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Abstract 
Correct function and calibration of instrumentation is a crucial assumption for any scientific 
experiment. One such instrument, tandem inductively coupled plasma mass spectrometer (ICP-
MS/MS), has in-depth calibration settings that range across 30+ different parameters, making it 
difficult to determine optimal conditions without expertise and some degree of trial and error. 
Often, these settings are hand-tuned, a time-intensive process prone to local maxima and 
human error. While some automation is available, the automation also may favor local 
optimizations over a global optimum. In addition to these difficulties, day to day instrument 
variability can further complicate the calibration process. We propose a solution to this problem 
as a machine learning (ML) algorithm that learns how each parameter helps determine the 
calibration sensitivity across several elements, and re-weights parameters over time as 
instrument variability changes (e.g., a global neural network (NN) with a time-dependent transfer 
learning (TL) component). This model would be able to generate a surface of predicted 
calibration sensitivities and their respective parameters, and a simple multivariate algorithm 
would be able to pull out the optimum results with the settings associated with them. Here-in, we 
describe our initial findings in working towards this goal, including data extraction from historical 
files, exploratory data analysis, and some initial model building to better describe the data and 
the feasibility of our goal. 
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Acronyms and Abbreviations 
 

ICP-MS/MS – Tandem inductively coupled plasma mass spectrometry 

NN – Neural Network 

TL – Transfer Learning 

ML – Machine Learning 

m/z – mass to charge ratio 

MARS – Mathematics of Artificial Reasoning for Science 

PNNL – Pacific Northwest National Laboratory 

LDRD – Laboratory Directed Research and Development 

DOE – U.S. Department of Energy 

EMSL – Environmental Molecular Sciences Laboratory 

PDF – Portable Document Format 

XML – Extensible Markup Language 

EDA – Exploratory Data Analysis 

CPS – counts per second 
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1.0 Introduction 
Use Body Text for paragraphs in this section. PNNL reports use 
http://www.chicagomanualofstyle.org/home.html for document style. Right-click and choose 
open hyperlink to view the style guide. 
 
 Atomic ICP-MS/MS is an effective method for measuring elemental concentrations of 
materials and is widely used across various industries and academic research. While 
commercial ICP-MS/MS software come equipped with ‘autotune’ features, they are not iterative, 
can be inflexible in optimizing multiple mass ranges, and are ineffectual at tuning collision cell 
chemistry (Figure 1). We propose to replace the expertise of an experienced user with a hybrid 
neural network (NN) and transfer learning (TL) machine learning model that would interface with 
ICP-MS/MS software to effectively automate instrument tuning. 
 
 
 

 

 

 
 

 
 
Figure 1.  ICP-MS tuning requires adjustment to optimize sensitivity for different analytes and 

experimental goals; a) Instrument sensitivity across analytes when tuned for mid-
range masses; b) instrument sensitivity across analytes when optimizing oxidized 
products. 

 

1.1 Chemistry of the ICP-MS/MS 

Use Body Text for paragraphs in this section. PNNL reports use 
http://www.chicagomanualofstyle.org/home.html for document style. Right-click and choose 
open hyperlink to view the style guide. 
 
 The ICP-MS/MS instrument functions by ionizing the sample in an argon plasma, then 
creating and focusing an ion beam through a series of electrical lenses. The ions can be 
selectively sampled by their mass to charge ratio (m/z) by passing the beam through 
quadrupole mass filters. In the instance that the analyte is interfered by a species of the same 
m/z (e.g., 87Sr and 87Rb), gas phase ion-molecule reactions can be employed in a collision 
reaction cell to affect a separation during the measurement.  
 There are several tunable parameters that control the creation, focusing and sampling of the 
ion beam to optimize the transmission of the ion beam through the system to the detector. 
Additional tuning parameters also control the gas phase reaction chemistry in the cell, which 
need to be optimized to maximize the production of a desired product or removal of an 
interference species. Typically, the instrument user will manually adjust ~ 30 software 
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parameters (Table 1) in an iterative process to maximize the analyte signal intensity. As the 
tuning parameters are congruent with ion m/z, the user will need different settings for analytes 
across the mass range. Further complications arise when reaction chemistry is part of the 
analysis. As such, instrument tuning can be time sensitive and require a fair amount of expertise 
to leverage the full potential of the ICP-MS/MS that can otherwise measure virtually every 
element in the periodic table. Refer to Appendix A for more detailed information about the 
settings used during calibration. 
 

