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Summary 
Machine learning has been proposed as a solution to several cybersecurity solutions and one of 
the most promising applications is for digital twins for intrusion detection and driving deceptive 
defense. However, machine learning techniques often result in a black-box function that is 
difficult for end users to interpret which for deception limits their ability to effectively define 
decoys. In this report, an approach to validate the equations learned are accurate is provided 
and demonstrated. Following, begins the process of addressing this issue for a model-driven 
deception technology that produces equations representing the physical process controlled by 
operation technology devices. This research was performed by applying subject matter expert 
context to machine learned models. 
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1.0 Introduction 
Honeypots, Honeynets, and Cyber Deception are a cyber security defensive technique that tries 
to cause an attacker to accept as true or valid what is false or invalid to gain an advantage in 
cyberspace. Cyber deception can be defined as planned actions taken to mislead hackers with 
the goal of causing them to take, or not take, certain actions in favor of the defenders (Yuill, 
2007). In general, deception is used to confuse an adversary and give an advantage to the party 
employing the deceptive technology. While there is a long history of cyber deception applied to 
information technology (IT) systems, only relatively recently has this technique been applied to 
operational technology (OT) systems. 

Operational technology is a unique cross section of computing and process control engineering. 
The term is defined by NIST as "hardware and software that detects or causes a change 
through the direct monitoring and/or control of physical devices, processes and events in the 
enterprise." (Stouffer, K. et al., 2017). Structures involving this technology are referred to as 
industrial control systems (ICS). 

A key differentiator for applying cyber deception to OT environments is that they include a 
physical process that underpins all the digital devices and not just data and networked services 
like IT. To make a decoy appear as part of the system, it is necessary for it to not only respond 
like an embedded field device but with data that appears to come from the physical process 
(Green, B. et al, 2017). Model-driven deception entails deploying decoy industrial control system 
devices in a cyber environment to entice and confuse potential cyber threats. Existing 
approaches use physical process models, simulated or machine learned, to act as a 
forecasting/predictive engine for the physical response to control inputs coming from decoy 
controllers. These decoy controllers are then exposed on the cyber network to entice and 
confuse potential attackers.  

If the learned model is presented in a non-understandable way, it is difficult to use. Increased 
interpretability of the backend model will allow cyber analyst/incident response personnel to 
optimally deploy defensive deception campaigns. The current technology has a limitation in how 
it presents the model to the end user, in this case a cyber security personnel. The model is 
either represented as a black box or, in the current machine learning method, an equation. To 
provide a more interpretable and usable model, this project aims to map learned physical 
process models to Subject Matter Expert (SME) derived equations to categorize the modeled 
equations into common industrial control system devices, ultimately giving the end user a choice 
in the form of what control system device decoys they want to deploy. The remainder of this 
report will outline current work being done to validate the Machine Learning (ML) method and 
SME equation derivation and increase the interpretability and usability of model-driven 
deception defense. 
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2.0 Related Work 
There are two fields of which this research pulls from. There is the field of deception which is 
focused on how to develop effective decoys and the field of modeling cyber physical systems 
using machine learning to accurately represent system behavior. This work is contributing 
knowledge for both fields.   

Recent cyber deception capabilities for OT environments have been developed that implement 
control system protocols and device information (Conpot, n.d.; Rist, Lukas, 2015). There have 
also been efforts to develop high interaction deceptions (Antonioli, D. et. al, 2016) These 
implementations do not consider the physical process these devices are controlling. ML 
approaches have been used to develop models of system operation to assist in detecting 
security events (Yan, W, et. al, 2018) but have not been used for decoys. Further research has 
been done to explore strategies for model-driven deception for cyber-physical system 
environments (Nowak et al., 2021). Various ML strategies have been evaluated for this model-
driven approach (Edgar et al., 2020). This body of work addresses the interpretability problem 
identified in this previous work. 

