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Abstract 

A software that delivers optimal design parameters and performance predictions for cylindrical 
cells, which can range in size from micro batteries to EV batteries, is developed. The Cylindrical 
battery design V1.0 is comprised of three types of cylindrical batteries, Micro battery (Primary), 
Micro battery (Secondary) and 18650/21700/xxxxx cylindrical battery. The software was 
developed in MATLAB. The software has the capability to output the cell design with the 
capacity ranges from several mAh to several million Ah. The software utilizes machine learning 
and includes a graphical user interface to enable rapid prototyping to accelerate energy storage 
research, development, and manufacturing.  
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1.0 Introduction 

Cylindrical batteries are the most common cell type in use today. They offer high energy 
density, good dimension stability, and reliability through the manufacturing process. They have 
been used to power miniature sensors, small consumer electronic devices, and large battery 
packs fueling electric vehicles that reduce greenhouse gas emissions.1 Designing a cylindrical 
battery is more complicated than a pouch cell due to the wound structure and the different 
material loadings in one electrode, making it difficult for researchers and organizations to quickly 
assess their innovations in realistic batteries. A convenient tool such as the software proposed 
in this project is urgently needed to accelerate research innovation and domestic battery 
manufacturing.  

Rational design of practically usable batteries must consider not only the electrical performance 
(energy density, impedance) but also battery dimensions and space utilization, cycling 
performance, cost reduction, and device manufacturability. All these factors make cell design a 
complex, error-prone, and time-consuming task. The proposed software embedded with 
machine-learning algorithms will address these considerations to simplify the process.   

Recently, PNNL has released analogous software for Li-metal pouch cell design (see Fig. 1) 
supported by the Battery 500 Consortium.2 In this work, we will leverage our battery design 
experience and machine-learning expertise to develop software specifically for cylindrical 
primary batteries based on chemistries from primary and secondary lithium metal batteries as 
well as lithium-ion batteries. Another important application of cylindrical batteries is the micro 
batteries for wearable electronics, downsized sensors, and implantable devices.3,4  

 

  

Figure 1. Software for Li metal pouch cell design by batt500. 
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2.0 Method, Discussion, and Results 

2.1 Machine learning software development for cylindrical Li/CFx 
primary micro battery 

Fig.2 shows the workflow of the software for cylindrical Li/CFx micro battery. First, the user 
inputs the requirements of the micro battery in the software, then the software automatically 
analyzes the inputted parameters and determines the battery type required, energy type or 
power type, through supervised learning. After that, the software performs the cell design 
according to the learned results and finally exports the detailed cell design information and 
estimated performances. However, how is the software built?  

 

 

Figure 2. Workflow chart of cylindrical micro battery design software. 

 

Over the past eight years, the cylindrical micro battery with the Li/CFx chemistry has been 
studied and produced extensively at PNNL. As shown in Fig.3, the jellyroll is produced by a 
winding process with alternative cathode sheet, separator sheet and anode sheet. Here, we 
focus on the Li/CFx micro battery as this chemistry has very high energy density and low self-
discharge rate. The CFx cathode active material will be mixed with binder and carbon additive to 
produce the cathode electrode. Thin Li metal foil will be used as anode electrode directly. The 
software development is also based on this chemistry. The areal loading, percentage, pressing 
density of CFx cathode electrode, and its size will affect the energy and power of the micro 
battery. Figuring out the relationships between these key factors and cell performances is 
crucial to develop the software. 
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Figure 3. Schematic of cylindrical micro battery and its relevant key factors and cell 
performances. 

 

 

