
Choose an item. 

PNNL-34901 

Navier: Dataflow 
Architecture for 
Computation Chemistry 
September 2023 

Roberto Gioiosa 
Eduardo Aprá 
Andres Marquez 
Ajay Panyala 
Rizwan Ashraf 
Lenny Guo  

Prepared for the U.S. Department of Energy  
under Contract DE-AC05-76RL01830 



 
 
 
 
 
 

DISCLAIMER 
 

This report was prepared as an account of work sponsored by an agency of the 
United States Government. Neither the United States Government nor any agency 
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any 
warranty, express or implied, or assumes any legal liability or responsibi l it y 
for the accuracy, completeness, or usefulness of any information, apparat u s, 
product, or process disclosed, or represents that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, 
process, or service by trade name, trademark, manufacturer, or otherwise does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof, or Battelle Memorial 
Institute. The views and opinions of authors expressed herein do not necessar ily 
state or reflect those of the United States Government or any agency thereof. 

 
 

PACIFIC NORTHWEST NATIONAL LABORATORY 
operated by 
BATTELLE 

for the 
UNITED STATES DEPARTMENT OF ENERGY 

under Contract DE-AC05-76RL01830 
 
 

Printed in the United States of America 
 

Available to DOE and DOE contractors from 
the Office of Scientific and Technical 

Information, 
P.O. Box 62, Oak Ridge, TN 37831-0062 

www.osti.gov 
ph:  (865) 576-8401 
fox: (865) 576-5728 

email: reports@osti.gov 
 

Available to the public from the National Technical Information Service 
5301 Shawnee Rd., Alexandria, VA 22312 

ph: (800) 553-NTIS (6847) 
 or (703) 605-6000 
email:  info@ntis.gov 

Online ordering: http://www.ntis.gov 
 
 
 
 
 
 
 
 
 
 
 
 

 

http://www.osti.gov/
mailto:info@ntis.gov
http://www.ntls.gov/


PNNL-34901 

Navier: Dataflow Architecture for Computation 
Chemistry 

September 2023 

Roberto Gioiosa 
Eduardo Aprá 
Andres Marquez 
Ajay Panyala 
Rizwan Ashraf 
Lenny Guo  

Prepared for 
the U.S. Department of Energy 
under Contract DE-AC05-76RL01830 

Pacific Northwest National Laboratory 
Richland, Washington 99354 



PNNL-34901  

Abstract ii

Abstract 
Navier’s objectives were two evaluate the use of emerging technologies, especially dataflow 
accelerators, for high-performance computing (HPC) applications, specifically in the domain of 
chemistry, and to develop a prototype software stack to support such applications. Navier builds 
on capabilities previously developed by synergistic projects, such as PNNL Data Model 
Convergence (DMC) LDRD Hardware Advanced Workflows (HAW) and DuOMO, as well as DOE 
ARIAA. 

Throughout its 18 months, the Navier team developed new capabilities and artifacts at all levels 
of the HW/SW stack, provided a seamless way to integrate novel computing architectures 
(Sambanova SN10 and Xilinx Versal AI) into an existing software stack, developed chemistry 
workflows, data analytics tools, and HPC molecular dynamics workflows that leverage the 
developed stack and PNNL institutional investments in emerging architectures. Navier also 
explored the use of active learning to accelerate a computational chemistry workflow for organic 
molecules on PNNL Junction cluster (in collaboration with AMD/Xilinx). Navier developed tools, 
methodologies, and studies for hardware software co-design and (sparse) dataflow accelerators 
that are composable and can be used together or separately. These methodologies are now used 
in other projects, such as DOE AMAIS and HPDA.  

This report describes Navier’s achievement, the developed tools and methodologies, and the 
research findings and conclusions. 
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Summary 
This final report describes the research activities performed during the execution of the DMC 
Navier project. Navier made contributions to the following areas: 

• Evaluation of emerging architectures and extremely heterogeneous systems: Navier
explored the use of Sambanova SN10, Xilinx AIE, and the PNNL Junction cluster.

• Development of a composable software stack for extremely heterogeneous systems:
Navier enhanced COMET and MCL to support emerging architectures, including FPGA
and dataflow architectures. Moreover, Navier software stack enables users to leverage
multiple heterogeneous accelerators at the same time.

• Development of application workflows (Chemistry CCSD, computational fluid dynamics,
data analytics, AI scientific framework), benchmarks, and proxy applications to
demonstrate the developed software stack and to act as drivers of HW/SW co-design
studies.

• Development of HW/SW co-design methodologies and tools to perform co-design of full
applications and architectures using realistic input sets.

