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Mesoscale Benchmark Demonstration 
Problem 1:  Mesoscale Simulations of Intra-granular Fission Gas 

Bubbles in UO2 under Post-irradiation Thermal Annealing  
 

SUMMARY 

A study was conducted to evaluate the capabilities of different numerical methods used to represent 
microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem.  
The purpose of the mesoscale benchmark problem was to provide a common basis for assessing several 
mesoscale methods to identify the strengths and areas of improvement in the predictive modeling of 
microstructure evolution.  In this work, mesoscale models (phase-field, Potts, and kinetic Monte Carlo) 
developed by Pacific Northwest National Laboratory, Idaho National Laboratory, Sandia National 
Laboratory, and Oak Ridge National Laboratory were used to calculate the evolution kinetics of intra-
granular fission gas bubbles in UO2 fuel under post-irradiation thermal annealing conditions.  The 
benchmark problem was constructed to include important microstructural evolution kinetics of intra-
granular fission gas bubble behavior, such as the atomic diffusion of Xe atoms, U vacancies, and O 
vacancies; the effect of vacancy capture and emission from defects; and the elastic interaction on non-
equilibrium gas bubbles.  An idealized set of assumptions and a common set of thermodynamic and 
kinetic data were imposed on the benchmark problem to simplify the mechanisms considered.  The 
modeling capabilities of different methods are compared against selected experimental and simulation 
results.  These comparisons find that while the phase-field methods and Potts kinetic Monte Carlo 
methods are able to incorporate several of the mechanisms that influence intra-granular bubble growth 
and coarsening, the Potts model is challenged by the low solubility and long-range diffusion necessary to 
simulate this problem correctly.  The statistical-mechanical nature of Potts kMC requires large ensembles 
with long simulation times to treat this problem.  Future efforts are recommended to construct 
increasingly more complex mesoscale benchmark problems to further verify and validate the predictive 
capabilities of the mesoscale modeling methods used in this study. 

 

Key words: mesoscale benchmark; phase-field approach; kinetic Monte Carlo approach; Potts model; 
fission gas bubbles; uranium dioxide; post-irradiation thermal annealing.  
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FUEL CYCLE R&D PROGRAM 

MESOSCALE BENCHMARK DEMONSTRATION 

PROBLEM 1:  MESOSCALE SIMULATIONS OF INTRA-GRANULAR FISSION 
GAS BUBBLES IN UO2 UNDER POST-IRRADIATION THERMAL 
ANNEALING 

1. INTRODUCTION 
Computational materials science—an active research area under intensive development in recent years— 
promises to provide improved and predictive capability for the modeling and simulation of material 
microstructural, mechanical, and thermal behaviors under extreme environmental conditions.  The ability 
to describe and model the complex behavior of materials from the atomistic to the continuum scales can 
provide opportunities to design new materials and better understand and use existing materials.  In 
general, computational materials models can be categorized into three groups based on their temporal and 
spatial domains of interest:  at the atomistic scale, models include density functional theory (DFT) [1-4] 
and molecular dynamics (MD) methods [5-10]; at the mesoscale (i.e., microstructure level), models 
include the kinetic Monte Carlo (kMC) (i.e., Potts model) [11], and the phase-field (PF) methods [12-15]; 
at the continuum scale, methods include the finite element [16] and finite volume methods [17, 18].   

A key challenge in modeling material behavior using the described multi-scale approach is the bridging or 
transfer of information across the disparate time and spatial scales of importance.  Modeling within the 
atomistic domain considers at most microseconds and nanometers (millions of atoms and their motion) in 
describing atomic or molecular interactions.  The continuum domain modeling can stretch to years and 
centimeters in the case of nuclear fuel rods or irradiated material.  Given the large disparities between 
these domains, mesoscale methods may play a key role in bridging the temporal and spatial scales in 
computational materials science and may provide methods to better inform the constitutive models used at 
the continuum scale. 

The atomistic and continuum domains are mature areas of computational materials science modeling with 
established confidence in the ability of their methods to provide predictive simulations, using, in the case 
of continuum level, semi-empirical constitutive models that may include lower length scale properties 
(e.g., diffusivities or Burger’s vector).  In contrast, the mesoscale domain of materials modeling is a 
relatively new area of development in computational materials science that resides between the discrete 
atomic particle models and the continuum representation.  The characteristic length scales generally range 
from 100s of nanometers to 10s of micrometers and time scales of 10-3 to 102 seconds.  At these scales, 
the domain is often too small to be considered a continuum level representation, yet too large to 
effectively use atomistic methods.  The advantage of the mesoscale modeling domain lies in the fact that 
microstructure-level material characteristics such as inhomogeneity, i.e., grains, grain boundaries or other 
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defects, can be represented in local detail and their interactions with atomic processes can be explicitly 
considered.  These microstructural features have a deciding impact on material behavior on the continuum 
scale.  Various mesoscale modeling methods have been successfully demonstrated to topographically 
represent the evolution of material microstructure during grain growth, sintering, and migration of 
bubbles within the solid.  However, an important gap in the various mesoscale modeling methods is the 
lack of quantitative verification and validation in predicting microstructure evolution kinetics with 
quantitative inputs from the atomistic scale, particularly under complex conditions of temperature, strain, 
and radiation damage. 

Several mesoscale modeling methods have been developed to evaluate microstructure evolution during 
the process of grain growth, phase transformation, second phase particle growth, etc. [12, 14, 15, 19].  
The most widely used and well-known mesoscale modeling methods used in computational materials 
science are the Potts, kMC, and the PF approaches.  The first two methods are discrete ensemble 
representations that use a statistical-mechanical approach to represent the evolution of distinct interfaces 
in the microstructure.  The PF approach is a thermodynamic model that represents the microstructure 
using a continuum field with a set of smoothly changing order parameters to define the interfaces.  Each 
of these methods has been successfully used to simulate microstructure evolution in metal and ceramic 
materials under conditions without irradiation.  Tikare et al. [20] have compared the Potts and PF methods 
for grain growth simulations and Ostwald ripening processes.  For these single-mechanism simulations, 
both methods gave similar topological results. 

Application of mesoscale methods to predict microstructure evolution driven by complex and interacting 
mechanisms, such as those that occur in nuclear fuel under irradiation, has grown recently with the 
advancement of computational capabilities and the desire to improve the semi-empirical material models 
used in representing these systems.  The ultimate goal in applying mesoscale methods to irradiated 
materials is to develop a quantitative, mechanistic-based multi-physics representation of the underlying 
processes controlling the microstructure evolution for predicting the material properties evolution at the 
continuum scale, i.e., thermal conductivity, elastic modulus, creep, and behavior of second phase particles 
or fission products.  For example, the migration of fission gas atoms in nuclear fuel material is influenced 
by several important microstructural mechanisms, including 1) gas atom diffusion, 2) gas atom or 
vacancy trapping by defects and dislocations, 3) interaction with fission fragments and fission-induced 
cascades, 4) nucleation and growth of gas bubbles, 5) absorption and resolution from gas bubbles, 6) non-
equilibrium pressure conditions in gas bubbles, and 7) elastic interactions between defects and bubbles.  
All of these mechanisms have a combined effect in controlling the rate of gas atom diffusion to the grain 
boundary and its ultimate release from the fuel.  Semi-empirical continuum-level models approximate all 
of these mechanisms into a single effective diffusivity with limited predictive capability.   

As the complexity of microstructure modeling has grown, verifying the predictive capabilities of 
mesoscale methods becomes more difficult, and those conducting the exercises used to validate the results 
must have a deep understanding of the interacting mechanisms that control the microstructural data.  Very 
few separate effect experiments are available to provide the microstructure characteristics in sufficient 
detail to quantitatively verify the mesoscale methods.  As a result, a concerted effort is required to engage 
a spectrum of experts who understand the intricacies of the experimental data, the current knowledge of 
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the microstructure evolution kinetics, and the different continuum and mesoscale modeling methods in 
order to formulate the verification and validation problems that can truly evaluate the predictive 
capabilities of these methods. 

1.1 Study Purpose and Scope 
This report describes a study undertaken to evaluate the capabilities of different methods used to represent 
microstructure behavior at the mesoscale for irradiated material using an idealized benchmark problem.  
The goal of developing such a benchmark problem is to provide a common basis for assessing the 
strength and areas of improvement for several different mesoscale methods in predicting the 
microstructure evolution of nuclear fuel material. The different mesoscale methods considered in this 
study include the PF method, Potts model, and kMC approaches.  The benchmark problem summarized in 
this report is related to the growth and coarsening behavior of intra-granular fission gas bubbles observed 
after a post-irradiation thermal annealing test for uranium dioxide (UO2), and it is the first in a series of 
verification problems that will be constructed to begin the process of quantitative verification of 
mesoscale methods for predicting microstructure evolution.  It is envisioned that additional test problems 
will be constructed and analyzed that involve increasingly more complex multi-physics behavior, 
including defect-dislocation interactions and fission-induced damage.  

A multi-laboratory team of researchers from Pacific Northwest National Laboratory (PNNL), Idaho 
National Laboratory (INL), Sandia National Laboratory (SNL), Oak Ridge National Laboratory (ORNL), 
and Los Alamos National Laboratory (LANL) participated in the benchmark problem by performing 
analyses with various mesoscale methods as part of this study.  An important aspect of defining a 
common benchmark problem was to establish a consistent set of initial, boundary, and thermodynamic 
conditions across the selected mesoscale methods.   

1.2 Report Contents and Organization 
The ensuing sections of this report begin by describing the microstructure behavior of irradiated UO2 
material and the relevant aspects that will be considered in the mesoscale benchmark problem (Section 2).  
Section 3 outlines the benchmark problem definition, including the initial, boundary, and thermodynamic 
conditions.  It also includes a set of calculations performed to verify that the formulation of the different 
interacting mechanisms on the bubble growth behavior is reasonable.  Section 4 summarizes the 
mesoscale methods used in the evaluation and a comparison of the assumptions and results between the 
different approaches.  Areas of common agreement and areas for further improvement are identified.  
Section 5 discusses the key conclusions from this evaluation and provides suggestions for further 
analytical evaluation and experimental data generation.  Detailed descriptions of the mesoscale methods 
used in this evaluation and the detailed results for the benchmark problem are contained in appendixes. 
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2. MICROSTRUCTURE BEHAVIOR IN IRRADIATED UO2 
MATERIALS  

The thermal, mechanical, and chemical behavior of nuclear fuel material during normal operations and 
transient conditions is an important element of the performance, reliability, and safety of any nuclear 
reactor.  Implicit in this behavior is the changing microstructure of the material as a consequence of 
radiation damage, fission product generation, temperature and stress fields, etc.  Understanding the impact 
of the microstructure evolution on the material properties such as thermal conductivity, elastic modulus, 
creep, and fission product retention is critical to evaluating the performance of the fuel material.  
Extensive experimental and analytical work has been conducted to develop this understanding.  What is 
known is that the evolving state of the microstructure and its impact on material properties in irradiated 
material is a complex multi-scale and multi-physics process composed of many interacting and competing 
mechanisms, including radiation-induced defects, moving grain boundaries, gas bubbles and porosity, 
fission product compounds, non-stoichiometry, etc. [21-24]. 

2.1 Fission Gas Behavior in UO2 Fuel 
During irradiation of light water reactor (LWR) fuel, the fission process generates many different fission 
product atoms, including xenon (Xe) and krypton (Kr) atoms.  The noble gas atoms Xe and Kr represent 
about 30% of the fission products produced, and the behavior of the gas atoms is important to the 
microstructure evolution and overall performance of the fuel.  Because of the extremely low solubility of 
the noble gas atoms in the UO2 matrix, gas bubbles composed of Xe , Kr, and other gas atoms precipitate 
within the UO2 grains and, depending on the temperature conditions, gas atom diffusion will result in 
nucleation and growth of gas bubbles on the grain boundaries.  Continuum-level mechanisms, such as 
fission gas release to the fuel rod environment and volumetric swelling due to bubble growth, are 
included in nuclear fuel performance assessments. 

The behavior of fission gas atoms in UO2 has been extensively studied using experiments performed on 
single crystal and polycrystalline material under a variety of temperature and irradiation conditions for 
more than 50 years [21, 24-29].  From these studies a general picture of the mechanisms that influence the 
transport and release of fission gas atoms has been developed.  Thermally induced fission gas diffusion 
and release from the fuel generally occurs in two stages:  1) diffusion and trapping of single Xe gas atoms 
within the grains, and 2) formation and inter-linkage of grain boundary bubbles.  A schematic of these 
processes is shown in Figure 1.  First, a gas atom is created within a region of radiation-induced vacancies 
and interstitial atoms caused by the atomic interactions/cascades during the stopping process following 
fission.  Gas atom diffusion assisted by uranium (U) vacancy clusters then takes over until nucleation of 
small high pressure intra-granular bubbles.  These bubbles act as trapping sites for gas atoms until a 
fission fragment spike causes resolution of Xe atoms back into the matrix.  Several transmission electron 
microscopy studies of irradiated fuel have found that the mean radius of the intra-granular bubbles is 
approximately 1 nm with only a slight dependency on the burnup or concentration of the Xe atoms in the 
matrix [30, 31].  At sufficient temperatures (> 800°C), gas atoms diffuse to the grain boundary and 
nucleate grain boundary bubbles.  Some fraction of the gas in the grain boundary bubbles is knocked back 
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into the grain by interactions with fission fragments.  The remainder continues to cause the grain 
boundary bubbles to grow until inter-linkage of bubbles results in venting of the gas out of the fuel. 

These two stages are modeled at the continuum level using semi-empirical models that consider an 
effective diffusion coefficient that represents the trapping at intra-granular bubbles and dislocations 
within the grain, and various parameters that describe the nucleation, growth, and venting behavior of 
inter-granular bubbles.  Several attempts have been made to apply mesoscale methods to model the 
different processes associated with fission gas diffusion and release from UO2 fuel [32-35].  While the 
results of these efforts are encouraging, challenges remain to demonstrate the predictive nature of 
applying mesoscale methods to the complexities of nuclear fuel materials because of the lack of 
quantifiable benchmarking of these methods. 

 

 
Figure 1.  Schematic process of thermally induced fission gas diffusion and release from fuels.   

2.2 Intra-granular Fission Gas Atom Behavior 
The first step in developing mesoscale modeling for fission gas behavior in nuclear fuel is to demonstrate 
that the mechanisms leading to single gas atom diffusion, nucleation of intra-granular bubbles, and 
ultimately to calculating the flux of gas atoms reaching the grain boundary can be appropriately 
represented in the methods.  As outline above, these mechanisms constitute the first stage in the fission 
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gas release process.  The experiments and assessments performed to understand intra-granular fission gas 
behavior are reviewed below. 

Intra-granular gas bubble growth kinetics have been investigated in irradiated UO2 during thermal 
annealing from 800°C to 1800°C by Kashibe et al. [26].  Their results show a rapid increase in the size of 
the intra-granular bubbles from a mean radius of ~1 nm to a mean radius of >20 nm in less than 10 
minutes after heating to temperatures of ~1800°C as shown in Figure 2.  A corresponding decrease in 
bubble density of about 103 is also observed, as illustrated in Figure 3.  Their results also indicate that gas 
bubble growth kinetics is dependent more on the burnup and proximity to grain boundaries than on the 
annealing temperature or heating rate.  As a consequence, these results imply that structural defects such 
as dislocations and grain boundaries, which may act as sinks and/or sources of vacancies, interstitials, and 
gas atoms, play an important role in gas in the evolution of the intra-granular bubble size and density. 

 

 

 
Figure 2.  Intra-granular bubble behavior from Kashibe et al. [26]. 

 

Bubble Population
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Figure 3.  Burnup dependence of mean diameter and number density after annealing at 1800°C for 5 

hours.  (*) Annealing at 1700°C C-1800°C C for ~60 minutes [26]. 
 

White et al. [24] reported similar intra-granular gas bubble growth kinetics in post-irradiation annealing 
experiments with UO2.  In the experiments, specimens of UO2 fuels were subjected to transient heating at 
a ramp rate of 0.5°C C/s and 20°C C/s to target temperatures between 1600°C and 1900°C.  The bubble 
size distribution was measured from 17 specimens, which entailed the measurement of nearly 26,000 
intra-granular bubbles.  The major findings include the following: 1) the bubble densities decreased 
approximately 103-105 from the low temperature irradiation condition during annealing, independent of 
the annealing temperature; and 2) the bubble size distribution exhibits long exponential tails in which the 
largest bubbles are present in concentrations of 104 or 105 lower than the concentrations of the average 
sized bubbles.  These results are not consistent with the presence of thermal resolution from bubbles.  
Under thermal annealing conditions, thermal resolution of gas atoms from the bubbles back into the 
matrix (or Ostwald ripening) is one possible mechanism for bubble growth and coarsening.  However, 
because the irradiated UO2 may be far away from equilibrium state, White et al. argued that thermal 
resolution is not adequate to explain the intra-granular bubble behavior in post-irradiation annealing.  
They suggested that 1) the bubble growth is driven by competition between vacancy sinks at the bubbles 
and vacancy sinks at dislocations, and 2) the bubble growth is severely restricted by vacancy starvation 
effects under out-of-pile conditions. 

From the above mentioned experimental reports we can conclude that intra-granular gas bubble growth 
and coarsening under post-irradiation annealing is a complex process, due in large part to the fact that the 
initial system is far from equilibrium at the end of irradiation.  A number of factors or material processes 
appear to affect the gas bubble growth kinetics.  For instance, the gas bubbles formed during irradiation at 
low temperature have large over-pressure conditions when heated to the annealing temperature.  The high 
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pressure within the gas bubble causes gas resolution from gas bubbles and local strain gradients.  Vacancy 
and gas concentrations in an irradiated UO2 matrix may also be much higher than the equilibrium 
concentrations.  The presence of these conditions means that gas bubbles, which are larger than a critical 
size, will grow at the beginning of the annealing process.  However, as White et al. [24] suggest, the 
growth in intra-ganular bubbles is terminated due to vacancy starvation caused by the different defect sink 
strengths for vacancies and gas atoms.  Therefore, simple Ostwald ripening with a constant gas bubble 
volume fraction cannot describe the intra-granular gas bubble growth kinetics during post-irradiation 
annealing tests.  

In the evaluation of the mesoscale methods, we have focused on developing a mesoscale benchmark 
problem to simulate the intra-granular gas bubble growth mechanisms and kinetics by taking into account 
the main mechanisms in the process, including vacancy and gas atom diffusion, vacancy 
starvation/emission, internal pressure in gas bubbles, and elastic interactions associated with lattice 
mismatches of distributed vacancy, gas atoms, and gas bubbles.  The mesoscale methods used in this 
benchmark problem include the Fastest Fourier Transform in the West (FFTW)-based PF model, finite 
element method (FEM)-based PF model, Potts method, and kMC method.  Note that different modeling 
methods describe the processes involved in this benchmark problem differently because of their intrinsic 
limitations and their current state of development, making direct comparisons of modeling results 
difficult.  However, the simulation results obtained highlight the unique features of each method in terms 
of capability, numerical accuracy, and efficiency.  The results of this study will help develop more 
efficient and accurate mesoscale methods for use in simulating microstructure evolution in nuclear 
material.   

3. DESCRIPTION OF THE MESOSCALE BENCHMARK PROBLEM 
The first phase of demonstrating the predictive capabilities of mesoscale methods for irradiated material 
behavior focuses on the intra-granular gas atom diffusion and gas bubble evolution kinetics in post-
irradiation thermal annealing conditions.  Post-irradiation conditions eliminate the complexities of 
dynamic fission-induced damage occurring simultaneously with the diffusion and trapping of fission gas 
atoms.  Furthermore, the requirement to consider intra-granular bubble nucleation is removed by 
concentrating on post-irradiation conditions.  Both of these mechanisms are difficult to incorporate in 
atomistic and mesoscale methods and, as such, will be deferred until later exercises. 

Defining the benchmark problem includes specifying an idealized set of initial conditions, boundary 
conditions, and thermodynamic data that are representative of intra-granular fission gas bubbles and Xe 
atoms dissolved in a matrix of UO2.  Benchmark Problem 1 consists of simulating the diffusion of Xe 
atoms and vacancies that control the growth and coarsening of intra-granular bubbles within a grain of 
UO2 material.  The grain is assumed to be infinite in size to eliminate the need to consider interactions 
with the grain boundaries.  Grain boundaries can be sinks for fission gas atoms and sources of vacancies 
during thermal annealing.  Future benchmark problems will include grain boundary interactions.   

Initial conditions for the benchmark problem were obtained from experimental measurements for gas 
bubble density, gas bubble size distribution, and dislocation density from Kashibe et al. [26], and a 
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calculation of the Xe atom concentration based on a 30% fission yield and a burnup of 23 GWd/MTU.  
The vacancy concentration in irradiated materials may strongly affect the bubble growth kinetics 
according to Olander and Wongsawaeng [21].  Because this concentration is unknown, it was treated as a 
specified parameter in the simulations.  The gas density and pressure within the bubbles is calculated with 
the equation of state for Xe given by Ronchi [36], which includes the Xe gas compressibility.  Table 1 
lists the initial conditions for Benchmark Problem 1.  A temperature ramp from 800°C to 1800°C at 
2°C/sec (500-second heating time) is specified to change the conditions from the irradiated state 
(irradiation temperatures were ~800°C) to the thermal annealing temperature.  For simplicity, we assume 
that 1) periodic boundary conditions (all gradients = zero) are imposed in the x-,y-, and z- directions of 
the simulation cell; 2) dislocation distribution, which is related to sinks and sources for vacancies and gas 
atoms, is uniform in the matrix; and 3) vacancy emission rate depends on the spatial distribution and 
density of dislocations, vacancy concentration, and mobility. 

. 
Table 1.  Initial condition of intra-granular fission gas bubble coalescence during thermal annealing. 

 
Description Value

Initial bubble density [26] 9x1023/m3 

Initial gas concentration in matrix 0.0042 

Initial U/O vacancy concentration in matrix Model parameters 

Dislocation density and types [23] 2x1014/m3 

Initial gas atom concentration in bubbles 0.7 

Initial bubble distribution Normal distribution  

Mean bubble radius [26] 1 nm 

 

The mechanisms controlling the microstructure evolution under consideration in Benchmark Problem 1 
include the following: 

• single gas atom diffusion; 
• gas atom or vacancy trapping by defects and dislocations; 
• gas atom and vacancy absorption into nanometer-sized gas bubbles; 
• gas atom and vacancy resolution back into the matrix from nanometer-sized gas bubbles; 
• non-equilibrium pressure conditions in gas bubbles; 
• elastic interactions between defects and bubbles. 