In order to bridge the key factors and cell performances in Fig.3, five different sizes of micro 
battery with different CFx ratio, loading (or areal coating weight) will be produced and tested 
under four different discharge rates (Fig.4). Note that ‘MBxxxxx’ is used to describe the micro 
battery (MB) model, where the first two digitals after ‘MB’ represent the diameter of micro 
battery and the rest represent the height of the micro battery. In this work, we choose MB1820, 
MB1830, MB1842, MB3060 and MB47149 as our battery objects, the volume of these batteries 
ranges from 5 mm3 to 300 mm3. MB1842, MB3060 and MB47149 are the universal models we 
have worked on for so many years and we have plenty of experiences to produce them. To the 
best of our knowledge, MB1820 with volume of 5 mm3 is the smallest cylindrical battery in the 
world. That being said, we will have enhanced capability to produce smaller micro battery after 
this project. After collecting the data, we will analyze the relationships between the electrode 
parameters and cell performance, bridging them with equations. Also, a random forest 
supervised machine learning model will be introduced to do classification work for the micro 
battery. With these relationships and equations, a preliminary cell design program will be 
developed in EXCEL first and then transferred to a programmer for further software 
development in MATLAB.  
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Figure 4. Method to build the software for cylindrical micro battery. 

 

2.1.1.   Data collection with Li/CFx micro batteries 

According to Fig.4, at least twelve micro batteries have been produced for each size with 
different CFx ratio and loading (Fig.5). After production, the micro batteries will be discharged at 
four different discharging rates, 0.06C, 0.2C, 0.5C and 1C. A C-rate is a measure of the rate at 
which a battery is discharged relative to its maximum capacity. A 1C rate means that the 
discharge current will discharge the entire battery in 1 hour. The capacity, specific capacity, 
energy density, working voltage, driving voltage, gravimetric energy density and parameters for 
supervised random forest learning model at different discharging rate are collected (Fig.6). All 
the data analysis and software calculations are reliant on this data.  
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Figure 5. The digital photos of five different sizes of Li/CFx micro batteries (top) and production 
of these batteries with different CFx ratio and loading (bottom). 

 

 

Figure 6. Data sheet of five different sizes micro batteries with different CFx ratio and loading. 
The full data can be found in left Excel document.    

 
data%20resource.xlsx
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 Electrodes/separator size determination 

As mentioned above, the jelly roll of the micro battery is produced by a winding process. The 
size of the jelly roll depends on the size of cathode sheet, separator sheet and anode sheet. 
The size includes the width and length of each sheet. The width of electrodes/separator will 
affect the height of the jelly roll, while the length affects its diameter. The principle to determine 
the width of electrodes/separator is quite simple if we know the structure of micro battery. As 
showed in Fig.7, it’s easy to determine the width of electrodes/separator as below: 

Width of separator = Height of the battery - thickness of Torr seal - thickness of case (top and 
bottom) - thickness of rubber disk. 

Width of the Li metal anode = Width of separator - Overhang of separator/Li metal. 

Width of the CFx cathode = Width of Li metal anode - Overhang of Li/CFx electrode. 

Overhang means the extra width of separator relative to Li metal anode or Li metal anode 
relative to CFx electrode. Large overhang would result in better safety in secondary battery and 
easy manufacture, but lower energy density. As we are working on primary battery and trying to 
increase the energy density, here, we will set 0.5 mm for overhang of the separator/Li metal 
anode and 0 mm for Li metal anode/CFx cathode. 

 

Figure 7. The sectional view of the structure of micro battery.  

 

Determination of the length of electrodes/separator is a bit complicated. As shown in Fig.8, the 
diameter of the jelly roll is easier to determine if we know the diameter of the inner case and the 
gap degree. The gap degree is defined by equation (1) in Fig.8 and its value must be less than 
1 so the jelly roll can be inserted into the case while  leaving some room for jelly roll swelling 
and electrolyte. If the thickness of CFx electrode, Li metal electrode and separator are provided, 
then we will know how many loops are required for the jelly roll according to equation (2). The 
length of the CFx (n loops) or Li metal (n+1 loops) can then be calculated using equation (4), 
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the sum of arithmetic progression. The length of the separator can be achieved by doubling the 
length of Li metal anode with extra overhang. 

 

Figure 8. The method to determine the length of electrodes. 

 

2.1.2.   Machine learning process and prediction on the key parameters in Li/CFx 
primary micro battery 

Machine learning model used 

Generalized linear model (GLM):  

The general purpose of multiple regression is to quantify the relationship between several 
independent variables and a dependent variable. In general, the linear multiple regression can 
be estimated as: 

                                            (1) 

 

Regression Tree: Random forests (RF) 

Random forests or random decision forests are an ensemble learning method for classification, 
regression and other tasks that operates by constructing a multitude of decision trees at training 
time and outputting the class that is the mode of the classes (classification) or mean prediction 
(regression) of the individual trees. Random decision forests correct for decision trees' habit of 
overfitting to their training set. 

