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1.0 Introduction 
Building energy modeling is key to the smart grid infrastructure. With rise of innovation in smart 
grid technologies, quick and accurate prediction of building energy consumption has become 
even more critical today. Several smart grid programs, such as demand response and curtailment 
rely on the smooth integration of buildings into the grid infrastructure. However, to ensure 
unification, these grids often rely on the accurate predictions of buildings' energy consumption in 
short-term, medium-term, and long-term horizons. The accurate estimation of building energy 
consumption is even more critical for the building owners, who can use these estimates to plan 
and utilize their electric appliances, efficiently. 

The accurate modeling of building energy consumption relies on various static and dynamic 
parameters, which includes outside weather conditions, stochastic schedule of the occupants, 
and appliance usage patterns. While one can easily monitor the building level energy 
consumption and the weather conditions surrounding the building, it is often hard to sense 
granular-level building-specific information such as, occupants' schedule and appliance usage 
patterns. Limited access to such critical information often restricts the deployment of white-box or 
grey-box models for the building energy modeling. However, prior work has shown promising 
results with various black-box models (such as Random Forest, Variational Autoencoders, among 
many others) applied on easy-to-collect data. Though these models can estimate energy 
consumption with good accuracy, they typically require data for one complete year for training. 

In real-world, one cannot wait for one whole year to get the data and then train the model to 
estimate the building energy consumption. For practical applications, the user would often prefer 
a plug-n-play solution that can provide accurate predictions starting from day one. Moreover, 
accuracy is subjective and depends on the requirements of an application. Therefore, if a model 
trained over data corresponding to a few days, can achieve accuracy numbers comparable to a 
model trained on a year-long data set, users would typically prefer a quicker solution than the 
delayed one. In this project, we propose one such plug-n-play building energy modeling 
framework, which is powered by the concepts of transfer learning and it can estimate the building 
energy consumption accurately even with the “sparse” field data. Our results indicate that the 
model can estimate building energy consumption with an accuracy of 68\% with just four days of 
field data (where the baseline accuracy is 57%) and with 83% with three weeks of data (the 
baseline accuracy is 71%). 

In our present framework, knowledge transfers from the simulation data to the field data, in the 
form of instance-transfer and model-transfer. While simulation data provides a sense of “generic” 
behavior of the building, the field data captures the stochastic dynamics of the building. We 
evaluated the efficacy of our approach on the field data collected from six commercial buildings 
for a year and our results indicate that transfer-learning based models are much more effective 
than the baseline models (random forest and feed-forward network), especially when the data is 
sparse. Our major contributions are: 
1. Exploring various transfer learning-based strategies for building energy modeling. 
2. Detailed comparison of proposed transfer-learnt models with the state-of-the-art machine 

learning techniques based on data from six commercial buildings. 
3. Plug-n-play transfer-learning based framework for building energy modeling. 
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2.0 Data Exploration 
In this section we will discuss about the data and some initial exploration.  

2.1 Data Collection 

2.1.1 Simulation Data 

The FEDS building energy simulation software tool1 was chosen based on its ability to generate 
hourly thermal, electricity, and electric demand profiles of buildings. FEDS uses the input building 
data and TMY3 weather data to simulate an 8,760-hour model of building system energy use. 
Specifically, FEDS can take in detailed user input data on building parameters or estimate 
unspecified or unknown building details from a minimum set of user inputs for analysis that 
extends from a single building to a large campus. These characteristics include building function, 
size, age, location, occupancy, geometry, envelope, lighting, HVAC systems and distribution, plug 
load, and process loads, and marginal utility rates for the energy resources consumed.  

FEDS models energy and cost performance of heating, cooling, ventilation, lighting, motors, plug 
loads, building shell, and service hot water systems from the building parameters and calculates 
the 8,760 hour energy consumption and electrical demand for each technology, end use, building, 
and entire campus or installation over a year of location specific TMY3 weather data. The 
Richland, WA campus of the Pacific Northwest National Laboratory consists of 43 buildings, 10 
of which were chosen for the analysis. Hourly load profiles were generated from FEDS models of 
the selected buildings. 

