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Abstract 

 
This report documents the implementation of an advanced smart sampling-based probabilistic look-ahead 
contingency analysis algorithm, the integration with General Electric (GE) Grid Solutions’ commercial 
energy management system (EMS) tool, along with the case study results based on real-world data from 
the Bonneville Power Administration (BPA). 

The probabilistic look-ahead contingency analysis algorithm goes beyond traditional deterministic 
approaches by incorporating forecast errors of renewable energy and load into contingency analysis 
functions. This enables a predictive capability, providing a more comprehensive understanding and 
revealing the potential violations that may not detected by conventional methods. 

To assess its performance under practical environments, the probabilistic look-ahead contingency analysis 
algorithm has been seamlessly integrated with the dominant GE EMS tool as a proof-of-concept. Adapting 
an extreme value distribution (EVD) algorithm ensures compatibility with the GE EMS tool’s violation-
only output format.  Real-world data from BPA were used to test its performance, and the results clearly 
demonstrated the effectiveness of the developed algorithm, enhancing situational awareness.  

This collaboration brings together the Department of Energy, a national laboratory (PNNL), a commercial 
vendor (General Electric), and a major utility (Bonneville Power Administration). It serves as a notable 
example of successful evaluating a lab-developed research tool in a commercial tool environment using 
real-world models and data. This work emphasizes the effectiveness of the developed algorithm, indicates 
a path for technology transition, and underscores the importance of collaboration with diverse team 
members.
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1.0 Introduction 

This section introduces a review of contemporary contingency analysis functions and  explores the necessity 
for a probabilistic contingency analysis function. This is particularly crucial as a mechanism to help meet 
the requirements of more dynamic, stochastic grid operations and planning. 

  
1.1 The role of contingency analysis 

Contingency analysis (CA) is a critical energy management system (EMS) function that is widely used to 
evaluate the electric grid’s status if various combinations of component failures occur in the grid. The 
outputs of CA provide information to assess grid health to ensure that there are no operating limit violations 
in the system. In North America, power companies are required to perform CA for grid operations and 
planning studies to meet the North American Electric Reliability Corporation (NERC) operation standards. 
Typically, a power company selects a list of contingencies to perform contingency analysis within its 
operational cycle, typically in a 5-minute cycle. The list can include an N-1 contingency that contains one, 
or multiple, device failures and/or an N-2 contingencies.  The choice of N-1 and N-2, as well as the 
components selected, depends on the company’s grid status.  Contingency analysis is also critical for power 
system planning and market computation. 

Today’s contingency analysis functions in the control centers are dominated by deterministic methods. It 
uses state estimation outputs as the system states to perform power flow/contingency analysis studies. When 
there are violations, operators are required to take actions to maintain a system’s reliability according to 
NERC standards. With the fast growth of power grids and deployment of newer, more variable 
technologies, power companies are under pressure to take more contingencies into consideration as the 
demand of power supply pushes boundary constraints of the grid. Therefore, a real-time contingency 
analysis application has been utilized, with the aid of advanced computing technology, such as the multi-
thread technology used in General Electric (GE) Grid Solutions’ Habitat EMS tools. 

In addition to examining the current operational cycle, some companies also conduct look-ahead 
contingency analysis functions to foresee the system’s health condition in next operational intervals, e.g., 
in next 1 hour with a 15-minute interval. Commercial vendors, such as GE Grid Solutions’ Multiple-
timepoint study (SMTNET) tool, have the look-ahead contingency analysis capability developed. However, 
they are using exact forecast values for renewable energies, as well as generation schedules, load forecast, 
and outage plans, as the inputs to perform contingency analysis; this is a deterministic approach. With the 
penetration of renewable generation technology, the need for look-ahead contingency analysis that 
incorporates forecast errors becomes necessary.  

 
1.2 Need for probabilistic look-ahead contingency analysis 

Uncertainties brought by renewable energy resources and loads can play a large role in contingency analysis 
and other EMS functions. However, these uncertainties have not been considered in today’s control centers. 
Therefore, the outputs of contingency analysis might not be accurate because they do not consider the 
stochastic nature of the forecast in the computation. With the increasing capacity of renewable energy 
resources and system demands, the impacts of variable generation and load uncertainties cannot be ignored. 
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Some critical violations could be missed if traditional deterministic approach is used. Thus, these impacts 
should be studied to maintain system reliability, which requires the function of probabilistic look-ahead 
contingency analysis to provide a more complete picture to operators. 