In recent years there has also been a push to develop reproducible ML approaches that 
resemble closer to a white box approach (Linardatos, P., 2020). A white box approach includes 
approaches such as linear regression and decision trees. On the other hand, black box 
approach includes models like deep learning or federated learning models (LeCun, Y., 2015; 
Yang, Q. et al., 2019). These models usually don’t have a heuristic representation and adapt to 
changes in data through training steps. By using an Equation Learning (EQL) engine to extract 
a heuristic representation from a black box approach such as a dense model, we can extend the 
explainability of the model by comparing the resulting equation to SME equations that are built 
from existing literature (Sahoo et al., 2018).  

Validating a black box model is usually done via accuracy study to quantify the mean standard 
error that quantifies how closely related the prediction is to the real data (Taylor, B.J., 2006). 
Additionally, the error is also quantified through standard deviation differences between the 
predicted array and the target array. The second parameter measures how well the model 
captured the variations of the target data. Capturing the variation of target data becomes useful 
when applying a model to performance issues on systems. For example, in the Diolkos project, 
the framework looks for dips in performance to reroute data to other ports to reduce impact of 
network bottlenecks (Bel, O. et al., 2021). If the model can't correctly capture the variations in 
the data, the framework runs the risk of rerouting packets from a port that may be performing 
without issues to a port that may be starting to get overwhelmed. 
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3.0 Research Objectives 
The goal of this research was to improve the understandability of the Machine Learning learned 
equations and model of a Cyber Physical System (CPS). Deception defense could be a very 
useful technique for defending CPS but it is predicated on the ability of defenders to define 
effective and relevant decoys to the system they are defending. In this report we address the 
challenge of increasing domain awareness for AI in both cyber deception strategy and control 
engineering/theory to improve deception campaign deployment.  Current approaches to learning 
a model of a CPS uses equation learning to generate a series of formulas representing data 
collected from an operational system (Edgar, et al., 2020). These equations provide a model to 
drive a simulation of the system to enable the deployment of decoy controllers and sensors 
backed by realistic data. However, without context on what the learned equations represent it is 
hard to determine how to deploy realistic and effective deceptions. Comparing the learned 
equations with well-established domain relationships for control equations, we can better inform 
the AI about the physical laws and limitations of how the CPS operates. As an added benefit the 
cyber security personnel also gains insight into what the equations represent and can better 
adapt their defensive strategy. 

The scope of this work was to increase the interpretability of a machine learned model for 
Industrial Control System (ICS) physical processes. Within this scope, interpretability can be 
defined as the confidence that a human would have in the accurateness and appropriateness of 
the machine learned model.  

The objectives of this work were the following: 

● Develop a set of subject matter expert (SME) equations that represent industrial control 
system devices, scoped to power distribution systems. 

● Develop a module that uses the SME equations to ingest input values and produce sample 
output timeseries datasets 

● Develop a methodology for comparing SME equation output to machine learned model 
output to categorize ML system models as specific control system devices 

● Upon successful categorization, develop a recommendation system for deception/decoy 
deployments 
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4.0 Data Acquisition 
To begin this research, it was necessary to have a system from which data could be generated 
for ML and validation.  For this work a modified IEEE 123-node power distribution system model, 
implemented in Opal-RT’s HyperSim real-time power system simulator was adapted for this 
research (Comprehensive Test Feeder – IEEE PES Test Feeder, n.d.; Jinsiwale, et al., 2023). 
The power system model was unmodified, but the relays and data-to-be-saved were updated for 
this project. Specifically, saved data was narrowed in scope to focus on the inverters in the model, 
as well as a relay set to protect the inverter with basic protection settings (e.g., over/under voltage, 
over current, etc.). Additionally, the option to trigger a customizable fault was added. This fault 
can be used to assist in training ML approaches to better match actual grid operations. 
 
The chosen HyperSim model of an inverter includes example variables shown in Table 1 below. 
The last column indicates whether the variable is an input, output, or intermediate variable in 
relation to the inverter control function. The ML methodology will focus on learning the relationship 
between the output variables as a mathematical relationship with the input variables. Intermediate 
values, such as the Vref variables, can be described as internal to the control function. They are 
not input values that would be received via digital or analog signaling, nor are they sent via digital 
or analog signaling as outputs from the physical device. In this use case, the use of the Vref 
variable would be internal to a representative device model, meaning the variable and assigned 
values are only passed between internal components of the control device.  The intermediate 
values were explored as features in the ML method, but ultimately should be ignored as a practical 
application of this technique using live cyber network data would not include those variables. 

