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Abstract 

This report summarizes Year 2’s work of Pacific Northwest National Laboratory’s (PNNL’s) 5G 
Fabricated Resource and Asset Management Encompassment for energy infrastructure (Energy 
FRAME) project, funded by the Department of Energy Office of Science’s Advanced Scientific 
Computing Research (ASCR) Program.   

In this report, the latest 5G equipment testing results are presented, along with two 5G-enabled 
AI/ML examples for grid applications; in addition, the workflow involving grid edge, cloud, and 
High Performance Computing (HPC) platforms is introduced, to support and interface the cross-
domain simulation for power system transmission, distribution, and communication networks. 
Last but not least, the outlook for Year 3’s work and the overarching impact of the 5G Energy 
FRAME on a multitude of stakeholders are provided. 

Additional 5G performance data is now being shared through a publicly available weblink: 
https://www.pnnl.gov/projects/5g-energy-frame/publications.   
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1.0 Introduction 

The evolution of cyber physical system (CPS) has achieved new landmarks, including Smart 
Grid (SG), Electric Vehicle (EV), the fifth-generation mobile communication technology (5G), 
among many other crucial components of our modern society and social life. Now with the 
overarching decarbonization goals established domestically and internationally, it is important 
for all the energy stakeholders to reimagine the two main pillars for any CPS, the Bits (smallest 
component of Information in cyber domain) and Watts (fundamental unit of Energy in physical 
domain in support of Bits), and explore the benefits of the explosion of wireless/wired 
connectivity, accessible computing capabilities, and greener power grid. It might be that being 
intelligent for CPS may mean to have sustainable source of energy, unburdened 
communication, and highly efficient computing. To some degree, we can experience this 
everyday with the smart devices that we use and wear.  

1.1 The Design of the Energy Data Model Convergence  

The concept of Bits & Watts imprints a profound vision of the integrated landscape of 5G 
communication, data, and computing, as shown in Figure 1. To be more specific, the 5G-for-
Grid (an integrated scientific computing domain enabled by 5G for power grid) applications 
requires the energy data model convergence. For example, the classical structure of power grid 
planning and operation for large interconnections, i.e., U.S. Western Interconnection, are 
orchestrated through both multi-year look-forward planning models and real-time control room 
operations with streaming data. Now with the emergence of Artificial Intelligence (AI) and 
Machine Learning (ML) technologies, as well as affordable cloud computing access at 
enterprise level, a holistic mechanism for grid model and energy data could be built with the 
extended connectivity and compute offered by 5G and cloud resources. 

 
Figure 1 Integrated landscape of 5G communication, grid, and computing. 

To achieve and implement the optimized energy data harvesting within the realm of 5G-for-Grid 
applications, it is important to develop the following two components: the Energy Data 
Marketplace (EDM), and the Energy Learning Warehouse (ELW). 
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1.2 Energy Data Marketplace (EDM) 

Functioning as an EDM, its objective is to break the data silos among different groups of 
stakeholders, speed up information sharing across multiple domains and large geographical 
regions, and foster aggregated AI-based inferencing capabilities by utilizing distilled data from 
the edge devices and edge-based energy zones. EDM can host the data, model, and extracted 
data that is connected by 5G fabric, while it also presents a unified access for a wide range of 
stakeholders in the clean-energy future. More importantly, it may enable multilateral data 
sharing and exchange between participating stakeholders while preserving privacy through 
available encryption technologies, i.e., utilities, prosumers, microgrid and smart building 
operators, Distributed Energy Resource (DER) aggregators, energy service providers, smart 
communities, and researchers. The concept of EDM has been valued by a wide-range of 
stakeholders, several examples are Open Energy Data Initiative (OEDI) [1], Distributed 
Photovoltaic Protection (DPVProt) Modeling Tools shared online [2], Enhanced-IEEE-39-Bus-
System-with-Inverter-based-Resources-on-Multi-Time-Scale-Platforms [3], and DOE Office of 
Electricity hosted Big Data Synchrophasor Analysis [4,5]. 

Furthermore, with a focal point on large-scale co-simulation of transmission, distribution, and 
communication networks, the data availability and quality can also be verified and validated 
through EDM; proper system architecture review and algorithm may help identify the bottleneck 
of data flow and potential need of real and virtual sensors [6, 7]. In addition, PNNL in-house tool 
GridApps-D™ has potential to support standards-based Application Programming Interfaces 
(APIs) and associated database for time-series data storage, query, analysis, and visualization 
[8, 9, 10]. In addition, the gateway will include not only energy infrastructure information but also 
cross-domain data (such as telecommunications) that is not commonly available in current tools 
[11, 12]. It is of great interests to explore a seamless integration of publicly available field asset 
infrastructure databases [13], geographical information, and weather forecast and event data, 
along with other aggregated energy data from the U.S. Energy Information Administration (EIA) 
website [14]. 

1.3 Energy Learning Warehouse (ELW) 

The ELW platform supports continuous integration and delivery (CI/CD) of edge computing 
functions and ML models, as well as the efficient and flexible distribution/deployment of 
retrained edge computing models. ELW is highly interconnected with EDM, and they are 
complementary to each other to fully support the self-evolutionary applications at grid edge and 
edge-based energy zones.  

