
PNNL-21854

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Final Report for Bio-Inspired
Approaches to Moving-Target
Defense Strategies

Glenn A. Fink, PH.D.
Christopher S. Oehmen, PH.D.

September 30 2012

 DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any agency
thereof, nor Battelle Memorial Institute, nor any of their employees, makes any
warranty, express or implied, or assumes any legal liability or responsibility
for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof, or Battelle Memorial
Institute. The views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency thereof.

 PACIFIC NORTHWEST NATIONAL LABORATORY
 operated by
 BATTELLE
 for the
 UNITED STATES DEPARTMENT OF ENERGY
 under Contract DE-AC05-76RL01830

 Printed in the United States of America

 Available to DOE and DOE contractors from the
 Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;
ph: (865) 576-8401
fax: (865) 576-5728

email: reports@adonis.osti.gov

 Available to the public from the National Technical Information Service,
 U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161

ph: (800) 553-6847
fax: (703) 605-6900

email: orders@ntis.fedworld.gov
online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.

 (9/2003)

Final Report for

Bio-Inspired Approaches to Moving-Target Defense

Strategies

PNNL-21854

Glenn A. Fink, Ph.D.
Christopher S. Oehmen, Ph.D.

Pacific Northwest National Laboratory

30 September 2012

Executive Summary

This report records the work and contributions of the Bio-Inspired Approaches to Moving-Target Defense Strategies
project funded by the Networking and Information Technology Research and Development (NITRD) Program and
performed by Pacific Northwest National Laboratory under the technical guidance of the client’s Systems Behavior
Research group. The project has incorporated a number of bio-inspired cyber defensive technologies within an
elastic framework provided by the Digital Ants. This project has created (in collaboration with another DOE-
funded project1) the first scalable, real-world prototype of the Digital Ants Framework (DAF)[11] and ntegrated
five technologies into this flexible, decentralized framework: (1) Ant-Based Cyber Defense (ABCD), (2) Behavioral
Indicators, (3) Bioinformatic Classification, (4) Moving-Target Reconfiguration, and (5) Ambient Collaboration. The
DAF can be used operationally to decentralize many such data intensive applications that normally rely on collection
of large amounts of data in a central repository.

ABCD is a hierarchical organization of human and software agents that relies on swarm intelligence and decen-
tralized communication to defend large, complex cyber infrastructures from attack. Behavioral Indicators enable
defenders to identify previously unknown problems before there are signatures for them by examining the behaviors
of systems in a decentralized approach that enables machine-to-machine comparison automatically and in a scalable
fashion. Bioinformatic Classification provides a means of inexact matching borrowed from proteomics that makes
it harder for attackers to reuse old attacks. The Moving-Target Reconfiguration technology provides the basis for
defenders to reconfigure systems automatically, increasing diversity between systems and simultaneously reducing
vulnerabilities. Finally, Ambient Collaboration was a minor focus of this work that enables collaboration among
human analysts without conscious collaboration e↵ort. Together, these technologies, distributed via the DAF, will
help secure large cyber infrastructures that support our society.

This report presents an operational scenario involving a corporate espionage situation and applies the proposed
defense as a scalable and e�cient solution for electric smart grid defense, communications security, industrial control
security, and information technology cyber security. We present a brief summary of the most applicable literature
and list the unique contributions of our work including: (i) a novel movement and pheromone model for randomly
moving agents, (ii) a set of behavioral indicator data sources and sensors, (iii) a decentralized method of bioinformatics
classification of malicious binaries, (iv) a way to distributively change configurations of machines in a moving target
environment, (v) a method of ambient collaboration, and (vi) a number of publications.

We conclude the report with a description of our demonstrations that show the e�cacy of the DAF in dynamic
moving-target reconfiguration of systems and the scalability of the DAF to realistic enterprise scales. In the ap-
pendices, we recapitulate the project milestones and deliverables, expand the operational scenario, and discuss in
detail the DAF architecture. The accompanying CDROM contains reports, deliverables, papers, videos, software,
and other information on the Digital Ants and the related technologies developed by this work.

In this work, we have shown how these component applications may be decentralized and may perform analysis
at the edge. Operationally, this will enable analytics to scale far beyond current limitations while not su↵ering
from the bandwidth or computational limitations of centralized analysis. This e↵ort has advanced the Systems
Behavior group’s Cyber Security research program to secure digital infrastructures by developing a dynamic means
to adaptively defend complex cyber systems. We hope that this work will benefit both our client’s e↵orts in system
behavior modeling and cyber security to the overall benefit of the nation.

1DOE O�ce of Electricity’s Cybersecurity for Energy Distribution Systems funded PNNL to develop and integrate Digital Ants under
the Bio-Inspired Technologies for Enhancing Cyber Security in the Energy Sector project, project RC-CEDS-2010

Contents

1 Overview and Background 4
1.1 Introduction . 4

1.1.1 Operational Application . 5
1.1.2 Background . 6
1.1.3 Prior Work and Applicable Literature . 7

2 Contributions of the work 9
2.1 Component Technologies . 9

2.1.1 Digital Ants Framework . 9
2.1.2 Behavioral Indicators . 10
2.1.3 Bioinformatic Classification . 11
2.1.4 Moving-Target Reconfiguration . 12
2.1.5 Ambient Collaboration . 13

2.2 Demonstrations . 15
2.2.1 Wake Forest Automatic Defense and Reconfiguration Demo . 15
2.2.2 PNNL Scalability Demo . 15

2.3 Publications . 16

3 Path Forward and Conclusion 18

A Milestones and Deliverables 20

B Bio-inspired Approaches to Moving Target Defense Strategies Operational Scenario 22
B.1 Defender-side scenario description . 22

B.1.1 Application scenarios . 22
B.2 Threat-Side Scenario Description . 23
B.3 Scenario Narrative . 24
B.4 How Digital Ants Deliverables Combat this Threat Scenario . 25

C Digital Ants Framework Architecture 26
C.1 Overview . 26
C.2 Getting Started . 26
C.3 Framework . 26

C.3.1 Agents . 27
C.3.2 Sergeant . 27
C.3.3 Sentinel . 27
C.3.4 Sensor . 27

C.4 Logging . 27

D Porting the Digital Ants Framework 28
D.1 Running the DAF in a Cluster Computing Environment . 28

D.1.1 The DAF Backplane . 29

1

List of Figures

2.1 The Behavioral Indicators work uses a hierarchy of data sources, indicators, and sensors. Data sources
may contribute to either indicators or sensors. Connectivity shown here is notional only. 10

2.2 By changing vectorizers, we showed how that even if malware changes to a large degree we can still
detect changed binaries. 13

2.3 Temporal and spatial diversity are enhanced by moving-target reconfiguration while vulnerability is
reduced. 14

2.4 Block diagram of how ambient collaboration might be achieved. Vulcan enables collection of data and
a collaboration framework to analysts, the CHAMPION reasoner digests the structured data coming
from Vulcan and creates digital ant specifications that function as standing queries in the digital ants
system. 14

2.5 Average temporal (2.5a) and spatial (2.5b) diversity of the demonstration machines increased while
vulnerability (2.5c) was reduced. 15

A.1 Milestone and deliverable dependencies. 20

2

List of Tables

1.1 Technology areas of the project, related PNNL prior work, and what this project accomplished in each
area. 4

2.1 Data sources defined and their implementation status. 11
2.2 Indicators defined and their implementation status. 11
2.3 Sensors defined and their implementation status. 12

A.1 Bio-inspired Approaches to Moving Target Defense Strategies deliverables by file and location. Note,
only deliverables, not milestones are listed in this table. 21

3

Chapter 1

Overview and Background

1.1 Introduction

This research concentrates on achieving a Moving-Target cyber defense against complex-adaptive adversaries through
the application of bio-inspired research technologies. The Moving-Target problems will focus on two research tasks:
(i) Digital Ants as Moving-Target research: using mobile agents (based on digital social ants metaphor developed
at PNNL) in combination with distributed genetic algorithms to provide a robust moving target environment, and
(ii) Cyber economics: shifting the burden of complexity/costs back to the attacker via a biology-based classifica-
tion of cyber entities approach that shifts the burden of complexity onto the attacker, making it harder to hide
malicious artifacts. The digital ants technique will make our network a moving target in cyberspace, thus requiring
increased sophistication (complexity/costs) on the part of would-be attackers. This work concentrates on designing
and developing a trustworthy cyberspace–a system of defenses that operate in an environment that is presumed to
be compromised.

High-level description The Bio-Inspired Approaches to Moving-Target Defense Strategies project has incorpo-
rated a number of bio-inspired cyber defensive technologies within the elastic framework of the Digital Ants. Digital
Ants is a hierarchical organization of human and software agents that relies on swarm intelligence and decentral-
ized communication to defend large and complex cyber infrastructures from attack. This project has invented or
adapted five technologies and decentralized them via the Digital Ants Framework (DAF). The technologies and the
corresponding prior work are listed in Table 1.1.

Table 1.1: Technology areas of the project, related PNNL prior work, and what this project accomplished in each
area.

Technology PNNL Prior Art Work Accomplished

Digital Ants Tactical Deployment and Management of Created a scalable core
Framework (DAF) Autonomous Agents (TDMAA)

Behavioral Ant-Based Cyber Defense (ABCD) Created new cyber sensors
Indicators

Bioinformatic Machine Learning String Tools for Oper- Decentralized via DAF
Classification ational and NEtwork Security (MLSTONES)

Moving-Target none Invented a genetic-algorithm-based
Reconfiguration dynamic reconfiguration system

Ambient Vulcan: Unexpressed Communication Designed a new architecture
Collaboration (cyber-security collaboration techniques) for decentralization via DAF

The Moving-Target Reconfiguration technology was invented by PNNL’s partner, Wake Forest University for this
project. Moving-Target Reconfiguration introduces a genetic algorithm approach to automatic machine reconfigu-
ration for reduced vulnerabilities and increased diversity. The DAF was developed in collaboration with another

4

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

DOE-funded project, Bio-Inspired Technologies for Enhancing Cyber Security in the Energy Sector1) Together, the
technologies listed above, distributed via the DAF, will help secure large cyber infrastructures that support our
society.

1.1.1 Operational Application

This e↵ort has advanced the Systems Behavior Research group’s Cyber Security research program to secure digital
infrastructures by developing a dynamic means to adaptively defend complex cyber systems. The eventual result will
be trustworthy enclaves in cyberspace that will have observable security metrics and be modeled so that abnormalities
are readily identified and acted on. In this section, we briefly discuss potential operational outcomes for the digital
ants framework and for each of the component applications of this work.