Gas bubble growth requires a supply of both vacancies and gas atoms.  Starvation of either vacancies or 
gas atoms will limit the bubble growth.  Due to the high pressure in the gas bubbles and large lattice 
mismatch of Xe atoms and U vacancies, elastic interaction could be an important driving force or 
resistance for the diffusion of vacancies and Xe atoms.  Defects such as dislocations can act as either 
sinks or sources of vacancies.  The spatial distribution and density of dislocations affect the sink or 
emission strength of vacancies, hence the concentration of vacancies.  Each of the mesoscale methods 
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must take these physics into account in order to appropriately represent the microstructure evolution of 
intra-granular fission gas. 

3.1 Thermodynamic and Kinetic Properties of Defects in UO2 
This section briefly reviews the thermodynamic and kinetic properties defined for the benchmark 
problem.  Table 2 lists the thermodynamic data used in the problem. Details can be found from appendix 
E. 

3.1.1 Oxygen interstitials and vacancies 

From both simulations [4, 37, 38] and experiments [39-41] it is clear that oxygen (O) vacancies and 
interstitials move several orders of magnitude faster through the UO2 lattice than cations or fission gases.  

The migration barriers for anion vacancies and interstitials are 0.5 [39, 42] and 0.9-1.3 eV [39, 42, 43], 

respectively, while the lowest barrier for cations (a cluster of two U vacancies that can form under 
irradiation) is predicted to be 2.6 eV [4] and the barrier for migration of single U vacancies is 4.5-4.8 eV 
[4, 38]. 

3.1.2 Uranium interstitials and vacancies 

Migration of U interstitials was recently investigated using DFT calculations [38] and the barrier was 
calculated to be 3.7 eV for the indirect interstitial mechanism, which is lower than the barrier for single U 
vacancies but about 1 eV higher than for clusters of U vacancies (see below).  Under thermal equilibrium 
conditions the contribution from interstitials to cation diffusion is very small due to the negligible 
concentration of such defects compared to vacancies [38].  The activation energy for the U interstitial 
diffusion mechanism in stoichiometric UO2 was calculated to be as high as 15-16 eV [38]. 

Experiments typically quote 2.4 eV as the migration barrier of U ions via a vacancy mechanism [40, 41], 
which was derived by studying the recovery of UO2 samples exposed to irradiation.  If non-equilibrium 
clusters form under such conditions the measured barrier could refer to, for example, the migration of U 
vacancy clusters rather than isolated vacancies.  This was confirmed by recent DFT calculations, which 
predicted a barrier of about 4.5-4.8 eV for single U vacancies and about 2.6 eV for two nearest neighbor 
U vacancies [4].  Even though the agreement between theory and experiments was rather good [4], the 
model used for calculating the activation energies from the calculated thermodynamic and kinetic data 
was incomplete.  The most up to date activation energy for U diffusion in UO2 is 4.4 eV [44] and 4.1-4.9 
eV [38].  The effective value of the U vacancy formation energy, 2.69 eV, which depends on 
stoichiometry and chemical environment, was suggested for strictly stoichiometric UO2.[4] 

3.1.3 Fission gas 

Miekeley and Felix [45] performed early experiments on the release of Xe during post-irradiation 
diffusion annealing from UO2±x with a range of different stoichiometry (x).  Perhaps the most striking 
conclusion from their work was that the activation energies for release exhibited unique values in the 
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UO2-x (6.0 eV), UO2 (3.9 eV), and UO2+x (1.7 eV) regimes, respectively, while they were almost constant 
within each of these composition sets.   

The DFT+U methodology was used to study the diffusion of Xe under a variety of conditions [4].  
Particularly, the thermodynamic model originally derived by Catlow [1] is applied to calculate activation 
energies for Xe in the UO2-x, UO2, and UO2+x ranges.  This transport model requires calculation of the 
binding energy of a second U vacancy to the Xe trap site and the barrier for moving one of the constituent 
U vacancies to another location such that net transport is enabled.  This diffusion mechanism involves 
three components:  the U vacancy formation energy, the binding energy of this vacancy to the Xe trap 
site, and the intra-cluster migration barrier for the individual U vacancies bound to this cluster.  That is, 
the rate-limiting step is not Xe motion within the cluster, but the migration of the second vacancy within 
the cluster; without the motion of the second bound U vacancy Xe does not diffuse.  The barriers for 
moving one of the U vacancies from one part of the Xe trap site to another is 3.91, 5.00, and 5.51 eV for 
the XeU (Xe occupies one U vacancy), XeUO (Xe occupies one U and one O vacancy) and XeUO2 (Xe 
occupies one U vacancy and two O vacancies) trap sites, respectively.  The corresponding defect 
formation energies of XeU is 4.35 eV for strictly stoichiometric UO2 [4].  

Fission gases can also diffuse via interstitial mechanisms.  Due to the large size of Xe atoms, however, it 
is unlikely that such mechanisms are important at high temperature because the interstitial Xe atoms 
would quickly recombine with U vacancies.  If the Xe atom stays in interstitial positions it may diffuse 
with a rather low barrier (1.6 eV) compared to vacancy mechanisms [46]. 

In summary, the diffusions of Xe atom and U vacancy in are very complicated processes.  The activation 
energy of defects strongly depends on the diffusion mechanisms, irradiation environment or thermal 
concentration of defects, and the deviation from thermodynamic equilibrium.  Considering the fact that 1) 
O vacancy and interstitials have much higher mobility than the U vacancy and Xe atom; 2) the 
concentration of U interstitials is negligible compared to the U vacancy concentration under thermal 
equilibrium conditions, it can be assumed that the gas bubble evolution is controlled by U vacancy and Xe 
atom diffusion.  We further assume that U vacancy diffuses through vacancy-complex diffusion 
mechanisms, while Xe diffuses by interstitial mechanisms in a vacancy-starvation environment and by 
vacancy-complex diffusion mechanisms.  Table 2 lists the thermodynamic and kinetic properties of single 
defects, and defect complex in stoichiometric and non-stoichiometric UO2.  The formation volumes of 
defects were calculated according to the definition of the corresponding defect formation energies by 
Andersson et al. [4]. 

 

Table 2.  Thermodynamic and kinetic properties of defects in UO2x . 

Description Value 

Xe interstitial migration energy in UO2-x 1.6~6.0 eV 

UV/OV/Xe complex migration energy 3.91~5.51 eV 

Xe interstitial formation energy 3.~4.35 eV 

U vacancy formation energy 2.69 eV 

Formation volume of O vacancy 1.79 [Å3] 
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Formation volume of U vacancy 42.3 [Å3] 

Formation volume of Schottky defect (unbound) 45.8 [Å3] 

Formation volume of Schottky defect (bound) 41.9 [Å3] 

Formation volume of Xe 52.8 [Å3] 

Interfacial energy of gas bubbles 0.6 J/m2 

Elastic constants C11, C12 and C44 of UO2 [47, 48] 395 GPa, 121 GPa, 64 GPa 

3.2 Assessment of the Thermodynamic Parameters 
Based on classical nucleation theory, chemical free energy, elastic energy, and interfacial energy 
determine the critical size of gas bubbles.  As a means to ensure that the Benchmark Problem was 
specified in a manner that would yield results that are consistent with experimental observations, a 
simplified PF analysis was performed to evaluate the effect of concentration and elastic interaction on the 
critical size of the fission gas bubbles.  In the checkout simulation, a gas bubble with different sizes is 

embedded at the center of a three-dimensional (3-D) simulation cell 96Δx96Δy96Δz.  Periodic 

boundary conditions in the x-, y-, and z- directions are imposed on the model and the simulation is 
performed at 2100 K.  Four different cases were evaluated:  Xe matric concentrations of 0.001 and 0.0042 
and with and without elastic interaction.  The time evolution of the gas bubble radius is plotted in Figure 
4(a), which shows that a gas bubble with a radius less than 0.4 nm shrinks for all four cases.  When the 
radius of the gas bubble is larger than 0.8 nm the gas bubble grows in all four cases.  Gas bubbles with 
radii between 0.4 nm and 0.8 nm may grow or shrink depending on the concentration and elastic 
interaction.  Therefore, the critical size of gas bubble is about 0.8 nm for the given free energy, interfacial 
energy, and elastic interaction energy components used in this analysis.  The results shown in Figure 4(a) 
indicate that the critical bubble size increases with decreasing vacancy and Xe concentrations.  Pressure 
and shear stress distributions on the x-y planes that cross the center of the gas bubble are presented in 
Figure 4(b).  The calculated pressure inside the gas bubble is about 1.6 GPa, which is consistent with the 
equation of state. In addition, the pressure inside the gas bubble causes a long-range elastic field near the 
gas bubble, which may affect the gas bubble growth kinetics as well as the critical size of the gas bubble 
during coarsening.  The results in Figure 4(a) show that the elastic interaction increases the critical size of 
the gas bubble.  
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Figure 4.  (a) Concentration and elastic interaction dependence of gas bubble critical size, and (b) pressure and shear 
stress around the gas bubble. 

4. SUMMARY OF MESOSCALE METHODS AND BENCHMARK 
PROBLEM RESULTS 

4.1 Mesoscale Methods 
During the past few decades different modeling methods—from atomistic, meso- and macro-scales, 
including ab initio, MD, kMC, objective kMC, discrete dislocation dynamic, rate theory, crystal 
plasticity, micro-mechanic, and macro-mechanic methods—have been developed to study microstructure 
and property evolution in irradiated materials.  One of the grand challenges in multi-scale modeling is the 
lack of physics-based modeling methods that enable the prediction of 3-D microstructure evolution in the 
mesoscale.  At the mesoscale, the time and length scales are much larger than those of atomistic 
simulations, and much smaller than those of macroscale methods.  The typical mesoscale time scale is 
from seconds to a few hours, and the typical length scale is from nanometers to several tens micron 
meters.  The mesoscale PF approach, which is informed by the thermodynamic and kinetic properties of 
the system from atomistic simulation and experiments, is a mesoscale modeling method.  This method has 
been successfully used in predicting 3-D microstructure evolution such as solidification, grain growth, 
martensitic transition [49], precipitation, ferroelectric/ferromagnetic transition [50], dislocation dynamics, 
deformation twin, and sintering [51].  The advantages of the PF approach are that 1) making assumptions 
of microstructure morphology is not needed; 2) explicitly tracking the interface and topological changes 
compared to sharp interface methods is not needed; and 3) The continuous description of energy 
landscape makes it convenient to take into account of both short-range and long-range interactions.  The 
Potts kMC method is another mesoscale modeling method that is based on statistic mechanics and 
populates a lattice with an ensemble of discrete particles to represent and evolve the 3-D microstructure.  
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The particles evolve in a variety of ways to simulate microstructural changes.  The kMC methods have 
proven themselves to be versatile, robust, and capable of simulating various microstructural evolution 
processes.  They have the advantage of being simple and intuitive, while still being rigorous methods that 
can incorporate all of the thermodynamic, kinetic, and topological characteristics to simulate complex 
processes.  They are easy to code, readily extendable from two dimensions to three dimensions (2-D to 3-
D), and can simulate the underlying physics of many materials evolution processes based on the 
statistical-mechanical nature of the model.  These processes include curvature-driven grain growth [52, 
53], anisotropic grain growth [54], recrystallization [55], grain growth in the presence of a pinning phase 
[56, 57], Ostwald ripening [58-60], and particle sintering [11, 61-63]. 

The following sections describe the mesoscale approaches used to simulate the intra-granular gas bubble 
evolution in Benchmark Problem 1.  The description includes a short summary of the 
modeling/mathematical approach, assumptions, and key input variables.  A more detailed description is 
included in Appendixes.  A collection of the results and comparison of the different methods is presented 
in Section 4.2. 

4.1.1 Phase-field model used by PNNL 

4.1.1.1 Key assumptions 

a) Gas bubble growth needs continuously supply of U/O vacancies and Xe atoms.  Xe atoms may 
occupy a U vacancy lattice or interstitial lattice, which one depends on valid U vacancy and Xe 
concentrations.  For the simplicity of description, we assume that Xe atoms occupy interstitial 
lattices.  Thus, the XeU (Xe occupies one U vacancy) is described by a cluster of a U vacancy 
and an interstitial Xe atom.  Therefore, a two-sublattice model is used to describe the vacancies 
and Xe atoms, which allow one to study the effect of vacancy starvation and vacancy emission on 
gas bubble growth.  

b) Xe interstitial, U vacancy, and the XeU (Xe occupies one U vacancy) have very different 
mobilities, as reviewed in Section 3.1.  In addition, other complexes such as XeUO (Xe occupies 
one U and one O vacancy) and XeUO2 (Xe occupies one U vacancy and two O vacancies) are 
also mobile and contribute to the diffusion of vacancies and Xe atoms.  So the effective mobilities 
of U vacancies and Xe atoms are used in the model.  In the present simulations the effective 
migration energy, 3.9 eV, for both U vacancy and Xe atom is used, but different mobilities of U 
vacancies and Xe atoms can also be used.  

c) Gas bubbles formed during low temperature irradiation may be unstable at annealing temperature.  
So the initial size distribution of gas bubbles may dramatically affect the results of gas bubble 
size and density evolution.  In our simulations, a normal (Gaussian) distribution with a mean 
radius of 1 nm and standard deviation of 1 nm is used to generate the initial gas bubble size 
distribution. 

d) Chemical potential gradient is one driving force for vacancy and Xe diffusion.  Kim’s model [37] 
is used to describe the chemical free energy of matrix and gas phases.  To efficiently solve the PF 
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evolution equation, we use two parabolic functions to approximate the ideal solution free energy 
of the matrix with vacancies and Xe atoms and the free energy of the gas bubble phase, which is 
calculated from the equation of state.  

e) Dislocations are sinks or sources of vacancies.  Because of the lack of sink and emission 
strengths, the emission rate of vacancies from dislocations is taken as a model parameter in the 
simulations.   

f) Experiments [24] suggested that vacancy emission could be an important mechanism that affects 
the gas bubble evolution kinetics.  Therefore, we assumed that the initial vacancy concentration is 
a model parameter. 

g) O vacancy has much higher mobility than the U vacancy and Xe atom.  But it is not a rate-
limiting species in gas bubble growth.  Therefore, we neglected O vacancies.  Its effect is 
accounted for in the effective diffusivity of U vacancies and Xe atoms.  

h) The contribution of small gas bubble migration at high temperature to gas bubble evolution is 
ignored in this model.  However, a PF model of void migration can be extended to describe gas 
bubble migration [34, 64].   

4.1.1.2 Description of the model 

Three field variables―U vacancy concentration cv (r, t), Xe concentration cg(r,t), and order parameter 

(r, t)―are used to describe the microstructure, including the spatial distributions and time evolution of 

gas bubbles, U vacancies, and Xe atoms.  Inside the gas bubbles, vacancy concentration is 1 (i.e., 

cv (r, t) 1); gas concentration is 0.7 (i.e., cg(r,t)  0.7), which is calculated from the equation of state 

of Xe gas phase; and the order parameter is 1 (i.e.,(r, t) 1).  Outside the gas bubble, the concentrations 

of the vacancy and Xe atom and the order parameter are cv (r, t), cg(r,t), and 0, respectively.  The lattice 

mismatches ij
* (r,t)

 associated with distributed U vacancies and Xe atoms, and the internal pressure 

inside gas bubbles are described by a stress-free tensor.  The initial vacancy concentration 0vc  and 

vacancy emission rate  from distributed dislocations are used as model parameters in the simulations. 

Assuming that the microstructure evolution is driven by the minimization of total energy of the system, 
the evolution equations can be described by the Chan-Hilliard and Allen-Cahn equations[65, 66]: 
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where vvM  and ggM  represent the mobility of vacancies and gas atoms; F  and U def  are chemical free 

energy density and elastic energy density, respectively;   is the gradient coefficient; L  is the interface 

mobility coefficient; and ),( , ijvdis c   is the vacancy emission rate which usually depends on 

dislocations dis , local stress  ij , and vacancy concentration cv (r, t).  

With the input of initial gas bubble density, gas bubble size distribution, gas concentration, and annealing 
conditions, the evolution equations are solved by the implicit FFTW method [67], which was proved to be 
an efficient numerical method.  The effect of initial vacancy concentration, vacancy emission, elastic 
interaction, and annealing conditions on gas bubble evolution kinetics is simulated in 2-D and 3-D.  

The PF model describes the following mechanisms: 

 diffusion of U vacancies and Xe atoms; 

 absorption and dissolution of vacancies and Xe atoms at gas bubbles; 

 vacancy emission from distributed dislocations; 

 elastic interaction among gas bubbles, vacancies, and Xe atoms; 

 gas bubble growth; 

 gas bubble coalescence.   

4.1.2 Phase-field model used by INL 

4.1.2.1 Key assumptions 

a) Xe atoms in the UO2 lattice tend to be located within a Schottky defect composed of one U vacancy 
and two O vacancies.  Also, at high temperature, the Xe is transported through vacancy diffusion.  
Therefore, the Xe atom is assumed to occupy a U vacancy. 

b) Sufficient, fast-moving U/O vacancies are assumed to be present in the material such that Xe is the 
only rate-limiting species.  Thus, the kinetics could be captured by only representing the Xe atoms in the 
model. In addition, the model does not consider the Brownian motion of the bubbles, and therefore 
primarily considers bubble growth due to Ostwald ripening. 

c) The effect of the pressure could have a significant effect on the early stages of the bubble growth.  
However, as the bubbles grow, the pressure will decrease and the effect of pressure will become less 
significant.  To simplify the simulations, the effect of pressure is ignored.  

d) An eighth-order polynomial free energy is used to approximate the free energy:  

(4)                                       ),1())1ln()1(ln( ggggggb cwcccccTkF   

where w is assumed to equal the formation energy of Xe in the UO2 matrix (~4.35 eV).   
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4.1.2.2 Description of the model 

One field variable―Xe atom concentration―cg(r,t) is used to describe the microstructure of gas 

bubbles and Xe distribution in the UO2.  Inside the gas bubble, gas concentration is assumed to be 1.0 

(i.e.,cg(r,t) 1.0).  Outside the gas bubble, Xe concentration is cg(r,t).  The microstructure evolution is 

described by the Cahn-Hilliard equation [65]:  
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where M  represents the mobility of gas atoms, E is the total energy of the system, F  is chemical free 
energy density, and   is the gradient coefficient, which is determined by interfacial energy.  

To solve the PF equations, the FEM is used to discretize the domain.  In addition, we use implicit time 
integration.  Thus, the Cahn-Hilliard equation (5) must be expressed as a residual equation and be 
converted to a “weak” form, 
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where the boundary terms are not shown.  Due to the second-order derivative in the weak form, this 
system must be discretized using higher-order elements.  In the simulations, the third-order Hermite 
element is used.  Note that more information about solving the PF equations using the MARMOT 
framework can be found in the articles by Tonks et al. [68]. 

The PF model is able to describe the following mechanisms: 

 diffusion of Xe atoms 

 absorption and dissolution of Xe atom at gas bubbles 

 gas bubble growth 

 gas bubble coalescence   

4.1.3 Potts model used by SNL 

4.1.3.1 Key assumptions 

a) During irradiation of LWR fuels, Xe atoms are formed due to fission of U.  Xe has extremely low 
solubility in UO2, estimated to be an order of magnitude of 10-10.  It is thought that the Xe atom 
present in the UO2 lattice has associated with it a large strain energy field as it “stuffs” itself into the 
UO2 lattice.  Thus, under irradiation conditions, the Xe atom will precipitate out onto almost any 
imperfection or feature to which it can attach.  Furthermore, once Xe atoms start to precipitate to form 
bubbles, more Xe will precipitate to enlarge the bubble.  The exact behavior and details of these 
events will be dictated by the local temperature, fission rate density, and the local defect density [69].   
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b) The irradiated fuel contains bubbles under high pressure. When the fuel is heated to 1800C, smaller 

bubbles dissolve at higher temperature and can impact the result of gas bubble size and density 
distributions. 

c) The remaining bubbles grow by Ostwald ripening type mechanism. They can also grow by random 
walk and coalescence, but only the very small bubbles random walk sufficient distances to give 
growth by coalescence. 

d) Diffusion is simulated by a random walk of pixels. Only diffusion of Xe atoms is considered in this 
simulation as it is assumed to be the rate limiting step; however, U and O diffusion can easily be 
incorporated into the Potts kMC model. 

e) Chemical potential gradients are one of the driving forces for bubble growth. This is inherent to the 
Potts model as gradients in the ensemble composition simulate this gradient. 

f) Two- and multi-component system with low solubility and with one phase of very low volume 
fraction, as is the case in this simulation, is computationally expensive for the Potts model. The 
hybrid model is being developed to address this issue and some other limitations. 

4.1.3.2 Description of the model 

One field variable―spin q(r, t)―is used to describe the microstructure in UO2 in the Potts digitization 

scheme.  All lattice sites are filled with the same integer value of spin = 5, which designates all the sites 
as belonging to a single grain.  Gas atoms are placed in the simulation space at random locations to match 
the desired volume fraction and have a spin = 3.  In the Potts model bobbles coarsen by randomly walk 
and coalescence, and by the gas in the bubbles dissolving back into the lattice and re-precipitating out on 
other bubbles.  During each Monte Carlo step, each bubble site attempts to exchange places with one of 
its neighboring sites chosen at random from its 26 neighboring sites.  If the chosen neighboring site 

happens to be a grain site, then the change in energy E  is evaluated by  
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where Ui is the strain energy density for site i, 
E

lP
U io

i 2

32
,  in the solid lattice, and 3

, lPU ioi  in the gas 

bubble.  Po,i  is the pressure at site i, which has volume l3.  Fi is the bulk free energy of the material at site i 
and is a function of the local composition and temperature.  The standard Metropolis algorithm is used to 
determine whether the attempted exchange is executed or not.  Boltzmann statics are used to calculate the 
probability W of the exchange. 
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In this way, all the materials transport mechanisms that are active in bubble coarsening are simulated. 

For simplicity and because no more details are available, Fi and Ui are assumed to be the following.  Fi is 
assumed to be only due to the entropy of mixing of the two components, UO2 and Xe gas.  Ui is assumed 
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to be constant.  This is true within the bubble, but not so in the lattice.  However given the stress state in 
lattice, the Potts model can easily incorporate the lattice stress effects using equation (7). 

The Potts model is able to simulate the following mechanisms: 

 diffusion of Xe atoms; 

 absorption and dissolution of Xe atom at gas bubbles; 

 gas bubble growth; 

 gas bubble coalescence.   