This is particularly important for some of the ML models that rely on rarely available data, for 
example the high-resolution point-on-wave fault data of the electronic inverters in DERs [2,3]. 
The latest fault data from events could be extremely valuable for the generation owners and/or 
prosumers. Through EDM, these kinds of data could be shared in time and further adopted to 
update the ML model training database; once the training was completed, either at the cloud or 
other HPC platforms, the updated model parameters can be distributed accordingly to all the 
subscribed users for this specific energy learning model.  

In summary, instead of simply collecting and redistributing a significant amount of data, this 
cloud-based platform, grid edge, and edge-based energy zones proactively aggregate the data 
and distills them into tangible and actionable information for further distribution. 
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It is also important to quantitatively evaluate the benefits of EDM and ELW; therefore, the team 
will leverage the co-simulation of power grid transmission, distribution, and communication 
networks, and perform Monte Carlo-based sensitivity analysis to derive performance profile for 
the proposed cloud-based platform. The engineering metrics for performance ranking include 
total energy not served, voltage and line flow violations, renewable generation curtailment, 
network and process delay, communication-caused grid equipment misoperations, and 
quantifiable computation time requirements for various grid optimization and control 
applications. The cross-domain interdependency node importance [15] and 5G testbed 
simulated data [16] can also be integrated to support the performance evaluation.  

1.4 5G-enabled Workflow for Grid Analytics 

For renewable grid integration throughout the electricity infrastructure, the ubiquitous use of 
inverter based resources (IBRs) has made the grid more difficult to operate under dynamic 
conditions; thus, there is a strong need to explore how IBRs will change grid dynamic behaviors,  
and examine how IBRs could be utilized to enhance power system operation and control.  

With the 5G capability offered through PNNL facilities and research team, a 5G enabled 
workflow for grid analytics could be valuable to support the grid decarbonization planning and 
grid reliability assessment. Traditionally, aggregated IBR models at the transmission side are 
used to study the behaviors of IBRs in responding to faults in the systems. However, it is not 
sufficient because their behavior in the distribution systems is required to be modeled and 
simulated accurately, to have a complete high-resolution picture of the grid dynamic behavior. 
As a result, it is urgently needed to have an open-source based, scalable transmission and 
distribution (T&D) co-simulation platform, as shown in Figure 2. This co-sim platform can 
connect/emulate along with 5G state-of-the-art hardware equipment, and test application 
compatibility and performance, in particular the data flow, latency constraints and requirements, 
compute coordination, and the effectiveness of grid control actions. More importantly, this 
platform could simulate the behavior of large-scale IBR-rich power systems as well as the 
complex interactions between IBRs and the T&D network, and help us answer the questions, 
like “how many grid-forming inverters can a synchronous-machine-dominated T&D system 
hold”, and “how does low inertial physics affect grid resilience”?    

 
Figure 2 A conceptual view of the computing framework [17]. 
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2.0 5G Hardware Testing and 5G Performance Metrics  

The evolution of 5G architecture from the initial Non-Standalone (NSA) to Standalone (SA) is 
shown in Figure 3.  

In NSA, the User Equipment (UE) is anchored to LTE core (EPC) switches to 5G core based on 
the availability to provide higher bandwidth. However, the NSA UE functions as LTE UE beyond 
the coverage area of 5G. The mobility is controlled by the LTE through intra-system handover. It 
may be noted here that UE maintains dual connectivity with both LTE and 5G Radio Access 
Network (RAN) simultaneously throughout the data transmission process. One challenge 
associated with the NSA is interference, the interference due to both LTE and 5G RAN reduces 
the overall performance [18]. The UE is anchored to the 5G core and LTE, when it is within and 
beyond the 5G coverage range respectively. In other words, SA operates either as a complete 
5G or 4G system, instead of utilizing both as in the case of NSA. SA through its end-to-end 
(E2E) network slicing provides multiple services such as eMBB, uRLLC, and mMTC [18]. 

 
Figure 3 An illustration of 5G Non-Standalone and Standalone architectures. 

Figure 4 presents the testbed for estimating the baseline performances of NSA network in 
PNNL AWC 5G Innovation Studio [19]. The studied testbed estimates only a few characteristics 
such as latency, Radio Resource Control (RRC) state transition threshold, and throughput; 
however, in the future this will be extended to determine other characteristics as well. The 
testbed comprises of two virtual machines namely VM-1 and VM-2 connected to the same host, 
each of these virtual machines is connected to different virtual network adapters with separate 
virtual local area networks (vLAN); and these two virtual machines are also connected via the 
5G network. In this group of tests, the characteristics are assessed under NSA mode of 5G. The 
salient features of our proposed testbed are as follows. First, it represents an end-to-end 
system. Second, by connecting the two virtual machines to the same host it is feasible to 
measure the time-sensitive properties such as latency. Lastly, the performance data is available 
online for downloading [20]. 
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Figure 4 NSA Verizon system illustration. 