Operational Scenario The operational scenario revolves around a corporate espionage situation where the target
corporation is defending its enterprise-computing infrastructure from cyber attack through a variety of attack vec-
tors. We pay particular attention to the need for detecting malicious capacity of executable code and compromised
computing elements. We assume that humans will always have a role in the decision making process, but that we
can enable them to make rapid, well-informed decisions through delocalized sensing coupled with transparent (i.e.
no penalty for false positives) secondary responses. The scenario describes both defender and threat capabilities
showing how the technologies advanced by this work will enable a resilient cyber defense. The full scenario was a
separate deliverable2 and is reproduced in Appendix B.

Digital Ants Framework The framework can be used operationally to decentralize many data intensive applica-
tions that normally rely on collection of large amounts of data in a central repository. In this work, we have shown
how four such component applications may be decentralized and may perform analysis at the edge. Operationally,
this will enable analytics to scale far beyond current limitations while not su↵ering from the bandwidth or com-
putational limitations of centralized analysis. What must be traded in is a central overview of the entire problem
space, with humans being able to participate in the analysis at the lowest levels. Arguably, this cannot be done even
now since centralized decision-making, even when supported by visual or automated analytics, cannot keep pace
with the volume and velocity of relevant cyber information. Instead, the DAF provides a means for accomplishing
e↵ective analytics at the edge, making it possible once again to keep up with the growth of networks and processing.
Operationally, this means that humans will be in the right loop, at a level where they can influence the system
appropriately, not “down in the weeds” looking at individual data items. Decentralized analysis will enable analysis
to scale without requiring humans to be hired to scale with the size of the data and networks.

Behavioral Indicators While malicious software can vary greatly in form, it nearly always produces unintended
side e↵ects on the systems it colonizes. By examining the behaviors of systems rather than the files on the systems,
behavioral indicators enable defenders to identify previously unknown problems before there are signatures for them.
By decentralizing this behavioral analysis, our work shows how system behaviors can be compared with one another
automatically and in a scalable fashion.

Bioinformatic Classification By providing a means of inexact matching, the bioinformatic classification methods
demonstrated in this work will shift the workload from the defenders to the attackers by making it harder for attackers
to make an old attack work again simply by changing a few bits. Rather than relying on checksums, this method uses
bioinformatic sequencing approaches that borrow from proteomics to find highly conserved regions of code (motifs)
that are indicative of individual exploits. From these, we can determine, not just whether malware matches exactly,
but to what degree it matches each member of a large set of known threats. Thus, we can characterize instances
we have not yet seen by the degree they match ones that we have not yet seen. A further, important, side e↵ect
of decentralizing this technology is that individual ants carry only fragments of motifs. When one ant’s fragment
matches, we have strong suspicion that a malware-related file resides on the monitored system. Swarming enables
us to match other fragments until we have an arbitrarily high degree of confidence in the match. It becomes very
di�cult for attackers to change their code fundamentally enough to completely fool this system. From an operational
perspective, what we obtain is the ability to stay ahead of attackers by fully utilizing the large amount of data they
have already provided us. Conversely, we have made it much harder for attackers to devise new exploits that will
not be detected by bioinformatic classification.

1funded by DOE O�ce of Electricity’s Cybersecurity for Energy Distribution Systems, project RC-CEDS-2010
2This was Deliverable #3, completed 06 July 2011. On the accompanying CDROM this is file D03-Scenario-Final.pdf

30 Sept 2012 5 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

Moving-Target Reconfiguration Operationally, software monocultures are much easier to maintain because
similarity between systems enables greater levels of automated maintenance. However, monocultures also increase
the degree of saturation possible for a given exploit. Our Moving-Target Reconfiguration provides the basis for
defenders to reconfigure systems automatically, increasing diversity between systems and simultaneously reducing
vulnerabilities. While this approach does complicate things for defenders, it makes systems much more di�cult for
attackers to comprehend and removes their ability to rely on their reconnaissance. Further, rather than centrally con-
trolling this reconfiguration, our work has shown how digital ants can share good configurations and knowledge about
vulnerabilities resulting in systems that automatically configure themselves to be secure and diverse. Operationally,
this will enable systems to defend themselves, freeing defenders for other work.

Ambient Collaboration A minor focus of this work is using the DAF to enable collaboration among human
analysts without conscious collaboration e↵ort. Our ambient collaboration work uses the Digital Ants as a means of
distributing standing queries throughout an enterprise and sharing queries and query terms among cyber defenders
who may or may not be actively collaborating. Queries and terms are collected from participating analysts’ queries
of local data and their accesses to external information. These terms are sanitized and redistributed throughout the
enterprise as new types of ants. Queries and terms that match are rewarded and those that fail to match eventually
die out. In this way, participating analysts can follow global trends in the interests of analysts without unintentionally
sharing sensitive information.

1.1.2 Background

PNNL has been researching digital ants since 2006 with initial models and prototypes appearing in 2007 and 2008.
Digital ants was conceived as a way to achieve concerted, infrastructure-wide cyber-defensive action that spans or-
ganizational boundaries. The desire was to enable enclave defenders to coordinate the activities of their defenses
without violating the sensitivities of cooperating organizations. Humans must retain ultimate authority and respon-
sibility while avoiding becoming a bottleneck. Meanwhile, automated defenses must strictly observe access policies
that di↵er across cooperating organizations. The mixed-initiative approach provides a basis for shared control among
humans at di↵erent sites and for humans and software agents at di↵erent sites to collaborate.

Current cyber-defense systems involve humans at multiple levels, but people are often far down in the control
structure, requiring them to make too many time-critical decisions. Information flow between humans is slow
and frequently asynchronous. In a crisis, humans may be unable to cooperate because of cultural, language, legal,
proprietary, availability, or other obstacles. Such systems cannot adapt to rapid cyber threats. E↵ective cyber defense
requires a framework that simultaneously capitalizes on the adaptability of humans and the speed of machines.
Humans must have a correct balance of decision making and delegation to maximize their e↵ectiveness and to
acknowledge their legal responsibility for the actions of their automated systems.

This work builds on the Digital Ants framework more completely presented in other work[11]3. We have taken
the flexible structure a↵orded by the digital ants and extended it with other application technologies (listed in Table
1.1). This work (in collaboration with another DOE-funded project4) has funded the creation of the first scalable,
real-world prototype of the digital ants framework.

There are several potential application domains for the proposed bio-inspired security defense. Each of these
domains consists of a potentially diverse infrastructure of computing devices that dynamically change over time.
In these cases, the proposed defense o↵ers a scalable and e�cient solution when compared to traditional static
approaches.

Electric Smart Grid Defense A locality may experience power shortages or limited grid connectivity due to
natural hazards or malicious tampering. Digital ants could be employed to dynamically identify impacted systems.
If the impact is severe enough to partition the grid into electrical islands, then digital ants would adapt to the new
electrical topology and seek to match power generation with electrical loads. This could be done in part through the
appropriate use of pheromone. Pheromone could also be used to help direct agents to nodes in need of cyber repairs
or reconfiguration.

Communications Security Malicious smart phone apps steal information from phones, eavesdrop on conver-
sations, track users, or infect the computers or devices that connect with the phones. Digital ants roaming across
subscriber phones would notice anomalous behavior. Analyst social networks could provide cues about external

3Please refer to the files in the Extras/Papers folder of the accompanying CD-ROM.
4DOE O�ce of Electricity’s Cybersecurity for Energy Distribution Systems funded PNNL to develop and integrate Digital Ants under

the Bio-Inspired Technologies for Enhancing Cyber Security in the Energy Sector project, project RC-CEDS-2010

30 Sept 2012 6 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

symptoms of the problem, and bioinformatic matching could reveal whether the current attack vector is related to
ones seen previously or not.

Industrial Control Security Supervisory Control and Data Acquisition (SCADA) systems regulate critical
infrastructure elements like hydroelectric dams, wastewater reclamation, factory processes, and oil pipelines. These
systems are a promising target for those who may threaten the populace to attain political or economic objectives.
Malicious actors often repurpose old exploits that we have existing signatures for. Where exact matching would fail,
our bioinformatic characterization approach is not fooled by syntactic di↵erences. Digital ants carrying attack motifs
will find even obfuscated attack tools.

Information Technology Cyber Security The digital ants compare the behaviors of host machines to one
another over the entire enclave. Host-based agents that the digital ants report to catalogue changes to a single
machine over time. Multiple host information can be collected to give a view over the whole enclave over both space
and time. These changes might indicate misconfiguration, broken elements, or even malicious activities. Coupling
this with ambient human collaboration and bioinformatic classification provides powerful cyber diagnostics.

The proposed bio-inspired framework can be used to defend enterprise-level infrastructures more e�ciently and
robustly than current methods. The proposed system potentially o↵ers greater flexibility with regards to managing
dynamic environments. It is also well suited for detecting, diagnosing, remediating, and recovering from security
issues.

1.1.3 Prior Work and Applicable Literature

Autograph [16] is a distributed system for automatically generating signatures of Internet worms via coordinated
sensors that examine byte sequences within TCP packets. Autograph depends on the ability to heuristically identify
worm-like patterns in network tra�c and employs a “tattler” to share these signatures with other sensors. Unlike
CID, Autograph does not incorporate other kinds of rationality, provides no basis for trust among signature-sharing
sensors, and does not use feedback to benefit from the false positives it generates.

CRIM [6] is a cooperative module designed for the MIRADOR distributed intrusion detection system (IDS)
that clusters, merges, and correlates IDS alerts. CRIM’s correlation attempts to reduce administrator burden by
composing sets of related “elementary” attacks into compact attack scenarios that mirror the plans and intentions of
the attacker. While CRIM would save human workload, unlike CID, it requires the human to work closely with the
software to correlate alerts in to an attack plan. CRIM shares data that could make it useful in an infrastructure,
but does not use swarm intelligence, nor does it make e�cient use of false positives.

Cossack [19] employs a distributed set of “watchdog” systems deployed at the boundaries of large networks or
Autonomous System to detect and control DDoS attacks. While this is a decentralized system that would enable
multiple organizations to cooperate in a cyber defense at the large network level, it does not use mobile agents at the
individual host level nor does it allow for emergent cooperative sensor behavior. Cossack does not involve humans
at all, thus it is useful primarily for high-speed malware such as worms.

Similarly, Nojiri, et al. [18] describes a system that is designed to thwart worm attacks. This system uses
decentralized mobile agents for detection and reaction and is designed for emergent features. Essentially Nojiri’s
system is a “white worm” designed to propagate among “friends” to defeat malicious worm spread. Nojiri presents
no mechanism for controlling spread of the worm, and no indication of human involvement.