All developed code (except code developed under NDA) is/will be released as open-source code 
on PNNL github account. 
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1.0 Introduction 
Navier addresses the challenges and shortcomings of current dataflow architectures and software 
stacks for high-performance computing (HPC). It aims at developing the required hardware and 
software capabilities to enable domain scientists to fully leverage recent advantages in processing 
and memory architectures and provide a clear path to migrate and port scientific applications to 
future supercomputers. Specifically, Navier set three main objectives: 

1. Develop a flexible and composable system software stack that allows scientists to
leverage emerging (dataflow) architectures.

2. Explore novel hardware concepts for sparse dataflow architectures to support current and
future scientific applications and workflows.

3. Develop proxy applications and full methods derived from NWChemEX using the
proposed high-level language and system software.

Navier’s objectives were two evaluate the use of emerging technologies, especially dataflow 
accelerators, for high-performance computing (HPC) applications, specifically in the domain of 
chemistry, and to develop a prototype software stack to support such applications. Navier builds 
on capabilities previously developed by synergistic projects, such as PNNL Data Model 
Convergence (DMC) LDRD Hardware Advanced Workflows (HAW) and DuOMO, as well as DOE 
ARIAA. 

Navier overarching objective was to enable HW/SW co-design of full HPC, data analytics, and AI 
applications on complex heterogeneous systems, such as PNNL Junction, which consists of 48 
compute nodes equipped with AMD CPU, AMD GPU, Xilinx Versal ACAP (FPGA + AI Engine), 
and Xilinx SmartNICs. All the activities performed were aimed at developing capabilities and 
methodologies that allow domains scientists to execute scientific workflows on heterogeneous 
systems and, at the same time, computer scientists to perform HW/SW co-design using the same 
(unmodified) applications and data sets. 

Throughout its 18 months, the Navier team developed new capabilities and artifacts at all levels 
of the HW/SW stack, provided a seamless way to integrate novel computing architectures 
(Sambanova SN10 and Xilinx Versal AI) into an existing software stack, developed chemistry 
workflows, data analytics tools, and HPC molecular dynamics workflows that leverage the 
developed stack and PNNL institutional investments in emerging architectures. Navier also 
explored the use of active learning to accelerate a computational chemistry workflow for organic 
molecules on PNNL Junction cluster (in collaboration with AMD/Xilinx). Navier developed tools, 
methodologies, and studies for hardware software co-design and (sparse) dataflow accelerators 
that are composable and can be used together or separately. These methodologies are now used 
in other projects, such as DOE AMAIS and HPDA.  

This report describes the main technical and research activities performed during the execution 
of the projects and provides some initial results, technical insights, and conclusions of the 
research. 
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2.0 Hardware Architectures and Testbeds 
Navier heavily relied on the availability of emerging architectures at PNNL. One of the main 
objectives was to provide a feasible way to domain scientists to leverage PNNL investment in 
emerging computer architectures and to understand the feasibility of using such architectures for 
scientific applications and data analytics. 

2.1 Xilinx Versal ACAP AI Engine 

Xilinx Versal devices contain a mix of building blocks designed for efficient acceleration of 
compute problems. They contain an adaptive programmable logic fabric that allows the 
composition of application-specific circuits. This fabric has been shown to be capable of very high-
throughput computation with flexible data types. Many devices in the Versal family also contain a 
dense mesh of hundreds of Vector-VLIW processors (AI Engines) combined with distributed 
memory blocks and associated DMAs. These coarse-grained reconfigurable resources allow 
efficient and flexible computation of dense tensor operations using fixed- and floating-point data 
types. The device’s compute-oriented fabrics are complemented with an on-die ARM processor 
subsystem and are connected to external memories using a high-bandwidth network- on-chip 
interconnect. The combination of these specialized fabrics within a single device enables optimal 
mapping of the constituent parts of an application to area and power-efficient implementation 
methodology. Efficient implementations leverage dataflow implementation styles by using 
explicitly scheduled data transfers to orchestrate overlapping of data transfer and computation. 
Xilinx has addressed the challenge of programming this heterogeneous mix of fabrics in two ways. 
The first is through vendor tools that capture compute problems in a DSL (e.g., TensorFlow or 
Pytorch for AI, or P4 for packet processing) and compiles them to an efficient implementation on 
a Versal device. Xilinx has also championed a “white-box” open compilation flow using MLIR. This 
approach exposes the capabilities of the Xilinx fabrics at progressively lower abstraction levels 
and welcomes integration with third-party tools at all abstraction layers, which makes Xilinx Versal 
a promising and attractive target for integration with our proposed compiler.

