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Complex 
uid dynamics problems in the micron to hundred micron size range are currently not

amenable to conventional simulation methods, but this capability is critically important to support

the design and testing of micro-chemical components and systems. A promising new method for sim-

ulating 
uid 
ow at this scale is the lattice Boltzmann algorithm, which has recently been developed

from lattice gas automata. One major advantage of the lattice Boltzmann method over other 
uid dy-

namics simulation techniques is the ability to incorporate interaction terms directly into the equations

of motion. This makes possible the simulation of multiphase-multicomponent systems in a straight-

forward way, without the introduction of complicated front tracking routines. However, most of the

current lattice Boltzmann algorithms are unable to model the e�ects of thermal transport and only

describe systems that can be considered isothermal. The few algorithms that have been developed for

thermal 
ow are only applicable to a very limited range of problems[1, 2]. Many micro-
uid systems,

particularly those involving thermal 
ow or chemical reactions, require thermal as well as 
ow analysis.

This paper will describe initial e�orts to incorporate a general model of thermal behavior into a lattice

Boltzmann algorithm for single phase 
uid 
ow.

Lattice Boltzmann simulations represent a discretized version of the Boltzmann equation in which

space is divided up into a regular lattice and the velocities are represented by a �nite number of vectors

instead of a continuous distribution. Instead of solving for the continuous one particle distribution

function f(r;v), the lattice Boltzmann algorithm is based on a discretized distribution fi(r) where

i represents one of the discrete velocities and replaces the variable v in the continuous distribution.

The discrete velocities are denoted by the displacement vectors to neighboring lattice sites ei where

i = 1; :::; b where b is the total number of displacement directions. The magnitude of the displacements

is jeij = c. A zero displacement vector e0 is also included in the set to represent particles with zero

velocity. Two sets of distributions, fi and Fi, are assigned to each site. The distribution fi represents

the transport of mass and momentum and satis�es the two relations

� =
bX

i=0

fi (1)

�u =
bX

i=1

eifi (2)

where � is the density and u is the macroscopic velocity of the 
uid. The distribution Fi models the

movement of energy around the system and satis�es the relation

�� =
bX

i=0

Fi (3)

where � is the speci�c energy per particle. Using a second distribution to model the energy is similar

to the passive scalar approach proposed by Shan[2].
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The distributions are de�ned for each of the lattice sites in the system and are updated at each time

step by �rst performing a collision to obtain a new set of distributions. Each of the new distributions

fi and Fi are then displaced along the vector ei to get a new set of distributions at each site. The

collisions and displacement of the distributions are summarized by the equations of motion

fi(r+ ei; t+ 1)� fi(r; t) = �
1

��
(fi(r; t)� f

eq

i
(r; t)) (4)

Fi(r+ ei; t+ 1)� Fi(r; t) = �
1

��
(Fi(r; t)� F

eq

i
(r; t)) (5)

where the r are lattice sites and t is the discrete time. The collisions are assumed to take the familiar

BGK form[3] and are characterized for the two distributions by the relaxation times �� and ��. Because

there is no explicit coupling between the equations of motion for the fi and Fi, the total internal energy

of the system is a conserved quantity, which implies that there is no viscous heating in the system.

For many problems of practical importance, the contribution from viscous heating is small.

The equilibrium distributions f
eq

i
and F

eq

i
are given by the expressions
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whereD is the dimension of the system and d0 is a parameter that is determined by the local thermody-

namic conditions. The f
eq

i
are identical to those developed for simulating a multiphase-multicomponent

system[4], except that in this case d0 is not a constant. The parameter d0 controls the partition be-

tween fast and slow moving particles. Particles moving less than some value u0 could be assigned to

the zero velocity distribution f0, while particles moving faster than u0 are assigned to the fi. This

implies that d0 is related to the temperature T ; if T increases then d0 should decrease. If the speci�c

energy � and the density � are known at a given lattice site, then in principle the temperature and

pressure can be calculated. By constructing a model connecting d0 to the temperature, it is possible to

incorporate the e�ects of thermal 
ow into a lattice Boltzmann algorithm consisting of the following

steps

i) Calculate �, u, and � at each site.

ii) Based on the value of � and � calculate the temperature T at each site. Use the value of T to

evaluate d0.

iii) Evaluate f
eq

i
and F

eq

i
at each site and complete the collision step.

iv) Translate the fi and Fi.

