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Abstract ii 
 

Abstract 
Through the project, a transfer-learning based optimal control methodology was developed. This can 
significantly reduce the time and data required for model learning and increase operation robustness and 
resilience via data-driven controller optimization. Figure 1 illustrates an approach to transfer knowledge 
from a source task (S) to a target task (T). This methodology includes three major elements: 1) extraction 
of control knowledge or knowledge of tuning control parameter from a source feedback control task; 2) 
transferring of control knowledge from the source control task to a target control task (initialization of 
control parameters for the target control task); and 3) fast-adaptation of control parameters for the target 
task to achieve optimized performance.   
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1.0 Introduction and Project Description 
The development of a control system has long been dependent on the transfer of knowledge, either in the 
form of previous experimental data or classical design principles. Transfer-learning has been developed 
to help facilitate and improve the process of knowledge-transfer from source task to the target task. In the 
past, it has been mainly applied to binary text classification and image classification, but limited 
applications in control system design. Notably, in building energy system, the current approach to 
transferring control knowledge is based on interpretation of control logic sequences into computer code, 
and human in the loop approach to tuning controller parameters. Advanced control algorithms such as 
model-based predictive control (MPC) have shown optimized performance with higher energy efficiency. 
MPC designs require significant effort and data to train the models that capture the system dynamics 
before optimizing the control decisions. The need for predictive models that have high accuracy is the 
main challenge for scalable deployment of MPC. Therefore, this project aims to integrate transfer-learning 
with feedback control design algorithms to reduce the computational time and data needed for controller 
development for a target task and apply it to building energy system domain. 
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2.0 Results and Accomplishments 
In this project, three major tasks were accomplished and output three items: definition of transfer-learning 
scenarios in building control application, theoretical derivation of the transferability for the control system 
(linear and nonlinear system), and a case study in residential building for transfer-learning based control 
application.   

Notably, in the theoretical analysis, we have investigated transfer learning in the context of the controller 
for dynamical systems. First, we have introduced a novel algorithm to design the transferable and non-
transferable control components for linear systems. Secondly, we have derived the transferability 
conditions on the controller between two different nonlinear dynamical systems. Finally, we have 
numerically evaluated the performance of our transfer-learning based methods for exemplary linear and 
nonlinear dynamical systems (Figure 2). 

In the case study, we applied the transfer-learning based controller for temperature control (optimal start) 
in residential building.  Two identical single-family houses located in Alaska and in Hawaii were set as the 
source and target system for optimal start controller application.  Preliminary result shows significant 
saving in computational time in the case with transfer-learning, comparing to the case without transfer-
learning.  

Figures/Tables 

  
Figure 1 Control algorithm realized by transfer-learning. 

 

 
Figure 2 State evolution for Source and Target System, with and without Transfer Learning for the linear system 
example. 
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