2.2 PNNL Junction Institutional Cluster 

PNNL Junction is a distributed heterogeneous cluster that consists of 48 computer nodes 
featuring several computing devices: 

• 2x AMD EPYC 7543 32-Core Processor
• 256GB DDR4-3200 memory
• 1x AMD MI100 Instinct GPU
• 1x Xilinx VCK5000 FPGA
• 1x Xilinx SN1000 dual port 100Gb/s SmartNIC
• 1x Mellanox HDR-100 ConnectX-6 InfinBand HBA
• 1x 960GB SSD

From Navier’s perspective, Junction is an ideal testbed to explore 1) the effectiveness of Xilinx 
FPGA and AIE included in the VCK5000 boards for scientific computing and data analytics; 2) the 
concurrent use of CPU, GPU, FPGA, and AIE and to develop novel scheduling and mapping 
algorithms in the runtime; 3) HW/SW co-design through architectural emulation using FPGA; and 
5) code generation for Xilinx AIE.
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2.3 Sambanova Cardinal SN10 

The SambaNova Reconfigurable Dataflow Architecture (RDA) is a computing architecture 
designed to efficiently run applications that expose dataflow patterns, which range from traditional 
scientific simulations to recent AI methods. With SambaNova RDA, application-specific 
computational graphs are mapped to a set of reconfigurable processing, memory, and switch 
units for optimal execution on the available hardware. The RDA provides a flexible, dataflow 
execution model that pipelines operations, enables programmable data access patterns, and 
minimizes excess data movement. The architecture enables a broad set of highly parallelizable 
patterns contained within dataflow graphs to be efficiently programmed as a combination of 
compute, memory, and communication networks. This system has been designed to ease the 
task of running AI applications and allow users to leverage high-level programming frameworks, 
such as PyTorch and TensorFlow. The SambaNova compiler extracts dataflow information from 
the algorithmic representations and produces the computational graph that is mapped to the 
hardware by the runtime. While it is possible to produce computational graphs from other sources, 
other than PyTorch and TensorFlow, this option generally requires experience with mapping 
algorithms to spatial accelerators. 
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3.0 Software Stack for HW/SW Co-Design 
 In true spirit with the main DMC objectives, 
rhe Navier team developed an integrated 
and composable full software stack for 
converged applications and architectures. 
As explained above, Navier builds on 
capabilities previously developed in other 
synergistic projects, thigh them together, and 
integrate/extend them to provide a full 
execution environment of scientific 
applications, data analytics, and AI 
workflows on current and emerging 
heterogeneous architectures. Figure 1 
shows a graphical representation of the 
software stack. Applications from various 
domains can be developed using domain-
specific languages (e.g., PyTorch for AI or Lamellar for data analytics). The user code is parsed 
by the COMET compiler (Section 3.1) which generates 1) the object code for the target 
heterogenous device and 2) the MCL host code that drives the devices. The MCL runtime (Section 
3.2) encapsulates kernels into tasks, map tasks to available heterogeneous devices, and 
orchestrates data movement to/from devices, leveraging data locality whenever possible. 
Through MCL and COMET, user applications can leverage current (e.g., CPU and GPU) and 
emerging (e.g., FPGA and dataflow) architectures. Moreover, MCL provides a vehicle to perform 
HW/SW co-design of full applications and architectures (Sections 3.3 and 3.4). 

3.1 COMET Compiler 

The COMET (COMpiler for Extreme Targets) [ (COMET n.d., Erdal Mutlu 2020, Ruiqin Tian 2021)] 
compiler consists of a Domain Specific Language (DSL) for sparse and dense tensor algebra 
computations and, a progressive lowering process to map high-level operations to low-level 
architectural resources. During the lowering process, a series of optimizations are performed, and 
various intermediate representation (IR) dialects are used to represent key concepts, operations, 
and types at each level of the multi-level IR. COMET is built using Multi-Level IR (MLIR) Compiler 
Framework. Drawing motivation from MLIR, the COMET compiler performs different optimizations 
and code transformations at each level of the IR stack. Domain-specific, hardware-agnostic 
optimizations that rely on high-level semantic information are applied at high-level IRs. These 
include reformulation of high-level operations in a form that is amenable for execution on 
heterogeneous devices (e.g., rewriting Tensor contraction operations as Transpose-Transpose-
GEMM-Transpose) and automatic parallelization of high-level primitives (e.g., tiling for thread- 
and task-level parallelism). Hardware-specific transformations are applied at low-level IRs, either 
within COMET/MLIR or through vendor backends. At this time, COMET supports execution on 
CPUs, GPUs, and FPGAs (which was added as part of Navier).  

MCL Runtime

COMET Compiler

DAAIHPC

GPU FPGA CGRA
NVIDIA, AMD, 
Intel, ARM

Xilinx, Altera NVDLA, 
SambaNova, 
Xilinx Versal

SIM
SST, TimeLoop, 
zSim

CPU
Intel AMD, 
ARM, RISC-V

LRT LRT LRT LRT LRT

LamellarPyTorchC++/MPI

Application Domain

High-level Language
& Distributed Runtime

Compiler & Librarylibs

Local Runtime

Vendor low-level Runtime

Hardware

Figure 1: PNNL Software Stack for Extremely
Heterogeneous Distributed Systems 



PNNL-34901  

Software Stack for HW/SW Co-Design 5 

Figure 2: COMET code generation pipeline for FPGA. 