The hierarchical arrangement of humans and various types of agents has been proposed in a variety of forms. Many
of these did not have security applications in mind and none of them considered the special needs of infrastructures.

Qin, et al.[21] discuss how IDS may be merged with network management systems (NMS) using a hierarchy of
multiple heterogeneous lightweight agents. Similarly, Śmieja[23] presents a heterogeneous hierarchy of agents based
on neural nets and Selfridge’s Pandemonium system[22]. Ibrahim[15] proposes a network management system that
utilizes a hierarchy of mobile agents to manage a distributed system while reducing bandwidth consumption. Parunak
[20] proposes a heterogeneous hierarchy to solve highly constrained military movement problems.

Carvahlo [2] presents the Luna Agent Framework, an agent-based distributed survivability framework that uses
reinforcement learning for mission resilience. Luna implements mission decomposition and distribution with repli-
cation of critical components and di↵erential task allocation based on estimated level of threat. Level of threat is
estimated from a locally perceived attack, or the possibility of an attack, based on threat information that is shared
between similar nodes. While Luna is agent-oriented, provides resilience, and may be applied to cyber security, it
is more of a framework that digital ants could be implemented in rather than a cyber security solution itself. Luna
prescribes no particular degree of human involvement.

30 Sept 2012 7 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

While Ibrahim and Parunak do mention human involvement all of the cited works basically relegate the human to
the status of an observer with very limited interaction within the system. None of them contains a concept of multiple
cooperating organizations and none combines complex-adaptivity with human knowledge and insight. Digital ants
is an agent-based framework for cyber security that provides a place for human agents as well as software agents.
It directly addresses cyber security and can itself be a framework for implementing multiple types of cyber security
technologies in a distributed framework. In the next chapter, we will discuss the contributions of the work to date
and show the value digital ants provides as a framework for hosting other cyber security technologies.

30 Sept 2012 8 PNNL-21854

Chapter 2

Contributions of the work

2.1 Component Technologies

This chapter discusses each part of the Bio-Inspired Approaches to Moving-Target Cyber Defense project: the digital
ants framework (DAF) and the four embedded applications of it. We describe each technology briefly and highlight
the contributions of each.

2.1.1 Digital Ants Framework

We re-engineered the DAF as a lightweight, scalable, extensible, mobile-agent framework in Python. Previously, the
DAF was written in Java and depended heavily upon the Java Agent Development Environment (JADE) framework
that was both cumbersome and required centralized communications. The reengineered DAF now runs on micro-
controllers, individual machines, DETER networks, and the PNNL Institutional Computing (PIC) cluster. The PIC
has 450 nodes1 with 32 cores each for over 14,000 cores. By running multiple partitioned file systems on each core,
we were able to simulate large networks on a fraction of the PIC nodes. We have achieved runs with up to 20K
Sentinels.

Movement and Pheromone Model The new Python Digital Ants Framework has a re-engineered movement and
pheromone model that represents a true contribution of this work. The new model enables decentralized geography
management and provides greater stability for real-world deployment. We use pheromone vectors to implement a
decentralized direction model that enables a directed random walk.

We calculate the e↵ective pheromone vector T as the sum of the vectors: ~D: the deposited pheromone, ~B: the
background pheromone, ~H: the heading bias pheromone equivalent, and ~T = ~D+ ~B + ~H. The discrete probability
function vector that determines the ant’s next direction, P, is T normalized as follows:

~P =
~T

k~Tk
(2.1)

The ith element of ~P , pi is the probability of an ant going in direction i. We the define the cumulative probability
vector, C, as:

cj =
jX

i=0

pi, j 2 {1, . . . , n+ 1} (2.2)

The cumulative probability vector gives the probability range for each cardinal direction as an ordered set.
Random variable X 2 (0, 1] is compared to each cj in order to find cj < X cj+1, and the resulting j is the index

of the new cardinal direction the agent will take. By applying the heading bias vector ~H we ensure that the agent
is more likely to continue in its current direction and unlikely to turn in a retrograde direction.

1 PIC-Compute has 5 head nodes, 450 nodes, and 4 fat nodes. A node equals 32 cores, 64GB memory, 1TB disk. A fat node is a node
with 256GB memory.

9

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

Experimental Parameters The work done for this component has included simulations that have helped refine
the population dynamics, pheromone, and movement models used in the DAF. Particularly, the discrete event
simulator used in this work showed that digital pheromone enables e↵ective coverage and hit times at an initial agent
density of < 0.1. For the large-scale demonstration of the DAF, we experimented with ant densities from 0.03 to
1.0 (population of ants to Sentinels). For this demonstration we used the bio-informatics application with a static
number of signatures, and we did not enable population dynamics for simplicity’s sake. The pheromone decay factor
commonly used was 1.1 (unitless), and at every timestep (second) we reduce the deposited pheromone as follows:
~Dt+1 = ~Dt/decay. We experimented with a variety of pheromone path lengths (the number of hops an activated ant
will go while continuing to drop pheromone) and found that 15 hops produced su�ciently long trails. The deposited
pheromone strength used was 20 units per hop. These settings consistently produced swarms.

Contributions Our re-engineered DAF proved that the digital ants concept will work on real hardware at realistic
scales. It also enabled us to experiment with the many settings that model allows. By adjusting various parameters
such as pheromone path length and decay rates, we found that the DAF can be tuned to a wide variety of real
hardware environments.

2.1.2 Behavioral Indicators

The behavioral indicators component seeks to use non-specific activity signatures to characterize the behavior of
individual systems as compared to their peers. The intent was not to identify signatures of malicious or suspicious
activity, but rather to identify and quantify general indications of behavior that could be used as a basis of comparison
between machines. The underlying assumption is that if a system di↵ers greatly from its neighbors in many ways,
there may be something wrong. Additionally, behavioral indicators may help to characterize what is normal behavior
for each system.

Our approach was to identify sources of data that could be mined for indications of di↵erences between machines.
Then we would use these indicators as the basis for creating digital ant sensor specifications. By mixing data sources
and indicators, we can derive a large number of widely varying sensor types in a fashion similar to how the mammalian
immune system works. Figure 2.1 shows a list of data sources, indicators, and sensor definitions and how they may
be notionally connected.

Figure 2.1: The Behavioral Indicators work uses a hierarchy of data sources, indicators, and sensors. Data sources
may contribute to either indicators or sensors. Connectivity shown here is notional only.

In the DAF, sensors are just packets of data passed between Sentinels at each monitored machine in the enclave.
Sensors carry only a brief history of their observations and the kind of sensor they are from machine to machine.
Thus, we are not passing executable code from machine to machine. Instead, the definition of each sensor type must
already be defined as part of the DAF at each managed node. Sensors of a type that does not exist on the given
Sentinel cannot execute there.

30 Sept 2012 10 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

Each arriving Sensor needs a data source to read to compare its historical observations against. These data sources
are implemented as application programming interfaces (APIs) at each Sentinel. Over the course of this project, we
implemented five data sources (Table 2.1), nine indicators that use these data sources (Table 2.2), and eight Sensor
types (Table 2.3). Each sensor type recombines data from the data sources and the definitions of symptoms from
the indicator types.

Table 2.1: Data sources defined and their implementation status.

Name Description Status

UserLogins Runs the last’ command and parses the output Implemented
and returns it with data grouped by user.

UserGroups Given a user name returns what groups they belong to. Implemented
SensorStorage Sensors can write to and later retrieve data from this data source. Implemented
Syslog Returns parsed log data from kern.log, syslog, or auth.log. User can Implemented

specify log file, how far back to go, search words to filter by etc.
BenchMarkCPU Carries a math expression as a benchmark string and Implemented

returns a list of results.

Table 2.2: Indicators defined and their implementation status.

Name Description Status

Processor Usage Uses standard system tools to report processor usage. Implemented
Program Crashes Kernel logs provide information and frequency on program Implemented

crashes and other recoverable faults
Network tra�c absent user Monitors kernel logs for login events and Implemented

compares tra�c activity
Processor usage absent user Monitors logins and compares processes Partial
Starving processes Identifies starving or deadlocked processes using

basic operating system tools plus analytics Implemented
Mangled network tra�c Looks for unusually formatted network tra�c Partial
Memory Hash Takes a snapshot of memory Future
Browser homepage change Detects recent homepage changes Abandoned
New startup programs Detects new autoloading programs Abandoned

Contributions This research implemented the first set of behavioral indicator ants tuned to perform detection in
real systems. To implement them, we also produced a generic data source, indicator, and sensor architecture that
will work for multiple kinds of ants in the future. We implemented a variety of ant types and demonstrated that
they are able to move around and compare the characteristics of real machines.

2.1.3 Bioinformatic Classification

Because our objective is to detect new types of malware we needed a novel method of detecting previously unseen
malware binaries. We adapted PNNL’s bio-inspired classification method, Machine Learning String Tools for Oper-
ational and Network Security (MLSTONES). MLSTONES creates a vectorization strategy for converting binaries to
“amino acid sequences.” These strings can be matched using the same partial matching technology used to perform
protein sequencing.

MLSTONES was originally formulated as a centralized matching technique where all the vectorizations of each
binary to be analyzed must be brought to the database of motifs for comparison. This project formulated a new
method for decentralized analysis via digital ants. To prove that the digital ants concept enhanced with bioinformatic
classification can discover polymorphic malware in real time at realistic scales we ran experiments on PNNL’s
institutional computing (PIC) cluster.

Because the PIC cluster is not approved for processing of malware, we substituted Windows binaries as a malware
stand-in since the PIC is a Linux cluster. By perturbing the motifs used, we simulated what would happen as the

30 Sept 2012 11 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

Table 2.3: Sensors defined and their implementation status.

Name Description Status

LoginChecker Detects recent admin and root logins. Implemented
LoadChecker Checks CPU load via benchmarking and Implemented

querying OS facilities.
SegFaultChecker Detects number of segfaults in last 20 Implemented

days via log files.
KernelLogVolumeChecker Detects kernel log volume. Implemented
NewAdminChecker Detects accounts that were recently given Implemented

admin via the auth.log file.
OpenFilesChecker Counts the number of currently open files. Implemented
CurrentNetConnectionsChecker Counts the number of currently open Implemented

network connections.
RunningProcessesChecker Counts the number of currently running Implemented

processes.

“malware” changed form and function over time. We ran multiple experiments where a single malware file had to
be located on virtual clusters as large 20,000 machines.

Contributions An example of detecting polymorphic malware is shown in Figure 2.2. In the initial blue (dashed
line) run, all 97 fragments of the malware were identified within 35 seconds. For the red (solid line) run, we encoded
the signatures with a completely di↵erent vectorization strategy and we still matched nearly half of the possible
fragments. This is a testament to the robustness of our detection method even when new malware varies greatly
from the exemplars in the motif database. Swarms will still form for malware that is distantly related to the known
varieties although the swarms may be less intense than those forming for known entities.

