the spin-orbit
splitting of the shells involved.

Extension to linear polyatomics shows that the strong bond-
ing combinations occur for alternating signs of � as one
moves along the molecule.
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Examples of relativistic bonding

Two good examples of relativistic e�ect on bonding are PbO
and PbO2. The valence atomic orbitals are 6s and 6p on Pb,
2p on O. Mulliken populations are given on the next page.

� PbO has the valence electron con�guration �2�2�4 or
e2
1=2e

2
1=2e

2
1=2e

2
3=2.

� The lowest � orbital is Pb 6s { O 2p. Since the spin-
orbit splitting on O is not large, this is a strong bonding
orbital.

� The highest two e1=2 spinors display �p1=2 + p1=2 bonding.
The spin purity is 56.8% � spin for 25e1=2, 53.8% � spin
for 26e1=2.

� PbO2 has the valence electron con�guration �2g�
4
u�

2
u�

4
g or

e2
1=2ge

2
1=2ue

2
3=2ue

2
3=2ge

2
1=2ge

2
1=2u.

� e1=2g spinors retain spin purity. e1=2u spinors mix, due to
proximity; these are mostly O spinors.

� The spinors are not as close to totally bonding as for
PbO, but the 14e1=2u shows some tendency to the strong
bonding combination with p on O and �p on Pb.

� The spin purity is 96.5% � spin for 13e1=2u, 94.9% � spin
for 14e1=2u.
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Example of p-block bonding.

Mulliken gross populations of PbO and PbO2 at re.

Pb O

�p1=2 p1=2 �p1=2 p1=2

PbO
25e1=2 0.00 0.25 1.45 0.01
26e1=2 0.72 0.03 0.04 1.04

PbO2

13e1=2u 0.13 0.11 1.46 0.30
14e1=2u 0.34 0.13 0.30 1.13
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Correlation methods

It is apparent from a moment's consideration that, when
it comes to electron correlation, there is in principle no
reason why nonrelativistic methods based on spin-orbitals
should not be transferred directly to the relativistic case.
The Hamiltonian expressed in terms of spinors (not Kramers
pairs) has an identical representation in second quantization.
Provided the following two considerations are taken into
account, the methods are transferable.

� The relativistic Hamiltonian is projected onto the positive
energy space. That is, we work within a no-pair approxi-
mation.

� Account is taken of the fact that the integrals are complex
and the permutational symmetry is thereby reduced.

For states that are well-described by a single closed-shell
determinant, the usual single-reference methods may be
employed. We consider the MP2 method and the CCSD
method, and give some notes on the Kramers-restricted
theory.
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Kramers-retricted MP2

The expression for the second-order energy in spinor form is

E(2) =
1

4

2noX
I;J

2nvX
A;B

��hIJ jjABi��2
�I + �J � �A � �B

where the � are eigenvalues of the Fock matrix, and hIJ jjABi
are the antisymmetrized two-electron integrals in Dirac
notation, expressed in terms of integrals in Mulliken notation
as

hIJ jjABi = (IAjJB)� (IBjJA):
Upper case is used for general spinor indices, and lower case
will be used for Kramers pair indices. Occupied indices will
be selected from I, J , K, etc. and virtual indices from A, B,
C, etc. The Kramers-restricted zeroth-order Hamiltonian is

Ĥ0 =
nX

p=1

n̂p�p;

where n = no + nv is the number of Kramers pairs, and the
number operator is

n̂p = ap
yap + a�p

ya�p:
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Kramers-retricted MP2

The implementation of Kramers restriction in the second-
order energy follows directly from the expansion of the
integrals. Some care must be taken with this because of the
antisymmetry:

hijjjabi = (iajjb)� (ibjja)
hi�|jja�bi = (iaj�|�b)� (i�bj�|a)
h�{jjj�abi = (�{�ajjb)� (�{bjj�a) = ha�bjji�|i
h�{�|jj�a�bi = (�{�aj�|�b)� (�{�bj�|�a) = habjjiji