COMET was developed in the DMC DuOMO project. In Navier, the team added support to 
automatically generate bitstreams for Xilinx FPGA starting from COMET DSL. Figure 2 shows the 
lowering steps and the correlation with other open-source and Xilinx tools. The code generation 
process follows the traditional high-level steps used in COMET for most computation, hence it 
benefits from many implemented optimizations. At the GPU dialect levels, the kernels are 
extracted from loop constructs and separated from the host code. At this point, there are two code 
generation paths: on one side, COMET produces the host program, which is based on the MCL 
runtime to execute tasks on heterogeneous devices. On the other side, COMET lowers the kernel 
code into a SPIR-V dialect (the team modified the original MLIR SPIR-V dialect to support 
computing kernels) and into proper SPIR-V binaries. Next the SPIR-V binary is translated into 
synthesizable LLVM IR. The choice of using a SPIR-V intermediate representation reduces the 
incompatibilities among different LLVM IR versions (Xilinx HLS tools require LLVM 7.0 while 
COMET is based on LLVM 14.x) and ensure that the generated IR is synthesizable. The last steps 
consist of adding the necessary libraries and IPs for the VCK500 and producing the final 
bitstream. 

3.2 MCL Runtime 

MCL (MCL n.d., Roberto Gioiosa 2020, A. V. Kamatar 2020) is a modern task-based, 
asynchronous programming model for extremely heterogeneous systems. MCL consists of a 
single scheduler process and multiple, independent, multi-threaded MCL applications executed 
concurrently on the same compute node. For example, MCL can seamlessly support the 
execution of multiple Message Passing Interface (MPI) ranks within a single node as well 
independent applications programmed with separate programming models and runtimes, e.g., an 
OpenMP application next to a PyTorch application. Users need not be aware of other applications 
executed on the same compute node, as the MCL scheduler coordinates access to shared 
computing resources. MCL aims at abstracting the low-level hardware details of a system, 
supporting the execution of complex workflows that consists of multiple, independent applications 
(e.g., scientific simulation coupled with in-situ analysis or AI frameworks that analyze the results 
of a physic simulation), and performing efficient and asynchronous execution of computation 
tasks. MCL is not meant to be the programming model employed by domain scientists to 
implement their algorithms, but rather to support several high-level Domain-Specific Language 
(DSL)s and programming model runtimes. 
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MCL was originally develop in Cosmic Castle as part of the DARPA Domain-Specific System-On-
Chip (DSSoC) program in the context of Software-Defined Radio (SDR). Next, it was used in the 
DOE ARIAA project to support execution of scientific workflows on dataflow architectures. In DMC 
HAW, MCL was extended with support for HW/SW co-design (Proteus). In Navier, MCL has been 
extended to support execution on FPGA and Xilinx AIE, enhanced mapping of computational 
tasks to heterogeneous devices, and as a vehicle for HW/SW co-design. The choice of MCL as 
heterogeneous runtime was also dictated by the necessity of supporting complex workflows and 
emerging architectures. 

3.3 HW/SW Co-Design Using Proteus 

Proteus (Gioiosa 2022) device models a data-parallel device with multiple compute units. Each 
compute unit contains multiple processing elements (PEs) as obtained through the pre-hardware 
simulators. The Proteus device is emulated on a multi-core CPU and implemented using the 
POCL framework. The POCL framework provides all the basic functionality to realize a new 
OpenCL device. It handles all the boiler-plate code to realize the OpenCL standard. For example, 
the ability to check the legitimacy of arguments provided to an OpenCL function call and return 
appropriate code to the caller. Using this framework, a new device is implemented to realize the 
Proteus device. In Navier, the team used Proteus to model candidate HW concepts and perform 
HW/SW co-design of chemistry applications and hardware accelerators through the MCL runtime 
(see Section 4.1 for details). The methodology developed allows computer architects and 
domains scientists to perform different kinds of HW/SW co-design studies, depending on the 
target metric and design constraints. For example, a typical tradeoff between existing devices and 
novel hardware concepts can be explored using MCL/Proteus maintaining the same power 
envelop (iso-power studies). E.g., one could ask what the benefit would be of replacing an existing 
GPU with a novel hardware accelerator that consumes the same power. Importantly, the 
approach followed allows users to perform HW/SW co-design studies of whole applications and 
system, not just kernels and new device. This means that while some kernel may be running on 
the architecture under study, others and the driver application may still run on CPU or GPU. This 
approach provides much more accurate results and the impact of novel accelerators on the entire 
applications, not just a kernel in isolation. 