4.1.4 kMC model used by ORNL 

4.1.4.1 Key assumptions 

a) All the gas atoms reside inside the bubble sites; there is no solubility of Xe in the matrix during 
annealing.   

b) The bubble sites are initially at equilibrium, that is, the pressure exerted by the gas atoms inside the 
bubble elements balances the surface tension of the bubble-matrix interface.  Therefore, there are no 
long-range stress fields in the matrix associated with pressurized bubbles. 

c) The system largely evolves by random migration of the bubbles driven by the surface diffusion of U 
atoms based on an exchange between the void sites and the matrix sites.  When two bubbles coalesce, 
the pressure equilibrium is violated.  Restoring the equilibrium occurs by the pressurized bubbles 
acquiring a void site.   

d) The exact mechanism by which the non-equilibrium bubbles acquire void sites is not modeled 
rigorously; it is assumed that the probability of acquiring a void is proportional to the energy change 
associated with creating additional void-matrix interface.  

e) The effect of matrix dislocations and fission fragments on pinning bubble motion is considered by 
introducing a fraction of pinning sites in the simulation volume. 

4.1.4.2 Description of the model 

Three elements―matrix volume element, void element, and bubble element―are used to describe the 
microstructure in UO2.  The Potts/kMC model developed at ORNL is based on the simulation approach 
published recently by Suzudo et al. [70].  The mesoscale simulation domain consists of three 
“species”―the matrix volume elements that are made of UO2, “void” volume elements that are made up 
of a collection of condensed vacancies (green), and “bubble” elements that consist of a collection of 
vacancies and gas atoms (red).  The formation of larger “extended bubbles” occurs through a collection of 
voids and bubble sites.  The simulation approach defines three types of Monte Carlo moves: 

 exchange of a void and a matrix site to simulate surface diffusion; 

 exchange of a void and a bubble site to simulate Xe diffusion inside the bubble; 

 creation or destruction of a void site at the bubble-matrix interface. 

In the kMC simulations, the flip of sites associated with the three MC moves is made as usual according a 
probability given by 
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(9)                                               
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where E is the change in energy associated with the flip and kT is the reduced lattice temperature.  The 

Hamiltonian for the system, in the absence of dissolved gas atoms and long-range volume diffusion and 
concentration gradients, reduces to the surface energies of the various moving interfaces.  The first step in 
the calibration process is to obtain the relationship between kT in equation (9) and KbTR where Kb is the 
Boltzmann constant and TR is the real temperature in Kelvin.  In the model, “pinning sites” inside the 
matrix to account for the drag on the migrating bubbles due to dislocations or fission fragments is 
considered. 

The Potts /kMC model is able to simulate the following mechanisms: 

 surface diffusion of Xe atom and vacancy; 

 dislocation pinning; 

 gas bubble growth; 

 gas bubble coalescence.  

4.2 Summary of Different Methods and Simulation Results 
The mesoscale methods described in Section 4.1 are used to simulate the intra-granular gas bubble growth 
kinetics in post-irradiation annealing.  Due to the difference in microstructure description in different 
models, slightly different initial conditions and thermodynamic and kinetic properties are used in the 
simulations.  Table 3 and Table 4 summarize the used inputs.  The computational effort and mechanisms 
considered in the different models are listed in Table 5 and Table 6 for the sake of comparison.  In this 
section, we present the main results obtained from the different simulation methods. 

 

Table 3.  Initial condition used in simulations. 

Description PNNL INL SNL ORNL 

Initial bubble density [26] 9x1023/m3 9x1023/m3 9x1023/m3 9x1023/m3 

Initial gas concentration in 
matrix 

0.0042 0.005 .0042 0.0 

Initial U/O vacancy 
concentration in matrix 

0.001~0.0042  ~.003 0.0 – all vacancies 
condense into 
voids/bubbles 

Dislocation density and 
types [23] 

2x1014 /m3   Qualitative – see report 

Initial gas atom 
concentration in bubbles 

0.7 1.0 .0015 39.56 cc/mole 

Initial bubble distribution Normal Uniform Normal Single sites with diameter 
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distribution of 
radius 

distribution 
of radius 

distribution 
of volume 

of 2.0 nm 

Mean bubble radius[26] 1 nm 1 nm (2-D) 
and 1.5 nm 
(3-D) 

0.8 nm 1nm 

 

Table 4.  Thermodynamic and kinetic properties of defects in UO2 used in simulations. 

Description  PNNL INL SNL ORNL 

Xe migration energy in 
UO2 

3.9, 4.5 eV 3.9 eV  Surface diffusion 
dominated by U – 2.66 
eV 

UV/OV/Xe complex 
migration energy 

3.9, 4.5 eV  constant  

Xe formation energy 3.0 eV 4.35 eV 0.7 eV  

U vacancy formation 
energy 

3.0 eV    

Formation volume of O 
vacancy 

    

Formation volume of U 
vacancy 

42.3 [Å3]    

Formation volume of 
Schottky defect (unbound) 

    

Formation volume of 
Schottky defect (bound) 

    

Formation volume of Xe 50.15 [Å3]    

Interfacial energy of gas 
bubbles 

0.6 J/m2 4.2~4.4J/m2   1.0 J/m2 

Critical gas bubble size 0.8 nm  No need.  Is 
inherent. 

 

Elastic constants C11, C12 
and C44 of UO2 

395 GPa, 121 
GPa, 64 GPa 

 No elastic 
strain energy 

 

 
Table 5.  Computation efforts made in the simulations. 

Description PNNL INL SNL ORNL Experiments

Temperature 
const. (C)/ramp 
(R) 

C/R R C C C/R 

Mean bubble 
radius 

x x x x x 

Bubble density x x x x x 



Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-
irradiation Thermal Annealing 

22 April 2012 
 

 

Simulation cell 256x256 (2-D) 

128x128x36 (3-
D) 

Adaptive 
mesh 

500x500x500 
(3-D) 

300x300x30 
(3-D) 

 

Physical domain 256x256 (nm2) 

128x128x36(nm3) 

300x300 
(nm2) 

20x20x20 
(nm3) 

100x100x100 
(3-D) (nm3) 

600x600x60 
(3-D) (nm3) 

 

Adaptive time  x    

Adaptive grids  x    

No. of cores 1 (2.66 GHz) 64 (2.4 
GHz) 

100 64, 512  

CPU time 260 h 38.5 h 24 h 22.4 h  

Simulated time 12 min (R) 9.06 min 
(R) 

0.58 sec 40 sec 5 h 

Total time steps 2.8x107 19,348 1.8x106   

 
Table 6.  Mechanisms considered in the simulations. 

 PNNL INL SNL ORNL 

Xe gas diffusion x x x  

Vacancy diffusion x  x  

Bubble migration   x x 

Gas bubble growth x x x x 

Ostwald ripening x x x x 

Vacancy emission x    

Dislocation pinning    x 

Gas bubble pressure x  x x 

Elastic interaction x    

4.2.1 Results from PNNL’s phase-field modeling 

4.2.1.1 Evaluation of the thermodynamic model by testing gas bubble evolution kinetics in 
3-D at 2100 K 

As shown in Figure 4, we have validated that the PF model with the thermodynamic properties, including 
chemical free energy, interfacial energy and elastic energy, predicts 1) the critical size of gas bubble is 
about 0.8 nm; 2) the critical size increases with the decrease of vacancy and Xe concentration; 3) the 
pressure inside the gas bubble is about 1.6 GPa, which is consistent with the equation of state; and 4) the 
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elastic interaction increases the critical size of gas bubble.  All the results are reasonably acceptable.  Here 
we test gas bubble growth kinetics at constant temperature 2100 K in 3-D.  The simulation started with a 
random gas bubble distribution in a simulation cell 128x128x36 grids with gas concentration of 0.0042, 
different vacancy concentration of 0.001 or 0.0042, and with elastic/without elastic interaction.  The 
results are presented in Figure 5.  The gas bubble evolution can be divided into three stages as marked in 
Figure 5(b).  In the first stage, gas bubbles with sizes smaller than the critical size quickly dissolve; in the 
second stage gas bubble growth is due to super saturation of the vacancy and Xe atom in the matrix; and 
in the third stage the gas bubble is coarsening (Ostwald ripening).  The sharp decreases of the gas bubble 
number and gas bubble volume fraction at an early stage corresponds to the first stage, as shown in Figure 
5(a,b,c).  The ensuing increase of gas bubble volume fraction and constant or slowly decreasing gas 
bubble number corresponds to the second growth stage.  During a perfect growth stage, it is expected that 
the number of gas bubbles keep constant.  However, simulation results show that the number decreases 
slowly.  The reason for this could be inhomogeneous spatial distribution of initial gas bubbles, which 
causes local Ostwald ripening in an early time.  Although the modeling has not yet reached the final 
Ostwald ripening stage, the thermodynamic model indicates that the gas bubble volume fraction should 
remain constant while the number of gas bubble decreases slowly.  In addition, 1) the gas bubble density 
reduces faster with decreasing vacancy concentration and 2) elastic interaction speeds up the reduction of 
gas bubble density shown in Figure 5(a,b).  These results are consistent with their effect on the critical 
size of gas bubbles. 
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Figure 5.  (a) Gas bubble density in a function of gas bubble mean diameter, (b) gas bubble volume 

fraction vs time, and (c) time evolution of gas bubble morphology for the case 001.00 vc  with elastic 

interaction. 
 

Kashibe et al. [26] found that a linear relationship between the double logarithmic bubble number density 
and mean bubble diameter fit well their experimental data: 

(10)                            1.25log6.2log  bb dN   or     1.25)log(log 6.2  
bb dN ,  

where Nb is bubble density in a cubic meter volume and db is mean bubble diameter.  Figure 6 plots the 
fitted experiment results and our simulation results.  The simulation results also show a linear relationship 
between the double logarithmic gas bubble density and mean gas bubble diameter, but in a different slope.  
One reason for the slop difference between the results from experiments and simulations could be due to 
different initial gas bubble density and size distribution.  A 2-D result in INL’s PF modeling shows that 
the slope strongly depends on an initial gas bubble density.  The slop reaches the experimental one with 
the increased initial gas bubble density.  Reducing vacancy concentration makes the slope closer to the 
experimental relationship.   
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Figure 6.  Gas bubble density in a function of gas bubble mean diameter. 

4.2.1.2 Effect of vacancy emission on gas bubble evolution in 2-D at 2100 K 

Experiments [7] suggested that gas bubble growth is severely restricted by vacancy starvation effects 
under out-of-pile conditions.   The effect of vacancy concentration and vacancy emission from 
dislocations on gas bubble evolution was simulated.  The simulations considered two cases.  One was 
homogeneous vacancy emission.  In this case, there was uniform vacancy generation with a generation 

rate  2
0  where   is dislocation density and 2

0  is emission strength.  In the other case was, 

inhomogeneous vacancy emission, the vacancy emission was from individual dislocation with an 

emission rate 2
0   at dislocations.  Figure 7 shows the snap shots of the gas bubble morphology at t=2 

minutes. 

The results confirmed that vacancy emission from dislocations leads to a faster growth of gas bubbles 
near dislocation, as shown.  This may explain the experimental observation [7] that the bubble size 
distribution exhibits long exponential tails in which the largest bubbles are present in concentrations of 
104 or 105 lower than the concentrations of the average sized bubbles. 



Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-
irradiation Thermal Annealing 

26 April 2012 
 

 

 

(a)                                                       (b) 
Figure 7.  Gas bubble morphology a) and b) with vacancy emissions from different distributed 

dislocations.  The light blue dots denote the location of dislocations while the black circles identify the 
initial gas bubbles.  The framed parts illustrate the obvious difference due to the local emission of 

vacancies. 

4.2.1.3 Gas bubble growth kinetics in 2-D during annealing from 1100 K to 2100 K 

Gas bubble evolution during annealing was also simulated in two dimensions.  The simulation cell and 
initial gas bubble distribution were the same as those described in previous section.  The vacancy and gas 
concentrations were 0.0042.  The annealing started from 1100 K and temperature increased at a rate of 
2K/s.  Three simulations with different initial gas bubble distributions were run.  The evolution of gas 
bubble number and gas volume fraction are plotted in Figure 8.  Figure 8(a) shows that at low temperature 
the gas bubble is frozen due to its small diffusivity.  With increasing temperature, the small bubbles 
become unstable, and a sharp drop of gas bubble number is observed at T=1400 K.  After that there is a 
short period when the number of gas bubbles is almost constant.  Then the bubble number linearly 
decreases.  The volume fraction evolution in Figure 8(b) also shows the freezing, dissolving, and growing 
stages.  A comparison of the experimental and modeling results of gas bubble density and mean gas 
diameter is plotted in Figure 9.  A linear relationship between the double logarithmic bubble density and 
mean bubble diameter during the gas bubble growth was observed, which is qualitatively in agreement 
with the experimental results.    
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(a)                                                                    (b) 
Figure 8.  Evolution of bubble number and bubble gas atom volume fraction with time. 

 
 

 

 

Figure 9.  Comparison of gas bubble density vs mean diameters from PF modeling and experiments. 

4.2.1.4 Evaluation of computational efficiency with FFTW 

We have investigated the numerical efficiency of FFTW.  Table 7 lists the central processing unit (CPU) 
time for 10,000 simulation time steps in 2-D and 3-D.  We found that calculating the driving force due to 
elastic interaction only takes about small percentage of total CPU time, which is one of advantage of the 
FFTW method compared to the FEM. 

 
Table 7.  CPU time with 2.66-GHz core for 10,000 simulation time steps. 

Description CPU Time 



Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-
irradiation Thermal Annealing 

28 April 2012 
 

 

2-D simulation domain: 256*256  without elastic interaction 0.0742 h 

2-D simulation domain: 256*256  with elastic interaction 0.0757 h 

3-D simulation domain: 128*128*36  without elastic interaction 1.24 h 

3-D simulation domain: 128*128*36  without elastic interaction 1.36 h 

 

4.2.2 Results from INL’s phase-field modeling 

4.2.2.1 Gas bubble kinetics in 2-D and 3-D during annealing from 1100 K to 2100 K 

To model post-irradiation annealing in UO2, we used 2-D and 3-D simulations.  The 2-D simulations 
started with a random gas bubble distribution in a 300-nm by 300-nm simulation domain with two 
representative thicknesses in the z-direction (necessary to calculate the bubble density).  We conducted 
one simulation with a z-thickness of 1 nm with 81 initial bubbles and one with a z-thickness of 10 nm 
with 841 initial bubbles.  Both simulations started with an average bubble radius of 1 nm, although the 
initial radius varied randomly by up to ±25%.  We also conducted a 20-nm by 20-nm by 20-nm 3-D 
simulation with eight initial bubbles with a 1.5-nm mean initial radius.  The 1-nm thickness 2-D 
simulation and the 3-D simulation were run until one bubble remained.  The 10-nm thickness 2-D 
simulation was run until 4 bubbles remained.  See Figure 10 for examples of the bubble growth for the 
10-nm thickness 2-D simulation. 

 

 
              t = 5.2 min.  t = 7.7 min.    t = 9.7 min.         Initial 3-D  

 
Figure 10.  Images of the bubble growth during the annealing of the 10-nm thickness 2-D simulation.  

Note that the adapted mesh is also shown in the simulations.  The initial condition of the 3-D simulation 
is also shown. 

 
For the 2-D simulations, the bubble density and the average bubble radius were plotted as a function of 
time, as shown in Figure 11.  The bubble density first begins to decrease after 3.5 minutes for the 10-nm 
thickness simulation but after 2.5 minutes for the 1 nm thickness.  The decrease in bubble density 
coincides with the increase in mean bubble radius for the 10-nm thickness simulation but not for the 1-nm 
thickness.  We suspect that the delay in the radius increase is due to the time required for the gas atoms to 
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migrate across the large distance between bubbles.  The bubble density decreases by nearly two orders of 
magnitude by the end of both simulations. 
 
 

 
 
 

Figure 11.  Post-irradiation annealing results, with the average bubble radius vs. time on the left and the 
bubble density vs. time on the right. 

 
We also compared our results to the linear fit of the logarithm of the bubble number density to the 
logarithm of the mean bubble diameter from Kashibe et al. [26] (see Figure 12).  As shown, the 10-nm 
thickness 2-D simulation predicts a linear relationship throughout the simulation, while the 1 nm 
thickness 2-D simulation predicts a linear relationship only after the mean diameter exceeds 6 nm.  The 
linear slopes of both 2-D simulations are equal and are less than the slope of the experimental fit.  The 3-
D result has a linear relationship throughout the simulation and the slope is identical to the experimental 
fit.  Thus, it appears that 2-D simulations under-predict the decrease in the bubble density with increasing 
diameter, probably because they only capture the gas atom flux in the x-y plane. 
 

 
 

Figure 12.  Gas bubble density as a function of the gas bubble mean diameter, comparing the 
experimental fit from Kashibe et al. [26] to our 2-D and 3-D simulation results.  The 3-D results are a 

better fit with the experimental fit. 

4.2.2.2 Evaluation of the effectiveness of mesh and time step adaptivity 

During the simulations, we employed the time and mesh adaptivity capabilities in MARMOT.  With the 
mesh adaptivity, the smallest element size is 0.42 nm and the largest is 6.67 nm.  We began the simulation 
with a time step of 40 seconds, but as the temperature increases, the time step must be decreased.  In 
addition, modeling the disappearance of a bubble requires a smaller time step.  Therefore we employed 
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time step adaptivity as well.  Both the mesh and time step adaptivity are described in more detail by 
Tonks et al. [68]. 

To demonstrate the effect of mesh and time step adaptivity, we plotted the degrees of freedom (DOFs) in 
the simulation vs. time as well as the time step size vs. time for the 10-nm thickness 2-D simulation, as 
shown in Figure 13.  In Figure 13(a), the DOFs are plotted together and the number of bubbles vs. time is 
shown for reference.  From this plot it is clear that each time a bubble disappeared, fewer DOFs were 
needed to accurately represent the system.  Thus, as time went on, the computational expense reduced 
dramatically.  Due to the increase in the diffusion constant as the temperature increased, the time step 
reduced by many orders of magnitude over time (see Figure 13(b) to see the time step size and the inverse 
of the diffusion constant).  Although the time step size is quite noisy, due to the small time step required 
every time a bubble disappears, there is a clear relationship between it and the value of the diffusion 
constant. 

 

 
             (a) (b)  

 
Figure 13.  The results of mesh and time step adaptivity for the 10-nm thickness 2-D simulation, where 

(a) shows the decrease in the number of degrees of freedom with time due to adapting the mesh, with the 
number of bubbles shown for reference, and (b) shows the time step size with time, with the inverse of the 

diffusion constant shown for reference. 
 

4.2.2.3 Evaluation of the impact of the initial bubble positions and size distribution 

Detailed information about the initial bubble positions and size distribution was not available from 
Kashipe et al. [26], therefore we have made assumptions for these parameters.  In order to determine the 
sensitivity of the bubble growth relative to these assumptions, we conducted several simulations on a 100-
nm by 100-nm domain with 100 initial bubbles.  In these simulations, we randomly varied the initial 
bubble positions by various amounts and we also varied the maximum amount of variation in the bubble 
radius. 

By comparing the change in the bubble density with time, we found that the bubble configuration has 
little effect on the bubble growth, as shown in Figure 14(a).  However, the initial bubble size distribution 
does have an effect (Figure 14(b)).  As the variation in the initial bubble radius increases, the time at 
which the first bubble disappears, changes from 4 to 3 minutes.  In addition, the rate at which the bubble 
density decreases with time decreases with increasing variation.  However, this difference is no longer 
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evident once the bubble density has reached 30% of its original value.  Thus, the selection of the initial 
bubble configuration has little effect on our simulations, but the bubble size distribution has a significant 
effect on the initial stages of the bubble growth. 

 

                             (a)  (b) 

Figure 14.  Investigation of the effect of the initial condition of the bubbles using a 100-nm by 100-nm 2-
D domain, where (a) shows the effect of the variation in the bubble position and (b) the effect of variation 

in the bubble radius. 
 

4.2.3 Results from SNL’s Potts modeling 

4.2.3.1 Gas bubble growth kinetics in 3-D  

The microstructures showing bubble coarsening are shown in Figure 15.  A portion of the simulation 
space, 200 x 200 x 200 lattice sites corresponding to 40 nm x 40 nm x 40 nm, is imaged because the 
entire space is too large and this section shows sufficient detail and extent to illustrate the behavior well.  
The small red dots are the “dissolved” gas in the lattice.  The bubbles are the spherical, large, red features.  
As can be clearly seen the bubbles are coarsening.  The bubble growth curve is shown in Figure 16.  As 
expected, the bubbles are coarsening.  The time scale for this simulation was determined by estimating 
that the bubble would coarsen to 10 nm in 10 minutes.  The simulation started with a total of 1176 
bubbles with average radii <r> = 0.8 nm and ended with 142 bubbles of <r> = 2.2 nm.  The size 
distribution of the bubbles is shown in Figure 17 at different times during the simulation.  The 
skewedness of the distribution at the later times is surprising.  The skewedness was anticipated to be to 
the larger sizes because it is at short times during annealing. 
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(a)                                                            (b) 

   

(c)                                                                      (d) 

Figure 15.  Microstructure of bubbles coarsening (only a portion of the simulation space is imaged, 2003 l3 
corresponding to 40 nm x 40 nm x 40 nm). 
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Figure 16.  Average bubble radius as a function of time. 

 

   

                               

                                                        (a)  Time = 0.0 sec, <r> = 0.79 
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                                                             (b)  Time = 0.35 sec, <r> = 2.0 

 

                                                              (c)  Time = 0.58 sec, <r> = 2.2 

Figure 17.  Bubble size distributions as the bubbles coarsen. 
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4.2.4 Results from ORNL’s Potts/kMC modeling 

4.2.4.1 Gas bubble growth kinetics in 3-D at 1800 K 

Large 3-D runs were made with a 208 x 208 x 208 sites using 512 processes.  The size of each site was 
again 2.0 nm.  Figure 18 shows the growth kinetics of the bubbles.  Figure 18 also shows the growth 
curve in the presence of a small volume fraction (0.005) of “dislocated” sites acting as pinning sites.  In 
these simulations, it was assumed that contact with “dislocated” sites would completely suppress surface 
diffusion locally for the site.  It is clear that pinning reduces the growth kinetics.  However, it is not clear 
at this point how to correlate the dislocation density with the fraction of “dislocated” sites.  Also, the 
long-range stress fields associated with the dislocations have to be considered unless the dislocations are 
present in the form of a recovered low-angle grain boundary network at the annealing temperature.  By 
adjusting the volume fraction of the dislocated sites, it is possible to match the simulation and annealing 
data of Kashibe et al. [26]. The bubble size distribution with time can be seen in Figure 19. 