2.1.4 Moving-Target Reconfiguration

The Moving-Target Reconfiguration component seeks to develop a new moving-target environment that manages
the security and diversity of computer system configurations using genetic algorithms distributed by Digital Ants.
A computer system configuration consists of a complex set of values (file permissions, port assignments, account
settings, etc.) that individually, or in combination, can yield a system that is functionally appropriate, stable, and
secure. However determining a good configuration is di�cult given the large number of possible system settings and
their potential interactions. In an environment that consists of similar computers, these configurations should still
be di↵erent from one another, yielding a diverse landscape that hinders the progress of potential attackers.

This component uses Genetic Algorithms (GAs) to find configurations that provide the desired functionality while
maintaining a degree of diversity. When applied to system management, the system configuration is modeled as a
chromosome where each setting (e.g. file permissions) is a trait or allele. While each computer can perform a GA in
isolation, the Digital Ants framework is instead used to share genetic information between systems to improve the
chromosome pool. Even though configurations are shared across computers, the mutation and crossover components
of a GA will encourage configuration diversity as done in nature. As a result the proposed approach should migrate
the computer ecosystem towards a stronger security posture. The resulting improvements are illustrated in Figure
2.3.

Contributions Simulations of Moving Target Reconfiguration showed how the system can: (i) increase spatial
diversity of configurations (making machines di↵er from one another), (ii) increase temporal diversity of configurations
(making a single machine change configuration over time), and (iii) reduce vulnerabilities. Experiments to compare
e↵ectiveness of various pheromone models have been performed and are covered in detail in the final report from
Wake Forest University provided as deliverable 132. The work also resulted in several papers ([4, 5]) 3.

2On the CDROM the document name is D13-GA-Final.pdf.
3See MWSCAS-2011-swarming-agents-for-scalable-security.pdf and SAFECON-2011-MT-via-genetic-algorithms.pdf on the CDROM

in the Extras/Papers/ directory

30 Sept 2012 12 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

Figure 2.2: By changing vectorizers, we showed how that even if malware changes to a large degree we can still detect
changed binaries.

2.1.5 Ambient Collaboration

Collaboration among cyber security analysts is a cumbersome process because of the overwhelming volume of security
data available and the data owners’ hesitance to share data for fear of exposing sensitive information. Ambient
collaboration is an application built on the digital ants that enables collaboration without sharing private data.
Ambient collaboration was adopted from another PNNL project, Vulcan, which provides a framework where analysts
can collaborate securely with their peers without risking exposure of private information, without introducing new
tools, and without interrupting analysts’ workflows.

Ambient collaboration enables analysts to understand what information others are attending to by sharing the
questions analysts ask of their data and the information sources they use to stay informed. The questions they ask
include queries against internal databases, joining and exclusion operations performed on data, and command line
activities that are used to narrow data. An analyst may also consult blogs, news sites, and other online sources for
information on security vulnerabilities and methods to protect their enclaves. The Vulcan project was developed as
a way to leverage that communal knowledge within the cyber community.

We wish to convert the questions analysts ask of their data and the information sources they use into standing
queries that will guide future analysis without requiring any e↵ort from analysts beyond that required to do their
normal jobs. Digital ants can then carry these constructed queries throughout an enclave making them standing
queries that return information whenever they match.

It is relatively simple to convert data query terms of various kinds to structured data for standing queries [1],
but it is less straightforward to do so with unstructured data from web sites, etc. [14]. For data queries, the Vulcan
project uses a simple parser to pull out meaningful chunks of data from textual query streams, normalize them
according to a common ontology, publish them to subscribers, and finally to translate the normalized queries back
into a form that is compatible with the local data ontology. For online sources, Vulcan uses a lexical scanner to
pull tokens (e.g., names, places, terms, etc.) from web pages and other sources. Then it uses a natural-language
processing pipeline to determine the contextual meaning of the tokens and how they could be used as queries.

The piece that was missing prior to this research was how to convert these query terms and token streams into
meaningful standing queries against internal data sources. This research does not actually implement the proposed

30 Sept 2012 13 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

(a) Temporal Diversity (b) Spatial Diversity (c) Vulnerability

Figure 2.3: Temporal and spatial diversity are enhanced by moving-target reconfiguration while vulnerability is
reduced.

solution, it merely identifies how the solution might be achieved. We propose applying a semantic reasoning engine,
like PNNL’s CHAMPION reasoner to convert these streams into digital ants that may be used to find matches to
queries of concern to the cyber analyst. A block diagram for such a system is shown as Figure 2.4.

Figure 2.4: Block diagram of how ambient collaboration might be achieved. Vulcan enables collection of data and a
collaboration framework to analysts, the CHAMPION reasoner digests the structured data coming from Vulcan and
creates digital ant specifications that function as standing queries in the digital ants system.

CHAMPION uses auto-associative memory columns (AMCs) to encode domain-specific knowledge into an on-
tology and reason over structured input data. In this particular instance, we have a structured data input stream
provided by Vulcan that needs to have some domain-specific knowledge encoded in it before it can be used to create
digital ant specifications. By leveraging the domain-specific knowledge encoded in the CHAMPION ontologies, an
ant specification can be generated as it reasons over the input from Vulcan.

Given a set of these ants, we can release them randomly in an enclave and see how they perform. If they trigger
swarm formation that leads to identification of other problems, they may be considered successful standing queries.
Those that never trigger useful swarms will slowly be forgotten by the system and will fade from use.

Contributions This work has provided a roadmap for future extension of the Digital Ants Framework to include
Ambient Collaboration by integrating Vulcan and CHAMPION into the DAF and providing a design and require-
ments basis for this integration. It has also produced a publication[1]4. Combining the strengths of each of the three
tools described above, Digital Ants, Vulcan, and CHAMPION, we can provide ambient, unobtrusive, and powerful
analysis aids to cyber security analysts.

4See file VisualCol-2012-Shopping-for-Danger.pdf in the Extras/Papers directory of the accompanying CDROM.

30 Sept 2012 14 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

2.2 Demonstrations

2.2.1 Wake Forest Automatic Defense and Reconfiguration Demo

Our partners at Wake Forest University integrated their Moving-Target Reconfiguration genetic algorithm into
the Digital Ants Framework for a demonstration of how the system adaptively creates new configurations on real
machines. Their setup included 16 Ubuntu 11.10 (desktop version) computers on the DHS DETER cyber range.
Hooks were added to enable the algorithm to change OS configuration parameters on the fly. The fitness of each
configuration was determined using a remote scoring server.

The team derived eleven OS configuration parameters based on results of the annual Wake Forest Hack-Event.
Five of these impact security by creating or fixing a known vulnerability: file permissions, file ownership, net cat
backdoor, multiple root users, password strength. Six parameters provide only diversity with no impact on security
or performance: login banner, TCP bu↵er, max file, max open files, process limits, port range. Initially all the
machines had identical poor configuration, but by the end of the simulation the population showed a diverse yet
uniformly secure set of configurations (illustrated in Figure ??). During the Fall of 2012, the GA will participate as
a defender in the annual Hack Event against human opponents. A more complete account of this work is contained
in deliverable report5.

0 20 40 60 80 100 120
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

iterations

D
iv

e
rs

ity

Temporal Diversity over time

(a) Temporal Diversity

0 20 40 60 80 100 120
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

iterations

D
iv

e
rs

ity

Spatial Diversity over time

(b) Spatial Diversity

0 20 40 60 80 100 120
0

0.5

1

1.5

2

2.5

3

3.5

4

iterations

vu
ln

e
ra

b
ili

ty
 s

co
re

Average Active Configuration Vulnerability Score over time

(c) Vulnerability

Figure 2.5: Average temporal (2.5a) and spatial (2.5b) diversity of the demonstration machines increased while
vulnerability (2.5c) was reduced.

2.2.2 PNNL Scalability Demo

The purpose of the scalability experiment was to verify that the DAF would work on real systems at realistically
large scales as the simulation models had indicated. The independent variables for the scalability tests were (i) the
number of nodes, (ii) the number of sentinels, (iii) the number of rows and columns of the geography, (iv) the sensor
to sentinel density ratio, (v) pheromone bolus amount, (vi) pheromone decay rate, and (vii) the number of steps an
ant will drop pheromone after receiving a bolus.

Although our goal was realism, it is important to note that our experiment was quite di↵erent from an actual
deployment. In a real deployment, we would expect to subdivide the set of Sentinels into enclaves of size O(102)
rather than placing them all in a single enclave. Our layout relies on a priori knowledge of how the Sentinels will
be laid out so that they can address each other, while in a real deployment, we will likely use a layout method
like Vivaldi[12]. The result of these two departures from operational reality actually provided a more pessimistic
presentation of the performance of the DAF than would be expected in a deployment. Thus, we were willing to make
these simplifications to provide a lower bound on performance.

Experiment Description and Results The dependent variable was the aggregate CPU time required to run the
DAF. We desired to see very low average CPU utilization on each node (after the initial start-up period). Because we
were partitioning each real machine on the PIC cluster into as many as 400 lightweight virtual machines to emulate
a very large infrastructure, we expected CPU utilization to be very high for the DAF. However, we noticed that
each DAF instance was taking only an insignificant fraction of the CPU time (typically less than 1%). To keep the

5See file D09-GA-Perf-Analysis.pdf on the included CDROM

30 Sept 2012 15 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

activity level of the ants even, we ran tests using only the Bioinformatic Classification ants, with a single target
dropped shortly after the system was initialized.

We ran tests with 10K, 20K, 30K, and 40K Sentinels. During the course of these runs we encountered several
challenges including competition for usage of the PIC, large-scale outage of the cluster, and even the loss of a
technician who was principally responsible for the CPU utilization metrics. Despite these obstacles, we were able to
produce results that indicated that the digital ants are indeed scalable to moderate to large enterprises.

Lessons Learned In our original rendition of the DAF, we had included a one-second delay for each sensor at each
node to reduce the amount of tra�c and to prevent ants from creating a denial-of-service condition in the protected
network. However, we discovered that, coupled with our queuing strategy, this delay resulted in a cumulative delay as
ants queued up to leave each Sentinel. The cumulative delay caused some ants to spend nearly a minute transitioning
between adjacent nodes which, in turn, caused pheromone to evaporate before other ants reached it. To overcome
this, we increased ant densities to between 10% and 30%, as much as ten times higher than simulations had indicated
would be necessary. This allowed swarming to occur, but also resulted in longer queuing delays, especially near the
target Sentinel.