The Kramers-restricted expression is

E(2) =
1

2

noX
i;j

nvX
a;b

��hijjjabi��2 + 2
��hi�|jja�bi��2 + ��hijjj�a�bi��2

�i + �j � �a � �b

+
noX
i;j

nvX
a;b

��hi�|jjabi��2 + ��hijjja�bi��2
�i + �j � �a � �b

This is not quite a reduction of a factor of 4 which would
be expected on the basis of the reduction in the number of
integrals. There are however some connections between the
integrals which might be exploited, but the integrals would
have to be broken down into pieces which display the full
permutational symmetry.
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Kramers-retricted CCSD

The wave function in the coupled-cluster method is derived
by operating with a wave operator in exponential form on the
reference function,

	 = eT̂ 	0

where the operator T̂ is a sum of products of excitation
operators and amplitudes,

T̂ = T̂1 + T̂2 + T̂3 + : : :

= TAI ÊA
I + TABIJ ÊAB

IJ + TABCIJK ÊABC
IJK +

The Einstein summation convention has been employed here.
The excitation operators are given by

ÊA
I = aA

y aI ; ÊAB
IJ = aA

y aB
y aJ aI ; : : : :

The CCSD method truncates the expansion of T̂ after the
double excitation term. The t2 amplitudes obey the relations

TABIJ = �TABJI = �TBAIJ = TBAJI ;

i.e. are antisymmetric to index interchange.
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Kramers-retricted CCSD

Since the reference is a closed-shell determinant, it is sym-
metric under time-reversal. We require that the CC wave
function is also symmetric under time-reversal, i.e.

K̂	 = K̂ eT̂ 	0 = 	 = eT̂ K̂	0:

Thus K̂ commutes with the wave operator, which must be
symmetric under time-reversal. Application to the T̂1 term
gives

K̂ T̂1 = K̂ �tai êai + ta�{ ê
a
�{ + t�ai ê

�a
i + t�a�{ ê

�a
�{

	
= tai

� ê�a�{ � ta�{
� ê�ai � t�ai

� êa�{ + t�a�{
� êai

which gives the relations

tai = t�a�{
�; ta�{ = �t�ai �:

These are the normal relations expected from time-reversal
of a one-electron operator. Similarly, for the two-electron
amplitudes,

tabij = t�a
�b�

�{�| ; t�a
�b
ij = tab��{�| ; ta

�b
i�| = t�ab��{j ; ta

�b
ij = �t�ab��{�| :

The T̂ operator can therefore be expressed in terms of
excitation operators, but here the E operators must be used,
not the X operators. For example,

T̂1 = Re tai E
+
ai + Im tai E

�
ai +Re t�ai E

+
�ai + Im t�ai E

�
�ai
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Kramers-retricted CCSD

An assessment of the number of operations required to solve
the CCSD equations will show the relative e�ciency of KR-
CCSD and NR-CCSD.

� The fact that the integrals are complex in the relativistic
version gives a factor of 4 increase in the number of
operations.

� The scaling of the CCSD equations is O(n6). Thus the
reduction due to spin symmetry should be a factor of
26 = 64.

� The reduction due the the optimal implementation of
time-reversal symmetry is a factor of 8.

� The KR-CCSD method is therefore a factor of 32 times
more expensive than the NR-CCSD method.

This should be compared with the SCF stage of the calcula-
tion in the spinor basis.

� There are 32 times more KR Coulomb integrals than NR
integrals.

� Complex arithmetic gives an extra factor of 4.

� A KR-SCF calculation is therefore 128 times more expen-
sive than a NR-SCF calculation.
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Integral transformation

We saw that the e�ciency of the KR-CCSD correlation
method relative to the NR method was greater than that
of the KR-SCF method. The SCF scales as O(n4); the
CCSD as O(n6). The integral transformation, which scales
as O(n5), also needs to be considered, and for that purpose
we compare the NR and 2-spinor transformations.

� The integral transformation is performed with one trian-
gular pair index and one square pair index to exploit the
e�ciency of matrix multiplications. This is possible for
both NR and KR integrals.

� The NR operation count (multiply and add) is 2n5.

� The relativistic transformation must include integral
classes (LLjLL), (LLjSS), (SSjLL) and (SSjSS). There-
fore for the (pqjrs) integrals one would expect a factor of
4, giving 8n5.

� However, the half-transformed (LLjLL) and (SSjLL) may
be added together, as may the (LLjSS) and (SSjSS).
There are therefore only 2 second half transformation
steps, and the operation count is 6n5.