Using MCL/Proteus, the team analyzed the potential impact of sparse dataflow accelerators and 
compare it to mainstream (dense) dataflow accelerators using a sparse matrix-sparse matrix 
kernel. On one side, sparse dataflow accelerators provide higher performance than their dense 
counterparts (assuming the inputs and outputs are stored in some sparse format such as CSR). 
On the other side, most sparse dataflow accelerators available in the literature require a custom 
sparse storage format and format conversion to/from the host if the accelerator and host format 
are not the same, which is typically the case. For this study, the team compared the Sambanova 
SN10 and TimeLoop dense accelerators against SpareLoop and Sigma. The results show that 
the overhead of data conversion overshadow the benefits of faster computation on sparse 
dataflow accelerators. This leaves two alternatives: 1) use dense dataflow accelerators to perform 
sparse computation and let the compiler generate efficient code to map sparse computation to 
dense hardware. This is akin to using GPUs to perform sparse computation, even though sparse 
computation is not completely amenable to GPU architectures because of branches, indirect 
memory accesses, and poor data locality. 2) Leverage data movers to perform data conversion 
from one format to another when moving data form the host to the accelerator and vice-versa and 
overlap computation and data conversion. The Xilinx ACAP VCK5000 is a possible test case for 
the second option, where the programmable logic can be used to program a data mover that 
converts CSR format to AIE format and back. 
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3.4 HW/SW Co-Design Using FPGA Emulation 

HW/SW co-design using FPGA emulation follows a more traditional co-design approach in which 
a novel hardware concept is emulated using programmable logic. However, as for the previous 
case, it is important to contextualize the execution of kernels on the new accelerators and relate 
that to the rest of the application. Thanks to MCL and PNNL Junction cluster, the team was able 
to develop and execute a proxy of the CCSD chemistry method and explore the concurrent use 
of CPU, GPU, and FPGA (see Section 4.6 for more details). Also, by using COMET to generate 
the FPGA bitstream and the MCL host program, the entire co-design process is completely 
automated, flexible, and agile. 
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4.0 Driver Applications 
Key to perform HW/SW co-design of novel hardware accelerators and applications/algorithms is 
the availability of realistic applications and data sets. True to the spirit of DMC, Navier developed 
converged applications in the domains of HPC (chemistry and molecular dynamics), Data 
analytics, and AI for Science, as well as workflows that combine two or more of those domain 
applications. The following describes the various applications and their execution models. 

Figure 3: CCSD method mathematical formulation and NumPy implementation (extract) 

Figure 4: Automatic generation of SparseLoop accelerator description from COMET DSL. 
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4.1 Couple-Cluster Method 

The first application developed is a 
Couple-Cluster Method (CCSD) which 
is integral part of a chemistry pipeline 
that also includes Self-Consistent Field 
(SCF) and Density Functional Theory 
(DFT) computation. All three 
components and their interconnections 
have been developed/ported, but the 
team eventually decided to focus on 
the CCSD method for the HW/SW co-
design studies. The CCSD method has 
been developed using a block-sparse 
approach and initially implemented in 
NumPy (baseline). Figure 3 shows the 
mathematical formulation of the method 
and an extract of its counterpart NumPy 
implementation. Next, the CCSD NumPy code has been ported to CometPy, a NumPy-like python 
frontend that can be parsed by the COMET compiler. Being able to use COMET to compile the 
CSSD method has provided several advantages: 1) COMET generated code performs better than 
Python or LLVM code on CPUs; 2) COMET can generate object codes for GPUs, FPGAs, and 
dataflow accelerators Xilinx AIE and Sambanova SN10 (work-in-progress); 3) finally, COMET 
provides a way to performs HW/SW co-design. In this case, we used COMET to automatically 
generate input for TimeLoop and SparseLoop and performed HW/SW co-design studies 
answering questions such as “What would be the performance of the CCSD method if executed 
on a (sparse) dataflow accelerator that is iso-power with a state-of-the-art GPU?”. The entire 
HW/SW co-design pipeline is automated and does not require any code modification. Figure 4 
shows an example of COMET DSL code which performs a sparse matrix-sparse matrix 
multiplication and the resulting SparseLoop code generated by COMET with the new analysis 
and code generation path developed in Navier. Using the developed COMET passes, the team 
was able to perform various co-design studies (performance, iso-power with GPU, SoC scenarios, 
etc.). Figure 6 shows experimental results of a HW/SW co-design study in which a GPU is 
replaced with a dataflow accelerator modeled with Time/SpareLoop, which description is 
automatically generated by COMET from the code listed in Figure 3. As the results suggest, 
dataflow accelerators show great potentiality and reduced execution time. 

