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Abstract 

Deep learning (DL) models have been popular in earth and environmental modeling and 
analysis, which exhibit huge potential in capturing and reconstructing the non-linearity of 
relevant environmental processes. They are extensively used as analytical tools or emulators 
for multiple domains (atmosphere, land surface, ocean, and biogeochemistry). Despite their 
success, their internal working mechanism remains largely unknown. Such a lack of knowledge 
hinders the identification of physically consistent models that are fully adaptive to non-stationary 
climate, as well as the development of physics-informed machine learning such as physics-
informed neural network (PINN). To establish preliminary knowledge and framework of such 
physics representation evaluation, this project focuses on an improved understanding of DL 
models in the environmental applications. DL models are increasingly applied to environmental 
modeling and prediction. However, they have been evaluated mostly from a performance 
perspective, and there is a gap in understanding how they represent the known physics 
internally. Such knowledge is especially critical when applying DL models under climate change 
conditions, where new inputs are likely outside the ranges of the training datasets. 

In this project, we reveal how the known physical processes are represented within DL models 
from both statistical and mechanistic perspectives. Leveraging the traditional model evaluations 
that focus more on the accuracies of predictions, we establish a framework that examines both 
the accuracy and physics representation of DL models. This analysis framework can identify DL 
models that make the correct predictions based on correct physics, thus enhancing the existing 
explainable artificial intelligence (explainable-AI) portfolio. It lays a foundation for developing 
novel metrics to evaluate the emerging DL models in environmental applications. This 
knowledge also informs the development of physics-informed DL models by revealing the direct 
connections between the known physical processes and specific model components or 
structures. 
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1.0 Introduction 

Deep learning (DL), an emerging branch of machine learning (ML), has been widely explored 
and increasingly adopted in environmental research in recent years (Shen 2018). They are 
extensively used as analytical tools or emulators for multiple domains (atmosphere, land 
surface, ocean, and biogeochemistry) (Shi 2020; Anderson and Lucas 2018; Sahoo et al. 2019; 
L. Wang, Li, and Lv 2022; Hsieh 2020; He et al. 2016). 

DL/ML models can represent complex non-linear relationships between predictors and 
predictands, making them powerful tools for simulating the dynamics of environmental systems 
across a wide range of spatial-temporal scales. Therefore, they have been extensively tested as 
alternatives to physics models at module or model levels (Fang and Shen 2020; Kratzert et al. 
2018). The Department of Energy has also prioritized ML and artificial intelligence (AI) 
development for predictive modeling and simulation across the physical sciences. Despite 
successful demonstrations, explaining the internal mechanisms of DL/ML models remains a 
challenge, with only preliminary progress achieved so far (Kratzert et al. 2019; S. S.-C. Wang et 
al. 2021). Most of these efforts are from a mathematical perspective, with domain knowledge 
seldom incorporated in these interpretations. 

Meanwhile, recent research has focused on synergizing ML/DL models with established physics 
knowledge as part of the explainable-AI efforts (Xie et al. 2021; Kratzert et al. 2018; Fang and 
Shen 2020). These efforts generally fall into two categories: 1) configuring ML/DL models with 
structures that explicitly reflect known physics, such as mass/energy conservations or storage-
flux relationship (physics-informed ML/DL); and 2) adding established physics knowledge as 
constraints to model structure or approximations (physics-constrained ML/DL). However, most 
of these efforts are still exploratory, and an improved, physics-based understanding of ML/DL is 
required to provide explicit guidance on model developments. Such an improved understanding 
also ensures that the established ML/DL models represent physics correctly, so they are 
adaptive to the changing environment. Through the proposed work, we will carry out a 
preliminary yet systematic evaluation of the physics representation in the DL models. The 
knowledge obtained from this project will enhance the existing explainable-AI portfolio and guide 
the development of physics-informed ML models. 

This project is both an implementation and enhancement of the existing explainable-AI 
techniques. The obtained knowledge about DL models in this project will benefit the relevant 
environmental analysis and earth system model (e.g., E3SM) development activities, which 
implement AI/DL to describe various dynamics of environmental processes (Figure 1). 
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Figure 1. Understanding the physics presentation of deep learning models can help achieve 
better integration into earth system modeling. 
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2.0 Data 

Snow Telemetry (SNOTEL) ground measure of snowpack condition (snow water equivalent, or 
SWE) to develop DL models (Yan et al. 2018). The raw data is obtained as the quality-
controlled version developed at PNNL (https://www.pnnl.gov/data-products). They are 
distributed across the western US, and records from 800+ sites are used in our work (Figure 2). 
Their records cover 1981-2020, with records length varying across different sites. These data 
are also used in various regional hydrological and hydroclimate model evaluations (Chen et al. 
2019). 