� There are 4 classes of MS integrals, (pqjrs), (p�qj�rs),
(p�qjr�s) and (pqjr�s), each of which scales the same.

� The integrals are complex, introducing another factor of 4.

� The KR integral transformation is therefore 96 times more
expensive than the NR integral transformation.
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Multi-reference expansions

In nonrelativistic theory, there is a wide range of molecules
which may be treated with a single-determinant reference:
closed-shell molecules and high-spin open-shell molecules. In
relativistic theory, this is no longer the case. Only the cases
of a closed shell and a single electron outside a closed shell
can be represented as a single determinant. As seen from
the last section, for two electrons outside a closed shell, the
minimum number of determinants in the reference is two.
Therefore it is necessary to resort to multi-reference wave
functions, more frequently than in nonrelativistic theory.
Here we develop some of the ideas necessary for a multi-
reference CI expansion.

We start with the determinant basis introduced earlier
given in terms of A and B strings, and consider all possible
determinants which may be constructed from a given set
of Kramers pairs. We de�ne subsets of determinants with a
given value of N� and N�, de�ning

MK = 1
2
(NA �NB)

� In the NR case, the CI is limited to a given MK � MS

value due to spin factorization. The length of a full CI
expansion is

�
n
N�

��
n
N�

�
where n is the number of active

orbitals.

� In the KR case, the CI includes all possible MK values
because of the spin-orbit interaction. The length of a full
CI is

�
2n
N

�
.
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Length of N-particle basis

For an example of the relative lengths of the N-particle basis
for a full CI, the following table for 12 electrons in 12 orbitals
is instructive. Symmetry is not used. The second column
is the number of determinants in the NR expansion. The
number of determinants in the R expansion is the same for
each MS at 2704156.

MS Determinants Ratio R/NR

0 853776 3
1 627264 4
2 245025 11
3 48400 55
4 4356 629
5 144 18778
6 1 2704156

Thus for low spin, the relativistic full CI vector is only 3
times the length of the nonrelativistic vector. The work
increases by a factor of 36 | 9 from the length of the vector
and 4 from the complex arithmetic.
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Hamiltonian matrix structure

We divide the determinants into subsets de�ned by the MK

value, and order the subsets by their MK values. Then the
Hamiltonian matrix is partitioned into blocks de�ned by
these subsets. Because the electron-electron interaction is
a 2-particle interaction, H is block pentadiagonal. This
structure is shown in the diagrams for an even and an odd
number of electrons.

The composition of the matrix elements on each diagonal is
as follows.

� The main diagonal has jM�
K �M�

K j = 0. Matrix elements
are composed of integral classes htu, (tujvw) and (t�uj�vw)

� The �rst o�-diagonal has jM�
K�M�

K j = 1. Matrix elements
are composed of integral classes ht�u and (tujv �w).

� The second o�-diagonal has jM�
K � M�

K j = 2. Matrix
elements are composed of integral class (t�ujv �w)

The classes of two-electron integrals required for the con-
struction of the matrix elements are di�erent for each diag-
onal, a feature which may be exploited in the construction of
the sigma vector in a direct CI scheme.
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Hamiltonian matrix structure

Diagram of block structure for N even. The blocks are
ordered by MK .
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Hamiltonian matrix structure

Diagram of block structure for N odd. The blocks are
ordered by MK .
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Time-reversal and symmetry

The integrals on the �rst o�-diagonal are only non-zero for
the quaternionic groups. These are represented by the grey
shading in the diagrams. Then for the real and complex
groups, the diagonal and second o�-diagonal blocks partition
into two disjoint, interleaving groups, represented by the
striped white and grey shading. The determinants partition
into two sets as a consequence.

� For N odd, time-reversal of one set productes the other
set. The two sets of determinants therefore form a basis
for the doubly-degenerate Kramers pairs of the N-particle
states. The only other element of symmetry in the binary
groups is inversion, which is implemented in the same way
as in NR CI theory.

� For N even, the application of time-reversal maps each set
onto itself. The two sets form bases for states of di�erent
boson symmetry. The set with MK even contains the basis
for the totally symmetric irrep. For the complex binary
groups this is the only element of boson symmetry, except
for the inversion symmetry in C2h. Thus selection of the
parity of MK determines the state symmetry.