Table 1. All predictor and response variables collected for use in predictive modeling. 

Variable Related Feature Adjustable Model Role Range 
Ave. Count Response detection No Response 0 – 20,000+* 

Range Response detection Yes Predictor 0-50,000+* 

Concentration Response detection Yes Predictor NA*  

RF power Operation settings Yes Predictor  500 - 1600 W 

RF matching Operation settings Yes Predictor 0.20 – 3.00 V 

Sample depth Operation settings Yes Predictor 3.0 – 28.0 mm 

Nebulizer gas Operation settings Yes Predictor 0.00 – 2.00 L/min 

Option gas Operation settings Yes Predictor 0.0 – 100.0 % 

Nebulizer pump Operation settings Yes Predictor 0.00 – 0.50 rps 

S/C temp Operation settings Yes Predictor -5 – 20 °C 
Makeup gas Operation settings Yes Predictor 0.00 – 2.00 L/min 

Plasma gas Operation settings Yes Predictor 15.00 – 23.00 L/min 

Auxiliary gas Operation settings Yes Predictor 0.90 – 1.20 L/min 

Extract 1 Lenses Yes Predictor -200.0 – 10.0 V 

Extract 2 Lenses Yes Predictor -250 – 10.0 V 

Omega bias Lenses Yes Predictor -200 – 10 V 

Omega lens Lenses Yes Predictor -50.0 – 50.0 V 

Q1 entrance Lenses Yes Predictor -100 – 20.0 V 

Q1 exit Lenses Yes Predictor -50 – 20 V 

Cell focus Lenses Yes Predictor -50 – 20.0 V 

Cell entrance Lenses Yes Predictor -150 – 10 V 

Cell exit Lenses Yes Predictor -150 – 10 V 

Deflect Lenses Yes Predictor -150.0 – 20.0 V 

Plate bias Lenses Yes Predictor -150 – 10 V 

Q1 mass gain Q1 Yes Predictor 0 – 255  

Q1 mass offset Q1 Yes Predictor 0 – 511  

Q1 axis gain Q1 Yes Predictor 0.9800 – 1.0200  

Q1 axis offset Q1 Yes Predictor -0.50 – 0.50  

Q1 bias Q1 Yes Predictor -100.0 – 20.0 V 
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Q1 prefilter bias Q1 Yes Predictor -50.0 – 20.0 V 

Q1 postfilter bias Q1 Yes Predictor -50.0 – 20.0 V 

SLS factor Q1 Yes Predictor 0.00 – 1.00 

SLG factor Q1 Yes Predictor 0.20 – 1.00 

Use Gas Q1 Yes Predictor Yes/No 

He flow Q1 Yes Predictor 0.0 – 12.0 mL/min 

H2 flow Q1 Yes Predictor 0.0 10.0 mL/min 

3rd gas flow Q1 Yes Predictor 0 – 100 % 

4th gas flow Q1 Yes Predictor 0 – 100 % 

OctP Bias Q1 Yes Predictor -150.0 – 20.0 V 

Axial Acceleration Q1 Yes Predictor -2.0 – 2.0 V 

OctP RF Q1 Yes Predictor 30 – 180 V 

Energy Discrimination Q1 Yes Predictor -20.0 – 150.0 V 

Q2 mass gain Q2 Yes Predictor 0 – 255 

Q2 mass offset Q2 Yes Predictor 0 – 511  

Q2 axis gain Q2 Yes Predictor 0.9800 – 1.0200  

Q2 axis offset Q2 Yes Predictor -0.50 – 0.50 

Q2 bias Q2 Yes Predictor -100.0 – 0.0 V 

Torch H Torch Axis Yes Predictor -2.0 – 2.0 mm 

Torch V Torch Axis Yes Predictor -2.0 – 2.0 mm 

Discriminator EM (Hardware Settings) Yes Predictor 0.0 – 200.0 mV 

Analog HV EM (Hardware Settings) Yes Predictor 0 – 3500 V 

Pulse HV EM (Hardware Settings) Yes Predictor 0 – 2000 V 

*Dependent on element used 
 

1.2 Selection of Machine Learning (ML) models 

Use Body Text for paragraphs in this section. PNNL reports use 
http://www.chicagomanualofstyle.org/home.html for document style. Right-click and choose 
open hyperlink to view the style guide. 
 