The prediction of RF model is obtained by a majority vote over the predictions of the individual 
trees. To specify a particular RF, 

                      

                                                       (2) 

𝑌 = 𝑏0 +∑𝑏𝑖 ∗ 𝑋𝑖

𝑘

𝑖=1

 

𝑅𝐹(𝑥) = 𝑠𝑔𝑛(∑ 𝑅𝑇𝑖(𝑥))
𝑘

𝑖=1
 



PNNL-32743 

Method, Discussion, and Results 8 
 

Data analysis 

In this work, we built eight random forest models. The response variables are specific capacity 
and voltage. The explanatory variables include the height of a battery (mm), the volume of a 
battery (mm3), loading, coating weight (mg/cm2), the press density (g/cm3), process parameter, 
charging rate, current (mA), mA/mm3, power (mW) and the mW/mm3. 

All experimental observations 

The experimental observations with retentions equal to or greater than 0.5 are selected to set 
up the machine learning problems. The total number of observations is 152, and they were split 
into training data and testing data. The training data contains 109 observations, and the testing 
data contains 43 observations. 

The experimental observations under 0.06C 

Charging a battery under  ideal conditions is another major benchmark study, so we also study 
the relationship between response variables and the explanatory variables using a 0.06C 
charging rate. In this part, the training dataset has 31 observations, and the testing data has 14 
observations. 

Randoms forest model setups 

The following table shows the details about those RF models. We predict the response 
variables such as specific capacity and voltage by using the explanatory variables from the 
battery design parameters.  

 

Table 1. The explanation of RF models response variable and the explanatory variables 
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PCA analysis 

Figure 9 shows the PCA bi-plots, where the first two principal components are used to visualize 
the similarities among specific capacity or voltage and the input parameters. The first 
component accounted for 45.4%, and the second component accounted for about 24.6% of the 
total variance of specific capacity and input parameters (panel a). The first component 
accounted for 45.3%, and the second component accounted for about 19.5% of the total 
variance of voltage and input parameters (panel b). Panel a and b of Figure 9 both show the 
points with different colors for each of the rate conditions. Note that points close to each other 
correspond to observations with similar scores/projections onto the principal components. The 
ultra-low points are mixed in the region of the low group. And the bounty of high and ultra-high 
are not evident. 

 

 

Figure 9. PCA biplot of among micro battery's input parameters and specific capacity and 
voltage 

 

Feature importance 

Specific capacity models 

Figure 10 shows the feature importance of specific capacity RF models. Those three panels 
show that the rate is the dominant factor for the specific capacity RF models. The coating weight 
and the process parameter are comparable. Other parameters such as the height, diameter, 
and volume of a battery are not so that important. Current parameters and the power 
parameters are 4th and 5th most important, respectively. 
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Figure 10. Feature importance of specific capacity models. Using (a) physical parameters and 
rate, (b) physical parameters, rate, and current variables, (c) physical parameters, rate, and 

power variables as explanatory variables.  

 

Voltage models 

Figure 11 shows the feature importance of voltage RF models. Those three panels show that 
the rate is the dominant factor for the voltage RF models. The importance of other parameters is 
weak and those parameter's feature importance are comparable. 

  

Figure 11. Feature importance of voltage models. Using (a) physical parameters and rate, (b) 
physical parameters, rate, and current variables, (c) physical parameters, rate, and power 

variables as explanatory variables.  

Prediction Results 

The predictions of RF models 

Prediction of rate conditions 

We use the current-based model to predict the rate conditions and use the micro battery's 
height, diameter, volume, current and current per volume as independent variables. We also 
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build a power-based model to predict the rate conditions too. The testing accuracy of the 
current-based model is 80%, and that of the power-based model is 76%. The two confusion 
matrixes show that most points are labeled correctly, but some are in the neighbor group. For 
the medium group, the current-based model is better than the power-based model. For the low 
group, the current-based model and the power-based model are comparable. Due to the small 
samples of ultra-high, ultra-low and high groups, it is hard to conclude. 

