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1.0 Introduction 
 
Friction consolidation (FC) is a solid phase processing approach where discrete material forms 
such as powders, chips, nuggets, etc. are densified via shear deformation. The precursors are 
placed in a billet container and brought in contact with a rotating tool that applying the desirable 
amount of normal force. Under the combined action of the rotation and normal pressure, the 
discrete precursor is consolidated through porosity reduction and shear deformation [1]. FC is 
increasingly being studied as an attractive approach to manufacturing fully dense parts from 
powder forms owing to its ability to mix, alloy and consolidate difficult-to-process precursors in 
minimal number of process steps. Material consolidation and deformation in shear consolidation 
processes have been studied extensively previously for different material combinations previously 
[2,3]. However, despite the extensive research in this area, understanding of the mechanistic 
processes in pore consolidation, deformation-induced mixing and material solubility during FC is 
still evolving [4].  
 
Material development using solid phase processing approaches such as FC is often performed 
based on research experience/education, which can be biased. Conventional analysis and 
simulation tools in this area tend to be successful only when material thermodynamic pathways 
and microstructural evolution sequences resulting from processing are clearly defined or known. 
They are not as effective for emerging advanced manufacturing technologies where material 
evolution pathways are not well established. The ability to predict optimal process parameters 
based on material chemistry and bulk properties is essential to accelerate materials design and 
processing, as are an understanding of the relevant structure-processing-property relationships. 
These structure-processing-property-performance relationships are at the core of materials 
science research. Microstructure characterization provides the link to these four core areas, often 
through visualizing material microstructure using imaging techniques. However, linking 
microstructure image data (i.e., micrographs) to variables of interest (e.g., processing parameters, 
material chemistry) in a reproducible, generalizable, and quantitative manner is a significant 
challenge. Typically, quantitatively linking image data to processing history relies on significant 
domain knowledge and manual or subject matter expert (SME)-heuristic based image analysis. 
Such an approach to image analysis has the potential to be biased, inefficient, and difficult to 
replicate.  

To address this need for an improved approach to linking microstructure image data to a 
multitude of process parameters, machine learning methods were explored in this study. 
Machine learning (ML) refers to the process of a computer learning trends in data without 
human intervention through an iterative training process, and adjusting decisions or actions 
based on the learning/training process when new data is encountered. Machine learning 
methods have recently been applied to more challenges in molecular and materials science 
fields [5]. Applications of such methods include the following: development of accelerated 
materials design and property prediction [6,7] discovery of structure-property relationships [8], 
construction of potential energy surfaces for molecular dynamics simulations [9], prediction of 
atomic scale properties [10] and image classification and analysis [11-14]. Such applications 
span multiple length scales (macro- to nano-scale) and a variety of material systems (inorganic 
oxides, electrolytes, polymers, and metals) [15]. The merger of artificial intelligence (AI) with 
materials science allows for evolution and progression of the research process from a traditional 
structure-property prediction approach to one that is data-driven. Such a paradigm-shift can 
accelerate research in the field of materials science through the development of a more 
autonomous design process and methodology that is more reliable and less subject to 



 

researcher bias and chance discovery. ML methods have previously been applied to further 
understand microstructures as functions of various parameters, geometric features, or predict 
material behavior. Some examples: the development of time-temperature-transformation (TTT) 
diagrams of U-Mo-X type alloys [16], linking microstructural features to processing parameters 
in a U10Mo fuel [11,12] , inspection of additively manufactured components [17], and optimal 
AM processes [18] . 
 
A new frontier in machine learning is the ability to analyze smaller data sets, in particular small 
image data sets. Recent advances have led to developments that allow human-level 
performance in one-shot learning problems [27]. This advancement is particularly relevant to 
materials science studies in which researchers are limited to only a few data points/images/etc. 
Oftentimes, there are limited materials available for analysis due to long lead-time 
experimentation, or complexity involved in material processing/fabrication.  
 
The dramatic decrease in the cost of computing resources has also made machine learning 
across many domains. The advent of frameworks such as TensorFlow [19] and Keras [20] allow 
domain scientists (e.g. materials scientists, nuclear engineers, chemists, physicists) and data 
scientists alike to apply sophisticated deep learning techniques rapidly to a wide variety of data 
analysis problems. These advantages enable studies such as the one presented here. 
 
