
PNNL-32881

FIC Vulnerability Profile
Provided by Shamrock Cyber

May 2022

Ryan Bays
Josh Bigler
Angie Chastain
Paul Francik
Catie Himes
Emma Lancaster
Danielle Nodine
Patrick O’Connell
Aaron Phillips
Shawn Ricketts
Garret Seppala
Torri Simmons
Chance Younkin

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibi l it y
for the accuracy, completeness, or usefulness of any information, apparat u s,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessar ily
state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE

for the
UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from
the Office of Scientific and Technical

Information,
P.O. Box 62, Oak Ridge, TN 37831-0062

www.osti.gov
ph: (865) 576-8401
fox: (865) 576-5728

email: reports@osti.gov

Available to the public from the National Technical Information Service
5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)
 or (703) 605-6000
email: info@ntis.gov

Online ordering: http://www.ntis.gov

http://www.osti.gov/
mailto:info@ntis.gov
http://www.ntls.gov/

PNNL-32881

FIC Vulnerability Profile
May 2022

Ryan Bays
Josh Bigler
Angie Chastain
Paul Francik
Catie Himes
Emma Lancaster
Danielle Nodine
Patrick O’Connell
Aaron Phillips
Shawn Ricketts
Garret Seppala
Torri Simmons
Chance Younkin

Prepared for
the U.S. Department of Energy
under Contract
DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99354

PNNL-XXXXX

Contents ii

Contents
Contents .. ii
Acronyms and Abbreviations, and Terms of Reference ... iii
1.0 Introduction ... 1

1.1 Purpose of a Vulnerability Profile .. 1
1.2 Shamrock Cyber Analysis ... 1

2.0 Static Analysis Security Testing (SAST) Profile .. 2
3.0 Conclusion .. 7

 Brief on Consequence-Based Analysis .. A.1
 Brief on Threat-Based Analysis .. B.1
 Brief on Security-Based Development .. C.1
 Full Checkmarx Scan Results ... D.1

Figures
Figure 1. Shamrock Cyber services. ... 1
Figure 2. The CBA leaf of Shamrock Cyber. .. A.1
Figure 3. The TBA leaf of Shamrock Cyber. .. B.1
Figure 4. Lockheed Martin's methodology. .. B.1
Figure 5. The CIA triad. .. B.1
Figure 6. The SBD leaf of Shamrock Cyber. ... C.1

Tables
Table 1. Static Analysis Security Testing Results ... 2

https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599783
https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599784
https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599785
https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599786
https://pnnl.sharepoint.com/teams/SecureSoftwareCentralTeam/Shared%20Documents/General/Outreach/Shamrock%20Cyber%20Workshop/FIC%20Vulnerability%20Profile/FIC%20Vulnerability%20Profile_v1.0.docx#_Toc102599787

PNNL-XXXXX

Acronyms and Abbreviations, and Terms of Reference iii

Acronyms and Abbreviations, and Terms of Reference
CIA Confidentiality, Integrity, Availability
CSRF Cross-Site Request Forgery
IDDIL-ATC Identify Assets, Define the Attack Surface, Decompose the System,

Identify Attack Vectors, List the Threat Actors, Analysis & Assessment,
Triage, Controls

OSA Open-Source Analysis
PNNL Pacific Northwest National Laboratory
SAST Static Analysis Security Testing
STRIDE Spoofing, Tampering, Repudiation, Information Disclosure, Denial of

Service, Elevation of Privilege
TBA Threat-Based Analysis
TMT Threat Modeling Tool

PNNL-XXXXX

Introduction 1

1.0 Introduction
The FIC team is engaged with Pacific
Northwest National Laboratory’s
(PNNL’s) Shamrock Cyber Team to
provide cybersecurity analyses of the FIC
software. Shamrock offers both Threat-
Based Analysis services and Secure
Software Development services, as
defined in Figure 1. These services are
ultimately used to understand and
mitigate threats against software and to
reduce vulnerabilities in software, thus
improving overall cybersecurity and
informing decision makers. Shamrock’s
Secure Software Development services,
specifically Static Analysis Security Testing
(SAST) and Open-Source Analysis (OSA), produced this Vulnerability Profile.

1.1 Purpose of a Vulnerability Profile

The purpose of this Vulnerability Profile is to provide concise, clear actions that the FIC team
can take to reduce vulnerabilities in the application code itself. Vulnerability Profiles are based
on automated vulnerability scans, which can be performed at the programming stage as well as
the testing stage of the software development life cycle. They are designed to be completed
regularly during software development, with the intent of eliminating vulnerabilities before
deploying in a production environment.

1.2 Shamrock Cyber Analysis

The Vulnerability Profile is based on a commercial off-the-shelf vulnerability scanner called
Checkmarx,1 which scans application source code for security vulnerabilities. It was adopted by
PNNL, and Shamrock Cyber uses it to perform SAST scans. Checkmarx also provides OSA,
which scans dependencies and third-party libraries used by the source code against a
knowledge base. Any libraries found in the knowledge base that are outdated or vulnerable are
listed in the results. Shamrock analyzes both SAST and OSA scan results to:
• Determine if a vulnerability is valid, possibly valid, or invalid
• Provide justification for this determination
• Recommend possible fixes to the vulnerability
• Make additional suggestions not provided by Checkmarx, such as refactoring duplicate

code, implementing best practices, checking authorization access, formatting, etc.

The Shamrock Cyber analysis is an informal code review across sections of the code near
vulnerabilities highlighted by Checkmarx. These feedback points and suggestions are
performed by a software engineer experienced in the source code language and are not part of
the Checkmarx scan. This provides additional code quality reviews that provide suggestions on
best practices to save time and effort for the FIC team.

1 https://www.checkmarx.com

Consequence Based Analysis – analyzes the
abuse, misuse, and hazards that determine risks
of developing and deploying a system. The
result is a dossier outlining the consequence-
based analysis.
Threat Based Software Analysis – determines
and prioritizes threats against the system and
recommends mitigations. The result is a Threat
Profile that contains a threat model, threat
findings, and mitigations.
Security Based Development – applies security
best practices to the system development life
cycle. This includes secure design, secure
implementation, and security testing.

Figure 1. Shamrock Cyber services.

https://www.checkmarx.com/

PNNL-XXXXX

Static Analysis Security Testing (SAST) Profile
 2

2.0 Static Analysis Security Testing (SAST) Profile
The details for all vulnerabilities found in the SAST scan, as well as Shamrock
recommendations, are outlined in the SAST Profile Table. This table is a concise list of
vulnerabilities found in the Checkmarx scan with the details necessary to find and fix vulnerable
code.

Table 1. Static Analysis Security Testing Results

Vulnerability
Type
(Checkmarx)

Vulnerability Location Mitigation Explana
tion

HIGH

1 SQL_Injection The
application's insertIn
stallationPermit met
hod executes an SQL
query
with insertStatement
, at
line 26 of app\server\
postgresQueries.js.
The application
constructs this SQL
query by embedding
an untrusted string
into the query without
proper sanitization.
The concatenated
string is submitted to
the database, where
it is parsed and
executed accordingly.

Source Line: 48 of \app \server.js

Destination Line: 26
\app\server\postgresQueries.js

Sanitize
input.
Consider
using
query-
builder
library.

PNNL-XXXXX

Static Analysis Security Testing (SAST) Profile
 3

MEDIUM

2 Missing_HSTS_
Header

Web servers without
the Strict-Transport-
Security header
expose clients to
man-in-the-middle
attacks by forcing an
initial connection over
HTTP before being
redirected to use
HTTPS. Strict-
Transport-Security
ensures the
connection will
always happen over
HTTPS.

Source Line: 35 of \app\server.js

Destination Line: 35 of
\app\server.js

Consider
adding
Strict-
Transport-
Security
header in
server
configuratio
n. Validate
that
browser
receives
Strict-
Transport-
Security
header in
response
from
server.

3 Use_Of_Hardco
ded_Password

The application uses
a hard-coded
password, allowing
database access to
anyone with access
to the source code.

Source Line: 7
\app\server\postgresQueries.js

Destination Line: 7
\app\server\postgresQueries.js

Move the
password
out of
source
code.
Consider
using
secret
manageme
nt library or
similar
method for
managing
passwords.

PNNL-XXXXX

Static Analysis Security Testing (SAST) Profile
 4

4 Missing_CSP_H
eader

Web servers without
the Strict-Transport-
Security header are
vulnerable to attacks
such as Cross-Site
Scripting.

Source Line: 35 \app \server.js

Destination Line: 35 \app \server.js

Consider
adding
Strict-
Transport-
Security
header in
server
configuratio
n. Validate
that
browser
receives
Strict-
Transport-
Security
header in
response
from
server.

LOW

5 Client_Insecure
_Randomness

Javascript's
Math.random()
method is not
cryptographically
secure

Source Line: 68 of
\app\src\assets\DummyData.js

Destination Line: 116-119
\app\src\assets\DummyData.js

Consider
replacing
Math.rando
m() with a
cryptograp
hically
strong
random
number
generator

This is
likely
low-
impact,
as it is
only
being
used to
generate
test data
in the
place of
actual
user
data.

6 Potential_Clickj
acking_on_Lega
cy_Browsers

HTML does not
protect against
clickjacking attacks,
which could result in
a user clicking a
malicious link
unintentionally.

Source Line: 1 \app\dist\index.html

Destination Line: 1
\app\dist\index.html

Add a
framebustin
g script
(see
https://chea
tsheetserie
s.owasp.or
g/cheatshe
ets/Clickjac
king_Defen
se_Cheat_
Sheet.html
#best-for-
now-
legacy-

PNNL-XXXXX

Static Analysis Security Testing (SAST) Profile
 5

browser-
frame-
breaking-
script)

7 Client_Hardcod
ed_Domain

A resource is being
loaded from a remote
domain, allowing an
attacker to replace its
contents.

Source Line: 4 \app\dist/index.html

Destination Line: 4
\app\dist\index.html

Consider
serving
resources
from the
web server,
rather than
directing
clients to
external
URLs.

8 Potentially_Vuln
erable_To_Csrf

This parameter value
flows through the
code and is
eventually used to
access application
state altering
functionality. This
may enable Cross-
Site Request Forgery
(CSRF)

Source Line: 11 \app \server.js

Destination Line: 11 \app \server.j

Consider
adding a
CSRF
token
https://level
up.gitconne
cted.com/h
ow-to-
implement-
csrf-tokens-
in-express-
f867c9e95a
f0

9 React_Deprecat
ed

The
ReactDOM.render()
is deprecated

Source Line: 59 \app\src\index.jsx

Destination Line: 59
\app\src\index.jsx

Consider
replacing
with
updated
React
rendering
methods.

10 React_Deprecat
ed

The
ReactDOM.render()
is deprecated

Source Line: 28
\app\src\components\Header.jsx

Destination Line: 28
\app\src\components\Header.jsx

Consider
replacing
with
updated
React
rendering
methods.

PNNL-XXXXX

Static Analysis Security Testing (SAST) Profile
 6

INFO

11

Log_Forging Method app.post at
line 48 of app\server.j
s gets user input from
element body. This
element’s value flows
through the code
without being
properly sanitized or
validated and is
eventually used in
writing an audit log
in, .then at
line 49 of app\server.j
s. This may enable
Log Forging.

Source Line: 48 of \app\server.js

Destination Line: 49,50
\app\server.js

Either
sanitize
user input
before
writing to
log or avoid
writing user
data to log.

Likely
false
positive,
as data
is being
written
to
browser
console
log, not
a log file
(and
therefor
e will not
be able
to
corrupt
log file
that will
be
process
ed later)

PNNL-XXXXX

Conclusion 7

3.0 Conclusion
This Vulnerability Profile is delivered with the intention of highlighting areas of concern based off
code scans of the FIC software that will be incorporated into the final system to ensure the
confidentiality, integrity, and availability of flagpole installation data for both employees and the
public. The order of importance in addressing vulnerabilities and their impact on the provided
code was based on the CIA prioritization of (1) Confidentiality, (2) Integrity, and (3) Availability.
After analyzing the codebase through an automated process (Checkmarx) and manual review, a
total of 1 high, 3 medium, 6 low, and 1 informative vulnerabilities were found to be of potential
consequence.

The vulnerability of most concern would be Vulnerability 1: SQL Injection, which involves
embedding an untrusted string into a query without proper sanitization. If the user input is not
sanitized and validated, this vulnerability could allow an attacker or user to exploit the database
and read files for which they are not authorized or modify the database. This would affect
confidentiality. This vulnerability can be remediated by validating/sanitizing all user input and
using whitelisting for valid input.

This Vulnerability Profile provides a set of vulnerability remediations that can be applied to the
application code of the FIC team immediately. By doing so, the cost of finding and fixing
vulnerabilities in production is drastically reduced. The contents of this Vulnerability Profile will
inform software developers and software testers before deployment, thus reducing the cost of
finding and fixing vulnerabilities in production.

This effort leads to more secure software and better-understood security, and the FIC team is to
be commended for their rigorous approach to employing cybersecurity in their products.

https://owasp.org/www-community/attacks/SQL_Injection

PNNL-XXXXX

Brief on Consequence-Based Analysis A.1

Appendix A Brief on Consequence-Based Analysis
The Shamrock Cyber Team uses Consequence-Based Analysis (CBA) to assess risk to mission
or business operations. Figure 1, shows the three categories of CBA, each of which is
composed of three elements: a system function, a negative
outcome, and a technical capability that, through the system
function, enables the negative outcome. The elements, when
present and combined in a system have the potential to impart
harm to some part of the system, its operation, its mission, or
its stakeholders. The negative outcome is a plausible
consequence of something going wrong with the system or its
operation. The technical element is the link that could
transform normal operations into the identified negative
outcome. Each of these cases is constructed as follows:

Abuse Case – damage caused by intentional acts of an
adversary

 Adversaries and their Motives (A&M) – who wants to
do damage and why

 Functional Use Element (FUE) -- what the system does
 Functional Abuse Element (FAE) – the harmful

outcome
 Technical Abuse Element (TAE) – how the system can be “hacked” intentionally

Misuse Case – damage caused by unintentional acts and human error
 Mistakes and Misbehavior (M&M) – foreseeable user mistakes or misuse
 Functional Use Element (FUE) – what the system does
 Functional Misuse Element (FME) – the harmful outcome
 Technical Misuse Element (TME) – how the system errors when misused

Hazard Case – damage caused by non-human events in the system’s operating environment
 Environmental Events (EE) – something that occurs naturally in the environment
 Functional Use Element (FUE) – what the system does
 Functional Hazard Element (FHE) – harmful outcome)
 Technical Hazard Element (THE) – how the system could malfunction due to a hazard

The Shamrock Cyber team engages with customers (owners, operators, and other
stakeholders) to understand system operations, use cases, and missions. The team also
gathers stakeholders’ unacceptable mission outcomes and conditions. From this, plausible
scenarios are derived that could lead to unacceptable consequences. Assessments for threats
and vulnerabilities are then either gathered or performed and used to build the various “cases.”
The Shamrock Cyber team engages customers as needed throughout the process.