Table 2. The confusion matrixes of different models for rate conditions 

 

 

Prediction of specific capacity 

We compare the three methods’ model of prediction of specific capacity. We consider the rate-
based linear model as the native model. The GLM and RF models are applied. Figure 12 shows 
the predictions and prediction errors of different models. The y_Actual is the actual value of the 
experiment's specific capacity and is represented by black color from panel a. The blue  points 
represent the prediction from RF models, and the green points represent the prediction of GLM 
models. The red ones are from the naïve model. In general, the naïve model's predictions have 
a small range. Most of the forecasts of RF models are close to actual values of specific 
capacity. Panel 2 shows the boxplot of absolute errors of the 7 models. The RF model's 
performance is the best; almost 75% of sample's predict errors are less than 10%, and nearly 
95% of sample’s predict errors are less than 20%. Some of the prediction errors of naïve 
models are very large, and almost 55% of samples' prediction errors are less than 10%. The 
overall ranges of predict errors of the GLM model are broader than that of RF models. 

  

Figure 12. Specific capacity prediction scatter plot and the boxplot of predict absolute errors of 
different models 
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Prediction of voltage 

We use the same method to predict the voltage. The naïve model of voltage prediction is the 
piecewise function. From panel a of Figure 13, the naïve model prediction has slight variation in 
each piece under the same range of the rate. For the actual voltage, naïve model has better 
forecasts than other models. The boxplot in panel b shows that the predicted errors of GLM and 
RF models are comparable. All 6 models can't handle the lower voltage prediction, and we may 
need more parameters and samples to study the voltage. The absolute errors' boxplot of the 
naïve model shows the significant variation between predictions of actual values. 

  

Figure 13. Voltage prediction scatter plot and the boxplot of predict absolute errors of different 
models 

We studied the relationship between input parameters and the specific capacity and voltage 
using GLM, RF, and naïve model approaches. The predictions of RF models have a better 
performance than other models for specific capacity. The predictions of voltage from RF and 
GLM models are comparable but are better than naïve models. 

 

Model accuracy 

Figure 14 shows the optimized training and testing accuracies of the RF models. In this work, 
the model depths are from 2 to 20, the minimum sample leaf of the trees is 2 to 4, and the 
number of trees is 5, 10, 20, and 50. The optimized training accuracies are greater than 0.92 
and less than 0.97. The testing accuracies of specific capacity RF models (see Figure 14 a) are 
around 0.75, and the testing accuracies of voltage RF models are around 0.8 (see Figure 14 b). 
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Figure 14. Training and testing accuracies of RF models. 

 

Coding Software selection 

In this work, we evaluated the RF models using the Python Scikit-learn package and the 
software was developed using the MATLAB. For example, Figure 15 shows the actual voltage 
and the mean of predictions under different conditions. The forecast represents 1-time result. 
The lower boundary of the actual values can be covered but can't reach the upper boundary by 
the 1-time results. The Pred_3T_means represents the mean of predictions of 3-time results. 
Both the upper boundary and the low boundary of the actual values are covered. The average 
of forecasts of 40-time results is not significantly different from that of 3-time results. Thus, the 
RF models will run three times to get comprehensive results.  

 

Figure 15. The actual voltage, prediction of running model 1 time, mean of predictions of 
running model 3 times, mean of predictions of running model 40 times of voltage model which 

uses the rate and physical parameters as explanatory variables. 
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In summary, the individual RF models are developed. The RF models will run 3 times and 
provide the mean of multiple times predictions to get the comprehensive results. In further work, 
more data needs to be collected.  

(1) Clustering analysis can be used to study the battery under different conditions. 

(2) More data help to improve the random forest models' accuracy. 

 

2.1.3.   Software development and verification 

Final software 

With the cell design information in section 2.1.1 and machine learning study on key parameters 
in section 2.1.2. The final software developed in MATLAB is achieved. Fig.16 shows the 
interface of the software. The full software can be obtained by contacting the PIs of this project. 

