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Abstract 
Bioaerosol and soil particles are ubiquitous in the environment. They are multicomponent and 
complex in nature displaying mixed inorganic and organic components. The way components 
are mixed in a bioaerosol sample is referred to as its mixing state. Soil particles are also a 
mixture of inorganic (mineral) and organic (soil organic matter) components. Bioaerosol 
particles contribute to a major fraction of coarse mode atmospheric particles, especially in the 
tropical areas, contributing up to 80 % of the particle mass concentration. The mixing state of 
particles is crucial to evaluate because it impacts several important environmental processes 
such as warm and cold cloud formation and radiation budget. Mixing states in aerosols are 
accompanied by chemical reactions across solid-liquid-gas interfaces. In this study, we utilized 
elemental compositions and microcopy images of thousands of atmospheric particles acquired 
by computer-controlled scanning electron microscope equipped with an energy-dispersive x-ray 
spectrometer to compute the mixing state of atmospheric particles. A 2D convolutional neural 
network (CNN), also known as convnet, was used to model the relationship between low 
resolution imaging data and higher resolution spectroscopy data, with the former as training 
input and the latter as target output. Two types of CNNs were implemented and tested; a basic 
CNN and an Inception-v3 network. For binary classification, the basic CNN achieved an 
accuracy of 84.29 % across all atom types, and the Inception-v3‐like network achieved an 
accuracy 85.51 %. This study demonstrates the applicability of deep learning to handle large 
amounts of imaging/chemical spectroscopy data efficiently and evaluate particle mixing state 
from a range of environmental samples. 
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Summary 
A 2D convolutional neural network (CNN), also known as convnet, was used to model the 
relationship between low resolution imaging data and higher resolution spectroscopy data, with 
the former as training input and the latter as target output. Two types of CNNs were 
implemented and tested; a basic CNN and an Inception-v3 network. For binary classification, 
the basic CNN achieved an accuracy of 84.29 % across all atom types, and the Inception-v3‐
like network achieved an accuracy 85.51 %. The above-described platform will enable the 
efficient, streamlined analysis of thousands of particles by reducing analysis time, operator bias 
and error, and being more cost‐effective. Next steps in determining/predicting particle mixing 
states are planned to: (1) enhance deep learning with data input from x‐ray imaging and x-ray 
absorption spectroscopy, (2) experimentally verify predictions, and (3) introduce a multiscale 
aspect to this work. The latter involves the deep learning challenge of modeling the relationship 
between low‐resolution image data and higher‐resolution chemical information from 
spectroscopy. Extending the input images to 3D data for component segmentation within 
particles/aggregates would also be a valuable endeavor. As far as applications of this platform 
goes, we believe our network can be used for different data/ material systems as well as 
different instrumentation with small modifications to help users process large data sets. 
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Acronyms and Abbreviations 
2D: two-dimensional 
Al: Aluminum 
C: Carbon 
CNN: convolutional neural network 
Fe: Iron 
N: Nitrogen 
O: Oxygen 
P: Phosphorus 
Si: Silicon 
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1.0 Introduction 
One of the challenges in data analytics related to the biological and environmental sciences is 
our limited capacity to process large amounts of combined imaging and chemical data collected 
on different samples, often at different length scales. One common example is when 
microscopic imaging is combined with some form of elemental analysis, where optical or x-ray 
absorption-based density needs to be correlated with elemental maps and corresponding 
spectroscopic information (Fig. 1). So far, data processing and analysis has mostly been done 
by heavy, time‐consuming involvement of the operator using classical image processing, and 
spectral analysis techniques. There is a need for more efficient handling of large amounts of 
related imaging/chemical spectroscopy data, and for the capability to predict chemical 
information from images using data analytics. 