 

 

 
Figure 18.  Bubble growth kinetics in a 416- x 416- x 416-nm3 simulation volume. 

 



Problem 1: Mesoscale Simulations of Intra-granular Fission Gas Bubbles in UO2 under Post-
irradiation Thermal Annealing 

36 April 2012 
 

 

 

 
Figure 19.  Bubble size distribution obtained using the 416- x 416- x 416-nm3 run. 

 

 

 

         

                                  5 sec                                          15sec 

 



Mesoscale Benchmark Demonstration 
April 2012 37 
 

 

   

       

                                 30 sec                                                45 sec 

 
Figure 20.  Temporal evolution of the bubbles in the 416- x 416- x 416-nm3 run showing the migration 

and coalescence mechanism operating throughout the simulation time. 

 

The temporal evolution of the bubbles is shown in Figure 20 for the larger run.  It is clear that the 
cylindrical bubbles that formed in the smaller domain do not form and there is no sudden increase in the 
growth rate as observed in the smaller run.  However, a few growth bumps are seen in Figure 18 that 
correspond to rare coalescence events associated with large bubbles. 

The calibration of the Potts/kMC code can be rescaled at any time during the simulation, assuming that 
each simulation cell now corresponds to a larger bubble size.  The structure should be re-mapped so that 
the spatial distribution of the bubbles is preserved.  With this re-mapping, it is now possible to change the 
relationship between the Monte Carlo time (MCS) and the real time such that each MCS now corresponds 
to a longer real time.  Such an approach has been demonstrated for simulating grain growth in steels [71].  
Therefore the models can be used efficiently to simulate the microstructure evolution at hours of 
annealing time. 

4.3 Assessment of Mesoscale Modeling Methods 
As with most modeling and simulation methods, the mesoscale approaches can be broken down into three 
main elements. These elements are: 1) the system of equations used to describe the mechanisms, 2) the 
numerical method applied to solve for the unknowns, and 3) the geometric representation of the physical 
domain.  The assessment of the mesoscale methods has been organized around each of these elements and 
describes how each element impacts the benchmark problem calculation results. 
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The idealized mesoscale method benchmark problem was developed to approximate the behavior of intra-
granular fission gas bubbles under post-irradiation, isothermal annealing conditions.  The UO2 
microstructure behavior under these conditions is a bubble growth and coarsening process.  Kashibe et al. 
[26] and White [24] have both studied the behavior of intra-granular bubbles under post-irradiation 
annealing and have found a complex response that is governed primarily by vacancy supply and the local 
non-equilibrium state of the bubble pressure.  At long time anneals with sufficient vacancy supply, 
Ostwald ripening behavior leads to bubble growth and coarsening.  This has been observed in the vicinity 
of grain boundaries.  However, neither of these evaluations observed purely Ostwald ripening or bubble 
coalescence in the center region of the grains.  In these regions, the growth and coarsening behavior was 
found to follow a vacancy, dislocation, and bubble non-equilibrium interaction process.  The bubble 
density as a function of the mean bubble diameter was found by Kashibe et al. [26] to have a slope of -2.6 
on a log-log plot. Equilibrium conditions representing Ostwald Ripening generally exhibit a coarsening 
slope of -3 on a log-log plot [72].  A coarsening slope greater than -3 indicates that bubble growth 
mechanisms are more dominant than coarsening processes when compared to the classical Ostwald 
behavior.  White [24] postulated that the interaction of vacancies with dislocations and the non-
equilibrium strain conditions in the vicinity of the intra-granular bubbles causes a vacancy starvation 
condition that promotes bubble growth over coarsening and broadens the bubble distribution and reduces 
the bubble coarsening rate. 

The PF methods used in this evaluation by PNNL and INL described gas bubble growth and coarsening 
by bulk diffusion of vacancies and gas atoms driven by minimization of chemical free energy, interfacial 
energy and elastic energy. The Potts method used in this evaluation by SNL described gas bubble growth 
and coarsening using atom random walk driven by the minimization of the chemical free energy and 
interfacial energy. The kMC/Potts method used in this evaluation by ORNL described gas bubble 
migration and coarsening by surface diffusion driven by the minimization of chemical free energy and 
interfacial energy.  Both the PF and Potts methods have previously been shown to reproduce second 
phase particle/precipitate growth and coarsening by Ostwald ripening mechanisms [73].  It is envisioned 
that by applying these methods to the behavior of intra-granular bubble growth and coarsening during 
post-irradiation annealing conditions, it is possible to demonstrate that these methods can consider more 
complex microstructure behaviors than those governed completely by Ostwald ripening and produce 
quantitative results. 

Figure 21 compares the simulation results for each method to the data of Kashibe et al. [26], representing 
typical measured intra-granular bubble behavior. Shown in Figure 21 is the bubble density (Nb) versus 

mean bubble diameter (Db) for several expected or measured trends ( ௕ܰ ∝ ௕ܦ
ି௡		data of Kashibe et al. 

[26] given by n = 2.6, theoretical Ostwald ripening given by n = 3 and an estimated curve for n = 2).  
Symbols are used to display the results at the end of the simulation for each method used in this 
evaluation. It should be noted that the end time in each simulation varied depending on the method used 
and computer resources available.  As noted previously, each method used somewhat different 
assumptions and initial conditions to perform the simulations, which makes it difficult to compare the 
results directly and this must be considered in this evaluation.  However, the comparison shown in Figure 
21 provides a basis for evaluating the methods and their abilities to simulate reliably the microstructure 
evolution behavior of intra-granular bubbles. 
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Both the 2-D PF models calculate a bubble growth and coarsening behavior that has a trend of between 

1.5 and 2 for the exponent n ( ௕ܰ ∝ ௕ܦ
ି௡ሻ.  These results demonstrate a much slower coarsening behavior 

as compared to either the Kashibe data or the Ostwald ripening mechanism.  Without detailed information 
about the calculated bubble size distribution, the causes of these trends are difficult to identify.  The INL 
3-D PF calculation exhibits coarsening behavior (n~2.5) that is consistent with the Kashibe data. The 
PNNL 3-D PF calculation has the same coarsening exponent as the 2-D simulation.  The SNL Potts 3-D 
and the ORNL Potts/kMC 3-D models calculate a growth and coarsening behavior that has a slope equal 
to or greater than three.  These  results indicate that the mechanisms were dominated more by Ostwald 
ripening mechanisms than the data would suggest.  

 
Figure 21. Trend in bubble density versus mean bubble diameter for intra-granular bubble growth and 

coarsening during post-irradiation annealing. Comparison of results from mesoscale methods and 
experimental data is indicated. 

 

Some key observations from the comparison are summarized below. 

 Results from the PF methods predict that gas bubble growth and coarsening evolution occurs in three 
stages: unstable gas bubble disappearance, bubble growth, and Ostwald ripening. The calculated 
kinetics of intra-granular gas bubble density and size during unstable gas bubble disappearance and 
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bubble growth strongly depends on the initial size and spatial distributions of the intra-granular gas 
bubbles. 

 The two PF methods predict a linear relationship between the logarithm of the bubble density and the 
logarithm of the mean bubble diameter.  Kashibe et al. [26] and others observed similar behavior in 
measurements obtained from post-irradiation annealing tests.  The exponential coefficients predicted 
by the PNNL 2-D and 3-D simulations and the INL 2-D simulations are smaller than the exponent 
determined from experiments (~1.5 vs 2.6).  Insufficient information is available to identify the 
reason that the exponent values do not match the experimentally observed values. The PNNL results, 
however, suggest incomplete representation of the sinks and sources of vacancies in real materials is 
the cause for the differences.  Sensitivity studies performed by PNNL show that vacancy starvation 
may cause more bubble loss and decrease bubble growth as compared to higher concentrations of 
vacancies. Similar studies show that elastic interaction also slows down the growth kinetics. 

 The exponential coefficient predicted by the INL 3-D PF simulation is very close to the 
experimentally observed values. On the other hand, the exponential coefficient obtained from PNNL 
3-D phase field simulation is almost the same as that predicted from the 2-D method.  The 
dependency of the calculated bubble growth and coarsening behavior on the 2-D and 3-D methods 
used by INL suggests that the 2-D simulation method only represents gas diffusion in one plane.    

 Comparison of the PNNL and INL methods shows that the thermodynamic and kinetic data used to 
define the parameters of Benchmark Problem 1 are different. For example, the surface energy used in 
the PNNL model was 0.6 J/m, whereas the INL simulation used ~4 J/m.  Typical values of surface 
energy range between 0.6 J/m and 1 J/m based on past experience.  Furthermore, a parabolic function 
was used in PNNL method to approximate the free energy of ideal solute matrix phase while an 8th 
order polynomial was used in INL method.  The minimization of interfacial energy and chemical free 
energy is the driving force of gas bubble growth while the minimization of interfacial energy is the 
driving force of Ostwald ripening. The differences in the sources of the driving forces calculated in 
these two methods will cause the calculated growth behavior to vary between the two methods.  In 3-
D, the interfacial energy may play a more important role because the nano-gas bubble has much 
higher surface fraction in 3-D compared to that in 2-D. In addition, numerical pinning in 3-D could be 
another reason to reduce the growth kinetics, especially for a small interfacial energy.      

 In the SNL Potts method, bubble coarsening is calculated by random walk of atoms and coalescence, 
and by the gas in the bubbles dissolving back in the lattice and re-precipitation out on other bubbles. 
The driving force of gas bubble evolution in the SNL Potts method is the minimization of chemical 
free energy and interfacial energy similar to that used in the PF methods. The 3-D simulations 
performed by SNL provide the evolution of gas bubble size and size distribution. However, since the 
model does not use kinetic properties, the time had to be determined indirectly by estimating bubble 
coarsening kinetics.   

 At high temperature, the coarsening of gas bubble may attribute to Ostwald ripening and small gas 
bubble migration. Ostwald ripening of gas bubbles is through bulk diffusion whereas gas bubble 
migration by surface diffusion. The reason for Ostwald ripening is the Gibbs-Thomson effect, which 
leads to smaller particles having a higher solubility than larger particles. Thus, a flux from smaller 
particles to larger ones due to the concentration gradient leads to the shrinkage of smaller particles 
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and the growth of larger particles. The PF models and the Potts model from SNL describe Ostwald 
ripening while the kMC/Potts method developed by ORNL describes gas bubble migration by surface 
diffusion processes.  

 The ORNL kMC/Potts model used bubble migration to describe gas bubble growth and coalescence 
during post-irradiation annealing. Because ORNL chose to model the processes using largely 
different mechanisms than those used in the other methods, the comparison of this method with the 
results from the PF or Potts models is difficult. 

 While the results are encouraging, the use of different thermodynamic and kinetic properties in the PF 
methods employed in this evaluation make formulating definitive conclusions about the predictive 
capabilities of these methods elusive.  Further work is needed to better understand the strengths and 
areas of improvement in these capabilities. Similar conclusions can be made about the statistical 
methods applied in this evaluation. 

The simulation results for Benchmark Problem 1 demonstrate that the PF and Potts methods can capture 
several aspects of 3-D intra-granular gas bubble evolution during post-irradiation annealing conditions in 
both length and time scales for the benchmark problem. The ability of the PF methods to approximate a 
higher degree of the physical mechanisms operative during the post-irradiation annealing of intra-granular 
bubbles, allows these methods to represent quantitatively the observed experimental data.  The Potts and 
kMC methods generate results that qualitatively display promising trends. However, neither of these 
quantum statistical methods represented well the quantitative results for the intra-granular bubble growth 
and coarsening behavior observed in post-irradiation annealing. 

5. MAIN CONCLUSIONS AND FUTURE WORK 
The capabilities of several different mesoscale methods were evaluated using Benchmark Problem 1 
designed to describe the intra-granular fission gas bubble evolution in UO2 material under post-irradiation 
thermal annealing. The purpose of the mesoscale benchmark problem was to provide a common basis to 
assess the PF and Potts/kMC mesoscale methods with the objective of identifying the strengths and areas 
of improvement in the predictive modeling of microstructure evolution. Each method considered in this 
evaluation has its own unique features that provide the capabilities to simulate the evolution of 
microstructure under different conditions or driving forces. For example, the PF model developed by 
PNNL considered vacancy and Xe atom diffusion, vacancy emission, and elastic strain-field interactions. 
The method uses FFTW to solve the system of equations that describe the microstructure behavior. The 
MARMOT PF model developed by INL considered only Xe atom diffusion and with no attention given to 
elastic strain field interactions.  MARMOT used the FEM combined with adaptive mesh and time step 
capabilities to solve the system of questions used to describe the gas bubble behavior. The Potts model 
developed by SNL considers random walk mechanisms while the Potts/kMC model developed by ORNL 
considers gas bubble migration and coalescence.  

The mesoscale Benchmark Problem 1 was constructed to include important microstructural evolution 
mechanisms on the kinetics of intra-granular fission gas bubble behavior such as the atomic diffusion of 
Xe atoms, U vacancies, and O vacancies, the effect of vacancy capture and emission from defects, and the 
elastic interaction of non-equilibrium gas bubbles. An idealized set of assumptions and a common set of 
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thermodynamic and kinetic data were imposed on the benchmark problem to simplify the mechanisms 
considered. To assess the robustness of the different methods, the simulation results for mean gas bubble 
diameter and gas bubble density were compared to the selected experimental results.  All the mesoscale 
methods used in this study were found to have various levels of capabilities to model gas bubble 
coarsening in UO2 fuel.  The evaluation found that the PF methods, by the nature of the free energy 
formulation, are able to represent a larger subset of the mechanisms influencing the intra-granular bubble 
growth and coarsening mechanisms in the idealized benchmark problem as compared to the Potts and 
kMC methods.  The Potts and kMC methods were able to capture some details of the growth and 
coarsening behavior.  However, without adequate treatment of the kinetics of the mechanisms, this study 
was unable to fully evaluate the predictive capability of these methods.  Finally, it is recognized that the 
mesoscale benchmark problem as formulated does not specifically highlight the strengths of the discrete 
particle modeling used in the Potts and kMC methods.   

While the results of this evaluation to assess mesoscale modeling methods are encouraging, the use of 
different thermodynamic and kinetic properties in the methods employed in this evaluation make 
formulating definitive conclusions about the predictive capabilities of mesoscale methods elusive.  As a 
result, the major outcomes of this evaluation are the following future work recommendations: 

 1) Preliminary simulations demonstrated that interfacial energy, critical size of gas bubbles, initial 
gas bubble size and spatial distribution, vacancy starvation and emission, and elastic interaction affect the 
gas bubble growth kinetics within the mesoscale benchmark problem.  It is important to systematically 
examine the models used in each method to represent these mechanisms and describe their effect on the 
gas bubble kinetics predicted by each method. 

 2) In this work, the phase field equations were solved with FFTW (PNNL) and with FEM (INL).  A 
comprehensive comparison between these methods needs to be conducted.  To ensure a reliable 
comparison, the same set of PF equations and material parameters should be used with both methods. 

 3) For the Potts and kMC/Potts methods, it is important (a) to evaluate the approaches used to 
integrate the representation of potential mechanisms into the methods, and (b) to establish the relation 
between the method parameters and the thermodynamic and kinetic properties that describe the behavior 
of the microstructure evolution. 
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Appendix A   

PNNL--Detailed Mesoscale Phase-field Model Descriptions and Result Analysis 

Yulan Li, Shenyang Hu, Robert Montgomery, Fei Gao, and Xin Sun 

Pacific Northwest National Laboratory (PNNL) 

 

A-1. Assumptions 

Gas bubble growth needs continuous supply of both vacancies and gas atoms. Starvation of either vacancies or 

gas atoms will limit the bubble growth. Due to high pressure inside of gas bubbles and large lattice mismatch of 

interstitial Xe atoms and U vacancies, elastic interaction can be an important driving force or resistance for the 

diffusion of vacancies and Xe atoms. Defects such as dislocations are sinks or sources of vacancies. The spatial 

distribution and density of dislocations affect the sink or emission strength of vacancies, hence the concentration 

of vacancies. Our phase-field model takes these physics into account. However, due to the complex of the system 

and the uncertainty of thermodynamic and kinetic properties, we made the following assumption to simplify the 

problem. 

1) Xe atoms may occupy U vacancy lattices or interstitial lattices that depend on valid U vacancy 

concentration and Xe concentration.  For the simplicity of description, we assume that Xe always occupy 

interstitial lattice. Thus, the XeU (Xe occupies one uranium vacancy) is described by a cluster of a U 

vacancy and an interstitial Xe atom. Such a two sublattice model allows studying the effect of starvation 

and vacancy emission on gas bubble growth.  

2) Xe interstitial, U vacancy, and the XeU (Xe occupies one uranium vacancy) have very different mobility 

from the calculation of migration energy of defects. In addition, other complexes such as XeUO (Xe 

occupies one uranium vacancy and one oxygen vacancy) and XeUO2 (Xe occupies one uranium vacancy 

and two oxygen vacancies) also contribute the diffusion of vacancies and Xe atoms. So the effective 

mobility of U vacancies and Xe atoms are used in the model. In the present simulations effective 

migration energy 3.9 eV for both U vacancy and Xe atom are used. But the model has no limitation of 

using different mobility of  of U vacancies and Xe atoms. 

3) Gas bubbles formed at low temperature may be unstable at annealing temperature. So initial size 

distribution of gas bubbles may dramatically impact the results of gas bubble number and size evolution. 

In our simulations, a normal (Gaussian) distribution with a mean radius of 1nm and standard deviation of 

1nm is used to generate the initial gas bubble size distribution. 
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4) Chemical potential gradient is one of driving forces for vacancy and Xe diffusion. We use the Kim’s 

model [1] to describe the chemical free energy of matrix and gas phases. To efficiently solving the phase-

field evolution equation, two parabolic functions are used to fit the ideal solution free energy of the matrix 

with vacancies and Xe atoms and the free energy of the gas bubble phase which is calculated from the 

equation of state.  

5) Dislocations are sinks or sources of vacancies. Because of the lack of sink and emission strengths, the 

emission rate of vacancies from dislocations is taken as a model parameter, like the initial vacancy 

concentration.    

6) Experiments[2] suggested that vacancy emission could be an important mechanism which affects the gas 

bubble evolution kinetics. Therefore, we assumed that initial vacancy concentration is a model parameter. 

7) O vacancy has much higher mobility than U vacancy and Xe atom. But it is not a rate limiting species in 

gas bubble growth.  Therefore, we neglected O vacancies. Its effect is accounted in the effective 

diffusivity of U vacancies and Xe atoms.  

8) The contribution of small gas bubble migration at high temperature to gas bubble evolution is ignored in 

this model. However, a phase-field model of void migration can be extended to describe gas bubble 

migration [3, 4].   

 

A-2. Model description 

Definition of microstructure and phase field model variables 

In the framework of phase-field modeling, the microstructure of intra-granular fission gas bubbles in UO2 can be 

described by two sets of field variables. One is the concentration variables describing the concentrations of 

diffusive vacancies and gas atoms. The other one is the order parameter distinguishing the matrix and gas phases. 

In reality, there are a number of mobile vacancies in irradiated UO2 such as single oxygen and uranium vacancies, 

and small vacancy clusters. Fission reaction also produces a number of fission gas atoms including Xe, Kr, and 

He which form the gas phase. For simplicity, we use variable cv (r, t) to describe the overall vacancy 

concentration which includes O and U vacancies and their vacancy clusters, and cg (r, t) to describe overall gas 

atoms (Xe, Kr, He, …) concentration. r  and t  are the spatial coordinate and time, respectively. We assume that 

the vacancies and gas atoms diffuse with effective diffusivity.  Thus, two sub lattices, i.e., the host lattice and 

interstitial lattice, are used to describe the crystal structure. The host lattice is occupied by U or O atom or 

vacancy while gas atoms occupy the interstitial lattices. The cv (r, t) and cg (r, t) are the numbers of moles in the 

molar volume of UO2 lattices, respectively. Here, we imply that the ratio of U and O vacancies in the molar 
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volume remains ½ during absorption, emission and diffusion processes. The order parameter is denoted by (r, t) 

which is 1 in gas bubble phase and 0 in the matrix phase. Across the interface between a gas bubble and the 

matrix (r, t) smoothly varies from 1 to 0.  

 

Total free energy 

The total free energy of the system includes the chemical free energy, gradient energy terms, and long-range 

interaction energy and is written as a function of the phase-field variables as 

 









V

ij
def

vv dVUTccFE )(
2

),,,( 2
2

 ,                                                                        (1) 

where V is the system volume, ),,,( TccF gv   is the chemical free energy density, T is absolute temperature,  is 

the gradient coefficient associated with interfacial energy of gas bubbles, defU  is the elastic energy density 

associated with the lattice mismatch of the defects including distributed gas bubbles, vacancies, and gas atoms, 

and )3,2,1 ,( jiij  are elastic strain components. 

Following the Kim’s solidification model [1], the chemical free energy density of the system is constructed as  

      )(,,)(,,)(1), ,,(  wgTccfhTccfhTccF b
g

b
v

bm
g

m
v

m
gv  ,                                  (2) 

where ( f m, bf ), (cv
m ,  cg

m ) and ) ,( b
g

b
v cc  are the chemical free energy densities, vacancy and gas concentrations 

of the matrix and of the gas bubble phases, respectively. )(g  is a double-well potential, for example, the 

simplest form is   22 )1(  g  and w  is the height of the double well potential. 32 23)(  h  is an 

interpolation function describing the volume fraction of gas bubble phase. The Kim’s model assumes that any 

point within the interface region is considered as a mixture of the matrix and gas bubble phases with the same 

inter-diffusion potential. Therefore, the concentrations satisfy the following chemical equilibrium and mass 

balance equations, 

     b
v

m
vv chchc   1 ,                                                                                            (3a) 

     b
g

m
gg chchc   1 ,                                                                                           (3b) 

   
b
v

b
g

b
v

b

m
v

m
g

m
v

m

c

Tccf

c

Tccf







 ,,,,
,                                                                                  (3c) 
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   
b
g

b
g

b
v

b

m
g

m
g

m
v

m

c

Tccf

c

Tccf







 ,,,,
.                                                                                  (3d) 

From eqs. (3a-3d), we can obtain (cv
m,  cg

m ) and ) ,( b
g

b
v cc  for given ) ,( gv cc . 