Note that time-reversal creates a symmetry about both
diagonals of H, and only 1/4 of H is unique, and 1/2 the
CI coe�cients, since c �P = c�P , where P is the index of a
determinant. Exploiting this feature reduces the work by a
factor of 4.
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Time-reversal and symmetry

For the real groups, the remaining element of symmetry is
introduced by forming a real basis. From the consideration of
the Hamiltonian matrix in the real basis, it may be seen that
the elements of H in the real basis which connect the positive
and negative combinations come from the imaginary part of
the elements in the determinant basis, which must be zero.
Thus the Hamiltonian blocks into 4, de�ned by the parity
of MK and the sign of the combination of determinants in
the real basis. The symmetry of each set of CSF may be
deduced from the discussion of the symmetry of 2-particle
states above.

The blocks of H for which both HPQ and HP �Q are non-zero

occur only for jMP
K j+ jMQ

K j � 2:

� For odd MK the implementation of symmetry involves
only the phase of the block with MP

K = 1 and MQ
K = �1.

� For even MK , the triangularity for MP
K = 0 and MQ

K = 0
must be accounted for with its associated phase and the
relative phases for MQ

K = �2 with MP
K = 0 in the

implementation of symmetry.
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Time-reversal and symmetry

The only remaining case to consider is that of the quater-
nionic groups with N odd. The Hamiltonian matrix may be
blocked by the quaternionic transformation given above.

�
�
0

�
00

�
=

�
�
��

�
1p
2

�
1 j

j 1

�
:

producing two quaternionic matrices of half the rank, with
matrix elements

HP
0

Q
0 = HPQ �HP �Qj

HP
00

Q
00 = H �P �Q �H �PQj

HP
0

Q
00 = HP

00

Q
0 = 0

As for the real groups for N even, the blocks for which both
HPQ and HP �Q are non-zero occur only for jMP

K j + jMQ
K j � 2.

Although the amount of work accumulating the sigma vector
would be the same without the transformation, the indexing
work is halved, and therefore it may be useful to transform.
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Other approaches

It is clear from the discusssion so far that 4-component
calculations are expensive, due to two factors: the small
component of the wave function and the spin-dependence
of the Hamiltonian. Therefore there has been much work
put into methods which seek to eliminate one or other, or
both, of these factors. We will examine both, starting with
the standard elimination of the small component (ESC), and
proceeding to other methods.

The Dirac equation with the small component eliminated is

(V � E)	L +
1

2m
(� � p)

�
1� V � E

2mc2

��1
(� � p)	L = 0:

The spin-dependence in this equation may be separated by
use of the Dirac relation

(� � u)(� � v) = u � v + i(� � u� v):

giving the equation

(V � E)	L +
1

2m
[pR � p+ i� � pR � p]	L = 0

where R =
�
1� (V � E)=2mc2

��1
. This equation is exact,

and it has the small component removed, and the spin-free
and spin-dependent terms separated. But it is not very
useful because both the energy and the potential are in the
denominator.
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The Pauli Hamiltonian

One approach to this problem is to expand the inverse
operator in powers of (V � E)=2mc2:

R = 1 +
(V � E)

2mc2
+

(V � E)2

4m2c4
+ : : :

Then the �rst term in the series gives p � p=2m = T̂ , the
nonrelativistic kinetic energy operator. The second term
gives

(� �p)(V �E)(� �p) = �(rV ) �r+(V �E)p2+� � (rV )�p

Treating the series as a perturbation series in 1=c2, the �rst
term is equivalent in expectation to r2V=2; for a Coulomb
potential (in atomic units), V = �Z=r, r2V = Z�(r).
In the second term, (E � V ) may be replaced with T̂ , to
give �p4=2m. For the third term in a Coulomb potential,
rV = Zr=r3, and with r � p = ` and � = 2s, the expanded
Hamiltonian is

Ĥ = T̂ + V � p4

8m3c2
+
Z�(r)

8m2c2
+

Zs � `
2m2c2r3

+ : : :

The �rst added term is the mass-velocity term; the second
term is the Darwin term and the third term is the spin-orbit
term. The added terms are those of the Pauli Hamiltonian in
a Coulomb potential.