1.3 The objective of study 

This report is the outcome of a joint effort supported by the U.S. Department of Energy (DOE) Office of 
Electricity Delivery and Energy Reliability (OE) Advanced Grid Modeling program and the Bonneville 
Power Administration’s Technology Innovation (BPA TI) program. In fiscal year 2016 (FY16) and FY17, 
the Pacific Northwest National Laboratory (PNNL) developed a probabilistic look-ahead contingency 
analysis algorithm using smart sampling and probabilistic analysis approaches.  These developments were 
tested with real BPA data with encouraging results. In FY18, PNNL continues to work with GE Grid 
Solutions to integrate the PNNL look-ahead contingency analysis algorithm with GE Grid Solutions’ 
Habitat EMS tools. A prototype tool has been developed to validate the performance of this algorithm on 
the BPA system and show the advantages of the approach.  

 
1.4 Report structure 

The remainder of this report is organized as follows: Section 2 introduces the architecture of the 
probabilistic look-ahead contingency analysis algorithm that consists of smart sampling algorithm, high-
performance computing (HPC) setup, and the extreme value decomposition algorithm. Section 3 briefly 
introduces the real-world data received from BPA.  Section 4 presents how real-world data was extracted, 
mapped, and processed in this research. Section 5 shows the effort GE Grid Solutions made to integrate 
with PNNL’s algorithm. Section 6 presents the case study results with the BPA data and system. Section 7 
concludes the paper with a discussion of future work. 
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2.0 Probabilistic Look-ahead Contingency Analysis Approach 

This section will describe the framework of the probabilistic look-ahead contingency analysis algorithm 
and the main functions of the smart sampling algorithm, the parallelization setup, and the extreme value 
distribution algorithm for contingency violation analysis. 

 
2.1 Framework of probabilistic look-ahead contingency analysis 

The framework of the probabilistic look-ahead contingency analysis is shown in Figure 2.1. This framework 
is developed based on an early version [1] that was implemented with an in-house massive contingency 
analysis (MCA) tool [2] [3]. In this report, the framework is modified to integrate the look-ahead 
contingency analysis algorithm with the GE Grid Solutions’ Habitat EMS tool. The core function in this 
framework is a smart sampling approach (shown in blue color), which factors forecast errors into look-
ahead contingency analysis applications. The inputs for smart sampling techniques are historical forecast 
information and historical actual information (shown in yellow color). The outputs of smart sampling 
techniques are a reduced and representative set of realizations (scenarios) that consider the forecast errors 
efficiently, which leads to a reduced computational burden. More information on smart sampling will be 
described later in this section.  
 

 
Figure 2.1 Probabilistic look-ahead contingency analysis methodology framework. 

 

In addition to help address forecast uncertainties, the smart sampling algorithm can also be used on 
contingency lists, (i.e., a reduced set of contingencies, instead of full list, is assigned to each realization). 
These reduced and representative sets of realizations are then written in GE SMTNET format. SMTNET 
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then reads this information in and perform multi-thread contingency analysis computations (shown in the 
green color in Figure 2.1). Unlike the previously utilized in-house tool, the SMTNET only outputs 
contingency violations. Therefore, the extreme value distribution (EVD) algorithm is adapted and applied 
to this framework (shown in the orange color in Figure 2.1 SMTNET) for branch violations. 

2.2 Smart sampling algorithm  

The purpose of the smart sampling algorithm is to address slow convergence of the traditional Monte Carlo 
methods with good coverage and less redundancy.  This helps to generate a reduced and representative 
dataset that covers the forecast errors for look-ahead type of analysis that needs to involve forecast 
information. 
   
Two sampling methods are introduced in this section: general random sampling (GRS)[4] and Quasi-Monte 
Carlo (QMC) [5-7]. The GRS method is a “standard” Monte-Carlo-based sampling and is described to help 
provide a basis to demonstrate the improvements of the QMC method. The QMC method is the smart 
sampling algorithm that has been integrated in the look-ahead contingency analysis framework.  
 
Monte Carlo-based uncertainty analysis plays a central role in characterizing and quantifying uncertainty, 
with applications found in virtually all engineering fields [8], [9]. GRS, also known as Monte Carlo 
sampling (MCS), generates pseudo-random numbers as needed for trials. Typically, GRS involves three 
steps for each trial. First, random numbers, usually uniformly distributed between 0 and 1, are generated. 
Next, these numbers are transformed into the proper distribution for each variable. Finally, the values are 
plugged into the function to obtain the result. Fast random number generators exist, making the first step 
efficient. The computation times for the second and third steps depend on the complexity of the distributions 
and the function. The number of random numbers required for each trial can also vary [10, 11]. 
 
Based on a k-dimensional unit cube I! = [0, 1]!, and with a (multivariate) bounded integration function f 
on	I!, the Monte Carlo approximation of integral of f over I! is defined by 

* f(x)dx ≈
1
n
1f(X")
#

"$%&!
 

where (X")%'"'# are independent random points from I!I(. The strong law of large numbers almost 
completely ensures the convergence of the approximation [26]. 
 