When analysis is complete, narratives such as Adversary Dossiers are developed to explain in
simple, non-technical terms, the risks and consequences those risks can have on stakeholder
equities. This allows greater stakeholder access to risk assessment and management
processes and discussions. At the same time, each case is directly linked to one or more
technical elements which directs system security and defense personnel in the identification,
design, and implementation of security controls, vulnerability remediations, or risk mitigations

Figure 2. The CBA leaf of
Shamrock Cyber.

PNNL-XXXXX

Brief on Threat-Based Analysis B.1

Appendix B Brief on Threat-Based Analysis
The Shamrock Cyber team combines three stages of Threat-Based Analysis (TBA), as shown in
Figure 2. TBA utilizes portions of Lockheed Martin's IDDIL-
ATC methodology (Figure 3) to perform threat analysis.
Shamrock optimizes IDDIL-ATC for more cost-effective,
time-efficient results that lead to immediately actionable
controls. Using the Lockheed Martin nomenclature,
Shamrock actually begins with Decompose the System.
To accomplish this, Shamrock often requests that Usage
Narratives be written by members of the project team. The
narratives provide the Shamrock team with valuable
context in simple, non-jargon terms. With this context, the
next step is to develop a set of use cases and data flow
diagrams that represent the system. Generally, the assets
and the attack surface can be identified using these
diagrams, thus addressing the Identify Assets and Define

the Attack Surface steps. From there,
Shamrock attempts to List Threat
Actors, but this is not yet a rigorous
exercise. The use cases, abuse cases,
and data flow diagrams represent the
Shamrock Cyber Threat Model, which
is the foundation for developing the
Threat Profile.

Shamrock asks the project team to set an initial expectation of threat priority based on
Confidentiality, Integrity, and Availability (CIA). The CIA Triad (see Figure 4) is a commonly
used cybersecurity model.

The Shamrock Cyber team uses the data flow diagrams
as input to Microsoft’s Threat Modeling Tool (TMT). The
TMT is a free download that comes with standard threat
templates used by Shamrock. The TMT reads the
diagrams and uses the templates to provide initial
Analysis and Assessment as well as Triage results.
The TMT also uses Microsoft’s STRIDE model to
categorize threats. The initial results from the TMT are
then analyzed by Shamrock subject matter experts to
complete the Shamrock Cyber Threat Findings for
review by the project team.

With the Threat Findings in hand, Shamrock goes back to the project team to collaboratively
analyze and determine mitigations (Controls). When this exercise is complete, the Shamrock
Cyber team organizes the information into the final product, the Shamrock Cyber Threat
Profile.

Figure 5. The CIA triad.

Figure 4. Lockheed Martin's methodology.

Figure 3. The TBA leaf of
Shamrock Cyber.

PNNL-XXXXX

Brief on Security-Based Development C.1

Appendix C Brief on Security-Based Development
The Shamrock Cyber Team is establishing Security-
Based Development (SBD) best practices in the areas
depicted in Figure 5. While Shamrock will at some point
offer Secure Design and Security Test services, the
current focus is on Secure Implementation. For
Shamrock, secure implementation of software combines
Static Application Security Testing (SAST) and Open-
Source Analysis (OSA). SAST involves scanning source
code to identify known vulnerabilities, while OSA entails
scanning 3rd party software developed outside the project
team. The objective of Shamrock cyber secure
implementation is to use a SAST scan and possibly an
OSA scan to perform an analysis that eliminates false positives,
summarizes the vulnerabilities, and makes recommendations.
The result of this analysis enables the software development
team to prioritize vulnerabilities and address them in order of priority.

Shamrock Cyber makes use of Checkmarx, a commercial software scanning tool adopted by
PNNL, that performs both SAST and OSA scanning. The Shamrock process is a
straightforward set of steps:

1. Receive source code
The source code comes from the customer development team in the form of a zip file or
a URL to a code repository The source code will be used as input to the Checkmarx
scanner.

2. Execute a Checkmarx SAST scan
Every file contained in software (from the repo or the zip file) will be scanned and the
results form the foundation for Shamrock Cyber analysis.

3. Execute a Checkmarx OSA scan
Dependency libraries will be scanned by Checkmarx, and vulnerable libraries along with
out-of-date libraries will be documented, forming the foundation for Shamrock analysis.

4. Analyze SAST scan results
The results of Shamrock analysis of SAST go into the final report.

5. Analyze OSA scan results
The results of Shamrock analysis of OSA go into the final report

When this process is complete, the Shamrock Cyber team organizes the information into the
final product, the Shamrock Cyber Vulnerability Profile.

Figure 6. The SBD leaf
of Shamrock Cyber.

PNNL-XXXXX

Full Checkmarx Scan Results D.1

Appendix D Full Checkmarx Scan Results
The Vulnerability Profile is derived from a source code scan by the Checkmarx SAST tool. The
full, unaltered scan produced by the Checkmarx scanner is provided in this appendix. The scan
results are comprehensive and include details from several standards such as OWASP, NIST,
and FISMA. Details in the scan results can be useful to further understand the vulnerabilities
and to gain insight into the details of the scan itself. However, the Vulnerability Profile contains
all “action items” for fixing vulnerabilities. And the scan results are provided as extra information.

 PAGE 1 OF 54

FIC Scan Report
Project Name FIC
Scan Start Friday, March 11, 2022 11:38:48 AM
Preset Checkmarx Default
Scan Time 00h:00m:36s
Lines Of Code Scanned 9257
Files Scanned 22
Report Creation Time Tuesday, March 15, 2022 1:28:51 PM

Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=
1025

Team PNNL
Checkmarx Version 9.4.3
Scan Type Full
Source Origin LocalPath
Density 2/1000 (Vulnerabilities/LOC)
Visibility Public

Filter Settings
Severity

Included: High, Medium, Low, Information
Excluded: None

Result State
Included: To Verify, Not Exploitable, Confirmed, Urgent, Proposed Not Exploitable
Excluded: None

Assigned to
Included: All

Categories
Included:

Uncategorized All

Custom All

PCI DSS v3.2.1 All

OWASP Top 10 2013 All

FISMA 2014 All

NIST SP 800-53 All

OWASP Top 10 2017 All

OWASP Mobile Top 10
2016

All

ASD STIG 4.10 All

OWASP Top 10 API All

OWASP Top 10 2010 All

OWASP Top 10 2021 All
Excluded:

Uncategorized None

Custom None

PCI DSS v3.2.1 None

OWASP Top 10 2013 None

FISMA 2014 None

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025

 PAGE 2 OF 54

NIST SP 800-53 None

OWASP Top 10 2017 None

OWASP Mobile Top 10
2016

None

ASD STIG 4.10 None

OWASP Top 10 API None

OWASP Top 10 2010 None

OWASP Top 10 2021 None
Results Limit

Results limit per query was set to 50
Selected Queries

Selected queries are listed in Result Summary

 PAGE 3 OF 54

Result Summary Most Vulnerable Files

High
Medium
Low

server.js

postgresQueries.js

DummyData.js

index.html

index.jsx

Top 5 Vulnerabilities

 PAGE 4 OF 54

Scan Summary - OWASP Top 10 2017
Further details and elaboration about vulnerabilities and risks can be found at: OWASP Top 10 2017

Category Threat
Agent Exploitability Weakness

Prevalence
Weakness

Detectability
Technical

Impact
Business
Impact

Issues
Found

Best Fix
Locations

A1-Injection App.
Specific EASY COMMON EASY SEVERE App. Specific 3 2

A2-Broken
Authentication

App.
Specific EASY COMMON AVERAGE SEVERE App. Specific 0 0

A3-Sensitive
Data Exposure

App.
Specific AVERAGE WIDESPREAD AVERAGE SEVERE App. Specific 1 1

A4-XML
External Entities
(XXE)

App.
Specific AVERAGE COMMON EASY SEVERE App. Specific 0 0

A5-Broken
Access Control*

App.
Specific AVERAGE COMMON AVERAGE SEVERE App. Specific 0 0

A6-Security
Misconfiguration

App.
Specific EASY WIDESPREAD EASY MODERATE App. Specific 1 1

A7-Cross-Site
Scripting (XSS)*

App.
Specific EASY WIDESPREAD EASY MODERATE App. Specific 0 0

A8-Insecure
Deserialization

App.
Specific DIFFICULT COMMON AVERAGE SEVERE App. Specific 0 0

A9-Using
Components with
Known
Vulnerabilities

App.
Specific AVERAGE WIDESPREAD AVERAGE MODERATE App. Specific 6 3

A10-Insufficient
Logging &
Monitoring

App.
Specific AVERAGE WIDESPREAD DIFFICULT MODERATE App. Specific 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2017

 PAGE 5 OF 54

Scan Summary - OWASP Top 10 2021

Category Issues Found Best Fix
Locations

A1-Broken Access Control* 1 1

A2-Cryptographic Failures 4 1

A3-Injection* 1 1

A4-Insecure Design 0 0

A5-Security Misconfiguration 0 0

A6-Vulnerable and Outdated Components 2 2

A7-Identification and Authentication Failures 3 3

A8-Software and Data Integrity Failures* 1 1

A9-Security Logging and Monitoring Failures 2 1

A10-Server-Side Request Forgery 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

 PAGE 6 OF 54

Scan Summary - OWASP Top 10 2013
Further details and elaboration about vulnerabilities and risks can be found at: OWASP Top 10 2013

Category Threat
Agent

Attack
Vectors

Weakness
Prevalence

Weakness
Detectability

Technical
Impact

Business
Impact

Issues
Found

Best Fix
Locations

A1-Injection

EXTERNAL,
INTERNAL,
ADMIN
USERS

EASY COMMON AVERAGE SEVERE ALL DATA 1 1

A2-Broken
Authentication
and Session
Management

EXTERNAL,
INTERNAL
USERS

AVERAGE WIDESPREAD AVERAGE SEVERE
AFFECTED
DATA AND
FUNCTIONS

0 0

A3-Cross-Site
Scripting (XSS)*

EXTERNAL,
INTERNAL,
ADMIN
USERS

AVERAGE VERY
WIDESPREAD EASY MODERATE

AFFECTED
DATA AND
SYSTEM

0 0

A4-Insecure
Direct Object
References*

SYSTEM
USERS EASY COMMON EASY MODERATE EXPOSED

DATA 0 0

A5-Security
Misconfiguration

EXTERNAL,
INTERNAL,
ADMIN
USERS

EASY COMMON EASY MODERATE
ALL DATA
AND
SYSTEM

0 0

A6-Sensitive
Data Exposure

EXTERNAL,
INTERNAL,
ADMIN
USERS,
USERS
BROWSERS

DIFFICULT UNCOMMON AVERAGE SEVERE EXPOSED
DATA 0 0

A7-Missing
Function Level
Access Control

EXTERNAL,
INTERNAL
USERS

EASY COMMON AVERAGE MODERATE
EXPOSED
DATA AND
FUNCTIONS

0 0

A8-Cross-Site
Request Forgery
(CSRF)*

USERS
BROWSERS AVERAGE COMMON EASY MODERATE

AFFECTED
DATA AND
FUNCTIONS

0 0

A9-Using
Components with
Known
Vulnerabilities

EXTERNAL
USERS,
AUTOMATED
TOOLS

AVERAGE WIDESPREAD DIFFICULT MODERATE
AFFECTED
DATA AND
FUNCTIONS

0 0

A10-Unvalidated
Redirects and
Forwards

USERS
BROWSERS AVERAGE WIDESPREAD DIFFICULT MODERATE

AFFECTED
DATA AND
FUNCTIONS

0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_for_2013

 PAGE 7 OF 54

Scan Summary - PCI DSS v3.2.1

Category Issues Found Best Fix
Locations

PCI DSS (3.2.1) - 6.5.1 - Injection flaws - particularly SQL injection 1 1

PCI DSS (3.2.1) - 6.5.2 - Buffer overflows 0 0

PCI DSS (3.2.1) - 6.5.3 - Insecure cryptographic storage 0 0

PCI DSS (3.2.1) - 6.5.4 - Insecure communications 0 0

PCI DSS (3.2.1) - 6.5.5 - Improper error handling 0 0

PCI DSS (3.2.1) - 6.5.7 - Cross-site scripting (XSS) 0 0

PCI DSS (3.2.1) - 6.5.8 - Improper access control 0 0

PCI DSS (3.2.1) - 6.5.9 - Cross-site request forgery* 0 0

PCI DSS (3.2.1) - 6.5.10 - Broken authentication and session management 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

 PAGE 8 OF 54

Scan Summary - FISMA 2014

Category Description Issues
Found

Best Fix
Locations

Access Control

Organizations must limit information system access to
authorized users, processes acting on behalf of authorized
users, or devices (including other information systems)
and to the types of transactions and functions that
authorized users are permitted to exercise.

0 0

Audit And Accountability

Organizations must: (i) create, protect, and retain
information system audit records to the extent needed to
enable the monitoring, analysis, investigation, and
reporting of unlawful, unauthorized, or inappropriate
information system activity; and (ii) ensure that the
actions of individual information system users can be
uniquely traced to those users so they can be held
accountable for their actions.