Neural network (NN) models are used to predict a certain outcome given a series of inputs, 
often used in a categorical or probability-based context. Built over several layers of weighted 
nodes based on input parameters and known outcomes, NN have been increasingly more 
popular for modeling and predicting outcomes in complex systems. As with most models, NNs 
tend to perform best with large amounts of data. Several years' worth of tuning results are 
available to us for this purpose and additional data points can be easily collected as necessary. 
After being shown to efficiently predict instrument sensitivity given a set of input parameters, our 
proposed model would be able to predict outcomes in a confined parameter space using 
chemical principals and properties of the analyte. A multivariate optimization algorithm can then 
be run over the parameter space and return the input settings to maximize instrument 
sensitivity. While the results from this workflow will establish a baseline for optimized inputs, the 
variance in instrument operation requires additional fine-tuning (i.e., localizing a generalized 
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model (3)). TL has previously been shown to be an effective tool for localizing general models 
and re-mapping lengthy calibration processes across instruments. The combination of a NN with 
a TL framework outperformed PLS, PFCE, and a deep learning method (Figure 1, 2) (1, 2). 
 
While we have less complex predicted variables than used for previously published calibration 
transfer data, we note that the context is similar enough to provide a framework to structure the 
NN and transfer learning models (Fig 2). Within the provided framework and the ability to 
access a live signal for accumulating data, we believe a similar solution would be possible for 
tuning both across instruments as well as within day-to-day operations of a single instrument. 
 
 

 
 
Figure 2.  Framework for localizing a neural network model with transfer learning. Figure 

originally printed in Puneet Mishra, Dário Passos, Deep calibration transfer: 
Transferring deep learning models between infrared spectroscopy instruments (2). 
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2.0 Data Extraction 
The historical data provided by our chemical analysts included 1166 portable document format 
(PDF) files reporting calibration results from an Agilent 8900 triple quadrupole ICP-MS/MS used 
in the lab at PNNL. Additional files from a second instrument were not obtained at the time of 
writing this report. As the acquired PDFs did not contain machine-readable text, resources were 
dedicated data extraction from these files in the most accurate and efficient manner possible to 
ensure data integrity. To such ends, we investigated and employed several open-source optical 
character recognition (OCR) methods as well as manual data extraction to pull information 
about our predictor and response variables. In addition, during the last weeks of the project 
received 28,916 batch and sample extensible markup language (XML) files that were used to 
approximate truth in calibration runs. We were not able to acquire calibration XML files at the 
time of writing (16Sep2022). 

2.1 Optical Character Recognition (OCR) methods 

Open-source OCR methods were explored in R, python, and command line executable 
environments (Table 2). Python implemented Tesseract and Doctr engines showed the best 
performance of investigated methods by visual evaluation of extraction completeness. 

Table 2. Investigated OCR methods. 

Package/Met
hod Coding Environment Engine Able to run? Speed Accuracy 

Extract 
Use 

tesseract 
R Tesseract Yes Slow Medium-

High 
No 

tabulizer R Tabula Yes Slow Medium No 

TesserOCR Python Tesseract Yes Fast High* Yes 

Doctr 
Python Doctr Yes Slow Medium-

High 
Yes 

OCRmyPDF 
Command line 
executable 

Tesseract Yes Slow Medium No 

EasyOCR 
Command line 
executable 

EasyOCR Online only - - - 

* Evaluated by line-by-line settings 

 

For TesserOCR, several methods were investigated to ensure best performance, including 
whole page and line by line recognition. The most complete results were obtained by line-by-line 
recognition with limited characters defined for recognition. Line-by-line recognition was 
performed by manually entering the approximate location of the desired text, then passing the 
area to OpenCV’s edge detection function to minimize the whitespace surrounding the text.  

The Doctr implementation conducted a full-page extraction to detect characters and was 
significantly slower than the TesserOCR implementation. However, unlike other tested methods, 
Doctr relies on a slightly different engine that appeared to make-up for errors observed in the 
TesserOCR method.  
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2.2 Common errors and error removal 

Like any image-reading implementation, OCR methods like TesserOCR and Doctr have 
weaknesses in character recognition that are non-trivial and widely occurring. TesserOCR 
results contained many observations where negative signs (-), decimal points, and cross-page 
observations were misread. Doctr, on the other hand, showed difficulties in correctly reading 
number sequences. However, between the two methods and our knowledge of viable values for 
each of the parameters, we were able to establish filters for common errors and consensus 
algorithms for weighting one result over another.  