For the appropriate estimation of the RRC state transition thresholds, it is imperative to 
determine the latency measurements corresponding to different sleep times, and the data was 
collected and the entire process is repeated for 50 times.  

For a given sleep time, the first value from each iterations were extracted and plotted. From 
these plots it was evident that latency of the first message after a variable timeout period 
changes with respect to the RRC state of the system. In other words, there is a correlation 
between the latency measurement and RRC state. Based on observation and prior data 
analysis, a system is said to be in active, idle and inactive state, if the latency measurements 
are less than 100ms, lie within 150-450ms , and greater than 500ms respectively.  

As a result, now we can identify the sleep time that makes the system achieve the above 
mentioned latency. After multiple trial and errors, it was concluded that sleep times of 1s, 10s, 
and 25s, allow the system to achieve those RRC states. To validate our assumptions, the 
latency measurements were once again collected with the studied sleep times. 

As mentioned previously, the 50 iterations of latency measurements corresponding to three 
different sleep times were collected and plotted, using violin plots as depicted in Figure 5, Figure 
6, and Figure 7. It may be noted that the first iteration corresponding to each sleep time is 
discarded due to two reasons. First, it is not possible to determine the time difference between 
the last sent message and the first ping of that iteration. Second, it is possible to control the 
variable timeout period between the messages passing through the 5G network. The run 
number in this paper refers to the iterations. 

A simple examination of these figures provides the following inferences. Sleep time of 1s puts 
the system into active state as its latency measurements lie mostly in between 10-100ms. 
However, we can occasionally witness a spike in latency greater than 100ms and this shows the 
system slipped into inactive state. Similarly, sleep time of 10s puts the system to inactive state 
(latency greater than 100ms). The higher latency corresponds to the time taken for the system 
to return to active state. Finally, the latency measurements corresponding to the 25s sleep time 
indicate that the system is in idle state.  

In the future, we intend to work on enabling support for concurrent devices. The objective is to 
test multiple devices simultaneously, by developing unique docker containers for the studied 
devices and establish communication between these containers. Some of the possible 
approaches to achieve this objective include, single-root input/output virtualization (SR-IOV) 
plugins and Cgroups (Control groups). The benefits of SR-IOV plugins includes but not limited 
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to, faster communication between the docker containers, by reducing network latency and 
improving throughput, improved containerized network performance, and can be utilized in edge 
computing applications wherein low-latency and high-performance communication is needed. 
Similarly, Cgroups offers advantages not limited to optimal resource allocation, and network 
latency control for the docker container. With either of the two approaches the network latency 
and throughput will be studied under different load conditions and 5G configurations in our work.  

 
Figure 5 Sleep time of 1s. 

 
Figure 6 Sleep time of 10s. 

 
Figure 7 Sleep time of 25s. 
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3.0 5G-enabled Energy Data and Learning Examples 

In this section, two 5G-enabled energy data and learning examples are presented, to showcase 
the state-of-the-art facility of PNNL’s 5G testbed, and online AI/ML capabilities enabled by in-
situ CPU/GPU compute offered by 5G hardware. 

Through the successful simulation and execution of those two grid domain examples, the 
project team aims to present the connectivity and computing (especially for AI/ML) capability 
offered by 5G hardware and architecture. The claimed performance (esp. on latency) of 5G are 
critical to the feasibility of these envisioned examples. The goal of this task is to test the 
performance of these AI/ML applications with real 5G hardware under a realistic but controlled 
environment. Last but not least, these examples showcase a reference implementation process 
for other scientific computing problems and solutions, that can be simulated and demonstrated 
with 5G testbed and field deployments. 

3.1 5G Testbed Example 1: PMU data anomaly detection 

A phasor measurement unit (PMU) is a device in electrical power systems to measure and 
analyze electrical waveforms in real-time. It uses phasor measurement technology to measure 
the amplitude, frequency, and phase angle of electrical signals, and is able to capture high-
speed data at high rates (up to several thousand samples per second, with reporting rates as 30 
frames per second), to monitor and control the stability and reliability of electrical power system.  

Figure 8 shows the combination of the testing hardware and software environment. This test 
consists of PMU streaming data generator, PMU data receiver, and edge application server. 
The emulators and software are deployed in three separate virtual machines (VMs) that 
operates on ESXI VM host. 

 
Figure 8 The simulation configuration for AI/ML example 1. 
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The three VMs (PlayPDAT VM, openPDC VM, and ML App VM) are operating on the same 
ESXI host. The VM clocks are synchronized by precision time protocol (PTP), also known as 
IEEE 1588. PTP is highly accurate for time synchronization that usually applied in industrial 
automation and telecommunications. The essential operation of PTP involves exchanging 
messages between a master clock and a set of slave clocks. The master clock sends 
synchronization messages to the slave clocks, which use the information to adjust their clocks 
to match the master clock. PTP demonstrates the capability to attain synchronization accuracy 
in the sub-microsecond range. This level of precision proves suitable for latency measurement 
in comparison to the reporting rate of PMUs at 60 frames per second (FPS), and the 
synchronization frequency of GPS at 1 pulse per second (PPS). Furthermore, PTP emerges as 
a preferred choice over alternative synchronization protocols, especially for field installations. It 
empowers hosts to synchronize with a shared time reference source, exhibiting notably higher 
precision within sub-microsecond range. 