0 0

Configuration Management

Organizations must: (i) establish and maintain baseline
configurations and inventories of organizational
information systems (including hardware, software,
firmware, and documentation) throughout the respective
system development life cycles; and (ii) establish and
enforce security configuration settings for information
technology products employed in organizational
information systems.

1 1

Identification And Authentication

Organizations must identify information system users,
processes acting on behalf of users, or devices and
authenticate (or verify) the identities of those users,
processes, or devices, as a prerequisite to allowing access
to organizational information systems.

1 1

Media Protection

Organizations must: (i) protect information system
media, both paper and digital; (ii) limit access to
information on information system media to authorized
users; and (iii) sanitize or destroy information system
media before disposal or release for reuse.

4 1

System And Communications Protection

Organizations must: (i) monitor, control, and protect
organizational communications (i.e., information
transmitted or received by organizational information
systems) at the external boundaries and key internal
boundaries of the information systems; and (ii) employ
architectural designs, software development techniques,
and systems engineering principles that promote effective
information security within organizational information
systems.

0 0

System And Information Integrity*

Organizations must: (i) identify, report, and correct
information and information system flaws in a timely
manner; (ii) provide protection from malicious code at
appropriate locations within organizational information
systems; and (iii) monitor information system security
alerts and advisories and take appropriate actions in
response.

3 2

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

 PAGE 9 OF 54

Scan Summary - NIST SP 800-53

Category Issues Found Best Fix
Locations

AC-12 Session Termination (P2) 0 0

AC-3 Access Enforcement (P1) 0 0

AC-4 Information Flow Enforcement (P1) 0 0

AC-6 Least Privilege (P1) 0 0

AU-9 Protection of Audit Information (P1) 2 1

CM-6 Configuration Settings (P2) 0 0

IA-5 Authenticator Management (P1) 0 0

IA-6 Authenticator Feedback (P2) 0 0

IA-8 Identification and Authentication (Non-Organizational Users) (P1) 0 0

SC-12 Cryptographic Key Establishment and Management (P1) 0 0

SC-13 Cryptographic Protection (P1) 0 0

SC-17 Public Key Infrastructure Certificates (P1) 0 0

SC-18 Mobile Code (P2) 1 1

SC-23 Session Authenticity (P1)* 0 0

SC-28 Protection of Information at Rest (P1) 5 2

SC-4 Information in Shared Resources (P1) 0 0

SC-5 Denial of Service Protection (P1) 0 0

SC-8 Transmission Confidentiality and Integrity (P1) 1 1

SI-10 Information Input Validation (P1)* 1 1

SI-11 Error Handling (P2) 0 0

SI-15 Information Output Filtering (P0)* 0 0

SI-16 Memory Protection (P1) 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

 PAGE 10 OF 54

Scan Summary - OWASP Mobile Top 10 2016

Category Description Issues
Found

Best Fix
Locations

M1-Improper Platform Usage

This category covers misuse of a platform feature or
failure to use platform security controls. It might include
Android intents, platform permissions, misuse of
TouchID, the Keychain, or some other security control
that is part of the mobile operating system. There are
several ways that mobile apps can experience this risk.

0 0

M2-Insecure Data Storage This category covers insecure data storage and
unintended data leakage. 0 0

M3-Insecure Communication
This category covers poor handshaking, incorrect SSL
versions, weak negotiation, cleartext communication of
sensitive assets, etc.

0 0

M4-Insecure Authentication

This category captures notions of authenticating the end
user or bad session management. This can include:
-Failing to identify the user at all when that should be
required
-Failure to maintain the user's identity when it is required
-Weaknesses in session management

0 0

M5-Insufficient Cryptography

The code applies cryptography to a sensitive information
asset. However, the cryptography is insufficient in some
way. Note that anything and everything related to TLS or
SSL goes in M3. Also, if the app fails to use
cryptography at all when it should, that probably belongs
in M2. This category is for issues where cryptography
was attempted, but it wasnt done correctly.

0 0

M6-Insecure Authorization

This is a category to capture any failures in authorization
(e.g., authorization decisions in the client side, forced
browsing, etc.). It is distinct from authentication issues
(e.g., device enrolment, user identification, etc.).
If the app does not authenticate users at all in a situation
where it should (e.g., granting anonymous access to some
resource or service when authenticated and authorized
access is required), then that is an authentication failure
not an authorization failure.

0 0

M7-Client Code Quality

This category is the catch-all for code-level
implementation problems in the mobile client. That's
distinct from server-side coding mistakes. This would
capture things like buffer overflows, format string
vulnerabilities, and various other code-level mistakes
where the solution is to rewrite some code that's running
on the mobile device.

0 0

M8-Code Tampering

This category covers binary patching, local resource
modification, method hooking, method swizzling, and
dynamic memory modification. Once the application is
delivered to the mobile device, the code and data
resources are resident there. An attacker can either
directly modify the code, change the contents of memory
dynamically, change or replace the system APIs that the
application uses, or modify the application's data and
resources. This can provide the attacker a direct method
of subverting the intended use of the software for
personal or monetary gain.

0 0

M9-Reverse Engineering

This category includes analysis of the final core binary to
determine its source code, libraries, algorithms, and other
assets. Software such as IDA Pro, Hopper, otool, and
other binary inspection tools give the attacker insight into
the inner workings of the application. This may be used
to exploit other nascent vulnerabilities in the application,
as well as revealing information about back end servers,
cryptographic constants and ciphers, and intellectual
property.

0 0

M10-Extraneous Functionality Often, developers include hidden backdoor functionality
or other internal development security controls that are 0 0

 PAGE 11 OF 54

not intended to be released into a production
environment. For example, a developer may accidentally
include a password as a comment in a hybrid app.
Another example includes disabling of 2-factor
authentication during testing.

 PAGE 12 OF 54

Scan Summary - Custom

Category Issues Found Best Fix
Locations

Must audit 0 0

Check 0 0

Optional 0 0

 PAGE 13 OF 54

Scan Summary - ASD STIG 4.10

Category Issues Found Best Fix
Locations

APSC-DV-000640 - CAT II The application must provide audit record generation capability for the renewal of
session IDs. 0 0

APSC-DV-000650 - CAT II The application must not write sensitive data into the application logs. 0 0

APSC-DV-000660 - CAT II The application must provide audit record generation capability for session timeouts. 0 0

APSC-DV-000670 - CAT II The application must record a time stamp indicating when the event occurred. 0 0

APSC-DV-000680 - CAT II The application must provide audit record generation capability for HTTP headers
including User-Agent, Referer, GET, and POST. 0 0

APSC-DV-000690 - CAT II The application must provide audit record generation capability for connecting system
IP addresses. 0 0

APSC-DV-000700 - CAT II The application must record the username or user ID of the user associated with the
event. 0 0

APSC-DV-000710 - CAT II The application must generate audit records when successful/unsuccessful attempts to
grant privileges occur. 0 0

APSC-DV-000720 - CAT II The application must generate audit records when successful/unsuccessful attempts to
access security objects occur. 0 0

APSC-DV-000730 - CAT II The application must generate audit records when successful/unsuccessful attempts to
access security levels occur. 0 0

APSC-DV-000740 - CAT II The application must generate audit records when successful/unsuccessful attempts to
access categories of information (e.g., classification levels) occur. 0 0

APSC-DV-000750 - CAT II The application must generate audit records when successful/unsuccessful attempts to
modify privileges occur. 0 0

APSC-DV-000760 - CAT II The application must generate audit records when successful/unsuccessful attempts to
modify security objects occur. 0 0

APSC-DV-000770 - CAT II The application must generate audit records when successful/unsuccessful attempts to
modify security levels occur. 0 0

APSC-DV-000780 - CAT II The application must generate audit records when successful/unsuccessful attempts to
modify categories of information (e.g., classification levels) occur. 0 0

APSC-DV-000790 - CAT II The application must generate audit records when successful/unsuccessful attempts to
delete privileges occur. 0 0

APSC-DV-000800 - CAT II The application must generate audit records when successful/unsuccessful attempts to
delete security levels occur. 0 0

APSC-DV-000810 - CAT II The application must generate audit records when successful/unsuccessful attempts to
delete application database security objects occur. 0 0

APSC-DV-000820 - CAT II The application must generate audit records when successful/unsuccessful attempts to
delete categories of information (e.g., classification levels) occur. 0 0

APSC-DV-000830 - CAT II The application must generate audit records when successful/unsuccessful logon
attempts occur. 0 0

APSC-DV-000840 - CAT II The application must generate audit records for privileged activities or other system-
level access. 0 0

APSC-DV-000850 - CAT II The application must generate audit records showing starting and ending time for user
access to the system. 0 0

APSC-DV-000860 - CAT II The application must generate audit records when successful/unsuccessful accesses to
objects occur. 0 0

APSC-DV-000870 - CAT II The application must generate audit records for all direct access to the information
system. 0 0

APSC-DV-000880 - CAT II The application must generate audit records for all account creations, modifications,
disabling, and termination events. 0 0

APSC-DV-000910 - CAT II The application must initiate session auditing upon startup. 0 0

APSC-DV-000940 - CAT II The application must log application shutdown events. 0 0

 PAGE 14 OF 54

APSC-DV-000950 - CAT II The application must log destination IP addresses. 0 0

APSC-DV-000960 - CAT II The application must log user actions involving access to data. 0 0

APSC-DV-000970 - CAT II The application must log user actions involving changes to data. 0 0

APSC-DV-000980 - CAT II The application must produce audit records containing information to establish when
(date and time) the events occurred. 0 0

APSC-DV-000990 - CAT II The application must produce audit records containing enough information to establish
which component, feature or function of the application triggered the audit event. 0 0

APSC-DV-001000 - CAT II When using centralized logging; the application must include a unique identifier in
order to distinguish itself from other application logs. 0 0

APSC-DV-001010 - CAT II The application must produce audit records that contain information to establish the
outcome of the events. 0 0

APSC-DV-001020 - CAT II The application must generate audit records containing information that establishes the
identity of any individual or process associated with the event. 0 0

APSC-DV-001030 - CAT II The application must generate audit records containing the full-text recording of
privileged commands or the individual identities of group account users. 0 0

APSC-DV-001040 - CAT II The application must implement transaction recovery logs when transaction based. 0 0

APSC-DV-001050 - CAT II The application must provide centralized management and configuration of the content
to be captured in audit records generated by all application components. 0 0

APSC-DV-001070 - CAT II The application must off-load audit records onto a different system or media than the
system being audited. 0 0

APSC-DV-001080 - CAT II The application must be configured to write application logs to a centralized log
repository. 0 0

APSC-DV-001090 - CAT II The application must provide an immediate warning to the SA and ISSO (at a
minimum) when allocated audit record storage volume reaches 75% of repository maximum audit record storage
capacity.

0 0

APSC-DV-001100 - CAT II Applications categorized as having a moderate or high impact must provide an
immediate real-time alert to the SA and ISSO (at a minimum) for all audit failure events. 0 0

APSC-DV-001110 - CAT II The application must alert the ISSO and SA (at a minimum) in the event of an audit
processing failure. 0 0

APSC-DV-001120 - CAT II The application must shut down by default upon audit failure (unless availability is an
overriding concern). 0 0

APSC-DV-001130 - CAT II The application must provide the capability to centrally review and analyze audit
records from multiple components within the system. 0 0

APSC-DV-001140 - CAT II The application must provide the capability to filter audit records for events of interest
based upon organization-defined criteria. 0 0

APSC-DV-001150 - CAT II The application must provide an audit reduction capability that supports on-demand
reporting requirements. 0 0

APSC-DV-001160 - CAT II The application must provide an audit reduction capability that supports on-demand
audit review and analysis. 0 0

APSC-DV-001170 - CAT II The application must provide an audit reduction capability that supports after-the-fact
investigations of security incidents. 0 0

APSC-DV-001180 - CAT II The application must provide a report generation capability that supports on-demand
audit review and analysis. 0 0

APSC-DV-001190 - CAT II The application must provide a report generation capability that supports on-demand
reporting requirements. 0 0

APSC-DV-001200 - CAT II The application must provide a report generation capability that supports after-the-fact
investigations of security incidents. 0 0

APSC-DV-001210 - CAT II The application must provide an audit reduction capability that does not alter original
content or time ordering of audit records. 0 0

APSC-DV-001220 - CAT II The application must provide a report generation capability that does not alter original
content or time ordering of audit records. 0 0

APSC-DV-001250 - CAT II The applications must use internal system clocks to generate time stamps for audit
records. 0 0

APSC-DV-001260 - CAT II The application must record time stamps for audit records that can be mapped to
Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT). 0 0

APSC-DV-001270 - CAT II The application must record time stamps for audit records that meet a granularity of one 0 0

 PAGE 15 OF 54

second for a minimum degree of precision.

APSC-DV-001280 - CAT II The application must protect audit information from any type of unauthorized read
access. 0 0

APSC-DV-001290 - CAT II The application must protect audit information from unauthorized modification. 0 0

APSC-DV-001300 - CAT II The application must protect audit information from unauthorized deletion. 0 0

APSC-DV-001310 - CAT II The application must protect audit tools from unauthorized access. 0 0

APSC-DV-001320 - CAT II The application must protect audit tools from unauthorized modification. 0 0

APSC-DV-001330 - CAT II The application must protect audit tools from unauthorized deletion. 0 0

APSC-DV-001340 - CAT II The application must back up audit records at least every seven days onto a different
system or system component than the system or component being audited. 0 0

APSC-DV-001570 - CAT II The application must electronically verify Personal Identity Verification (PIV)
credentials. 0 0

APSC-DV-001350 - CAT II The application must use cryptographic mechanisms to protect the integrity of audit
information. 0 0

APSC-DV-001360 - CAT II Application audit tools must be cryptographically hashed. 0 0

APSC-DV-001370 - CAT II The integrity of the audit tools must be validated by checking the files for changes in
the cryptographic hash value. 0 0

APSC-DV-001390 - CAT II The application must prohibit user installation of software without explicit privileged
status. 0 0

APSC-DV-001410 - CAT II The application must enforce access restrictions associated with changes to application
configuration. 0 0

APSC-DV-001420 - CAT II The application must audit who makes configuration changes to the application. 0 0

APSC-DV-001430 - CAT II The application must have the capability to prevent the installation of patches, service
packs, or application components without verification the software component has been digitally signed using a
certificate that is recognized and approved by the orga

0 0

APSC-DV-001440 - CAT II The applications must limit privileges to change the software resident within software
libraries. 0 0

APSC-DV-001460 - CAT II An application vulnerability assessment must be conducted. 0 0

APSC-DV-001480 - CAT II The application must prevent program execution in accordance with organization-
defined policies regarding software program usage and restrictions, and/or rules authorizing the terms and conditions
of software program usage.