 

Figure 16. The interface of the cylindrical battery design app. Click first image to log in the 
interface for primary micro battery design. 
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Fig.17 shows the interface after logging into the primary micro battery design app. The main 
components include: 
1. Battery requirement panel: Input size, current or power of the battery. 
2. Design information panel: Select mode for cell design: Designed by software and Designed 
by user. Designed by software is integrated with machine learning model. With this mode, the 
materials are fixed, Carbon monofluoride(CFx) will be the cathode material while Lithium metal 
as anode material. No extra parameters are required by user other than following the 
instruction. The machine learning has slow mode and fast mode. Fast mode output the results 
fast (1-15 min per input parameters) but has a slightly lower accuracy as just one machine 
learning model is implanted. Fast mode allows the user to quickly look at the performance of the 
battery as designed. If the design parameters are used to produce micro battery, slow mode (3-
50 min per input parameters) is recommended. Design by user allows user to build user’s own 
battery. User will be required to input most of the parameters with this mode. 
3. Command panel: Execute the order of user. 
4. Image panel: Display the images of the relationship between rate/capacity with electrode 
parameters. Display the weight distribution of as-designed battery. 
5. Estimated performance panel: Output the estimated performance of as-designed battery, 
including capacity, weight, and energy density. 

Fig.18 and 19 are the capacity distribution, cell design, estimated performance and weight 
distribution of a specific input by user in the software. More detail with the software can be found 
in right PDF document attached behind Fig.19.  
 

 

Figure 17. The interface for primary micro battery design. 
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Figure 18. The capacity distribution, cell design detail and estimated performance in primary 
micro battery design app. 

 

Figure 19. Weight distribution in primary micro battery design app. 

 

Software 

manual-microbattery primary.pdf 
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Software verification with battery test 

 
1st battery evaluation without ML incorporated in software 

 

Table 3. The electrode parameters and estimated performance of six types of micro batteries 
with random input by user. 

 
 

 

Table 3 shows the specific parameters given by software and estimated performance. No ML 

method is applied, and the method is so-called naïve mode (linear equation) mentioned above. 

Fig.20 are the six types of micro batteries produced according to the design information listed in 

Table 3. Four micro batteries for each size have been produced and tested with the testing 

condition listed in Table 4. As manual cell production, the actual CFx coating weight can’t match 

the designed information provided in Table 3 well and may contribute to the accuracy of the 

performance prediction. With error analysis in Table 4, it can be seen that both the error of the 

voltage and weight prediction are ±9%. But the error of the capacity prediction in some cases is 

±24%. This greatly affects the prediction of energy density which increases the error to ±38% in 

some cases, e.g., the extreme short type MB3020. The accuracy of the capacity prediction by 

software is still required to be improved next, especially for the short type of micro battery. Less 

than 10% of the error is the target for performance estimation. Next, we will utilize the ML model 

to improve the accuracy. 

 

 

Fig.20 Six types of micro batteries produced with the design information in Table 3. 
 

 

 

CFx coating 

weight 

(mg/cm2)

CFx 

percentage 

(%)

Press density 

(mg/cm3)

Capacity 

(mAh)
Voltage (V)

Energy density 

(Wh/Kg)

Weight(mg

)

MB1452 not provide click 0.58C High 19.4 92 1.65 0.8 2.16 101 16.9

MB2760 5mA High 19.1 92 1.65 4.8 2.15 186.2 55.5

MB3040 2mW low 33.8 91.5 1.75 5.4 2.36 283.6 44.6

MB3020 not provide click 0.4C medium 26.8 94 1.7 1.7 2.2 152.9 25

MB4750

6mA (shows rate 

conflict. Then use 6 mA 

only)

30 mW medium 29.9 92 1.7 15.1 2.15 250 129.1

MB47100 not provide click 0.03C ultra low 46.4 94 1.8 62.6 2.39 548.7 272.6

Random input by user

CFx electrode Estimated performance

Cell size Current Power rate

Software calculated 
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Table 4. The test results and error analysis of six types of micro batteries produced in Fig.20. 

 
* Red means the value can’t meet the designed requirement while green means the value is 

over the designed requirement.  