Each VM is connected to different virtual network adapters with separate virtual local area 
networks (VLAN). This ensures that the multiple VMs/nodes from different LANs are configured 
to communicate through the unique logical 5G network. The experimental network configuration 
of the ESXI VM host connected to AWC Verizon 5G NSA test network is shown in Figure 9. The 
setup of Verizon 5G NSA configuration provides a 28 GHz signal for the 5G user plane and an 
LTE anchor for the control plan. In AWC lab, the 5G antenna and Verizon server/router are 
connected via a single-mode optical fiber. 
 

 
Figure 9 5G network configuration and VM settings for PMU, PDC, and PMU-based application. 

The configured 5G wireless architecture has been tested in an online power system application 
for PMU-based anomaly detection. The anomaly detection (AD) algorithm was deployed on the 
edge device that listens the PMU streaming data. Once the data was received, a 5-minute 
moving window is used to train the dynamic regression model. The trained dynamic regression 
model is used to predict the frequency measurement values for the next 5 seconds. The 
prediction error can be computed using the PMU observations from data stream. For the short-
term predictions, the prediction errors and training errors typically follow similar distribution. 
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However, when an immediate event occurs in short-term interval, the training and prediction 
errors differ since the training moving window no longer has the same trend as that of the 
prediction interval (event occurrence time). This behavior is captured by checking whether the 
exceedance probability of prediction error is 3.5 standard deviation away from the training error.  

Anomaly Detection Results 

Figure 10 showcases the detection of the anomaly at the edge device, using the PMU data 
stream that is being received via 5G network testbed. It can be observed that one-step ahead 
forecast values (curve fitting results on the training data) are very close to the original 
observations in the order of 3rd decimal in frequency attribute (inset in Figure 10). This shows 
that the dynamic regression model provides a satisfactory goodness of fit during the training. 
Furthermore, when the event occurs on the 148-th second (vertical black dashed line), it can be 
observed that the five step ahead forecast (prediction values for next 5 seconds) is very close to 
the trained values before the 148-th second. However, at the 148-th second, the historical 
record event observations are far away from the predicted values. This difference in predicted 
values and the anomalous observations, results in a large prediction error that are not like the 
training moving window errors. As discussed in the Data section, the threshold for successfully 
detecting anomalous events is set at the 3.5 standard deviation. 

 
 

 

Figure 10 Detection of anomalous event at edge device using the PMU data stream via 5G 
network testbed. 
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3.2 5G Testbed Example 2: Learning-based Protection for PV  

3.2.1 Background and Motivation 

The complexity of the power distribution system increases significantly as the penetration of 
DERs continues to rise. Conventional protection schemes based on simple voltage, current, or 
frequency thresholds are expected to become less reliable. [21] proposed a new fault detection 
method for systems with high-penetration PV based on machine learning. A convolutional 
neural network (CNN) was trained to identify the fault zones (which would then trigger 
appropriate protection actions) based on high resolution current and voltage waveforms. The 
proposed method was tested on the EPRI J1 feeder using only local measurements, and 
achieved an accuracy of 95%. 

In this project, we explored notable technical gaps that need to be addressed before similar 
protection schemes can be deployed in the field and used online in operation settings.  

The availability of computing power at the protection relays 
For learning-based protection relays to be deployed in a large scale, the cost must be affordable 
enough to access sufficient computing power, especially to run the learning algorithms at an 
acceptable latency. A potential solution is to employ 5G-enabled edge computing, which brings  
significant computing power to edge devices (e.g., protection relays), and can be accessed via 
Ultra-Reliable Low Latency Communications (URLLC) at millisecond-level latency. 

The performance of the CNN with streaming data 
Most methods proposed in the literature has only been tested with data generated/collected in 
advance with well-aligned fault onset time. For these methods to be employed in practical 
operation, their performance, in terms of both accuracy and latency, must be validated with 
realistic streaming data. 

In this task, we will perform realistic tests in a 5G operational setting for the aforementioned 
learning-based protection scheme. More specifically, we assume 1) the high-resolution 
waveform data is being streamed from the measurement device to the edge computing server 
over the 5G network, 2) the CNN algorithm is triggered when new data becomes available and 
trip/no-trip decisions are made, and 3) the decisions are sent to the actuating relays. We will 
measure the communication delays at each step, the computational delays at the edge server, 
and the end-to-end delay between fault occurrences and actuating decisions. 