2.1.2 Field Data 

We collected energy consumption and outside weather conditions data from six commercial 
buildings for one year. All the six buildings are low-rise buildings with an average occupancy 
around 200-300 people during the work hours. The work hours in these buildings typically starts 
at 9 AM and ends at 6 PM. The carpet area of the buildings varies from 2000 sq. ft to 4000 sq. ft. 
We collected data at 15 minutes interval. 

2.2 Data Preprocessing 

 
Figure 1 Data Preprocessing: [Left] Temperature Data (Field). [Middle] ISD Temperature Data. 
[Right] Distribution of error - a mean absolute error of 2°C, across all the buildings. 

For a cross-building comparison, we normalized the energy consumption of the building by its 
total area, also known as Energy Use Intensity (EUI) and expressed as energy per square foot. 

 
1 https://feds.pnnl.gov/ 
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Besides, we did have some parts of the data set where the outside temperature data was missing. 
To fill-in those parts, we used weather data from Integrated Surface Database (ISD) from National 
Centers for Environmental Information (NCEI) of National Oceanic and Atmosphere 
Administration (NOAA)1. As shown in Figure 1, we noticed a mean absolute error of 2°C in the 
field data and the ISD data, across all the buildings. 

2.3 Feature Engineering 

 
Figure 2 Joint Distribution of Outside Temperature and Energy Consumption (Field Data): The 
two modalities differentiate non-working hours (left contour) from the working hours (right 
contour). 

Building energy consumption at any time mainly relies on occupants' schedule and the outside 
weather conditions. Figure 2 shows the correlation between the EUI (which is on the x-axis) and 
the outside temperature (y-axis) for the field data. The two modalities in the EUI distribution (top 
x-axis) differentiates the non-working hours (left contour) from the working hours (right contour). 
One interesting point to note here is the correlation between the energy consumption and the 
outside temperature in the working hour modality (right contour). The upper half of that contour 
represents the hot time period of the year and the bottom half of the contour depicts the cold 
season. The energy consumption is maximum during the peak for both the seasons. 

Based on this data exploration, we derived 28 features from the raw data, which are current and 
previous outside temperature, hour of the day, weekday/weekend, and working/non-working hour. 
We used one-hot encoding to represent hour of the day - one binary feature vector for each hour. 
We used a binary vector to denote if it is a weekday or a weekend. We consider Monday-Friday 
as the weekdays and Saturday-Sunday as the weekend. Likewise, we used a binary vector to 
identify the working hour and the non-working hour. On any working day, 9 AM-6 PM are the 
working hours and the others are the non-working hours. 

 
1 https://www.ncdc.noaa.gov/isd 
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3.0 Transfer Learning 
Typically, any machine learning problem statement consists of a domain 𝐷𝐷 and a task 𝑇𝑇. The 
domain 𝐷𝐷 is the set of feature space χ and the joint probability distribution 𝑃𝑃(𝑋𝑋), where 𝑋𝑋 =
{𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} ∈ 𝜒𝜒. In the case of building energy modeling, at any timestamp t, 𝑥𝑥𝑖𝑖 would depict 
the feature vector comprising of features like outdoor temperature, week of the day, among many 
others. For a given domain 𝐷𝐷 = {𝜒𝜒,𝑃𝑃(𝑋𝑋)}, the task 𝑇𝑇 consists of a label space γ and an objective 
predictive function 𝑓𝑓𝜃𝜃, where, θ denotes the trained parameters of the model. In this report, the 
label space is the energy predictions normalized by the area of the building. To predict the 
corresponding label, we learn the predictive function on the training examples, that comprises of 
pairs {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}, where 𝑥𝑥𝑖𝑖 ∈ 𝜒𝜒 and 𝑦𝑦𝑖𝑖 ∈ 𝛾𝛾. 