 

Chemical free energies of the matrix and gas bubble phases 

With ideal solution assumption, the chemical free energy density of the matrix phase with vacancy and gas 

concentration cv (r, t) and cg (r, t)  can be written as  


,)]1ln()1()ln([                    

)]1ln()1()ln([
1

),,(

m
g

f
gA

m
g

m
g

m
g

m
g

m
v

f
vA

m
v

m
v

m
v

m
v

m
g

m
v

m

cENccccT

cENccccTTccf







                                            (4) 

where 314.8  ]KmolJ/[   is the gas constant, ]mol[10022.6 123 AN  is the Avogadro constant. f
vE  

and f
gE  are the formation energies of a vacancy and a gas atom, respectively.  is the molar volume of UO2 and 

=2.5310-5 [m3/mol].  

In simulations, ),,( Tccf m
g

m
v

m  is replaced approximately by parabolic functions as 

   2,
12

2,
12),,( eqm

g
m
g

eqm
v

m
v

m
g

m
v

m ccBccATccf  ,                                                                (5) 

where  TkEc B
f

v
eqm

v  exp,  and  TkEc B
f

g
eqm

g  exp,  are the thermal equilibrium solubility of vacancies 

and gas atoms, respectively. kB =1.38110-23 [J/K] is the Boltzmann constant. Both ),,( Tccf m
g

m
v

m  in eqs. (4) and 

(5) have the same first derivatives at a given concentration ),( 00
gv cc . 

 If assuming a UO2 vacancy has the same formation energy as a Xenon atom, f
vE = f

gE = fE =3 eV. In the 

following simulations, )01.0,01.0(),( 00 gv cc , 1212 AB   and 

   Tcc

aa
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A
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eqm
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44
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24004

3






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   00
2 log 0.009234611log0.00923461-.1786050 vv cca  , 
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with C44=64 [GPa]. 

The chemical free energy density of the gas bubble phase, for the sake of simplicity, is assumed to be parabolic 

functions of b
vc  and b

gc  as  

          2021

2

222021

2

22,, BcBcBAcAcATccf b
g

b
g

b
v

b
v

b
g

b
v

b  .                                              (6) 

If eqb
vc ,  and eqb

gc ,  are the equilibrium concentrations of the gas bubble phase, 1, eqb
vc  and eqb

gc ,  can be obtained 

from the equation of state of Xenon. We used Ronchi’s results of Xenon [5] to determine 7.0 , eqb
gc  (see Fig. 

1).  The left two unknown coefficients (e.g., A22 and B22) will be determined by given ( crosscross
v

cross
v fcc ;, ), i.e., 
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v
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v
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Their plots can be seen in Fig. 2. 
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Fig. 1. Pressure versus Xenon mole fraction at different temperature. [5] 

 

 

Fig. 2. Chemical free energies used in our simulations. 

 

Elastic energy density 
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The last term of the right side of eq. (1) is the elastic energy.  If we assume that the variation of stress-free lattice 

parameter of the matrix phase, a , with the given concentrations of vacancies and gas atoms, obeys the Vegard’s 

law, the local stress-free strain caused by the defect inhomogeneity is given by  

     ))(1(,0,0*  hcccc ij
eqm

gg
g

ij
eqm

vv
vm

ij  ,                                                                    (7)  

where v0  (1/a)da /dcv and g 0  (1/a)da /dcg  are the expansion coefficients of the lattice parameter due to 

the introduction of vacancies and interstitials, respectively, and ij  is the Kronecker-delta function.  The vacancy 

and gas concentrations are high in the gas bubble phase where the Vegard’s law may no long be applicable. The 

stress-free strain in the gas bubble phase is described as  

 )(),()( 0*  hTc ijg
bb

ij r ,                                                                                                          (8) 

where b 0(cg ,T)  can be estimated as b 0(cg ,T)  P /(C11  2C12 )  where P is the pressure inside of the gas 

bubble phase and can be obtained from the equation of state, and  11C  and 12C  are the elastic constants of the gas 

bubble phase. Thus, the total stress-free strain tensor is  

      ).(),()(1   0,0,0

***


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b

ij
eqm

gg
g

ij
eqm

vv
v

b
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m
ijij




                                   (9) 

The elastic energy density Udef  is calculated by: 

U def 
1

2
ijklij

elkl
el

,                                                                                                                    (10) 

where the summation convention over the repeated indexes is used. ijkl  is the elastic constant tensor of the 

system (its Voigt notation is Cij). 
el
ij  is the elastic strain which is calculated by 

)()( * rr ijijij
el
ij   ,                                                                                                      (11) 

where ij  is the homogeneous strain characterizing the macroscopic shape and volume change, )(rij  is the 

heterogeneous strain of  
V

ij dV 0)(r .  For elastic inhomogeneous solids, such as UO2 matrix with voids and 

gas bubbles, the elastic solution can be obtained using iteration methods [6]. For simplicity, we assume the gas 

phase has the same elastic constants as UO2 and of cubic anisotropy with C11/C44=6.17, C12/C44=1.89. [7] 
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Kinetic equations 

In all phase-field models, the temporal and spatial evolution of the field variables follows the same set of kinetic 

equations.  A conserved field, e.g., concentration field c , evolves with time according to the Cahn-Hilliard 

equation [8], whereas a non-conserved field, e.g., the order parameter field  , is governed by the Allen-Cahn 

equation [9].  The evolution equations of gv cc  , , and   are written as  
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where vvM  and ggM  represent the mobility of vacancies and gas atoms and are determined from the diffusivity 

by eqm
vv cc

v

m

vv c

f
DM ,)/(

2

2




  and eqm
gg cc

g

m

gg c

f
DM ,)/(

2

2




 . L is the interface mobility coefficient. 

),( , ijvdis c   is the vacancy emission rate which depends on dislocations dis, local stress  ij , and vacancy 

concentration cv (r, t).  

 

Diffusivity, Mobility and interfacial energy 

Assume vacancies and gas atoms have the same diffusivity of  TED m /5.11604exp105.0 4    [m2/s] with 

Em being vacancy or gas atom migration energy in eV. Their temperature dependence and the corresponding 

mobility MMM ggvv   can be seen in Fig. 3 and Fig. 4, respectively. Taking )/( 44
2
0 MClt  , as a real time 

scalar with l0= 1 nm, this scalar has a huge difference between T=800 K and T=2200 K as shown in Fig. 5. 

In the Kim’s model, the interfacial energy  and interface thickness 2 are associated with the gradient coefficient 

 and the height w of the double well potential as 
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   w

3 2
,                                                                                                         (14) 

w

 22  ,                                                                                              (15) 

where  is a dimensionless coefficient and takes value of ~2.2.  

 

Fig. 3.  Diffusivity versus temperature. 

 

Fig. 4. Mobility versus temperature. 
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Fig. 5. Time scalar versus temperature. 

 

A-3. Simulation results and analysis 

Evaluation of the thermodynamic model by testing the critical sizes of gas bubbles 

Based on classical nucleation theory chemical free energy, elastic energy and interfacial energy determine the 

critical size of gas bubbles. Before we simulate the gas bubble growth kinetics, we first evaluate the effect of 

concentration and elastic interaction on the critical size of gas bubbles. In the simulations, a gas bubble with 

different sizes was embedded at the center of a three dimensional simulation cell 96dx96dy96dz.  Periodic 

boundary conditions in x-,y- and z- directions were imposed. Grad size dx=dy=dz=0.25 nm was used. The 

simulation was performed at 2100 K. The evolution of gas bubble radius versus time is plotted in Figure 6a.  The 

initial vacancy concentration and Xe concentration in the matrix were given with the same value. It is seen from 

Figure 6a that when the radius of gas bubble is less than 0.4nm the gas bubble shrinks for the studied four cases 

with different vacancy and Xe concentrations in the matrix and with/without elastic interaction; when the radius 

of gas bubble is larger than 0.8nm the gas bubble grow for studied four cases. Gas bubbles with the radius 

between 0.4nm and 0.8nm may grow or shrink depending on the concentration and elastic interaction. Therefore, 

the critical size of gas bubble is about 0.8nm for the given free energy, interfacial energy and elastic interaction 

energy. The critical size increases with the decreasing vacancy and Xe concentrations. Pressure and shear stress 

distributions on the xy plane which crosses the center of the gas bubble are presented in Figure 6b. We found that 

the pressure inside the gas bubble is about 1.6GPa that is consistent with the equation of state. In addition, the 

pressure inside the gas bubble causes a long range elastic field near the gas bubble, which affects gas bubble 
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growth kinetics as well as critical size of gas bubbles.  The results in Figure 6a show that the elastic interaction 

increases the critical size of gas bubble.  

 

             

Fig. 6. (a) Concentration and elastic interaction dependence of gas bubble critical size, (b) pressure and shear 

stress around the gas bubble. 

 

Evaluation of thermodynamic model by testing gas bubble evolution kinetics in 3D at 2100K 

Gas bubble growth kinetics was examined at constant temperature 2100K in 3D. The simulation started with a 

random gas bubble distribution in a 128dx128dy36dz simulation cell. Grad size dx=dy=dz=1nm was used. The 

initial gas concentration was 0.0042. The effect of elastic interaction and initial vacancy concentration on gas 

bubble growth kinetics is shown in Fig. 7. The gas bubble evolution can be divided into three stages as marked in 

Fig. 7(b). At first stage, gas bubbles with sizes smaller than the critical size quickly dissolve; the second stage is 

gas babble growth due to the super saturation of vacancies and Xe atoms in the matrix; and the third stage is gas 

bubble coarsening (Ostwald ripening). The sharp decreases of gas bubble number and gas bubble volume fraction 

at early stage corresponds to the first stage as shown in Figs. 7(a,b,c). The following increase of gas bubbles 

volume fraction and constant or slowly decrease of gas bubble number correspond to the second growth stage. 

During a perfect growth stage, it is expected that the number of gas bubble keeps constant. However, simulation 

results show that it decreases slowly. The reason for this could be inhomogeneous spatial distribution of initial gas 

bubbles which causes local Ostwald Ripening at an early stage.  Although the modeling has not yet reached the 

final Ostwald ripening stage, it is expected by the thermodynamic model that the gas bubble volume fraction 
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should keep constant while the number of gas bubbles decreases slowly.  In addition, it is found that 1) the gas 

bubble density reduces faster with decreasing vacancy concentration and 2) elastic interaction also speeds up the 

reduction of gas bubble density shown in Figs. 7(a,6). These results are consistent with their effect on the critical 

size of gas bubbles. 

 

                        

Fig. 7.   (a) Gas bubble density in a function of gas bubble mean diameter; (b) gas bubble volume fraction vs time, 

and (c) time evolution of gas bubble morphology for the case 001.00 vc  with elastic interaction.  

 

Kashibe et al. [10] found that a linear relationship between the double logarithmic bubble number density and 

mean bubble diameter fitting well their experimental data: 

1.25log6.2log  bb dN   or     1.25)log(log 6.2  
bb dN  
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where bN  is bubble density in a cubic meter volume and bd  is mean bubble diameter. Figure 8 plots the fitted 

experiment results and our simulation results. The simulation results also show a linear relationship between the 

double logarithmic gas bubble density and mean gas bubble diameter but in a different slop.  It is noticed that 

reducing vacancy concentration makes the slop closer to the experimental relationship.   

 

Fig. 8. Relationship between gas bubble density and mean gas bubble diameter from experiments and simulations. 

 

Effect of vacancy emission on gas bubble evolution in 2D at 2100K 

Experiments [2] suggested that gas bubble growth is severely restricted by vacancy starvation effects under out-

of-pile conditions. The effect of vacancy concentration and vacancy emission from dislocations on gas bubble 

evolution is simulated. The simulations consider two cases. One is homogeneous vacancy emission. In this case, 

there is uniform vacancy generation with a generation rate  2
0  where   is dislocation density, and 2

0  is 

emission strength. The other way is inhomogeneous vacancy emission. In this case, the vacancy emission is from 

individual dislocation with an emission rate 2
0  . Figures 9 and 10 show the snap shots of the gas bubble 

morphology at t=2 minutes. The simulations were done in 2D with a simulation cell 256dx256dy at 2100K, and 

dx=dy=1nm. Initially 59 gas bubbles were randomly distributed in the simulation cell with gas concentration 

0.0042 and vacancy concentration 0.001. Dislocations act as sources of vacancy emission. It is clear that gas 

bubbles in Fig. 9(a) grow bigger with vacancy emission compared to Figure 9(a) without vacancy emission. 

Smaller gas bubbles still survive although their counterparts already disappeared without vacancy emission.  
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                                              (a)                                                                                (b) 

Fig. 9. Gas bubble morphology (a) without vacancy emission, and (b) with homogeneous vacancy emission. The 

black circles identify the initial gas bubbles. The framed parts illustrate the obvious difference between without 

and with vacancy emission.  

 

                                          (a)                                                                                        (b) 

Fig. (10). Gas bubble morphology (a) and (b) with  vacancy emission from different distributed dislocations. The 

light blue dots denote the location of dislocations while the black circles identify the initial gas bubbles. The 

framed parts illustrate the obvious difference due to the local vacancy emission. 
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For inhomogeneous vacancy emission cases, we randomly distributed the dislocations in the simulation cell with 

a dislocation density 2x1014. Figure 10 shows the gas bubble morphology for two different dislocation 

distributions. We can see that inhomogeneous vacancy emission causes the inhomogeneous growth. The gas 

bubbles near dislocations grow bigger because the dislocation continuously supplies vacancies. Therefore, an 

abnormal bubble size distribution with a long exponential tail observed in White’s experiment [2] may be from 

the vacancy emission from inhomogeneous dislocation distributions. However, these are qualitative results. For 

examining the effect of vacancy emission from dislocations, we need the vacancy emission rate from dislocations.  

 

Gas bubble growth kinetics in 2D during annealing from 1100K to 2100K  

Gas bubble evolution during annealing is also simulated in two dimensions. The simulation cell and initial gas 

bubble distribution are the same as that in previous section.  The vacancy and gas concentrations are 0.0042. The 

annealing started from 1100K and temperature increases in a rate of 2K/s. Three simulations with different initial 

gas bubble distributions were run. Evolution of gas bubble number and gas volume fraction are plotted in Fig. 11. 

It is seen from Fig. 11(a) that at the low temperature the gas bubble is frozen due to small diffusivity. With 

increasing temperature, the small bubbles become unstable and a sharp drop of gas bubble number is observed at 

T=1400K. After that there is a short period when the number of gas bubbles is almost constant. Then the bubble 

number linearly decreases. The volume fraction evolution in Fig. 11(b) also shows the freezing, dissolving and 

growing stages.  A comparison between experiment and modeling results of gas bubble density and mean gas 

diameter is plotted in Fig. 12.  A linear relationship between the double logarithmic bubble density and mean 

bubble diameter during the gas bubble evolution was observed.    

 

Fig. 11. Evolution of gas bubble number and volume fraction versus time.. 
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(a)                                                                         

(b) 

Fig. 12. Comparison of gas bubble density versus mean diameters from phase-field model and experiments.  

 

Evaluation of computational efficiency with FFTW 

We have checked out the numerical efficiency of FFTW. Table 1 lists the CPU time for 10000 simulation time 

steps in 2D and 3D. What we found is that calculation of elastic interaction driving force takes about few 

percentage of CPU time.  

 

Table 1.  CPU time with 2.66GHz core for 10000 simulation time steps in 2D and 3D with/without elastic 

interaction.  

Description CPU time 

2D simulation domain: 256x256  without elastic interaction 0.0742h 

2D simulation domain: 256256  with elastic interaction 0.0757h 

3D simulation domain: 12812836  without elastic interaction 1.24h 

3D simulation domain: 12812836  without elastic interaction 1.36h 
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Appendix B: 

INL‐‐Phase Field Models 
	
Michael	Tonksa,	Bulent	Binera,	Paul	Milletta,	David	Anderssonb	
a	Fuel	Modeling	and	Simulation	Department,	Idaho	National	Laboratory	
b	MST‐8,	Los	Alamos	National	Laboratory	
	
For	INL’s	contribution	to	the	FMM	benchmark	problem,	we	used	the	phase	field	
method	to	represent	the	benchmark	problem.		The	simulations	were	carried	out	
using	the	MARMOT	FEM‐based	phase‐field	modeling	framework	[2].		In	this	
document,	we	begin	by	outlining	our	assumptions	and	describe	our	model.	Then,	we	
show	2‐D	results	of	the	simulations	and	compare	them	to	the	experimental	data.		
We	end	with	an	analysis	investigating	the	sensitivity	of	the	bubble	growth	to	the	
initial	bubble	configuration	and	size	distribution	and	show	a	small	3‐D	simulation.	

B‐1 Assumptions 
As	stated	in	section	3,	Xe	atoms	in	the	UO2	lattice	tend	to	be	located	within	a	
Schottky	defect	composed	of	one	U	vacancy	and	two	O	vacancies.		Also,	at	high	
temperature,	the	Xe	is	transported	through	vacancy	diffusion.	
	
To	completely	capture	Xe	diffusion	due	to	the	vacancy	mechanism,	we	would	need	
to	predict	the	evolution	of	the	Xe	concentration,	as	well	as	the	O	and	U	vacancy	
concentrations.		The	diffusion	constants	for	the	Xe	concentration	Dg,	the	U	vacancy	
concentration	DvU	and	the	O	vacancy	concentration	DvO	are	given	in	section	3,	
however	we	plot	these	values	for	reference	from	1100	K	to	2100	K	in	Figure	1.	

	 	
	 (a)		 (b)	

Figure	1:	Diffusion	constants	of	point	defects	in	UO2,	where	(a)	compares	the	diffusion	constants	of	U	
vacancies,	O	vacancies	and	Xe	atoms	at	various	temperatures	and	(b)	shows	the	ratio	of	the	diffusion	

constant	of	U	vacancies	to	that	of	Xe	atoms	.	

As	can	be	seen	in	Fig.	1(a),	the	diffusivity	of	the	O	vacancies	is	over	ten	orders	of	
magnitude	higher	than	the	diffusivity	of	U	vacancies	and	Xe	atoms.		Since	the	highest	
diffusivities	determine	the	time	step	size	of	the	problem,	this	large	difference	
appears	to	be	problematic.		The	time	step	size	would	need	to	be	very	small	to	



capture	the	O	vacancy	diffusion,	and	therefore	the	total	number	of	time	steps	
needed	to	capture	the	bubble	growth	would	be	impractically	high,	even	with	the	
implicit	time	integration	scheme	used	by	MARMOT.		Thus,	in	our	model	we	only	
consider	the	Uranium	sublattice,	and	we	assume	that	the	much	faster	moving	O	
vacancies	will	be	available	for	diffusion.		
	
If	we	compare	the	diffusivities	of	U	vacancies	to	Xe	atoms,	there	is	still	a	large	
difference,	as	can	be	seen	in	Fig.	1(b).		The	diffusion	of	the	vacancies	is	nearly	five	
orders	of	magnitude	higher	than	that	of	the	Xe	at	1100	K,	though	it	drops	to	only	
twenty	times	higher	at	2100	K.		This	difference	in	the	diffusivities	would	also	be	a	
significant	problem,	making	it	very	difficult	to	reach	long	simulation	times.		
Therefore,	we	further	simplified	our	model	by	assuming	that	sufficient,	fast‐moving	
U	vacancies	will	always	be	present	in	the	material	such	that	Xe	is	the	only	rate	
limiting	species.		Thus,	the	kinetics	could	be	captured	by	only	representing	the	Xe	
atoms	in	the	model.	In	addition,	our	model	does	not	consider	the	Brownian	motion	
of	the	bubbles,	and	therefore	primarily	considers	bubble	growth	due	to	Ostwald	
ripening	rather	than	coalescence.	
	
As	stated	in	the	problem	description,	the	initial	1	nm	radius	bubbles	are	highly	
pressurized,	due	to	their	high	initial	gas	concentration.		The	effect	of	the	pressure	
could	have	a	significant	effect	on	the	early	stages	of	the	bubble	growth.		However,	as	
the	bubbles	grow,	the	pressure	will	decrease	and	the	effect	of	pressure	will	become	
less	significant.		To	simplify	our	simulations,	we	neglected	the	effect	of	pressure,	
though	we	will	include	the	pressure	effect	in	future	simulations.	

B‐2 Model Description 
With	the	simplifying	assumptions	discussed	in	the	previous	section,	we	now	
summarize	the	phase	field	model	employed	here.		As	stated	above,	we	only	
considered	the	concentration	of	Xe	atoms,	cg,	and	we	further	assumed	that	the	gas	
concentration	cg	=	1	within	the	bubbles.	The	free	energy	of	the	system	is	defined	as:	

	 (2)	
where	N	is	the	number	of	U	sublattice	sites	per	unit	volume	and	the	bulk	free	energy	
is	given	by	

	 (3)	
In	the	bulk	energy	equation,	kb	is	the	Boltzmann	constant	and	w	is	assumed	to	equal	
the	formation	energy	of	Xe	in	the	UO2	matrix,	where	Efg	=	4.35	eV.		This	model	
correctly	represents	the	U	vacancy	equilibrium	concentration	but	it	does	not	allow	
the	surface	energy	to	be	assigned.		The	bulk	free	energy	from	Eq.	(3)	can	be	difficult	
to	solve	numerically,	due	to	the	natural	log	terms	being	undefined	at	a	value	of	zero.		
However,	polynomial	free	energy	functions	have	been	shown	to	predict	identical	
void/bubble	growth	as	the	free	energy	from	Eq.	(3),	thus	we	substitute	an	eighth	
order	polynomial	free	energy	in	place	of	Eq.	(3),	as	shown	in	Fig.	2.		This	polynomial	
function	is	defined	by	



	 (4)	
where	the	coefficients	are	a	function	of	the	equilibrium	concentration	(a	=	ceq)	
according	to	

	 (5)	

	
Figure	2:	Bulk	free	energy	as	a	function	of	gas	concentration	for	the	log	free	energy	(Eq.	(3))	and	the	

polynomial	free	energy	(Eq.	(4)).	

The	evolution	of	the	gas	concentration	is	determined	by	solving	the	Cahn‐Hilliard	
equation	

	 	(6)	
The	expression	for	the	mobility	is	obtained	with	the	fact	that	the	migration	behavior	
should	follow	the	diffusion	equation	for	cg	<<	1,	i.e.	

		 (7)	
The	values	for	the	interfacial	parameter		and	the	barrier	height	W8	were	
determined	as	functions	of	the	surface	energy	and	the	interfacial	width	according	to	
the	method	outlined	in	Moelans	et	al.	[3].		In	our	simulations,	we	used	an	interfacial	
width	of	li	=	0.7	nm.		The	value	of	the	surface	energy	σ	was	calculated	from	the	free	
energy	defined	in	Eq.	(3)	according	to	the	expression	(see	[3])	



	 	 (8)	
and	its	value	is	plotted	vs.	temperature	in	Fig.	3.		All	of	the	unique	parameters	used	
in	our	simulations	are	summarized	in	Table	1.	

