March 26, 2022
Journal Article

Explaining the Structure Sensitivity of Pt and Rh for Aqueous-Phase Hydrogenation of Phenol

Abstract

Phenol is an important model compound to understand the thermocatalytic (TCH) and electrocatalytic hydrogenation (ECH) of biomass to biofuels. Although Pt and Rh are among the most studied catalysts for aqueous-phase phenol hydrogenation, the reason why certain facets are active for ECH and TCH is not fully understood. Herein, we identify the active facet of Pt and Rh catalysts for aqueous-phase hydrogenation of phenol and explain the origin of the size-dependent activity trends of Pt and Rh nanoparticles. Phenol adsorption energies extracted on the active sites of Pt and Rh nanoparticles on carbon by fitting kinetic data show the active sites adsorb phenol weakly. We predict that the turnover frequencies (TOFs) for the hydrogenation of phenol to cyclohexanone on Pt(111) and Rh(111) terraces are higher than on (221) stepped facets based on density functional theory (DFT) modeling and mean-field microkinetic simulations. The higher activities of the (111) terraces are due to lower activation energies and weaker phenol adsorption, preventing high coverages of phenol from inhibiting hydrogen adsorption. We measure that the TOF for ECH of phenol increases as Rh nanoparticle diameter increases from 2 to 10 nm at 298 K and -0.1 V vs. RHE, qualitatively matching prior reports for Pt nanoparticles. The increase in experimental TOFs as Pt and Rh nanoparticle diameters increase is due to a larger fraction of terraces on larger particles. These findings clarify the structure-sensitivity and active site of Pt and Rh for hydrogenation of phenol and will inform catalyst design for hydrogenation of bio-oils.

Published: March 26, 2022

Citation

Barth I., J. Akinola, J. Lee, O.Y. Gutierrez-Tinoco, U. Sanyal, N. Singh, and B.R. Goldsmith. 2022. Explaining the Structure Sensitivity of Pt and Rh for Aqueous-Phase Hydrogenation of Phenol. Journal of Chemical Physics 156, no. 10:Art. No. 104703. PNNL-SA-170789. doi:10.1063/5.0085298

Research topics