 

 

 

2nd battery evaluation with ML incorporated in software 

After integration of ML model developed in section 2.1.2, another five micro batteries with 
different sizes are fabricated to evaluate the software accuracy. Table 5 shows the specific 
parameters given by software and estimated performance with ML method applied. Fig.21 
shows the five types of micro batteries produced according to the design information listed in 
Table 5. Two micro batteries for each size have been produced and tested with the testing 
condition listed in Table 5. In Fig.22, it can be seen that both the error of the capacity and 
voltage predictions are around ±10%. The error of the capacity prediction is improved with 
applied ML method. The weight error is around ± 5-10%. The error may increase with manual 
sealing of the battery with Torr seal. The error may be improved with better quality control in 
manual production and Machine learning algorithm with larger data size and distribution. 

Table 5. The electrode parameters and estimated performance of five types of micro batteries 
with random input by user. 
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Fig.21 Five types of micro batteries produced with the design information in Table 5. The 
MB37220 has a little issue with the short case so the cylindrical battery is sealed in Al plastic 

foil. 

 

 

 

Fig.22 The experimental results and relative error of capacity and voltage with five batteries 
provided by software. The unit of y-axis includes both capacity (mAh, top) or voltage (V, bottom) 

and relative error (%, top and bottom). Experimental data is averaged with two cells. 
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2.2 Software development for cylindrical 18650/21700/xxxxx lithium-
ion battery 

2.2.1.   Cell disassembly and data collected with commercial cylindrical LIBs 
 

Due to the tremendous demand for improved energy storage devices for electrical vehicle and 
grid-level applications in the market, scientists and engineers have put much effort in making 
good cylindrical LIBs starting from the materials, electrodes, cell and final assembled battery 
pack. At PNNL, developing materials for various battery technologies is the focus. However, 
besides this, there is also a need to know how to design a cylindrical battery so that the 
laboratory can better serve the internal and external projects requiring a battery with this format. 
Disassembly of commercial cylindrical LIBs is a fast and cost-effective way to learn how to 
design a cylindrical battery. The 18650/21700 numbering system represents the dimensions of 
the cylindrical format. The first two digits i.e., 18 or 21, represent for the diameter of the 
cylindrical battery in mm, while the third and fourth digits i.e., 65 or 70 represent the height in 
mm. The final digits i.e., 0 indicates it is a cylindrically shaped cell. The cell design of 
18650/21700 cylindrical LIBs are more complicated than micro batteries. The electrodes are 
bigger and double side coated. The N/P ratio varies in each cell unit due to the curvature of the 
JR. To balance the N/P ratio from the center of the JR to housing, the coating weight of the 
cathode or anode varies. Also, there are some single-side coated areas at the beginning and 
end of the electrodes, increasing the complexity. The number of the tabs would affect the 
resistance of the batteries, especially for large cylindrical batteries like 46800, determining the 
rate performance and heat generation. Here, we didn’t do resistance design.  

To achieve the required data to develop the cell design app, the commercial 18650/21700 are 
purchased, disassembled and measured to produce the data set, including the coating weight, 
electrode size, pressing density, jellyroll dimension, separator size and tab position. The cell 
performance can be achieved from the vendor. Table 6 shows the commercial 18650/21700 
cylindrical lithium-ion batteries purchased in this project. It contains both energy type and power 
type batteries form different chemistries and vendors. 

 

Table 6 Interested commercial cylindrical LIBs in this project. 
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Prior to purchasing the commercial lithium-ion batteries, a SOP relating to the safe disassembly 
of discharged LIB must be developed. This SOP describes the standard operation of 
disassembly of the discharged commercial 18650/21700 cylindrical LIBs in the PSL facility. The 
term “discharged” means the cylindrical LIB is fully discharged to its lower limit voltage and the 
state of charge (SoC) is 0%. The lower limit voltage is the discharge cut-off voltage provided by 
the vendor, typically 2.5 V. The disassembly of cylindrical cells above 0% SoC is out of the 
scope of this SOP. Other two cell formats i.e., prismatic type and pouch type LIBs, are also out 
of the scope of this SOP. 

