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Abstract 
Geophysical imaging techniques are a non-invasive way to image the subsurface and 
understand both subsurface solid (rock/soil) and fluid property distributions and their evolution in 
time. Inversions of the geophysical data, such as Electrical Resistance Tomography (ERT) data, 
are solved to estimate the subsurface property distributions, such as conductivity, and many 
inversion techniques smooth out sharp gradients in rock or fluid property distributions. Sharp 
gradients in subsurface properties tend to be present in situations with complex subsurface 
structures, which are common in many subsurface applications. We have successfully 
demonstrated that it is possible to inform, or constrain, inversions with neural networks trained 
on synthetic data with complex subsurface structures. Initial results suggest this process may be 
optimizable to yield property distributions that better represent the true property distributions 
than the same inversion process without the neural network constraint. Future work would 
optimize the neural network performance for this application and then apply the synthetic-data 
trained neural network to real data to understand the utility and performance of this technique 
for real data sets. 
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Summary 
For users and managers of subsurface resources, critical decision-making hinges on 
understanding the current state of the subsurface system and how it may evolve in time. For 
complex systems building that understanding of the system state and how it may evolve is 
challenging. Geophysical imaging techniques have been developed as lower cost and non-
invasive ways to image the subsurface to characterize both the solid (rock/soil) and fluid 
property distributions and their evolution in time. However, these techniques rely on inversions 
of the geophysical data which tend to smooth out the sharp changes in property distributions 
that define these complex systems, which are common in many subsurface applications. In this 
project we explored whether incorporating deep learning techniques in the geophysical 
inversion process could be one way to retain sharp subsurface property. We focused on the 
geophysical technique of Electrical Resistance Tomography (ERT) which is used to estimate 3-
D bulk electrical conductivity (BEC) distributions in the subsurface from electrical potential 
difference measurements. BEC distribution and evolution are governed by parameters that 
control or describe subsurface dynamics making it useful to understand the transport of material 
underground. ERT also has a large dynamic measurement range which enables simultaneous 
measurements of BEC distributions spanning multiple orders of magnitude within a region of 
interest, making it an important tool for complex systems. For this feasibility study we generated 
synthetic BEC distributions using Sequential Gaussian Simulation. A suite of 100 synthetic BEC 
data sets was generated by using the open source geostatistical software package SGeMs 
(http://sgems.sourceforge.net/). The BEC range in these data spans 5 orders of magnitude from 
0.0001 to 1 S/m. These BEC distributions are static to understand the role of deep learning in 
informing structure alone. We constructed and trained Deep Neural Networks to map between 
the BEC distributions and/or residuals. We demonstrate that it is possible to inform, or constrain, 
inversions with neural networks trained on synthetic data with complex subsurface structures. 
Initial results suggest this process may be optimizable to yield property distributions that better 
represent the true property distributions than the same inversion process without the neural 
network constraint. Future work would optimize the neural network performance for this 
application and then apply the synthetic-data trained neural network to real data to understand 
the utility and performance of this technique for real data sets. 
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Introduction 
For users and managers of subsurface resources, critical decision-making hinges on 
understanding the current state of the subsurface system and how it may evolve in time. As the 
systems or their processes increase in complexity, such as rapidly changing temporal evolutions 
(highly dynamic systems) or large changes in material properties over small spatial scales 
(highly heterogeneous systems), building that understanding of the system state and how it may 
evolve is challenging. Furthermore, while measurements from techniques such as well logging 
would support some single-point characterization of these systems, these measurements are 
often limited because of their expense. 

In contrast, geophysical imaging techniques have been developed as lower cost, multipoint and 
non-invasive ways to image the subsurface to characterize both the solid (rock/soil) and fluid 
property distributions and their evolution in time. However, these techniques rely on inversions 
of the geophysical data which tend to smooth out the sharp changes in property distributions 
that define these complex systems, which are common in many subsurface applications. Thus, 
improvements in the inversion process are needed to support the characterization, and thereby 
understanding and prediction, of complex systems in the subsurface and the improvement must 
allow operation on timescales that support decision making. 

Deep learning is a tool that is well suited for this challenge (e.g., Yu and Ma 2021; Yeung et al. 
2022). It allows for the combination of disparate data sets which typically characterize 
subsurface sites and can simultaneously incorporate both the sparse well logging data as well 
as the more spatially dense and frequent geophysical data by fusing information from each 
source and then learning the complex non-linear relationships between them. It can also retain 
information, such as geologic structure, which may be important in complex systems. 
Furthermore, evaluation of deep learning models is computationally inexpensive, enabling their 
deployment on decision-making timescales. 

