
Choose an item.

PNNL-34901

Navier: Dataflow
Architecture for
Computation Chemistry
September 2023

Roberto Gioiosa
Eduardo Aprá
Andres Marquez
Ajay Panyala
Rizwan Ashraf
Lenny Guo

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibi l it y
for the accuracy, completeness, or usefulness of any information, apparat u s,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessar ily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical

Information,
P.O. Box 62, Oak Ridge, TN 37831-0062

www.osti.gov
ph: (865) 576-8401
fox: (865) 576-5728

email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
 or (703) 605-6000
email: info@ntis.gov

Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:info@ntis.gov
http://www.ntls.gov/

PNNL-34901

Navier: Dataflow Architecture for Computation
Chemistry

September 2023

Roberto Gioiosa
Eduardo Aprá
Andres Marquez
Ajay Panyala
Rizwan Ashraf
Lenny Guo

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-34901

Abstract ii

Abstract
Navier’s objectives were two evaluate the use of emerging technologies, especially dataflow
accelerators, for high-performance computing (HPC) applications, specifically in the domain of
chemistry, and to develop a prototype software stack to support such applications. Navier builds
on capabilities previously developed by synergistic projects, such as PNNL Data Model
Convergence (DMC) LDRD Hardware Advanced Workflows (HAW) and DuOMO, as well as DOE
ARIAA.

Throughout its 18 months, the Navier team developed new capabilities and artifacts at all levels
of the HW/SW stack, provided a seamless way to integrate novel computing architectures
(Sambanova SN10 and Xilinx Versal AI) into an existing software stack, developed chemistry
workflows, data analytics tools, and HPC molecular dynamics workflows that leverage the
developed stack and PNNL institutional investments in emerging architectures. Navier also
explored the use of active learning to accelerate a computational chemistry workflow for organic
molecules on PNNL Junction cluster (in collaboration with AMD/Xilinx). Navier developed tools,
methodologies, and studies for hardware software co-design and (sparse) dataflow accelerators
that are composable and can be used together or separately. These methodologies are now used
in other projects, such as DOE AMAIS and HPDA.

This report describes Navier’s achievement, the developed tools and methodologies, and the
research findings and conclusions.

PNNL-34901

Summary iii

Summary
This final report describes the research activities performed during the execution of the DMC
Navier project. Navier made contributions to the following areas:

• Evaluation of emerging architectures and extremely heterogeneous systems: Navier
explored the use of Sambanova SN10, Xilinx AIE, and the PNNL Junction cluster.

• Development of a composable software stack for extremely heterogeneous systems:
Navier enhanced COMET and MCL to support emerging architectures, including FPGA
and dataflow architectures. Moreover, Navier software stack enables users to leverage
multiple heterogeneous accelerators at the same time.

• Development of application workflows (Chemistry CCSD, computational fluid dynamics,
data analytics, AI scientific framework), benchmarks, and proxy applications to
demonstrate the developed software stack and to act as drivers of HW/SW co-design
studies.

• Development of HW/SW co-design methodologies and tools to perform co-design of full
applications and architectures using realistic input sets.

All developed code (except code developed under NDA) is/will be released as open-source code
on PNNL github account.

PNNL-34901

Acknowledgments iv

Acknowledgments
This research was supported by the Data Model Convergence Initiative, under the
Laboratory Directed Research and Development (LDRD) Program at Pacific Northwest
National Laboratory (PNNL). PNNL is a multi-program national laboratory operated for
the U.S. Department of Energy (DOE) by Battelle Memorial Institute under Contract No.
DE-AC05-76RL01830.

PNNL-34901

Contents v

Contents
Abstract .. ii
Summary .. iii
Acknowledgments ... iv
1.0 Introduction ... 1
2.0 Hardware Architectures and Testbeds .. 2

2.1 Xilinx Versal ACAP AI Engine ... 2
2.2 PNNL Junction Institutional Cluster ... 2
2.3 Sambanova Cardinal SN10 ... 3

3.0 Software Stack for HW/SW Co-Design ... 4
3.1 COMET Compiler .. 4
3.2 MCL Runtime .. 5
3.3 HW/SW Co-Design Using Proteus .. 6
3.4 HW/SW Co-Design Using FPGA Emulation .. 7

4.0 Driver Applications .. 8
4.1 Couple-Cluster Method ... 9
4.2 Active Learning Chemistry Workflow ... 10
4.3 Computational Fluid Dynamics ... 11
4.4 Arkouda (Data Analytics)... 12
4.5 NeuroMANCER ... 14
4.6 Benchmarks and Proxy Application .. 15

5.0 Conclusions and Future Directions ... 16
6.0 Bibliography .. 17
Appendix A – Title .. A.1

Figures
Figure 1: PNNL Software Stack for Extremely Heterogeneous Distributed Systems 4
Figure 2: COMET code generation pipeline for FPGA. .. 5
Figure 3: CCSD method mathematical formulation and NumPy implementation (extract) 8
Figure 4: Automatic generation of SparseLoop accelerator description from COMET

DSL. .. 8
Figure 5: Leveraging fast AI surrogate models to infer the energy or large organic

molecules from a database of small organic molecules. 9
Figure 6: Co-Design of CCSD (computational chemistry) and dataflow accelerators