Comparing the results of the two extractions, 7768 discrepancies were observed and resolved 
out of 61503 comparisons in 1079 documents (~13%). The resolved results yielded notable 
improvements in initial models, increasing accuracy by ~5% and ~10% for linear and random 
forest models, respectively. 

2.3 Comparison to XML files and manual extractions 

The XML batch files that were provided for use as ground truth had particular strengths and 
weaknesses for our analyses. The strength of these files is the manner of extraction – for each 
parameter, the numeric settings could be located within the file without the issue of misreads. 
However, several samples are sun in a single batch and batches are not calibration-run specific 
and did not contain our response variable, making it tricky to apply this data in the right context. 
We utilized the creation and modification times of each XML file to attempt to achieve the 
closest reasonable matches to calibration files from using those batch methods. For the 
response variables, we used comparisons to hand-extracted values from the PDF files to verify 
our result. Using extractions from the batch XML files and manual extractions as ground truth, 
we fully verified the accuracy of our auto-extraction methods on 40 batches. The methods 
achieved 100.0% accuracy over these files, with 0 files highlighted for spot-checking and further 
manual correction. 
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3.0 Exploratory data analysis (EDA) 
During our iterative process of data extraction and implementing initial ML models, we relied 
heavily on exploratory data analysis for outlier detection, assessing variable relationships, and 
understanding the similarity and differences across calibration runs. We are especially 
cognizant of differences between commonly measured elements in the historical dataset (Table 
3). 

Table 3. Commonly analyzed standard elements in historical dataset. 

Element Mass indicators Occurrence 
Lithium 7 48 
Potassium 39, 41 272 
Cobalt 59 99 
Yttrium 89 141 
Cerium 156, 140 596 
Thallium 205 659 
Associated observations Many 5021 
   

 

3.1 Distribution of response and predictor variables 

Distribution of predictor values plays a strong role in choosing appropriate models and methods 
to implement. Outliers in distributions of mean subtracted predictors also provided our initial 
targets to spot-check our results (Figure 3). Some predictors, including Option Gas, Omega 
Lens, and Torch HV, rarely varied in the data and were removed in subsequent models. 
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Figure 3.  Mean-subtracted predictor values. 
 

In addition, we utilized the R package trelliscopejs to observe the density of the observations for 
each of predictor variables across each type of run (Figure 4). This methodology allowed us to 
manage many plots in an efficient fashion and also assisted in outlier detection. 

 
 
Figure 4.  Trelliscopejs depiction of predictor values density. 
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3.2 Relationships between predictor variables 

Relationships between each predictor used in the model was also investigated to give context to 
results from initial ML models – ultimately, we will require all tunable parameters as predictors 
since we hope to return those parameters to the user in the final models, but interpretation of 
our initial models would benefit greatly from this information. Specifically, when determining 
variable importance in our later models, we consider that highly correlated variables might 
undergo masking during model training. 

Hierarchical clustering of the predictor variables using Euclidian distances offered both expected 
and unusual associations (Figure 5). Mass gain and offset are expectedly close due to 
relationships described in Appendix A, however RF Power and Pulse associations are not 
clearly explained by our current knowledge. Strong correlations were observed between these 
predictors as well (Figure 6). 

  
 
Figure 5.  Hierarchical clustering of predictors via complete Euclidean distances. 
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Figure 6.  Pearson’s correlation between predictors used in our initial models. 

 

3.3 Principal Component Analysis (PCA) with metadata 

3.3.1 Full dataset 

We also assessed the some of our expected assumptions via principal component analysis. Our 
assumptions asserted that 1) analysts use measurably different settings for different 
methodologies and 2) analysts use differing settings for different molecules. 

As expected, we were able to observe differences in clustering based on method, plama 
tempurature, additional elements in the solution, and the primary element of observation. 
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Figure 7.  PCA of all varying numeric dataset predictors, distinguishing (left) tandem vs. single 

MS used in a run as well as (right) different targeted masses in a run. 

