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Presentation Contents
Contents:
• Purpose of a Microchannel In Situ Propellant Production 

System 
– Need for In Situ Propellant Production
– Advantages of microchannel architectures

• System Design Requirements to meet TRL 5
– Full-scale Requirements  versus Demonstration Requirements

• Preliminary System Design
• Subsystem descriptions
• Other technology target applications
• Current and future plans
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In Situ Propellant Production
Bring to Mars:
•Propellant for One-Way Trip
•Chemical Plant 
•52 kg Liquid Hydrogen

While on Mars:
•Acquire CO2 from Atmosphere
•Generate 1000 kg CH4 and O2
propellant for return trip

Return to Earth:
•160 kg MAV
•Collect 3.7 kg of 
samples
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Need for Mars In Situ Propellant Production
Reduce Cost
• Producing propellants on Mars can reduce the 

initial mass launched by 20% to 45%, as compared 
to carrying all of the propellant for a round-trip 
mission to the Mars surface from Earth. (AIAA 
2001-0939)

Reduce Risk
• Propellant for return trip and oxygen for life support 

can be produced by earlier mission before manned 
mission leaves earth.  Propellant production on 
Mars surface may eliminate need for in-orbit 
rendezvous.

Enhance, Enable and Extend Mission
• Provide fuel for hoppers and rovers for increased 

mobility on surface
• Increase return trip payload
• Provide for longer mission stays
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CO2 Sorption Pump

Advantages of Microchannel Architecture
Reduced Volume and Mass 

(combine reactors/heat exchange)
Improved Thermal Efficiency

(85-90% effective recuperators)

ming Reactor HT WGS Reactor

LT WGS Reactor

Combustor

Reduced Effects of Diffusion
(catalysts operate at reaction limits)

Surface Forces Dominate
(reduced effects of gravity)

Simplified Scale-Up
(channels in parallel 

and/or in series)

Reduced Thermal Mass
(fast temperature cycling)

2 kWe Water-Gas Shift Reactor 10 kWe Steam Reformer

2 kWe Steam ReformerSingle Channel Phase Separator
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Requirements for a Robotic Mars Sample Return 
and a TRL Level 5 Demonstration

Requirements
1000 kg of propellant
3.8:1 O2 to CH4 mass ratio
70 Earth-days of continuous 
production
Operate in the Martian 
environment
• 0.63 kPa Pressure, 182-242 K
• 95.5% CO2, 2.7% N2, 1.6% Ar
• Gravity = 3.71 m/s2

Target System
Full scale production rate:
• 125 g/hr CH4
• 475 g/hr O2

1/10th operating time
• 7 Earth-days of continuous 

healthy production
Environmental chamber & 
select reduced gravity tests
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Microchannel ISPP System Process Flow
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Microchannel Temperature Swing Sorption Pump

Rapid thermal cycling of 8 cells results in near continuous operation 
• Cell 1 adsorbs CO2 while Cell 5 desorbs CO2

Thermal recuperation heat requirements
• Thermal fluid recovers heat from previously desorbed cells to minimize heating to 

current desorbing cell
Mars ISPP will require increase the CO2 pressure about 125-times 
done in 2 stages
Two Sorption Pumps are being Diffusion Bonded Now

Photchemical Etched Shim for Multichannel Unit Design Drawing of Multichannel Unit
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Single Channel CO2 Adsorption Tests

Rapid cycle times reduces adsorbent volume      
(< 2 minutes)
Operated within 93% of theoretic adsorption 
isotherm  (12 to 77°C)
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Microchannel Sabatier and RWGS Reactors

Design will consist of a Sabatier and RWGS reactor operated 
either in parallel or series

• Maximize conversion and selectivity while maintaining a small device
Endothermic RWGS reactor will be designed for maximum 
temperature and thermal recuperation
Exothermic Sabatier reactor will be designed for optimal 
temperature profile:  high temperature inlet, cooling to reduced exit 
temperature

Microchannel Sabatier ReactorMicrochannel RWGS Reactor

Throughput:
16 g/hr CH4
32 g/hr O2

(1/8th Scale)

Throughput:
30 g/hr O2

(1/8th Scale)
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Sabatier Catalyst Development
Conversion and CH4 Selectivity 

(14637-3-3 & -4: NASA-023, 100% H2 Reduction 2 hrs at 400°C) 
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RWGS Catalyst Development
NASA-027 14636-21 RWGS

Powdered CatReduced with pure H2 for 2hrs at 400°C
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Microchannel Condenser/Phase Separator

Microchannel phase separators 
• Used after the reactors to collect water 
• Used with the electrolysis unit to separate water from gases

Microchannel condenser/phase separators 
• Use increased surface area to provide cooling 
• Use combinations of capture, wicking, and pore throat structures within the 

microchannels to provide liquid recovery

Single Channel and Multichannel (5 kWe) Phase Separators for PEM Fuel Cell
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Water Electrolysis System Development

JSC will develop and test a robotic-return scaled electrolysis system
• Address previous system engineering issues including excessive water build-

up and failure under vacuum testing.
• Develop the Phase 2 system design that will be incorporated into the MIPPS 

system for integrated testing in the environmental chamber.