However, due to the typically large number of samples required, Monte Carlo sampling is often 
computationally expensive and/or requires a significantly simplified model. In that respect, minimizing the 
number of required Monte Carlo runs with representative data characteristics is essential." 
 
Quasi-Monte Carlo (QMC) integration is a method of numerical integration that operates similarly to 
standard Monte Carlo Integration but utilizes sequences of quasi-random numbers, which exhibit a more 
uniform behavior to compute the integral. Quasi-random numbers are algorithmically generated by 
computers and are akin to pseudo-random numbers. However, quasi-random numbers possess the 
additional important property of being deterministically chosen based on equally distributed sequences to 
help minimize errors. The main difference between Monte-Carlo method and QMC method is that we no 
longer use random points (X")%'"'#, but deterministic points. In our study, the Sobol sequence [12] has been 
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used to generate the quasi-random numbers. The Sobol sequence X#= (X#,%; : : : ; X#,!) is generated from a 
set of binary functions of length ω bits (ν",*  with	i = 1,… ,ω and j = 1,… k. ν",* is called direction numbers, 
which are numbers related to primitive polynomial over field [0, 1]. To generate the jth dimension, the 
primitive polynomial in dimension j is assumed to be  

p*(x) = x+ +	a%x+,% +	a-x+,- +⋯+	a+,%x + 1 
 
Then the following q-term recurrence relation on integers (M",*)" is 
   M",* = 2a%M",%,* 	⊕ 2-a%M",-,*⊕…2+a+M",+,*⊕M",+.  where i > q. 
 
This allows to compute direction numbers as 

ν",* =	M",* 2*⁄  
 
This recurrence is initialized by the set of arbitrary odd integers ν%,*2ω ,… , ν,*2+ω, which are smaller than 
2, …,2+ , respectively. The jth dimension of the	nth term of the Sobol sequence is  
   x#,* = b%ν%,* 	⊕ b-ν-,*⊕…⊕ ν.,*,   
 
where b! 	are the bits of integer n = ∑ b! 2!.,%

!$/ . [5-7]. The requirement is to use a different primitive 
polynomial in each dimension.  
 
Figure 2.2 shows the comparison of samples generated using the two different sampling approaches (GRS 
and QMC). The red points are sampling points obtained by each approach for two input variables, and the 
blue points are the projections of these sampling points onto the two dimensions. An even distribution of 
blue dots along the variable axis (space-filling) is expected for a good sampling approach. Moreover, 
without prior information on the relative weights of the different parameters (or dimensions), it is vital that 
no two design points coincide when projected onto a lower number of dimensions (i.e., non-collapsing). 
The “space-filling” and “non-collapsing” properties are important criteria to evaluate the performance of 
sampling approaches. 
  

 
Figure 2.2: Sampling designs for GRS (a) and QMC (b). The red markers are the actual sampling 

points; the blue markers are their projections onto the two dimensions. 
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2.3 Parallelization setup  

A dynamic load-balancing-scheme-based massive contingency analysis tool was employed in the original 
algorithm development [2]. However, applying the dynamic load balancing scheme to the GE Grid 
Solutions’ commercial EMS tool is not straightforward. In particular, the EMS tool’s built-in multithread 
option needs to be utilized for parallel computations, but this function can only be applied to contingency 
levels; the computation of each time point remains sequential. This limitation necessitates further 
modification to the GE Grid Solutions EMS tool to enable parallelization at the time point level to achieve 
scalability comparable to the original implementation in Chen et al. [1]. 

2.4 Probabilistic analysis algorithms (extreme value distribution)  

The original probabilistic analysis algorithm is a probability density function (PDF)-based algorithm.  This 
is enabled by the in-house massive contingency analysis tool providing full solutions to all base case and 
contingency scenarios [1] [2] [3].  

However, the outputs of GE SMTNET look-ahead contingency analysis function contain only violation 
information, so the PDF-based approach cannot be utilized. Therefore, the extreme value distribution 
(EVD) algorithm has been innovatively adapted to this study.  
 
Extreme value theory, which studies extreme deviations from the median of probability distributions in 
statistics, had been widely applied in a variety of areas of risk analysis [13] [14].  Extreme events occur 
when a risk takes values from the tail of its possibility distribution.  
 