 

Figure 2. Overview of SNOTEL snow measurements. Left: 829 active SNOTELs across the 
western United States and Alaska. Right: daily time series of precipitation, SWE, and 

air temperature data for one SNOTEL as an example. Source: 
https://www.pnnl.gov/data-products. 

Based on the daily observed temperature records, a total of 20 statistics at the monthly step are 
derived, as summarized in Table 1. 

Table 1. SNOTELmonthly statistics derived from the daily data. 

Index Variable Description 

1 Fwet Fraction of wet days (i.e., precipitating days) 

2 Ptot Total precipitation in this month 

3 Pstd Standard deviation of daily precipitation 

4 Tmean-all Mean temperature of all days 

5 Tmean-std Standard deviation of daily mean temperature 

6 Tmean-wet-std Tmean-std over precipitating days only 
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7 Tmean-Tp 
Precipitation-weighted temperature, kind of the average 

temperature of precipitation 

8 Tmean-dry-std Tmean-std over non-precipitating days only 

9 Tmax-wet-max Maximum of daily max temperature over wet days 

10 Tmax-wet-mean Mean of daily max temperature over wet days 

11 Tmax-wet-min Minimum of daily max temperature over wet days 

12 Tmax-dry-max 

(similar but for non-precipitating days) 13 Tmax-dry-mean 

14 Tmax-dry-min 

15 Tmin-wet-max 

(similar but for daily minimum temperature) 

16 Tmin-wet-mean 

17 Tmin-wet-min 

18 Tmin-dry-max 

19 Tmin-dry-mean 

20 Tmin-dry-min 

21 SWE-1 
The snow condition at the beginning (i.e., 1st day) of this 

month. Predictand of DL models 

(a) wet days are defined as days with precipitation amount higher than 0.1inch 

Figure 3 shows the correlation of these inputs within the same month, which highlights a strong 
correlation between the SWE on the 1st day of this month (SWE_1) and the mean SWE of the 
same month (SWE_mean). This indicates a strong tendency of SWE time series, which is 
physically reasonable as snowpack, especially in winter, is an accumulated response of snow 
accumulation/melting over multiple months. Regarding the meteorological conditions, 
temperature-relevant metrics show stronger correlations, indicating the snowpack response is 
more dependent on temperature. 
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Figure 3. Correlation analysis of the SWE and SNOTEL-derived monthly meteorological 
statistics in the same month. Higher correlations (towards 1 or -1) indicate a stronger 
enhancement or inhibition effects between these two factors, respectively. The values 

in the diagonal grids are the self-correlations which are all equal to 1.8. 

Figure 4 evaluates the SWE of the current month (SWE_1 and SWE_mean) with the 
meteorological and SWE (SWE_1_m1, SWE_mean_m1) of the previous month. The high 
positive connections between current SWE and SWE of the previous month (the upper right 
points) also confirm such lagged correlations. 

 

Figure 4. Correlation analysis of the SWE (of current month) and SNOTEL-derived monthly 
meteorological statistics in the previous month. This figure is similar to Figure 3 but 
with meteorological statistics taken from the previous month rather than the current 

month. 

Given such a accumulated influence of meteorological conditions on monthly SWE, it makes 
more sense to evaluate the change of SWE in a specific month (ΔSWE) to meteorological 
conditions. Figure 5 illustrates the response of ΔSWE/P to the mean temperature of the same 
month, and it is clear that snowpack accumulates when the mean temperature is lower than 0 
°C, while intense melting occurs when temperature rises. This is consistent with our 
understanding, which also serves as the prior “physics knowledge” and is used to evaluate 
various DL models.  
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Figure 5. Sensitivity of snowpack response as a function of mean air temperature. 
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3.0 Model development and evaluation 

3.1 Model development 

Multiple models are developed for monthly snowpack condition (SWE) prediction. Specifically, 
we constructed dense neural network (DNN) and long short-term memory (LSTM) models to 
achieve good SWE prediction. We set a prior requirement of R2≥0.9 to identify good models for 
the subsequent analyses. 