Phase 1:  Hamilton Sundstrand
Liquid Anode Feed Water Electrolyzer

3-Cell Electrolysis Units

62 g/hour O2 produced 
(mass ratio of 569:1 H2O:O2 out)

8 g/hour H2 produced 
(mass ratio of 75:1 H2O:O2 out)

Hamilton Sundstrand Electrolyzer
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Integrated System Design Issues

Lower Operating Pressure versus Equipment 
Sizing
• Higher pressure results in larger CO2 sorption pump, 

smaller reactors/phase separators/gas separations
Increased Recycle versus Reaction Conversion
• Higher H2 throughput results in higher conversion but 

larger recycle requirements
System Complexity versus System Efficiency
• Higher gas recovery requires additional components
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20 ft Dia. Mars Env. 
Simulation Chamber

Integrated System Testing
All components will be 
integrated, including 
gas recycling
Integrated system will 
be tested in an 
environmental 
chamber at JSC

Lunar/Mars Dust 
Simulation & Bell Jars

5 ft Dia. Lunar/Mars 
Simulation Chamber

Concept of Prototype System
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Initial System Sizing

Specific Mass from Previous Work:
Zubrin et. al. 123 kg/kg O2/hr
Reddig et al. 309 kg/kg O2/hr

CO2 Sorption Pumps 10 kg 31%
RWGS Reactor 0.3 kg 1%
Sabatier Reactor 1.0 kg 3%
CO Removal 0.9 kg 3%
Membrane 0.3 kg 1%
Electrolysis Unit 16 kg 50%
Phase Separators 0.3 kg 1%
Recuperators 0.09 kg 0%
Pump 0.8 kg 2%
Compressor 0.6 kg 2%
Balance of Plant 2 kg 6%
Total 32 kg
Specific Mass 68 kg/kg O2/hr
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Notional Mars ISRU Flight Demonstration           
& Mission EvolutionEarly Mid LatePre (≤2009)

’07 Phoenix
• Regolith-water near poles
• Volatiles in regolith

’04 Mars Express
• Subsurface water content

’01 Mars Odyssey
• Top 1m water content

’03 MER Rovers

’09 MSL
• Shallow water, 

neutron 
spectrometer

Regolith-Water 
ISRU Processing 
(small scale)

2011    2012    2013    2014    2015    2016 2018    2020    2022 2024    2026    2028

Mars Sample 
Return

Regolith Processing for 
Manufacturing-Construction

ISRU Human-Science 
Mission (mid scale)

ISRU Human Dress 
Rehearsal (large scale)

Deep Drilling 
for Water

In-Situ Manufacturing          
& Construction

In-Situ Water

In-Situ Consumable 
Production

Human Mission 
w/ ISRU LO2 & 

Fuel Plant

Each mission increases in 
complexity and increases 
confidence in using ISRU

• Utilize ISRU to extend science,        
mission objects or support other human 
precursor subsystems.  Ex.

– Hopper/Propulsion & EDL Demo
– Surface Mobility/Fuel Cell Demo

• Validate ISRU process to be used on human mission
• Extract usable quantities of water

• Validate regolith processing 
& material/metal separation 
for in-situ manufacturing & 
construction• Validate regolith-based 

resource collection & use 
for human mission

• Extract usable quantities 
of water

• Make measurements & validate ISPP hardware 
and materials in actual environment

• Validate atmosphere resource collection & use
• Validate propellant production & storage 

technology for sample return mission
• Perform dramatic demonstration to engage 

public (engine firing)

• Surface regolith mechanics

Atm. ISRU Processing  
& Env. Compatibility

Launch
= Non-mission 

critical ISRU
=  ISRU-

Extended 
mission 

=  ISRU 
Enabled 
mission

=  Science 
mission 
launch

=  Return

• Deep drilling >3000 m 
(aquifer at 270 K)