As we discussed earlier, the problem with training a predictive function 𝑓𝑓𝜃𝜃(. ) on the field data is 
that we need a “good” amount of data to train a model that can predict the output labels with an 
“admissible” accuracy. However, one might have to wait for months, if not years, to gather a 
“good” number of training samples {𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖}. If we train a complex model on the sparse field data 
(cold start), we might end up with the problem of data overfitting - good accuracy on the training 
set but poor accuracy on the test set, which means that the model cannot generalize well. The 
long wait for the data can limit the real-world implementation of the data-driven models, and 
training on sparse data will make them inaccurate. Therefore, instead of cold start, we need a 
way to train the model and predict energy consumption when we don't have enough data to start. 
One way to tackle this problem of the cold start is to train the model on the simulation data. 

In transfer learning, we typically have a source and a target. We define source as the problem 
statement from which we transfer the knowledge, and target as the problem statement to which 
we transfer the knowledge. In our case, we define the problem of training a machine learning 
model on the simulation data as the source problem and training the model on the field data as 
the target problem. In the rest of this report, we will denote source domain and task as 𝐷𝐷𝑠𝑠 =
{𝜒𝜒𝑠𝑠,𝑃𝑃(𝑋𝑋𝑠𝑠)} and 𝑇𝑇𝑠𝑠 = {𝛾𝛾𝑠𝑠,𝑓𝑓𝜃𝜃𝑠𝑠(. )}, respectively, and target domain and task as 𝐷𝐷𝑡𝑡 = {𝜒𝜒𝑡𝑡 ,𝑃𝑃(𝑋𝑋𝑡𝑡)} and 
𝑇𝑇𝑡𝑡 = {𝛾𝛾𝑡𝑡 ,𝑓𝑓𝜃𝜃𝑡𝑡(. )}, respectively. As discussed earlier, the problem with the cold start is that 𝛾𝛾𝑠𝑠 ≠ 𝛾𝛾𝑡𝑡, 
and thus 𝑇𝑇𝑠𝑠 ≠ 𝑇𝑇𝑡𝑡. In other words, the distribution of output labels 𝑦𝑦 is different for the simulation 
data and the field data. When no field data is involved in the training stage, the predictive function 
𝑓𝑓𝜃𝜃𝑠𝑠(. ), trained only on the simulation data, predicts inaccurately because it is unaware of the finer 
variations in energy consumption in the field data. To resolve this issue, we incorporated the field 
data in the training stage through instance-based and model-based transfer learning, which we 
will discuss in detail next. 

3.1 Instance-Transfer 

In instance-based transfer, we assume that the source-domain and the target-domain data use 
same set of features and labels, but the data distribution in two domains are different. Since both 
the distributions are different and not all the samples from the source domain are useful, we first 
optimally sub-sample the training set of the source domain (𝑋𝑋𝑠𝑠) and then append it to the training 
instances of the target domains (𝑋𝑋𝑡𝑡) to reconstruct the training set.  

𝑜𝑜𝑜𝑜𝑜𝑜(𝑋𝑋𝑠𝑠) → 𝑋𝑋𝑠𝑠′ ,𝑓𝑓𝜃𝜃𝑡𝑡°
{𝑋𝑋𝑠𝑠′,𝑋𝑋𝑡𝑡}
�⎯⎯⎯� 𝑓𝑓𝜃𝜃𝑡𝑡 
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Equation above depicts the formal representation of the same, where 𝑋𝑋𝑠𝑠′ is the optimally sub-
sampled training set from the source domain, 𝜃𝜃𝑡𝑡° is the set of untrained parameters, and 𝜃𝜃𝑡𝑡 is the 
set of trained parameters for the target problem statement. 

We used TrAdaBoost to implement the instance-based transfer. TrAdaBoost, automatically and 
iteratively re-weights the source domain data to reduce the impact of the “bad” source samples 
and rather focus on the “good” samples. 

3.2  Model Transfer 

Earlier, in the cold start, we directly used the model trained on the simulation data to predict 
energy consumption for the field data. In model-based transfer, we now retrain the last two layers 
of the pretrained model using the field data. Equation below presents a formal representation of 
the model-based transfer.  