Here, a machine learning approach is presented to characterize microstructures of FC-ed CuNi 
samples were manufactured using a shear assisted processing and extrusion machine as part 
of the Solid Phase Processing Initiative research at PNNL. The samples were imaged to identify 
sample porosity, material mixing, and deformation-assisted solubility prior-to and post-FC using 
different thermomechanical routes by varying process parameters. In this study, the scanning 
electron microscopy images were analyzed using different ML algorithms to determine image 
features used predominantly by the codes for making associations with the process parameters 
used to manufacture the samples. Trends in process parameter variations associated with 
corresponding statistically significant changes in image features were identified.  

 

 



 

2.0 Methods 
2.1 Experimental Data  

Process parameters and image data associated with shear consolidated Cu-Ni samples were 
used in the ML based analysis in this study. It has to be noted that the processing and imaging 
was not performed in this study; they were performed as part of research efforts in Project 2 of 
the Thrust 1 of the SPPS Initiative and are summarized here. Copper (Cu) and nickel (Ni) 
particles, procured from Alfa Aesar with an average particle size of 150 – 420 µm and <125 µm 
respectively were used in friction consolidation experiments in the study performed by Whalen 
et al. The Cu and Ni particles were mixed in a 50/50 volume% for 2 h using a rolling mill and 
compacted initially. Subsequently, the compacted Cu/Ni particle mixture was consolidated using 
a shear assisted processing and extrusion (ShAPETM) machine (BOND Technologies, Inc). 
During compaction in the ShAPE machine, a rotating die impinges on the stationary green 
compact placed in extrusion container. Owing to the frictional heat generated at the interface of 
the ShAPE tool and the green compact, the Cu-Ni particle mixture is compacted further as well 
as plasticized. Three samples were manufactured with varying process times and tool plunge 
rates as shown in Table 1 below. A type-K thermocouple located 0.5 mm behind the tool face 
and 5 mm away from the centerline in the radial direction was used to record the temperature at 
the surface of the deforming Cu-Ni green compact during processing. The variation in torque, 
power, and force exerted during the process was monitored by the sensors in the instrumented 
ShAPE machine.  

 
Table 1. Sample nomenclature and process parameters used to manufacture CuNi shear 

compacted sample using different thermomechanical pathways. 

Experimental 
ID 

Sample 
name 

Plunge rate 
(mm/min) 

Final 
temperature (°C) 

Process 
time (s) 

Process 
data points 

No. of SEM 
images  

200183 A 4 500 27 5,436 139 

191039 B 4 700 37 51,640 210 

191040 C 0.5 700 112 136,416 84 

Shear consolidated CuNi samples were sectioned after processing, mounted in epoxy and 
polished final surface of 0.05 µm using colloidal silica. Scanning electron microscope images of 
the polished CuNi samples were obtained using a JEOL7600F field emission SEM equipped 
with an Oxford Instruments Symmetry electron backscatter diffraction (EBSD) CMOS detector 
and a 170 mm2 X-Max energy dispersive spectrometer (EDS).  Data analysis was performed 
using the Oxford Instruments AZtec Nanoanalysis software package v4.3 along with AZtec 
Crystal for analysis of the EBSD data.  

Process data was in the form of numerical values of force, power, temperature, tool plunge rate, 
tool rotation rate, and torque as a function process time. These data points (Table 1) were 
assimilated into process parameter plots corresponding to the different experimentalprocess 
conditions as shown in Figures 2,5,6,7 below. Image data was in the form on secondary 
electron images, with corresponding EDS maps identifying the locations of Cu and Ni in a given 
sample area. SEM images mapped a large area of the samples; the montages corresponding to 



 

different experimental conditions are shown below in Figure 1. It has to be noted that individual 
images, constituting a montage, were used for data analysis. 

  

 

 
Figure 1. Montages of the SEM images corresponding to the different samples A, B, and C 

manufactured using the process parameters listed in Table 1. 
 