Table 1 Example Inverter variables 

Variable Name 
Signal 

Identifier 

Relationship 
to Inverter 

Control 
Function 

Inverter_51.DEV4.Iabc(Ia1) Iag INPUT 

Inverter_51.DEV4.Iabc(Ib1) Ibg INPUT 

Inverter_51.DEV4.Iabc(Ic1) Icg INPUT 

Inverter_51.DEV4.Pref_PU_set.y P* INPUT 

Inverter_51.DEV4.Qref_PU_set.y Q* INPUT 

Inverter_51.DEV4.Sbase_set.y Constant INPUT 

Inverter_51.DEV4.Vabc(Va1) Vag INPUT 

Inverter_51.DEV4.Vabc(Vb1) Vbg INPUT 

Inverter_51.DEV4.Vabc(Vc1) Vcg INPUT 

Inverter_51.DEV4.Vinv_ref(Va_ref) Varef Intermediate 

Inverter_51.DEV4.Vinv_ref(Vb_ref) Vbref Intermediate 
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Inverter_51.DEV4.Vinv_ref(Vc_ref) Vcref Intermediate 

Inverter_51.DEV5.P_MW P OUTPUT 

Inverter_51.DEV5.Q_MW Q OUTPUT 

Inverter_51.DEV5.Vabc_rms(Va_rms) Varms OUTPUT 

Inverter_51.DEV5.Vabc_rms(Vb_rms) Vbrms OUTPUT 

Inverter_51.DEV5.Vabc_rms(Vc_rms) Vcrms OUTPUT 
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5.0 Subject Matter Expert Derived Equations 

 
Figure 1 Methodology for SME Equation Derivation and Validation 

The methodology to derive the SME equations for various devices in the grid model is shown in 
Figure 1. The SME analyzes the device models used in the simulation environment, defined in 
HyperSim in this case, and compares them with the generic models of those devices in the 
existing literature and based on prior knowledge of the SME. The information from these models 
is combined to derive equations for the devices under consideration. The derived equations are 
then implemented in a lightweight Python script, which emulates the behavior of the device based 
on the derived equations. For validating the accuracy of the derived equations, the device input 
data acquired from the simulation model, as described in Section 4, is fed into the Python-based 
device emulator and the outputs of this emulator are statistically compared, such as the 
Kolmogorov-Smirnov (KS) test (Frank J. M., 1951), with the acquired output data. This provides 
a measure of validation of the derived equations if the statistical distances between the outputs 
from the simulation model and the derived equations are within acceptable thresholds. 

 
As a case study, the rest of this section describes the derivation of equations that represent a 
single-loop control grid-forming inverter. Specifically, Figure 2 shows the system for which the 
SME equations are derived in this case study. This model is developed by considering the 
HyperSim model and grid-forming inverter models that exist in literature (Du, W. et al., 2020; Du, 
W. et al., 2021; Chen, M. et al., 2022) 
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Figure 2 Single-loop control-based grid-forming voltage source inverter 
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The objective here is to derive a canonical relationship between the inputs and the outputs of the 
inverter, namely, 𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂

𝒈𝒈  (and 𝑰𝑰𝒂𝒂𝒂𝒂𝒂𝒂
𝒈𝒈 ) and 𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊  (and 𝑰𝑰𝒂𝒂𝒂𝒂𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊 ). We have broken down the derivation of 

these relationships into various blocks of the “Control” block for simplicity. The equations that 
describe each of these blocks are delineated below: 