(Time/SparseLoop) .. 9
Figure 7: ANI Quantum Chemistry Workflow. The various components of the workflows

(traditional quantum chemistry methods, active learning training, and AI

PNNL-34901

Figures vi

inference) map to different computing devices (CPU, GPU, and AI
Engine, respectively). .. 10

Figure 8: Traditional Approach ... 11
Figure 9: Co-scheduling simulation and data visualization ... 11
Figure 10: CFP Simulation of a SF71H Ferrari F1 race car .. 12
Figure 11: CFD Simulation of Star Wars X-Wing fighter ... 12
Figure 12: Software architecture of the high-performance Arkouda back end

implemented in Lamellar. .. 13
Figure 13: Arkouda performance comparison: Chapel vs Lamellar .. 14
Figure 14: Performance scalability of the Stream benchmark (Chapel vs Lamellar) 14
Figure 15: Computational graph of mclCCSD proxy application .. 15

PNNL-34901

Introduction 1

1.0 Introduction
Navier addresses the challenges and shortcomings of current dataflow architectures and software
stacks for high-performance computing (HPC). It aims at developing the required hardware and
software capabilities to enable domain scientists to fully leverage recent advantages in processing
and memory architectures and provide a clear path to migrate and port scientific applications to
future supercomputers. Specifically, Navier set three main objectives:

1. Develop a flexible and composable system software stack that allows scientists to
leverage emerging (dataflow) architectures.

2. Explore novel hardware concepts for sparse dataflow architectures to support current and
future scientific applications and workflows.

3. Develop proxy applications and full methods derived from NWChemEX using the
proposed high-level language and system software.

Navier’s objectives were two evaluate the use of emerging technologies, especially dataflow
accelerators, for high-performance computing (HPC) applications, specifically in the domain of
chemistry, and to develop a prototype software stack to support such applications. Navier builds
on capabilities previously developed by synergistic projects, such as PNNL Data Model
Convergence (DMC) LDRD Hardware Advanced Workflows (HAW) and DuOMO, as well as DOE
ARIAA.

Navier overarching objective was to enable HW/SW co-design of full HPC, data analytics, and AI
applications on complex heterogeneous systems, such as PNNL Junction, which consists of 48
compute nodes equipped with AMD CPU, AMD GPU, Xilinx Versal ACAP (FPGA + AI Engine),
and Xilinx SmartNICs. All the activities performed were aimed at developing capabilities and
methodologies that allow domains scientists to execute scientific workflows on heterogeneous
systems and, at the same time, computer scientists to perform HW/SW co-design using the same
(unmodified) applications and data sets.

Throughout its 18 months, the Navier team developed new capabilities and artifacts at all levels
of the HW/SW stack, provided a seamless way to integrate novel computing architectures
(Sambanova SN10 and Xilinx Versal AI) into an existing software stack, developed chemistry
workflows, data analytics tools, and HPC molecular dynamics workflows that leverage the
developed stack and PNNL institutional investments in emerging architectures. Navier also
explored the use of active learning to accelerate a computational chemistry workflow for organic
molecules on PNNL Junction cluster (in collaboration with AMD/Xilinx). Navier developed tools,
methodologies, and studies for hardware software co-design and (sparse) dataflow accelerators
that are composable and can be used together or separately. These methodologies are now used
in other projects, such as DOE AMAIS and HPDA.

This report describes the main technical and research activities performed during the execution
of the projects and provides some initial results, technical insights, and conclusions of the
research.

PNNL-34901

Hardware Architectures and Testbeds 2

2.0 Hardware Architectures and Testbeds
Navier heavily relied on the availability of emerging architectures at PNNL. One of the main
objectives was to provide a feasible way to domain scientists to leverage PNNL investment in
emerging computer architectures and to understand the feasibility of using such architectures for
scientific applications and data analytics.

2.1 Xilinx Versal ACAP AI Engine

Xilinx Versal devices contain a mix of building blocks designed for efficient acceleration of
compute problems. They contain an adaptive programmable logic fabric that allows the
composition of application-specific circuits. This fabric has been shown to be capable of very high-
throughput computation with flexible data types. Many devices in the Versal family also contain a
dense mesh of hundreds of Vector-VLIW processors (AI Engines) combined with distributed
memory blocks and associated DMAs. These coarse-grained reconfigurable resources allow
efficient and flexible computation of dense tensor operations using fixed- and floating-point data
types. The device’s compute-oriented fabrics are complemented with an on-die ARM processor
subsystem and are connected to external memories using a high-bandwidth network- on-chip
interconnect. The combination of these specialized fabrics within a single device enables optimal
mapping of the constituent parts of an application to area and power-efficient implementation
methodology. Efficient implementations leverage dataflow implementation styles by using
explicitly scheduled data transfers to orchestrate overlapping of data transfer and computation.
Xilinx has addressed the challenge of programming this heterogeneous mix of fabrics in two ways.
The first is through vendor tools that capture compute problems in a DSL (e.g., TensorFlow or
Pytorch for AI, or P4 for packet processing) and compiles them to an efficient implementation on
a Versal device. Xilinx has also championed a “white-box” open compilation flow using MLIR. This
approach exposes the capabilities of the Xilinx fabrics at progressively lower abstraction levels
and welcomes integration with third-party tools at all abstraction layers, which makes Xilinx Versal
a promising and attractive target for integration with our proposed compiler.