Figure 6: Co-Design of CCSD (computational 
chemistry) and dataflow accelerators 

(Time/SparseLoop) 

Figure 5: Leveraging fast AI surrogate models to infer the energy or large 
organic molecules from a database of small organic molecules. 
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4.2 Active Learning Chemistry Workflow 

One of the main objectives of Navier was to explore 
the use of AI surrogate models to speedup 
computational chemistry and then explore the use of 
specialized AI accelerators to further speedup the 
cost of inference, hence leverage the multiplicative 
combined effect of the two novel technologies. 
Consider the quantum chemistry application shown 
in Figure 5: the objective of this system is to infer the 
energy of large molecules based on the knowledge 
of small molecules and the learning obtained while 
studying new molecules. The energy of the molecule 
under study is inferred from an ensemble of AI 
models and the uncertainty of the prediction is 
compared against a certain threshold. If the 
prediction is below the threshold, the correct energy 
is computed using traditional quantum mechanics 
methods, the new information is added to the 
database of molecules, and the AI models are trained 
again using the new knowledge. This workflow is 
representative of modern HPC scenario. In fact, while 
in the past HPC applications mostly leveraged MPI, 
OpenMP, or other languages for GPU programming, 
current workflows combine scientific simulation with 
in-situ HPDA or AI-based analysis, pair simulations with data obtained from instruments (digital 
twins) or employ AI surrogate models to speed up part of the scientific simulation. Figure 7 shows 
the workflow for the problem described in Figure 5. The system uses active learning and train 
refined models every time a new data point is added because of the misprediction of the energy 
cost of a large organic molecule. Transfer learning is employed to infer the energy cost of large 
molecules from smaller ones.  

In Navier, the team mapped this workflow on PNNL Junction. Specifically, training is mapped on 
the GPU, inference on the AI engines, and the quantum mechanics methods on CPU. The team 
modified the original ANI workload to use PNNL NWChemEx (instead of the original PySCF) when 
computing the energy cost of molecules with traditional quantum methods. Initial experiments 
verified the correctness of the workload and allowed the team to drive the following conclusions 
about Xilinx AIE: 

• With some effort, it possible to achieve performance close to GPU (within 10%).
• The precision of the AIEs is not adequate for scientific computation. Generally, the team

has observed errors in the range or above 10%, which is too large for iterative methods
and results to divergence of the methods and incorrect results. This is due to the 8-bit
quantization employed in the current version of Xilinx AIE, which introduces excessive
errors for FP23 and FP64 values commonly used in HPC applications such as NWChem.

This work has led to a collaboration with AMD/Xilinx and potential new projects. 

Figure 7: ANI Quantum Chemistry 
Workflow. The various components of 

the workflows (traditional quantum 
chemistry methods, active learning 
training, and AI inference) map to 

different computing devices (CPU, GPU, 
and AI Engine, respectively). 
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Figure 8: Traditional Approach 

Figure 9: Co-scheduling simulation and data 
visualization 

4.3 Computational Fluid Dynamics 

Computation Fluid Dynamics (CFD) models attempt to simulate the interaction of liquids and 
gases where the surfaces are defined by boundary conditions. These models employ the 
principles of the Navier-Stokes equations. Simulations are then conducted by solving the 
equations iteratively as either a steady-state or transient conditions. Compared to solving 
traditional Navier-Stokes equations, with LBM methods a fluid density on a lattice is simulated 
with streaming and collision (relaxation) processes. Besides the MD simulation, graphics 
rendering is often necessary to produce human-readable outputs and for real-time analytes. 
Graphics rendering is separated from the CFD simulation but requires similar computational 
resources. Figure 8 shows the traditional workflow execution approach in which the results of the 
computation performed on a GPU is stored in DRAM (or disk) just to be reloaded immediately 
after on (potentially the same) GPU for graphics rendering. This incurs in unnecessarily data 
movement and waste of energy. On the contrary, Figure 9 shows the approach taken in Navier in 
which the data stays on the GPU where the CFD computation was performed and the graphics 
rendering task on the GPU on which the data is already stored, avoiding data movement, 
increasing performance, and reducing energy consumption. We ported FluidX3D, a CFD 
application that employ Lattice Boltzman Method (LBM) to MCL (mclCFD) to 1) leverage complex 
heterogeneous systems and multi-GPU system and 2) perform HW/SW studies. Besides CFD 
computation, FluidX3D performs in-situ graphics rendering and visualization and takes advantage 
of data locality on the heterogeneous devices. In the MCL implementation, the MCL schedule 
tracks data locality and co-locates producer-consumer tasks on the same GPU. In the original 
implementation, the user needs to manually partition the grid. There are, thus, two types of 
resources sharing between the CFD simulation and graphics rendering and visualization: data 
sharing (communication) and computing resource sharing. 

The results of the experimental campaign performed showed that Navier has achieved its goals: 

• mclCFD is highly portable and can run on multiple systems without any code modification.
As a proof-of-concepts, the team successfully executed mclCFD on CENATE DGX-1
V100 (8x NVIDIA Volta GPUs), PNNL Junction (AMD GPU), and an Apple MacBook Pro
(1 Intel GPU + 1 AMD GPU). Figure 10 and Figure 11 show a frame extracted from the
CFD simulation video for a Ferrari SF71H race car and a StarWars X-Wing figther
performed on CENATE DGX-1 V100 and PNNL Junction, respectively. The team was also
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able to show a live demo during the last DMC review using the Apple MacBook Pro system 
and performing real-time analysis. 