 
1. ABC to αβ-Frame: 

⎣
⎢
⎢
⎡
𝑽𝑽𝜶𝜶
𝑽𝑽𝜷𝜷
𝑰𝑰𝜶𝜶
𝑰𝑰𝜷𝜷 ⎦
⎥
⎥
⎤

=
𝟐𝟐
𝟑𝟑

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝟏𝟏

−𝟏𝟏
𝟐𝟐

−𝟏𝟏
𝟐𝟐

    𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎
√𝟑𝟑
𝟐𝟐

−√𝟑𝟑
𝟐𝟐

  𝟎𝟎 𝟎𝟎 𝟎𝟎

𝟎𝟎
𝟎𝟎

𝟎𝟎
𝟎𝟎

𝟎𝟎
𝟎𝟎   
𝟏𝟏

−𝟏𝟏
𝟐𝟐

−𝟏𝟏
𝟐𝟐

𝟎𝟎
√𝟑𝟑
𝟐𝟐

−√𝟑𝟑
𝟐𝟐 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝑽𝑽𝒂𝒂

𝒈𝒈

𝑽𝑽𝒃𝒃
𝒈𝒈

𝑽𝑽𝒄𝒄
𝒈𝒈

𝑰𝑰𝒂𝒂
𝒈𝒈

𝑰𝑰𝒃𝒃
𝒈𝒈

𝑰𝑰𝒄𝒄
𝒈𝒈 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

2. Power (measured) Calculation: 

𝑷𝑷𝒎𝒎 =  
𝟑𝟑
𝟐𝟐
�𝑽𝑽𝜶𝜶𝑰𝑰𝜶𝜶 + 𝑽𝑽𝜷𝜷𝑰𝑰𝜷𝜷� 

𝑸𝑸𝒎𝒎 =  
𝟑𝟑
𝟐𝟐
�𝑽𝑽𝜶𝜶𝑰𝑰𝜷𝜷 − 𝑽𝑽𝜷𝜷𝑰𝑰𝜶𝜶� 

𝑽𝑽 =  �𝑽𝑽𝜶𝜶𝟐𝟐 + 𝑽𝑽𝜷𝜷𝟐𝟐  

 
3. Q-V and P-ω Droop Control: 

𝑽𝑽∗ −  𝑽𝑽𝟎𝟎 =  𝒎𝒎𝑸𝑸�𝑸𝑸𝒎𝒎𝒎𝒎 −  𝑸𝑸∗� 
𝝎𝝎∗ −  𝝎𝝎𝟎𝟎 =  𝒎𝒎𝑷𝑷�𝑷𝑷𝒎𝒎𝒎𝒎 −  𝑷𝑷∗� 

 
where 𝑷𝑷𝒎𝒎𝒎𝒎 , 𝑸𝑸𝒎𝒎𝒎𝒎, and 𝑽𝑽𝒇𝒇 can be represented in the frequency domain as follows: 
 

𝑷𝑷𝒎𝒎𝒎𝒎 =  
𝟏𝟏

𝟏𝟏+  𝝉𝝉𝝉𝝉
𝑷𝑷𝒎𝒎 

 

𝑸𝑸𝒎𝒎𝒎𝒎 =  
𝟏𝟏

𝟏𝟏+  𝝉𝝉𝝉𝝉
𝑸𝑸𝒎𝒎 

 

𝑽𝑽𝒇𝒇 =  
𝟏𝟏

𝟏𝟏+  𝝉𝝉𝝉𝝉
𝑽𝑽 

 
𝒎𝒎𝑸𝑸,𝒎𝒎𝑷𝑷, 𝝎𝝎𝟎𝟎, 𝑽𝑽𝟎𝟎, 𝑸𝑸∗, 𝑷𝑷∗, and 𝝉𝝉 are inputs (constants) to the controller. 
 