2.2 PNNL Junction Institutional Cluster

PNNL Junction is a distributed heterogeneous cluster that consists of 48 computer nodes
featuring several computing devices:

• 2x AMD EPYC 7543 32-Core Processor
• 256GB DDR4-3200 memory
• 1x AMD MI100 Instinct GPU
• 1x Xilinx VCK5000 FPGA
• 1x Xilinx SN1000 dual port 100Gb/s SmartNIC
• 1x Mellanox HDR-100 ConnectX-6 InfinBand HBA
• 1x 960GB SSD

From Navier’s perspective, Junction is an ideal testbed to explore 1) the effectiveness of Xilinx
FPGA and AIE included in the VCK5000 boards for scientific computing and data analytics; 2) the
concurrent use of CPU, GPU, FPGA, and AIE and to develop novel scheduling and mapping
algorithms in the runtime; 3) HW/SW co-design through architectural emulation using FPGA; and
5) code generation for Xilinx AIE.

PNNL-34901

Hardware Architectures and Testbeds 3

2.3 Sambanova Cardinal SN10

The SambaNova Reconfigurable Dataflow Architecture (RDA) is a computing architecture
designed to efficiently run applications that expose dataflow patterns, which range from traditional
scientific simulations to recent AI methods. With SambaNova RDA, application-specific
computational graphs are mapped to a set of reconfigurable processing, memory, and switch
units for optimal execution on the available hardware. The RDA provides a flexible, dataflow
execution model that pipelines operations, enables programmable data access patterns, and
minimizes excess data movement. The architecture enables a broad set of highly parallelizable
patterns contained within dataflow graphs to be efficiently programmed as a combination of
compute, memory, and communication networks. This system has been designed to ease the
task of running AI applications and allow users to leverage high-level programming frameworks,
such as PyTorch and TensorFlow. The SambaNova compiler extracts dataflow information from
the algorithmic representations and produces the computational graph that is mapped to the
hardware by the runtime. While it is possible to produce computational graphs from other sources,
other than PyTorch and TensorFlow, this option generally requires experience with mapping
algorithms to spatial accelerators.

PNNL-34901

Software Stack for HW/SW Co-Design 4

3.0 Software Stack for HW/SW Co-Design
 In true spirit with the main DMC objectives,
rhe Navier team developed an integrated
and composable full software stack for
converged applications and architectures.
As explained above, Navier builds on
capabilities previously developed in other
synergistic projects, thigh them together, and
integrate/extend them to provide a full
execution environment of scientific
applications, data analytics, and AI
workflows on current and emerging
heterogeneous architectures. Figure 1
shows a graphical representation of the
software stack. Applications from various
domains can be developed using domain-
specific languages (e.g., PyTorch for AI or Lamellar for data analytics). The user code is parsed
by the COMET compiler (Section 3.1) which generates 1) the object code for the target
heterogenous device and 2) the MCL host code that drives the devices. The MCL runtime (Section
3.2) encapsulates kernels into tasks, map tasks to available heterogeneous devices, and
orchestrates data movement to/from devices, leveraging data locality whenever possible.
Through MCL and COMET, user applications can leverage current (e.g., CPU and GPU) and
emerging (e.g., FPGA and dataflow) architectures. Moreover, MCL provides a vehicle to perform
HW/SW co-design of full applications and architectures (Sections 3.3 and 3.4).

3.1 COMET Compiler

The COMET (COMpiler for Extreme Targets) [(COMET n.d., Erdal Mutlu 2020, Ruiqin Tian 2021)]
compiler consists of a Domain Specific Language (DSL) for sparse and dense tensor algebra
computations and, a progressive lowering process to map high-level operations to low-level
architectural resources. During the lowering process, a series of optimizations are performed, and
various intermediate representation (IR) dialects are used to represent key concepts, operations,
and types at each level of the multi-level IR. COMET is built using Multi-Level IR (MLIR) Compiler
Framework. Drawing motivation from MLIR, the COMET compiler performs different optimizations
and code transformations at each level of the IR stack. Domain-specific, hardware-agnostic
optimizations that rely on high-level semantic information are applied at high-level IRs. These
include reformulation of high-level operations in a form that is amenable for execution on
heterogeneous devices (e.g., rewriting Tensor contraction operations as Transpose-Transpose-
GEMM-Transpose) and automatic parallelization of high-level primitives (e.g., tiling for thread-
and task-level parallelism). Hardware-specific transformations are applied at low-level IRs, either
within COMET/MLIR or through vendor backends. At this time, COMET supports execution on
CPUs, GPUs, and FPGAs (which was added as part of Navier).

MCL Runtime

COMET Compiler

DAAIHPC

GPU FPGA CGRA
NVIDIA, AMD,
Intel, ARM

Xilinx, Altera NVDLA,
SambaNova,
Xilinx Versal

SIM
SST, TimeLoop,
zSim

CPU
Intel AMD,
ARM, RISC-V

LRT LRT LRT LRT LRT

LamellarPyTorchC++/MPI

Application Domain

High-level Language
& Distributed Runtime

Compiler & Librarylibs

Local Runtime

Vendor low-level Runtime

Hardware

Figure 1: PNNL Software Stack for Extremely
Heterogeneous Distributed Systems

PNNL-34901

Software Stack for HW/SW Co-Design 5

Figure 2: COMET code generation pipeline for FPGA.