As pointed out earlier, this expansion is not valid for small r.
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Expansion in the potential

An alternative expansion makes use of the fact that 2mc2�V
is always positive de�nite. Therefore we may write

R =
2mc2

2mc2 � V

�
1 +

E

2mc2 � V

��1

and expand the series to give

R =
2mc2

2mc2 � V � 2mc2E

(2mc2 � V )2
+ : : : :

With this expansion, the �rst term in the expansion of the
Hamiltonian is dependent on the potential, and gives

(� � p) 2mc2

2mc2 � V
(� � p) =

2mc2

2mc2 � V p
2

� 2mc2

(2mc2 � V )2 [(rV ) � r � � � (rV )� p]

Note that we get a corrected kinetic energy term, which
cuts o� as V becomes large, a Darwin-type term and a spin-
orbit term. The second term is very similar and may be
formed by multiplying the �rst by �E=(2mc2 � V ). Thus
the Hamiltonian is

Ĥ = V +
2mc2

2mc2 � V

�
1� 2E

(2mc2 � V ) +
3E2

(2mc2 � V )2
+ : : :

�

�
h
T + f2m(2mc2 � V )g�1f(rV ) � r � � � (rV )� pg

i
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Expansion in the potential

This expansion has the following features:

� The �rst term in the expansion contains a modi�ed kinetic
energy operator, which cuts o� at small r, a Darwin-type
term and a spin-orbit term.

� The zeroth-order Hamiltonian is therefore relativistic, not
nonrelativistic.

� We may not replace E with T + V in this expression
to remove it from the �rst-order term, as we did in the
expansion in 1=2mc2.

� The expansion is valid for all r, and converges.

� However, although it now has the energy in the numer-
ator, the zeroth-order term still has the potential in the
denominator.

� This approach is therefore more suited to a method
which has a local potential, such as the density functional
approach.
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Direct perturbation theory

A third approach makes the partitioning in the Dirac equa-
tion itself, without eliminating the small component. First,
the small component is replaced,

�S = c	S ;

which de�nes a new metric,

Ĝ =

�
I 0

0 c�2I

�
:

Then the Dirac Hamiltonian is partitioned according to

Ĥ =

�
V (� � p)

(� � p) �2m
�
+

1

c2

�
0 0

0 V

�
= Ĥ0 +

1

c2
Ĥ2:

The zeroth-order Hamiltonian is the L�evy-Leblond Hamilto-
nian. For small components chosen to obey

�S = (� � p)	L=2m

the L�evy-Leblond equation becomes bounded below, with the
same solutions as the Schr�odinger equation.

We now have an apparently well-behaved operator, in which
no expansion has been made which is invalid at small r.
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Direct perturbation theory

The perturbation Ĥ0 may be written in the form

Ĥ2 = P̂SV P̂S

where the projector onto the small component is

P̂S = (I4 � �)=2:

The metric can be written

Ĝ = P̂L + c�2P̂S = Ĝ0 + 1

c2
Ĝ2:

The perturbation parameter is chosen to be 1=c, and the
expansion performed in even powers, in the usual way. The
lowest-order energy is

E2 = h	0jĤ2 � E0Ĝ2j	0i=h	0jĜ0j	0i
= h�S j(V � E0)j�Si

=
1

4m2
h	Lj(� � p)(V � E0))(� � p)j	Li

where intermediate normalization for the large component
has been chosen. This is the same energy as was obtained
from the elimination of the small component. Thus, direct
perturbation theory with kinetic balance gives the same
results as the ESC method.
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Direct perturbation theory

The problem of the validity of the ESC expansion is appar-
ently not a serious one. There are divergences in the higher-
order terms, but a proper formulation in terms of direct per-
turbation theory can be made which is free of divergences,
and is properly bounded below. Therefore, an iterative, or
variational, solution may be made.

However, although this provides a clean perturbation theory,
the small component is still retained in the equations (albeit
with kinetic balance). Moreover, the spin-dependence has
not been factored out. Therefore, in the end, the problem of
the number of integrals ought to be the same as for the Dirac
equation.
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The Foldy-Wouthuysen transformation

If it is desirable to remove the small component from con-
sideration, then perhaps one ought to seek a transformation
which will block-diagonalize the 4 � 4 matrix of the Dirac
Hamiltonian.