Figure 6 illustrates the model development of one DNN model (model #1) that eventually 
achieved R2=0.901 in the SWE prediction. To predict the SWE of the current month, this model 
uses the full meteorological metrics along with the SWE condition in the previous month as 
inputs (Table 1). The network can be characterized as a 21x200x150x150x1 structure that 
contains three hidden layers. In total, we evaluated 6 DNN models, and this model #1 is the one 
with good performance throughout the analysis (including those analyses in section 3.2). 

  

Figure 6. Performance of a DNN model (mode #1). Left: the evolution of loss as a function of 
epochs during model training. Blue line indicates the loss over the training subset, 

and orange line indicates the loss over validation subset. Smaller loss indicates better 
model performance. Right: Evaluation of the predicted monthly SWE against the 

observed SWE. Overall this DNN achieved an R2 or 0.901. 

 
As revealed in Figures 3 and 4, SWE has a strong lagged correlation (with SWE of previous 
months). This indicates the potential benefit of accounting for the meteorological conditions in 
the previous several months by the model. Therefore, LSTM models are employed to capture 
such long-term influence (Fang and Shen 2020; Xie et al. 2021; Jiang et al. 2022), with the 
structure of two good models illustrated in Figure 7. Both of these model use the following 6 
meteorological metrics: Fwet, Ptot, Tmean-Tp, Tmean-all, Pstd, Tmean-std. So overall, model 
#2 uses 72 inputs (6 metrics x 12 months) to predict the current SWE, while model #3 uses 36 
inputs for the same prediction. It is necessary to note that we identified a total of 5 LSTM 
models with R2>0.9, each featuring metrics of 3, 6, 12, 18, and 24 months, respectively. 
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Figure 7. Structures of two LSTM models. Left (model #2): the model that uses the 
meteorological condition of previous 12 months as input for the prediction of SWE at 

the current month. Right (model #3): the model that uses the meteorological condition 
of previous 6 months as input for the prediction of SWE at the current month. 

 
Figure 8 illustrates the model development of one LSTM model (model #2) that eventually 
achieved R2=0.91 in the SWE prediction. 
 

 

Figure 8. Performance of a LSTM model (model #2). Left: the evolution of model performance 
during model training. Right: Evaluation of the predicted monthly SWE against the 

observed SWE. Overall this LSTM achieved an R2 or 0.91. 

 
Figure 9 illustrates another LSTM model (model #3) that achieved an overall accuracy of 
R2=0.91. Compared to similar models but trained over the modeled data (i.e., the output of 
regional climate model output), its performance is reduced from R2 or ~0.96 (Chen et al. 2021). 
This reflects the fact that SNOTEL data includes more randomness compared to model output. 
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Figure 9. Performance of a LSTM model (model #3). Left: the evolution of loss as a function of 
epochs during model training. Right: Evaluation of the predicted monthly SWE against 

the observed SWE. Overall this DNN achieved an R2 or 0.91. 

All these models exhibit prediction R2>0.9 so they are good models in the prediction 
perspective. They together form the model pool for the subsequent analysis, which will filter out 
those bad models from both statistical or physical perspectives. 

 

3.2 Model evaluation 

Shapley additive explanation (SHAP) is an emerging tool for machine learning model evaluation 
and interpretation, which has also been used in various studies (S. S.-C. Wang et al. 2021; 
Silva, Keller, and Hardin 2022). Its introduction can be found in (Štrumbelj and Kononenko 
2014). In short, it tracks each input and calculates its contribution to the final prediction. Then a 
score can be assigned to each input (or feature), which allows cross-comparison of different 
features in terms of their relative importance. The higher the SHAP values, the more important a 
given feature is in determining the final prediction. From this perspective, SHAP evalutes the 
model “mechanism” in a qualitative perspective, and it is desired that good (or correct) models 
show a ranking of important features that are consistent with our established understanding of 
the same environmental process. 

