November 10, 2023
Journal Article

NEXT-CRAB-0: A High Pressure Gaseous Xenon Time Projection Chamber with a Direct VUV Camera Based Readout

Abstract

The search for neutrinoless double beta decay ($0\nu\beta\beta$) remains one of the most compelling experimental avenues for the discovery in the neutrino sector. Electroluminescent gas-phase time projection chambers are well suited to $0\nu\beta\beta$ searches due to their intrinsically precise energy resolution and topological event identification capabilities. Scalability to ton- and multi-ton masses requires readout of large-area electroluminescent regions with fine spatial resolution, low radiogenic backgrounds, and a scalable data acquisition system. This paper presents a detector prototype that records event topology in an electroluminescent xenon gas TPC via VUV image-intensified cameras. This enables an extendable readout of large tracking planes with commercial devices that reside almost entirely outside of the active medium.Following further development in intermediate scale demonstrators, this technique may represent a novel and enlargeable method for topological event imaging in $0\nu\beta\beta$

Published: November 10, 2023

Citation

Byrnes N., I. Parmaksiz, C. Adams, J. Asaadi, J. Baeza-Rubio, K. Bailey, and E.D. Church, et al. 2023. NEXT-CRAB-0: A High Pressure Gaseous Xenon Time Projection Chamber with a Direct VUV Camera Based Readout. Journal of Instrumentation 18, no. 8:Art. No. P08006. PNNL-SA-184431. doi:10.1088/1748-0221/18/08/P08006

Research topics