4. Voltage Control: 

𝜽𝜽∗ = �𝝎𝝎∗𝒅𝒅𝒅𝒅 

𝑽𝑽𝑷𝑷𝑷𝑷∗ =  𝑲𝑲𝑷𝑷�𝑽𝑽∗ − 𝑽𝑽𝒇𝒇� +𝑲𝑲𝑰𝑰 ��𝑽𝑽∗ − 𝑽𝑽𝒇𝒇�𝒅𝒅𝒅𝒅 

 
𝑲𝑲𝑷𝑷 and 𝑲𝑲𝑰𝑰 are the PI controller proportional and integral gains, respectively (constant inputs to 
the controller). 
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5. Output of Control block: 

𝑽𝑽𝒓𝒓𝒓𝒓𝒓𝒓 =  

⎣
⎢
⎢
⎢
⎢

𝑽𝑽𝑷𝑷𝑷𝑷∗ 𝒔𝒔𝒔𝒔𝒔𝒔(𝜽𝜽∗)

𝑽𝑽𝑷𝑷𝑷𝑷∗ 𝒔𝒔𝒔𝒔𝒔𝒔(𝜽𝜽∗ +
𝟐𝟐𝝅𝝅
𝟑𝟑

)

𝑽𝑽𝑷𝑷𝑷𝑷∗ 𝒔𝒔𝒔𝒔𝒔𝒔(𝜽𝜽∗ −
𝟐𝟐𝝅𝝅
𝟑𝟑

)⎦
⎥
⎥
⎥
⎥

 

 
The final stage is to derive the relationship between 𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊  and 𝑽𝑽𝒓𝒓𝒓𝒓𝒓𝒓 based on the average inverter 
model and is given by: 

𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊 =  
𝑽𝑽𝒅𝒅𝒅𝒅
𝟐𝟐

+ 𝑽𝑽𝒓𝒓𝒓𝒓𝒓𝒓 ∗ 𝑽𝑽𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 
where 𝑽𝑽𝒅𝒅𝒅𝒅 is the DC link voltage, and 𝑽𝑽𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 is the base voltage used to calculate the actual value 
of voltage from per unit (pu) values. 
 
For an accurate representation of the data that an inverter exchanges over the communication 
networks, the root mean square (rms) value of the voltages is calculated to signify the outputs of 
the inverter as given below: 

𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓 =  �
𝟏𝟏
𝑻𝑻

 � (𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊 )𝟐𝟐
𝒕𝒕

𝒕𝒕−𝑻𝑻
 

where 𝒕𝒕 − 𝑻𝑻 represents the time window over which the rms value is calculated. 
 
The equation above represents the calculation of the rms voltage in the continuous time domain. 
In the discrete time domain, the rms voltage is calculated as follows: 

𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂𝒓𝒓𝒓𝒓𝒓𝒓 =  �
𝟏𝟏
𝑵𝑵

 � (𝑽𝑽𝒂𝒂𝒂𝒂𝒂𝒂𝒊𝒊𝒊𝒊𝒊𝒊 )𝟐𝟐
𝒏𝒏

𝒏𝒏 −𝑵𝑵

 

where 𝒏𝒏 − 𝑵𝑵 is the number of samples over which the rms value is calculated.  
 
The Kolmogorov-Smirnov (KS) distance test is one of the measures we have used for the 
validation of the SME derived equations when referenced with the simulation models. A 
comparison of the inverter controller output reference voltage, 𝑽𝑽𝒓𝒓𝒓𝒓𝒓𝒓, from the dataset and the SME 
derived equations is shown in Figure 3. The plot shows the cumulative distribution functions (CDF) 
of the two outputs along with the KS-distance, which is a measure of the maximum distance 
between the two CDFs. The small magnitude of the KS-distance (=0.024) is evident from the plot 
as the distributions of the two outputs are very similar. 
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Figure 3 Cumulative Distribution Functions of Vref from the Reference Dataset vs the SME 

Derived Equations 

 

KS-Distance = 0.024
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6.0 Machine Learning Methodology 
The methods chosen in this research are an initial attempt to compare outputs in as simple a 
manner as possible. Other, more complex, methods may be explored in the future. Currently, 
most of the effort has focused on validating that both the SME equations and ML equations 
perform adequately so that future comparisons can be made between their respective outputs to 
categorize the equation being learned by the ML method.  