Thus, in this project we explored whether incorporating deep learning techniques in the 
geophysical inversion process could be one way to retain sharp subsurface property gradients 
while operating at time-scales that could support decision making. We focused on the 
geophysical technique of Electrical Resistance Tomography (ERT) which is used to estimate 3-
D BEC distributions in the subsurface from electrical potential difference measurements (e.g., 
Johnson et al. 2017). BEC distribution and evolution are governed by parameters that control or 
describe subsurface dynamics making it useful to understand processes that involve the 
transport of material underground. ERT also has a large dynamic measurement range which 
enables simultaneous measurements of BEC distributions spanning multiple orders of 
magnitude within a region of interest, making it an important tool for complex systems. 

Deep learning models traditionally require a large amount of data to perform well (thousands of 
examples per parameter of interest), and subsurface event data is comparatively rare. Thus, for 
this feasibility study, we generated synthetic data characterized by sharp changes in property 
distributions. Traditional inversions of this type of data are known to smooth these gradients and 
thus it might be straight forward to observe and assess whether the gradients were instead 
preserved by including deep learning in the inversion process. We also started with a static case 
to understand the role of deep learning in informing structure before we considered its evolution 
over time. 
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Deep Learning Approaches and Results 
Background 

Inverse problems in Partial Differential Equations (PDEs) involve the reconstruction of some 
part of a PDE – a Quantity of Interest (QoI) such as a scalar field, closure term, coefficient, etc. 
– from the system’s solutions or observations thereof (Isakov 2006). Recovery of this QoI is 
deemed an ‘inversion’ since one begins from a solution to a PDE and then performs the inverse 
of the forward problem to derive some aspect of the governing PDE. PDE inversions are a 
primary method by which practitioners can interrogate physical processes without having 
complete knowledge of said physics or physical properties involved. Inversions are an important 
tool for disciplines like geophysics which tend to make observations of the earth system for the 
purpose of deriving dynamics that are otherwise difficult to observe or quantify since they occur 
underground. 

Many inverse problems in the physical sciences are ill-posed, meaning that the solution to an 
inverse problem is highly sensitive to the final state. Typically, because PDEs are discretized in 
space (with an associated mesh or grid) and time, there is some degree of truncation and 
numerical round-off errors introduced to the modeling procedure. For forward modeling, many 
PDEs of interest are well-posed and the associated numerical algorithms are stable. The ill-
posedness of the inverse problem, together with truncation and round-off errors, means that the 
inverse problem is ill-conditioned and will likely suffer from numerical instability. Thus, many 
state-of-the-art inversion procedures rely upon regularizers to enforce regularity upon the 
inverse problem – e.g. promoting smooth solutions or through a Tikhonov-type regularization 
(Golub et al. 1999). 

These additional constraints make the inverse problem tractable at the expense of solution 
resolution. A smoothing constraint, for example, will discourage solutions with sharp 
discontinuities. In geophysical problems, where identifying such discontinuities is of critical 
importance, regularization typically inhibits the ability of an inverse problem to resolve these 
boundaries. 

Sought are methods for ‘informed’ regularization techniques that retain the ability to resolve 
important geologic features (e.g., discontinuities). Recent advances in the fields of Artificial 
Intelligence (AI) and data science have provided the opportunity to construct new methods for 
performing and informing inversions that otherwise are intractable. In seeking to leverage 
existing validated and verified computational tools (i.e. E4D; Johnson et al. 2017), we consider 
here only approaches that are deterministic (vs. probabilistic) and unobtrusive (offline vs. online 
learning) to promote quick prototyping for coupled E4D/ML approaches. Specifically, for this 
study, we examine utilizing Principal Component Analysis and Deep Neural Networks in novel 
ML architectures coupled with the E4D software. First, we look at the applicability of a DNN to 
inform the depths and conductivities of geologic layers given surface measurements obtained in 
a pole-pole resistivity survey. Second, we look at dimensionality reduction techniques – such as 
PCA – as a method to encode spatial structure. We couple PCA with a DNN to guide an 
inversion to adhere to a reduced-rank approximation of the geology. Note that many other 
methods fall outside of the scope of this study but still may be valuable to pursue in future work, 
such as Physics-Informed Neural Networks and, more generically, the class of models called 
Generative Models. 
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Approach #1: Predicting Layer Properties with DNNs 

Artificial Deep Neural Networks (DNNs) 

Artificial Deep Neural Networks (DNNs) are trainable universal function approximators (Hornik 
et al. 1989). DNNs are comprised of composed layers of nodes (or artificial neurons), each of 
which manipulates its input via a parameterized activation function (introduces nonlinearity) and 
a bias term. These activations are chosen to be easily differentiable such that each parameter 
of the network has a corresponding gradient function. Thus, in training a neural network to 
approximate data, residuals can be backpropagated to each of the parameters, which can then 
be updated according to an optimization algorithm (e.g. gradient descent). 