3.2.2 System Setup 

Compared to the synchrophasor data anomaly detection application, the protection scheme 
requires a safer and lighter protocol, to reduce latency and bandwidth utilization through the 
operational data network. In order to achieve this goal, we adopted IEEE P2664, namely 
Streaming Telemetry Transport Protocol (STTP) [22], at the application layer and UDP at the 
transport layer, for streaming the high-resolution point-on-wave (POW) data. STTP also offers a 
secure and lossless data compression options in the proposed application, so it can efficiently 
transport the streaming power system data over Internet Protocol (IP) networks. 
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The simulation setup for learning-based PV protection is as follows: 

• Hardware:  

a) AWC 5G infrastructure: This includes AWC 5G antennas, the Verizon AWC server, 
and MiFi spot, all of which are used for building the 5G network. 

b) EXSI server: This server creates the simulation environment comprising two EXSI 
virtual machines (VMs), where one VM hosts OpenPDC for publishing the high-
speed POW data, while the other is an STTP subscriber for receiving the streaming 
data and triggering PV protections. 

• Software:  

a) OpenPDC: OpenPDC is an open-source tool developed by the Grid Protection 
Alliance (GPA). The software is utilized in this task to stream the high-sampling rate 
POW data. 

b) ProtectionSubscriber: This tool is deployed at the application VM and it facilitates the 
subscribing function for receiving and processing the high-speed POW data with a 
high sampling rate.  

c) CNN-based protection application: This application offers real-time remedial action 
scheme (RAS) for PV protection. The tool is developed using Python. 

3.2.3 Progress, Findings, and Lessons Learned 

IEEE 1547-2018 [23] allows distributed energy resources (DER) to ride through voltage 
disturbances, ending any de facto reliance on tripping as a voltage violation. Many new 
protection technologies for addressing these issues rely on communications, e.g., learning-
based protection, which can be evaluated through test cases as shown in Figure 11.  

This example demonstrates the use of 5G infrastructure in supporting CNN-based learning 
control applications, with high-fidelity and high-volume streaming sensor data from distribution 
grids. Figure 12 shows the configuration and data flow of the proposed framework.  
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Figure 11 The learning-based protection for PV and two applicable test systems. 

 

EPRI DPV J1 Feeder for 
Learning-based protection  

IEEE 8500-node test feeder  
with four 5G base station  
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Figure 12 Diagram of 5G-enbled CNN-based learning protection scheme. 

In the proposed framework shown in Figure 12, the electromagnetic transient (EMT) waveform 
data, the POW data, was collected using the Alternative Transient Program (ATP), including 
three-phase voltage and current at a rate of 10000 sample/second [2], which represents the 
inverter POW measurement at solar panels. The collected measurements were fragmented into 
smaller datagrams, and stored in a maximum transmission unit (MTU). When the STTP 
publisher processed adequate MTU fragments, the available measurements published could be 
subscribed to and stored in STTP buffers. Once a memory buffer is filled, the subscriber will 
trigger the action layer, and push the data buffer to the application processor via the high-speed 
5G communication network traffic. As a result, the learning-based protection algorithm deployed 
on the application processor will process the measurements, and feed the special protection 
scheme (SPS) decision and action command to the switches and reclosers. In practice, the 
well-trained learning-based model can be deployed to the relay and implemented in a real-time 
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automation controller (RTAC), allowing protection devices to trip the PV whenever faults are 
estimated.                     

As of writing this report, we have configured the emulation framework and implemented different 
programming algorithms to reinforce the communication traffic and handle the network 
congestion. The validation has been completed using local network. The challenges in 
implementation include limited computation resources (edge computing), reliable data delivery, 
network protocol selection, data redundancy, and reliability. Considering the limited 
computational resources on edge, we implemented the algorithm to combine the communication 
and application layers using multi-threading and multiprocessing with shared memory. For hi-
resolution high-speed POW data with 10000 sample/second, an improper implementation on 
edge can cause data traffic congestion, which further degrades latency and packet loss. 
Therefore, we implemented multiprocessing for communication and application on a Dell 
precision laptop to minimize computational resources. Also, the trigger and data exchange 
channel were designed on a pre-allocated shared memory to allow the communication to ride 
through each end. By pipelining and simplifying the data serialization, the average data 
transmission delay was significantly reduced from 4.413 sec to 0.226 ms (Figure 13). 
Furthermore, the code implementation also introduces additional meta data, including adding 
the unique identification and publishing-subscribing timestamps, which makes it easier to 
recover lost or corrupted data, improving the reliability and robustness of grid applications 
relying on data stream using the UDP protocol. The whole process was tested through VLAN, 
and the testing via 5G hardware is underway. 

 
Figure 13 STTP data transmission delay was significantly reduced by mitigative serializing and 

multi-processing (MP) implementation. 
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4.0 5G-for-Grid Use Case Design 

The main purpose of the first 5G-for-Grid Use Case is to demonstrate the flexibility and 
capability of the 5G-enabled co-simulation platform, and also to show future potential benefits of 
ultra-low latency applications, such as 5G for T&D system monitoring and control [17]. It is 
important to understand the electricity infrastructure transitioning process with exploding 
renewable integration, especially in the form of inverter-based resources (IBRs). Significant 
events, such as the Southern California 8/16/2016 event [24] and the Odessa Disturbance [25], 
are good examples of urgent need of better grid monitoring and control functions. 