However, examination of the amount of CPU time expended by each sensor agent for actual processing did not
indicate that the artificial delay was saving much time, so we removed the delay to see what the e↵ect would be. We
expected more uniform coverage from much lower ant densities without significant increase in CPU utilization per
node, and this is what did result.

Additionally, we discovered several artifacts of running the DAF on a cluster computer that interfered with
our experiments. First, the transparent, LUSTRE, file system underlying the cluster had limitations when all 40K
sentinels were simultaneously writing log files to it. This volume of file writing is not an operational requirement
of the digital ant system, but is necessary for performing experiments where detailed knowledge of ant behavior is
needed. So this is not a bottleneck for operational use. LUSTRE also complained when each of the 40K virtual
machines tired to run its own separate copy of Python locally. However, we were able to mitigate this by placing
separate copies of Python on each node. Artifacts such as these will not be a problem when running one Sentinel
per machine in a real enterprise, but they illustrated the dangers of assuming that a particular job control strategy
will work on a given high-population emulation. These lessons will be very valuable when running the DAF on the
client’s testbed system.

2.3 Publications

This work resulted in a number of papers that were written, some of which were accepted for publication. Those
accepted for publication included:

• Michael Crouse and Errin W. Fulp, “A Moving-Target Environment for Computer Configurations Using Genetic
Algorithms,” In Proceedings of the 4th Symposium on Configuration Analytics and Automation, 31 Oct 2011.

• Fink, Glenn A.; Oehmen, Chris; Haack, Jereme; McKinnon, A. David; Fulp, Errin W.; Crouse, Michael B.
, “Bio-Inspired Enterprise Security,” Self-Adaptive and Self-Organizing Systems (SASO), 2011 Fifth IEEE
International Conference on, pp.212-213, 3-7 Oct. 2011

• Crouse M, GA Fink, JL White, EW Fulp, KS Berenhaut, and JN Haack. 2011. “Using Swarming Agents for
Scalable Security in Large Network Environments.” Invited paper in Proceedings of the 54th IEEE International
Midwest Symposium on Circuits and Systems.

• Bruce J, GA Fink, “Shopping for Danger: E-commerce techniques applied to collaboration in cyber security,”
in Proceedings of VisualCol 2012 workshop, IEEE Press, Denver, CO.

• Fink GA, KS Berenhaut, and CS Oehmen. 2012. “Directional Bias and Pheromone for Detection and Verifi-
cation on Networks.” In Sixth IEEE International Conference on Self-Adaptive and Self-Organizing Systems.
PNNL-SA-87555, Pacific Northwest National Laboratory, Richland, WA.

Additionally, we have a number of planned that stem from this work or follow-on work related to this project:

• A short article in Transmission and Distribution World professional journal

• An article on scalability of the DAF for Supercomputing or TPDPS

• A RAID or Security and Privacy paper comparing digital ants to IDS

30 Sept 2012 16 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

• Two book chapters on digital ants in a planned book titled, Movement on Networks, edited by faculty from
Wake Forest University

This work has thus provided many contributions to the state of the art in agent-based systems and cyber security.
We plan to build on this legacy in the future.

30 Sept 2012 17 PNNL-21854

Chapter 3

Path Forward and Conclusion

The digital ants framework that made all this work possible is far from complete. Many enhancements remain to be
done, and much work will be required to prepare it for operational use. It is our hope that the research investment of
NITRD will be built upon by other agencies and companies who see promise in this new approach to cyber security
of large enterprises.

Swarm Detection Digital ants is intended to be a “lights-out” system that does not need constant monitoring by
human analysts. Without this ability, it will never be able to scale to large enclaves and enterprises. Thus, we desire
our system to be able to detect when swarms are forming and notify the human operator or take appropriate action
automatically. To do this, we must develop reliable metrics for detecting swarm formation. Swarms are not simply
large numbers of agents appearing on a machine. Instead, they are a function of the number of recent detections on
adjoining nodes, the amount of pheromone pointing in the direction of the swarm, and the gradient of pheromone in
the enclave. Finding the proper mix of detectable conditions and finding the right, decentralized way to detect them
is a subject for ongoing work.

Ambient Collaboration While Ambient Collaboration was investigated in this work, no implementation was
derived. We would like to implement and test Ambient Collaboration in future versions of the DAF. We believe that
Ambient Collaboration would be very valuable to our clients who must investigate cyber events that are distributed
throughout the world in environments where e↵ective sharing is di�cult. We propose applying a semantic reasoning
engine, like PNNL’s CHAMPION reasoner to convert streaming tokens from the Ambient Collaboration capability
into sensor ants that may be used to find matches to queries of concern to the cyber analyst. Enabling Ambient
Collaboration would be a game-changing technology that would provide an important advantage to cyber defenders.

Population Dynamics One of the most adaptive features of the digital ants is their ability to dynamically manage
the population of agents in response to need and available resources. For this project, we concentrated on simply
creating an implementation of the DAF, and we saved population dynamics for future work. This feature of the
digital ants must be enabled to make the ants work operationally. Particularly, population dynamics would prevent
attacks where an adversary might attempt to partition the network and seal o↵ all the ants from the area where
he would like to work unobserved. Additionally, population dynamics prevents the digital ants themselves from
producing a denial of service e↵ect on the defended network.

Detecting polymorphic malware Our bioinformatic classification has shown itself very flexible in discovering
target binaries despite large changes to their structure. However, we believe that concrete demonstrations of this
capability against real polymorphic malware are necessary to show measure the actual e↵ectiveness of the system
against realistic threats. As malware develops more and more complex anti-forensic capabilities, an actual trial of
the system against these adversaries is the only way we can determine the e�cacy of our approach.

Large-scale demonstrations While we have prototypically shown that DAF can scale to large enterprises, we
must increase the scale of these by one or more orders of magnitude, and concomitantly, we must increase the fidelity
of these demonstrations to include the entire DAF and its full set of capabilities. This will enable us to make claims
of e�cacy with quantified confidence in the features of the DAF.

18

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

Higher-level reasoning In this project, we have necessarily limited our scope of implementation to the Sensor
(ant agent) and Sentinel level. Even our implementation of the Sentinel has been necessarily simplistic. The DAF
can accommodate much higher level reasoning at the Sentinel and Sergeant level than we have yet implemented.
These higher level functions could be accomplished by fusing digital ants with other reasoning software such as the
CHAMPION reasoner or the KAOS policy engine. Such high-level reasoning will enable the system to be much more
usable by humans and will make the system a better collaborator with human analysts.

Smart grid integration A follow-on project that uses the DAF is investigating using digital ants to protect the
smart electric grid from cyber and physical threats. After the conclusion of this project, much will still remain to
make the DAF ready for implementation in end-user devices, etc. We hope to find clients in the commercial and
government sectors who will partner with us to use digital ants to protect these critical infrastructures from malice.

Conclusion While this project has amply demonstrated the promise that solutions like digital ants holds for cyber
security and other applications, much work remains to make the approach tenable. We have shown that this approach
can scale dramatically and that it can enable monitoring of large systems with little reliance on human interaction.
This e↵ort has advanced e↵orts to secure digital infrastructures by developing a dynamic means to adaptively defend
complex cyber systems. We hope that this work will benefit both our client’s e↵orts in system behavior modeling
and cyber security to the overall benefit of the nation. To that end, we intend to continue work on the digital ants
and seek partners and clients to continue pursuing these worthy goals.

30 Sept 2012 19 PNNL-21854

Appendix A

Milestones and Deliverables

This appendix summarizes the milestones and deliverables of the Bioinspired Approaches to Moving Target Defense
Strategies project. The milestones and deliverables in the statement of Work (SOW) were divided into research tasks
as follows:

Task 1: Providing a Robust Moving Target Environment using Mobile Agents and Distributed Genetic Algo-
rithms

Task 1A: Concept Modeling and Initial Explorations of Mobile Agents and Distributed Genetic Algorithms

Task 1B: Combine the Social Insect Genetic Algorithm Elements

Task 1C: Advanced Prototype Implementation/evaluation

Task 2: Biology-based classification, recognition, and sequestration of cyber entities: shifting the burden of
complexity onto the attacker

Task 2A: Selection and Preliminary implementation in Applications Area.

Task 28: Formalize the Approach for Selected Area

Task 2C: Test the Prototype Implementation

In concert with the technical advisor, PNNL translated the SOW into a schedule of milestones and deliverables
that traced back to the original tasks and deliverables and reported progress in the monthly DI-MGMT-80368 status
reports. The final DI-MGMT-80368 report contains the mapping of each project milestone and deliverable to the
project schedule, a final tallying of these results, and the completion dates of each milestone. The dependencies of
these milestones and deliverables numbered as in the management report is recapitulated in Figure A.1.

Figure A.1: Milestone and deliverable dependencies.

20

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

Further, for the ease of access to deliverables, PNNL has agreed to provide a CDROM recapitulating all publica-
tions, graphics, movies, and software1, indexed by the task numbers listed above. All these items, with the exception
of the final report have been previously sent with the monthly progress reports, but the CDROM will provide a
convenient index of all the products of the project. Some of the deliverables have been recapitulated in this report,
others are in files on the CD. The file names and locations of all the deliverables are summarized in Table A.1 below.

Table A.1: Bio-inspired Approaches to Moving Target Defense Strategies deliverables by file and location. Note,
only deliverables, not milestones are listed in this table.

Description Location

D01 Draft publication of approach methodology. D01-SASO-Poster.pdf
D03 Complete initial measures, develop benchmark platform and threat D03-Scenario.pdf and

model. Appendix B
D04 Produce a performance analysis and simulation results publication. D04-mwscas2011.pdf
D05 Deliver prototype of social insect concept. (part of D17)
D08 Combine methodology of approaches and deliver prototype. D08-DES.zip
D09 Perform a preliminary assessment of combined approach, and D09-GA-Perf-Analysis.pdf

choice of testing/evaluation testbed.
D10 Draft a publication and deliver DRAFT publication describing D10-SafeCon-2011.pdf

results and preliminary tests
D13 Draft publication implementation approach and results. D13-SpatialComp-2012.pdf

D14 Deliver report that details software sensor specifications, system D14-MLSTONES ant specs.pdf
architecture for fragmenting sequence data and interface between
social insect modeling platform and string matching archive system.