COMET was developed in the DMC DuOMO project. In Navier, the team added support to
automatically generate bitstreams for Xilinx FPGA starting from COMET DSL. Figure 2 shows the
lowering steps and the correlation with other open-source and Xilinx tools. The code generation
process follows the traditional high-level steps used in COMET for most computation, hence it
benefits from many implemented optimizations. At the GPU dialect levels, the kernels are
extracted from loop constructs and separated from the host code. At this point, there are two code
generation paths: on one side, COMET produces the host program, which is based on the MCL
runtime to execute tasks on heterogeneous devices. On the other side, COMET lowers the kernel
code into a SPIR-V dialect (the team modified the original MLIR SPIR-V dialect to support
computing kernels) and into proper SPIR-V binaries. Next the SPIR-V binary is translated into
synthesizable LLVM IR. The choice of using a SPIR-V intermediate representation reduces the
incompatibilities among different LLVM IR versions (Xilinx HLS tools require LLVM 7.0 while
COMET is based on LLVM 14.x) and ensure that the generated IR is synthesizable. The last steps
consist of adding the necessary libraries and IPs for the VCK500 and producing the final
bitstream.

3.2 MCL Runtime

MCL (MCL n.d., Roberto Gioiosa 2020, A. V. Kamatar 2020) is a modern task-based,
asynchronous programming model for extremely heterogeneous systems. MCL consists of a
single scheduler process and multiple, independent, multi-threaded MCL applications executed
concurrently on the same compute node. For example, MCL can seamlessly support the
execution of multiple Message Passing Interface (MPI) ranks within a single node as well
independent applications programmed with separate programming models and runtimes, e.g., an
OpenMP application next to a PyTorch application. Users need not be aware of other applications
executed on the same compute node, as the MCL scheduler coordinates access to shared
computing resources. MCL aims at abstracting the low-level hardware details of a system,
supporting the execution of complex workflows that consists of multiple, independent applications
(e.g., scientific simulation coupled with in-situ analysis or AI frameworks that analyze the results
of a physic simulation), and performing efficient and asynchronous execution of computation
tasks. MCL is not meant to be the programming model employed by domain scientists to
implement their algorithms, but rather to support several high-level Domain-Specific Language
(DSL)s and programming model runtimes.

PNNL-34901

Software Stack for HW/SW Co-Design 6

MCL was originally develop in Cosmic Castle as part of the DARPA Domain-Specific System-On-
Chip (DSSoC) program in the context of Software-Defined Radio (SDR). Next, it was used in the
DOE ARIAA project to support execution of scientific workflows on dataflow architectures. In DMC
HAW, MCL was extended with support for HW/SW co-design (Proteus). In Navier, MCL has been
extended to support execution on FPGA and Xilinx AIE, enhanced mapping of computational
tasks to heterogeneous devices, and as a vehicle for HW/SW co-design. The choice of MCL as
heterogeneous runtime was also dictated by the necessity of supporting complex workflows and
emerging architectures.

3.3 HW/SW Co-Design Using Proteus

Proteus (Gioiosa 2022) device models a data-parallel device with multiple compute units. Each
compute unit contains multiple processing elements (PEs) as obtained through the pre-hardware
simulators. The Proteus device is emulated on a multi-core CPU and implemented using the
POCL framework. The POCL framework provides all the basic functionality to realize a new
OpenCL device. It handles all the boiler-plate code to realize the OpenCL standard. For example,
the ability to check the legitimacy of arguments provided to an OpenCL function call and return
appropriate code to the caller. Using this framework, a new device is implemented to realize the
Proteus device. In Navier, the team used Proteus to model candidate HW concepts and perform
HW/SW co-design of chemistry applications and hardware accelerators through the MCL runtime
(see Section 4.1 for details). The methodology developed allows computer architects and
domains scientists to perform different kinds of HW/SW co-design studies, depending on the
target metric and design constraints. For example, a typical tradeoff between existing devices and
novel hardware concepts can be explored using MCL/Proteus maintaining the same power
envelop (iso-power studies). E.g., one could ask what the benefit would be of replacing an existing
GPU with a novel hardware accelerator that consumes the same power. Importantly, the
approach followed allows users to perform HW/SW co-design studies of whole applications and
system, not just kernels and new device. This means that while some kernel may be running on
the architecture under study, others and the driver application may still run on CPU or GPU. This
approach provides much more accurate results and the impact of novel accelerators on the entire
applications, not just a kernel in isolation.