’05 Mars Recon Orbiter
• Subsurface water content

• 10 m drill
Mars Science Drilling

(small scale: MIP-PUMPP-MECA)

Bio-Plant Growth

• Validate plant growth in 
regolith & use of Mars 
water

2011-2013
Goal for Mars

Application
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MIPPS Technologies Target Applications

Mars
In Situ Propellant 
Production (ISPP)

CEV, ISS, …
Life Support

Propellant Production 
on the Moon

Atmospheric
CO2

Earth-
Supplied H2* 

Methane (CH4)*

O2

Atmospheric CO2

Surface H2O

H2O

O2

Lunar Ice

Lunar Soils

Primary Application

Other Applications

MIPPS Project will:
•Build Components
•Integrate and Test

MIPPS Project will:
•Develop Models
•Evaluate Options
•Coordinate with 
life support team

*MIPPS technologies can also support the scenarios of either taking methane & seed H2 to produce 
O2 from in-situ CO2 (requires taking CH4 or other fuel instead of H2) or utilizing in-situ CO2 & H2O

H2O

O2
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System Comparison Between 
Life Support and MIPPS

Condenser/Phase Separator
• 200 slpm air flow
• 1.5 g/min water collection

CO2 Sorption Pump
• 1.2 g/min CO2 collection
• 200x purification 

Sabatier Reactor
• 3.1 slpm gas flow

Electrolyzer
• 1.4 g/min O2 generation

Condenser/Phase Separator
• 21 slpm gas flow
• 3.7 g/min water collection

CO2 Sorption Pump
• 18 g/min CO2 collection
• 125x compression

Sabatier Reactor
• 22 slpm gas flow

Electrolyzer
• 7.8 g/min O2 generation

LIFE SUPPORT
4 @ 250 mL/min/person O2

PROPELLANT PRODUCTION
Full-Scale Sample Return 

(CH4 & O2 production using Mars CO2 and Earth H2)



21

Beyond MIPPS Phase II

In-STEP Demonstration Options
• Demonstrate life support system on ISS or Shuttle

– CO2 sorption pump, Sabatier reactor, and phase separators
• Demonstration of sub-scale system on a Mars lander

Move to TRL 6-7
• Develop a prototypic Mars ISPP System

– Integrate components
– Reduce size of ancillary equipment
– Evaluate “flight readiness” of hardware

• Team with others to include microchannel components in CEV 
or lunar applications
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Microchannel ISPP System

Microchannel Rapid
Temperature

 Swing Adsorption

Microchannel 
Reactors

CO2 in Martian
Atmosphere

Microchannel 
Condenser/Phase 

Separator

O2 Product

Filter

CH4
Product

Microchannel 
Phase Separator

Gas Recovery

Microchannel
Heat 

Exchanger

Electrolysis
Recycle H2
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Life Support Consumables Regeneration

Similar technologies to MIPPS
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Lunar Regolith Processing
(Hydrogen Reduction Oxygen Production Process)

100 kg regolith yields ~2-6 kg O2

Similar technologies to MIPPS
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Phase I Activities

April 2005 to March 2006
Develop catalysts for RWGS and Sabatier reactor
Fabricate, test, and integrate CO2 sorption pump and 
RWGS and Sabatier reactors
• Production Rate of 16 g/hr methane
• Mass Ratio 3.8:1 CH4:O2

Preliminary electrolysis system design & testing
Identify gas phase separation techniques
Preliminary model and system design
• Mars ISPP, Lunar Regolith Processing, Advanced Life Support
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Phase II Activities

April 2006 to March 2009
CO2 Sorption Pump
• Model and optimize design for full-scale sample return production 

rate (OSU)
• Evaluate adsorbents and construction materials
• Test in environmental chamber under Martian conditions (JSC)

RWGS and Sabatier Reactor
• Model and optimize design (CSM)
• Develop improved catalysts to meet lifetime and activity 

requirements
• Test in reduced gravity for Mars, Lunar, and microgravity 

conditions (GRC)
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Phase II Activities (Continued)
Condenser/Phase Separator
• Model and Optimize Design (GRC)
• Test in Reduced Gravity for Mars, Lunar, and microgravity 

conditions (GRC)
Develop Gas-Phase Separation Techniques
• Proof-of-concept testing
• Finalize approach

Electrolysis Design
• Phase II system to meet full-scale requirements
• Evaluate a microchannel-based phase separator in microgravity

Develop MEMs-based gas sensors and integrate into 
design (GRC)
Integrate all components for an end-to-end test in the 
environmental chamber (JSC)