The chosen ML method for this research involved Equation Learner code (EQL) researched 
previously and evaluated in a different control system context (Sahoo, S. et al., 2018; Edgar et 
al., 2020) The EQL code relates TensorFlow equations to regular equations. Their customized 
EQL layer outputs a tensor containing chunks of data that have been passed through the 
corresponding activation functions, and these contain all the functions that can be modeled 
using the EQL engine. These chunks are used as construction pieces for the final equation that 
captures the target values, such as the output voltage of an inverter in this works use case.  We 
compare such equations to equations constructed from literature and to raw data to measure 
how well they performed.  

The EQL engine has challenges, including the issue of scales in training models. The data used 
from the HyperSim model is on different scales that vary up to 1018 nanoseconds for timesteps 
and up to 10-6 volts for reference voltages. This means that the data needs some 
preprocessing to set all the features on similar scales so that the model can correctly train on 
the incoming data.  To give the EQL engine a chance to create equations that could model the 
different components we grouped the individual features by value. The reason the features are 
grouped is because it allows the values to be closely related in range, which reduces noise 
introduced in the model.  

When investigating how to compare the ML learned equations with the SME derived equations, 
it was discovered that directly comparing the characteristics of the equations themselves was 
likely infeasible. For example, the potential set of equations produced using ML may not 
represent the dataset sufficiently to compare to the derived equations accurately. Sequential 
runs of the ML algorithm over the same data produces a unique equation despite tuning. The 
following subsections describe the results of the initial comparison attempts. 

6.1 Comparing EQL to SME 
 
When comparing the output equations of the EQL engine to subject matter expert's equations, it 
becomes difficult to identify if an equation is similar since there are only so many actions that can 
be modeled by the EQL. For example, the EQL engine cannot model integrals. Therefore, to 
compare the equations we had to compare the output data of the EQL equations to the output 
data when using the SME’s equations. Another factor that limits the equation comparison is the 
model structure. For more complex data, like power data, we may not be able to capture all the 
intricacies of the data, which makes the resulting equation perform sub-par compared to that of a 
subject matter expert.  

 
Grouping features by range produced equations that produced output data with a similar standard 
deviation compared to the data that was outputted from the SME equations. When testing with 
similar range data, we found that grouping worked well for the Vref values, which have a smaller 
range. When attempting a similar approach for larger range data, such as the raw voltage of the 
inverter, we found that the equation generated by the EQL engine fails to capture the mean and 



PNNL-34963 

Machine Learning Methodology 11 
 

standard deviation of the data. This can be an effect of using a normalizer on the data when 
sending it through the EQL model. To mitigate this, we normalize the data going through the EQL 
equation and then inverse transform the resulting data.  

 
This approach’s results for the Vainv are shown in Table 2. The values for mean and standard 
deviation of the data are shown, comparing EQL learned equations to the equation derived by an 
SME. We can see that the mean is two times higher compared to the result from using the SME’s 
equation and a higher standard deviation. This means that the EQL agent captured more 
variations which impacted the resulting mean. 

Table 2 Mean and Standard Deviation of Va
inv 

Modeling Method Mean Standard Deviation 
EQL 1089.23 44.13 
SME Equation 549.93 21.97 

 
The resulting equations for Varef, Vbref, and Vcref were generated by the EQL method for the 
reference voltage intermediate values. Figure 4 shows the graph representation of the equation 
for Varef. The equations use the reference voltage values as inputs to the equations. This 
contrasts with the SME’s equation which uses other features present in the dataset like the 
reference power values (Pref and Qref) as the way to calculate the reference voltage. The variable 
X_3 corresponds to Varef, X_4 to Vbref, and X_5 to Vcref. 

6.2 Comparing EQL and SME to Raw Data 
 
This section describes the initial steps taken to validate the performance of the EQL and the SME 
derived equations. This step is necessary before results can be compared to categorize the EQL 
learned equations. The mean and standard deviation of the data produced by the EQL model, 
SME equations, and raw data from the HyperSim model were compared. They are shown in Table 
3 below. When looking at the data produced by the EQL equations we can see that they matched 
the SME’s equation in terms of standard deviation for the Varef feature. But in terms of the mean 

Figure 4: Va
ref EQL Equation Graph 
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for that feature, the EQL equations were closer to matching the mean of the raw data compared 
to the data produced by the SME’s equations.  