Suppose X1, X2 , X3… , are independent random variables with the common cumulative distribution 
function (CDF) F, and a new dataset, Mn = max(X1, X2 , X3… Xn ), can be created by including only the 
first n maximum values. This dataset can only be represented by extreme value distribution models. In 
statistics, the Fisher-Tippett-Gnedenko theorem is a general result in extreme value theory for the behavior 
of the maxima of independent, identically distributed (iid) sequences. The continuous probability 
distribution based on this theory is a generalized extreme value (GEV) distribution.  This continuous version 
is developed by combining Gumbel [15], Fréchet [16] and Weibull [17] distribution families. The single 
GEV distribution can be represented using three parameters[18] [19]: 

	

F(x; 	µ, ξ, φ) = 𝑒𝑥𝑝 P−R1 + ξ 0,1
2
S
,"#T, 

where µ is a location parameter, φ is a scale parameter and ξ is the shape parameter. The three parameters 
can subdivide into three separate distribution families. When shape parameter ξ =0, the GEV corresponds 
to the Gumbel distribution, also called type I extreme value distribution.  This represents the exponential 
tail, ξ >0 to Fréchet distribution, also called type II extreme value distribution.  Such a type II distribution 
is associated with the long-tailed cases.  Setting parameter ξ <0 corresponds to Weibull distribution, which 
is a type III extreme value distribution that is related to short-tailed case. The ranges of interest for the three 
extreme value distributions are different; Gumbel distribution is unlimited, while Fréchet distribution has a 
lower limit. A simplification to the Gumbel family is also often justified by the argument that there are 
many standard distributions of the (X1, X2 , X3… Xn ) for which the Gumbel distribution is the appropriate 
limit for Mn [20].  
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In this study, the Gumbel distribution is used to analyze the distribution of the violation rate, which is 
defined as the percentage of power flows over the normal limits.  Each power flow containing contingencies 
is considered as an extreme event. Because the probability distribution of violation is estimated with 
uncertainties, a 95% confident interval was used in the GEV distribution fitting to represent the model 
uncertainties.  
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3.0 Real-world Data Extraction  

This section introduces the real-world data received from the Bonneville Power Administration (BPA). The 
data includes historical forecast data of wind and load, BPA operational cases in PowerWorld format and 
GE Grid Solution EMS format, as well as a BPA planning model. 
 
3.1 Description of received real-world data 

In the original implementation of the probabilistic contingency analysis methods, BPA kindly provided 
historical operational node-breaker models for 2014 in a 15-min interval structure.  These were formatted 
in PowerWorld .aux format with different database versions.  BPA also provided wind farm information 
and a planning model in PSS/E PTI format. The operational models are used to extract historical actual load 
and wind generation information. Extensive effort has been expended to prepare a mapping table between 
the operational models and planning model to identify the actual values at each wind farm. This historical 
actual data and the historical forecast data are available at [21].  

Studies on the historical data were needed to apply the smart-sampling algorithm discussed in the previous 
section of the report. The studies resulted in realizations of the smart-sampling algorithm for testing the 
probabilistic look-ahead contingency analysis function using an in-house massive contingency analysis 
tool. The study results were very promising and provided meaningful value to the final users, as reported 
in Chen et al. [1]. 

To obtain more realistic simulation results using real data with a commercial tool, additional requests were 
submitted to BPA. These requests sought BPA-solved STNET (steady state network study) and RTCA save 
cases in GE Grid Solutions’ format for selected days, including key modules such as NETMON (network 
monitor), CTGS (contingency definition), DPF (decoupled power flow), RASMOM (remedial action 
scheme monitor), and PWRFLOW (power flow). Additionally, outage files and resource plans were 
requested. Details about the BPA database definition and the size of all records were also requested to 
facilitate the transition from BPA’s database (GE Habitat EMP 2.5 version) to the SMTNET function-
capable EMP 3.1 and above versions. BPA provided base cases, three contingency save cases, and four 
RASMOM save cases, all of which were successfully solved in the STNET after mitigation. 

3.1.1 BPA wind data 

BPA also provided wind forecasting data for the same interval, which includes data from 33 wind farms at 
a 1-hour resolution spanning from March to December 2014. The actual wind data was obtained through 
the BPA operational models after data extraction and mapping to the planning model. Due to limited 
forecasting data for the wind farm "PTW" and unsuccessful mapping for the wind farm "TRW," they are 
excluded from our study. Consequently, a total of 31 wind farms were considered in the first mapping stage. 
 
Additional mapping from the BPA system to the GE SMTNET system was necessary, but some bus 
numbers were not successfully mapped into the GE SMTNET model. Certain wind farms were represented 
by multiple station identifiers and unit identifiers in the GE SMTNET model. For these wind farms, the 
forecasted wind power was distributed to each bus based on the ratio of the individual generator capacity. 
A mapping table was created to store data from these 31 wind farms, including their corresponding bus 
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numbers in the planning model, their mapping station and unit identifiers in the GE SMTNET model, as 
well as their capacities. The unmapped wind farms and bus numbers were disregarded. 
 