The key feature of this algorithm is that d0 is allowed to vary as a function of the local temperature at

each site. This provides an implicit coupling between the two distributions fi and Fi. The hydrody-

namic equations corresponding to this model can be obtained by applying the usual Chapman-Enskog

expansion[5] to the equations of motion. This yields

@

@t
�+r � �u = 0 (10)
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where the functions �, �, �, and � can be obtained as closed form functions of the parameters de�ning

the original lattice Boltzmann model and the local thermodynamic variables. The quantity �(1 �

d0)c
2=D can be identi�ed with the pressure and the transport coe�cients � and � are the kinematic

viscosity and thermal di�usivity. The remaining coe�cients � and � are artifacts left over from the

approximations made in developing the lattice Boltzmann model. Their signi�cance requires further

study.

This algorithm was tested using a Van der Waals equation of state for the 
uid, which required

�nding expressions for the both the temperature T and pressure P as function of the local internal

energy and density. The boundary conditions used for the distributions fi and Fi are similar to

those proposed by Chen et al.[6]. For the boundary conditions on the fi, a linear extrapolation is

made of each component to an outside boundary layer of lattice points. The linear extrapolation was

generalized for application to the energy distributions Fi. For the simulations described below, both

constant temperature boundary conditions and adiabatic boundary conditions were used. All results

are reported using arbitrary units and are only meant to illustrate some of the basic features of the

model.

As a test of the qualitative behavior of the model, two-dimensional simulations of a linear tem-

perature gradient, 
ow through a constriction, and Rayleigh-B�enard convection between two plates at

di�erent temperatures were performed. The simulations of Rayleigh-B�enard convection also required

the introduction of a gravity �eld, which was incorporated into the model as described by Martys and

Chen[7]. Periodic boundary conditions were used in the horizontal direction.

To simulate the linear temperature pro�le, the gravitational acceleration was set equal to zero and

the system was allowed to equilibrate. A plot of the temperature and density is shown in Figure 1.

Figure 1 Plot of temperature and density as a function of position.



The temperature can be seen rising from the bottom plate to the top while the density decreases. The

temperature and density pro�les are not strictly linear because the transport coe�cient � depends

on the density and temperature and the large changes in both these quantities cause some deviations

from linearity. However, the results indicate that the basic physics for simulating natural convection

is contained in the model.

Figure 2 Contour plot of temperature distribution for 
ow through a constriction.

The temperature distribution for a 
ow through a constriction is shown in Figure 2. Adiabatic

boundary conditions are applied at the walls so that no energy is lost to the boundaries. The 
ow

is from the left of the �gure and the darker regions represent higher temperatures. The 
uid heats

up in the region in front of the constriction and and then cools back down as it 
ows through the

constriction and expands into the region downstream. This is the expected behavior for a nonideal


uid, although for many real-life applications, other e�ects such as viscous heating may be signi�cant

for this kind of system.

Figure 3 Plot of vector �eld for half of the Rayleigh-B�enard simulation.

The simulations of Rayleigh-B�enard convection were performed by turning on the gravitational

acceleration and adding some arbitrary velocities to the initial condition to help initiate the Raleigh-

B�enard instability. After 10,000 timesteps, the simulation appeared to reach a steady-state with four

convective cells forming in the system. The velocity �eld representing two of the cells (half the system)



are shown in Figure 3. The upward circulation is at the two sides of the �gure and the downwards

circulation is at the center. Examination of the temperature distribution (not shown) reveals a plume

of cool liquid pressing down into the center of the region shown in Figure 3 between the two cells while

a plume of warm liquid is rising at either side. Plots of the density are similar to the temperature,

showing a downward moving plume of dense liquid at the center of the system and upward moving

plumes of lower density at either side. The simulations clearly show that the model is capable of

reproducing the expected behavior of coupled momentum and heat transfer systems, at least in simple

cases.

The results presented here indicate that modeling the internal energy using a second distrib-

tion is a viable way to incorporate thermal e�ects into the lattice Boltzmann algorithm. It should

also be possible to couple this approach to the nonlocal lattice Boltzmann algorithms used to model

multiphase-multicomponent isothermal systems and use these combined models to analyze the e�ects

of thermal transport on the dynamics of phase changes and chemical reactions in multiphase envi-

ronments. This will allow detailed simulation of many microscale systems, including microscale heat

pumps and microscale chemical reactors.

NOMENCLATURE

b: total number of lattice displacement vectors

c: magnitude of lattice displacement vectors

D: dimension of system

d: partition coe�cient between fast and slow velocities

e: lattice displacement vector

f : distribution describing local momentum and density

F : distribution describing local energy density

P : pressure

r: position vector

t: time

T : temperature

u: macroscopic velocity vector

v: microscopic velocity vector

�: local energy density

�: local kinematic viscosity

�: local energy transport coe�cient

�: local density



� : local relaxation time

�: transport coe�cient

�: transport coe�cient

Superscripts

eq: equilibrium distribution

Subscripts

i: displacement vector direction

0: zero displacement vector

�: energy equation

�: density-momentum equation
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