	
Figure	3:	Plot	of	surface	energy	(from	Eq.	(8))	with	temperature.		Value	is	calculated	from	the	free	

energy	defined	in	Eq.	(3).	

Table	1:	Summary	of	material	parameters	unique	to	our	phase	field	model.	

Parameter	 Description	 Value	
li	 Interfacial	width	 0.7	nm	
ceq	 Approximate	Xe	gas	

equilibrium	concentration	
	

N	 Number	of	U	sublattice	sites	
per	unit	volume	

2.5×1028	m‐3	

	
	
To	solve	the	phase	field	equations,	we	discretize	the	domain	using	FEM.		In	addition,	
we	employ	implicit	time	integration.		Thus,	the	Cahn‐Hilliard	equation	(6)	must	be	
expressed	as	a	residual	equation	and	be	converted	to	a	“weak”	form,	

	 (9)	
where	the	boundary	terms	are	not	shown.		Due	to	the	second	order	derivative	in	the	
weak	form,	this	system	must	be	discretized	using	higher‐order	elements.		In	our	
simulations,	we	use	the	third‐order	Hermite	element.		Note	that	more	information	
on	solving	the	phase	field	equations	using	the	MARMOT	framework	can	be	found	in	
Tonks	et	al.	[2].	

B‐3 Results and Discussion 
To	model	post‐irradiation	annealing	in	UO2,	we	use	a	2‐D	simulation	domain.		We	
consider	a	300	nm	by	300	nm	square	of	material,	with	two	representative	
thicknesses	in	the	z‐direction	(necessary	to	calculate	the	bubble	density).		We	
conduct	one	simulation	with	a	z‐thickness	of	1	nm	with	81	initial	bubbles	and	one	
with	a	z‐thickness	of	10	nm	with	841	initial	bubbles.		Both	simulations	start	with	an	



average	bubble	radius	of	1	nm,	though	the	initial	radius	is	varied	randomly	by	±20%	
for	the	10	nm	thickness	(according	to	a	uniform	distribution)	and	±25%	for	the	1	
nm	thickness.		The	initial	condition	of	the	simulation	is	created	by	uniformly	placing	
the	bubbles	on	a	set	lattice.		The	positions	are	then	randomly	varied	in	the	x‐	and	y‐
directions	by	up	to	±4.5	nm	for	the	10	nm	thickness	(again,	varied	uniformly)	and	
±10.0	nm	for	the	1	nm	thickness.		Thus,	the	initial	bubble	density	in	the	simulation	
was	9.3×1023	for	the	10	nm	thickness	and	9.0	×1023	for	the	1	nm	thickness.		The	gas	
concentration	within	the	bubbles	was	assumed	to	be	1.0	and	the	initial	gas	
concentration	in	the	bulk	was	taken	as	0.005.	
	
As	mentioned	in	the	previous	section,	we	discretize	the	domain	using	FEM.		In	
addition,	we	take	advantage	of	the	adaptive	mesh	capability	available	in	MARMOT,	
where	the	mesh	is	adapted	according	to	a	Laplacian	error	estimator	[2].	The	
smallest	element	size	used	in	both	simulations	is	0.42	nm	and	the	largest	is	6.67	nm.		
See	Fig.	4	for	the	initial	bubble	configuration	as	well	as	a	picture	of	the	original	mesh	
for	both	thicknesses.	

					

					 	
Figure	4:	Initial	bubble	configuration	for	the	300	nm	by	300	nm	domain,	with	the	fission	gas	

concentration	shown	on	the	left	and	a	view	of	the	mesh	on	the	right,	where	the	10	nm	thickness	
simulation	is	shown	above	the	1	nm	thickness.	

	
We	begin	the	simulation	with	an	initial	time	step	of	40	seconds,	however	as	the	
temperature	and	diffusion	constant	increase	(see	Fig	1a),	the	time	step	must	
decrease.		In	addition,	certain	behaviors,	such	as	the	disappearance	of	a	bubble,	also	
require	a	smaller	time	steps.		Therefore,	we	employ	time	step	adaptivity.		The	time	



step	is	adapted	depending	on	the	ratio	of	the	time	required	to	solve	the	nonlinear	
system	to	the	physical	time	step	size.		See	Tonks	et	al.	[2]	for	more	detail.	
The	10	nm	thickness	simulation	was	run	using	128	2.4	GHz	AMD	Opteron	cores	for	
nearly	2	weeks	(320	hours).		12,814	time	steps	were	taken,	simulating	9.68	hours	of	
bubble	growth,	with	the	number	of	bubbles	going	from	841	to	4.	The	1	nm	
simulation	was	run	with	64	2.4	GHz	AMD	cores	for	38.5	hours.		19,348	time	steps	
were	taken	to	simulate	9.06	hours.		The	number	of	bubbles	went	from	81	to	1.	
Figure	5	shows	the	final	bubble	configuration	and	the	final	adapted	FEM	mesh	for	
both	thicknesses.	

	
Figure	5:	Post‐irradiation	annealing	results,	with	the	final	configuration	(left)	and	the	final	mesh	(right),	
where	the	10	nm	thickness	simulation	is	shown	above	the	1	nm	thickness.	

	
Throughout	the	simulations,	the	average	bubble	radius	and	the	bubble	density	were	
calculated	with	time	(Figure	6).		The	change	in	the	average	bubble	radius	predicted	
by	the	two	simulations	was	nearly	identical,	with	the	deviation	occurring	once	the	1	
nm	thick	simulation	had	less	than	four	bubbles	remaining.		The	radius	of	the	final	
bubble	in	the	simulation	with	1	nm	thickness	was	14.6	nm	and	the	final	mean	
bubble	radius	in	the	10	nm	thickness	simulation	was	12.9	nm.			
	
The	bubble	density	behavior	with	time	predicted	by	the	two	simulations	exhibited	

some	significant	differences.		The	bubble	density	first	begins	to	decrease	after	3.5	
minutes	for	the	10	nm	thickness	simulation	but	after	3.5	minutes	for	the	1	nm	
thickness.		The	decrease	in	bubble	density	coincides	with	the	increase	in	mean	
bubble	radius	for	the	10	nm	thickness	simulation	but	not	for	the	1	nm	thickness.		We	
suspect	that	the	delay	in	the	radius	increase	is	due	to	the	time	required	for	the	gas	



atoms	to	migrate	the	large	distance	between	bubbles.		The	decrease	in	the	density	in	
the	1	nm	thickness	simulation	is	more	rapid	than	the	10	nm	until	4.2	minutes,	at	
which	time	the	decrease	slows	significantly.		The	bubble	density	decreases	by	nearly	
two	orders	of	magnitude	by	the	end	of	both	simulations.			

	
Figure	6:	Post‐irradiation	annealing	results,	with	the	average	bubble	radius	vs.	time	on	the	left	and	the	
bubble	density	vs.	time	on	the	right.	

	
In	Kashibe	et	al.	[1],	the	authors	determine	a	linear	relationship	between	bubble	
number	density	and	mean	bubble	diameter	using	a	least‐square	fit	to	their	
experimental	data,	i.e.	

	 (10)	
They	compare	this	relationship	to	the	data	from	other	researchers	and	find	good	
agreement.		The	results	from	our	10	nm	thickness	phase	field	simulation	show	fairly	
good	agreement	with	the	fit,	as	shown	in	Fig.	7.		However,	the	1	nm	thickness	
simulation	results	do	not	show	as	good	agreement.		For	the	1	nm	thickness,	the	
relationship	between	mean	bubble	diameter	and	bubble	density	clearly	shows	the	
lag	between	the	drop	in	the	density	and	the	increase	in	the	mean	diameter	due	to	
the	time	required	for	diffusion	of	gas	atoms	between	the	bubbles.		It	is	interesting	to	
note	that	both	simulations	eventually	predict	the	same	slope	on	the	log‐log	plot.	

	
Figure	7:	Comparison	of	the	experimental	fit	of	the	relationship	between	bubble	density	and	mean	

bubble	diameter	(from	Kashibe	et	al.	[1])	to	the	relationship	predicted	by	our	phase	field	simulations.	
The	same	figure	is	shown	as	a	log‐log	plot	(left)	and	a	linear	plot	(right).	

	
As	mentioned	previously,	both	mesh	adaptivity	and	time	step	adaptivity	were	
employed	in	our	simulations	to	reduce	the	computational	expense.		To	demonstrate	
their	effect,	we	plot	the	degrees	of	freedom	(DOFs)	in	the	simulation	vs.	time	as	well	



as	the	time	step	size	vs.	time	for	the	10	nm	thickness	simulation,	a	shown	in	Fig.	8.		
The	results	for	the	1	nm	thickness	simulation	are	similar.		In	Figure	8(a),	the	DOFs	
are	plotted	together	with	the	number	of	bubbles	vs.	time.		From	this	plot	it	is	clear	
that	each	time	a	bubble	disappeared,	fewer	DOFs	were	needed	to	accurately	
represent	the	system.		Thus,	as	time	went	on,	the	computational	expense	reduced	
dramatically.		Due	to	the	increase	in	the	diffusion	constant	as	the	temperature	
increased,	the	time	step	reduced	by	many	orders	of	magnitude	over	time	(see	Fig.	
8(b)	to	see	the	time	step	size	and	the	inverse	of	the	diffusion	constant).		Though	the	
time	step	size	is	quite	noisy,	due	to	the	small	time	step	required	every	time	a	bubble	
disappears,	there	is	a	clear	relationship	between	it	and	the	value	of	the	diffusion	
constant.	

	
	 (a)	 (b)	 	

Figure	8:	The	results	of	mesh	and	time	step	adaptivity	for	the	10	nm	thickness	simulation,	where	(a)	
shows	the	decrease	in	the	number	of	degrees	of	freedom	with	time	due	to	adapting	the	mesh,	with	the	
number	of	bubbles	shown	for	reference,	and	(b)	shows	the	time	step	size	with	time,	with	the	inverse	of	

the	diffusion	constant	shown	for	reference.	

To	learn	more	about	the	physical	behavior	in	this	system,	we	conducted	two	
additional	analyses.		The	first	investigates	the	impact	of	the	initial	condition	of	the	
bubbles	on	the	bubble	growth	and	the	second	investigates	the	impact	of	3‐D	
simulations	on	the	relationship	between	mean	bubble	radius	and	bubble	density.	
	
Though	the	problem	definition	was	formulated	based	on	the	experiments	from	
Kashibe	et	al.	[2],	many	details	needed	for	the	simulation	were	not	available.		One	of	
these	was	the	initial	bubble	configuration.		The	initial	bubble	density	and	the	mean	
bubble	radius	were	known,	but	the	spatial	configuration	of	the	bubbles	and	the	
bubble	size	distribution	were	not.		Therefore,	we	have	made	assumptions	for	these	
parameters.		In	order	to	determine	the	sensitivity	of	the	bubble	growth	to	these	
assumptions,	we	conducted	several	simulations	on	a	100	nm	by	100	nm	domain	
with	100	initial	bubbles.	
	
To	investigate	the	sensitivity	of	the	bubble	growth	to	the	bubble	spatial	
configuration,	we	randomly	varied	the	bubble	locations	from	a	uniform	lattice	by	
various	amounts,	ranging	from	max	values	±1.5	nm	to	±4.5	nm.		To	investigate	the	
effect	of	the	bubble	size	distribution,	we	vary	the	maximum	amount	of	variation	in	
the	bubble	radius	from	±0.0%	to	±30.0%.		Figure	9	demonstrates	three	of	the	initial	
bubble	configurations	used	in	the	analysis.	



	

		 	 	
Figure	9:	Example	domains	for	the	initial	condition	investigation,	showing	a	10%	radius	variation	and	a	
3.0	nm	position	variation	(left),	a	10%	radius	variation	and	a	4.5	nm	position	variation	(center)	and	a	

30%	radius	variation	and	a	3.0	nm	position	variation	(right).	

	
By	comparing	the	change	in	the	bubble	density	with	time,	we	found	that	the	bubble	
configuration	has	little	effect	on	the	bubble	growth,	as	shown	in	Fig.	10a.		However,	
the	initial	bubble	size	distribution	does	have	an	effect	(Fig.	10b).		As	the	variation	in	
the	initial	bubble	radius	increases	from	0.0%	to	40.0%,	the	time	at	which	the	first	
bubble	disappears	decreases,	going	from	4	minutes	with	0.0%	variation	to	3	
minutes	with	40.0%.		In	addition,	the	rate	at	which	the	bubble	density	decreases	
with	time	decreases	with	increasing	variation.		However,	this	difference	is	no	longer	
evident	once	the	bubble	density	has	reached	30%	of	its	original	value.		Thus,	the	
selection	of	the	initial	bubble	configuration	has	little	effect	on	our	simulations	but	
the	bubble	size	distribution	has	a	significant	effect	on	the	initial	stages	of	the	bubble	
growth.	

	
	 (a)		 (b)	

Figure	10:	Investigation	of	the	effect	of	the	initial	condition	of	the	bubbles	using	a	100	nm	by	100	nm	
domain,	where	(a)	shows	the	effect	of	the	variation	in	the	bubble	position	and	(b)	the	effect	of	variation	

in	the	bubble	radius.	

We	also	investigate	the	effect	of	a	3‐D	simulation	on	the	relationship	between	
bubble	diameter	and	bubble	density.		For	the	sake	of	computation	time,	we	simulate	
the	bubble	growth	in	a	20	nm	by	20	nm	by	20	nm	cube	of	UO2	with	identical	
conditions	and	initial	bubble	density	to	our	2‐D	simulations.		Thus,	8	initial	gas	
bubbles	exist	in	our	domain.		We	found	that	unpressurized	1	nm	radius	bubbles	
were	not	stable	in	our	3‐D	domain,	thus	we	increased	our	mean	radius	to	1.5	nm	



with	a	uniform	variation	of	up	to	±10.0%.		The	bubbles	were	placed	in	a	uniform	
lattice	and	the	positions	were	than	varied	randomly	by	up	to	±3.0	nm.		See	Fig.	11(a)	
to	see	the	initial	3‐D	bubble	configuration	
	
The	3‐D	simulation	was	run	until	a	single	bubble	remained,	which	occurred	after	
5.24	minutes	of	simulation	time.		We	compared	the	relationship	between	bubble	
mean	diameter	and	bubble	density	for	the	3‐D	simulation	to	the	fit	from	Kashible	et	
al.	[1]	and	our	2‐D	results	(see	Fig.	11(b)).		Due	to	the	higher	initial	radius,	the	initial	
point	is	shifted	closer	to	the	fit	than	for	our	2‐D	simulations.		Once	the	mean	
diameter	begins	to	increase,	the	slope	of	the	data	seems	to	compare	much	better	
with	the	experimental	fit	than	the	2‐D	results.		From	these	results,	it	2‐D	simulations	
under	predict	the	decrease	in	the	bubble	density	with	increasing	diameter.		We	
suspect	that	this	is	because	the	2‐D	simulations	only	capture	the	gas	atom	flux	in	the	
x‐y	plane.	
	

	
(a)	

	

	 (b)	 	 (c)	

Figure	11:	Simulation	results	from	our	small	3‐D	simulation	with	8	initial	bubbles	with	the	2‐D	results	
shown	for	reference,	where	(a)	shows	the	initial	bubble	configuration	and	(b)	shows	the	relationship	
between	mean	bubble	diameter	and	bubble	density,	with	a	log‐log	plot	on	the	left	and	a	linear	plot	on	

the	right.	
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	C‐1		Assumptions	
During	 irradiation	 of	 LWR	 fuels,	 Xe	 atoms	 are	 formed	 due	 to	 fission	 of	 U.	 	Xe	 has	
extremely	 very	 low	 solubility	 in	 UO2	 estimated	 to	 be	 of	 order	magnitude	 10‐10.	 	It	 is	
thought	 that	 the	 Xe	 atoms	 present	 in	 the	 UO2	 lattice	 have	 associated	 with	 it	 a	 large	
strain	 energy	 field	 as	 it	 “stuffs”	 itself	 into	 the	 UO2	 lattice.	 	Thus,	 under	 irradiation	
conditions,	the	Xe	atoms	will	precipitate	out	onto	almost	any	imperfection	or	feature	to	
which	 it	can	attach.	 	Furthermore,	once	Xe	atoms	start	 to	precipitate	 to	 form	bubbles,	
more	Xe	will	precipitate	to	enlarge	the	bubble.		The	exact	behavior	and	details	of	these	
events	will	be	dictated	by	the	local	temperature,	fission	rate	density	and	the	local	defect	
densityi.	 	The	 details	 of	 how	 these	 occurred	 and	 accumulated	 in	 the	 fuel	 will	 not	 be	
addressed	here.		However,	it	is	noteworthy	that	the	phenomena	being	considered	here	
occurs	 in	 the	 center	 of	 the	 fuel	 pellet	 where	 the	 temperature	 is	 highest	 during	
irradiation.	
	
The	 starting	 point	 of	 the	 benchmark	 exercise	 is	 the	 case	 where	 LWR	 fuel	 has	 been	
irradiated	to	23	GWD/MTU	is	then	subjected	to	annealing	at	1800	oC.		Before	annealing,	
Xe	 atoms	 (and	 some	Kr	 that	will	 be	 neglected	 for	 the	 present	 exercise)	 have	 formed	
bubbles	 that	 are	 2	 nm	 and	 have	 a	 density	 of	 9x1023	 bubbles/m3.	 	 These	 bubbles	 are	
randomly	distributed	with	a	distribution	 in	 sizes.	 	We	assume	constant	 strain	 energy	
and	free	energy	of	the	matrix	phase.	 	The	only	change	in	free	energy	is	due	to	mixing.		
Ideal	solution	of	mixing	is	assumed.	
	
C‐2	Potts	kinetic	Monte	Carlo	(kMC)	Model	
The	Potts	kinetic	Monte	Carlo	(kMC)	is	a	statistical‐mechanical	model	that	populates	a	
lattice	 with	 an	 ensemble	 of	 discrete	 particles	 to	 represent	 and	 evolve	 the	
microstructure.	 	The	particles	evolve	 in	a	variety	of	ways	 to	 simulate	microstructural	
changes.	 	kMC	methods	have	proven	themselves	to	be	versatile,	robust	and	capable	of	
simulating	various	microstructural	evolution	processes.		They	have	the	great	advantage	
of	being	simple	and	intuitive,	while	still	being	a	rigorous	method	that	can	incorporate	
all	 the	 thermodynamic,	 kinetic	 and	 topological	 characteristics	 to	 simulate	 complex	
processes.	 	They	are	easy	to	code,	readily	extendable	from	2D	to	3D	and	can	simulate	
the	underlying	physics	of	many	materials	evolution	processes	based	on	the	statistical‐
mechanical	 nature	 of	 the	 model.	 	 These	 processes	 include	 curvature‐driven	 grain	
growthii,	anisotropic	grain	growthiii,	recrystallizationiv,	grain	growth	in	the	presence	of	a	
pinning	 phasev,	 Ostwald	 ripeningvi,	 and	 particle	 sinteringvii.	 	 The	 equation	 of	 state	
characterizing	the	materials	in	kMC	is	the	sum	of	the	bulk	energy	of	each	particle	and	



the	sum	of	all	the	interfacial	energy	of	each	particle	as	 	

where	N	is	the	total	number	of	particles,	Ev	is	the	bulk	energy	of	each	particle	i,	J	is	the	
neighbor	 interaction	 energy	 of	 particle	 i	 with	 its	 neighbor	 j	 for	 a	 total	 number	 of	
neighbors	n	 and	qi	 is	 the	grain	orientation	and	or	phase	of	particle	 i.	 	Highly	 tailored	
equations	of	 state	 for	many	different	 types	of	materials	processes	can	be	constructed	
using	 this	basic	equation.	 	The	evolution	of	 the	microstructures	can	be	described	 in	a	
simplistic	manner	as	done	by	mimicking	the	atomic	transport	mechanisms	that	maybe	
active.	 	For	example,	 for	simulation	of	curvature‐driven	grain	growth,	the	Potts	model	
particle	 at	 a	 grain	 boundary	 can	 change	 its	 state	 to	 align	 itself	 with	 the	 neighboring	
grain	 orientation	 much	 like	 an	 atom	 at	 a	 grain	 boundary	 can	 diffuse	 a	 very	 short	
distance	 to	 align	 itself	 with	 the	 neighboring	 grain	 orientation.	 	 These	 changes	 are	
performed	using	the	standard	Metropolis	algorithm	based	on	Boltzmann	statistics.	
	
C‐2.1	Initial	Microstructure	for	Gas	Bubble	Coarsening	
The	 initial	microstructure	 for	 the	 simulation	 is	 a	 single	grain	with	periodic	boundary	
conditions.	 The	 initial	 microstructure	 for	 the	 gas	 bubble	 coarsening	 simulation	 was	
obtained	 by	 a	 “nucleation	 and	 growth”	 simulation.	 	 Nucleation	 sites	 are	 placed	
randomly	 in	 the	 simulation	 space	with	 uniform	probability	 of	 occurring	 anywhere	 in	
the	simulation	space.		The	density	of	the	nuclei	were	chosen	to	match	the	parameters	of	
this	benchmarking	exercise	with	density	i	=	9x1023	bubbles/m3.		The	“dissolved”	Xe	gas	
was	 also	 distributed	 uniformly	 at	 random	 lattice	 sites	 in	 the	 simulation	 space.	 	 The	
diffusion	 of	 Xe	 atoms	 was	 simulated	 by	 random	 walk	 with	 no	 bias.	 	 Only	 local	
compositional	 gradients	 influence	 diffusion.	 	 The	 starting	microstructure	 is	 shown	 in	
figure	1.	
	
The	simulation	method	 to	generate	 the	starting	microstructure	used	a	cubic	 lattice	of	
500	x	500	x	500	sites.		This	forms	the	simulation	space	of	100	nm	x	100	nm	x	100	nm	
portion	inside	a	UO2	grain	with	a	voxel	length	 l	=	0.2	nm.	The	probability	of	any	given	
site	 in	the	simulation	being	a	nucleation	site	 is	pn	=	1000	/	500^3	=	8x10‐6.	 	Thus	the	
number	of	bubbles	nucleated	as	approximately	1,000.		The	volume	fraction	of	bubbles	
in	 the	simulation	 is	Vbf	=	1000	*	4/3	*	(1nm)^3	/(100nm^3)	=	 .00419.	 	This	volume	
fraction	was	used	for	the	volume	fraction	of	Xe	in	the	simulation.	
	
