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Abstract. 
Current global change scenarios expect to significantly increase the contribution of pollen to the 
total organic aerosol budget. In addition, pollen can burst into smaller fragments that are highly 
efficient as cloud condensation nuclei. However, current climate models still do not incorporate 
the effects of these particles due to detection and quantification challenges in complex aerosol 
mixtures. Chemical biomarkers (i.e. fructose) have commonly been used to trace pollen but this 
approximation can generate false positive results given the large number of shared compounds 
between different bioaerosols. A previous pilot EMSL experiment performed on pure pollen 
samples suggested that using a set of metabolites as a fingerprint of bioaerosols could serve to 
substantially increase detection accuracy over single biomarker approaches. In this proposal we 
developed novel bioinformatic strategies to characterize and quantify complex pollen mixtures 
present in the atmosphere. For that, we used diverse machine learning algorithms to analyze 
metabolic fingerprints from complex mixtures of different pollen acquired with high-resolution 
mass spectrometry (Orbitrap Q-Exactive). Our preliminary results demonstrated the potential to 
accurately discern and identify at specific relative abundances different pollen species in 
complex mixtures. Our research will lead to a significant advancement in the atmospheric 
chemistry and provide much needed data to improve the accuracy of climate models. 

 
 

Background. 
 

Primary biological aerosol particles (PBAPs) are solid airborne particles of biological origin and 
are mainly represented by pollen, fungal spores, protozoa, bacteria, algae, and biological debris 
emitted to the atmosphere (Després et al., 2012). PBAPs have commonly received substantial 
attention within the human health community as they have been associated with important asthma 
and allergic rhinitis outbreaks (Fröhlich-Nowoisky et al., 2016; Mauderly & Chow, 2008) but also 
critically affect climate and the ecosystem function (Fröhlich-Nowoisky et al., 2016). Climate 
change has proven to impact plant phenology by lengthening the green cover period of 
ecosystems and altering flower abundance and pollination time of plants (Llorens & Peñuelas, 
2005; van Vliet et al., 2002). Anemophilous pollen accounts for a significant amount of biological 
material in the atmosphere, especially during pollination seasons. Pollen can rupture under high 
humidity conditions resulting in the release of sub-micron fragments (Steiner et al., 2015; Taylor 

et al., 2002) that can be released to the 
atmosphere (Rathnayake et al., 2017) and, 
although still to be proven, reach the upper 
troposphere. In controlled experiments, pollen 
fragments have proven to act as cloud 
condensation nuclei (Steiner et al., 2015) and are 
also effective in nucleating ice (Dreischmeier et 
al., 2017). In fact, previous EMSL ice-nucleation 
experiments corroborated the potential of pollen 
fragments to significantly impact climate (Fig. 1). 
Therefore, pollen fragments have the potential to 
significantly impact precipitation and the 
hydrological cycle (Després et al., 2012; Morris et 
al., 2014). Although the concentration of pollen 
fragments in the atmosphere remains  unknown, 
it   has   been   suggested   that   they   could be 

Fig 1. Ice nucleation efficiency for three 
different pollen fragments (birch, oak and 
pine). 

responsible for a reduction of precipitation events 
in clean continental environmental conditions 
and create a negative feedback to the sub-pollen 
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particle production, thus affecting the total organic aerosol mass loading in the atmosphere 
(Wozniak et al., 2008). 

Pollen fragments are still not possible to detect and quantify in a direct way. Applying 
metabarcoding techniques on complex ambient samples can provide good data on detection and 
quantification of certain bioaerosols but DNA of particles in the atmosphere can often be damaged 
which difficult amplification, sequencing and identification. In addition, metabarcoding cannot 
cope with sub-micron particles (i.e., pollen fragments) as they do not contain DNA or has been 
substantially damaged. Similar to sequencing techniques, microscopy cannot identify sub-micron 
size fragments as most organic aerosols can be very similar in morphology and size. A vast 
majority of the atmospheric community currently use mass spectrometry (MS) instruments as one 
of the main techniques for detection of biological particles in the atmosphere, such as pollen, 
given its sensitivity (Huffman et al., 2020). Single molecular biomarkers, such as glucose and 
sucrose, are in large proportion in pollen (Fu et al., 2012; Speranza et al., 1997) and have been 
used as pollen tracers (Rathnayake et al., 2017). However, the complexity and diversity of 
compounds in ambient samples complicates the interpretation of the results when relying on 
single compounds alone for bioaerosol detection and classification because those compounds 
are also present in other organic aerosols. For this reason, it has not been possible to differentiate 
fragmented bioaerosols within an ambient sample using biomarkers alone yet. We thus 
hypothesize that using a large set of metabolic features (i.e., metabolic fingerprints) should 
significantly improve bioaerosol identification over single biomarkers because it relies on complex 
signatures and no single features. Previous pilot EMSL MS-based metabolomics experiments on 
pollen suggested that metabolic fingerprints may serve in an accurate way to detect and 
distinguish the most abundant pollen species in the atmosphere (Rivas-Ubach et al., 2021). 
However, using metabolomic data of unique bioaerosols to train machine learning algorithms 
limits the identification to the most abundant particles because those bioinformatic classification 
methods are based on similarity, and therefore, they can’t reveal the relative abundance of 
particles in complex mixtures. For this reason, combining mass spectrometry data of complex 
bioaerosol mixtures with machine learning algorithms can shed light into the diversity and relative 
contribution of different PBAPs (pollen fragments in this case) in the atmosphere. We hypothesize 
that analyzing complete metabolic signatures of pollen fragments instead of using single 
compounds will significantly help to characterize and quantify bioaerosol diversity in the 
atmosphere. In this project, experiments were conducted using pollen samples collected in 2017 
from three major forestry species of trees (oak, pine, and birch) in Michigan. 