3.1.2 BPA load data 

The load area forecast for the BPA area was obtained from the website: 
http://transmission.bpa.gov/business/operations/wind/. This data was used with the actual load information 
extracted from operational models for creating a database for the smart sampling algorithm. The BPA load 
forecast data has a 5-minute resolution and its quality is high with only a few missing points.  
 
 
3.2 The process of data extraction 

There are two issues associated with the actual wind and load forecast data: (1) the sampling rate was 
inconsistent for the actual wind data and forecast data; and (2) there are gaps in the actual data because of 
unsolved state estimation cases. To tackle these issues, down-sampling techniques with gap filling were 
performed. Because the BPA load forecast has excellent data quality with a few missing points, linear 
interpolation is applied to fill the small gaps. Then down-sampling was applied to extract data in 15-minute 
resolution with time stamps at 0, 15, 30, 45 minutes for the total load.  
 
To align the actual data and forecast wind data, the hourly wind forecast data was up-sampled (interpolated) 
to 15-minute resolution using a cubic spline interpolation algorithm [22]. From the two datasets, the down-
sampled load forecast data served as the temporal base line, with wind data associated with the closest 
available load forecast timestamp. To match actual wind data with wind forecast data, the actual wind data 
at the bus level are summed to obtain an aggregated actual value. An example of processed forecast data at 
a 15-minute resolution, derived from the original hourly forecast data together with the closest matched 
actual wind data for a wind farm in April 2014, is shown in Figure 3.1. 
 
Similar to the procedure above, the approach of finding the closest time stamp between the actual and 
forecast load data is used to match load forecast and actuals. The actual load data is available as a bus-level 
quantity. There are about 800 load buses in the BPA area. The forecast load is only for the total BPA area, 
so the actual load data is the summation of the individual actual load values. This aggregation will be treated 
as a single variable/time-series for the smart sampling algorithms. Once the smart sampling realizations are 
created, the total load will be re-distributed to each load bus based on a participation factor. As a starting 
point, a fixed participation factor obtained based on the current load composition is used to calculate the 
load in the future look-ahead intervals. In the future, the variance of participation factor at different time 
periods will be evaluated and the smart sampling algorithm can include such information in generating 
realizations. For load forecasting values, they match with actual load pretty well, except for those time 
stamps with missing data. 

http://transmission.bpa.gov/business/operations/wind/
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Figure 3.1: An example of down sampled forecast data, original forecast data and actual data for a wind 

farm in April.  
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4.0 Smart Sampling Application with Real-world Data  

This section will discuss how the BPA wind and load data are selected to create realizations that are inputs 
for the GE Grid Solutions’ SMTNET function and how the output data were processed by EVD algorithm. 

 
4.1 Data selection 

Applying the smart sampling techniques to the forecasted and actual wind data should ideally occur during 
a good data period in both data sets.  The key is to find a good time period of data with the following 
considerations: (1) fewer missing data, (2) a good total wind power generation, and (3) a good range of 
wind power generation. After exploring the available data, a good time frame candidate for applying the 
smart sampling algorithm was between April 18th and April 20th. This 2-day data period was selected for 
the prediction and smart sampling realization generation that are discussed in the next subsections.  
 
4.2 Realization creation 

After matching and preprocessing all of the BPA wind and load data, 32 variables, including 31 wind farms 
and the total BPA load, were included in the smart sampling realization generation. These realizations were 
converted to the format that is suitable for the GE SMTNET model.   

A sensitivity study based on the number of realizations and the efficiency of the QMC was conducted to 
find a reasonable number of required realizations. The sensitivity results are shown in Figure 4.1.  

Based on a set of sensitivity analysis, 144 realizations were used as smart sampling outputs, considering 
the fact of 48 realizations for one SMTNET run (3 runs of 48 realizations each). The 144 realizations were 
divided into separate groups to facilitate task-parallel computing and mitigate a computing memory issue 
encountered with the software. Contingencies could also be sampled and saved to the GE SMTNET format.  
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Figure 4.1: A sensitivity study results to find the number of realizations required for look-ahead contingency 
analysis study. 
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There were over 4,500 unit data inputs in a single SMTNET run (48 time intervals). An example of the 
range of these unit data can be seen at Figure 4.2.  

 

Figure 4.2: The range of wind generation data in one SMTNET run (48 time points). 
 