D16 Deliver test suite and validation platform. (part of D17)
D17 Deliver a prototype of the integrated system (social insect modeling D17-LeapDaf.sparseimage

and string matching archive).
D19 Deliver a brief paper describing the selection process, reasons for D19-Process-Justification.pdf

final selection, and methodology to be used going forward.
D20 Demonstration of simulation of digital ants application in this area. D20-Demo-Results.pdf
D21 Deliver paper describing the vectorization strategy and the prototype D21-Vectorization-Strategy.pdf

ants application vectorization strategy with figure of merit.
D22 Deliver a prototype of the ant application using an appropriate D22-mlstones ant sim.tar.gz

implementation software language.
D25 Deliver a report describing the reference implementation, test process. D25-SASO2012.pdf

1All software files included are research prototypes. They are provided as-is and not guaranteed to be suitable for any particular
purpose.

30 Sept 2012 21 PNNL-21854

Appendix B

Bio-inspired Approaches to Moving
Target Defense Strategies Operational
Scenario

This scenario describes use cases that provide a visionary endpoint for which the Bio-Inspired Approaches to Moving
Target Defense Strategies project deliverables are a significant step. The scenario focuses on situations where the
objective is defending an enterprise- computing infrastructure from cyber attack through a variety of attack vectors.
We pay particular attention to the need for detecting malicious capacity of executable code and compromised com-
puting elements. We assume that humans will always have a role in the decision making process, but that we can
enable them to make rapid, well-informed decisions through delocalized sensing coupled with transparent (i.e. no
penalty for false positives) secondary responses.

B.1 Defender-side scenario description

Goals The primary goals of the Digital Ants framework are to (1) enable digital ant applications of various kinds
to operate simultaneously over a common topological and logical domain; and (2) demonstrate this capability on
two di↵erent but overlapping applications in enterprise network security (malware detection and optimizing system
configuration).

Domain For this project, our domain of interest is enterprise IT systems where each node represents a single
host (server, desktop system, laptop, portable device, or other networked device). At scale, this will model a large
(100,000+ systems), globally distributed networked enterprise with complex, hierarchical structure (via enclaves,
etc.). Over this real network structure we will construct a logical network topology for which each node has a
predefined number of neighbors. This will allow the digital ants to traverse the enterprise in a regular 2-D mapping
that obeys regular Cartesian geometry, and over which pheromone signals can be deposited.

Framework The digital ants framework at the core of the project will support logical mapping of a modeled
globally distributed enterprise IT infrastructure onto a regular 2-D domain across which digital ants of di↵erent
types will traverse. The framework will be demonstrated using digital ants of two basic types: (1) ants that have
sensors for detecting malicious software in the file systems resident at any node; and (2) ants that transport candidate
configurations of high fitness from one host to another to support genetic-algorithm implementation of configuration
optimization. Each type of ant will have its own sensor, fitness function, pheromone rules and interactions, and
attributes. Both ant types will traverse the same logical topology simultaneously and alert sentinel and human users
regarding their behavior and results.

B.1.1 Application scenarios

(i) Malicious code detection The primary unit of analysis that malicious code detection ants will perform is
a calculation of similarity between translated representation of files on a host (node) with respect to a list or
sub-list of motifs that represent malware families. Ants may be created that “specialize,” meaning that they

22

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

look only for one or a few types of malware signatures. Alternatively, ants may search against all malware
signatures at a high level, and then produce more specific ants that look for subfamilies within that family.
Computing capacity and memory available to ants will be the primary determinant in which strategy is used.
We want to maximize the chances of identifying “bad” files without impacting users on a system. Ants finding
malicious code will be rewarded (and hence “live” longer), and deposit pheromone trails pointing back to the
infected node attracting other ants. In the case that ants are specialized, swarming will be a means to suggest
to a sergeant or sentinel that multiple infected files are present on a node. In the case that ants are not
specialized, swarming will indicate that multiple families of a malicious code instance are present on a node.

(ii) Configuration optimization The primary unit of analysis for configuration optimization will be to use
genetic algorithms to discover a configuration that will most likely result in survival of a node. Each node will
have many candidate configurations locally generate from ongoing genetic algorithm calculations. However,
to prevent local minima from obscuring solutions with high degree of fitness, digital ants will be used to
transport candidate configurations between systems. The expectation is that this will ensure highly optimal
configurations will be seeded into the candidate list of other nodes once they are found, thus increasing the
likelihood that more globally optimal solutions will be reached at each node..

B.2 Threat-Side Scenario Description

Key Features:

• Industrial espionage is the motivation.

• Attacker has no practical limits on means and expense of attack.

• Information available to attacker is limited to publicly available reconnaissance data and what can be obtained
via social engineering.

• Adversary is patient.

• To win, the attacker’s identity must not be revealed.

The attacker may exploit the following system vulnerabilities:

• Patching is di�cult to automate in large, diverse systems, and humans may be unreliable.

• Using COTS security products makes it easy for attackers to analyze possible security system flaws.

• Legacy compatibility limits security system capabilities.

• Security systems may share the same host with the asset that is the target of attack (TOA).

• Overloading the security mechanism by a simple multithreaded attack may interrupt the operation of the asset.

• Security systems are usually software based, with no autonomic recovery mechanisms.

• Crashing the security system may expose the TOA.

• It is very di�cult to deeply analyze network behavior at runtime and correlate changes of behavior together
on a multi-enclave system.

• It is too hard to contain attack di↵usion in a large complex internetwork.

• Most competing companies are reluctant to share information due to fear their proprietary information may
be violated.

• Attacking the system is a low-risk activity for a clever, resourceful attacker.

• A single attack may work on multiple similar systems.

Attacker tools

• Hardware fabrication capabilities.

30 Sept 2012 23 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

• Zero-day system exploits.

• Social engineering methods to recruit insider agents via social networks.

• Well-trained and funded attackers.

• Stolen certificates and digital keys.

• Experimentation lab to mimic the TOA and the defense systems.

Attacker goals

• Steal industrial secrets.

• Operation disruption to cause losses at will.

• Persistent access to defender’s systems.

• Avoid revealing the attacker’s identity/a�liation.

B.3 Scenario Narrative

Players The attacker is a sophisticated hacker group hired by XYZ, Ltd. to conduct industrial espionage and
stealthy denial of service against ABC, Inc. and related firms. XYZ has two goals: foremost it wants to steal
proprietary information from ABC. Second, XYZ wishes to disrupt ABC’s operations, giving XYZ a competitive
advantage. The victim is ABC, Inc. and its competitors and business partners. ABC is a multinational organization.
ABC has 100,000 employees distributed over a well-connected set of 200 branches that are distributed over 20
countries. These branches contain interconnected cyber and physical components. Some 120,000 PCs and laptops,
35,000 embedded, networked computing systems (process-control systems, robotic appliances, printers, etc.), and
1,000 servers organized in clusters comprise ABC’s computing end devices. ABC also assigns smart phone PDAs to
selected employees based on their job. There are 25,000 PDA/smart phones.

Ingress Vectors Social engineering is used to install Trojan horse downloader programs on systems within the
ABC infrastructure. The malware modifies the machine configuration under the cover of an installation program
[9, 3]. The malware may also surreptitiously use the microphones and video cameras of victim machines, and may
establish unauthorized WiFi access points [17].

Establishing a Beachhead Malicious programs downloaded by the Trojan use passive network monitoring to
identify key machines and map the network for further exploitation. The malware uses advanced packers to obfuscate
the true nature of the executable. The malware creates the fake WiFi access points to perform man-in-the-middle
attacks to gather information destined for the Internet. It waits for sounds and images with su�cient entropy to
occur in its sensors and funnels the video and audio feeds from its sensors out the high-bandwidth corporate network
after hours. The malware sends lists of available machines and network monitoring results to the attacker across the
network periodically. When a machine is positively identified as a potential target, the malware conducts an active
reconnaissance and attempts to subvert it using the trust relationships within the corporation to its advantage. It
may also use credentials gathered from the access point or other reconnaissance activities to masquerade to targeted
systems as a legitimate user. The malware slowly returns directory listings to the attackers who are looking for
exfiltration-worthy content. The attackers use the information gathered to identify executives or employees who
have access to and responsibilities for industrial process control systems. Once promising employees are identified,
the adversary targets them for spear-phishing attacks meant to gain their confidence and further their infiltration of
the target organization. On subverted machines, the attackers attempt to change the configuration and patch the
operating systems so that other malware will be disabled or protected against. They do this to protect their own
command and control network from disruption by other malware.

Exploitation The goal of social engineering attacks is to get malicious software on the victims’ machines that
will take over their machines and grant access to sensitive information and o✏ine industrial control systems. The
attackers take advantage of the users’ privileges and access to change the configuration of these systems so that they
will be easier to access from the outside or vulnerable to certain future attacks. When a system that talks to an
industrial control system is identified and compromised, the adversary downloads malicious software to the controller
that will cause small performance degradations and reduction in machine usable lifetimes.

30 Sept 2012 24 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

Extension and consolidation Attackers seek to adjust security controls and configurations of systems that
contain promising repositories of documents so as to retain access. They periodically use the Trojan program to
download utility programs for accomplishing specific missions. Because degrading or destroying industrial process
control system may not always be to the attackers’ advantage, the attacker only activates this mission at a strategic
time when it will be of greatest market advantage to XYZ, Ltd for their competitors to be disabled. The attackers
are constantly monitoring the victim network and their exploited machines to ensure stability. Attackers try to
remove evidence of their presence from machines that are compromised but found to be not useful toward further
exploitation.

Command and control The attacker uses a botnet fielded from within the victim’s network to accomplish his
work. The botnet uses strong symmetric encryption with preshared keys (bot-to-bot) and the industry standard
TLS (HTTPS to external machines) to protect communications in the botnet from being detected [8]. Only bots
known to be on executives’ systems are allowed to talk outside the company, and then only by hooking an executive’s
browser while he is actively surfing the web. Other bots relay their messages to the attackers through the executive
machines to reduce the profile of the command and control network.

B.4 How Digital Ants Deliverables Combat this Threat Scenario

Digital Ants Genetic Algorithms will compare configurations across all monitored systems, noting anomalies and
seeking a set of highly intrusion-safe configurations. Scalablast Ants will defeat the obfuscation induced by binary
code packers and will search for motifs showing relationships of code artifacts to known malicious code. Behavioral
indicators ants will note deviations from the normal among systems within the same enclave, highlighting anoma-
lous behavior. Ambient Collaboration will enable analysts within the target organization(s) to share information
anonymously, automatically searching each organization’s computers for indicators of potential compromise by using
search terms and contents gleaned from members’ analysis activity.

30 Sept 2012 25 PNNL-21854

Appendix C

Digital Ants Framework Architecture

C.1 Overview

The framework is written in Python, which was chosen for its flexibility, fast development cycle, strong library
support, and its ability to be run of many di↵erent architectures and operating systems. The framework is meant to
be just that: a mechanism to build domain specific DigitalAnts applications. As such it is engineered in such a way
as to provide the majority of the boilerplate code, thus allowing the user to focus on the behavioral aspects of the
agents.