The	 Potts	 kMC	 method	 was	 used	 to	 generate	 the	 initial	 microstructure.	 	 The	 entire	
simulation	space	is	populated	with	a	single	grain	structure.		Nucleation	sites	chosen	at	
random.		Gas	atoms	are	placed	in	the	simulation	space	at	random	locations	to	match	the	
desired	volume	 fraction.	 	The	gas	atoms	are	 then	allowed	 to	diffuse	by	 random	walk.		
Each	gas	atom	site	attempts	 to	exchange	places	with	a	neighboring	site.	 	Neighboring	
sites	are	the	26	1st,	2nd	and	3rd	nearest	neighbors	on	the	cubic	lattice.		A	neighboring	site	
of	the	gas	atom	is	chosen	at	random	from	the	26.		If	the	neighboring	site	is	a	grain	site,	
then	 an	 exchange	 is	 attempted.	 	 The	 energy	 for	 this	 exchange	 is	 evaluated	 based	 on	
interfacial	energy	alone	using	the	following	EOS:	
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	 	 	 	 	 	 	 eq.	1	
	
where:	N	is	the	total	number	of	sites,	26	is	the	number	of	neighbors	in	the	cubic	grid,	J	is	
a	constant	weighting	the	neighbor	interaction	energy,	qi	is	the	state	of	the	current	site,	
qj	is	the	state	of	the	j‐th	neighbor	site	and	δ	is	the	Kronecker	delta	with:	δ(qi,	qj)	=	1	for	qi	
=	qj	and	δ(qi,	qj)	=	0	for	qi	≠	qj	.	According	to	this	energy	definition,	only	unlike	neighbors	
contribute	to	energy,	i.e.	only	interfacial	energy	of	the	system	is	defined.		The	exception	
is	for	the	nucleation	sites;	if	a	gas	atoms	is	a	neighbor	of	a	nucleation	site,	the	neighbor	
interaction	between	them	is	J(qg,	qn)	=	0.		Thus	nucleation	is	encouraged.		
		

	
Figure	1.		The	initial	microstructure	for	the	simulation.		Only	a	portion	of	the	simulation	space	is	
shown	as	the	entire	space	is	too	large.		The	blue	features	are	gas	bubbles	and	red	are	the	dissolved	

gas.		The	volume	fraction	of	gas	in	the	bubbles	is	0.0015	and	dissolved	is	0.0027.	
	

For	 this	 special	 case	 of	 generating	 the	 initial	 microstructure	 for	 the	 simulation,	 all	
attempted	gas	diffusion	exchanges	that	result	in	energy	change	E		0	are	accepted.		A	
portion	of	the	resulting	microstructure	is	shown	in	Figure	1.		While	the	simulation	size	
is	500	x	500	x	500	 lattice	 sites,	 a	 corner	of	200	x	200	x	200	 lattice	 sites	 is	 shown	 in	
Figure	1.		Only	the	bubbles	are	imaged	in	Figure	1a	and	both	bubbles	and	the	Xe	atoms	
in	solution	in	the	matrix	are	imaged	in	Figure1b.		Bubbles	are	randomly	distributed	in	
space	 with	 a	 range	 of	 sizes.	 	 The	 bubble	 size	 distribution	 is	 shown	 in	 Figure	 2	 as	 a	
histogram	 of	 bubble	 radii.	 	 The	 histogram	 of	 bubble	 volume	 is	 almost	 a	 normal	
distribution	 as	 required	 by	 the	 benchmark	 exercise,	 however	 the	 radial	 histogram	 is	
shown	as	this	is	conventional	for	showing	the	microstructural	feature	size	distributions.	
	
C‐2.2	Simulation	of	Intragranular	Gas	Bubble	Coarsening	
The	 irradiated	 fuel	 has	 bubbles	 of	 radius	 r	 =	 ~1nm.	 	 The	 gas	 in	 these	 bubbles	 is	

pressurized	due	to	capillarity	and	the	pressure	in	the	bubbles	is	given	by
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Figure	2.		Bubble	size	distribution	of	the	initial	bubble	population.		Note	distribution	is	near	

normal	when	plotted	as	bubble	volume.	
	
	
LWR	 fuel	 where	 the	 UO2	 lattice	 is	 highly	 strained	 by	 the	 Xe	 atoms	 dissolved	 in	 the	
lattice,	 precipitation	 into	 bubbles	 greatly	 reduced	 the	 strain	 in	 the	 lattice	 and	 the	

pressure	 in	 the	 gas	 bubble	 must	 be	 	 where	 the	 Po	 is	 the	 pressure	 in	 the	

lattice	 at	 the	 bubble	 interface.	 The	 benchmark	 problem	 also	 outlines	 the	 case	 with	
uniform	dislocation	field	and	vacancy	emission	from	the	dislocations.		These	conditions	
translate	to	constant	diffusivities	in	the	simulation	space.			
	
The	starting	condition	is	both	the	lattice	is	strained	by	the	extra	dissolved	Xe	atoms	and	
bubbles	are	under	higher	stress	than	that	due	to	capillarity.	 	The	stress	distribution	in	
the	system	can	be	approximated	by	assuming	a	strain	due	to	the	extra	Xe	atoms	stuffed	
into	the	lattice	with	the	boundary	condition	at	the	bubble/UO2	interface	being	that	the	
pressure	in	the	bubble	is	the	same	as	that	in	the	lattice	at	the	interface.	
	
During	 post‐irradiation	 heating,	 the	 overall	 free	 energy	 of	 the	 system,	 which	 is	 E	 =	
Echemical	+	Einterfacial	+	Estrain,	 is	minimized	along	a	path	that	 is	determined	by	this	 initial		
microstructural	state	to	give	microstructural	evolution.		Note	Echemical	and	Estrain	are	both	
in	the	lattice	and	the	gas	bubble	and	Einterface	 is	due	to	the	area	between	them.	 	 In	this	
case,	 the	Xe	 (and	other	 fission	product)	atoms	 in	 the	 lattice	 increase	both	 the	Echemical	
and	 Estrain.	 	 The	 fuel	 before	 the	 annealing	 has	 a	 highly	 strained	UO2	 lattice	 as	well	 as	
nano‐bubbles	 under	 high	 pressure,	 higher	 than	 capillarity	 would	 yield.	 	 During	
annealing	precipitation	of	Xe	into	bubbles	reduces	the	overall	free	energy	of	the	system	
by	 reducing	 mostly	 likely	 Estrain	 and	 Echemical.	 	 The	 coarsening	 of	 the	 bubbles	
subsequently	is	primarily	to	due	to	decrease	in	Einterface.	
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A	Potts	kMC	model	is	applied	to	simulate	this	problem	as	follows.		Again,	an	ensemble	of	
particles	that	populates	the	simulation	lattice	grid	represents	the	microstructure.		Each	
particle	has	a	discrete	integer	value,	called	spin,	that	designates	which	microstructural	
feature	it	belongs	to.		In	this	simulation,	there	are	only	two	features,	one	grain	and	the	
bubble	 phase.	 	 Therefore	 there	 are	 only	 two	 spins	 for	 describing	 the	microstructure.		
The	energy	of	the	system	is	given	by		

E  Fi
i1

N

 Ui 
1

2
J(1(qi,q j ))

j1

26


	 	 	 	 	 	 eq.	2	

where	Ui	is	the	strain	energy	density	for	site	i,		

	
in	the	solid	lattice	and		

	
in	 the	 gas	 bubble.	 	Po,i	 	 is	 the	 pressure	 at	 site	 i	 ,	 which	 has	 volume	 l3.	 	 	Y	 is	 Young’s	
modulus.		Fi	is	the	bulk	free	energy	of	the	material	at	site	i	and	is	a	function	of	the	local	
composition	and	temperature.	 	 (This	equation	 is	 the	same	as	the	 free	energy	function	
given	 by	 the	 first	 equation	 in	 the	 section	 titled	 Total	 Free	 Energy	 in	 the	 document	
Problem‐1_Definition_V2‐2‐6‐12.pdf.		The	equation	in	the	document	is	in	the	phase‐field	
formulation.	 	 This	 one	 is	 the	 statistical‐mechanical	 equivalent	 of	 an	 ensemble.)	 	 For	
simplicity	 and	because	no	more	details	 are	 available	Fi	 and	Ui	 are	 assumed	 to	be	 the	
following.		Fi	is	assumed	to	be	only	due	to	the	entropy	of	mixing	of	the	two	components,	
UO2	and	Xe	gas.		Ui	is	assumed	to	be	constant.		This	is	true	within	the	bubble,	but	not	so	
in	 the	 lattice.	 	 However	 given	 the	 stress	 state	 in	 lattice,	 the	 Potts	 model	 can	 easily	
incorporate	the	lattice	stress	effects	using	eq.	2.	
	
In	the	Potts	model	bubbles	coarsen	by	randomly	walk	and	coalescence,	and	by	the	gas	
in	the	bubbles	dissolving	back	in	the	lattice	and	re‐precipitating	out	on	other	bubbles.		
Both	these	are	simulated	by	random	walk	of	the	bubble	sites.		During	each	Monte	Carlo	
Step,	MCS,	 each	 bubble	 site	 attempts	 to	 exchange	 places	with	 one	 of	 its	 neighboring	
sites	 chosen	 at	 random	 from	 its	 26	 neighboring	 sites.	 	 If	 the	 chosen	neighboring	 site	
happens	to	be	a	grain	site,	then	the	change	in	energy	E	is	evaluated	using	eq.	2.	 	The	
standard	 Metropolis	 algorithm	 is	 used	 to	 determine	 if	 the	 attempted	 exchange	 is	
executed	 or	 not.	 	 Boltzmann	 statics	 are	 used	 to	 calculate	 the	 probability	W	 of	 the	
exchange.	

	 	 	 	 	 	 eq.	3	
In	this	way,	all	the	materials	transport	mechanisms	that	are	active	in	bubble	coarsening	
are	simulated.	 	 Individual	particles	 that	are	dissolved	 in	the	UO2	 lattice	can	diffuse	by	
random	walk	and	 they	can	precipitate	 to	onto	existing	bubbles.	 	The	bubble	particles	
can	 also	 detach	 from	 the	 bubble	 surface	 become	 dissolved	 and	 this	 process	 is	 in	
proportion	 to	 the	 pressure	 in	 the	 bubble,	 thus	 dissolution	 of	 gas	 preferentially	 from	
smaller,	 higher	 pressure	 bubbles	 is	 simulated.	 	 	 Time	 in	 the	 simulation	 is	 also	
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introduced	 by	 this	 probability	 function	 as	 they	 probability	 of	 a	 given	 event	 during	 a	
time	step	naturally	 introduces	the	time	scale.	 	Furthermore,	 if	 the	rates	of	each	of	the	
events	is	known,	then	the	probability	is	easily	adjusted	by	adding	the	known	rate	term	
in	 this	 probability.	 	 In	 this	 simulation,	 since	 the	 rates	 are	not	well	 known,	we	 simply	
chose	them	to	be	related	only	to	the	free	energy	change	(with	no	activation	energy	for	
any	of	 the	processes)	 as	 this	 results	 the	 fastest	 times	 for	 this	 simulation.	 	However	a	
detailed	explanation	of	the	rate	calculations	is	given	below.		The	free	energy	of	mixing	
(1st	 equation	 in	 section	 titled	 Chemical	 free	 energy	 of	 matrix	 and	 gas	 phases)	 is	
introduced	 into	 the	 Potts	model	 by	 the	 statistical‐mechanical	 nature	 of	 its	 ensemble.		
The	 probability	 of	 the	 two	 types	 of	 particles	 mixing	 is	 simulated	 in	 the	 model	 by	
equation	3.		It	gives	ideal	mixing	at	low	concentrations	when	“dissolved”	particles	don’t	
interact	with	each	other	with	the	correct	entropy	of	mixing	KBT(XilnXi).		
	
The	diffusion	coefficient	 for	the	random	walk	process	 in	this	simulation	is	given	here.		

The	diffusion	coefficient	for	the	randon	walk	process	is	D 
1

6

n


l2	where	n	is	number	of	

random	jumps,		is	the	time	increment	for	n	jumps	and	l	is	the	jump	distance	and	is	the	
lattice	size.		Using	n	=	1	jump	for	time		=	1MCS	and	l	=	0.2	nm,	D	=	6.7x10‐17	cm2/MCS.		
Thus,	 the	 time	 in	 these	 Potts	 model	 simulations	 can	 be	 related	 to	 real	 time	 by	
determining	the	proportionality	between	the	MCS	and	seconds.	
	
C‐3	Results	and	Discussion	
This	 model	 is	 applied	 to	 simulate	 bubble	 coarsening.	 	 The	 microstructures	 showing	
bubble	coarsening	are	shown	in	Figure	3.		A	portion	of	the	simulation	space,	200	x	200	x	
200	lattice	sites	corresponding	to	40	nm	x	40	nm	x	40	nm,	is	imaged	as	the	entire	space	
is	too	large	and	this	section	shows	sufficient	detail	and	extent	to	illustrate	the	behavior	
well.	 	The	small	red	dots	in	are	the	“dissolved”	gas	in	the	lattice.	 	The	bubbles	are	the	
spherical,	 large,	red	features.	 	As	can	be	clearly	seen	the	bubbles	are	coarsening.	 	 	The	
bubble	 growth	 curve	 is	 shown	 in	 Figure	 4.	 	 As	 expected,	 the	 bubbles	 are	 coarsening.		
The	time	scale	for	this	simulation	was	determined	by	estimating	that	the	bubble	would	
coarsen	to	10	nm	in	10	minutes.	 	The	simulation	started	with	a	 total	of	1176	bubbles	
with	average	radius	<r>	=	0.8	nm	and	ended	with	142	bubbles	of	<r>	=	2.2	nm.		The	size	
distribution	of	the	bubbles	is	shown	in	figure	5	at	different	times	during	the	simulation.		
The	 skewness	 of	 the	 distribution	 at	 the	 later	 times	 is	 surprising.	 	 The	 skewness	was	
anticipated	to	be	to	the	larger	sizes	as	it	is	at	short	times	during	annealing.

	



		 	
a.	 	 	 	 	 	 				b.	

		 	
c.	 	 	 	 	 	 				d.	

Figure	3.		Microstructure	of	bubbles	coarsening.	(Only	a	portion	of	the	simulation	space	is	imaged,	

2003	l3	corresponding	to	40	nm	x	40	nm	x	40nm).	



	

	

Figure	4.		Average	bubble	radius	as	a	function	of	time.	

	

	

	

a.	Time	=	0.18	sec,	<r>	=	1.65	
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b.	Time	=	0.35	sec,	<r>	=	2.0	

c.	Time	=	0.58	sec,	<r>	=	2.2	
Figure	5.		Bubble	size	distributions	as	the	bubbles	coarsen.	

	
This	 work	 demonstrates	 the	 basic	 Potts	 kMC	 framework	 and	 its	 application	 to	
simulation	 of	 intragranular	 gas	 bubbles.	 	 It	 demonstrates	 that	 bubble	 coarsening	 by	
solution‐reprecitation	 transport	 mechanism.	 	 The	 particular	 physics	 of	 this	 problem	
with	strain	energy‐driven	transport	and	coarsening	have	not	been	incorporated	as	the	
strain	 energies	 are	 not	 know.	 	 However,	 these	 can	 easily	 be	 incorporated	 as	 they	
become	known	or	are	provided.	
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No	attempt	was	made	to	incorporate	the	Carnahan‐Starling	EOS	which	compensates	for	
the	non‐ideal	gas	behavior	at	such	high	pressure,	in	this	exercise.		However,	this	is	fairly	
easy	as	 it	 is	simply	a	 function	of	that	particular	bubble’s	volume.	 	The	pressure	of	the	
gas	in	the	bubble	is	calculated	using	the	Carnahan‐Starling	EOS	and	the	concentration	of	
the	 solute	 in	 the	 matrix	 is	 adjusted	 accordingly	 as	 C	 =C	 PCS/P	 where	 Pcs	 is	 the	
Carnahan‐Starling	pressure	and	P.is	 the	pressure	and	C	 is	 the	solubility	of	a	bubble	
with	radius	r	=	.		
	
It	 is	 noteworthy	 that	 this	 particular	 problem	 is	 not	 a	 good	 demonstration	 of	 the	
capabilities	 of	 Potts	 kMC.	 The	 computational	 resources	 needed	 to	 solve	 the	 problem	
presented	above	were	enormous.	 	The	simulation	presented	above	required	24	hours	
on	100	nodes	with	8	processors	per	node.		Due	to	its	statistical	mechanical	nature,	long‐
range	 diffusion	 and	 low	 solubility	 compositions	 are	 computationally	 very	 demanding	
for	 the	 Potts	 kMC	 model.	 	 Long‐range	 diffusion	 is	 simulated	 by	 random‐walk	 of	
individual	particles	much	like	an	atom	hopping	in	a	lattice.		And	low	concentrations	of	a	
second	phase	requires	a	large	number	of	lattice	sites	to	resolve	the	microstructure	and	
composition.	 	 However,	 it	 can	 simulate	 this	 problem	 and	 it	 can	 do	 it	 correctly	 by	
incorporating	 all	 the	 necessary	 physics.	 	 Furthermore,	 Sandia	 is	 developing	 a	 hybrid	
capability	for	this	type	of	materials	physics	that	will	allow	faster	simulation	of	problems	
with	 long‐range	 diffusion.	 	 The	 mechanical	 component	 needed	 for	 simulation	 of	 the	
strained	lattice	and	pressurized	bubbles	can	also	be	easily	be	introduced	into	a	hybrid	
by	coupling	to	a	FEM	or	other	mechanical	solver.	
	
Two‐dimensional	 simulation	 of	 the	 same	 problem	 was	 requested	 by	 the	 benchmark	
team.		The	simulation	was	set	up	and	run	in	the	same	manner	described	above,	but	in	
2D.	 	 Equation	 2	 is	 now	modified	 to	 consider	 the	 eight	 1st	 and	 2nd	 nearest	 neighbors	
instead	 of	 the	 26	 used	 in	 3D	 simulations.	 	 The	 results	 are	 shown	 here	 briefly.	 	 The	
simulation	 size	 used	was	 1500	 x	 1500	 sites.	 	 This	 corresponds	 to	 300	 nm	 x	 300	 nm	
simulation	 space.	 	 The	 starting	 bubble	 size	 is	 r	 =	 0.9	 nm	with	 131	 bubbles	 initially.		
Figure	 6	 and	 7	 show	 the	microstructures	 and	 bubble	 size	 growth,	 respectively.	 	 The	
bubble	size	curve	for	the	2D	simulations	is	noisy	as	the	number	of	bubbles	is	small;	the	
simulation	ends	with	only	11	bubbles.	
	
	



	
a. b.	
Figure	6a.		The	entire	microstructure	used	for	the	2D	simulation.		b.		A	small	quadrant	in	the	

lower	left	side	showing	the	details	of	the	bubbles.	
	

	
Figure	7.		Bubble	growth	curve	for	2D	bubbles.	
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Appendix	D:	ORNL‐‐	Detailed	Potts/KMC	Simulation	and	Result	Analysis	
	
Objective:	The	objective	of	this	effort	is	to	utilize	a	Potts/KMC	model	to	solve	a	test	
problem	[1]	that	involves	simulating	the	coarsening	of	intra‐granular	Xe	bubbles	
during	post‐irradiation	anneal	of	UO2.		
	
Model	Description:	The	Potts/KMC	model	developed	at	ORNL	is	based	on	the	
simulation	approach	published	recently	by	Suzudo	et	al	[2].		The	mesoscale	
simulation	domain	consists	of	three	“species”	–	the	matrix	volume	elements	that	are	
made	of	UO2,	“void”	volume	elements	that	are	made	up	of	a	collection	of	condensed	
vacancies	(green)	and	“bubble”	elements	that	consist	of	a	collection	of	vacancies	and	
gas	atoms	(red).		The	formation	of	larger	“extended	bubbles”	occurs	through	a	
collection	of	voids	and	bubble	sites.	Based	on	the	simulation	approach	by	Suzudo	et	
al	[2],	we	define	three	types	of	Monte	Carlo	moves:	
	

(1) Exchange	of	a	void	and	a	matrix	site	to	simulate	surface	diffusion	
(2) Exchange	of	a	void	and	a	bubble	site	to	simulate	Xe	diffusion	inside	the	

bubble	
(3) Creation	or	destruction	of	a	void	site	at	the	bubble‐matrix	interface	
	

In	the	Monte	Carlo	procedure	used,	all	three	events	are	attempted	with	the	same	
frequency.	However,	the	success	of	each	flip	will	depend	upon	the	local	energy	
change	associated	with	the	event,	as	described	later.	The	ability	of	such	an	approach	
to	simulate	the	balance	between	internal	gas	pressure	and	bubble	size	has	been	
demonstrated.	The	application	of	this	procedure	to	the	equilibrium	bubble	
configurations	for	an	intra‐granular	bubble	and	a	bubble	situated	on	a	grain	
boundary	obtained	using	the	ORNL	code	is	shown	in	Fig.	1.		
	

	



Fig.	1.	Equilibrium	of	single	extended	bubble	in	a	single	crystal	and	on	a	grain	
boundary	satisfying	equation	of	state	PV	=	nRT.	
The	simulations	are	able	to	capture	the	ideal	slope	of	2/3	for	gas	bubbles	that	obey	
the	ideal	gas	law.	However,	in	the	current	simulations,	the	equation	of	state	(EOS)	
for	Xe	published	by	Ronchi	[3]	was	used	to	represent	the	relationship	between	gas	
pressure	and	volume	at	1800K	the	temperature	of	interest	in	the	current	
benchmark	problem.	The	Potts/KMC	code	was	run	in	parallel	computer	using	64	
nodes.	The	code	scales	efficiently	and	it	is	possible	to	run	much	larger	simulation	
volumes	that	are	necessary	to	extend	the	simulations	to	polycrystalline	grain	
structures	with	a	fine	spatial	resolution.		In	the	current	simulations,	an	attempt	is	
also	made	to	include	“pinning	sites”	inside	the	matrix	to	account	for	the	drag	on	the	
migrating	bubbles	due	to	dislocations	or	fission	fragments.	This	is	by	no	means	
rigorous,	especially	for	dislocations	that	involve	spatially	varying	forces,	but	a	
formal	approach	for	incorporating	such	effects	into	mesoscale	simulations	would	
involve	longer‐term	effort.	A	major	requirement	for	using	such	a	mesoscale	
approach	is	establishing	a	relationship	between	the	simulation	time‐space	
parameters	and	real	time‐space	coordinates.	A	methodology	used	to	obtain	this	
correlation	is	described	below.	