2.2 Data Analysis & Computational Methods  

2.2.1 Preprocessing Images 

The images were first preprocessed in MATLAB Version: 9.7.0. The preprocessing approach in 
this analysis is particularly suited for shape detection in image analysis, specifically separating 
background from foreground regions in an image in order to make measurements on the 
foreground microstructures. Preprocessing stages of a representative image in the SEM 
montage of Sample B is shown below in Figure 2. The first step was a greyscale conversion and 
anisotropic diffusion that uses ‘inter-region smoothing’ to effectively reduce noise in the image 

A B 
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while maintaining sharp region boundaries [21]. Next, smoothed image was converted from 
greyscale to binary where dark pixels are marked as foreground and light pixels were marked as 
background. The binary conversion occurs with a simple thresholding technique where pixels 
are classified according to pixel intensity value. Exploratory analysis showed a threshold value 
of 120, on a scale of 0 to 255, as sufficient in separating background and foreground. The 
binarized image was then flood-filled [22] on the background pixels, removing any holes left by 
the thresholding to ensure that foreground objects were fully connected, distinct regions. The 
connected components were then labeled [23] and available for feature extraction. 

 

      

  
Figure 2. Stages of image analyses of Ni EDS image#89 (Upper Left) from the SEM image of 

sample B, converted to a grey-scale raw image (Upper Right), whose raw intensities determined 
(Lower Left) on the basis of which image features were detected (Lower Right), which were 

used in ML for image classification. Note the comparison between panels on the right. 

 

2.2.2 Computing Features from Microstructural Images 

Image features are calculated either from the images or the preprocessed image, obtained from 
the process described in Section 2.2.1. The raw image features are traditional image statistics 
derived from measures of raw pixel intensity communicating information on how and where the 
pixels are distributed. These statistics include the standard deviation of a histogram of oriented 
gradients (HOG), one-sample Kolmogorov-Smirnov (KS) test, Anderson-Darling (AD) test, 
Jarque-Bera (JB) test, and a Lilliefors (L) test. HOG is an image feature descriptor that the 
counts occurrences of gradient orientation in localized portions of an image. In this study, HOG 
features encode local shape information from regions within an image. KS returns a test 
decision for the null hypothesis that the data in vector x comes from a standard normal 
distribution, against the alternative that it does not come from such a distribution, using the one-
sample Kolmogorov-Smirnov test. If the distribution is not normal (e.g. bimodal), this indicates 
that the pixels in the image are likely partially mixed or unmixed. JB returns a test decision for 



the null hypothesis that the data in vector comes from a normal distribution with an unknown 
mean and variance, using the Jarque-Bera test. The alternative hypothesis is that it does not 
come from such a distribution. L-test returns a test decision for the null hypothesis that the 
image pixel intensities comes from a distribution in the normal family, against the alternative that 
it does not come from such a distribution. The preprocessed image features are defined in this 
study as measures of the labeled shapes detected in each image. These include the number of 
distinct shapes detected, average minor-axis width, aspect ratio, and average equivalent 
circular diameter (ECD), a measure of circularity, given by:  

𝐸𝐶𝐷 =	&4 𝐴+𝜋

Relative depth of a feature was denominated using the image row using where the top of the 
montage was assumed to be the pseudo-datum. Relative depth was determined from the row 
position of the image scaled between 0 and 1 which was then converted to microns using the 
scaling factors for each image. Image features were determined or calculated for each image in 
the montage of the EDS images corresponding to a sample# (and experimental process 
parameters). Subsequently, each sample feature dimension was converted from pixels to actual 
dimensions (µm) in order to correct for any measurement biases such as difference in 
magnification between samples. 

2.2.3 Model Training, Testing, and Validation 

Features identified in Section 2.2.1.2 were used to establish an algorithmic relationship between 
the image features and processing parameters that were used to create the microstructures. 
The ML algorithm takes as inputs the microstructural image features and predicts a processing 
parameter of interest such as process temperature or maximum power, defining a mathematical 
relationship between the feature and process parameter.  

Ideally, a wide range of processing parameters would be considered, explicitly relating changes 
in microstructure to a continuous scale of process parameters with a regression model. 
However, in light of a limited number of samples corresponding to three distinct processing 
parameters, a classification analysis is considered. In the classification context, process 
parameters were described as discrete categories and the algorithmic relationship related 
observed microstructural features to process parameters by classifying them into process 
parameter categories. Using the R programming language and the caret package [24], three ML 
classification models, namely Random Forest (RF), Support Vector Machine (SVM), and K-
Nearest Neighbors (KNN) were used to classify the microstructural image features. In total, 348 
images were analyzed using 11 total input features, including the 9 image features described 
above and 2 spatial features related to the position of the image relative to the entire sample. 
Each montage corresponded to data on two different materials; both sets of EDS images were 
processed separately. 