Metabolites of pure and several different pollen mixture combinations were extracted using 
standard and well described protocols (t’Kindt et al., 2008). This first step generated already 
pollen fragments. For deep metabolite characterization, samples were analyzed in high-resolution 
LC-MS Orbirap Q-Exactive operating at a resolving power of 140,000 FHWM. The data from pure 
pollen and known mixtures of pollen of Oak, Pine and Birch will be using as training and testing 
data in different machine learning models (Fig 2). We explored two different machine learning 
(ML) approaches on pollen mixture fingerprints. In the first approach, the metabolite signatures of 
known pollen species will be used in a supervised learning framework to train various models, 
including but not limited to Random Forests, sparsity-based discriminant analysis, and support 
vector machines, to classify ambient mixtures of complex pollen particles into known pollen 
species. Such supervised learning approaches classify a mixture into constituent species by 
assigning a probabilistic classification score to each species that represents the degree of 
similarity between the metabolic fingerprints of the mixture and the individual species. As a result, 
the most abundant species in a mixture is assigned the highest score, followed by the next most 
abundant species and so on. The second approach belongs to a class of algorithms generally 
known as “source separation” or “spectral unmixing”. Unlike supervised ML methods, where the 
model during the training phase, learns a rule to best separate unknown test samples into known 
classes, in unmixing algorithms, the bulk signal (metabolic fingerprints of the ambient sample) is 
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explicitly modeled as a linear or nonlinear mixing process of the underlying source signals 
(metabolic signatures of individual pollen species). The model coefficients are interpreted as the 
relative contributions of the source signals to the mixed signal. Since the supervised learning and 
unmixing model the contributions of individual pollen species to the bulk ambient samples, the 
information about the relative abundances of pollen species in the bulk sample obtained from 
these approaches can be expected to provide different insights. 

 
 

 
 

Fig.3 Illustration of the use of machine learning methods (Nonnegative Matrix Factorization (NMF)) 
on Mass Spectrometry-based metabolomic fingerprints of pure pollen and pollen mixtures samples 
analyzed in positive ionization mode. The averaged spectrum of each pure pollen species (S0) 
spectra (6 replicates each species) was used as the reference fingerprint identifying each of the 
species (training data). The metabolomic fingerprints of complex samples (Xtrain) and their pollen 
species relative contribution (birch, oak, and pine) (C0) (training data; 90 samples) were used for the 
NMF training to generate a prediction model (Xtrain = Ŝ x Ĉ) for testing unknown mixtures of pollen 
(testing data). 
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Preliminary results. 
 
 
 

 
Fig.3 Correlation between fractional predicted spectra (Predicted spectra 1, 2, and 3) of mixture 
samples (Xtrain) and the averaged spectra of each of the pollen species (Birch, Oak, and Pine) (S0). 
Clearly, the training model is able to accurately predict a spectra of a pure pollen species within a 
complex pollen mixture (correlations of p = 0.979 for Birch pollen; p = 0.996 for Oak pollen; p = 
0.986 for Pine pollen). 

 
 
 
 
 

Fig. 4. Nonnegative matrix 
Factorization (NMF) model for all 
mixture samples (x axis). Black 
lines correspond to the real 
contribution (C0) of each pollen 
species in each of the mixtures. 
The red line represents the 
predicted contribution (species 
probability) of each pollen 
species on the mixture. 
The prediction model adjusted 
very well to the real contribution 
of the pollen species for each of 
the sample mixtures. 
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Testing samples 

Fig. 5. Testing the generated 
NMF model into a set of samples 
(total of 12) which information 
was not used to train the model. 
We observed a good prediction of 
the relative contribution of each 
pollen  species  to  the  real 
mixtures. The most  adjusted 
species was birch, followed by 
oak and pine which metabolome 
profiles were slightly confused 
(especially for samples 7 & 8). 
This result is in accordance with 
our past results (Rivas-Ubach et 
al., 2021)  showing a higher 
resemblance between oak and 
pine  metabolome  polarn and 
semi-polar extractions. 

 
 
 
 
 
 
 

Research in progress. 
 

· Determine the relative contribution of more than 3 different pollen species when two of them 
are from the same genus. 

 
 

Fig. 5. Preliminary NMF model on 
complex pollen mixtures including up 
to 4 different species of trees. Two of 
the species correspond to the same 
genus (Pinus: “Pine UMICH” and 
“Pine PNNL”). 
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· Predict the contribution of mixtures of 3 different pollen species based on training of mixtures 
including 4 different pollen species. 

 
TRUE FRACTIONAL CONTRIBUTION OF 4 SPECIES PREDICTED FRACTIONAL CONTRIBUTION OF 3 SPECIES 

 
 

Fig. 6. Left panel - Preliminary NMF model trained on complex pollen mixtures including up to 
4 different species of trees. Two of the species correspond to the same genus (Pinus: “Pine 
UMICH” and “Pine PNNL”). Right panel – Preliminary results of the prediction of mixture 
samples containing 3 pollen species. The model can’t discern properly between the two pine 
species suggesting that machine learning models to decipher the relative contribution of 
different PBAPs in the atmosphere could be limited at genus level. Future research using 
different models is necessary to definitely confirm whether machine learning models are 
capable to distinguish very similar PBAPs in the atmosphere. 

 
 
 
 
 

Future Exploration: 
 

• How do predictions change when an incorrect number of components (pollen species) 
are used? 

 
• Perform dimensionality reduction/feature selection to identify most relevant markers for 

pure pollen species (i.e., sPLS-DA) 
 

• Compare current results in positive ionization mode with negative ionization mode 
metabolomic fingerprints of pure pollen and mixtures of pollen. 
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