• mclCFD shows great scaling. We performed both strong and weak scaling analysis on the
CENATE DGX-1 V100 system. First, we increased the number of GPUs from 1 to 8
keeping the problem size constant (strong scaling). We use the model of the Ferrari
SF71H with a resolution of 512x1024x256 (134 million points) for the grid. Results show
a speedup of 2.7x when using 8 GPUs compared to a single GPU. These results are below
expectation and are due to underutilization of the devices (there is not enough data to feed
all GPUs). Second, we increased the problem size when moving from 1 (512x1024x256
pints) to 8 GPUs (1024x2048x1024 --- 2.15 billion points) and obtained a super-linear
speedup of 16.04x on 8 GPUs. These results exceeded the expectations and show strong
evidence that the capabilities developed in Navier can lead to new Science and
discoveries by enabling scientists to perform simulations of problems that could not be
solved with traditional methodologies.

4.4 Arkouda (Data Analytics) 

Arkouda is a data analytics framework developed by our sponsors to scale data analytics to a 
cluster of distributed compute nodes and solve larger problems. Arkouda attempts to merge the 
need of data scientists with traditional HPC infrastructures. HPC developers generally develop 
code and submit experiments to a job queue for batch execution and analyze the results once the 
experiment is over. The job manager (e.g., Slurm) takes care of executing the experiments when 
adequate resources are available. Eventually, the developer changes the code and/or inputs for 
the next experiments. Data scientists, on the other hand, prefer an interactive environment in 
which they can visualize and analyze the results as they develop the code. For this reason, data 
analytics is generally performed on single workstations using a Python environment. However, as 
the need of analyzing larger and larger data set increases, single workstations are not capable of 
storing and analyzing such large data sets, hence data scientists have moved to distributed 
systems. Arkouda provides a Python-like interface backed up by a distributed cluster to users. 
Data scientists can develop their code and analyze the results in an interactive way, while the 
execution of the code is performed on a cluster of distributed compute nodes. Arkouda originally 
uses Cray Chapel to distribute computation across the compute nodes. In Navier, we developed 
a new high-performance back end for Arkouda based on Lamellar (Lamellar - Rust HPC runtime 
n.d.), which has been developed in the HPDA program. The objectives of this work are three-fold:

Figure 10: CFP Simulation of a SF71H Ferrari F1 
race car 

Figure 11: CFD Simulation of Star Wars X-Wing 
fighter 
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1. Provide a high-performance back end for Arkouda that can seamlessly execute application
in shared memory and distributed systems without code modification.

2. Provide a mechanism to execute Arkouda code on heterogeneous systems, both
traditional GPUs (from various vendors) and emerging architectures (e.g., Sambanova
and Xilinx FPGA).

3. Provide a vehicle to perform HW/SW co-design using Arkouda applications and realistic
inputs sets.

Figure 12: Software architecture of the high-performance Arkouda back end implemented in 
Lamellar. 

Figure 12 shows the software architecture of the Arkouda high-performance back end developed 
with Lamellar to replace Chapel. As the figure shows, shared memory abstractions, such as array, 
are distributed across multiple compute nodes automatically through a LamellarArray data 
structure. Similarly, Lamellar orchestrates and synchronizes the access to those data structures 
through Distributed Atomic Reference Counters (DARCs). Distributed data structures 
management is hidden to the users, who interfaces with the system through the standard Arkouda 
interface (also show in the figure) or through a Jupiter notebook.  
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Figure 13: Arkouda performance comparison: 
Chapel vs Lamellar 

Figure 14: Performance scalability of the Stream 
benchmark (Chapel vs Lamellar) 

Figure 13 and Figure 14 show some initial performance comparison results comparing Chapel 
and Lamellar as back end for Arkouda. As the figures show, in some case Lamellar is faster than 
Chapel, at least beyond some number of processing elements, but the current implementation is 
not yet capable to outperform Chapel in all cases. This work has been very instrumental to the 
Lamellar team to highlight bugs and performance issues that had not been discovered to date. 
has discovered. The use of a full-fledge application instead of specific benchmarks has drastically 
increased code and data transfer patterns exercised. The Lamellar team has been very proactive 
in solving some of the discovered issues. 

Lamellar supports heterogeneous devices through MCL and COMET (through the Rust eDSL). 
This means that any code, including Arkouda, that is implemented using Lamellar/MCL/COMET 
can be executed not only on various GPUs but also on emerging architectures such as 
Sambanova and Xilinx AIE or FPGA. The team developed a proof-of-concept of a simple Arkouda 
vector addition benchmark that is executed on Sambanova SN10 through MCL. Considering that 
there is limited support in Chapel even for NVIDIA GPUs, this is potentially a very important 
development to accelerate data analytics in Arkouda using hardware accelerators. 