0 0

APSC-DV-001490 - CAT II The application must employ a deny-all, permit-by-exception (whitelist) policy to allow
the execution of authorized software programs. 0 0

APSC-DV-001500 - CAT II The application must be configured to disable non-essential capabilities. 0 0

APSC-DV-001510 - CAT II The application must be configured to use only functions, ports, and protocols permitted
to it in the PPSM CAL. 0 0

APSC-DV-001520 - CAT II The application must require users to reauthenticate when organization-defined
circumstances or situations require reauthentication. 0 0

APSC-DV-001530 - CAT II The application must require devices to reauthenticate when organization-defined
circumstances or situations requiring reauthentication. 0 0

APSC-DV-001540 - CAT I The application must uniquely identify and authenticate organizational users (or
processes acting on behalf of organizational users). 0 0

APSC-DV-001550 - CAT II The application must use multifactor (Alt. Token) authentication for network access to
privileged accounts. 0 0

APSC-DV-001560 - CAT II The application must accept Personal Identity Verification (PIV) credentials. 0 0

APSC-DV-001580 - CAT II The application must use multifactor (e.g., CAC, Alt. Token) authentication for network
access to non-privileged accounts. 0 0

APSC-DV-001590 - CAT II The application must use multifactor (Alt. Token) authentication for local access to
privileged accounts. 0 0

APSC-DV-001600 - CAT II The application must use multifactor (e.g., CAC, Alt. Token) authentication for local
access to non-privileged accounts. 0 0

APSC-DV-001610 - CAT II The application must ensure users are authenticated with an individual authenticator
prior to using a group authenticator. 0 0

APSC-DV-001620 - CAT II The application must implement replay-resistant authentication mechanisms for
network access to privileged accounts. 0 0

 PAGE 16 OF 54

APSC-DV-001630 - CAT II The application must implement replay-resistant authentication mechanisms for
network access to non-privileged accounts. 0 0

APSC-DV-001640 - CAT II The application must utilize mutual authentication when endpoint device non-
repudiation protections are required by DoD policy or by the data owner. 0 0

APSC-DV-001650 - CAT II The application must authenticate all network connected endpoint devices before
establishing any connection. 0 0

APSC-DV-001660 - CAT II Service-Oriented Applications handling non-releasable data must authenticate endpoint
devices via mutual SSL/TLS. 0 0

APSC-DV-001670 - CAT II The application must disable device identifiers after 35 days of inactivity unless a
cryptographic certificate is used for authentication. 0 0

APSC-DV-001680 - CAT I The application must enforce a minimum 15-character password length. 0 0

APSC-DV-001690 - CAT II The application must enforce password complexity by requiring that at least one upper-
case character be used. 0 0

APSC-DV-001700 - CAT II The application must enforce password complexity by requiring that at least one lower-
case character be used. 0 0

APSC-DV-001710 - CAT II The application must enforce password complexity by requiring that at least one
numeric character be used. 0 0

APSC-DV-001720 - CAT II The application must enforce password complexity by requiring that at least one special
character be used. 0 0

APSC-DV-001730 - CAT II The application must require the change of at least 8 of the total number of characters
when passwords are changed. 0 0

APSC-DV-001740 - CAT I The application must only store cryptographic representations of passwords. 1 1

APSC-DV-001850 - CAT I The application must not display passwords/PINs as clear text. 0 0

APSC-DV-001750 - CAT I The application must transmit only cryptographically-protected passwords. 0 0

APSC-DV-001760 - CAT II The application must enforce 24 hours/1 day as the minimum password lifetime. 0 0

APSC-DV-001770 - CAT II The application must enforce a 60-day maximum password lifetime restriction. 0 0

APSC-DV-001780 - CAT II The application must prohibit password reuse for a minimum of five generations. 0 0

APSC-DV-001790 - CAT II The application must allow the use of a temporary password for system logons with an
immediate change to a permanent password. 0 0

APSC-DV-001795 - CAT II The application password must not be changeable by users other than the administrator
or the user with which the password is associated. 0 0

APSC-DV-001800 - CAT II The application must terminate existing user sessions upon account deletion. 0 0

APSC-DV-001820 - CAT I The application, when using PKI-based authentication, must enforce authorized access
to the corresponding private key. 0 0

APSC-DV-001830 - CAT II The application must map the authenticated identity to the individual user or group
account for PKI-based authentication. 0 0

APSC-DV-001870 - CAT II The application must uniquely identify and authenticate non-organizational users (or
processes acting on behalf of non-organizational users). 0 0

APSC-DV-001810 - CAT I The application, when utilizing PKI-based authentication, must validate certificates by
constructing a certification path (which includes status information) to an accepted trust anchor. 0 0

APSC-DV-001840 - CAT II The application, for PKI-based authentication, must implement a local cache of
revocation data to support path discovery and validation in case of the inability to access revocation information via
the network.

0 0

APSC-DV-001860 - CAT II The application must use mechanisms meeting the requirements of applicable federal
laws, Executive Orders, directives, policies, regulations, standards, and guidance for authentication to a
cryptographic module.

0 0

APSC-DV-001880 - CAT II The application must accept Personal Identity Verification (PIV) credentials from other
federal agencies. 0 0

APSC-DV-001890 - CAT II The application must electronically verify Personal Identity Verification (PIV)
credentials from other federal agencies. 0 0

APSC-DV-002050 - CAT II Applications making SAML assertions must use FIPS-approved random numbers in the
generation of SessionIndex in the SAML element AuthnStatement. 0 0

APSC-DV-001900 - CAT II The application must accept FICAM-approved third-party credentials. 0 0

APSC-DV-001910 - CAT II The application must conform to FICAM-issued profiles. 0 0

APSC-DV-001930 - CAT II Applications used for non-local maintenance sessions must audit non-local maintenance 0 0

 PAGE 17 OF 54

and diagnostic sessions for organization-defined auditable events.

APSC-DV-000310 - CAT III The application must have a process, feature or function that prevents removal or
disabling of emergency accounts. 0 0

APSC-DV-001940 - CAT II Applications used for non-local maintenance sessions must implement cryptographic
mechanisms to protect the integrity of non-local maintenance and diagnostic communications. 0 0

APSC-DV-001950 - CAT II Applications used for non-local maintenance sessions must implement cryptographic
mechanisms to protect the confidentiality of non-local maintenance and diagnostic communications. 0 0

APSC-DV-001960 - CAT II Applications used for non-local maintenance sessions must verify remote disconnection
at the termination of non-local maintenance and diagnostic sessions. 0 0

APSC-DV-001970 - CAT II The application must employ strong authenticators in the establishment of non-local
maintenance and diagnostic sessions. 0 0

APSC-DV-001980 - CAT II The application must terminate all sessions and network connections when non-local
maintenance is completed. 0 0

APSC-DV-001995 - CAT II The application must not be vulnerable to race conditions. 0 0

APSC-DV-002000 - CAT II The application must terminate all network connections associated with a
communications session at the end of the session. 0 0

APSC-DV-002010 - CAT II The application must implement NSA-approved cryptography to protect classified
information in accordance with applicable federal laws, Executive Orders, directives, policies, regulations, and
standards.

0 0

APSC-DV-002020 - CAT II The application must utilize FIPS-validated cryptographic modules when signing
application components. 0 0

APSC-DV-002030 - CAT II The application must utilize FIPS-validated cryptographic modules when generating
cryptographic hashes. 0 0

APSC-DV-002040 - CAT II The application must utilize FIPS-validated cryptographic modules when protecting
unclassified information that requires cryptographic protection. 0 0

APSC-DV-002150 - CAT II The application user interface must be either physically or logically separated from data
storage and management interfaces. 0 0

APSC-DV-002210 - CAT II The application must set the HTTPOnly flag on session cookies. 0 0

APSC-DV-002220 - CAT II The application must set the secure flag on session cookies. 0 0

APSC-DV-002230 - CAT I The application must not expose session IDs. 0 0

APSC-DV-002240 - CAT I The application must destroy the session ID value and/or cookie on logoff or browser
close. 0 0

APSC-DV-002250 - CAT II Applications must use system-generated session identifiers that protect against session
fixation. 0 0

APSC-DV-002260 - CAT II Applications must validate session identifiers. 0 0

APSC-DV-002270 - CAT II Applications must not use URL embedded session IDs. 0 0

APSC-DV-002280 - CAT II The application must not re-use or recycle session IDs. 0 0

APSC-DV-002290 - CAT II The application must use the Federal Information Processing Standard (FIPS) 140-2-
validated cryptographic modules and random number generator if the application implements encryption, key
exchange, digital signature, and hash functionality.

4 1

APSC-DV-002300 - CAT II The application must only allow the use of DoD-approved certificate authorities for
verification of the establishment of protected sessions. 0 0

APSC-DV-002310 - CAT I The application must fail to a secure state if system initialization fails, shutdown fails, or
aborts fail. 0 0

APSC-DV-002320 - CAT II In the event of a system failure, applications must preserve any information necessary
to determine cause of failure and any information necessary to return to operations with least disruption to mission
processes.

0 0

APSC-DV-002330 - CAT II The application must protect the confidentiality and integrity of stored information
when required by DoD policy or the information owner. 1 1

APSC-DV-002340 - CAT II The application must implement approved cryptographic mechanisms to prevent
unauthorized modification of organization-defined information at rest on organization-defined information system
components.

0 0

APSC-DV-002350 - CAT II The application must use appropriate cryptography in order to protect stored DoD
information when required by the information owner or DoD policy. 0 0

APSC-DV-002360 - CAT II The application must isolate security functions from non-security functions. 0 0

APSC-DV-002370 - CAT II The application must maintain a separate execution domain for each executing process. 0 0

 PAGE 18 OF 54

APSC-DV-002380 - CAT II Applications must prevent unauthorized and unintended information transfer via shared
system resources. 0 0

APSC-DV-002390 - CAT II XML-based applications must mitigate DoS attacks by using XML filters, parser
options, or gateways. 0 0

APSC-DV-002400 - CAT II The application must restrict the ability to launch Denial of Service (DoS) attacks
against itself or other information systems. 0 0

APSC-DV-002410 - CAT II The web service design must include redundancy mechanisms when used with high-
availability systems. 0 0

APSC-DV-002420 - CAT II An XML firewall function must be deployed to protect web services when exposed to
untrusted networks. 0 0

APSC-DV-002610 - CAT II The application must remove organization-defined software components after updated
versions have been installed. 0 0

APSC-DV-002440 - CAT I The application must protect the confidentiality and integrity of transmitted information. 1 1

APSC-DV-002450 - CAT II The application must implement cryptographic mechanisms to prevent unauthorized
disclosure of information and/or detect changes to information during transmission unless otherwise protected by
alternative physical safeguards, such as, at a minimum, a Prot

0 0

APSC-DV-002460 - CAT II The application must maintain the confidentiality and integrity of information during
preparation for transmission. 0 0

APSC-DV-002470 - CAT II The application must maintain the confidentiality and integrity of information during
reception. 0 0

APSC-DV-002480 - CAT II The application must not disclose unnecessary information to users. 0 0

APSC-DV-002485 - CAT I The application must not store sensitive information in hidden fields. 0 0

APSC-DV-002490 - CAT I The application must protect from Cross-Site Scripting (XSS) vulnerabilities. 1 1

APSC-DV-002500 - CAT II The application must protect from Cross-Site Request Forgery (CSRF) vulnerabilities.* 0 0

APSC-DV-002510 - CAT I The application must protect from command injection. 0 0

APSC-DV-002520 - CAT II The application must protect from canonical representation vulnerabilities. 0 0

APSC-DV-002530 - CAT II The application must validate all input. 0 0

APSC-DV-002540 - CAT I The application must not be vulnerable to SQL Injection. 1 1

APSC-DV-002550 - CAT I The application must not be vulnerable to XML-oriented attacks. 0 0

APSC-DV-002560 - CAT I The application must not be subject to input handling vulnerabilities.* 2 1

APSC-DV-002570 - CAT II The application must generate error messages that provide information necessary for
corrective actions without revealing information that could be exploited by adversaries. 0 0

APSC-DV-002580 - CAT II The application must reveal error messages only to the ISSO, ISSM, or SA. 0 0

APSC-DV-002590 - CAT I The application must not be vulnerable to overflow attacks. 0 0

APSC-DV-002630 - CAT II Security-relevant software updates and patches must be kept up to date. 0 0

APSC-DV-002760 - CAT II The application performing organization-defined security functions must verify correct
operation of security functions. 0 0

APSC-DV-002900 - CAT II The ISSO must ensure application audit trails are retained for at least 1 year for
applications without SAMI data, and 5 years for applications including SAMI data. 0 0

APSC-DV-002770 - CAT II The application must perform verification of the correct operation of security functions:
upon system startup and/or restart; upon command by a user with privileged access; and/or every 30 days. 0 0

APSC-DV-002780 - CAT III The application must notify the ISSO and ISSM of failed security verification tests. 0 0

APSC-DV-002870 - CAT II Unsigned Category 1A mobile code must not be used in the application in accordance
with DoD policy. 0 0

APSC-DV-002880 - CAT II The ISSO must ensure an account management process is implemented, verifying only
authorized users can gain access to the application, and individual accounts designated as inactive, suspended, or
terminated are promptly removed.