To do this, we �rst note that the operators in the Dirac
equation can be divided into even and odd operators, Ê and
Ô, according to whether they connect components of the
same type or of di�erent type. Thus the potential and �mc2

are even operators, and � � p is an odd operator. We write
symbolically,

Ĥ = �mc2 + Ê + Ô
where the rest mass term has been retained explicitly for
later convenience. The commutation properties of these
operators are:

[Ê; �] = 0; [Ô; �]+ = 0;

i.e. even operators commute with �, odd operators anticom-
mute. Any operator can be written as a sum of even and odd
operators as

Ĝ =
1

2
(Ĝ + �Ĝ�) + 1

2
(Ĝ � �Ĝ�)
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The Foldy-Wouthuysen transformation

We now make a unitary transformation on the wave function

	1 = eiŜ	

where Ŝ is Hermitian, and use the Baker-Campbell-Hausdor�
expansion to write the new Hamiltonian in terms of the
commutator series,

Ĥ1 = Ĥ+ i[Ŝ; Ĥ] + : : : :

Here Ĥ is the time-dependent Hamiltonian. Choosing

Ŝ = �i�Ô=2mc2

produces the result

i[Ŝ; �mc2] = �Ô
which cancels the odd operator in the Dirac Hamiltonian.
However, insertion of this operator into the expansion shows
that the new Hamiltonian still has odd terms, but they are of
higher order in 1=c2:

Ĥ1 = �mc2 + Ê1 + Ô1

where

Ô1 = �[i�h@=@t� Ê; Ô]=2mc2 � Ô3=3m2c4 +O(c�3)
and

Ê1 = Ê+�Ô2=2mc2 � [Ô; [i�h@=@t� Ê; Ô]]=8m2c4

� �Ô4=8m3c6 +O(c�4)
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The Foldy-Wouthuysen transformation

Thus the Foldy-Wouthuysen (FW) transformation decouples
the large and small components to a particluar order in 1=c.
The lowest-order transformation produces the Pauli Hamil-
tonian, but the higher-order transformations give highly
singluar operators, due to the presence of the potential.

For a free particle, however, the transformation can be
performed exactly with

Û = eiŜ = Â(1 + �R̂)

and the operators are

Â =

�
Ep +mc2

2Ep

�1=2

; R̂ =
c� � p

Ep +mc2

where the energy operator is

Ep = (c2p2 +m2c4)1=2
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The Douglas-Kroll transformation

Applying the free-particle FW transformation to the Dirac
operator in momentum space with the external potential

Vext	(p) =

Z
Vext(p;p

0)d3p0

gives the transformed Hamiltonian as above, with the even
and odd operators in a more compact form:

Ê1 = Â(Vext + R̂VextR̂)Â
Ô1 = �Â(R̂Vext � VextR̂)Â:

Instead of expanding in powers of 1=c, another unitary
operator is de�ned,

Û1 = (1 + Ŵ2
1 )

1=2 + Ŵ1

where Ŵ1 is anti-Hermitian. This transformation is applied
to Ĥ1 and the result expressed in terms of a commutator
expansion by expanding the square root operator in powers
of Ŵ1.

Ĥ2 = Û1Ĥ1Û�11 = �Ep � [�Ep; Ŵ1] + Ê1 + Ô1 + : : :

Then Ô1 disappears if

Ŵ1Ep + EpŴ1 = �Ô1:

It can be shown that Ŵ1 is of order Vext, and thus the
Douglas-Kroll (DK) transformation is expanded in powers
of the external potential rather than 1=c. The above trans-
formation gives an operator correct to second order in the
external potential which is non-singular.
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Summary of approximate methods

The conclusions of our consideration of the approximate
methods are:

� Elimination of the small component with expansion in
powers of 1=c, either directly or via the FW transforma-
tion, gives rise to singular operators, but ones which have
a generally simple form. These must be used in perturba-
tion theory.

� Elimination of the small component with expansion in
powers of V , either directly or via the DK transformation
gives rise to non-singular operators which may then be
used in variational calculations, but are complicated in
form.