𝑓𝑓𝜃𝜃𝑠𝑠
𝑋𝑋𝑡𝑡→ 𝑓𝑓𝜃𝜃𝑡𝑡 

Here, 𝑓𝑓𝜃𝜃𝑠𝑠 is the model trained on the simulation data and 𝑓𝑓𝜃𝜃𝑡𝑡 is the model with last two layers 
retrained and initial layers fine-tuned with the field data. 
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4.0 Evaluation 
We carried out a detailed evaluation to compare transfer-learning methods with the baseline 
techniques by collecting a year-long data from six commercial buildings.  

4.1 Baseline Models 

For the baseline comparison, we implemented two of the most common used machine learning 
and deep learning models for building energy modeling - Random Forest and Feed-Forward 
Network. 

4.1.1 Random Forest 

Random forest in an ensemble learning method that fits several decision trees on various sub-
samples of the dataset and averages over them to avoid overfitting and improve the prediction 
accuracy. We implemented Random Forest in scikit-learn in Python and used Randomized 
Search for the hyperparameter tuning. 

4.1.2 Feed Forward Network 

Feed Forward Network, also known as multi-layer perceptron, is typically used for supervised 
machine learning tasks where the target labels are usually known. Formally, the model 
architecture can be defined as – 

𝑢𝑢𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢(𝑊𝑊𝑛𝑛∗ℎ𝑥𝑥𝑖𝑖) 

𝑓𝑓1𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢(𝑊𝑊ℎ∗ℎ𝑢𝑢𝑖𝑖) 

𝑑𝑑𝑖𝑖 = 𝑑𝑑𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜𝑢𝑢𝑜𝑜(𝑓𝑓1𝑖𝑖) 

𝑓𝑓2𝑖𝑖 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑢𝑢(𝑊𝑊ℎ∗ℎ𝑑𝑑𝑖𝑖) 

𝑣𝑣𝑖𝑖 = 𝑊𝑊ℎ∗1𝑓𝑓2𝑖𝑖 

where for the 𝑖𝑖𝑡𝑡ℎ input 𝑥𝑥𝑖𝑖, relu is the non-linearity function, 𝑓𝑓1𝑖𝑖 and 𝑓𝑓2𝑖𝑖 are the two hidden layers, 
𝑊𝑊𝑛𝑛∗ℎ is the weight matrix respective to input layer, 𝑊𝑊ℎ∗ℎ is the weight matrix respective to two 
hidden layers, 𝑊𝑊ℎ∗1 is the weight matrix respective to output layer, 𝑛𝑛 and ℎ depict the total number 
of input variables and hidden nodes, respectively. We have implemented the feed forward network 
using pytorch and trained it using adam optimizer with varying learning rates. The total number of 
nodes (ℎ) in both the hidden layers was 256 and we mean squared error (MSE) as the loss 
function. 

4.2 Evaluation 

Given the experiment setup discussed above, we will next evaluate the performance of transfer 
learning strategies, along with the baseline strategies. 
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4.2.1 Training on Whole Year 

 
Figure 3 [Left] When trained on one year of data, both the random forest and the feed-forward 
network had a comparable accuracy in estimating the building energy consumption. [Right] We 
implemented both transfer learning strategies for the feed-forward network. Our analysis indicates 
that transfer learning is much more effective than the baseline strategy for the smaller datasets. 

We did an 80:20 split for this analysis to generate a baseline accuracy across all the six buildings. 
We trained two models - Random Forest (RF), Feed Forward Network (FF) - on the 80% random 
samples of data (approx. 10 months) and evaluated the performance on remaining 20% data 
(approx. 2 months) for both simulated and field dataset for the six buildings. Our results (as shown 
in Figure 3) indicate that the prediction accuracy of both feed-forward neural networks and random 
forest is comparable across all the buildings. 

4.2.2 Training on Sparse Field Data 

The value of transfer learning lies in getting good accuracy with the sparse data. We noticed 
earlier that the validation accuracy for random forest and feed-forward network drops as we 
reduce the size of the training data. The drop-in accuracy was the indication of data overfitting. 
However, we noticed a significant improvement in the prediction accuracy with the transfer 
learning. As shown in Figure 3, both, instance-based and model-based transfer learning models 
are much more accurate and consistent, when compared to the baseline strategies. Our analysis, 
across all the buildings, indicates that transfer learning-based models trained on approx. one 
week and three weeks of data can predict with better or comparable accuracy than the baseline 
models. 