0 0

APSC-DV-002890 - CAT I Application web servers must be on a separate network segment from the application
and database servers if it is a tiered application operating in the DoD DMZ. 0 0

APSC-DV-002910 - CAT II The ISSO must review audit trails periodically based on system documentation
recommendations or immediately upon system security events. 0 0

APSC-DV-002920 - CAT II The ISSO must report all suspected violations of IA policies in accordance with DoD
information system IA procedures. 0 0

APSC-DV-002930 - CAT II The ISSO must ensure active vulnerability testing is performed. 0 0

 PAGE 19 OF 54

APSC-DV-002980 - CAT II New IP addresses, data services, and associated ports used by the application must be
submitted to the appropriate approving authority for the organization, which in turn will be submitted through the
DoD Ports, Protocols, and Services Management (DoD PPS

0 0

APSC-DV-002950 - CAT II Execution flow diagrams and design documents must be created to show how deadlock
and recursion issues in web services are being mitigated. 0 0

APSC-DV-002960 - CAT II The designer must ensure the application does not store configuration and control files
in the same directory as user data. 0 0

APSC-DV-002970 - CAT II The ISSO must ensure if a DoD STIG or NSA guide is not available, a third-party
product will be configured by following available guidance. 0 0

APSC-DV-002990 - CAT II The application must be registered with the DoD Ports and Protocols Database. 0 0

APSC-DV-002990 - CAT II The application must be registered with the DoD Ports and Protocols Database. 0 0

APSC-DV-002995 - CAT II The Configuration Management (CM) repository must be properly patched and STIG
compliant. 0 0

APSC-DV-003000 - CAT II Access privileges to the Configuration Management (CM) repository must be reviewed
every three months. 0 0

APSC-DV-003010 - CAT II A Software Configuration Management (SCM) plan describing the configuration
control and change management process of application objects developed by the organization and the roles and
responsibilities of the organization must be created and maintained.

0 0

APSC-DV-003020 - CAT II A Configuration Control Board (CCB) that meets at least every release cycle, for
managing the Configuration Management (CM) process must be established. 0 0

APSC-DV-003030 - CAT II The application services and interfaces must be compatible with and ready for IPv6
networks. 0 0

APSC-DV-003040 - CAT II The application must not be hosted on a general purpose machine if the application is
designated as critical or high availability by the ISSO. 0 0

APSC-DV-003050 - CAT II A disaster recovery/continuity plan must exist in accordance with DoD policy based on
the applications availability requirements. 0 0

APSC-DV-003060 - CAT II Recovery procedures and technical system features must exist so recovery is performed
in a secure and verifiable manner. The ISSO will document circumstances inhibiting a trusted recovery. 0 0

APSC-DV-003070 - CAT II Data backup must be performed at required intervals in accordance with DoD policy. 0 0

APSC-DV-003080 - CAT II Back-up copies of the application software or source code must be stored in a fire-rated
container or stored separately (offsite). 0 0

APSC-DV-003090 - CAT II Procedures must be in place to assure the appropriate physical and technical protection
of the backup and restoration of the application. 0 0

APSC-DV-003100 - CAT II The application must use encryption to implement key exchange and authenticate
endpoints prior to establishing a communication channel for key exchange. 0 0

APSC-DV-003110 - CAT I The application must not contain embedded authentication data. 0 0

APSC-DV-003120 - CAT I The application must have the capability to mark sensitive/classified output when
required. 0 0

APSC-DV-003130 - CAT III Prior to each release of the application, updates to system, or applying patches; tests
plans and procedures must be created and executed. 0 0

APSC-DV-003150 - CAT II At least one tester must be designated to test for security flaws in addition to functional
testing. 0 0

APSC-DV-003140 - CAT II Application files must be cryptographically hashed prior to deploying to DoD
operational networks. 0 0

APSC-DV-003160 - CAT III Test procedures must be created and at least annually executed to ensure system
initialization, shutdown, and aborts are configured to verify the system remains in a secure state. 0 0

APSC-DV-003170 - CAT II An application code review must be performed on the application. 0 0

APSC-DV-003180 - CAT III Code coverage statistics must be maintained for each release of the application. 0 0

APSC-DV-003190 - CAT II Flaws found during a code review must be tracked in a defect tracking system. 0 0

APSC-DV-003200 - CAT II The changes to the application must be assessed for IA and accreditation impact prior to
implementation. 0 0

APSC-DV-003210 - CAT II Security flaws must be fixed or addressed in the project plan. 0 0

APSC-DV-003215 - CAT III The application development team must follow a set of coding standards. 0 0

APSC-DV-003220 - CAT III The designer must create and update the Design Document for each release of the
application. 0 0

 PAGE 20 OF 54

APSC-DV-003230 - CAT II Threat models must be documented and reviewed for each application release and
updated as required by design and functionality changes or when new threats are discovered. 0 0

APSC-DV-003235 - CAT II The application must not be subject to error handling vulnerabilities. 0 0

APSC-DV-003250 - CAT I The application must be decommissioned when maintenance or support is no longer
available. 0 0

APSC-DV-003236 - CAT II The application development team must provide an application incident response plan. 0 0

APSC-DV-003240 - CAT I All products must be supported by the vendor or the development team. 0 0

APSC-DV-003260 - CAT III Procedures must be in place to notify users when an application is decommissioned. 0 0

APSC-DV-003270 - CAT II Unnecessary built-in application accounts must be disabled. 0 0

APSC-DV-003280 - CAT I Default passwords must be changed. 0 0

APSC-DV-003330 - CAT II The system must alert an administrator when low resource conditions are encountered. 0 0

APSC-DV-003285 - CAT II An Application Configuration Guide must be created and included with the application. 0 0

APSC-DV-003290 - CAT II If the application contains classified data, a Security Classification Guide must exist
containing data elements and their classification. 0 0

APSC-DV-003300 - CAT II The designer must ensure uncategorized or emerging mobile code is not used in
applications. 0 0

APSC-DV-003310 - CAT II Production database exports must have database administration credentials and sensitive
data removed before releasing the export. 0 0

APSC-DV-003320 - CAT II Protections against DoS attacks must be implemented. 0 0

APSC-DV-003340 - CAT III At least one application administrator must be registered to receive update
notifications, or security alerts, when automated alerts are available. 0 0

APSC-DV-003360 - CAT III The application must generate audit records when concurrent logons from different
workstations occur. 0 0

APSC-DV-003345 - CAT III The application must provide notifications or alerts when product update and security
related patches are available. 0 0

APSC-DV-003350 - CAT II Connections between the DoD enclave and the Internet or other public or commercial
wide area networks must require a DMZ. 0 0

APSC-DV-003400 - CAT II The Program Manager must verify all levels of program management, designers,
developers, and testers receive annual security training pertaining to their job function. 0 0

APSC-DV-000010 - CAT II The application must provide a capability to limit the number of logon sessions per
user. 0 0

APSC-DV-000060 - CAT II The application must clear temporary storage and cookies when the session is
terminated. 0 0

APSC-DV-000070 - CAT II The application must automatically terminate the non-privileged user session and log
off non-privileged users after a 15 minute idle time period has elapsed. 0 0

APSC-DV-000080 - CAT II The application must automatically terminate the admin user session and log off admin
users after a 10 minute idle time period is exceeded. 0 0

APSC-DV-000090 - CAT II Applications requiring user access authentication must provide a logoff capability for
user initiated communication session. 0 0

APSC-DV-000100 - CAT III The application must display an explicit logoff message to users indicating the reliable
termination of authenticated communications sessions. 0 0

APSC-DV-000110 - CAT II The application must associate organization-defined types of security attributes having
organization-defined security attribute values with information in storage. 0 0

APSC-DV-000120 - CAT II The application must associate organization-defined types of security attributes having
organization-defined security attribute values with information in process. 0 0

APSC-DV-000130 - CAT II The application must associate organization-defined types of security attributes having
organization-defined security attribute values with information in transmission. 0 0

APSC-DV-000160 - CAT II The application must implement DoD-approved encryption to protect the confidentiality
of remote access sessions. 0 0

APSC-DV-000170 - CAT II The application must implement cryptographic mechanisms to protect the integrity of
remote access sessions. 0 0

APSC-DV-000190 - CAT I Messages protected with WS_Security must use time stamps with creation and
expiration times. 0 0

APSC-DV-000180 - CAT II Applications with SOAP messages requiring integrity must include the following
message elements:-Message ID-Service Request-Timestamp-SAML Assertion (optionally included in messages) and 0 0

 PAGE 21 OF 54

all elements of the message must be digitally signed.

APSC-DV-000200 - CAT I Validity periods must be verified on all application messages using WS-Security or
SAML assertions. 0 0

APSC-DV-000210 - CAT II The application must ensure each unique asserting party provides unique assertion ID
references for each SAML assertion. 0 0

APSC-DV-000220 - CAT II The application must ensure encrypted assertions, or equivalent confidentiality
protections are used when assertion data is passed through an intermediary, and confidentiality of the assertion data
is required when passing through the intermediary.

0 0

APSC-DV-000230 - CAT I The application must use the NotOnOrAfter condition when using the
SubjectConfirmation element in a SAML assertion. 0 0

APSC-DV-000240 - CAT I The application must use both the NotBefore and NotOnOrAfter elements or
OneTimeUse element when using the Conditions element in a SAML assertion. 0 0

APSC-DV-000250 - CAT II The application must ensure if a OneTimeUse element is used in an assertion, there is
only one of the same used in the Conditions element portion of an assertion. 0 0

APSC-DV-000260 - CAT II The application must ensure messages are encrypted when the SessionIndex is tied to
privacy data. 0 0

APSC-DV-000290 - CAT II Shared/group account credentials must be terminated when members leave the group. 0 0

APSC-DV-000280 - CAT II The application must provide automated mechanisms for supporting account
management functions. 0 0

APSC-DV-000300 - CAT II The application must automatically remove or disable temporary user accounts 72 hours
after account creation. 0 0

APSC-DV-000320 - CAT III The application must automatically disable accounts after a 35 day period of account
inactivity. 0 0

APSC-DV-000330 - CAT II Unnecessary application accounts must be disabled, or deleted. 0 0

APSC-DV-000420 - CAT II The application must automatically audit account enabling actions. 0 0

APSC-DV-000340 - CAT II The application must automatically audit account creation. 0 0

APSC-DV-000350 - CAT II The application must automatically audit account modification. 0 0

APSC-DV-000360 - CAT II The application must automatically audit account disabling actions. 0 0

APSC-DV-000370 - CAT II The application must automatically audit account removal actions. 0 0

APSC-DV-000380 - CAT III The application must notify System Administrators and Information System Security
Officers when accounts are created. 0 0

APSC-DV-000390 - CAT III The application must notify System Administrators and Information System Security
Officers when accounts are modified. 0 0

APSC-DV-000400 - CAT III The application must notify System Administrators and Information System Security
Officers of account disabling actions. 0 0

APSC-DV-000410 - CAT III The application must notify System Administrators and Information System Security
Officers of account removal actions. 0 0

APSC-DV-000430 - CAT III The application must notify System Administrators and Information System Security
Officers of account enabling actions. 0 0

APSC-DV-000440 - CAT II Application data protection requirements must be identified and documented. 0 0

APSC-DV-000520 - CAT II The application must audit the execution of privileged functions. 0 0

APSC-DV-000450 - CAT II The application must utilize organization-defined data mining detection techniques for
organization-defined data storage objects to adequately detect data mining attempts. 0 0

APSC-DV-000460 - CAT I The application must enforce approved authorizations for logical access to information
and system resources in accordance with applicable access control policies. 0 0

APSC-DV-000470 - CAT II The application must enforce organization-defined discretionary access control policies
over defined subjects and objects. 0 0

APSC-DV-000480 - CAT II The application must enforce approved authorizations for controlling the flow of
information within the system based on organization-defined information flow control policies. 0 0

APSC-DV-000490 - CAT II The application must enforce approved authorizations for controlling the flow of
information between interconnected systems based on organization-defined information flow control policies. 0 0

APSC-DV-000500 - CAT II The application must prevent non-privileged users from executing privileged functions
to include disabling, circumventing, or altering implemented security safeguards/countermeasures. 0 0

APSC-DV-000510 - CAT I The application must execute without excessive account permissions. 0 0

 PAGE 22 OF 54

APSC-DV-000530 - CAT I The application must enforce the limit of three consecutive invalid logon attempts by a
user during a 15 minute time period. 0 0

APSC-DV-000560 - CAT III The application must retain the Standard Mandatory DoD Notice and Consent Banner
on the screen until users acknowledge the usage conditions and take explicit actions to log on for further access. 0 0

APSC-DV-000540 - CAT II The application administrator must follow an approved process to unlock locked user
accounts. 0 0

APSC-DV-000550 - CAT III The application must display the Standard Mandatory DoD Notice and Consent Banner
before granting access to the application. 0 0

APSC-DV-000570 - CAT III The publicly accessible application must display the Standard Mandatory DoD Notice
and Consent Banner before granting access to the application. 0 0

APSC-DV-000580 - CAT III The application must display the time and date of the users last successful logon. 0 0

APSC-DV-000630 - CAT II The application must provide audit record generation capability for the destruction of
session IDs. 0 0

APSC-DV-000590 - CAT II The application must protect against an individual (or process acting on behalf of an
individual) falsely denying having performed organization-defined actions to be covered by non-repudiation. 0 0

APSC-DV-000600 - CAT II For applications providing audit record aggregation, the application must compile audit
records from organization-defined information system components into a system-wide audit trail that is time-
correlated with an organization-defined level of tolerance

0 0

APSC-DV-000610 - CAT II The application must provide the capability for organization-identified individuals or
roles to change the auditing to be performed on all application components, based on all selectable event criteria
within organization-defined time thresholds.