 
Figure 1. Example of correlated microscopic images and spectroscopy data for atmospheric 

aerosol particles 

Aerosolized biological particles (bioaerosol) and soil particles are ubiquitous in the environment. 
Bioaerosol particles originate from the biosphere (pollen, bacteria, fungal spores, fragments of 
living organisms, soil, etc.), and they significantly influence the biosphere, the atmosphere, and 
public health [1-4]. They contribute to a major fraction of coarse (2-3 µm size) atmospheric 
particles, especially in the tropical areas, contributing up to 80 % of the particle mass 
concentration [2, 5-6]. By their impact on cloud and ice formation [1, 6-8] biological particles also 
influence the Earth’s energy budget by absorbing and scattering radiation from the Sun [1, 9]. 
Soil, also commonly referred to as earth or dirt, is a mixture of organic matter, minerals, gases, 
liquids, and organisms that together support life. Earth's body of soil serves as a medium for 
plant growth, a means for water storage, supply, and purification, a modifier of the atmosphere 
(connection to bioaerosols) as well as a habitat for organisms [10]. A significant portion of 
atmospheric particles are dust from soil. 

Bioaerosol and soil particles are multicomponent and complex in nature; they display mixed 
inorganic (mineral) and organic components. The way components are mixed in an aerosol 
sample is called its mixing state. Soils are also a mixture of inorganic (mineral) and organic (soil 
organic matter) components. In aerosol particles, the mixing state is crucial to evaluate because 
it impacts several important environmental processes such as warm and cold cloud formation 
and radiation budget. We focused on bioaerosol particles from the Amazon rainforest. The 
objective of this project was to develop a data analysis platform for analysis of these complex 
bioaerosol particles that would allow for the analysis of mixing states, identification of different 
classes of fungal spores and bacteria, as well and image-based predictions on particle 
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chemistry. The specific problems we wanted to solve were: (1) Increase our ability to down 
select useful information/region of interest from lower resolution images of bioaerosol or soil 
particles for subsequent spectroscopic analysis at higher resolution; (2) Identify particle classes 
(e.g. different classes of spores and bacteria) and evaluate mixing state (mixture of organic and 
inorganic particles) and chemical associations within particles. 
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2.0 Experimental and Computational Approach 
Atmospheric aerosol particles were collected from an Amazon rainforest using a “Uniform 
Deposition Impactor” (cascade impactor). This method allowed particles of select sizes being 
deposited on a substrate for microscopy analysis. Scanning electron microscopy images were 
collected on the particles, where imaging was coupled with energy dispersive x‐ray 
spectrometry to get the relevant chemical (elemental) information. The chemical information 
allowed for the analysis of mixing states, and the possible identification of different classes of 
fungal spores and bacteria. About 24,000 images with correlated elemental information were 
used as input for the machine learning step. Particle coordinates and dimensions from the 
microscopy images were correlated with elemental compositions; inorganic content from 
dust/minerals was characterized by the presence of the elements Al, Si, and Fe, while the 
organic component by the presence of C, N, O, and P. Elemental composition of each particle 
constituted the labels for prediction, evaluated both as continuous numerical and binary labels, 
for regression and classification tasks, respectively. To extract the particles of interest from the 
microscopy images, each particle was cropped and subsequently padded to uniform size (Fig. 
2a). Analysis of particle size distribution led to the selection of input size 96 pixels in each 
dimension, as 98% of particles fell below this cutoff (Fig. 2b) and accommodating larger 
particles would needlessly increase computational complexity. 

 
Figure 2: (a) To extract the particles of interest from the microscopy images, each particle was 

cropped and subsequently padded to uniform size. (b) 98% of particles fell below the 
96 pixels cutoff. 
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3.0 Results 
We have built a basic convolutional neural network (CNN, see Fig. 3) consisting of a series of 
alternating convolutional layers and max pooling layers, followed by a dropout layer, and two 
fully connected dense layers, the latter activated by a sigmoid function for binary prediction, or 
activated linearly for regression. Convolution involves a sliding kernel that passes over the input 
image in two dimensions, resulting in a new output “feature image”. Multiple of these kernels are 
calculated simultaneously, each referred to as a “filter”. In max pooling, the maximum value is 
taken for subregions of the input image, yielding a smaller output that contains said maximum 
value, enabling the network to generalize to differences in image orientation. Dropout involves 
randomly deactivating individual nodes of the network (here, 20%), but only during training. This 
discourages overfitting to the training data, and ultimately aids in the networks ability to 
generalize. Additionally, we implemented a modified version of Google’s Inception v3 network, 
wherein the final layer is simply a fully‐connected linearly‐ or sigmoid- activated dense layer, for 
regression and binary classification tasks, respectively, as opposed to a softmax output for 
many-class classification. 