DNNs are attractive for their flexibility and expressivity: according to the universal approximation 
theory of neural networks, architectures of sufficient width and depth can capture functional 
forms to arbitrary precision, enabling their use in a wide variety of applications with minimal user 
supervision. For these reasons, this approach was the first tested for this study. 

DNN-based Inversion of Synthetic Data 

Recognizing that many geologic structures of interest are fundamentally layered, we define a 
fictitious set of layered geologies to prototype a machine learning method to predict layer depths 
and layer conductivities. In this framework, we seek to train a deep neural network to act as a 
map between observations (pole-pole ERT survey measurements) to feature space, defined by 
the number of layers and their corresponding conductivities. 

Figure 1 shows a description of the problem and the associated training and deployment 
diagrams. Assumed is geology containing three layers suspended in a pseudo-infinite domain. 
Each 𝑛𝑛-th layer is associated with a layer transition depth, 𝑑𝑑𝑛𝑛, and a conductivity, 𝜎𝜎𝑛𝑛, except for 
the last layer (assumed infinite depth). Stacking these geologic features for each of the layers 
results in a vector of length 2𝑛𝑛-1. We define this to be the output space for our DNN. The input 
is the vector of concatenated measurements from a real or synthetic pole-pole ERT survey. For 
this example, 120 measurements were recorded from an array of sensors equally spaced on the 
surface of a (synthetic) test site. The synthetic dataset contains 300 unique geologic instances, 
each with three layers. 

The DNN to be trained contains three hidden layers of 10 nodes with Exponential Linear Unit 
(ELU) activation and a sigmoidal output layer: 

𝑁𝑁𝑁𝑁(𝒙𝒙;𝜃𝜃): ℝ120 →  ℝ5 

where 𝒙𝒙 is the vector of measurements and 𝜃𝜃 are the trainable parameters of the neural 
network. An implicit constraint is therefore imposed on the network in that the number of 
geologic features (5) and measurements (120) are fixed. Each variation in geologic features or 
measurements would require instantiation of a new network. 
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Figure 1: Notional schematic for mapping measurement space to feature space for an assumed-

layered geologic structure. Each layer is associated with a depth and a conductivity. A 
DNN mapping between measurement space and the target feature vector is sought. 
For this study, the number of measurements and layers was fixed. 

 
Each of the 300 unique geologic instances were subjected to a synthetic pole-pole ERT survey 
using the E4D software package, generating the 120 measurements per geologic instance. This 
constitutes the entirety of the dataset for this task. The dataset was split 70/30 into training and 
testing subsets. Because the proposed network is of a simple feed-forward architecture, training 
the network can proceed with standard off-the-shelf optimizers (such as Adam). The complete 
set of training hyperparameters is listed in Table 1. The loss history through the training 
iterations is shown in Figure 2. 

Table 1. Hyperparameters for DNN in layered geology example. 
Parameter Value 

N Train 210 
N Test 90 
Network architecture 3 hidden layers w/ 10 nodes, ELU activation, 

sigmoid output layer 
Loss function MSE(target,NN(measurements)) 
Optimizer and LR Adam, 0.0001 
Batch size 10 
Epochs 1000 
Data normalizing/preprocessing  [0,1] rescaling per feature 

 
Performance of the trained network is evaluated by gathering the NN-predicted features for the 
measurements of the geologic instances in the test set. The average approximation error for 
each the five features aggregated over the test set is shown in Table 2. 
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Table 2. Aggregated performance metrics for layered geology example. 
Feature 𝑑𝑑1 𝜎𝜎1 𝑑𝑑2 𝜎𝜎2 𝜎𝜎3 

Mean 
approximation 
error 

93.5% 459% 49.1% 1010% 923% 

 
A comparison of the solutions from the inversions with and without the neural network are 
shown in Figure 3. Note that in this learning task, obtaining reasonable conductivity values is a 
far more difficult task than recovering layer depths. 

 
Figure 2: Loss history for training the DNN. 