� The use of perturbation theory in 1=c without elimination
of the small component gives an equation which is useful,
but has the same integral size problems as in the Dirac
equation. Spin separation may be achieved at the matrix
level.

We therefore turn to another method, in which the operators
have simple form, the small component is retained and spin
separation is achieved.
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Modi�ed Dirac equation

To achieve the spin separation, we note that in the perturba-
tion theories presented above, the spin-dependence could be
factored because of the elimination of the small component.
In the nonrelativistic limit,

lim
c!1

2mc 	S = (� � p)	L:

Using this directly to de�ne an auxiliary large component at
�nite c

2mc 	S � (� � p)�L

and substituting into the Dirac equation, premultiplying the
second equation by (� � p)=2mc gives

(V � E)	L + T�L = 0

T	L + [(� � p)(V �E)(� � p)=4m2c2 � T ]�L = 0:

Eliminating T�L from the �rst equation using the second,

(T + V � E)	L +
1

4m2c2

�
(� � p)(V � E)(� � p)��L = 0;

which is suspiciously like the Pauli equation. But this equa-
tion has no approximations, and since the same highly singu-
lar operators appear, why should it be variationally stable?
The di�erence is in the presence of �L rather than 	L.
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Modi�ed small component

We therefore make an expansion of the wave function in
powers of r, and �nd the following.

For a point nucleus:

� For small r, �L � r	L

� Integrals over the singular operators are therefore well-
behaved.

� �L ! 	L in the limit c ! 1 but only as an asymptotic
expansion in r.

For a �nite nucleus:

� For small r, �L � 	L

� Operators are non-singular and integrals are well-
behaved.

� �L ! 	L smoothly in the limit c!1.

Thus, even though there are singular operators present, these
are regularized by the wave function, in particular by the
retention of the small component. This should be compared
with the regularization of the operators in the potential
expansion perturbation theory.
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Modi�ed Dirac operators

Spin separation is achieved in exactly the same manner as in
the Pauli equation, giving the modi�ed Dirac Hamiltonian (in
atomic units)

~hD =

�
V T

T �2

4
p � V p� T

�
+

�
0 0
0 �2

4
i� � (pV )� p

�
;

which has a new metric

~G =

�
1 0
0 �2

2
T

�

The modi�ed wave function is

~	 =

�
	L

�L

�
:

� �L has the same symmetry properties as 	L and may
therefore be expanded in the same (primitive) basis.

� The modi�ed equation has the same spectrum as the orig-
inal equation: bound (exponentially decaying) solutions
between 0 and �2mc2 and continuum (oscillatory) solu-
tions above 0 and below �2mc2, whether or not the spin-
dependent terms are neglected.

� The spin-free Hamiltonian is now real, so that spin factor-
ization may be used and the wave function expanded in a
real scalar basis.
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Comparison with the Pauli and DK Hamiltonians

The energy for the modi�ed Dirac equation may be written

Eh	j	i =h	jT + V j	i � h	��jT j	��i

+
�2

4
h�j(� � p)(V � E)(� � p)j�i

The second term is the modi�cation of the kinetic energy. If
we replace � with 	 � 	NR,

� The second term vanishes.

� The third term gives the Pauli energy.

As noted before, this makes the Pauli Hamiltonian non-
variational because of the incorrect small r behaviour.
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Comparison with the Pauli and DK Hamiltonians

The DK energy for a single electron is

Eh	j	i = h	jEp �mc2 �Wj	i+ h	jAVA+ARVRAj	i

= h	jEp �mc2 �Wj	i+ h	jAVAj	i

+ h	j cA
Ep +mc2

(� � p)V (� � p) cA
Ep +mc2

j	i

� The �rst term is essentially the relativistic kinetic energy,
the second term is the nuclear Coulomb potential term,
the third term contributes a Darwin-type term and a spin-
orbit term.

� The perturbation in the DK method is the potential,
the coupling constant is e instead of �, the zeroth order
Hamiltonian that of a relativistic free particle.

� The DK transformation introduces momentum-dependent
kinematic factors A and R which account for the renor-
malization of 	 and the di�erence between � and 	. The
integrals involving V are thereby regularized and can be
used in variational calculations.