4.3 Extreme value distribution analysis 

Because GE SMTNET only outputs contingency analysis violations, the extreme valued distribution 
algorithm was applied to find the probability property of branch violations. As discussed earlier, this type 
of outputs fits a Gumbel distribution version of the generalized extreme value (GEV).  This Gumbel fit was 
performed on the outputs from the GE SMTNET model. The fitting results were saved in .CSV files for 
each branch, which contains cumulative probability and violation rates in percentile, as well as the 
uncertainty ranges with 5% significant levels. 
 
Beyond the Gumble distribution curve, frequency analysis was also performed for each branch at different 
realizations and contingencies. The frequency table was generated to represent the distribution of the power 
flows, including the bins/breaks and counts. Histograms can be obtained from the frequency tables to 
estimate the probability distributions of power flows at each branch. Examples are provided in Section 6. 
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5.0 GE SMTNET Modifications  

The probabilistic look-ahead contingency algorithm is used to predict the power grid’s future based on 
current system status and the forecast values provided at current time step. The GE Grid Solutions’ EMS 
tool did not have the exact capability to perform this type of function. However, the SMTNET, multiple-
timepoint study, function was available in GE EMS tool that can do the same work with a modification.  
 
The SMTNET is a platform to perform a look-ahead security analysis for future time points given a set of 
inputs. It can run multiple time points with multiple network models and summarize violations for each 
time step. In this study, the realizations created by smart sampling algorithms can be considered as a new 
network model with different sizes of renewable generation and load.  
 
Recall from earlier that the BPA operational cases needed to be converted from EMP 2.4 to EMP 3.1 or 
higher to utilize the SMTNET functionality. The conversion process is rather complex, involving database 
tuning  and necessary validation. The first step was to resize the  clones of NETMOM, PWRFLOW,CTGS, 
SMTNET etc. to enable GE’s SMTNET/STNET application to run with the provided BPA realtime cases 
for 48 intervals. The reason for selecting 48 cases is mainly due to the consideration for optimal memory 
usage. The second step was to migrate BPA cases and execute them under the EMP 3.1 environment, aiming 
to get similar results to the original EMP 2.4.  
 
 
5.1 Wind data modification 

To integrate with the PNNL probabilistic look-ahead contignency analysis function, the SMTNET 
application was modified to read wind data for each study interval generated from smart sampling 
algorithms. These wind data overwrite existing wind data in the BPA base case and can be used as new 
base cases at the corresponding study interval/time points for power flow and contingency analysis. 
 
The format of reading wind data is defined as:  
I,UNITDATA,TIME,STATION_ID,UNIT_ID,BASEMW,WMN,WMX,ON AGC,PARTFACTOR 
 
An example input is shown below: 
 
I,UNITDATA,TIME,STATION_ID,UNIT_ID,BASEMW,WMN,WMX,ON AGC,PARTFACTOR 
D,UNITDATA,01-Jan-2017 08:00:00,XXX,WND1,15.33,0,33,Y,0.33 
D,UNITDATA,01-Jan-2017 08:00:00,XXX,WND2,15.33,0,33,Y,0.33 
D,UNITDATA,01-Jan-2017 08:00:00,XXX,WND3,15.79,0,34,Y,0.34 
D,UNITDATA,01-Jan-2017 08:00:00,YYY,G01,9.78,0,20,Y,1 
 
A screenshot of wind unit data read in SMTNET is shown in Figure 5.1. For data protection reason, the 
generator information has been removed. 
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Figure 5.1: A screenshot of reading wind data at each time point in SMTNET (amended). 

5.2 Load data modification 

The SMTNET application was modified to read BPA load data for each study interval, also generated from 
the smart sampling algorithms described in prior sections. These load data overwrite existing load data in 
the BPA base case and can be used as new base cases at the corresponding study interval/time points for 
power flow and contingency analysis.   
 
The format of reading load forecast data is defined as:  
     I,LDAREA,TIME,AREA_ID, MW_SCHEDULE 
 
An example inputs is shown below: 
 
I,LDAREA,TIME,AREA_ID, MW_SCHEDULE 
D,LDAREA, 12-JUN-2014 02:11:05, BPA, 4500 
D,LDAREA, 12-JAN-2014 08:11:05, BPA, 4800 
D,LDAREA, 12-JAN-2014 14:11:05, BPA, 5000 
D,LDAREA, 12-JAN-2014 20:11:05, BPA, 5200 
 
A screenshot of wind unit data read in SMTNET is shown in Figure 5.2. For data protection reason, the 
generator information has been removed. 
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Figure 5.2: A screenshot of reading load data for each time point in SMTNET (amended). 