Using MCL/Proteus, the team analyzed the potential impact of sparse dataflow accelerators and
compare it to mainstream (dense) dataflow accelerators using a sparse matrix-sparse matrix
kernel. On one side, sparse dataflow accelerators provide higher performance than their dense
counterparts (assuming the inputs and outputs are stored in some sparse format such as CSR).
On the other side, most sparse dataflow accelerators available in the literature require a custom
sparse storage format and format conversion to/from the host if the accelerator and host format
are not the same, which is typically the case. For this study, the team compared the Sambanova
SN10 and TimeLoop dense accelerators against SpareLoop and Sigma. The results show that
the overhead of data conversion overshadow the benefits of faster computation on sparse
dataflow accelerators. This leaves two alternatives: 1) use dense dataflow accelerators to perform
sparse computation and let the compiler generate efficient code to map sparse computation to
dense hardware. This is akin to using GPUs to perform sparse computation, even though sparse
computation is not completely amenable to GPU architectures because of branches, indirect
memory accesses, and poor data locality. 2) Leverage data movers to perform data conversion
from one format to another when moving data form the host to the accelerator and vice-versa and
overlap computation and data conversion. The Xilinx ACAP VCK5000 is a possible test case for
the second option, where the programmable logic can be used to program a data mover that
converts CSR format to AIE format and back.

PNNL-34901

Software Stack for HW/SW Co-Design 7

3.4 HW/SW Co-Design Using FPGA Emulation

HW/SW co-design using FPGA emulation follows a more traditional co-design approach in which
a novel hardware concept is emulated using programmable logic. However, as for the previous
case, it is important to contextualize the execution of kernels on the new accelerators and relate
that to the rest of the application. Thanks to MCL and PNNL Junction cluster, the team was able
to develop and execute a proxy of the CCSD chemistry method and explore the concurrent use
of CPU, GPU, and FPGA (see Section 4.6 for more details). Also, by using COMET to generate
the FPGA bitstream and the MCL host program, the entire co-design process is completely
automated, flexible, and agile.

PNNL-34901

Driver Applications 8

4.0 Driver Applications
Key to perform HW/SW co-design of novel hardware accelerators and applications/algorithms is
the availability of realistic applications and data sets. True to the spirit of DMC, Navier developed
converged applications in the domains of HPC (chemistry and molecular dynamics), Data
analytics, and AI for Science, as well as workflows that combine two or more of those domain
applications. The following describes the various applications and their execution models.

Figure 3: CCSD method mathematical formulation and NumPy implementation (extract)

Figure 4: Automatic generation of SparseLoop accelerator description from COMET DSL.

PNNL-34901

Driver Applications 9

4.1 Couple-Cluster Method

The first application developed is a
Couple-Cluster Method (CCSD) which
is integral part of a chemistry pipeline
that also includes Self-Consistent Field
(SCF) and Density Functional Theory
(DFT) computation. All three
components and their interconnections
have been developed/ported, but the
team eventually decided to focus on
the CCSD method for the HW/SW co-
design studies. The CCSD method has
been developed using a block-sparse
approach and initially implemented in
NumPy (baseline). Figure 3 shows the
mathematical formulation of the method
and an extract of its counterpart NumPy
implementation. Next, the CCSD NumPy code has been ported to CometPy, a NumPy-like python
frontend that can be parsed by the COMET compiler. Being able to use COMET to compile the
CSSD method has provided several advantages: 1) COMET generated code performs better than
Python or LLVM code on CPUs; 2) COMET can generate object codes for GPUs, FPGAs, and
dataflow accelerators Xilinx AIE and Sambanova SN10 (work-in-progress); 3) finally, COMET
provides a way to performs HW/SW co-design. In this case, we used COMET to automatically
generate input for TimeLoop and SparseLoop and performed HW/SW co-design studies
answering questions such as “What would be the performance of the CCSD method if executed
on a (sparse) dataflow accelerator that is iso-power with a state-of-the-art GPU?”. The entire
HW/SW co-design pipeline is automated and does not require any code modification. Figure 4
shows an example of COMET DSL code which performs a sparse matrix-sparse matrix
multiplication and the resulting SparseLoop code generated by COMET with the new analysis
and code generation path developed in Navier. Using the developed COMET passes, the team
was able to perform various co-design studies (performance, iso-power with GPU, SoC scenarios,
etc.). Figure 6 shows experimental results of a HW/SW co-design study in which a GPU is
replaced with a dataflow accelerator modeled with Time/SpareLoop, which description is
automatically generated by COMET from the code listed in Figure 3. As the results suggest,
dataflow accelerators show great potentiality and reduced execution time.

Figure 6: Co-Design of CCSD (computational
chemistry) and dataflow accelerators

(Time/SparseLoop)

Figure 5: Leveraging fast AI surrogate models to infer the energy or large
organic molecules from a database of small organic molecules.

PNNL-34901

Driver Applications 10

4.2 Active Learning Chemistry Workflow

One of the main objectives of Navier was to explore
the use of AI surrogate models to speedup
computational chemistry and then explore the use of
specialized AI accelerators to further speedup the
cost of inference, hence leverage the multiplicative
combined effect of the two novel technologies.
Consider the quantum chemistry application shown
in Figure 5: the objective of this system is to infer the
energy of large molecules based on the knowledge
of small molecules and the learning obtained while
studying new molecules. The energy of the molecule
under study is inferred from an ensemble of AI
models and the uncertainty of the prediction is
compared against a certain threshold. If the
prediction is below the threshold, the correct energy
is computed using traditional quantum mechanics
methods, the new information is added to the
database of molecules, and the AI models are trained
again using the new knowledge. This workflow is
representative of modern HPC scenario. In fact, while
in the past HPC applications mostly leveraged MPI,
OpenMP, or other languages for GPU programming,
current workflows combine scientific simulation with
in-situ HPDA or AI-based analysis, pair simulations with data obtained from instruments (digital
twins) or employ AI surrogate models to speed up part of the scientific simulation. Figure 7 shows
the workflow for the problem described in Figure 5. The system uses active learning and train
refined models every time a new data point is added because of the misprediction of the energy
cost of a large organic molecule. Transfer learning is employed to infer the energy cost of large
molecules from smaller ones.

