September 21, 2022
Journal Article

Modeling Framework to Analyze Performance and Structural Reliability of Solid Oxide Electrolysis Cells

Abstract

Solid oxide electrolysis cells (SOEC) have been receiving significant attention recently because of their high energy efficiency and fast hydrogen production. In this study a multi-physics model to simulate the SOEC performance and structural reliability of a state-of-the-art planar SOEC design was developed. The electrochemical reactions, fluid dynamics, species transport, electron transfer, and heat transfer were modeled in the commercial computational fluid dynamics (CFD) software STAR-CCM+. The thermomechanical analysis and the associated structural reliability evaluations were conducted using the commercial finite element analysis software ANSYS. The electrochemistry model was validated by using the experimentally obtained current-voltage characteristics of the electrode-supported SOECs. The reliability analysis using a risk-of-rupture approach showed low failure probabilities under standard operating conditions considered in this study. For cells operated at voltages well above a thermoneutral voltage, the reliability evaluations indicated a potential risk of cell failure, but the damage was concentrated locally in specific areas of the cell which typically do not lead to total loss of cell function. The presented approach provides insights for developing optimally performing and structurally reliable SOECs for hydrogen generation.

Published: September 21, 2022

Citation

Bao J., N.K. Karri, K.P. Recknagle, C. Wang, B.J. Koeppel, and O.A. Marina. 2022. Modeling Framework to Analyze Performance and Structural Reliability of Solid Oxide Electrolysis Cells. Journal of the Electrochemical Society 169, no. 5:Art. No. 054523. PNNL-SA-170581. doi:10.1149/1945-7111/ac6f87

Research topics