� Setting p = 0 in the kinematic factors makes A = 1 and
cA=(Ep + mc2) = 1=2mc, and the terms from the Pauli
Hamiltonian are regained.
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Two-electron terms

Expanding the two-electron integrals, we have for the
Coulomb interaction

(	i	ij	j	j) = (	L
i 	

L
i j	L

j 	
L
j ) + (	L

i 	
L
i j	S

j 	
S
j )

+ (	S
i 	

S
i j	L

j 	
L
j ) + (	S

i 	
S
i j	S

j 	
S
j ):

Substituting for the small components, we end up with the
operator

~gC = P̂+
i P̂+

j g00ij P̂+
i P̂+

j +
�2

4
P̂+
i P̂�j g02ij P̂+

i P̂�j

+
�2

4
P̂�i P̂+

j g20ij P̂�i P̂+
j +

�4

16
P̂�i P̂�j g22ij P̂�i P̂�j

where the projectors onto the large and small component
space are

P̂� =
1

2

�
1� �

�
:

The operators are

g00ij =
1

rij

g02ij = (�j � pj)
1

rij
(�j � pj)

g20ij = (�i � pi) 1

rij
(�i � pi)

g22ij = (�i � pi)(�j � pj) 1

rij
(�j � pj)(�i � pi):
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Two-electron terms

The �rst of the four operators is the normal Coulomb opera-
tor. The second and third are related by index interchange,
and have their analogies in the one-electron terms:

g20ij = �ri

1

rij
� ri + �i � ri

1

rij
� pi:

These two terms contribute to the two-electron Darwin and
two-electron spin-(own-)orbit terms. The fourth term is of
O(�4), and contributes a \double Darwin", a mixed spin-
orbit/Darwin term and a \double spin-orbit" term.

If we consider using the spin-free Hamiltonian variationally
and the spin-dependent terms as a perturbation, we may
work in a scalar basis. Then there are only twice as many
Darwin integrals as Coulomb integrals, and as many double-
Darwin integrals as Coulomb integrals Thus, the spin-free
calculation involves only four times the number of integrals
required in a nonrelativistic calculation.

Now, considering the spin-dependent integrals, there are
6 times as many spin-orbit and mixed Darwin-spin-orbit
integrals as Coulomb integrals, and 9 times as many double-
spin-orbit integrals, giving a total factor of 21 times the
number of Coulomb integrals. A full relativistic calculation
with the modi�ed Dirac equation would then be 25 times the
cost of a NR calculation, compared with a factor of 64 for the
unmodi�ed Dirac equation, of which a factor of 2 is due to
the complex arithmetic.

210



Two-electron terms

The Gaunt interaction contributes operators which arise from
the product

(�i � pi)(�i � �j)(�j � pj) = pi � pj + i(�i + �j) � (pi � pj)

+ (�i � pi) � (�j � pj)

The �rst of these is a Darwin-type term, but not the same
as that which arises from the Coulomb interaction. The
second contributes the spin-other-orbit interaction. The third
contributes the spin-spin and Fermi contact interactions.

Factors for integral numbers from these terms are: 4 for the
Darwin-type term, 12 for the spin-other-orbit term and 24 for
the spin-spin terms. However many of the spin-spin terms are
counted in the other two; the total factor is 36.

A similar reduction may be performed for the gauge term of
the Breit interaction, but it is more involved, and results only
in the addition of the orbit-orbit interaction to the Gaunt
interaction.
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Summary: modi�ed Dirac equation

The features of the modi�ed Dirac equation may be summa-
rized:

� The modi�ed equation is exactly equivalent to the origi-
nal.

� Spin separation is achieved without any approximations.

� The spin-free Hamiltonian is real, leading to real 2-
component orbitals.

� \Exact" spin-free Dirac-Coulomb SCF calculations are
only 4 times as expensive as a nonrelativistic calculation.

� Correlated calculations in the no-pair approach are no
more expensive than nonrelativistic calculations.

� The spin factorization means that all the nonrelativistic
machinery may be used, both for spin-free and spin-
dependent calculations.

� The integrals are the same as those over the Breit-Pauli
operators.

� If contraction is employed, a dual basis must be de�ned,
and care taken in the integral evaluation.

� In this case, it is better to use the original Dirac equation
if a variational spin-dependent calculation is to be per-
formed.
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