4.2.3 Training of Seasonal Data 

In the real-world, the data typically comes in the sequential order. We might not have a few 
samples of the field data from one whole year, but rather some data from a particular month or 
the season. As one might notice in Figure 4, the accuracy of the baseline models drop even further 
when the models are trained on the data samples from a particular season and tested on the 
remaining seasons. This happens because the model hasn't seen much seasonal variation during 
the training. However, lack of seasonal variation in the field data makes an insignificant impact on 
the transfer learning-based methods and the reason being the knowledge gained from the 
simulation data. 
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Figure 4 Knowledge transfer is much more effective when the model is trained on the seasonal 
data. The transfer learning-based methods outperformed the baseline methods with big margins 
here. 
 
In instance-based transfer, the model is aware of the seasonal variations through random 
samples of simulated data. Likewise, in the model-based transfer, the knowledge about seasonal 
variation is embedded in the weight vectors of the pretrained model. This way, even with the lack 
of field data for other seasons, the transfer learning-based models are doing much better than the 
baseline models. We did notice some negative transfer in a few cases, especially for the winter 
season. The impact wasn't evident on the estimation of energy consumption for the fall and the 
spring, because these seasons are not extreme and there exist some hot and cold days variation. 
We plan to address these concerns in the future by minimizing the impact of negative transfer. 
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5.0 Discussion 
In our analysis, we noticed that transfer-learning based models can perform better than the 
traditional machine learning and deep learning models, especially when the field data is sparse. 
This is useful to deal with the problem of cold start, initially, when a building has limited data to 
start with. With transfer learning, models don't wait for a long time to collect data for the training 
and they can rather make use of the simulation data. Initially, when a data-driven model doesn't 
have much data to infer about the seasonal variations and its impact on the energy consumption, 
the baseline models performed badly. In those cases, our study indicates that knowledge transfer 
from a model trained from the simulation data to the model that we want to train using the field 
data can be effective. Since we can generate any number of variations with the help of a 
simulation model, transfer learning seems to be one of the most promising ways of building energy 
modeling in the future. 

Having said that, we believe this work is only the beginning and needs further exploration. 
Transfer learning is an active area of research in both machine learning and deep learning. In this 
project, we implemented and analyzed two most used approaches of transfer learning to solve 
the problem of cold start. However, this work can easily be extended to solve other data-related 
concerns for building energy modeling. For instance, we can use transfer learning to tackle the 
limitation of missing measurements. We can transfer knowledge from the simulation framework 
to the field data about certain sensors which are not installed in the field, but corresponding 
measurement is available in the simulation.  

An alternate path to build on this work is to explore other variations of transfer learning to boost 
the performance of the proposed techniques. We did notice a few cases of negative transfer 
learning (especially when trained on the winter data), that can be avoided by further strengthening 
the models. In addition to this, one can also study other types of information transfer - such as 
transfer of feature representation and relational knowledge. In the former one, we aim at finding 
the “good” feature representation to minimize domain divergence. Likewise, in transfer of 
relational knowledge, we do not assume that the data drawn from each domain is independent 
and therefore try to transfer the relationship among data from a source domain to a target domain. 
A detailed evaluation of the possible variants and methods of transfer learning-based modeling 
can further help us in understanding, what is the most effective way of knowledge transfer for 
building energy modeling. 
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6.0 Conclusion 
In this project, we implemented and analyzed two transfer-learning based strategies for building 
energy modeling to tackle the problem of cold-start. For evaluation, we compared the 
performance of proposed approaches with two state-of-the-art baseline approaches - Random 
Forest and Feed-Forward Network. Our analysis on the field data collected from six different 
building for one year indicates that transfer learning models trained on the sparse data can 
estimate building energy consumption with a comparable or better accuracy than the baseline 
models. Furthermore, when the data doesn't contain seasonal variations, the transfer learning 
models are much more effective than the baseline strategies. In the future, we plan to extend this 
work by further improving the transfer-learning based methods and applying building-to-building 
transfers. 
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