PNNL research team has been developing various T&D co-simulation examples. One of such 
examples is [26], which can accommodate 10,000+ inverters, including small-scale and plant-
level IBRs with various mixes of Grid-Forming (GFM) and Grid-Following (GFL) inverters on 
both transmission and distribution systems, up to 100% IBR penetration level. 

Now with the 5G communication testbed [16, 17] and two emulated AI/ML examples for grid 
data anomaly detection and PV plant fault protection, it is complementary to visualize a 
comprehensive workflow including heterogeneous computation and software for such T&D&C 
co-simulation. The proposed workflow can be applicable to future real-world demonstration due 
to the seamless translation of grid analytics enabled by 5G testbed (deployed either in-door or 
mobile in open field). Figure 14 shows the concept of the first 5G-enabled power grid 
transmission, distribution, and communication co-simulation use case. 

 

 
Figure 14 A detailed 5G-enabled power grid transmission, distribution, and communication co-
simulation use case. 
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Due to the rapid renewable integration, IBRs are widespread in the power system, requiring a 
transmission and distribution (T&D) co-simulation platform for in-depth analysis. This platform 
includes three open-source tools: GridPACKTM (HPC transmission system simulator) [27], 
GridLAB-D [28] (distribution system simulator), and HELICS (co-simulation framework) [29] . It 
accommodates diverse IBR GFM/GFL configurations, up to 100% penetration, and assesses 
contingencies occurring in both transmission and distribution systems. For information 
exchange, at the GridPACK end, the interface load is represented by current injection, receiving 
the P, Q at the substation from GridLAB-D. GridLAB-D receives the positive-sequence voltage 
magnitude and angle from GridPACK. HELICS synchronizes the time of GridPACK with the 
individual time of multiple GridLAB-D federates and controls data exchange between GridPACK 
and GridLAB-D federates. 

In this use case, GridPACK conducts dynamic simulations for one transmission system, such as 
miniWECC [30], on an HPC cluster with multiple cores. Concurrently, multiple instances of 
GridLAB-D run dynamic simulations for distribution systems like EPRI feeder, IEEE 34-node 
feeder or IEEE 8500-node feeder [31]. Users can customize the number and type of feeders 
and the ratio of GFL and GFM inverters based on their needs. Each feeder includes solar farms 
(PV sites in Figure 12) with 5G Edge computing capability. AI/ML fault detection codes based on 
5G edge computing are deployed at each PV site. When a fault is detected, the AI/ML code 
triggers actions, and updated information is sent to the HPC cluster to initiate a T&D co-
simulation with the new fault condition. After completing the co-simulation, results, including 
feeder conditions, are analyzed and provided to the 5G environment for monitoring and control. 

Figure 15 illustrates a T&D simulation featuring a miniWECC system at the transmission side, 
with illustration of two loads replaced by the IEEE 8500-node feeder, including 550 IBRs at each 
feeder [26].  

 
Figure 15 An Example of T&D co-simulation (the miniWECC transmission & nineteen IEEE 
8500-node feeders) 

By tripping one feeder at the distribution side (as shown in Figure 16), the T&D co-simulation 
platform clearly displays the observable P and Q outputs on the feeder side, as well as the 
Voltage magnitude at the interface buses and frequencies for the synchronous generators. 
Notably, there is one synchronous generator close to the fault location that has a large 

Transmission system (miniWECC)
Distribution system (IEEE 8500-bus 
feeder)

GridPACK T M 
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frequency oscillation, which shows that the fault at the distribution side could potentially make 
synchronous generators unstable. This kind of detail won’t be observed in aggregated models, 
highlighting the advantage of this detailed co-simulation over traditional aggregated models.  

 
Figure 16 T&D co-simulation results: P, Q outputs at substation sides, voltage magnitude at the 

interface buses, as well as frequencies of synchronous generators at the transmission side. 

Given the T&D co-simulation's capability to simulate faults at the distribution side [31], 
integrating the 5G-based AI/ML code is straightforward. Upon AI/ML tool detecting faults, the 
tool's outputs, encompassing new conditions at the distribution-side at one or more distribution 
systems, can be communicated via 5G or other communication protocols to the T&D co-
simulation platform. This introduces new faults with updated distribution system configurations. 
The overall T&D co-simulation results are also be shared with the AI/ML tool and relevant 
devices at the distribution system, updating grid conditions and model parameters. The 
introduction of this 5G-based AI/ML code enriches the T&D&C co-simulation's efficacy for 
conducting comprehensive studies. 

Harnessing HPC capabilities allows for a parallel model encompassing one transmission system 
and multiple distribution systems, ensuring efficient integration and scalability even with 
numerous distributions. The synergy of HPC clusters and 5G edge computing empowers 
efficient machine learning retraining, incremental learning, or continuous learning based on real-
time grid conditions and training data. This enables fine-tuned adaptive model parameters, 
enhancing the precision and reliability of grid management. Moreover, the T&D co-simulation 
framework's applicability can be extended to other applications on the same or different HPC 
clusters. Cloud interaction further unlocks potent and flexible functionalities. This workflow's 
feasibility has been shown in [17]. 
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5.0 Conclusions and Next Steps 

The 5G Energy FRAME project dives into the 5G-enabled applications for power grid monitoring 
and control. Two AI/ML examples utilizing PNNL’s 5G testbed are provided with design, 
implementation, and results, along with the newest in-house testing data for 5G equipment 
performance. Last but not least, the design of 5G-for-Grid Use case is discussed and illustrated, 
with preliminary results from a group of power grid simulators. 