In Navier, the team mapped this workflow on PNNL Junction. Specifically, training is mapped on
the GPU, inference on the AI engines, and the quantum mechanics methods on CPU. The team
modified the original ANI workload to use PNNL NWChemEx (instead of the original PySCF) when
computing the energy cost of molecules with traditional quantum methods. Initial experiments
verified the correctness of the workload and allowed the team to drive the following conclusions
about Xilinx AIE:

• With some effort, it possible to achieve performance close to GPU (within 10%).
• The precision of the AIEs is not adequate for scientific computation. Generally, the team

has observed errors in the range or above 10%, which is too large for iterative methods
and results to divergence of the methods and incorrect results. This is due to the 8-bit
quantization employed in the current version of Xilinx AIE, which introduces excessive
errors for FP23 and FP64 values commonly used in HPC applications such as NWChem.

This work has led to a collaboration with AMD/Xilinx and potential new projects.

Figure 7: ANI Quantum Chemistry
Workflow. The various components of

the workflows (traditional quantum
chemistry methods, active learning
training, and AI inference) map to

different computing devices (CPU, GPU,
and AI Engine, respectively).

PNNL-34901

Driver Applications 11

Figure 8: Traditional Approach

Figure 9: Co-scheduling simulation and data
visualization

4.3 Computational Fluid Dynamics

Computation Fluid Dynamics (CFD) models attempt to simulate the interaction of liquids and
gases where the surfaces are defined by boundary conditions. These models employ the
principles of the Navier-Stokes equations. Simulations are then conducted by solving the
equations iteratively as either a steady-state or transient conditions. Compared to solving
traditional Navier-Stokes equations, with LBM methods a fluid density on a lattice is simulated
with streaming and collision (relaxation) processes. Besides the MD simulation, graphics
rendering is often necessary to produce human-readable outputs and for real-time analytes.
Graphics rendering is separated from the CFD simulation but requires similar computational
resources. Figure 8 shows the traditional workflow execution approach in which the results of the
computation performed on a GPU is stored in DRAM (or disk) just to be reloaded immediately
after on (potentially the same) GPU for graphics rendering. This incurs in unnecessarily data
movement and waste of energy. On the contrary, Figure 9 shows the approach taken in Navier in
which the data stays on the GPU where the CFD computation was performed and the graphics
rendering task on the GPU on which the data is already stored, avoiding data movement,
increasing performance, and reducing energy consumption. We ported FluidX3D, a CFD
application that employ Lattice Boltzman Method (LBM) to MCL (mclCFD) to 1) leverage complex
heterogeneous systems and multi-GPU system and 2) perform HW/SW studies. Besides CFD
computation, FluidX3D performs in-situ graphics rendering and visualization and takes advantage
of data locality on the heterogeneous devices. In the MCL implementation, the MCL schedule
tracks data locality and co-locates producer-consumer tasks on the same GPU. In the original
implementation, the user needs to manually partition the grid. There are, thus, two types of
resources sharing between the CFD simulation and graphics rendering and visualization: data
sharing (communication) and computing resource sharing.

The results of the experimental campaign performed showed that Navier has achieved its goals:

• mclCFD is highly portable and can run on multiple systems without any code modification.
As a proof-of-concepts, the team successfully executed mclCFD on CENATE DGX-1
V100 (8x NVIDIA Volta GPUs), PNNL Junction (AMD GPU), and an Apple MacBook Pro
(1 Intel GPU + 1 AMD GPU). Figure 10 and Figure 11 show a frame extracted from the
CFD simulation video for a Ferrari SF71H race car and a StarWars X-Wing figther
performed on CENATE DGX-1 V100 and PNNL Junction, respectively. The team was also

PNNL-34901

Driver Applications 12

able to show a live demo during the last DMC review using the Apple MacBook Pro system
and performing real-time analysis.

• mclCFD shows great scaling. We performed both strong and weak scaling analysis on the
CENATE DGX-1 V100 system. First, we increased the number of GPUs from 1 to 8
keeping the problem size constant (strong scaling). We use the model of the Ferrari
SF71H with a resolution of 512x1024x256 (134 million points) for the grid. Results show
a speedup of 2.7x when using 8 GPUs compared to a single GPU. These results are below
expectation and are due to underutilization of the devices (there is not enough data to feed
all GPUs). Second, we increased the problem size when moving from 1 (512x1024x256
pints) to 8 GPUs (1024x2048x1024 --- 2.15 billion points) and obtained a super-linear
speedup of 16.04x on 8 GPUs. These results exceeded the expectations and show strong
evidence that the capabilities developed in Navier can lead to new Science and
discoveries by enabling scientists to perform simulations of problems that could not be
solved with traditional methodologies.