2.2.4 Degree of Mixing 

A quantitative analysis on microstructures as they occur within a larger sample, or on a 
macroscale, is certainly of interest. While the image processing analysis in the previous section 
focuses on individual microstructures, preliminary methods were established to determine the 
distribution of different types of microstructures and where they occur in a sample. The results 
indicate that a deep learning approach designed for small amounts of data (i.e., Few-Shot 
Learning) may be useful in an automated macroscale analysis. This approach would bypass the 



 

need for image preprocessing and feature extraction as mentioned above, eliminating known 
image analysis difficulties like sensitivity to noise, failure to accommodate gradients in contrast 
level, and poor generalizability. 
 
The design of the few-shot algorithm components additionally leveraged a state-of-the-art image 
recognition network, ResNet [25]. The ResNet architecture is typically used for image 
recognition in everyday objects, such as cats and dogs, however this analysis pretrained the 
network to distinguish between classes of SEM images from a database compiled in [26]. 
Example images from the database shown in Figure 3 show common SEM images, annotated 
and labeled into several categories.  
 

 
 

Figure 3. Examples for SEM images from [26] used by ResNet in the Few-Shot analysis. (a) 
Tips (b) Particles (c) Patterned surfaces (d) MEMS devices and electrodes (e) Nanowires (f) 

Porous sponge (g) Biological (h) Powder (i) Films and coated surfaces (j) Fibers 
After pretraining, the ResNet model is combined with a metric-learning network in a few-shot 
implementation described by [27]. The algorithm then only needs a ‘few’ examples of each 

category to perform classification.  

Figure 4below visually describes the three classification categories used for the application of 
few-shot learning to this data. Each category, “unmixed”, “partially mixed”, and “mixed” are 
represented by the images based on SME classification.  

 
 

Figure 4. Examples of training image data used by the ResNet model combined with metric-
learning network in Few-Shot Learning implementation. 

Once the categories were defined (Figure 4), all images were fed through the few-shot algorithm 
and grouped in to one of the three categories or a catch-all ‘none of the above’ category. A 
single laptop with a 2.7 GHz Intel Core i7 processor and 16 GB of RAM was used to produce 
the classification results. The images were also classified as mixed, partially mixed, unmixed by 
an SME. The accuracy of the Few-Shot algorithm was compared against that of the SME.   



 

3.0 Results & Discussion 
3.1 Distribution of Image Categories and Classification Accuracy 

The few-shot analysis provided a quantitative assessment of the distribution of image categories 
as shown in Figure 5. Mixed regions were defined to have no microstructural features, partially 
mixed regions were seen by the small dimensions of the image features present as filaments or 
swirls. Unmixed regions were identified by ‘blobs’ of Cu in a sea of Ni particles with the feature 
sizes much larger than observed in the partially mixed zone. It has to be noted that the 
classification accuracy may be improved by providing additional learning images to the Few-
Shot Learning algorithm.  

 

 
Figure 5. SEM image montage from sample B (Panel A) classified as mixed, partially mixed, 

and unmixed (Panel B) using Few-Shot Learning technique. Proportion of mixed and unmixed 
regions in the different SEM images for the different CuNi samples (Panel C). 

The preliminary few-shot analysis here lays the groundwork for relating macroscale samples to 
process parameters. As and when more data are available, the few-shot technique can be 
refined in multiple ways. With multiple samples taken under the same SEM settings and varying 
process parameters, the few-shot analysis could potentially link raw images to process 
parameters directly on a near pixel-by-pixel basis without the need to label every single pixel in 
a full montage by hand. This approach seems very promising and requires less training/model 
development time when compared to developing a Deep Learning model from raw image data. 
A significant challenge in using Deep Learning for this data is the limited number of data sets 
with varying magnifications, which may bias the network (i.e., it knows the answer based on 
magnification or blurriness and not image features per se).  

Figure 6 reports the classification accuracy of the three ML algorithms used in this study to bin 
the individual images making up the montages corresponding to different processing parameter 
experiments. In order to assess the classifier’s ability to correctly determine process parameter 
given the input image features, a repeated k-fold cross validation technique was used in 
addition to model tuning for optimal performance. The figure below illustrates each classifier’s 
ability to correctly determine process parameters given the input image features across 5 
repeats of 10-fold cross validation.       