5.1 Year 2 Progress Summary 

This subsection provides a summary of project year-2 work. 

5.1.1 5G Data Summary 

Grid data is a general definition of any related information applicable to power grid 
representation, in the context of sensing, monitoring, operations, and control. In particular, 
power grid measurements and components of mathematical models provide a vivid data-model-
convergence example to represent the largest cyber-physical system (CPS) in our world. From 
either the communication domain perspective or the computing domain perspective, the 
transmitted and processed data may be packaged, compressed, encrypted, buffered, time 
aligned, stored in memory, distributed, and delivered for next step applications, regardless of 
whether it is a streaming timestamped measurement, or a sub-block of grid model admittance 
matrix.  

One of the challenges is the streamlined data sharing mechanism, through a multitude of data 
generation processes and data ownership, following the specific regulations and compliances 
across the power industry. The combination of 5G and Cloud service may fulfill the technical 
needs of grid data sharing, and it is a reason for optimism for enabling access to both 5G 
services and Cloud services in a more affordable way for end users.     

5.1.2 5G-enabled AI/ML Examples 

Through the close collaboration with PNNL’s AWC team [19], two AI/ML examples utilizing 
PNNL’s 5G testbed are provided with design, implementation, and results, in Section 3.0. The 
main objective is to demonstrate the capability of 5G testbed and serve as the prelude of the 
first 5G-for-Grid Use case, and also to explore the benefits of 5G-enabled Grid Unified Edge 
Emulation Platform for Scientific Computing. 

5.1.3 5G-for-Grid Use Case  

Complex scientific computing process, i.e., developing and using the cross-domain co-
simulation tool for national grid studies, requires deep expertise in tool automation and scientific 
domain knowledge.  And the benefits of having a workflow to enable such computing process, is 
long-lasting and allow further customized configurations from different groups of users to be 
supported.  

The first 5G-for-Grid Use case developed in this project, aims to demonstrate how to develop an 
adaptive/expandable workflow that can coordinate distributed computational and data 
infrastructures to provide robust and efficient computational supports, which can be adopted for 
other scientific/industrial applications. To be more specific, PNNL has developed the GridPACK 
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HPC library for power grid simulation on cluster machines [27]. For example, GridPACK has 
achieved the fastest time for dynamic simulation reported in the literature: with 16 cores, it can 
solve Western Electricity Coordinating Council 20-second dynamic simulation in 19.5 seconds. 
A GridPACK task manager has been developed to dynamically allocate computational loads to 
each computing core based on its availability, which has been tested with Siemens’ Power 
System Simulator for Engineering (PSS/E) to run dynamic security assessment in parallel at the 
task level without modifying its core engine [33]. Two-layer task management has been 
evaluated with the applications of dynamic security assessment under uncertainty [34].  

The dynamic balancing scheme has obtained a near-linear speed up for in-house massive 
contingency analysis with 10,000 cores [34], the best performance reported in the literature. 
This dynamic load balancing scheme would be extremely useful in computing load assignment 
in this workflow management effort for obtaining optimal computational performance. We will 
also leverage the team’s experience in designing and implementing DOE Grid Optimization 
(GO) Competition Platform [35] and Washington State University–PNNL Advanced Grid Institute 
(AGI) GridSandbox project [36] to provide a user-friendly experience for participating 
stakeholders.  

By designing and implementing the streamlined computing and orchestration workflow, we can 
foster a balanced and sustainable computing ecosystem, and empower potential energy 
stakeholders with better resource and asset management by optimized 5G integration. 

5.2 Next Steps 

The project is entering the third project year, and this subsection describes the next steps of the 
project team, with a focus on the 5G-enabled workflow from the computing perspective. 

5.2.1 The 5G-enabled Workflow Outlook for Grid Transmission, Distribution, 
and Communication Co-simulation 

The workflow will offer users an open-access environment that provides remote access to data, 
models, software, and even algorithms, hosted by various computing platforms, including edge, 
local HPC, or cloud servers. Edge-based computing equipment will be collaboratively 
coordinated to fulfill the need for heterogeneous modeling, computing, and control while 
ensuring consistent performance characteristics in distributed energy infrastructure. 
Supercomputer facilities can support efficient ML model retraining/update for the edge 
computing equipment; for example, based on the most recent training data in Section 3.2, the 
self-evolutionary grid edge ML models can be refreshed/upgraded with the new model 
parameters generated from HPC or Cloud compute. We will leverage PNNL Research 
Computing and existing supercomputer resources (Cascade and Constance) to provide 
computation and data storage support for large-scale co-simulation of transmission and 
distribution networks, process the massive amount of grid data, and provide rapid prediction of 
grid behavior and real-time visualization of key grid features for decision making. 