The framework implements Sergeants, Sentinels and Sensors. Communication between the Sergeants and Sentinels
is done with TCP/IP sockets, using plain-text messages. This can be changed in the future, but is appropriate for
development where it is useful to telnet to a port and send commands.

Each Sentinel is identified by an IP address and a port number. A configuration file exists that the Sergeant uses
to contact each Sentinel to join it to the Sergeant’s enclave. In addition the Sergeant informs each Sentinel of its
neighbors, which are also specified in the configuration file.

C.2 Getting Started

A ‘developer’ domain example is in subversion, called: ‘dev’. This is a Python package at the same level an the
digitalants package, which contains the framework. Inside the ‘dev’ application are implementations of all of the
agent types as well as some data sources. These are not very useful beyond providing a mechanism to test while
developing the framework. Hopefully they will also prove instructive.

To see how the all the pieces work together run the following from two di↵erent command prompts (known to
work on Mac OS X and Linux):

Program 1 Starting the agent framework.
./start_agent.py dev sentinel Sentinel sentinel-config-1.xml
./start_agent.py dev sergeant Sergeant sergeant-config.xml

The first line starts a Sentinel and the second starts a Sergeant. start agent.py is the name of a script that loads
the agent definitions, creates a new instance with the specified config file (the last parameter) and runs the agent.

The second parameter indicates the package that contains the code. The third is the module that contains the
agent, while the fourth is the class name of the agent.

The enclave specified in the sergeant-config.xml file actually contains five Sentinels. The implication being that
the first line can be executed five times (each in its own ‘terminal’ window) with the config file modified appropriately
(sentinel-config-1,2,3,4,5.xml).

Typing ctrl-c in the window that is running the Sergeant will shutdown the Sentinels and end the simulation.

C.3 Framework

Below the main aspects of the framework are described in some detail.

26

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

C.3.1 Agents

The Sergeant, Sentinel, and Sensor are all agents. There is an AbstractAgent class from which all of the agents
derive. It contains a single abstract method execute that is where subclasses can customize the behavior of each type
of agent.

AbstractAgent::execute is the main ‘run loop’ of each agent. In the case of the Sentinel and the Sergeant, this is
executed as part of the external initialization of those classes. For the Sensor, it is executed by the Sentinel.

There are two scripts used for development to start the Sergeant and Sentinel: start sergeant.py and start sentinel.py,
respectively. These each take the XML configuration file as a parameter.

C.3.2 Sergeant

The Sergeant is responsible for creating the network of Sentinels, creating and dispatching Sensors to the network
and as a central logging location. An XML configuration file is loaded by the Sergeant that specifies the Sentinels
(by IP address and port) and their neighbors. The file also contains the Sensor specifications.

The Sergeant has no default behavior, but this can be specified in a subclass. There is currently a development
Sergeant subclass that sends a single Sensor of each type to a random Sentinel.

C.3.3 Sentinel

The Sentinel is responsible for managing an interface to data sources for Sensors to read, as well as receiving and
executing Sensors. The Sentinel also packages and transmits (migrates) Sensors to its neighbors.

The Sentinel has an XML configuration file that specifies its ID (synonymous with the IP port) as well as its data
sources. Upon startup the XML file is read and the data sources are instantiated and stored in a list by the name of
the data source. The Sensor has a method, ‘inspect data’ that the Sensors call. The method takes two parameters:
the name of the data source and an optional parameter to pass to the data source. The Sentinel invokes the get value
method on the data source, passing the optional parameter and returns the value to the Sensor.

When a Sentinel receives a new Sensor it is added to an execution queue. If there are Sensors to execute it will
run the execute method of the Sensor and then sleep for a configurable amount of time.The Sentinel has no default
behavior besides managing Sensors and data sources. However subclasses of the Sentinel class can do any type of
processing they like.

Data Sources Data sources are the means by which a Sentinel can provide data to a Sensor. Each data source
is a subclass of AbstractDatsource which simply has an abstract method get value which takes a parameter. The
implementation can store values, make calls to the operating system, or do anything that the user deems necessary.

C.3.4 Sensor

Sensors inherit from AbstractSensor which has an abstract method execute. The base class provides initialization
to assign a unique ID to each Sensor (this is one reason that Sensors are created at the Sergeant). In addition the
base class provides a memorize method that allows the Sensors to maintain a limited memory (default is 5). [[This
should be broken into a subclass, as not all Sensors will need this.]]

Each Sensor contains a reference to the Sentinel instance that it is currently visiting. This reference is managed
by the Sentinel when a Sensor is received and unpackaged. The Sensor uses this reference to communicate with the
Sentinel, e.g., to move to a new Sentinel or to query a data source.

C.4 Logging

The framework has a mechanism for centralizing all logging at the Sergeant level. AbstractSensor has a log method
which takes a level and a message. This method calls into the AbstractSentinel log method which then writes the
message to the Sentinel’s logger. This logger uses a DatagramHandler which allows it to send its messages to a
server. For the Sentinel, the DatagramHandler points to the Sergeant who writes messages it receives to its logger.
Currently the Sergeant’s logger writes to a stream logger, but this will be changed to a file handler.

The logging.conf file is used to setup the framework’s logging. This determines the default log level, format of
messages, etc. Additionally, the Sergeant’s configuration file has a ”loggingPort” attribute which is used to setup
the server which listens for log messages. This port is handed to the Sentinel when it joins an enclave in order to
setup its DatagramHandler to point to the Sergeant.

30 Sept 2012 27 PNNL-21854

Appendix D

Porting the Digital Ants Framework

At this writing, the Digital Ants Framework is a research prototype for very large infrastructures that is not yet
suitable for portable installation and running. However, this appendix outlines some of the requirements for porting
the DAF to another machine for testing and demonstration of this sort. The list of dependencies is not complete
since porting is a very delicate, manual process, currently. Additionally, it makes little sense to run the DAF on very
small networks (less than about 100 machines) because even at low sensor densities they quickly become saturated
obviating the need for pheromone. Preferably, the DAF would be run in large systems with 10,000+ machines, but
such a test environment is di�cult to obtain. However, we have made extensive use of simulations and virtualization
on cluster-type supercomputers to test the utility of the DAF at scale.

D.1 Running the DAF in a Cluster Computing Environment

We currently run all our large-scale runs of the DAF on the PNNL Institutional Cluster (PIC) computer. We will
eventually migrate it to other clusters for testing that is not appropriate on the PIC, but we have adapted the DAF
for this environment just for this purpose. Here are some minimal requirements for a cluster computer to run the
DAF:

• System must have Python 3.2.2 and Perl 5.8.8 or later installed

• Must be a multi-node Linux cluster, running Red Hat Enterprise Linux

• Must use Infiniband interconnections with MPI communication library

• Must allow Ethernet sockets to connect nodes of the cluster

• Must enable a manual logical overlay network to be constructed over it so that all the nodes may be addressed
by coordinate

• System must use Simple Linux Utility for Resource Management (SLURM) or equivalent cluster job manage-
ment software

Adapting the DAF for a new cluster environment is a complex matter that involves a great deal of manual tuning.
Cluster computation often relies on precise timing and predictable usage of input/output channels, etc. Running the
DAF on the PIC has uncovered many di�culties, not related to the DAF itself, but to the cluster environment:

1. Running 10,000 copies of Python simultaneously brought the system down.

2. Writing thousands of files to the central storage simultaneously crashed the LUSTRE file system.

3. Writing multiple hundreds of files to the same node at the same time proved impossible.

4. Running more than 400 instances of the DAF per node failed quietly due to unexpected deadlock when more
than two nodes were employed.

28

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

These examples illustrate the fragile nature of supercomputing environments that are optimized for high-speed
processing, not as simulations of large computational infrastructures. However, through careful tuning of our use of
the environment, we were able to overcome each obstacle (these and many more) in turn.

A general description of the batch processing that takes place to prepare the DAF to run on the PIC for ants run
with just bioinformatic matching ants is as follows:

1. The SLURM sbatch command kicks o↵ Perl scripts on each machine that is part of the enclave.

2. Perl scripts create the virtual machine infrastructure for the Sentinels to run on.

3. Perl scripts copy all the files and directories required to each virtual machine.

4. The Perl scripts launch all the Sentinels and Sensors on that node using the colonize and subcolonize scripts.

5. The colonize scripts fork “left” and “right” children and then execute themselves until all the required sentinels
on the node are created.

6. The Sergeant script tells each Sentinel who its neighbors are according to the cluster’s physical and logical
configuration.

7. The subcolonize scripts launch creating the appropriate number of ant agents on each node.

8. The Sensor agents begin to move around the enclave. The first ones begin to move before all the Sentinels are
finished being created.

9. One can check to see whether all the Sentinels are running using squeue | grep <userid>. R means Running
and it will show what node each job is actually running on. Log files are written to /pic/scratch/<userid>/logs.

10. After all the Sentinels are running, the user drops an infected file on a node of his choice.

11. After running for several hundred seconds more, the user terminates the job by sending the terminate message
to each Sentinel.

12. Once all the Sentinels are terminated, the user must go to the /pic/scratch/<userid>/logs directory and
type ./logmerge.csh <job id>.

13. Finally, the output can be collected and copied into the user’s scratch space by typing ./prep.csh <job id>.

D.1.1 The DAF Backplane

Because the very high scale DAF runs use multiple lightweight virtual machines to oversubscribe a cluster and
emulate a large enclave, there are multiple Sentinels on each node of the cluster. Thus, all the Sentinels on a single
node will report the same values for data sources that relate to the CPU, etc. To solve this problem, we have designed
the Backplane, a simulation layer that reports realistic individual results for each virtual partition of each machine.
The alternative for large runs would be to obtain tens of thousands of real machines to run on, and that was not
tenable.

The DAF Backplane provides a simulated data layer for each sentinel. This backplane has the following properties:

• Ability to run di↵erent conditions for each simulated host: normal use, non-malicious errors, infected, etc.
Together, the set of conditions produces a scenario.

• Communication channel separate from the platform’s to allow simulated nodes to communicate, e.g., for spread-
ing conditions among backplane hosts.

• A means for backplane hosts to find their neighbors to simulate the spread of malware without reference to the
digital ants’ geography.

• An internal store for data which DataSources require (CPU usage, file, network usage, etc.).

• Ability to add behaviors to the Backplane to modify hosts’ internal states to simulate user activity, background
activity, and malicious activity.

• Data sources that take a time argument so that they only execute when an agent makes a data request.

• The ability to start a sentinel in either real or virtual mode so that the backplane may be disabled for one-to-one
runs against real systems.