A B C 



 

  
Figure 6. Accuracy of classification for the three different algorithms used in this study (left 

panel). Note that RF = random forest; SVM = support vector machine, KNN = k-nearest 
neighbor methods. Importance of the different image features used by the RF (right panel). 

The best performing model, on average across all cross validation resamples, was RF with an 
optimal parameter mtry=4, or 4 variables randomly sampled as candidates at each decision 
point. Additionally, the RF provided an intuitive metric for interpreting which input features were 
most important in correctly describing process parameter categories. The figure below shows 
each input feature on the vertical axis and its corresponding importance metric, here the total 
decrease in node impurities measured by the Gini index from splitting on the variable, on the 
horizontal axis. The features are effectively ranked as most important to least important from top 
to bottom. Additionally, the analysis in Section 2.1.1 benefited marginally when image feature 
calculations were biased to the type of image.   

3.2 Associating Process Parameters with Microstructural Features 

It was interesting to note that the two most important image features that the RF algorithm used 
to associate the images with process parameters during classification were average feature 
width and relative depth of an image in the montage. In order to formally estimate the 
relationship between filament width and relative depth, a piecewise regression analysis was 
used. Average feature width was plotted as a function of its location from the montage’s 
pseudo-datum denoted by relative depth as shown in EDS images of Ni were used in 
determining the feature width and their corresponding location in the montage, meaning that Cu 
feature dimensions were determined in this exercise. It has to be noted that similar analysis can 
be performed for Cu EDS images of a sample to determine Ni feature variation as well.  

Figure 7 below clearly shows the breakpoint between the partially mixed regions and the 
unmixed regions in terms of feature width. The relative depth corresponding to the breakpoint 
can be used to determine the ‘depth of mixing’ or the thickness of the mixed zone. Image 
feature sizes <10 µm show that they belong to Cu filaments in the patially mixed regions 
(tortuous zone) while features in the size range of ~120 µm correspond to the unconsolidated 
copper particles. Of the three process parameters examined, there is a distinct breakpoint in the 
Cu feature size which may correspond to the edge of the processed part of the sample. 
However, these are not compared in this study, since the top of the montage is only taken as a 
pseudo-datum and ‘depth’ of the feature is, therefore, only relative.  

 



 

 

 

   
Figure 7. Average feature size as a function of relative depth in the mixed, partially mixed and 

unmixed regions (as shown in Table 4  and Table 1) of the CuNi SEM images (Top panel), 
average feature size variation with relative depth in the partially mixed zone (Middle panel), tool 
revolutions during shear consolidation, average feature depth, process time and consolidation 

force during sample processing (Lower – Left, Right panels) for the CuNi samples. 
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What is interesting in Figure 7 is the ‘partially mixed’ zone where the Cu filament size varies for 
each sample processed at uniquely different thermomechanical pathways. The Cu-Ni sample A 
processed for ~27 s at 4 mm/min till a temperature of 500C was attained demonstrated an 
avergae Cu feature size of 1.92 ± 0.186 µm. On the other hand, the sample B processed for 
~37 s at 4 mm/min till 700C showed an average Cu feature size of 2.92 ± 0.243 µm. The largest 
feature width of 6.661 ± 0.941 µm was seen in the sample C processed for ~115 s till a sample 
temperature of 700C was reached at a rate of 0.5 mm/min.  

A clear association was seen between the process time and the Cu feature size: images from 
sample processed for longer time demonstrated larger feature widths in the partially mixed 
zone, while samples processed at the lowest temperatures and shortest duration demonstrated 
the smallest feature widths (Figure 7- middle and lower-left panels). Examining the plot closely, 
it can be seen that the Cu feature size distribution was much tighter for the samples A and B, 
compared to sample C. Average feature width also increased as the number of tool revolutions 
in the process time increased. On the other hand, extrusion pressure observed during the 
sample processing was seen to decrease with increasing average feature width.  

A generalized linear model (GLM) was used to separately estimate the relationship between 
relative depth and microstructure feature width. Results from the GLM model analysis are in 
Table 2.  There, δ is a measure of the change in image feature width/µm of relative depth. The 
preliminary GLM analysis indicates, with statistical significance (p-value < .05), that image 
feature width varies with relative depth for each SEM image montage. Not only does feature 
width and depth relate to process parameters1, but the degree to which a sample is fully mixed 
varies according to the parameters used as well.  