0 0

APSC-DV-000620 - CAT II The application must provide audit record generation capability for the creation of
session IDs. 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

 PAGE 23 OF 54

Scan Summary - OWASP Top 10 API

Category Issues Found Best Fix
Locations

API1-Broken Object Level Authorization 0 0

API2-Broken Authentication 0 0

API3-Excessive Data Exposure 0 0

API4-Lack of Resources and Rate Limiting 0 0

API5-Broken Function Level Authorization 0 0

API6-Mass Assignment 0 0

API7-Security Misconfiguration 0 0

API8-Injection 0 0

API9-Improper Assets Management 0 0

API10-Insufficient Logging and Monitoring 0 0

 PAGE 24 OF 54

Scan Summary - OWASP Top 10 2010

Category Issues Found Best Fix
Locations

A1-Injection* 0 0

A2-Cross-Site Scripting (XSS) 0 0

A3-Broken Authentication and Session Management 0 0

A4-Insecure Direct Object References 0 0

A5-Cross-Site Request Forgery (CSRF) 0 0

A6-Security Misconfiguration* 1 1

A7-Insecure Cryptographic Storage 4 1

A8-Failure to Restrict URL Access 0 0

A9-Insufficient Transport Layer Protection 0 0

A10-Unvalidated Redirects and Forwards 0 0

* Project scan results do not include all relevant queries. Presets and\or Filters should be changed to include all relevant standard queries.

 PAGE 25 OF 54

Results Distribution By Status First scan of the project

High Medium Low Information Total

New Issues 1 1 13 0 15

Recurrent Issues 0 0 0 0 0

Total 1 1 13 0 15

Fixed Issues 0 0 0 0 0

New Scan
Previous Scan

Results Distribution By State
High Medium Low Information Total

To Verify 1 1 13 0 15

Not Exploitable 0 0 0 0 0

Confirmed 0 0 0 0 0

Urgent 0 0 0 0 0

Proposed Not
Exploitable 0 0 0 0 0

Total 1 1 13 0 15

Result Summary

Vulnerability Type Occurrences Severity
SQL Injection 1 High
Missing HSTS Header 1 Medium
Client Insecure Randomness 4 Low
Log Forging 2 Low
React Deprecated 2 Low
Client Hardcoded Domain 1 Low
Missing CSP Header 1 Low
Potential Clickjacking on Legacy Browsers 1 Low
Potentially Vulnerable To Csrf 1 Low

 PAGE 26 OF 54

Use Of Hardcoded Password 1 Low

10 Most Vulnerable Files
High and Medium Vulnerabilities

File Name Issues Found
app/server.js 2
app/server/postgresQueries.js 1

 PAGE 27 OF 54

Scan Results Details

SQL Injection
Query Path:
JavaScript\Cx\JavaScript Server Side Vulnerabilities\SQL Injection Version:3

Categories

PCI DSS v3.2.1: PCI DSS (3.2.1) - 6.5.1 - Injection flaws - particularly SQL injection
OWASP Top 10 2013: A1-Injection
FISMA 2014: System And Information Integrity
NIST SP 800-53: SI-10 Information Input Validation (P1)
OWASP Top 10 2017: A1-Injection
ASD STIG 4.10: APSC-DV-002540 - CAT I The application must not be vulnerable to SQL Injection.
OWASP Top 10 2021: A3-Injection

Description
SQL Injection\Path 1:
Severity High
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=1
Status New
Detection Date 3/11/2022 11:39:24 AM

The application's insertInstallationPermit method executes an SQL query with insertStatement, at line 19 of
app/server/postgresQueries.js. The application constructs this SQL query by embedding an untrusted string into the query
without proper sanitization. The concatenated string is submitted to the database, where it is parsed and executed
accordingly.
An attacker would be able to inject arbitrary syntax and data into the SQL query, by crafting a malicious payload and
providing it via the input body; this input is then read by the app.post method at line 47 of app/server.js. This input then
flows through the code, into a query and to the database server - without sanitization.
This may enable an SQL Injection attack.

Source Destination

File app/server.js app/server/postgresQueries.js

Line 48 26

Object body insertStatement

Code Snippet
File Name app/server.js
Method app.post('/api/addPermit', function (req, res) {

....
48. insertInstallationPermit(req.body)

File Name app/server/postgresQueries.js

Method function insertInstallationPermit(permit) {

....
26. return postgresPool.query(insertStatement);

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=1
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=1

 PAGE 28 OF 54

Missing HSTS Header
Query Path:
JavaScript\Cx\JavaScript Medium Threat\Missing HSTS Header Version:1

Categories

ASD STIG 4.10: APSC-DV-002440 - CAT I The application must protect the confidentiality and integrity of transmitted
information.
OWASP Top 10 2010: A6-Security Misconfiguration
OWASP Top 10 2021: A7-Identification and Authentication Failures

Description
Missing HSTS Header\Path 1:
Severity Medium
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=2
Status New
Detection Date 3/11/2022 11:39:24 AM

The web-application does not define an HSTS header, leaving it vulnerable to attack.
Source Destination

File app/server.js app/server.js

Line 35 35

Object send send

Code Snippet
File Name app/server.js
Method app.get('/api/getPermit', function (req, res) {

....
35. return res.send('addPermit');

Client Insecure Randomness
Query Path:
JavaScript\Cx\JavaScript Low Visibility\Client Insecure Randomness Version:3

Categories

FISMA 2014: Media Protection
NIST SP 800-53: SC-28 Protection of Information at Rest (P1)
OWASP Top 10 2017: A9-Using Components with Known Vulnerabilities
ASD STIG 4.10: APSC-DV-002290 - CAT II The application must use the Federal Information Processing Standard
(FIPS) 140-2-validated cryptographic modules and random number generator if the application implements encryption,
key exchange, digital signature, and hash functionality.
OWASP Top 10 2010: A7-Insecure Cryptographic Storage
OWASP Top 10 2021: A2-Cryptographic Failures

Description
Client Insecure Randomness\Path 1:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=3
Status New
Detection Date 3/11/2022 11:39:24 AM

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=2
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=2
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=3
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=3

 PAGE 29 OF 54

Method getRandomNumberBetween0And at line 67 of app/src/assets/DummyData.js uses a weak method random to
produce random values. These values might be used as personal identifiers, session tokens or cryptographic input;
however, due to their insufficient randomness, an attacker may be able to derive their value.

Source Destination

File app/src/assets/DummyData.js app/src/assets/DummyData.js

Line 68 116

Object random getRandomAddress

Code Snippet
File Name app/src/assets/DummyData.js
Method function getRandomNumberBetween0And(max) {

....
68. return Math.ceil((Math.random() * max)) - 1;

File Name app/src/assets/DummyData.js

Method function makeRandomInstallationPermit() {

....
116. const contact = getRandomAddress();

Client Insecure Randomness\Path 2:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=4
Status New
Detection Date 3/11/2022 11:39:24 AM

Method getRandomNumberBetween0And at line 67 of app/src/assets/DummyData.js uses a weak method random to
produce random values. These values might be used as personal identifiers, session tokens or cryptographic input;
however, due to their insufficient randomness, an attacker may be able to derive their value.

Source Destination

File app/src/assets/DummyData.js app/src/assets/DummyData.js

Line 68 117

Object random getRandomAddress

Code Snippet
File Name app/src/assets/DummyData.js
Method function getRandomNumberBetween0And(max) {

....
68. return Math.ceil((Math.random() * max)) - 1;

File Name app/src/assets/DummyData.js

Method function makeRandomInstallationPermit() {

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=4
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=4

 PAGE 30 OF 54

....
117. const installation = getRandomAddress([contact.index]);

Client Insecure Randomness\Path 3:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=5
Status New
Detection Date 3/11/2022 11:39:24 AM

Method getRandomNumberBetween0And at line 67 of app/src/assets/DummyData.js uses a weak method random to
produce random values. These values might be used as personal identifiers, session tokens or cryptographic input;
however, due to their insufficient randomness, an attacker may be able to derive their value.

Source Destination

File app/src/assets/DummyData.js app/src/assets/DummyData.js

Line 68 118

Object random getRandomAddress

Code Snippet
File Name app/src/assets/DummyData.js
Method function getRandomNumberBetween0And(max) {

....
68. return Math.ceil((Math.random() * max)) - 1;

File Name app/src/assets/DummyData.js

Method function makeRandomInstallationPermit() {

....
118. const contractor = getRandomAddress([contact.index,
installation.index]);

Client Insecure Randomness\Path 4:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=6
Status New
Detection Date 3/11/2022 11:39:24 AM

Method getRandomNumberBetween0And at line 67 of app/src/assets/DummyData.js uses a weak method random to
produce random values. These values might be used as personal identifiers, session tokens or cryptographic input;
however, due to their insufficient randomness, an attacker may be able to derive their value.

Source Destination

File app/src/assets/DummyData.js app/src/assets/DummyData.js

Line 68 119

Object random getRandomAddress

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=5
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=5
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=6
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=6

 PAGE 31 OF 54

Code Snippet
File Name app/src/assets/DummyData.js
Method function getRandomNumberBetween0And(max) {

....
68. return Math.ceil((Math.random() * max)) - 1;

File Name app/src/assets/DummyData.js

Method function makeRandomInstallationPermit() {

....
119. const electrician = getRandomAddress([contact.index,
installation.index, contractor.index]);

React Deprecated
Query Path:
JavaScript\Cx\JavaScript Low Visibility\React Deprecated Version:3

Categories

OWASP Top 10 2017: A9-Using Components with Known Vulnerabilities
OWASP Top 10 2021: A6-Vulnerable and Outdated Components

Description
React Deprecated\Path 1:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=8
Status New
Detection Date 3/11/2022 11:39:24 AM

Method ReactDOM.render in app/src/index.jsx, at line 59, calls an obsolete API, render. This has been deprecated, and
should not be used in a modern codebase.

Source Destination

File app/src/index.jsx app/src/index.jsx

Line 59 59

Object render render

Code Snippet
File Name app/src/index.jsx
Method ReactDOM.render(

....
59. ReactDOM.render(

React Deprecated\Path 2:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=9

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=8
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=8
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=9
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=9

 PAGE 32 OF 54

Status New
Detection Date 3/11/2022 11:39:24 AM

Method Header in app/src/components/Header.jsx, at line 6, calls an obsolete API, CxAssociativeArray_dc8fb2be. This
has been deprecated, and should not be used in a modern codebase.

Source Destination

File app/src/components/Header.jsx app/src/components/Header.jsx

Line 28 28

Object CxAssociativeArray_dc8fb2be CxAssociativeArray_dc8fb2be

Code Snippet
File Name app/src/components/Header.jsx
Method export default function Header() {

....
28.

Log Forging
Query Path:
JavaScript\Cx\JavaScript Server Side Vulnerabilities\Log Forging Version:3

Categories

FISMA 2014: System And Information Integrity
NIST SP 800-53: AU-9 Protection of Audit Information (P1)
OWASP Top 10 2017: A1-Injection
ASD STIG 4.10: APSC-DV-002560 - CAT I The application must not be subject to input handling vulnerabilities.
OWASP Top 10 2021: A9-Security Logging and Monitoring Failures

Description
Log Forging\Path 1:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=11
Status New
Detection Date 3/11/2022 11:39:24 AM

Method app.post at line 47 of app/server.js gets user input from element body. This element’s value flows through the
code without being properly sanitized or validated, and is eventually used in writing an audit log in .then at line 49 of
app/server.js.
This may enable Log Forging.

Source Destination

File app/server.js app/server.js

Line 48 49

Object body log

Code Snippet
File Name app/server.js
Method app.post('/api/addPermit', function (req, res) {

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=11
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=11

 PAGE 33 OF 54

....
48. insertInstallationPermit(req.body)

File Name app/server.js

Method .then(res => console.log(res.rows[0]))

....
49. .then(res => console.log(res.rows[0]))

Log Forging\Path 2:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=12
Status New
Detection Date 3/11/2022 11:39:24 AM

Method app.post at line 47 of app/server.js gets user input from element body. This element’s value flows through the
code without being properly sanitized or validated, and is eventually used in writing an audit log in .catch at line 50 of
app/server.js.
This may enable Log Forging.

Source Destination

File app/server.js app/server.js

Line 48 50

Object body error

Code Snippet
File Name app/server.js
Method app.post('/api/addPermit', function (req, res) {

....
48. insertInstallationPermit(req.body)

File Name app/server.js

Method .catch(e => console.error(e.stack));

....
50. .catch(e => console.error(e.stack));

Client Hardcoded Domain
Query Path:
JavaScript\Cx\JavaScript Low Visibility\Client Hardcoded Domain Version:4

Categories

NIST SP 800-53: SC-18 Mobile Code (P2)
ASD STIG 4.10: APSC-DV-002490 - CAT I The application must protect from Cross-Site Scripting (XSS)
vulnerabilities.
OWASP Top 10 2021: A8-Software and Data Integrity Failures

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=12
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=12

 PAGE 34 OF 54

Description
Client Hardcoded Domain\Path 1:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=7
Status New
Detection Date 3/11/2022 11:39:24 AM

The JavaScript file imported in https://static2.sharepointonline.com/files/fabric/office-ui-fabric-
core/11.0.0/css/fabric.min.css in app/dist/index.html at line 4 is from a remote domain, which may allow attackers to
replace its contents with malicious code.

Source Destination

File app/dist/index.html app/dist/index.html

Line 4 4

Object https://static2.sharepointonline.com/files/fabric/offi
ce-ui-fabric-core/11.0.0/css/fabric.min.css

https://static2.sharepointonline.com/files/fabric/offi
ce-ui-fabric-core/11.0.0/css/fabric.min.css

Code Snippet
File Name app/dist/index.html
Method <link rel="stylesheet" href="https://static2.sharepointonline.com/files/fabric/office-ui-fabric-

core/11.0.0/css/fabric.min.css" />

....
4. <link rel="stylesheet"
href="https://static2.sharepointonline.com/files/fabric/office-ui-
fabric-core/11.0.0/css/fabric.min.css" />

Potential Clickjacking on Legacy Browsers
Query Path:
JavaScript\Cx\JavaScript Low Visibility\Potential Clickjacking on Legacy Browsers Version:3

Categories

FISMA 2014: Configuration Management
NIST SP 800-53: SC-8 Transmission Confidentiality and Integrity (P1)
ASD STIG 4.10: APSC-DV-002330 - CAT II The application must protect the confidentiality and integrity of stored
information when required by DoD policy or the information owner.

Description
Potential Clickjacking on Legacy Browsers\Path 1:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=10
Status New
Detection Date 3/11/2022 11:39:24 AM

The application does not protect the web page app/dist/index.html from clickjacking attacks in legacy browsers, by using
framebusting scripts.