 

 
Figure 3: Example DNN-informed inversion. The DNN ingests measurement values and is 

trained to output layer depths and conductivities. Using those depths, standard 
inversion tools (such as E4D) can be used to resolve the conductivity values. 
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Approach #2: Predicting Layer Properties with PCA 

Principal Components Analysis (PCA)  

The DNN of Approach #1 maps measurements to geologic features explicitly, i.e. a practitioner 
chooses the measurement and feature vectors to construct and train the network. While this can 
be demonstrated for relatively simple geologies (such as prototypically layered geology), this 
becomes intractable with more realistic geology. Here, we shift to using Principal Components 
Analysis (PCA) as a tool for encoding structure for downstream deep learning tasks. 
Specifically, we focus on dimensionality reduction via PCA – that is, projecting high-dimensional 
data onto a lower-dimensional manifold defined by the first several or most significant 
orthogonal principal components. 

PCA is a linear transformation of data into a coordinate system where the variance of the data is 
expressed by projections of data onto the coordinate axes. Principal components – orthonormal 
basis vectors - are the unit-normalized eigenvectors associated with the eigenvalues of the 
covariance matrix of the mean-centered data. Rank reduction or dimensionality reduction is the 
procedure of retaining a subset of principal components for the reconstruction of data. Typically, 
those that are retained describe the majority of variance observed in the dataset or for a 
particular data snapshot. For a description of the linear algebra formalisms for PCA and rank 
truncation, we refer to Brunton et al. 2022. Note that for this task, we use an SVD-based 
formulation as opposed to explicitly calculating eigenvalues and eigenvectors of the covariance 
matrix. 

We seek to encode the dominant geologic features in a synthetically-generated dataset via a 
rank reduction procedure performed through PCA. For this feasibility study we generated 
synthetic BEC distributions using Sequential Gaussian Simulation. A suite of 100 synthetic BEC 
data sets was generated using the open source geostatistical software package SGeMs 
(http://sgems.sourceforge.net/). The BEC range in these data spans 5 orders of magnitude from 
0.0001 to 1 S/m. An example distribution is shown in Figure 4. The distributions also contain a 
range of spatial complexities over which to test the performance of the neural network informed 
inversion process. Also, these BEC distributions are static to understand the role of deep 
learning in informing structure before considering its evolution. 

Figure 5 displays the first singular values associated with the principal components for the 
training data. For rank reduction, a certain energy threshold is usually defined (e.g., “capturing” 
99% of the energy of the dataset, where energy, or a surrogate, is defined as the cumulative 
sum of the singular values ratioed to their total sum, as seen in Figure 6) for a minimum rank to 
describe the major structural features of the data. Rules of thumb exist (e.g., capturing 99% of 
energy), but ultimately these are heuristics that are practitioner-tuned for specific purposes. In 
the present exploratory study, we select a low rank, 15, to (i) reduce the number of trainable 
parameters in our downstream tasks, and (ii) reduce the influence of excessively small spatial 
features. 

http://sgems.sourceforge.net/
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Figure 4. Example of a BEC distribution generated using Sequential Gaussian Simulation. 

 
Figure 5: Singular value decay for the synthetic BEC dataset. 
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Figure 6: Cumulative energy distribution through singular value index. 

PCA-based Inversion of Synthetic Data 

The DNN of Approach #1 was constructed to map measurement space for feature space. In this 
section, an analogous DNN is constructed and trained to map from a measurement space to 
feature space, where feature space is defined by the reduced-rank PCA coefficients. This allows 
for the PCA to handle the spatial structure encoding without input from a practitioner, except for 
selecting a rank cutoff. 

The deep learning pipeline is depicted in Figure 7. E4D is used as a forward simulator during 
training; i.e. to solve the appropriate physics and produce an output consistent with an 
observation and measurement strategy – in this case, this is a pole-pole ERT survey done 
synthetically with the results of the physics simulation. To begin, two forward simulations are 
performed with E4D: (i) one on a geologic instance reconstructed from random PCA 
coefficients, and (ii) one on a geologic instance from the data set. Each forward run results in a 
vector of measurements, which can be compared. The residual error between these two forward 
runs is the input to the DNN. The DNN maps this residual vector to an update of the PCA 
coefficients (i.e. the DNN output is added to the random PCA coefficients). The reconstruction 
residual between the updated PCA reconstruction and the ground-truth geology is computed, 
and this residual is backpropagated through the DNN such that the DNN’s weights can be 
updated accordingly. 
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Figure 7: Training pipeline for PCA-based inversion. A standalone physics simulator (E4D) is 

used to generate synthetic measurement data for both ground-truth geologic 
instances and random PCA reconstructions. The measurement residual is fed into a 
DNN, which generates a PCA coefficient update. The reconstruction residual is used 
to train the weights and biases of the DNN. 