The first 5G-for-Grid use case can demonstrate the unique capability of the developed scalable 
T&D co-simulation platform for large-scale simulations with detailed IBR behaviors at both 
transmission and distribution sides, which is unavailable using the traditional aggregated IBR 
models. With this proposed workflow and 5G-enabled platform, different control strategies with 
different types of IBR models can be evaluated at different penetration levels of IBR in the 
power grid.  The platform will help researchers better study the impact of new technologies, i.e., 
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IBR and 5G, and understand how those technologies will affect the grid's reliability, efficiency, 
and security. 

5.2.2 Enhancement of Heterogeneous Computing Capabilities in 5G Testbed 

Advanced Wireless Communication Team [32] at PNNL has partnered with Nvidia to get access 
to and build out an instance of the NVidia’s Aerial Research Cloud which is a 5G/6G network. 
This network is a platform to perform research investigating 5G and 6G concepts, especially for 
use with Mobile Edge Computing. Network has radio units that send raw RF data to an A100 
GPU for processing the 5G stack. The A100 GPU that runs the 5G stack has enough resources 
to also run 3rd party edge computing, such as the analytics for stabilizing the power grid. This 
provides the lowest latency known for access to 3rd party edge computing from a connected 
device since the edge computing is built into the cell site and can act as a node in a distributed 
high-performance computer. The next step will be to incorporate the analytics and compute 
models for this work into the NVidia network and make modifications to that network to see how 
low of latency is possible.   

5.3 Cross-cutting Research Potential and Impacts 

The overall project work and outcome may benefit not only the power grid analytics and 
electricity infrastructure transitioning to 100% renewable, but also shed light on other scientific 
domains and a generic modeling practice enabled by 5G capabilities.  

5.3.1 Collaboration with Center for Advanced Technology Evaluation 
(CENATE) 

The DOE Office of Science established the Center for Advanced Technology Evaluation 
(CENATE) [37] at PNNL in 2015, to assess the impacts of emerging computing, memory, and 
networking technologies on DOE computing missions. As CENATE has evolved over three 
funding cycles, the emphasis has shifted from examining exclusively technologies aimed at 
High-Performance Computing (HPC) systems and applications, to exploring computing more 
broadly, considering technologies such as advanced wireless networking and metrics of 
interest, including cybersecurity. A key aspect of CENATE’s mission is to foster collaborations 
within the DOE computing portfolio and with industrial and academic technology developers. 

Collaboration between CENATE and the 5GEnergyFRAME project developed around a 
capability to simulate 5G and other wireless networks in order to gain an understanding of how 
they may be useful in the monitoring and control of complex engineered systems, including the 
power grid. Using the ns-3 discrete event simulator [38], the collaboration created tools to 
simulate 5G wireless networks under a variety of configuration and load conditions. The next 
step will be to refine the simulator to enable the study of larger networked systems and to verify 
simulated predictions on physical systems, including the AWC 5G innovation studio.   

5.3.2 Workshop Planning for Co-design of Power Electronics and 
Microelectronics 

The evolution of both smart phone and electric vehicle in the past two decades, has shown the 
profound impacts of integrating the power electronics and the microelectronics. As a result, our 
modern life is being impacted by the screens around us, as well as the algorithms and 
informative data streams behind those screens. In 2018, one technical report from DOE Office 
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of Science [39] highlighted the co-design benefits centered around microelectronics, several co-
design examples are given as follows [39]: 

1) Computer & System Architectures – Circuits – Low Voltage Devices and Enabling 
Materials – Chemistry and Processes 

2) Real-Time Control Applications/Algorithms – Real-Time System Software – 
Distributed Computing and Communication Integrated into Smart Grid System 
Architectures 

3) Smart Grid System Architectures – Circuits – Devices – Chemistries – High Power 
Electronics Materials 

4) Smart Sensors and Experimental Diagnostics – Materials – Devices and Circuits – 
Component Integration – Algorithms, Programming, and Control 

In 2022, PNNL research team published the white paper named 5G Enabled Transformative 
Co-design and Co-simulation Framework for Grid Decarbonization and Modernization [40], this 
white paper identified that the complex multi-domain behavior can be analyzed in the co-
simulation environment across varying operational and environmental scenarios. Based on a set 
of configurable objectives across the different domains, simulation-driven multi-factor 
optimization can lead to an optimal co-design.  

More importantly, such co-design concept and the developed 5G enabled T&D&C co-simulation 
platform can be extended, to further promote and accelerate the application of advanced 
computing and communication technologies in power systems, considering the increase 
penetration of DERs and energy storage [41, 42], distributed ledger technology (DLT) [43], 
migration of Data Centers, Offshore and Onshore wind development, as well as high voltage 
direct current (HVDC) interregional transmission projects. 

Therefore, it is valuable to conduct more workshops centered around the co-design of 
microelectronics and power electronics, so a better future grid can be visioned, designed, 
assessed, validated, and coordinated among various stakeholders.  
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