5.3 Contingency data modification 

To allow users to apply sampled contingencies to each base case for reduced computational burden, the 
original implementation also applied the smart sampling algorithm in contingencies. The idea is that instead 
of running all contingencies for each base cse, a user can run a sampled set of contingencies for each base 
case. Therefore, the SMTNET application was modified to allow user to activate a list of user-defined 
contingencies for each realization and deactivate the contingencies that are not in the list but are active in 
the base case.  
 
An example of input format is show below: 
 
Scenario,contingency ID 
04-Jan-2017 04:40:00,03L11008 
04-Jan-2017 04:40:00,03L11009 
04-Jan-2017 04:40:00,03L11010 
 
5.4 Output data modification 

To analyze the outputs of SMTNET, it was modified to output branch flow violations for each contigency 
at each scenario for the extreme value distribution analysis. The outputs include: 
     

•  Branch flow for the violated branch in each contingency for each scenario. 
•  Normal limit for each violated branch violation in each contingency for each scenario. 
•  Emergency limit for each violated branch in each contingency for each scenario from sampling files.  
•  Load shed limit for each violated branch in each contingency for each scenario from sampling files. 
•  Monitor ID for each violated branch in each contingency for each scenario. 
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6.0 Performance Evaluation  

This section is focused on the performance evaluation of the integrated look-ahead contingency analysis. 
The evaluation is mainly based on a comparison between the probabilistic-based algorithm and the existing 
deterministic approach, including a discussion on computational performance. 
 
6.1 Evaluation environment 

The GE Grid Solutions Habitat EMP 4.5 virtual machine was running on a server using Windows Server 
2012 R2 standard. The processor is an Intel Xeon X7550 @ 2.0 GHz with four processors. The size of 
installed memory is 24 GB. There were 1000 realizations created by smart sampling algorithms that were 
used as a base case for a time point. Because SMTNET was setup to run simulation of 48 time points due 
to consideration of memory usage, a set of 21 unit input files was created for 21 SMTNET runs, each with 
different values of wind farm and total BPA area load. Each realization was set up to run with the full list 
of BPA 1,837 contingencies, or a selcted set of contingencies. 
 
6.2 STNET base case contingency results 

STNET is the GE EMS tool function used for studying network analysis in a steady state. To ensure a fair 
comparison, the BPA base case with the original contingency setup was performed in GE Grid Solutions’ 
STNET application. This study focuses on the contingency analysis results rather than the base case results, 
as the same base case was used to both STNET and SMTNET, except the changes of wind units and BPA 
load introduced by the smart sampling algorithm. A screenshot of the base case contingency violation 
results is shown in Figure 6.1. There are 26 violations from 1,241 contingencies, including 18 branch 
violations. For data protection reason, the detailed violation information has been removed. 
 

 

Figure 6.1: The screenshot of STCA results (amended). 
 

The STCA recorded 19 instances of branch violations across 8 contingencies. 
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6.3 SMTNET results 

Recall that SMTNET is a function in the GE EMS tool designed to perform a multiple time point study 
given a set of inputs. We leveraged this function for the PNNL probabilistic contingency analysis algorithm 
by assigning different wind units and load realizations to different time points. Subsequently, we conducted 
a probabilistic analysis on the outputs of SMTNET, focusing on contingency violations. A screenshot of 
SMTNET graphical user interface is shown in Figure 6.2. 
 

 

Figure 6.2: A screenshot of SMTNET Graphical User Interface. 
 
In our study, a single SMTNET simulation involved 48 realizations with 1,241 contingencies for each 
realization, resulting in a total of 59,568 simulations per SMTNET run. Consequently, the probabilistic 
look-ahead contingency analysis function identified more contingency violations, such as branch flow 
violations and low voltage violations. For example, at the 08:00:00 time point scenario, the total number of 
contingency violations was 29, including 20 branch flow violations, compared to the base case, which had 
26 violations, including 18 branch flow violations. This difference was caused by the variance of wind unit 
capacity and load due to forecast errors. 
 
Each SMTNET run created a CA_OUT.TXT file that contains branch violations for each realization and 
contingency. An R script was developed to read this file and perform EVD analysis to present the 
probabilistic contingency violations to users. The R script also extracted the frequency and the worst 
violation for branch overflow violations. Three examples of EVD curve for line ID 455, 1061, and 2475 
are shown in Figure 6.3, Figure 6.4, and  
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Figure 6.5, respectively. These figures provide user insights into the distribution of the branch violations, 
where the blue solid line is the Gumbel fitting curve, and the red dashed lines are uncertainty bounds with 
the Gumbel model.    

 

Figure 6.3: EVD Distribution for Line ID 455. The blue solid line is the Gumbel fitting curve; the red 
dash lines are uncertainty bounds with the Gumbel model. 
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Figure 6.4: EVD Distribution for Line ID 1061. The blue solid line is the Gumbel fitting curve; the red 
dash lies are uncertainty bounds with Gumbel model. 