4.4 Arkouda (Data Analytics)

Arkouda is a data analytics framework developed by our sponsors to scale data analytics to a
cluster of distributed compute nodes and solve larger problems. Arkouda attempts to merge the
need of data scientists with traditional HPC infrastructures. HPC developers generally develop
code and submit experiments to a job queue for batch execution and analyze the results once the
experiment is over. The job manager (e.g., Slurm) takes care of executing the experiments when
adequate resources are available. Eventually, the developer changes the code and/or inputs for
the next experiments. Data scientists, on the other hand, prefer an interactive environment in
which they can visualize and analyze the results as they develop the code. For this reason, data
analytics is generally performed on single workstations using a Python environment. However, as
the need of analyzing larger and larger data set increases, single workstations are not capable of
storing and analyzing such large data sets, hence data scientists have moved to distributed
systems. Arkouda provides a Python-like interface backed up by a distributed cluster to users.
Data scientists can develop their code and analyze the results in an interactive way, while the
execution of the code is performed on a cluster of distributed compute nodes. Arkouda originally
uses Cray Chapel to distribute computation across the compute nodes. In Navier, we developed
a new high-performance back end for Arkouda based on Lamellar (Lamellar - Rust HPC runtime
n.d.), which has been developed in the HPDA program. The objectives of this work are three-fold:

Figure 10: CFP Simulation of a SF71H Ferrari F1
race car

Figure 11: CFD Simulation of Star Wars X-Wing
fighter

PNNL-34901

Driver Applications 13

1. Provide a high-performance back end for Arkouda that can seamlessly execute application
in shared memory and distributed systems without code modification.

2. Provide a mechanism to execute Arkouda code on heterogeneous systems, both
traditional GPUs (from various vendors) and emerging architectures (e.g., Sambanova
and Xilinx FPGA).

3. Provide a vehicle to perform HW/SW co-design using Arkouda applications and realistic
inputs sets.

Figure 12: Software architecture of the high-performance Arkouda back end implemented in
Lamellar.

Figure 12 shows the software architecture of the Arkouda high-performance back end developed
with Lamellar to replace Chapel. As the figure shows, shared memory abstractions, such as array,
are distributed across multiple compute nodes automatically through a LamellarArray data
structure. Similarly, Lamellar orchestrates and synchronizes the access to those data structures
through Distributed Atomic Reference Counters (DARCs). Distributed data structures
management is hidden to the users, who interfaces with the system through the standard Arkouda
interface (also show in the figure) or through a Jupiter notebook.

PNNL-34901

Driver Applications 14

Figure 13: Arkouda performance comparison:
Chapel vs Lamellar

Figure 14: Performance scalability of the Stream
benchmark (Chapel vs Lamellar)

Figure 13 and Figure 14 show some initial performance comparison results comparing Chapel
and Lamellar as back end for Arkouda. As the figures show, in some case Lamellar is faster than
Chapel, at least beyond some number of processing elements, but the current implementation is
not yet capable to outperform Chapel in all cases. This work has been very instrumental to the
Lamellar team to highlight bugs and performance issues that had not been discovered to date.
has discovered. The use of a full-fledge application instead of specific benchmarks has drastically
increased code and data transfer patterns exercised. The Lamellar team has been very proactive
in solving some of the discovered issues.

Lamellar supports heterogeneous devices through MCL and COMET (through the Rust eDSL).
This means that any code, including Arkouda, that is implemented using Lamellar/MCL/COMET
can be executed not only on various GPUs but also on emerging architectures such as
Sambanova and Xilinx AIE or FPGA. The team developed a proof-of-concept of a simple Arkouda
vector addition benchmark that is executed on Sambanova SN10 through MCL. Considering that
there is limited support in Chapel even for NVIDIA GPUs, this is potentially a very important
development to accelerate data analytics in Arkouda using hardware accelerators.

Finally, Lamellar supports HW/SW co-design through MCL and Protheus. Again, as for actual
hardware accelerators, there is not much modification required to perform co-design studies using
MCL Proteus and connecting the entire Arkouda workflow to simulators, emulators, FPGAs, or
analytical models. The team is setting up proof-of-concept experiment to showcase HW/SW co-
design opportunities, such as the ones showed in Section 4.1.

4.5 NeuroMANCER

Neural Modules with Adaptive Nonlinear Constraints and Efficient Regularizations
(NeuroMANCER) is an open-source differentiable programming (DP) library for solving
parametric constrained optimization problems, physics-informed system identification, and
parametric model-based optimal control. NeuroMANCER is written in PyTorch and allows for
systematic integration of machine learning with scientific computing for creating end-to-end
differentiable models and algorithms embedded with prior knowledge and physics. In Navier, the

PNNL-34901

Driver Applications 15

team ported and adapted NeuroMANCER to Sambanova SN10 using SambaFlow. The objective
was to assess the suitability of Sambanova dataflow architectures to PNNL scientific workflows
and AI for Science. Results show performance comparable to NVIDIA V100 GPU until some size
of the input sets, which is dependent on the benchmarks tested. Beyond that point, Sambanova
SN10 shows an abrupt performance degradation. The team has been in contact with Sambanova
to pinpoint and solve these issues.

4.6 Benchmarks and Proxy Application

To facilitate the development and testing of the software stack and perform analysis of the
advanced architectures available at PNNL, the Navier team also developed benchmarks and
proxy applications.