Because the E4D simulator is not differentiable, the DNN is trained to map measurement 
residuals (between that of a random PCA reconstruction and a ground-truth geologic instance) 
to an update to the random PCA coefficient. Residuals cannot be backpropagated through E4D. 
Table 3 lists all hyperparameters associated with this approach and Figure 8 shows the loss 
history for training the DNN with these hyperparameters. 

Table 3. Hyperparameters for DNN in PCA-based inversion example. 
Parameter Value 

N Train 85 
N Test 9 
N Measurements 496 
Rank 15 
Network Architecture Two hidden layers of size 200 and 75, 

respectively. ELU() activation and linear output. 
Loss function MSE(PCA reconstruction, G.T. geology) 
Data preprocessing/norm Log10() and [0,1] rescaling 
Optimizer and LR Adam, 0.01 
Batch size Full batch 
Epochs 200 
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Figure 8: Loss history during training for the PCA-based inversion. 

In deployment (Figure 9), the DNN ingests a measurement residual (between E4D in inversion 
mode a ground-truth measurement) and outputs an updated PCA reconstruction. If running 
coupled with E4D, the updated PCA reconstruction is fed back into E4D repetitively until 
convergence is reached. Alternatively, after a single pass through E4D, the PCA reconstruction 
can be digitized, i.e. the values binned into a discrete number of intervals and used as a prior for 
the spatial structure of the geology during an inversion call via E4D. 

 
Figure 9: Schematic for deployment of the trained DNN for PCA-based inversions. The DNN 

provides an update to the PCA coefficients, which can be used iteratively with an 
inversion code (E4D) or used to produce a spatial encoding to be used as a constraint 
in an offline inversion. 

Example NN-informed inversions using this latter technique are shown in Figure 10 with 4 (user-
specified) digitized conductivity bins. The left column represents true BEC fields, whereas the 
second column represents the encoding of spatial structure by the trained NN. The resulting 
NN-informed inversion is shown in the third column and can be compared with the fourth 
column – the simplest ‘Occam’s Inversion’ performed on the same data. 
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Figure 10: Example DNN-informed inversions with PCA-based spatial encoding. The first 

column corresponds to the true geologic instance (i.e., the synthetic data). The 
second column is the spatial encoding via the trained DNN. The third column is the 
DNN-informed inversion and can be compared with the results in the fourth column, 
the standard Occam’s inversion. 
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Discussion, Conclusions, and Future Work 
Presented were two proof-of-concept ML approaches for encoding spatial structure in 
geophysical inversions. The first, detailed in Approach #1, focused exclusively on characterizing 
layers by their depth and conductivity. These geologic features were predicted via a trained 
DNN whose input was the vector of measurements from a pole-pole ERT survey. In our second 
ML approach, detailed in Approach #2, we generalized our first approach to adapt to arbitrary 
geology through spatial encoding via data compression through Principal Components Analysis 
of a geologic dataset. 

Through these proof-of-concept exercises, we have successfully demonstrated that it is possible 
to inform, or constrain, inversions with neural networks trained on synthetic data with complex 
subsurface structures. There are two main takeaways from these preliminary results: (i) this 
particular strategy of spatial encoding is successful in that the inversion results closely adhere to 
the structural prior, and (ii) this particular strategy for determining spatial structure is insufficient 
to recover the true geology. 

Our initial results suggest this process may be optimizable to yield property distributions that 
better represent the true synthetic property distributions than the same inversion process 
without the neural network constraint. While we were successful in encoding spatial structure, 
success was varied in the accuracy of the said structure. First, we stress that the self-contained 
studies of Approaches #1 and #2 were each performed for a single set of hyperparameters - the 
presented results should not be taken out of context from these settings. To better determine 
the performance of these methods, a comprehensive hyperparameter search should be 
completed (e.g. network architecture, learning rate, PCA reduced rank, etc.). Future work 
should consider these strategies for optimizing this process – e.g., a formal hyperparameter 
tuning procedure - to improve upon the results of this study. 

For future work, needed are different approaches that better leverage both existing datasets, 
such as the synthetic data generated for this study, and for datasets with variable measurement 
and feature spaces. Such approaches are likely to include probabalistic methods as opposed to 
deterministic methods. These approaches can allow for both modeling complex data 
distributions and efficient distribution sampling. When coupled with inversion routines like E4D, 
these approaches can both minimize data misfit and maximize likelihood of a particular geology 
given the data. 
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