• A Shadow Sergeant that can pick a backplane instance and tell it to start the worm behavior program.

30 Sept 2012 29 PNNL-21854

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

Backplane Communication As mentioned above, there is a backplane host for each sentinel, with multiple
sentinel/backplane pairs per node. Since we have only one IP address per node, we assign each backplane host an
IP address/port pair. However, since every backplane host needs to be able to send and receive messages from all
of the other backplane hosts we have selected a particular port for at least one backplane host to listen to on each
host. When a backplane host starts up it attempts to bind to this port. If the port is not bound, then this backplane
host will become the “primary node backplane host.” If the port is already bound, then we can assume that another
backplane host is listening on that port. In this case, the new backplane host will bind to another port and send
a message to the primary host telling it what port it is listening to. In this way, all simulated backplane hosts can
communicate via an independent communication channel separate from the DAF.

Backplane Scenarios The backplane is started by the same script that starts the Sentinel and is passed the same
information (ID number, address, etc.). Some decisions on which behavior to run may be based on ID numbers.
For instance, assign browser behavior for IDs ¡ 100, and assign workstation behavior to IDs =¿ 100. Once the
base behaviors are set up, the worm behaviors like spread rate, e↵ect on backplane data sources, and deactivation
conditions may be specified. The Scenario Coordinator monitors Sentinels for startup and sends a signal to some
subset of backplane hosts to start the worm behavior. The backplane scenario plays out interdependently with the
DAF with the backplane worms a↵ecting what the DAF Sensors see and the Sentinels being able to deactivate worms
under certain specified conditions.

By testing on a single core Linux Mint VM we gathered four sets of typical values that may be combined into
backplane behaviors:

1. No active behaviors. Reported values:

• CPU: 10% of single core

• Network: No connections

• Memory: 480M - 550M used

2. Web browsing. Reported values:

• CPU: Up to 10% of single core when not loading pages or doing stu↵. Up to 70% when interacting with
the browser.

• Network: Average of 20 connections

• Memory: 670M used. (about +120M)

3. Compiling Linux kernel. Reported values:

• CPU: 100% of a single core (split 70/30 between user and system)

• Network: 0 connections.

• Memory: 1000M (+450M)

4. Untarring Linux Kernel. Reported values:

• CPU: 70% of a single core (60/10 split user and system)

• Network: 0 connections.

• Memory: 950M (+400M)

By combining these behaviors and selectively perturbing them when the worm arrives, we can simulate a realistic
scenario in a large enterprise. While this chapter has not presented a thorough enough description of the DAF that
it can be directly ported to any environment, it is our hope that it will assist those who want to port the DAF to a
system of their choice to identify requirements needed to perform such a port.

30 Sept 2012 30 PNNL-21854

Bibliography

[1] Bruce J, GA Fink, “Shopping for Danger: E-commerce techniques applied to collaboration in cyber security,” in
Proceedings of VisualCol 2012 workshop.

[2] Carvalho, M. 2009. A distributed reinforcement learning approach to mission survivability in tactical MANETs. In
Proceedings of the 5th Annual Workshop on Cyber Security and Information Intelligence Research: Cyber Security
and Information Intelligence Challenges and Strategies (CSIIRW ’09), Frederick Sheldon, Greg Peterson, Axel
Krings, Robert Abercrombie, and Ali Mili (Eds.). ACM, New York, NY, USA.

[3] Crenshaw, A., Programmable HID USB Keystroke Dongle: Using the Teensy as a pen testing device. Available at:
http://www.irongeek.com/i.php?page=security/programmable-hid-usb-keystroke-dongle. Last viewed:
5 July 2011.

[4] Crouse M, GA Fink, JL White, EW Fulp, KS Berenhaut, and JN Haack. 2011. “Using Swarming Agents for
Scalable Security in Large Network Environments.” Invited paper in Proceedings of the 54th IEEE International
Midwest Symposium on Circuits and Systems.

[5] Crouse M and EW Fulp, “A Moving-Target Environment for Computer Configurations Using Genetic Algo-
rithms,” In Proceedings of the 4th Symposium on Configuration Analytics and Automation, 31 Oct 2011.

[6] Cuppens F and A Miege (2002). Alert correlation in a cooperative intrusion detection framework. In Proceedings
of the 2002 IEEE Symposium on Security and Privacy

[7] Fink GA, CS Oehmen, JN Haack, AD McKinnon, EW Fulp, and MB Crouse, “Bio-Inspired Enterprise Security,”
Self-Adaptive and Self-Organizing Systems (SASO), 2011 Fifth IEEE International Conference on, pp.212-213,
3-7 Oct. 2011

[8] Golovanov, S. and Soumenkov, TDL4 Top Bot I. http://www.securelist.com/en/analysis/204792180/TDL4_
Top_Bot. Last viewed: 5 July 2011.

[9] Goodin, D., Hackers pierce network with jerry-rigged mouse: Mission Impossible meets Logitech. Posted
in Enterprise Security, 27 June 2011. Available at: http://www.theregister.co.uk/2011/06/27/mission_
impossible_mouse_attack/. Last viewed 5 July 2011.

[10] Greitzer FL, and RE Hohimer. 2011. ”Modeling Human Behavior to Anticipate Insider Attacks.” Journal of
Strategic Security 4(2):25-48. doi:10.5038/1944-0472.4.2.2

[11] Haack JN, GA Fink, WM Maiden, AD McKinnon, SJ Templeton, and EW Fulp, “Ant-Based Cyber Security,” in
Proceedings of the 8th International Conference on Information Technology: New Generations. IEEE Computer
Society, 2011.

[12] Dabek, F., R Cox, F Kaashoek, and R Morris, 2004. “Vivaldi: a decentralized network coordinate system,”
SIGCOMM Comput. Commun. Rev. 34:4, pp. 15–26, ACM, New York, NY, USA.

[13] Hohimer RE, FL Greitzer, CF Noonan, and JD Strasburg. 2011. ”CHAMPION: Intelligent Hierarchical Reason-
ing Agents for Enhanced Decision Support.” In Proceedings of the Sixth International Conference on Semantic
Technologies for Intelligence, Defense, and Security (STIDS 2011), November 16-17, 2011, Fairfax, Virginia, vol.
808, ed. PCG Costa and KB Laskey, pp. 36-43. CEUR Workshop Proceedings, Aachen, Germany.

[14] Hui PSY, J Bruce, A Endert, GA Fink, ML Gregory, DM Best, and LR McGrath, “Towards E�cient Col-
laboration in Cyber Security” in Proceedings of the 2010 International Workshop on Collaboration in Security
(COLSEC 2010), PNNL-SA-70532

31

http://www.irongeek.com/i.php?page=security/programmable-hid-usb-keystroke-dongle
http://www.securelist.com/en/analysis/204792180/TDL4_Top_Bot
http://www.securelist.com/en/analysis/204792180/TDL4_Top_Bot
http://www.theregister.co.uk/2011/06/27/mission_impossible_mouse_attack/
http://www.theregister.co.uk/2011/06/27/mission_impossible_mouse_attack/

Final Report:

Bio-Inspired Approaches to Moving-Target Defense Strategies

[15] Ibrahim MAM (2006). Distributed Network Management with Secured Mobile Agent Support. In Proceedings
of the 2006 International Conference on Hybrid Information Technology (ICHIT ’06), pp. 244-251.

[16] Kim H-A and B Karp, “Autograph: Toward Automated, Distributed Worm Signature Detection” In Proceedings
of the USENIX Security Symposium, Aug. 2004.

[17] Kitchen D and R Wood, WiFi Pineapple, Mark II. http://hakshop.com/collections/frontpage/products/
wifi-pineapple. Last viewed: 5 July 2011.

[18] Nojiri D, J Rowe, and K Levitt (2003). Cooperative Response Strategies for Large Scale Attack Mitigation. In
Proceedings of the 3rd DARPA Information Survivability Conference and Exposition (DISCEX), pp. 293–302.

[19] Papadopoulos C, R Lindell, J Mehringer, A Hussain, and R Govindan (2003). COSSACK: Coordinated Sup-
pression of Simultaneous Attacks. In Proceedings of DISCEX III, pp. 2-13.

[20] Parunak HVD, P Nielsen, S Brueckner, and R Alonso (2007). Hybrid Multi-Agent Systems: Integrating Swarm-
ing and BDI Agents. In Lecture Notes in Computer Science, Springer, vol. 4335/2007. http://www.newvectors.
net/staff/parunakv/ESOA06Hybrid.pdf

[21] Qin X, W Lee, L Lewis, and JBD Cabrera (2002). Integrating intrusion detection and network management.
In Proceedings of the Eighth IEEE/IFIP Network Operations and Management Symposium, Florence, Italy, pp.
329-344, April 2002.

[22] Selfridge OG (1988). Pandemonium: a paradigm for learning. In Neurocomputing: foundations of research, 1988
MIT Press, Cambridge, MA, USA, pp. 115–122.

[23] Śmieja F (1996). The Pandemonium System of Reflective Agents. In IEEE Transactions on Neural Networks
7:1, pp. 97–106. http://ieeexplore.ieee.org/iel4/72/10170/00478395.pdf?arnumber=478395.

30 Sept 2012 32 PNNL-21854

http://hakshop.com/collections/frontpage/products/wifi-pineapple
http://hakshop.com/collections/frontpage/products/wifi-pineapple
http://www.newvectors.net/staff/parunakv/ESOA06Hybrid.pdf
http://www.newvectors.net/staff/parunakv/ESOA06Hybrid.pdf
http://ieeexplore.ieee.org/iel4/72/10170/00478395.pdf?arnumber=478395

	Overview and Background
	Introduction
	Operational Application
	Background
	Prior Work and Applicable Literature

	Contributions of the work
	Component Technologies
	Digital Ants Framework
	Behavioral Indicators
	Bioinformatic Classification
	Moving-Target Reconfiguration
	Ambient Collaboration

	Demonstrations
	Wake Forest Automatic Defense and Reconfiguration Demo
	PNNL Scalability Demo

	Publications

	Path Forward and Conclusion
	Milestones and Deliverables
	Bio-inspired Approaches to Moving Target Defense Strategies Operational Scenario
	Defender-side scenario description
	Application scenarios

	Threat-Side Scenario Description
	Scenario Narrative
	How Digital Ants Deliverables Combat this Threat Scenario

	Digital Ants Framework Architecture
	Overview
	Getting Started
	Framework
	Agents
	Sergeant
	Sentinel
	Sensor

	Logging

	Porting the Digital Ants Framework
	Running the DAF in a Cluster Computing Environment
	The DAF Backplane