Source Destination

File app/dist/index.html app/dist/index.html

Line 1 1

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=7
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=7
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=10
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=10

 PAGE 35 OF 54

Object < <

Code Snippet
File Name app/dist/index.html
Method <!DOCTYPE html>

....
1. <!DOCTYPE html>

Missing CSP Header
Query Path:
JavaScript\Cx\JavaScript Server Side Vulnerabilities\Missing CSP Header Version:3

Categories

OWASP Top 10 2017: A6-Security Misconfiguration
OWASP Top 10 2021: A7-Identification and Authentication Failures

Description
Missing CSP Header\Path 1:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=13
Status New
Detection Date 3/11/2022 11:39:24 AM

A Content Security Policy is not explicitly defined within the web-application.
Source Destination

File app/server.js app/server.js

Line 35 35

Object send send

Code Snippet
File Name app/server.js
Method app.get('/api/getPermit', function (req, res) {

....
35. return res.send('addPermit');

Potentially Vulnerable To Csrf
Query Path:
JavaScript\Cx\JavaScript Server Side Vulnerabilities\Potentially Vulnerable To Csrf Version:3

Categories

OWASP Top 10 2021: A1-Broken Access Control

Description
Potentially Vulnerable To Csrf\Path 1:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=14
Status New

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=13
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=13
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=14
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=14

 PAGE 36 OF 54

Detection Date 3/11/2022 11:39:24 AM

Method express at line 11 of app/server.js gets a parameter from a user request from app. This parameter value flows
through the code and is eventually used to access application state altering functionality. This may enable Cross-Site
Request Forgery (CSRF).

Source Destination

File app/server.js app/server.js

Line 11 11

Object app app

Code Snippet
File Name app/server.js
Method const app = express();

....
11. const app = express();

Use Of Hardcoded Password
Query Path:
JavaScript\Cx\JavaScript Server Side Vulnerabilities\Use Of Hardcoded Password Version:6

Categories

FISMA 2014: Identification And Authentication
NIST SP 800-53: SC-28 Protection of Information at Rest (P1)
OWASP Top 10 2017: A3-Sensitive Data Exposure
ASD STIG 4.10: APSC-DV-001740 - CAT I The application must only store cryptographic representations of
passwords.
OWASP Top 10 2021: A7-Identification and Authentication Failures

Description
Use Of Hardcoded Password\Path 1:
Severity Low
Result State To Verify
Online Results https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pat

hid=15
Status New
Detection Date 3/11/2022 11:39:24 AM

The application uses the hard-coded password "postgres" for authentication purposes, either using it to verify users'
identities, or to access another remote system. This password at line 7 of app/server/postgresQueries.js appears in the
code, implying it is accessible to anyone with source code access, and cannot be changed without rebuilding the
application.

Source Destination

File app/server/postgresQueries.js app/server/postgresQueries.js

Line 7 7

Object "postgres" password

Code Snippet
File Name app/server/postgresQueries.js
Method password: process.env.POSTGRES_PASSWORD || 'postgres',

https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=15
https://cxmanager.pnl.gov/CxWebClient/ViewerMain.aspx?scanid=1017574&projectid=1025&pathid=15

 PAGE 37 OF 54

....
7. password: process.env.POSTGRES_PASSWORD || 'postgres',

SQL Injection
Risk
What might happen
An attacker could directly access all of the system's data. The attacker would likely be able to steal any sensitive information stored
by the system, including private user information, credit card details, proprietary business data, and any other secret data. Likewise,
the attacker could possibly modify or erase existing data, or even add new bogus data. In some scenarios, it may even be possible to
execute code on the database.
In addition to disclosing or altering confidential information directly, this vulnerability might also be used to achieve secondary
effects, such as bypassing authentication, subverting security checks, or forging a data trail.
Further increasing the likelihood of exploit is the fact that this flaw is easy for attackers to find, and easy to exploit.

Cause
How does it happen
The application stores and manages data in a database, by submitting a textual SQL query to the database engine for processing. The
application creates the query by simple string concatenation, embedding untrusted data. However, there is no separation between data
and code; furthermore, the embedded data is neither checked for data type validity nor subsequently sanitized. Thus, the untrusted
data could contain SQL commands, or modify the intended query. The database would interpret the altered query and commands as
if they originated from the application, and execute them accordingly.
Note that an attacker can exploit this vulnerability either by modifying the URL, or by submitting malicious data in the user input or
other request fields.

General Recommendations
How to avoid it

 Validate all untrusted data, regardless of source. Validation should be based on a whitelist: accept only data fitting a
specified structure, rather than reject bad patterns.

 In particular, check for:
o Data type
o Size
o Range
o Format
o Expected values.

 Restrict access to database objects and functionality, according to the Principle of Least Privilege.
 Do not use dynamically concatenate strings to construct SQL queries.
 Prefer using DB Stored Procedures for all data access, instead of ad-hoc dynamic queries.
 Instead of unsafe string concatenation, use secure database components such as parameterized queries and object bindings

(for example, commands and parameters).
 Alternatively, an even better solution is to use an ORM library, in order to pre-define and encapsulate the allowed

commands enabled for the application, instead of dynamically accessing the database directly. In this way the code plane
and data plane should be isolated from each other.

Source Code Examples

JavaScript
SQL Injection in "id" Parameter

app.get('/profile/address', function(req, res) {
var id = req.query.id;
connection.query('SELECT * FROM users WHERE id=' + id, function(err,results) {

var user = results[0];

 PAGE 38 OF 54

if (user)
res.render('address', {address: user.address})

 else
 res.render('addressNotFoundErrorPage');

});
});

SQL Query Uses Parameterized Queries to Avoid SQL Injection

app.get('/profile/address', function(req, res) {
var id = req.query.id;
connection.query('SELECT * FROM users WHERE id=?',[id], function(err,results) {

var user = results[0];
if (user)

res.render('address', {address: user.address})
 else
 res.render('addressNotFoundErrorPage');

});
});

 PAGE 39 OF 54

Missing HSTS Header
Risk
What might happen
Failure to set an HSTS header and provide it with a reasonable "max-age" value of at least one year may leave users vulnerable to
Man-in-the-Middle attacks.

Cause
How does it happen
Many users browse to websites by simply typing the domain name into the address bar, without the protocol prefix. The browser will
automatically assume that the user's intended protocol is HTTP, instead of the encrypted HTTPS protocol.
When this initial request is made, an attacker can perform a Man-in-the-Middle attack and manipulate it to redirect users to a
malicious web-site of the attacker's choosing. To protect the user from such an occurence, the HTTP Strict Transport Security
(HSTS) header instructs the user's browser to disallow use of an unsecure HTTP connection to the the domain associated with the
HSTS header.
Once a browser that supports the HSTS feature has visited a web-site and the header was set, it will no longer allow communicating
with the domain over an HTTP connection.
Once an HSTS header was issued for a specific website, the browser is also instructed to prevent users from manually overriding and
accepting an untrusted SSL certificate for as long as the "max-age" value still applies. The recommended "max-age" value is for at
least one year in seconds, or 31536000.

General Recommendations
How to avoid it

 Before setting the HSTS header - consider the implications it may have:
o Forcing HTTPS will prevent any future use of HTTP, which could hinder some testing
o Disabling HSTS is not trivial, as once it is disabled on the site, it must also be disabled on the browser

 Set the HSTS header either explicitly within application code, or using web-server configurations.
 Ensure the "max-age" value for HSTS headers is set to 31536000 to ensure HSTS is strictly enforced for at least one year.
 Include the "includeSubDomains" to maximize HSTS coverage, and ensure HSTS is enforced on all sub-domains under the

current domain
o Note that this may prevent secure browser access to any sub-domains that utilize HTTP; however, use of HTTP is

very severe and highly discouraged, even for websites that do not contain any sensitive information, as their
contents can still be tampered via Man-in-the-Middle attacks to phish users under the HTTP domain.

 Once HSTS has been enforced, submit the web-application's address to an HSTS preload list - this will ensure that, even if a
client is accessing the web-application for the first time (implying HSTS has not yet been set by the web-application), a
browser that respects the HSTS preload list would still treat the web-application as if it had already issued an HSTS header.
Note that this requires the server to have a trusted SSL certificate, and issue an HSTS header with a maxAge of 1 year
(31536000)

 Note that this query is designed to return one result per application. This means that if more than one vulnerable response
without an HSTS header is identified, only the first identified instance of this issue will be highlighted as a result. If a
misconfigured instance of HSTS is identified (has a short lifespan, or is missing the "includeSubDomains" flag), that result
will be flagged. Since HSTS is required to be enforced across the entire application to be considered a secure deployment of
HSTS functionality, fixing this issue only where the query highlights this result is likely to produce subsequent results in
other sections of the application; therefore, when adding this header via code, ensure it is uniformly deployed across the
entire application. If this header is added via configuration, ensure that this configuration applies to the entire application.

 Note that misconfigured HSTS headers that do not contain the recommended max-age value of at least one year or the
"includeSubDomains" flag will still return a result for a missing HSTS header.

Source Code Examples

JavaScript
Using Helmet with Express

var express = require('express')
var helmet = require('helmet') // Helmet includes HSTS, defined to one year and with

 PAGE 40 OF 54

"includeSubDomains", as a built-in header

var app = express()
app.use(helmet())

Using Explicit HSTS Package - Built into Helmet, So Either 'HSTS' or 'Helmet' Can Be Used

var hsts = require('hsts')

app.use(hsts({
 maxAge: 31536000,
 includeSubDomains: true // Also enabled by default
}))

Explicitly Setting HSTS Header in Code

res.setHeader("Strict-Transport-Security", "max-age=31536000; includeSubDomains");

 PAGE 41 OF 54

Client Insecure Randomness
Risk
What might happen
Random values are often used as a mechanism to prevent malicious users from knowing or predicting a given value, such as a
password, encryption key, or session identifier. Depending on what this random value is used for, an attacker would be able to
predict the next numbers generated, or previously generated values, based on sources often used to derive certain randomness;
however, while they may seem random, large statistical samples would demonstrate that they are insufficiently random, producing a
much smaller space of possible "random" values than a truly random sample would. This could enable an attacker to derive or guess
this value, and thus hijack another user's session, impersonate another user, or crack an encryption key (depending on what the
pseudo-random value was used for).

Cause
How does it happen
The application uses a weak method of generating pseudo-random values, such that other numbers could be determined from a
relatively small sample size. Since the pseudo-random number generator used is designed for statistically uniform distribution of
values, it is approximately deterministic. Thus, after collecting a few generated values, it would be possible for an attacker to
calculate past or future values.
Specifically, if this pseudo-random value is used in any security context, such as one-time passwords, keys, secret identifiers or salts
- an attacker would likely be able to predict the next value generated and steal it, or guess a previously generated value and spoof its
original intent.

General Recommendations
How to avoid it

 Always use a cryptographically secure pseudo-random number generator, instead of basic random methods, particularly
when dealing with a security context

 Use the cryptorandom generator that is built-in to your language or platform, and ensure it is securely seeded. Do not seed
the generator with a weak, non-random seed. (In most cases, the default is securely random).

 Ensure you use a long enough random value, thus making brute-force attacks unfeasible.

Source Code Examples

JavaScript
Use of Math.Random() To Generate A Random Number Between MIN And MAX

var randomValue = Math.floor(Math.Random() * MAX_RANGE - MIN_RANGE + 1) + MIN_RANGE;

Use of CSPRNG To Generate a Random Uint32Array

// Assuming window.crypto.getRandomValues is available

var sessionId = new Uint32Array(10);
window.crypto.getRandomValues(sessionId);

 PAGE 42 OF 54

Client Hardcoded Domain
Risk
What might happen
An externally imported Javascript file may leave users vulnerable to attack - if the Javascript's host is compromised, if
communications with the host are intercepted or if the host itself is not trustworthy, then the contents of the Javascript file may
change to have malicious code, which could result in a Cross-Site Scripting (XSS) attack.

Cause
How does it happen
Javascript files can be imported dynamically from remote hosts when they are embedded into HTML. However, this reliance on a
remote host for these scripts may diminish security, as web-application's users are only ever as secure as the remote host serving
these Javascript files.

General Recommendations
How to avoid it
Where possible, host all script files locally, rather than remotely. Ensure that locally hosted 3rd party script files are constantly
updated and maintained.

Source Code Examples

JavaScript
Remote Importation of A Script File

<script src="https://example.com/scripts/jquery.js" />

Local Importation of A Script File

<script src="/scripts/jquery.js" />

 PAGE 43 OF 54

React Deprecated
Risk
What might happen
Referencing deprecated modules can cause an application to be exposed to known vulnerabilities, that have been publicly reported
and already fixed. A common attack technique is to scan applications for these known vulnerabilities, and then exploit the application
through these deprecated versions. However, even if deprecated code is used in a way that is completely secure, its very use and
inclusion in the code base would encourage developers to re-use the deprecated element in the future, potentially leaving the
application vulnerable to attack, which is why deprecated code should be eliminated from the code-base as a matter of practice.
Note that the actual risk involved depends on the specifics of any known vulnerabilities in older versions.
Use of a deprecated API on client code may leave users vulnerable to browser-based attacks; this is exacerbated by the fact client-
side code is available to any attacker with client access, who may be able to trivially detect use of this deprecated API.

Cause
How does it happen
The application references code elements that have been declared as deprecated. This could include classes, functions, methods,
properties, modules, or obsolete library versions that are either out of date by version, or have been entirely deprecated. It is likely
that the code that references the obsolete element was developed before it was declared as obsolete, and in the meantime the
referenced code was updated.

General Recommendations
How to avoid it

 Always prefer to use the most updated versions of libraries, packages, and other dependancies.
 Do not use or reference any class, method, function, property, or other element that has been declared deprecated.

Source Code Examples

JavaScript
ReactJS - Using a Deprecated Method to Interact with DOM

// Using findDOMNode to access a component is highly discouraged, because it breaks React
component abstraction by treating it like a normal Javascript DOM object; this may result in
unexpected or dangerous behavior
ReactDOM.findDOMNode(component);

Obtain Year via Deprecated JavaScript Method

var d = new Date();
var year = d.getYear(); // getYear() is deprecated and affected by Y2K; for a given year,
20xx, it will return 1xx.