3.3.2 Thallium dataset 

In addition to confirming our assumptions for the overall dataset, we also looked within element 
parameters to consider possible “groupings” of settings that analysts perfer across elements. 

While we note distance in these assessments, these do not indicate necessarily batch effects, 
but different settings used over time. By comparing the sensitivity observed within each of these 
clusters, however, we can better determine if we are seeing variation of the instrument 
performance that we would hope to capture in localizing models. For example, the settings 
driving the PC1 distance in for the most measured element thallium (element corresponding to 
205) are depicted in Fig. The measurements in each of these groups seem to have mostly 
similar responses in terms of sensitivity but the settings themselves are varying over time. 
Range especially correlates with cases of low sensitivity. 
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Figure 8.  PCA of all varying numeric dataset predictors for thallium, colored by continuous 

variables of interest including (top-left) acquisition time, (top-right) our response 
variable Average count, and range (bottom-left). 

 

For the thallium dataset, loadings along the x-axis (PC1) where highly influenced by Q1 and Q2 
mass gains and offset values (Figure 8). Discussing with our analysts, the most likely reason for 
these variables as driving forces is that they are rarely changed unless a full tune is run on the 
instruments, tweaking all settings at those times. Therefore, we suspect the primary differences 
between clusters on the x-axis relates to those times of fully re-tuned settings. For PC2, the 
strongest drivers also include some of these features that are adjusted during full-tunes as well 
as more regularly changed features like Plate bias and Q1 bias. 
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Figure 9.  PCA loadings of all varying numeric dataset predictors for thallium. 

 

3.4 Correlation of observations through time 

One of the trickiest and most integral parts of our data the variation and dependence of 
sensitivity over time. Independence of observations is not something we can assume, which can 
lead to biased estimators in models like linear regression. To get a clear picture of the relation of 
time to our response observations, we consider the lagged correlation for our data specifically 
for thallium (205) with a range of 20,000. 

Breaking the data into relational components, we broke the response variable into 8 groups of 
64 observations to assess the trends over time. The overall trend appears to be non-linear, but 
we notice possible outliers even in the observations restricted to range 20,000. We were not 
able to discern the validity of these observations at the time of writing (16Sep2022). 
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Figure 10.  Decomposition of response values for thallium with detection set at range 20,000. 

Dataset was divided into periods of 64 observations. 

 

Utilizing auto-correlation functions in R, nearby timepoints appear to more strongly correlate 
than distant ones, as would be expected with instrumentation variability and repetitive use of the 
same settings. We notice that when the linear dependence is removed from previous lag 
periods, the autocorrelation diminishes more rapidly as lag increases. 

   
Figure 11.  (Left) Auto-correlation and (Right) partial autocorrelation on values for thallium with   

detection set at range 20,000.  
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4.0 Initial models 
We assume predictive power of the instrument settings to be able to give us accurate 
estimations of sensitivity, however are not yet ready to compare across molecules due to lack of 
historical data. Due to the most common occurrence of thallium in our historical data, we model 
the predictiveness of our variables using only thallium measurements in the following models. 

4.1 Linear modeling approach 

4.1.1 Linear modeling performance 
 

Considering the possibility of a simple linear combination between all of our predictors, a 
straightforward linear model is able to moderately capture much of the trend of our dataset. Our 
R-squared value resulted at around roughly 70% in this model (Figure 12). 
 

 
 
Figure 12.  Predicted response generated by linear model plotted on top of observed responses. 
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4.1.2 Strongest predictor variables 

In the linear model, the significant predictors include Range, Use Gas, and Plate Bias, (p-value 
< 0.001), followed by Acq Date Time, Auxiliary Gas, Extract 1, 4th gas flow, Axial Acceleration, 
and Analog HV (p-value < 0.01). However, the factor levels of some of the strongest predictions 
are extremely disproportionate, and in a similar linear model of residuals, Range appeared to be 
significant for explaining where these higher levels of error occurred. This is a somewhat 
intuitive result, as Range directly determines what proportion of the gaussian signal from the 
element is reported (Figure 13). 

 

 
Figure 13.  Range’s effect on the response variable, where increased ranges report a larger 

signals. 
 