 

Table 3 Mean and Standard Deviation of Va
ref 

Modeling Method Mean Standard Deviation 
EQL 0.0004 0.05 
SME Equation -0.0002 0.06 
HyperSim 0.0003 0.11 

 
To get a clearer idea on how well the EQL performs we explore the co-similarity between the 

generated data and the expected data from the testing dataset. This gives us a measure of the 
cosine angle between both arrays. This angle is used to determine if both arrays are roughly 
pointing in the same direction. However, the cosine similarities for features with a large range, 
such as the voltage, remain around 99% for all potential combinations of approaches between 
using the SME equations or using the EQL equations and the raw data from the dataset. This 
shows that even though the SME equation did not do a good job capturing the mean or standard 
deviation it still managed to capture the overall trend of the data.  

When exploring other features, such as the Vainv feature, that have a higher range of value 
compared to the reference voltage we can see that the EQL agent produced an equation that 
produced data that is closer to the raw data compared to the subject matter expert. This is shown 
in Table 4 below.  

Table 4 Mean and Standard Deviation of Va
inv 

Modeling Method Mean Standard Deviation 
EQL 1089.23 44.13 
SME Equation 549.93 21.97 
HyperSim 1045.51 65.81 
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7.0 Discussion 
The results of initial comparison of EQL generated equations to SME equations indicated the 
need for improvement in both SME equation derivation and EQL tuning. As indicated in Section 
6.1, the mean and standard deviation for the equations for the output voltage (Vainv) values 
vary between SME and EQL. However, when looking at the mean and standard deviation for 
the output reference voltage (Varef), the values more closely match between EQL and SME and 
additionally match the reference dataset. 

7.1 EQL and SME Validation 

Improvements on the EQL method could be made to further increase the accuracy of the 
learned equations. The current method is only capable of representing addition, subtraction, 
multiplication, division, sin, and cosine. Theoretically, with enough dense layers, a model could 
approximate integrals and more complex operations but will need a lot of data and time to run 
such a test. Additionally, in the future, experimentation with other types of network nodes such 
as relays will be conducted. Finally, it will be necessary to fine tune the EQL model so that it 
produces more consistent results across runs. The current issue with this version is that the 
model is not seeded; therefore, the weights are randomly initialized at each run which causes 
slight variations on the results. Also, the model needs to be fined tuned in terms of network 
parameters such as epochs, training or testing set sizes. Currently for all features we used 
15000 timesteps for training and 7500 timesteps for testing. This setup worked well for Varef 
and Vainv but may struggle for other features that need smaller or bigger sets to correctly 
capture variations in data. An example of features where this setup doesn’t work as well is Vbref 
and Vcref, for which the SME’s equation produced a closer standard deviation and mean, 
respectively, compared to the raw data. 

7.2 Interpretability 
 
The hypothesized method by which interpretability will be applied is shown in Figure 5. The 
variable set from a control system model, in this case HyperSim, is broken into the set of inputs 
and outputs for different device functions. Then those values are fed to the EQL, and a learned 
equation model is produced. Next, the original input and output data is fed to the learned EQL 
model and a validated SME derived equation. Finally, the resultant datasets are comparatively 
analyzed to evaluate the similarity between them. 

 

 
Figure 5 Interpretability Method 
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Increased interpretability for this model-driven deception method will require further validation 
before categorization can be explored. The objective at that point should be to compare SME and 
EQL results and match the EQL equations to the best fit within the set of SME equations. The 
current progress has shown that the SME equations and EQL perform relatively well when 
comparing to the shared reference dataset but would more closely match with further tuning. 
Further, it will be necessary to include other devices in this tuning process as well. Future work 
will include the derivation of SME equations for more power distribution system devices. This will 
allow for the comparison of EQL equations to multiple SME equations with the intent to find the 
best match and evaluate if the best match is the appropriate choice of device based on the data 
points being used in the equation. For example, by allowing the EQL to generate equations for all 
the variables within the dataset, including those related to inverter controller, relays, generator 
controller and others, it may be possible to identify what type of device the EQL equation 
represents. One simple approach to this would be to calculate the mean and standard deviation 
for each equation, EQL and SME, and evaluate the closest match for accuracy. From mapping 
learned equations to device types enables a user to quickly understand what is represented in 
their model and how decoys can be added to it. 