• mclCCSD: this proxy applications
resembles the computation
characteristics of the CCDS method.
The application is developed after the
code optimization employed by COMET
when optimizing tensor contractions
and factoring them into transpose-
transpose-GEMM-transpose (TTGT).
mclCCSD performs N TTGT operations,
launching first all the transposes, then
the GEMMs, the second round of
transposes, and finally a reduction. The
resulting computational graph is
depicted in Figure 15. In the
implementation, runnable tasks are
executed asynchronously while the
dependencies among tasks are enforced used mcl_wait(hdl) or mcl_test(hdl). We
executed this proxy applications on PNNL Junction leveraging CPU, GPU, and FPGA.
While the initial mapping of tasks onto devices was for illustration only and mapped
Transposes to GPU, GEMMs to FPGA, and reduction on CPU, the team quickly found out
that a better mapping was GEMMs to GPU, reduction to CPU, and transposes to FPGA.
In fact, GEMM kernels are about 10x faster on GPU than FPGA (thought the FPGA
consumes about 10x less energy) while transposes are only 2x faster on GPU than FPGA,
but still the FPGA consumes about 10x less energy, thus the overall computation results
in better performance efficiency.

• CometMM: This is a simple application that executes a matrix multiplication between two
dense matrices. The objective of this benchmark was to test and validate the COMET
lowering passes to generate bitstreams for Xilinx FPGAs in Junction. As explained above,
COMET passes and MLIR dialects were modified to generate an initial representation of
the kernels that can be lowered to bitstream. The team also developed equivalent
benchmarks using Vitis HLS and OpenCL for comparison reasons.

Figure 15: Computational graph of mclCCSD
proxy application

PNNL-34901

Conclusions and Future Directions 16

5.0 Conclusions and Future Directions
Navier targeted 1) the development a flexible and composable system software stack that allows
scientists to leverage emerging (dataflow) architectures; 2) the exploration of novel hardware
concepts for sparse dataflow architectures to support current and future scientific applications
and workflows; and 3) Develop proxy applications and full methods derived from NWChemEX
using the proposed high-level language and system software. Throughout the project execution
the team was able to meet the original goals and expand beyond chemistry applications to
molecular dynamics, data analytics, and AI. The team made contributions to enhance both
COMET and MCL and performed several HW/SW co-design studies of applications and hardware
accelerators. Navier leaves a legacy of HW/SW co-design studies and conclusions, a set of
applications that leverage DMC technologies, including COMET and MCL/Proteus, a software
stack that enables users to leverage PNNL institutional investments in emerging architectures
(Sambanova and AMD/Xilinx Junction), and various collaborations with vendors (AMD/Xilinx) and
research institutions (Harvard, EPFL, and GT).

Going forward, the team believes that there is need to harden the developed technologies and
methodologies, moving them from research prototypes to close-to-production tools. Moreover,
the developed software stack can be used to integrate novel computer architectures (e.g.,
NextSilicon and GraphCore) and to answer important questions about future DOE and other
sponsors’ systems.

Overall, Navier concluded DMC by 1) developing a software infrastructure to execute converged
applications (HPC, data analytics, and AI) on converged systems (CPU, GPU, FPGA, and AI
engines) and 2) developing methodologies and tool to perform composable and agile HW/SW co-
design of full application workflows and architectures.

PNNL-34901

Bibliography 17

6.0 Bibliography
n.d. https://github.com/pnnl/mcl.
A. V. Kamatar, R. D. Friese and R. Gioiosa. 2020. "Locality-Aware Scheduling for Scalable

Heterogeneous Environments." nternational Workshop on Runtime and Operating
Systems for Supercomputers.

n.d. COMET. https://github.com/pnnl/COMET.
Erdal Mutlu, Ruiqin Tian, Bin Ren, Sriram Krishnamoorthy, Roberto Gioiosa, Jacques Pienaar &

Gokcen Kestor. 2020. "COMET: A Domain-Specific Compilation of High-Performance
Computational Chemistry." Languages and Compilers for Parallel Computing. Lecture
Notes in Computer Science.

Gioiosa, Rizwan Ashraf and Roberto. 2022. "Exploring the Use of Novel Spatial Accelerators in
Scientific Applications." ACM/SPEC International Conference on Performance
Engineering.

n.d. Lamellar - Rust HPC runtime. https://github.com/pnnl/lamellar.
Roberto Gioiosa, Burcu O. Mutlu, Seyong Lee, Jeffrey S. Vetter, Giulio Picierro, and Marco

Cesati. 2020. "The Minos Computing Library: efficient parallel programming for
extremely heterogeneous systems." Workshop on General Purpose Processing using
Graphics Processing Unit . ACM.

Ruiqin Tian, Luanzheng Guo, Jiajia Li, Bin Ren, & Gokcen Kestor,. 2021. "A High Performance
Sparse Tensor Algebra Compiler in MLIR." Workshop on the LLVM Compiler
Infrastructure in HPC. St. Louis.

PNNL-XXXXX

Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov

	Standard Disclaimer no limitations (no adonis).pdf
	PACIFIC NORTHWEST NATIONAL LABORATORY
	email: reports@osti.gov