 

Figure 6.5: The EVD curve at line ID 2475. The blue solid line is the Gumbel fitting curve; the red dash 
lines are uncertainty bounds with the Gumbel model. 
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Table 6.1 summarizes the frequency of branch overflow violations, as well as the worst branch violations 
happened in all contingency simulations. 

Table 6.1: The frequency and worst violations for the branches that contain violations. 
Line ID Frequency Worst Violation (%) 

1061 72 127.1 
455 144 120.0 

1815 288 135.8 
1817 288 132.7 
3101 144 105.9 
3017 287 119.2 
3099 267 117.0 
1445 144 129.0 
1485 144 115.4 
1488 144 120.5 
2474 144 124.3 
2475 144 129.0 
3602 144 154.4 
3019 91 105.6 
581 80 105.0 

 

The probabilistic look-ahead contingency analysis function revealed additional violations not identified by 
the original deterministic method. The contingency analysis results revealed 21 branch violations. Upon 
comparing these against the base case violations, new violations happened at a transformer (associated with 
line ID 1061 in Table 6.1) for two distinct contingencies, with violation percentages of 113% and 112.5%, 
respectively. The total occurrence of these violations was 72. Hence, these specific contingency violations 
should not be overlooked. This discovery highlights the importance of studying new potential violations 
that go unnoticed in the deterministic method, providing valuable insights for grid operators. 

 
6.4 Computational performance 

The original development, utilizing an in-house massive contingency analysis function, demonstrated near-
linear speedup, scaling efficiently to over 10,000 cores on a supercluster at PNNL’s institutional computing 
machine [24-26]. However, the GE Grid Solutions EMS tool lacked a comparable capability and 
computational platform. Consequently, scalability testing was constrained to the SMTNET built-in multi-
thread feature. As mentioned earlier, this multi-threading capability exclusively impacts contingency-level 
analysis. Consequently, simulations with 48 time points (realizations) remain sequential. Each time point 
took approximately 320 seconds to complete the contingency analysis simulation with 8 threads. The 
computational time for a full run with 48 time points was approximately 4.3 hours. 
 
Another scalability test was conducted with a different number of active contingencies using six threads. 
Table 6.2 summarizes the contingency analysis performance study based on the number of contingency 
cases.  
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Table 6.2: Test results with different number of active contingencies with six threads. 

# of Active Contingencies Computational time (s) 
20 29 
65 40 
188 96 
322 143 
391 174 
508 220 
849 228 
1027 329 
1171 370 
1232 385 
1443 461 
1837 587 

 

 

 

To further evaluate the scalability, a separate scalability test was conducted with different numbers of 
threads for 1,241 contingencies. The test results are shown in Table 6.3.  

Table 6.3: The scalability testing with different numbers of threads for 1,241 contingencies. 
Number of thread Computation time(second) 

1 550 
2 435 
4 388 
6 321 
8 323 

 

Table 6.3 indicates that it took approximately 6 minutes to complete 1,241 contingencies using six threads. 
There was no additional gain observed when using more than six threads. The time improvement over a 
single thread was around 40%. In comparison to the scalability achieved with the in-house massive 
contingency analysis tool, multiple-thread techniques in the Windows environment have room for 
improvement. 
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7.0 Conclusion and Future Work  

This project has shown a clear path to integrating the PNNL look-ahead contingency analysis algorithm 
with GE Grid Solutions’ EMS tools. The reported work represents a preliminary study using real model 
data. The advantages of the developed algorithm have been demonstrated through case studies, revealing 
violations not previously detectable by traditional deterministic approaches, and providing better situational 
awareness for grid operation. 
 
The original plan was to deploy the entire package, including GE Habitat EMS tool, on a PNNL cluster 
machine, so the computational power of the cluster could be utilized to expedite the time-intensive 
contingency analysis computation.  This was expected to involve parallelizing the contingencies and time 
point through message passing interface (MPI)-based parallelization mechanisms, known for their 
efficiency compared to the multi-thread-based mechanism built in the GE EMS tool. The potential next 
step is to collaborate with GE to identify the path forward for implementing parallelization among time 
points using the MPI-based approach. 
 
Visualizing the outputs of contingency analysis is another key aspect for future work. PNNL has developed 
a visual analytic platform capable of managing multidimensional data from various databases, including PI 
and Oracle. With assistance from GE Grid Solutions’ help, PNNL has recently connected GE Habitat 
database to the PI data base. As a result, when SMTNET creates new outputs, they will be automatically 
stored in the PI data base. A web-based visualization tool can be developed to display the contingency 
outputs data for better situational awareness. 
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