January 13, 2023
Journal Article

Scientific Challenges to Characterizing the Wind Resource in the Marine Atmospheric Boundary Layer

Abstract

With the increasing level of offshore wind energy investment, it is correspondingly important to be able to accurately characterize the wind resource in terms of energy potential as well as operating conditions affecting wind plant performance, maintenance, and lifespan. Accurate resource assessment at a particular site supports investment decisions. Post-construction, accurate wind forecasts are needed to support efficient power markets and integration of wind power with the electrical grid. To optimize the design of wind turbines, it is necessary to accurately describe the environmental characteristics, such as precipitation and waves, that erode turbine surfaces and generate structural loads as a complicated response to the combined impact of shear, atmospheric turbulence, and wave stresses. Despite recent considerable progress both in improvements to numerical weather prediction models and in coupling these models to turbulent flows within wind plants, major challenges remain, especially in the offshore environment. Accurately simulating the interactions among winds, waves, wakes, and their structural interactions with offshore wind turbines requires accounting for spatial (and associated time) scales from O(1 m) to O(100 km). Computing capabilities for the foreseeable future will not be able to resolve all of these scales simultaneously, necessitating continuing improvement in subgrid-scale parameterizations within highly non-linear models. In addition, observations to constrain and validate these models, especially in the rotor-swept area of turbines over the ocean, remains largely absent. Thus, gaining sufficient understanding of the physics of atmospheric flow within and around wind plants remains one of the grand challenges of wind energy, particularly in the offshore environment. This paper provides a review of prominent scientific challenges to characterizing the offshore wind resource using as examples phenomena that occur in the rapidly developing wind energy areas off the United States. Such phenomena include strong horizontal temperature gradients that lead to strong vertical stratification; consequent features such as low-level jets and internal boundary layers; strongly non-stationary conditions, which occur with both extratropical storms (e.g., nor’easters) and tropical storms; air-sea interaction, including deformation of conventional wind profiles by the wave boundary layer; and precipitation with its contributions to leading-edge erosion of wind turbine blades. The paper also describes the current state of modelling and observations in the marine atmospheric boundary layer and provides specific recommendations for filling key current knowledge gaps.

Published: January 13, 2023

Citation

Shaw W.J., L.K. Berg, M. Debnath, G. Deskos, C. Draxl, V.P. Ghate, and C.B. Hasager, et al. 2022. Scientific Challenges to Characterizing the Wind Resource in the Marine Atmospheric Boundary Layer. Wind Energy Science 7, no. 6:2307–2334. PNNL-SA-168844. doi:10.5194/wes-7-2307-2022