 

 
Figure 3: Schematic of the basic convolutional neural network (convnet). 

Training involved withholding 33% of the data for validation, and training was performed for up 
to 1000 epochs (an epoch designates when the entire dataset is passed through the neural 
network once). The loss functions were mean squared error and binary crossentropy for 
regression and binary classification tasks, respectively. We selected adaptive moment 
estimation (Adam) as our optimizer, and used the AMSGrad variant, which involves an 
exponential moving average of the loss to perform weight updates. An early-stop criterion of 100 
epochs was put in place to minimize overfitting effects – in essence, the network ceases training 
if validation loss does not improve for 100 epochs (Fig. 4). We additionally checkpointed the 
network to save the best‐performing state in terms of validation loss. Finally, for regression, this 
resulted in mean absolute percent error of 22.26% for the basic CNN, and 20.17% for the 
Inception_v3‐like network for organic atoms (C, N, O, and P), and a surprisingly high mean 
absolute percent error of 76.03% and 74.87% for the basic CNN and Inception_v3-like 
networks, respectively, for inorganic atoms (Al, Si, Fe). The significantly higher error for 
inorganic atoms is the focus of further investigation. For binary classification, the basic CNN 
achieved an accuracy of 84.29% across all atom types, and the Inception_v3‐like network 
achieved an accuracy 85.51%. In all, the additional complexity introduced by Inception_v3 did 
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not net significant improvement, indicating that either more data is required, or that performance 
was saturated with this image modality (that is, additional layers did not significantly impact 
results, such that the basic CNN may suffice). 

 
Figure 4: Training and validation loss vs the number of epochs. Final accuracy for binary 

classification for the basic CNN was of 84.29% across all atom types. The 
Inception_v3‐like network achieved an accuracy of 85.51%. 

 

The above platform will enable the efficient, streamlined analysis of thousands of particles by 
reducing analysis time, operator bias and error, and being more cost‐effective. Our next steps in 
determining/predicting particle mixing states are: (1) to enhance deep learning with data input 
from x‐ray imaging and x-ray absorption spectroscopy, (2) to experimentally verify our 
predictions, and (3) to introduce a multiscale aspect to this work. The latter involves the deep 
learning challenge of modeling the relationship between low‐resolution image data and higher‐
resolution chemical information from spectroscopy. We also wish to extend the images to 3D 
data for component segmentation on soil aggregates/particles. As far as applications of this 
platform goes, we believe our network can be used for different data/ material systems as well 
as different instrumentation with small modifications to help users process large data sets. We 
have not responded to any funding solicitations, but we keep looking. 
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Appendix A – Products from the project 
Publications: 

(1) “Machine Learning Approaches for Analysis of Multiscale Imaging Data for Atmospheric and 
Soil Particles”, S China, S Colby, AK Battu, T Varga, Microscopy and Microanalysis, 25 (S2), 
194-195 (2019); 

Presentations: 

(1) Varga T., S. China, S.M. Colby, and A. Battu, "Machine Learning Approaches for Analysis of 
Multiscale Imaging Data for Atmospheric and Soil Particles", PNNL TechFest, June 6, 2019; 

(2) S. China, S. Colby, A.K. Battu, T. Varga, “Machine Learning Approaches for Analysis of 
Multiscale Imaging Data for Atmospheric and Soil Particles”, Microscopy and Microanalysis, 
August 4-8, Portland, OR; 

(3) “Analysis of Internally Mixed Primary Biological Aerosol and Soil Particles using Machine 
Learning Approaches”, T. Varga, S. Colby, A.K. Battu, S. China, to be presented as poster and 
flash talk at EMSL Integration 2019, October 8-10, PNNL. 

Capability developed: 

Code “Deep convolutional neural network for particle characterization” uploaded to GitHub 
under https://github.com/pnnl/particle-net 
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