 



PNNL-34963 

Additional Human Factors Considerations 15 
 

8.0 Additional Human Factors Considerations 
Throughout the breadth of this work, a few key research questions and considerations where 
identified which warrant further efforts to study the method by which model driven deception is 
implemented using machine learning techniques. Most of these questions and considerations 
relate to the human factor element in pairing ML/AI solutions with human beings. The following 
subsections outline the major outstanding research questions. 

8.1 Questions on Feedback on Recommended Decoys 

The largest body of this research focused on SME equation derivation and ML/AI produced 
equation categorization, however, questions arose around whether recommended decoys and 
deceptions would make sense when a human was introduced into the loop. For example, when 
and if the ML/AI algorithm categorizes a specific device type and recommends that a decoy of 
this device be created, a human may or may not accept that recommendation given their 
knowledge of the network or control system being used to generate a model. This question is 
further confounded when you consider the varying expertise of individuals who would interface 
with this type of recommender system. For example, a cyber engineer and a control system 
engineer may have very different responses to the recommended decoys. The research team 
for this body of work identified that once a recommender system is devised, it will be necessary 
to solicit feedback on the recommendations made from both cyber experts and control system 
experts to assess the human factor in a system such as this. 

8.2 Questions on Generation of SME Equations 

Currently, the research team solicit SME derived equations by having an SME build a 
normalized equation from existing control system models. It has not been determined how well 
these SME equations perform compared to other methods for generating SME derived 
equations. For example, other modeling technologies could be considered such as Modelica, 
GridLAB-D, or MATLAB because their representation of the control algorithms for various 
devices may differ from HyperSim. It is also relevant to perform a deeper investigation into 
literature on control algorithms to validate the current SME equations. Further, soliciting 
feedback from other SMEs would provide additional validation of accuracy and appropriateness. 

8.3 Questions on Live System Data Input Manipulation 

Early experimentation with EQL revealed that targeting equations generated for output variables 
that used other variables in the dataset as inputs was more successful than allowing the EQL to 
generate equations for all variables regardless of their use in the known control algorithm. 
However, in a more commercial ready implementation of this technology, live packet capture 
data of a control system would be used in the ML/AI modeling. This live packet capture data 
would not have the context of data points being inputs versus outputs.  

The research team hypothesized that it may be possible to parse packet capture data and apply 
context to determine an initial categorization of device and in turn, determine whether the 
variables are inputs or outputs. It was theorized that based on request type messages versus 
response type messages and the general structure of the data, a determination could be made 
on what type of device was running at a given IP address. Further assessment of capturing live 
network data should be performed in the future. 
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8.4 Questions on Attack Objective Mapping 

Future work should also be conducted to map adversarial interactions with decoys to specific 
Tactics, Techniques, and Procedures (TTPs). Specifically analyzing interactions with control 
system decoys may reveal attacker objectives such as their intended effect on the physical 
system being controlled. 
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9.0 Conclusion 
In this report, the first steps towards comparing equation-based ML models to SME 
representations of control functions for CPS was discussed. This initial research utilized existing 
modeling capabilities to generate power distribution system data to train the EQL method and 
develop SME informed equations for the included devices. An initial equation for a grid forming 
inverter controller was developed. 

Initial validation of the SME derived equation and the EQL method was performed as the first 
step before comparisons between the respective representations of the control device can be 
made. Additional tuning is necessary to validate the generation of SME equations and EQL 
models. In general, the method for comparing equations seems plausible, but until validation of 
both SME and EQL equations is done, and additional SME equations are generated, the results 
remain to be seen.  

The research also began revealing additional research questions around the usability of \this 
model-driven deception technology. These questions include details for feedback on a 
recommendation system for decoy deployments, questions on generating SME equations, 
questions on using live system data versus modeled data, and questions on attack objective 
mapping. 
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