Obtain Year via a Supported JavaScript Method

var d = new Date();
var year = d.getFullYear();

 PAGE 44 OF 54

Invoking a Deprecated Function, Denoted Using JSDoc

/** @deprecated */
function myOldFunction() {

/* Code that is deprecated */
}

myOldFunction();

 PAGE 45 OF 54

Potential Clickjacking on Legacy Browsers
Risk
What might happen
Clickjacking attacks allow an attacker to "hijack" a user's mouse clicks on a webpage, by invisibly framing the application, and
superimposing it in front of a bogus site. When the user is convinced to click on the bogus website, e.g. on a link or a button, the
user's mouse is actually clicking on the target webpage, despite being invisible.
This could allow the attacker to craft an overlay that, when clicked, would lead the user to perform undesirable actions in the
vulnerable application, e.g. enabling the user's webcam, deleting all the user's records, changing the user's settings, or causing
clickfraud.

Cause
How does it happen
The root cause of vulnerability to a clickjacking attack, is that the application's web pages can be loaded into a frame of another
website. The application does not implement a proper frame-busting script, that would prevent the page from being loaded into
another frame. Note that there are many types of simplistic redirection scripts that still leave the application vulnerable to
clickjacking techniques, and should not be used.
When dealing with modern browsers, applications mitigate this vulnerability by issuing appropriate Content-Security-Policy or X-
Frame-Options headers to indicate to the browser to disallow framing. However, many legacy browsers do not support this feature,
and require a more manual approach by implementing a mitigation in Javascript. To ensure legacy support, a framebusting script is
required.

General Recommendations
How to avoid it
Generic Guidance:

 Define and implement a a Content Security Policy (CSP) on the server side, including a frame-ancestors directive. Enforce
the CSP on all relevant webpages.

 If certain webpages are required to be loaded into a frame, define a specific, whitelisted target URL.
 Alternatively, return a "X-Frame-Options" header on all HTTP responses. If it is necessary to allow a particular webpage to

be loaded into a frame, define a specific, whitelisted target URL.
 For legacy support, implement framebusting code using Javascript and CSS to ensure that, if a page is framed, it is never

displayed, and attempt to navigate into the frame to prevent attack. Even if navigation fails, the page is not displayed and is
therefore not interactive, mitigating potential clickjacking attacks.

Specific Recommendations:
 Implement a proper framebuster script on the client, that is not vulnerable to frame-buster-busting attacks.

o Code should first disable the UI, such that even if frame-busting is successfully evaded, the UI cannot be clicked.
This can be done by setting the CSS value of the "display" attribute to "none" on either the "body" or "html" tags.
This is done because, if a frame attempts to redirect and become the parent, the malicious parent can still prevent
redirection via various techniques.

o Code should then determine whether no framing occurs by comparing self === top; if the result is true, can the UI
be enabled. If it is false, attempt to navigate away from the framing page by setting the top.location attribute to
self.location.

Source Code Examples

JavaScript
Clickjackable Webpage

<html>
 <body>

 <button onclick="clicked();">
 Click here if you love ducks
 </button>
 </body>

 PAGE 46 OF 54

</html>

Bustable Framebuster

<html>
 <head>

 <script>
 if (window.self.location != window.top.location) {
 window.top.location = window.self.location;
 }
 </script>
 </head>

 <body>

 <button onclick="clicked();">
 Click here if you love ducks
 </button>
 </body>

</html>

Proper Framebusterbusterbusting

<html>
 <head>

 <style> html {display : none; } </style>
 <script>
 if (self === top) {
 document.documentElement.style.display = 'block';
 }
 else {
 top.location = self.location;
 }
 </script>
 </head>

 <body>

 <button onclick="clicked();">
 Click here if you love ducks
 </button>
 </body>

</html>

 PAGE 47 OF 54

Log Forging
Risk
What might happen
An attacker could engineer audit logs of security-sensitive actions and lay a false audit trail, potentially implicating an innocent user
or hiding an incident.

Cause
How does it happen
The application writes audit logs upon security-sensitive actions. Since the audit log includes user input that is neither checked for
data type validity nor subsequently sanitized, the input could contain false information made to look like legitimate audit log data,

General Recommendations
How to avoid it

1. Validate all input, regardless of source. Validation should be based on a whitelist: accept only data fitting a specified
structure, rather than reject bad patterns. Check for:

o Data type
o Size
o Range
o Format
o Expected values

2. Validation is not a replacement for encoding. Fully encode all dynamic data, regardless of source, before embedding it in
logs.

3. Use a secure logging mechanism.

Source Code Examples

JavaScript
Passing Unsanitized Values to HAPI server.log()

var id = request.query["id"];
try {
 var val = tryGetById(id); // Assume this throws an exception if "id" is not found
 // Handle val
}
catch(err) {
 server.log(['error','id'],id); // Log unsanitized values, which could also not be
sanitized downstream, and could contain CRLF
}

Passing Sanitized Values to HAPI server.log()

var id = request.query["id"];
try {
 var val = tryGetById(id); // Assume this throws an exception if "id" is not found
 // Handle val
}
catch(err) {
 server.log(['error','id'],encodeURI(id)); // encodeURI() is a sufficient sanitizer for
CRLF, as it URL-encodes the line break characters
}

 PAGE 48 OF 54

 PAGE 49 OF 54

Missing CSP Header
Risk
What might happen
The Content-Security-Policy header enforces that the source of content, such as the origin of a script, embedded (child) frame,
embedding (parent) frame or image, are trusted and allowed by the current web-page; if, within the web-page, a content's source does
not adhere to a strict Content Security Policy, it is promptly rejected by the browser. Failure to define a policy may leave the
application's users exposed to Cross-Site Scripting (XSS) attacks, Clickjacking attacks, content forgery and more.

Cause
How does it happen
The Content-Security-Policy header is used by modern browsers as an indicator for trusted sources of content, including media,
images, scripts, frames and more. If these policies are not explicitly defined, default browser behavior would allow untrusted content.
The application creates web responses, but does not properly set a Content-Security-Policy header.

General Recommendations
How to avoid it
Explicitly set the Content-Security-Policy headers for all applicable policy types (frame, script, form, script, media, img etc.)
according to business requirements and deployment layout of external file hosting services. Specifically, do not use a wildcard, '*', to
specify these policies, as this would allow content from any external resource.
The Content-Security-Policy can be explicitly defined within web-application code, as a header managed by web-server
configurations, or within <meta> tags in the HTML <head> section.

Source Code Examples

JavaScript
Setting The CSP Header Explicitly

app.use(function(req, res, next) {
 res.setHeader("Content-Security-Policy", "script-src 'self'");
 return next();
});

 PAGE 50 OF 54

Potentially Vulnerable To Csrf
Risk
What might happen
An attacker could cause the victim to perform any action for which the victim is authorized, such as transferring funds from the
victim’s account to the attacker’s. The action will be logged as being performed by the victim, in the context of their account, and
potentially without their knowledge that this action has occurred.

Cause
How does it happen
The application performs some action that modifies database contents, based purely on HTTP request content, and does not require
per-request renewed authentication (such as transaction authentication or a synchronizer token), instead relying solely on session
authentication. This means that an attacker could use social engineering to cause a victim to browse to a link which contains a
transaction request to the vulnerable application, submitting that request from the user's browser. Once the application receives the
request, it would trust the victim’s session, and would perform the action. This type of attack is known as Cross-Site Request Forgery
(CSRF).
A Cross-Site Request Forgery attack relies on the trust between a server and an authenticated client. By only validating the session,
the server ensures that a request has emerged from a client's web-browser. However, any website may submit GET and POST
requests to other websites, to which the browser will automatically add the session token if it is in a cookie. This cross-site request
can then be trusted as arriving from the user's browser, but does not validate that it was their intent was to make this request.
In some cases, XSRF protection functionality exists in the application, but is either not implemented, or explicitly disabled.

General Recommendations
How to avoid it
Mitigating CSRF requires an additional layer of authentication that is built into the request validation mechanism. This mechanism
would attach an additional token that only applies to the given user; this token would be available within the user's web-page, but will
not be attached automatically to a request from a different website (e.g. not stored in a cookie). Since the token is not automatically
attached to the request, and is not available to the attacker, and is required by the server to process the request, it would be
completely impossible for the attacker to fill in a valid cross-site form that contains this token.
Many platforms offer built-in CSRF mitigation functionality which should be used, and perform this type of token management
under the hood. Alternatively, use a known or trusted library which adds this functionality.
If implementing CSRF protection is required, this protection should adhere to the following rules:

 Any state altering form (Create, Update, Delete operations) should enforce CSRF protection, by adding an CSRF token to
every state altering form submission on the client.

 An CSRF token should be generated, and be unique per-user per-session (and, preferably, per request).
 The CSRF token should be inserted into the client side form, and be submitted to the server as part of the form request. For

example, it could be a hidden field in an HTML form, or a custom header added by a Javascript request.
 The CSRF token in the request body or custom header must then be verified as belonging to the current user by the server,

before a request is authorized and processed as valid.
Always rely on best practices when using XSRF protection - always enable built-in functionality or available libraries where
possible.
When using application-wide XSRF protection, never explicitly disable or subvert XSRF protection for specific functionality unless
said functionality has been thoroughly verified to not require XSRF protection.

Source Code Examples

JavaScript
Applying 'csurf' Library to HTML Forms in Express

app.get('/profile/email/edit', (req, res) => {
 // Add csrfToken() as a value inside the form, so that the token is submitted in the
request
 res.send(`

 <h1>Change E-Mail Form</h1>

 PAGE 51 OF 54

 <form action="/profile/email/edit" method="POST">
 <input id="email" name="email" type="text" />

 <input id="email" name="verify_email" type="text" />
 <input type="submit" value="Ok" />
 <input type="hidden" name="_csrf" value="${req.csrfToken()}" />
 </form>
 `);

});

// If the _csrf token in the request body is not equal to the synchronizer token, the POST
request will be rejected, and this method will not trigger
app.post('/profile/email/edit', (req, res) => {
 // Authenticate user session
 // Update email address
}

 PAGE 52 OF 54

Use Of Hardcoded Password
Risk
What might happen
Hardcoded passwords expose the application to password leakage. If an attacker gains access to the source code, she will be able to
steal the embedded passwords, and use them to impersonate a valid user. This could include impersonating end users to the
application, or impersonating the application to a remote system, such as a database or a remote web service.
Once the attacker succeeds in impersonating the user or application, she will have full access to the system, and be able to do
anything the impersonated identity could do.

Cause
How does it happen
The application codebase has string literal passwords embedded in the source code. This hardcoded value is used either to compare to
user-provided credentials, or to authenticate downstream to a remote system (such as a database or a remote web service).
An attacker only needs to gain access to the source code to reveal the hardcoded password. Likewise, the attacker can reverse
engineer the compiled application binaries, and easily retrieve the embedded password. Once found, the attacker can easily use the
password in impersonation attacks, either directly on the application or to the remote system.
Furthermore, once stolen, this password cannot be easily changed to prevent further misuse, unless a new version of the application is
compiled. Moreover, if this application is distributed to numerous systems, stealing the password from one system automatically
allows a class break in to all the deployed systems.

General Recommendations
How to avoid it

 Do not hardcode any secret data in source code, especially not passwords.
 In particular, user passwords should be stored in a database or directory service, and protected with a strong password hash

(e.g. bcrypt, scrypt, PBKDF2, or Argon2). Do not compare user passwords with a hardcoded value.
 Sytem passwords should be stored in a configuration file or the database, and protected with strong encryption (e.g. AES-

256). Encryption keys should be securely managed, and not hardcoded.

Source Code Examples

JavaScript
Hardcoded Account Password

var username = request.body.username;
var password = request.body.password;
var admin_username = "admin";
var admin_password = "5up3r53cr3t";
if (username == admin_username && password == admin_password) {

// Authenticate
}
else {
 // Reject
}

Authenticating by Querying the Database with Credentials

var username = request.body.username;
var password = secureHashImplementation(request.body.password);

connection.query('SELECT * FROM users WHERE name=? AND hashed_password=?',[username,
password], function(err,results) {
 if (error) {

 PAGE 53 OF 54

 // handle error
 }

if (results.length == 1) {
 // Authenticate
 }
});

 PAGE 54 OF 54

Scanned Languages
Language Hash Number Change Date

JavaScript 9095271965336651 1/14/2022

VbScript 0386000544005133 12/9/2021

Common 0318477963775793 1/14/2022

Pacific Northwest
National Laboratory
902 Battelle Boulevard
P.O. Box 999
Richland, WA 99354
1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

	FIC Vulnerability Profile_v1.0
	Contents
	Figures
	Tables
	Acronyms and Abbreviations, and Terms of Reference
	1.0 Introduction
	1.1 Purpose of a Vulnerability Profile
	1.2 Shamrock Cyber Analysis

	2.0 Static Analysis Security Testing (SAST) Profile
	3.0 Conclusion
	Appendix A Brief on Consequence-Based Analysis
	Appendix B Brief on Threat-Based Analysis
	Appendix C Brief on Security-Based Development
	Appendix D Full Checkmarx Scan Results

	FIC Checkmarx Scan
	Result Summary
	0_SQL Injection
	1_Missing HSTS Header
	2_Client Insecure Randomness
	4_React Deprecated
	6_Log Forging
	3_Client Hardcoded Domain
	5_Potential Clickjacking on Legacy Brows
	7_Missing CSP Header
	8_Potentially Vulnerable To Csrf
	9_Use Of Hardcoded Password
	0D_SQL Injection
	1D_Missing HSTS Header
	2D_Client Insecure Randomness
	3D_Client Hardcoded Domain
	4D_React Deprecated
	5D_Potential Clickjacking on Legacy Brow
	6D_Log Forging
	7D_Missing CSP Header
	8D_Potentially Vulnerable To Csrf
	9D_Use Of Hardcoded Password

	PNNL report back page
	Standard Disclaimer no limitations (no adonis).pdf
	PACIFIC NORTHWEST NATIONAL LABORATORY
	email: reports@osti.gov