4.1.3 Range Subset 
 
 
Referencing the figure above, we recalculated our explained variability in further refined data, 
where Range  is equal to 20,000. Under this new dataset, The Adjusted R-squared value 
dropped to 0.3328. Based on the outliers in the residual, we also removed two outliers that had 
response measured well below the other points in the data (< 5000). Despite, the low variance 
explained, we next considered how close our predictions are to the original values. With a range 
set at 20,000 for thallium, we were able to achieve a majority within 10% of the predicted value 
(65.8%, ~1,000 cps) and most observations within 20% of the predicted value (89.1%, ~2,000 
cps). Using a modified linear model robust to outliers from the MASS package in R,  we 
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observed modest improvements under the same circumstances (69.4% and 91.2%, 
respectively) (Figure 14). 
 

 
Figure 14.  Difference between robust linear model predictions and observed values as a 

percentage. 
 

4.2 Random forest approach 

4.2.1 Random forest performance 

Random forests are often considered because of a relative lack of assumptions made about the 
data used for modeling as well as the innate interaction properties picked up by the model. 
Using a regression-based random forest with 70% of our data used for training with 30% hold-
out, the average performance across 100 randomly generated subsets of our data captured 
~75% of the variance in our hold-out data and ~73% of the variance in our training data (Figure 
13). This approach appears to capture much more of the variability present in the historical 
observations for thallium, which we suspect to result from innate interaction effects picked up in 
the random forest model. 
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Figure 15.  Predicted response generated by average-performance random forest model plotted 

on top of observed responses. Parameters for the random forest were set to 2000 
total trees with 17 random variables used in each tree. 

 
 
 
 

4.2.2 Strongest predictor variables 

The strongest variable in our average-performing random forest model is unsurprisingly 
detection range given its direct influence on the response variable and our precious results from 
our linear model (Figure 14). Plate bias, analyzer press, sample depth and omega lens also 
rank highly with a few other predictors, but diminishing returns are seen past the first 10 
predictors. As expected from the trend noted in the decomposition matrix, acquisition time also 
ranks highly for prediction in the dataset. Strongly reported variables have been confirmed by 
our MS analysts as commonly tuned features. 
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Figure 16.  Node purity and MSE improvements with the inclusion of predictors in random forest  

trees. 
 
 
 

4.2.3 Range Subset 
 
As with our linear forest model, we also consider a restricted range data performance. Of 10 
different 70% training and 30% test subsets of the data, average performance ranks at ~50% 
variability explained in both test and training results. Considering the distance of predicted 
response from the observed values, 97.4% of the predicted values fall within 20% of the 
observed value, and 88.9% of predicted values fall within 10% of the observed values. 
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Figure 5.  Difference between random forest predictions and observed values as a percentage. 
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Discussion and Future Directions 
 We have completed much of the initial investigation of our data, with more questions 
in mind to investigate in future discussion. From our results, we can see that our 
Random forest fits our data with much better trending than simple and robust linear 
models. We attribute this to interaction effects innately considered in the random forest, 
but in future work we would like to verify this by extracting possible interaction effects 
indicated by the random forest and adding those into our linear models. We suspect this 
also may make-up for the differences in the most strongly weighted variables between 
the two models. 

 Investigation of the time dependence of our data also leads us to consider how our 
test and training datasets may be flawed. During our current work, we sampled randomly 
for each of these, but it may be more appropriate to divide and holdout specific blocks of 
time and evaluate the differences in these time blocks further. 

 As current work stands, we are particularly interested in determining what is causal 
to the remaining unexplained variance in our models. We suspect that another variable 
we ought to consider in our analyses is proximity to other sample measurements – i.e., 
we expect that running the instrument with certain elements may leave carry-over effects 
for subsequent runs. The greatest barrier to understanding this relationship is our current 
relative lack of data in general and across multiple measured elements. In addition, 
additional data is required for a more robust model and future development of the neural 
network and transfer learning models we hope to achieve. We hope that in future 
investigation, we might have dedicated lab time planned out to generate custom data for 
the project or pull in data from other interested collaborators such as commercial 
instrument manufacturers and commercial labs where these instruments are also in 
regular use. 
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Appendix A – Link to Agilent reference 
Calibration settings are best described by publicly available technical documentation of the 
Agilent 8900, which can be located at the following URL: 

https://www.agilent.com/cs/library/applications/5991-6943EN.pdf  

 

https://www.agilent.com/cs/library/applications/5991-6943EN.pdf
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