As showed in Fig.23, discharge the battery to lower limit voltage in an N2-filled environment 
chamber. Then the discharged battery can be transferred to an Ar-filled glove box for 
disassembly. The typical disassembly procedure includes checking the safety toolbox is ready 
(Fig.24). Remove the plastic cover on the battery. Use the pipe cutter to cut the position of the 
“crimped can” on the battery. Cut the positive tab off with a ceramic scissor. Insulate the positive 
tab on top of the Jellyroll with tape. Carefully cut and peel off the can with a nipper. Collect the 
battery can in one container as it produces sharp edge. Unroll the jellyroll carefully and separate 
the cathode and anode sheets one by one. An IR camera held by the second staff is required 
during the whole disassembly process. The full process can be found in following pdf document. 

 

SOP Disassembly of 

discharged commercial 18650 21700 cylindrical lithium-ion batteries rev0 (004) - Clean version_JX.pdf
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Fig.23 Device to discharge the cylindrical batteries. 

 

Fig.24 Setup for cell disassembly of commercial 18650/21700 LIBs at PSL 522A. 
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With approved SOP of cell disassembly, the detailed parameters related to the commercial 
cylindrical LIBs can be obtained. Table 7 shows part of the datasheet collected from a 
disassembled commercial battery. The detailed data can be found in the excel attached after 
the table. Finally, this data can be used to create the original design sheet for cylindrical lithium-
ion battery (Table 8).  

                                                                                                                                  

Table 7 Data collection of disassembled commercial cylindrical LIBs. 
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Table 8 Design sheet of 18650/21700 cylindrical LIBs. 
 

 

 

 

2.2.2.   Software development 

With the analysis of the data collected from various commercial LIBs, a software relating to 
large cylindrical LIBs can be developed in MATLAB. Fig. 25 shows the interface of the 
18650/21700/xxxxx cylindrical batteries in the battery design app.  
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Fig.25 The interface of the cylindrical battery design app. Click second image to log in the 
interface for secondary micro battery design. 

 

Fig.26 shows the interface of 18650/21700/xxxxx cylindrical battery design. The main 
components include: 

1. Battery requirement panel: Input size and voltage of the target battery. 

2. Design information panel: Input all the preferred parameters for the cathode/anode 
electrodes, electrolyte, separator, battery house and other components. 

3. Command panel: Execute the order of user. 

4. Image panel: Display the images of battery and cathode/anode electrodes. Display the 
images of N/P ratio and A1 range to check the qualification of a cell design input by user. 
Display the weight distribution of as-designed battery. 

5. Estimated performance panel: Output the estimated performance of as-designed battery, 
including capacity, weight, energy, and energy density. 
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Fig.26 Interface of 18650/21700/xxxxx cell design in the software. 

 

 

The software comprises 10 types of Tab designs learned from the commercial batteries, 
including energy-type batteries and power-type batteries. Tab design information is shown with 
a special expression. Fig. 27 shows the definition of the expression of the tab design. 

A typical design process can be found in Fig.28-30, relating to the N/P ratio design, electrode 
size design and weight distribution of the battery with input parameters in the software.  The 
detail design process is available in the following pdf document. 

Software 

manual-18650 21700.pdf
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Fig.27 Description of the tab design in the software. 

 

 

Fig.28 N/P ratio design and distribution of the battery with input parameters in the software. 



PNNL-32743 

Method, Discussion, and Results 28 
 

 

Fig.29 Electrode design and distribution of the battery with input parameters in the software. 

 

 

Fig.30 Weight distribution of the battery with input parameters in the software. 
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2.3 Summary 

A software that delivers optimal design parameters and performance predictions for cylindrical 
cells, which can range in size from micro batteries to electric vehicle (EV) batteries, is 
developed in MATLAB.  

1. Several hundreds of Li/CFx primary micro batteries are produced to collect data for 
machine learning study on key parameters of the battery design. The software for 
primary micro battery with machine learning algorithm has a high accuracy on 
performance prediction, typical, around ± 10% of the errors on capacity, voltage and 
weight estimation.   

2. With approved SOP of cell disassembly, several tens of commercial 18650/21700 
cylindrical LIBs are disassembled and measured to collect the information on coating 
weight, electrode size and jellyroll dimension. With these parameters, a software is 
developed to design the cylindrical LIBs with performance closed to commercial 
batteries.  

Contact PIs for software installation and use. 
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