Figure 10 illustrates an example of SHAP analysis on DNN model (model #1). As it clearly 
shows, the snow conditions of the previous month have dominant impacts on the overall 
prediction, which is consistent with our knowledge that snowpack shows lagged correlation in 
time. Comparing temperature and precipitation metrics, Figure 10 indicates that temperature is 
generally more important than precipitation, which is also consistent with our analysis in Figures 
3 and 4. Thus from this perspective, model #1 is a good model, which makes correct prediction 
by considering the true important inputs. 
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Figure 10. Statistical evaluation of DL models. Here the SHAP score of model #1 is shown, 
and model inputs are ranked by their |SHAP| values on the y-axis. Higher |SHAP| 

values indicate more important features. 

SHAP describes which inputs are more important, yet how the models respond to these 
important inputs is to be examined. Sensitivity analysis, which relates the unit change of a given 
input to the corresponding change of model output, can be used to reveal such responses. The 
dependency of snowpack response to temperature (Figure 5) is an example of observed 
sensitivity, which can be used to evaluate the model sensitivity. By perturbing the monthly T of 
the final month (i.e., 1-month lead time input) and examining the change of SWE in the 
prediction, we can derive the monthly ΔSWE to temperature in the DL models. They are 
illustrated in Figure 11, where both models #2 and #3 show similar responses (i.e., intense 
snowmelt when the temperature is above 0 °C). It is also notable that model #3 shows amplified 
sensitivities, where the magnitudes of pink boxes are larger than both observation and model 
#2. The implication of such amplified sensitivity will be discussed later. It is also important to 
note that both models #2 and #3 pass the SHAP analysis by showing physically reasonable 
important inputs. 
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Figure 11. Physics evaluation of DL models. Here the sensitivity of models #2 and #3 to 
mean monthly temperature are shown, along with the observations (green boxes). 

 

3.3 Model verification 

The slightly different climate scenarios were used in this task. The 40-year SNOTEL data was 
split into two subsets: 1) 1981-2000; 2) 2001-2020. The first subset was used to re-train all the 
models described above, and the second subset was used to evaluate the model performance 
in a warmer climate. Should the model capture the physics of snowpack response correctly, 
such incremental extrapolation would exhibit similar performance as that over the training 
subset (i.e., the first subset). 

Our analysis reveals varying performances of these models. Table 2 illustrates an interesting 
case using models #2 and #3. As reflected in Figures 8 and 9, they have similar performance 
over the SWE prediction, and this is also confirmed in the re-training of models using 1981-2000 
data. However, applying them to a new climate, model #2 retains a similar performance as in 
the training period, and a slight reduction is consistent with prior expectations on such out-of-
bag samples or extrapolation. However, the performance of model #3 deteriorates quickly in this 
new climate, with R2 quickly reduced to 0.76. This inexplicitly indicates that model #3 is not 
really presenting the physical connections between the meteorological conditions and snowpack 
response. 

Table 2. DL model performance under different climates. 

Model R2 (1981-2000) R2 (2001-2020) 

LSTM (model #2): 12-month input 0.90 0.88 

LSTM (model #3): 6-month input 0.90 0.76 
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To understand the behavior of model #3, we can examine Figure 11 again. Model #3 shows 
amplified sensitivity to temperature as compared to observation, which is likely caused by the 
short inputs used in this model: model #3 only reads 6-month meteorological data to make 
prediction. Since snowpack exhibits a strong seasonal cycle, 6-month is insufficient for 
snowpack to accumulate, especially in winter. Therefore, model #2 has to assume that more 
snowaccumulatin/melt occurs under the same temperature (as compared to model #2 which 
reads 12-month inputs) to make good predictions. Such inconsistency with observation means 
that the internal physics in model #3 is incorrect, and this issue gets highlighted in the new 
climate (2001-2020). 

These results highlight the importance of correct representation of physics for those models that 
are adaptive to changing climate. Such representation cannot be revealed by SHAP or 
sensitivities alone: 1) SHAP alone only suggests which features are important, but how models 
respond to these features is still not evaluated (model #2 versus #3); 2) sensitivity analysis 
alone cannot ensure that all the non-important features are correctly “neglected” by the model. 
Suppose model X responds to temperature with similar sensitivity as observation, but it 
incorrectly responds to other trivial inputs with larger but canceling sensitivities. In this case, the 
model prediction may still look good (since the internal errors are canceled), but the model is 
still not presenting the correct physics. Therefore, a combination of SHAP with sensitivity results 
should be concurrently considered in DL model assessment, which would shape the new model 
evaluation metrics. 
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