Finally, Lamellar supports HW/SW co-design through MCL and Protheus. Again, as for actual 
hardware accelerators, there is not much modification required to perform co-design studies using 
MCL Proteus and connecting the entire Arkouda workflow to simulators, emulators, FPGAs, or 
analytical models. The team is setting up proof-of-concept experiment to showcase HW/SW co-
design opportunities, such as the ones showed in Section 4.1.  

4.5 NeuroMANCER 

Neural Modules with Adaptive Nonlinear Constraints and Efficient Regularizations 
(NeuroMANCER) is an open-source differentiable programming (DP) library for solving 
parametric constrained optimization problems, physics-informed system identification, and 
parametric model-based optimal control. NeuroMANCER is written in PyTorch and allows for 
systematic integration of machine learning with scientific computing for creating end-to-end 
differentiable models and algorithms embedded with prior knowledge and physics. In Navier, the 
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team ported and adapted NeuroMANCER to Sambanova SN10 using SambaFlow. The objective 
was to assess the suitability of Sambanova dataflow architectures to PNNL scientific workflows 
and AI for Science. Results show performance comparable to NVIDIA V100 GPU until some size 
of the input sets, which is dependent on the benchmarks tested. Beyond that point, Sambanova 
SN10 shows an abrupt performance degradation. The team has been in contact with Sambanova 
to pinpoint and solve these issues. 

4.6 Benchmarks and Proxy Application 

To facilitate the development and testing of the software stack and perform analysis of the 
advanced architectures available at PNNL, the Navier team also developed benchmarks and 
proxy applications. 

• mclCCSD: this proxy applications
resembles the computation
characteristics of the CCDS method.
The application is developed after the
code optimization employed by COMET
when optimizing tensor contractions
and factoring them into transpose-
transpose-GEMM-transpose (TTGT).
mclCCSD performs N TTGT operations,
launching first all the transposes, then
the GEMMs, the second round of
transposes, and finally a reduction. The
resulting computational graph is
depicted in Figure 15. In the 
implementation, runnable tasks are 
executed asynchronously while the
dependencies among tasks are enforced used mcl_wait(hdl) or mcl_test(hdl). We
executed this proxy applications on PNNL Junction leveraging CPU, GPU, and FPGA.
While the initial mapping of tasks onto devices was for illustration only and mapped
Transposes to GPU, GEMMs to FPGA, and reduction on CPU, the team quickly found out
that a better mapping was GEMMs to GPU, reduction to CPU, and transposes to FPGA.
In fact, GEMM kernels are about 10x faster on GPU than FPGA (thought the FPGA
consumes about 10x less energy) while transposes are only 2x faster on GPU than FPGA,
but still the FPGA consumes about 10x less energy, thus the overall computation results
in better performance efficiency.

• CometMM: This is a simple application that executes a matrix multiplication between two
dense matrices. The objective of this benchmark was to test and validate the COMET
lowering passes to generate bitstreams for Xilinx FPGAs in Junction. As explained above,
COMET passes and MLIR dialects were modified to generate an initial representation of
the kernels that can be lowered to bitstream. The team also developed equivalent
benchmarks using Vitis HLS and OpenCL for comparison reasons.

Figure 15: Computational graph of mclCCSD
proxy application
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5.0 Conclusions and Future Directions 
Navier targeted 1) the development a flexible and composable system software stack that allows 
scientists to leverage emerging (dataflow) architectures; 2) the exploration of novel hardware 
concepts for sparse dataflow architectures to support current and future scientific applications 
and workflows; and 3) Develop proxy applications and full methods derived from NWChemEX 
using the proposed high-level language and system software. Throughout the project execution 
the team was able to meet the original goals and expand beyond chemistry applications to 
molecular dynamics, data analytics, and AI. The team made contributions to enhance both 
COMET and MCL and performed several HW/SW co-design studies of applications and hardware 
accelerators. Navier leaves a legacy of HW/SW co-design studies and conclusions, a set of 
applications that leverage DMC technologies, including COMET and MCL/Proteus, a software 
stack that enables users to leverage PNNL institutional investments in emerging architectures 
(Sambanova and AMD/Xilinx Junction), and various collaborations with vendors (AMD/Xilinx) and 
research institutions (Harvard, EPFL, and GT).  

Going forward, the team believes that there is need to harden the developed technologies and 
methodologies, moving them from research prototypes to close-to-production tools. Moreover, 
the developed software stack can be used to integrate novel computer architectures (e.g., 
NextSilicon and GraphCore) and to answer important questions about future DOE and other 
sponsors’ systems. 

Overall, Navier concluded DMC by 1) developing a software infrastructure to execute converged 
applications (HPC, data analytics, and AI) on converged systems (CPU, GPU, FPGA, and AI 
engines) and 2) developing methodologies and tool to perform composable and agile HW/SW co-
design of full application workflows and architectures. 
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