 
Table 2. Generalized Linear Model statistics providing insight into the relationship between the 

microstructural image feature width and the relative depth of the feature. 
Sample Region Estimated δ 

A Partially mixed       1.06E-05 
A Unmixed 3.97E-03 
B Partially mixed -7.59E-05 
B Unmixed 2.29E-03 
C Partially mixed N/A 
C Unmixed -2.57E-02 

 
 

 
1 more precisely 𝜇 = 	1 𝛽 + 𝛿𝑋)  for X = depth with p-value <<  .05 for d ¹ 0 



 

4.0 Conclusions & Future Work  
This study provided the framework for analyzing scanning electron microscopy and energy 
dispersive spectroscopy images of friction consolidated copper-nickel powder mixtures using a 
machine learning framework. Three copper-nickel powder samples friction-consolidated by a 
shear assisted processing and extrusion (ShAPETM) machine using different thermomechanical 
pathways were used as part of developing that framework. Meta-data (i.e., process parameters) 
associated with the friction processing experiments was examined to identify processing factors 
of interest such as highest processing temperature.  

Initially, transfer learning and few-shot learning techniques were used to classify images as 
containing completely fully mixed, partially mixed, or unmixed copper-nickel features. Scanning 
electron microscope images were preprocessed to extract multiple image metrics (e.g., filament 
width and depth from top of image) Three different machine learning tools, namely Random 
Forests, K-means Clustering, Support Vector Machines, were used to classify the images into 
three different classes corresponding to the thermomechanical processing pathways on the 
basis of the image metrics determined. The random forest classified the images with the highest 
accuracy. Additionally, the features used predominantly in making the classification were 
examined. It was seen that the RF algorithm used the average feature width of an image and 
relative depth of the feature with the highest importance. 

The availability of only three different classes of data limited the regression analysis to find the 
relationships between the ShAPE process parameter factors of interest and the most important 
image metrics identified by the Random Forests. However, the results showed that the process 
factors such as number of revolutions, process time, and the force recorded at the highest 
sample temperature were all correlated with the average feature width of a microstructural 
image. A generalized linear model analysis was performed to show that with statistical 
significance (p-values < .05) that image feature width generally varies with depth. 

Additional data associated with newer experimental classes (thermomechanical pathways and 
corresponding scanning electron microscope images) would have provided a higher level of 
accuracy – enough to discern more precisely the relationships between depth and width within 
an experimental class and also between classes. The original hypothesis – formed early in this 
small-scale seedling project - remains:  8-9 samples with distinct process parameter(s) values 
should allow this mapping between process parameters and microstructural features 

Although the analyses herein focused on average feature width in an image and its relative 
depth in the scanning electron microscope image montage, it is clear that these tools can be 
straightforwardly generalized in two important areas: 

1. Other types of microstructural features such as void size, second phase or additive size 
morphology and topology which are typically useful indicators of the effect of processing 
pathways on microstructural evolution. 

2. Distinct processing-parameters/settings could be readily distinguished given a more 
robust set of SEM-images.  A practical consequence is that a careful design-of-
experiment exercise would maximize the information that could be derived from a give 
suite of material samples and associated microstructural analyses. 

A consequence of these observations is that there are several material systems that this 
framework could readily be adapted to such as the copper-chromium, copper-niobium, 



 

aluminum-silicon or more complex materials such as heat treatable aluminum alloys. The 
framework developed here can be employed, completely unmodified, to analyze copper-nickel 
process parameter-microstructure feature data relationships irrespective of the process used or 
the image magnification. For example, it would be useful to analyze the copper-nickel images 
from the RotoDAC experiments performed in the Thrust 2 of the Initiative using the framework 
developed in this Project to evaluate the microstructural evolution as a function of the process 
parameters. Furthermore, the broader applications of AIML tools to material informatics 
problems worth considering further are: 

• Integrating the AIML tools with in-site process diagnostics imaging tools and real-time 
optimal control approaches to managing the material pathways induced by the ShAPE 
process. 

• Using explainability tools to see ‘features’ used by black-box deep-learning architectures 
to classify and distinguish microstructural images 

• Developing generative methods to manufacture synthetic data to further study 
microstructural features and provide higher-fidelity bulk-scale models & simulations. 
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