	
	
Fig.	2.	Equation	of	state	for	Xe	at	1800K	from	Ronchi	[2]	and	the	analytical	fit	to	the	
data	points	
	
The	equation	of	state	(EOS)	for	the	Xe	bubbles	by	Ronchi	[3]	for	Xe	gas	at	1800K,	
and	an	analytical	fit	to	the	data	are	shown	in	Fig.2.	In	Fig.2,	the	pressure	is	in	Bars	
and	the	volume	is	in	cc/mole.		The	analytical	equation	shown	in	Fig.2	was	used	in	



the	calibration	procedure	for	temperature.	In	MC	simulations,	the	flip	of	sites	
associated	with	the	three	MC	moves	is	made	as	usual	according	a	probability	given	
by	
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where	E	is	the	change	in	energy	associated	with	the	flip	and	kT	is	the	reduced	
lattice	temperature.	The	Hamiltonian	for	the	system,	in	the	absence	of	dissolved	gas	
atoms	and	long‐range	volume	diffusion	and	concentration	gradients,	reduces	to	the	
surface	energies	of	the	various	moving	interfaces.		The	first	step	in	the	calibration	
process	is	to	obtain	the	relationship	between	kT	in	equation	1	and	KbTR	where	Kb	is	
the	Boltzmann	constant	and	TR	is	the	real	temperature	in	degree	Kelvin.	
	
The	procedure	for	calibrating	the	temperature	was	as	follows.	Initially	a	length	scale	
was	assumed	for	the	Potts	model.	In	this	case,	it	is	assumed	that	each	site	is	a	sphere	
with	a	radius	of	1	nm.		An	initial	assumption	of	the	reduced	lattice	temperature	kT	
was	made.	The	simulation	cell	consisted	of	a	single	crystal	with	an	embedded	
extended	spherical	bubble	with	a	radius	of	10	nm	consisting	only	of	bubble	sites.		
Since	such	a	configuration	does	not	satisfy	pressure	equilibrium,	as	the	simulation	
proceeds	the	extended	bubble	acquires	vacancies	in	order	to	reach	pressure	
equilibrium	at	the	assumed	lattice	temperature.		From	the	bubble	radius,	the	
equilibrium	gas	pressure	Peq	was	obtained	using	Peq	=	2/R.		The	equilibrated	
extended	bubble	contains	a	known	amount	of	bubble	sites	and	void	sites	with	a	
known	number	of	atoms	inside	each	bubble	site.	The	equivalent	gas	volume	in	
cc/mole	was	calculated.	Using	the	value	of	gas	volume	in	the	Ronchi	EOS	at	1800K,	
the	gas	pressure	was	calculated.	The	calculated	pressure,	PEOS	was	compared	against	
Peq.		The	calculations	showed	that	the	two	pressures	approached	each	other	when	
the	lattice	temperature	kT	was	4.75.		Table	1	shows	Peq	and	PEOS	for	various	assumed	
values	of	kT.		At	low	kT	values,	Peq	is	lower	than	PEOS.	The	two	values	cross	each	
other	between	kT=4.5	and	kT=4.75.	In	all	the	subsequent	simulations,	a	reduced	
lattice	temperature	of	4.75	was	used	to	simulate	the	evolution	at	1800K.		
	
Table	1.	Temperature	Calibration	showing	the	convergence	of	Peq	and	PEOS	
	
MC	Lattice	Temp	(kT)	 Peq	=	2/R	(Bars)	 PEOS	(From	Ronchi,	EOS)	

(Bars)	
3.0	 681	 2811	
3.5	 646	 1858	
4.0	 583	 819	
4.5	 571	 694	
4.75	 549	 514	



	
In	order	to	establish	the	relationship	between	the	Monte	Carlo	time	step	(MCS)	and	
the	real	time	in	seconds,	the	following	procedure	was	adopted.		A	simulation	cell	
consisting	of	a	single	crystal	and	an	embedded	extended	void	with	a	void	radius	of	
20	nm	was	used	in	a	Monte	Carlo	simulation.	The	objective	of	the	simulations	was	to	
calculate	the	mean	square	displacement	(MSD)	of	all	the	void	sites	at	a	lattice	
temperature	of	kT=4.75.	The	size	of	each	void	site	was	2.0	nm	(1	nm	radius)	and	the	
lattice	temperature	was	set	to	4.75	to	correlate	with	a	real	temperature	of	1800K.	
The	average	MSD	per	void	site	when	plotted	against	MCS	gave	a	straight‐line	plot	as	
shown	in	Fig.	3.			
	

	
	

Figure	3.	Mean	square	displacement	of	void	sites	adjacent	to	the	void‐matrix	
interface	obtained	using	MC	simulations	
	
The	MSD	corresponds	to	the	surface	“diffusion”	of	the	void	sites.		MSD	of	uranium	
atoms	adjacent	to	a	void	have	recently	been	obtained	using	molecular	dynamics	
simulations	by	Desai	et	al	[4].	However,	the	data	is	available	only	for	temperatures	
of	2700K	and	above.		Therefore,	the	value	for	1800K	was	obtained	by	extrapolating	
the	results	in	[4]	to	1800K,	to	obtain	a	surface	diffusion	coefficient	of	1.0	x	10‐15	
m2/s.	It	should	be	noted	that	the	oxygen	atoms	have	a	much	higher	diffusivity	and	
there	fore	are	not	rate	controlling.		By	comparing	the	MSD/t	in	MD	with	MSD/MCS	
in	the	simulations,	the	relationship	between	real	time	and	MCS	was	found	as	1	s	=	
19400	MCS.		
	



	
Assumptions	
	

1. All	the	gas	atoms	reside	inside	the	bubble	sites	–	there	is	no	solubility	of	Xe	in	
the	matrix	during	annealing.			

2. The	bubble	sites	are	initially	at	equilibrium,	that	is,	the	pressure	exerted	by	
the	gas	atoms	inside	the	bubble	elements	balances	the	surface	tension	of	the	
bubble‐matrix	interface.		Therefore,	there	are	no	long‐range	stress	fields	in	
the	matrix	associated	with	pressurized	bubbles.	

3. The	system	largely	evolves	by	random	migration	of	the	bubbles	driven	by	
surface	diffusion	of	U	atoms	based	on	an	exchange	between	the	void	sites	and	
the	matrix	sites.	When	two	bubbles	coalesce,	the	pressure	equilibrium	is	
violated.	Restoring	the	equilibrium	occurs	by	the	pressurized	bubbles	
acquiring	a	void	site.			

4. The	exact	mechanism	by	which	the	non‐equilibrium	bubbles	acquire	void	
sites	is	not	modeled	rigorously;	it	is	assumed	that	the	probability	of	acquiring	
a	void	is	proportional	to	the	energy	change	associated	with	creating	
additional	void‐matrix	interface.		

5. The	effect	of	matrix	dislocations	and	fission	fragments	on	pinning	bubble	
motion	is	considered	by	introducing	a	fraction	of	pinning	sites	in	the	
simulation	volume	
	

A	simulation	cell	of	300	x	300	x	30	sites	with	a	site	diameter	of	2	nm	corresponding	
to	a	600	x	600	x60	nm3	volume	was	in	the	simulations	of	bubble	evolution	at	
1800K.	From	the	data	provided	in	[1],	the	number	of	atoms	in	the	simulation	cell	is	
350.146	x104.	The	number	of	gas	bubbles	in	the	same	simulation	volume	is	19,440.		
Therefore,	if	we	assume	that	all	the	gas	atoms	are	present	inside	the	bubbles	with	
no	dissolved	gas	atoms	in	the	matrix,	the	total	number	of	gas	atoms	in	each	2nm	
diameter	bubble	is	180.	Now,	the	equilibrium	gas	pressure	inside	a	2nm	diameter	
bubble	can	be	calculated	as	P	=	2/R.		Using	a	surface	energy	of	1.0	N/m	the	
equilibrium	gas	pressure	is	20,000	bars.	Substituting	it	in	the	Ronchi	EOS	[3],	the	
specific	volume	of	the	gas	in	cc/mole	is	39.56	cc/mole.	If	the	volume	occupied	by	the	
bubble	is	4R3/3,	then	it	turns	out	that	the	number	of	gas	atoms	in	the	equilibrium	
bubble	is	191	atoms	per	bubble.	This	is	not	too	far	from	the	value	of	180	atoms	per	
bubble	based	on	the	assumption	that	all	atoms	reside	inside	the	bubbles!	
	
There	is	a	difference	in	the	coarsening	behavior	of	the	bubbles	versus	voids.	
Although	both	coarsen	by	surface	diffusion	and	produce	a	coarsening	curve	skewed	
to	the	right	indicating	migration	and	coalescence,	there	is	a	major	difference	due	to	
the	Xe	pressure	inside	a	bubble.		As	mentioned	previously,	each	bubble	site	is	
assumed	to	consist	of	a	certain	concentration	or	number	fraction	of	gas	atoms	that	
balance	the	surface	tension	between	the	bubble	and	the	matrix.	However	when	two	
bubble	sites	coalesce	to	produce	an	extended	bubble,	the	pressure	equilibrium	is	
disturbed.	Even	though	the	volume	is	conserved	instantaneously,	the	pressure	
equilibrium	requires	a	net	increase	in	the	surface	area	of	the	coalesced	bubble.	The	



mechanism	by	which	this	is	achieved	is	by	the	bubble	acquiring	more	vacancies.	In	
the	Potts	model,	the	excess	vacancies	are	heterogeneously	nucleated	at	the	bubble	
matrix	interface.		
		
Results	and	Discussion	
	
The	variation	of	the	mean	bubble	size	with	annealing	time	at	1800K	is	shown	in	Fig.	
4.		So	far,	the	simulation	has	run	only	up	to	a	total	annealing	time	of	just	over	1	
minute.	The	mean	bubble	size	has	evolved	from	2	nm	to	about	30	nm	during	this	
period.		The	growth	curve	is	not	smooth	especially	at	the	later	stages	when	large	
bubbles	overlap	followed	by	pressure	equilibration.	It	is	also	clear	that	the	growth	
rate	is	accelerating	at	larger	simulation	times.	
	

	
	
Figure	4.	Variation	of	mean	bubble	size	with	annealing	time	



	
	
Figure	5.	Bubble	intercept	distribution	as	a	function	of	simulation	time.	
	
Figure	5	shows	the	distribution	of	pore	intercepts	as	a	function	of	the	simulation	
time.		At	early	times,	the	evolution	of	the	structure	by	bubble	migration	and	
coalescence	produces	a	smooth	variation	of	mean	pore	size	versus	time	up	to	about	
25	s.		During	this	time,	the	bubble	size	distribution	has	a	characteristic	asymmetrical	
distribution	skewed	to	the	right	(the	peak	is	at	the	left	compared	to	a	symmetric	
curve).	However,	at	longer	times,	associated	with	accelerated	growth	the	bubble	
size	distribution	changes	character	with	the	asymmetry	changing	to	a	skewed	left	
(the	peak	is	at	the	right	compared	to	a	symmetric	curve).	
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Figure	6.	Temporal	evolution	of	the	bubble	structure	at	1800K.			
	
The	temporal	evolution	of	the	bubble	structure	is	shown	in	Fig.	6.	It	is	clear	that	at	
later	stages	of	the	growth,	the	three‐dimensional	character	of	the	bubble	growth	is	
violated,	with	the	formation	of	cylindrical	bubbles.	Since	these	bubbles	cannot	
migrate	freely	in	all	three	directions,	their	mobility	is	significantly	reduced.		Further	
growth	appears	to	occur	mainly	by	other	migrating	bubbles	of	smaller	sizes	
coalescing	with	the	bigger	and	cylindrical	bubbles.	The	accelerated	growth	seen	at	
later	stages	appears	to	result	from	this	phenomenon.		It	is	possible	that	the	
accelerated	growth	rate	is	due	to	the	breakdown	of	ideal	3d	conditions.		It	is	also	
interesting	that	the	bubble	size	distribution	changes	from	one	characteristic	of	
migration	and	coalescence	(skewed	right)	to	a	distribution	characteristic	of	Ostwald	
Ripening	(skewed	left).	This	probably	because	the	larger	bubbles,	especially	the	
ones	that	become	cylindrical	are	essentially	stationary	and	they	act	as	sinks	to	
smaller	bubbles,	mechanistically	resembling	Ostwald	ripening	process.	It	should	be	
noted	that	the	simulation	box	size	of	300	x	300	x30	sites	was	chosen	on	the	basis	of	
the	recommendations	from	the	FMM	group	in	order	to	be	consistent	with	the	other	
efforts	for	comparison.	However,	it	is	clear	that	in	this	case	it	introduces	a	decrease	
in	the	dimensionality	of	the	problem	and	associated	changes	in	the	kinetics.	
	
In	order	to	verify	this	hypothesis,	larger	3‐D	runs	were	made	with	a	208	x	208	x	208	
sites	using	512	processes.	The	size	of	each	site	was	again	2.0	nm.		Figure	7	shows	
the	growth	kinetics	of	the	bubbles,	which	is	significantly	smoother	than	the	one	
shown	in	Fig.	4.		Figure	6	also	shows	the	growth	curve	in	the	presence	of	a	small	
volume	fraction	(0.005)	of	“dislocated”	sites	acting	as	pinning	sites.		In	these	
simulations,	it	was	assumed	that	contact	with	“dislocated”	sites	will	completely	
suppress	surface	diffusion	locally	for	the	site.		It	is	clear	that	pinning	reduces	the	
growth	kinetics.	However,	it	is	not	clear	at	this	point	how	to	correlate	the	
dislocation	density	with	the	fraction	of	“dislocated”	sites.	Also,	the	long‐range	stress	
fields	associated	with	the	dislocations	have	to	be	considered	unless	the	dislocations	
are	present	in	the	form	of	a	recovered	low‐angle	grain	boundary	network	at	the	
annealing	temperature.	By	adjusting	the	volume	fraction	of	the	dislocated	sites	it	is	
possible	to	match	the	simulation	and	annealing	data	of	Kashibe	et	al	[5].		
	
	



	
	
Fig.	7.	Bubble	growth	kinetics	in	a	416	x	416	x	416	nm3	simulation	volume	
	

		
	
Fig.	8.	Bubble	size	distribution	obtained	using	416	x	416	x	416	nm3	run	
	
Figure	8	shows	the	bubble	size	distribution	in	the	case	of	the	larger	run.	Note	that	
the	transition	from	migration	and	coalesce	lik	e	distribution	to	Ostwald	Ripening	
like	distribution	seen	in	the	smaller	run	no	longer	exists.	
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Figure	9	shows	the	temporal	evolution	of	the	bubbles	in	the	416	x	416	x	416	nm3	
run	showing	migration	and	coalescence	mechanism	operating	throughout	the	
simulation	time.	
	
The	temporal	evolution	of	the	bubbles	is	shown	in	Fig.	9	for	the	larger	run.	It	is	clear	
that	the	cylindrical	bubbles	that	formed	in	the	smaller	domain	do	not	form	and	
there	is	no	sudden	increase	in	the	growth	rate	as	observed	in	the	smaller	run.		
However,	a	few	growth	bumps	are	seen	in	Fig.	7	that	corresponds	to	rare	
coalescence	events	associated	with	large	bubbles.	



The	calibration	of	the	Potts/KMC	code	can	be	rescaled	at	any	time	during	the	
simulation,	with	the	assumption	that	each	simulation	cell	now	corresponds	to	a	
larger	bubble	size.	The	structure	should	be	re‐mapped	so	that	the	spatial	
distribution	of	the	bubbles	will	be	preserved.	With	this	re‐mapping,	it	is	now	
possible	to	change	the	relationship	between	MCS	and	time	such	that	each	MCS	now	
corresponds	to	a	larger	real	time.	Such	an	approach	has	been	demonstrated	for	
simulation	grain	growth	in	steels	[6].	Therefore	the	simulations	can	be	used	
efficiently	to	follow	the	structure	evolution	at	annealing	times	of	hours.	
	
Input/Data	Needs	
	

1. Effective	pinning	force	due	to	dislocations	at	any	location	due	to	the	
cumulative	effect	of	all	the	dislocations	within	a	cut	off	radius.	This	should	
also	take	into	account	whether	the	geometry	of	the	spatial	distribution	of	the	
defects	(tangle	versus	regular	network)	

2. Interfacial	energy	as	a	function	of	temperature	and	Xenon	pressure	
3. Strain	and	strain	gradient	in	the	matrix	due	to	non‐equilibrium	bubbles	

(when	bubbles	coalesce)	
4. Kinetics	of	absorption	of	vacancy	at	the	bubble‐matrix	interface.	This	

involves	modeling	the	long‐range	diffusion	of	vacancies	in	the	matrix	in	the	
presence	of	the	dislocations	

5. Attachment‐detachment	kinetics	for	vacancies	near	non‐equilibrium	bubbles	
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This	section	contains	a	brief	discussion	of	 the	model	parameters	that	are	required	
for	 simulating	 UO2	 post‐irradiation	 annealing	 experiments	 at	 the	 meso‐scale.	 We	
focus	 on	 perspectives	 obtained	 from	 recent	 atomic	 level	 simulations	 and	 relate	
these	 results	 to	 available	 experiments.	 The	 discussion	 is	 not	 meant	 to	 cover	 all	
aspects	 of	 the	 problem,	 but	 rather	 exemplifies	 a	 few	 cases	 where	 atomic	 level	
simulations	have	made	an	impact	on	the	understanding	of	material	properties	that	
couple	 directly	 to	 meso‐scale	 models.	 This	 work	 is	 published	 [1,2,3,4]	 or	 in	 the	
process	of	being	published	[5,6].	
	
Oxygen	interstitials	and	vacancies	
From	 both	 simulations	 [2,3,5]	 and	 experiments	 [7,8,9]	 it	 is	 clear	 that	 oxygen	
vacancies	and	interstitials	move	several	orders	of	magnitude	faster	through	the	UO2	
lattice	than	cations	or	fission	gases.	The	migration	barriers	for	anion	vacancies	and	
interstitials	are	0.5	[7,10]	and	0.9‐1.3	eV	[6,7,10],	respectively,	while	 the	 lowest	
barrier	 for	 cations	 (a	 cluster	 of	 two	 uranium	 vacancies	 that	 can	 form	 under	
irradiation)	 is	 predicted	 to	 be	 2.6	 eV	 [3]	 and	 the	 barrier	 for	 migration	 of	 single	
uranium	 vacancies	 is	 4.5‐4.8	 eV	 [3,5].	 Based	 on	 these	 observations	 it	 is	
recommended	to	make	simplifying	assumptions	regarding	the	distribution	of	anion	
defects,	since	full	coupling	of	cation	and	anion	dynamics	would	result	in	significant	
numerical	 challenges.	 One	 possibility	 is	 to	 treat	 anion	 species	 as	 always	 being	 in	
equilibrium	with	respect	to	the	distribution	of	cation	defects.	For	stoichiometric	UO2	
where	 oxygen	 vacancies	 and	 interstitials	 appear	 in	 approximately	 equal	
concentrations	 under	 thermal	 equilibrium,	 transport	 occurs	 predominantly	 via	
vacancies	 due	 to	 their	 lower	 migration	 barrier.	 For	 UO2+x	 the	 concentration	 of	
oxygen	 interstitials	 or	 clusters	 thereof	 exceeds	 that	 of	 vacancies.	 Consequently,	
interstitials	 and	 clusters	 of	 interstitials	 dominate	 the	 diffusion	 properties	 in	 this	
stoichiometry	 range	 [2,6,11].	 In	 addition	 to	 the	 kinetic	 properties,	 meso‐scale	
models	 need	 information	 regarding	 the	 concentration	 of	 oxygen	 vacancies	 and	
interstitials.	 This	 is	 available	 from	 thermodynamic	 models	 derived	 from	 either	
experiments	 [12]	 or	 from	 calculations	 [1,3].	 For	 strictly	 stoichiometric	 UO2	 the	
oxygen	vacancy	formation	energy	and	the	interstitial	formation	energy	are	both	half	
the	Frenkel	energy,	which	implies	1.5‐2.0	eV	from	both	theory	[3]	and	experiments	
[8,9].	
	
Uranium	interstitials	and	vacancies	
Migration	of	uranium	interstitials	was	recently	investigated	using	density	functional	
theory	calculations	[5]	and	the	barrier	was	calculated	to	be	3.7	eV	for	 the	 indirect	



interstitialcy	 mechanism,	 which	 is	 lower	 than	 the	 barrier	 for	 single	 uranium	
vacancies	but	about	1	eV	higher	than	for	clusters	of	uranium	vacancies	(see	below).	
Under	 thermal	 equilibrium	conditions	 the	 contribution	 from	 interstitials	 to	 cation	
diffusion	is	very	small	due	to	the	negligible	concentration	of	such	defects	compared	
to	 vacancies	 [5].	 The	 activation	 energy	 for	 the	 uranium	 interstitialcy	 diffusion	
mechanism	in	stoichiometric	UO2	was	calculated	to	be	as	high	as	15‐16	eV	[5].	
	
Experiments	 typically	quote	2.4	eV	as	 the	migration	barrier	of	uranium	 ions	via	a	
vacancy	 mechanism	 [8,9],	 which	 was	 derived	 by	 studying	 the	 recovery	 of	 UO2	
samples	 exposed	 to	 irradiation.	 If	 non‐equilibrium	 clusters	 form	 under	 such	
conditions	the	measured	barrier	could	refer	to,	 .e.g.,	migration	of	uranium	vacancy	
clusters	rather	than	isolated	vacancies.	This	was	confirmed	by	recent	computational	
studies,	which	predicted	a	barrier	of	about	4.5‐4.8	eV	for	single	uranium	vacancies	
and	about	2.6	eV	for	two	nearest	neighbor	uranium	vacancies	[3].	Simulations	of	in‐
pile	 conditions	 should	 probably	 apply	 the	 lower	 cluster	 barrier,	 while	 the	 higher	
barrier	 for	 single	 uranium	 vacancies	 may	 better	 describe	 out‐of‐pile	 conditions.	
Uranium	diffusion	 under	 thermal	 equilibrium	 conditions	 has	 been	measured	 by	 a	
number	 of	 authors	 [8,9,13].	 For	 stoichimetric	 UO2	 the	 corresponding	 activation	
energy	is	reported	to	range	from	4.4	[13]	to	5.6	eV	[8,9].	The	activation	energy	is	a	
strong	 function	of	 the	UO2x	 stoichiometry.	For	UO2‐x	and	UO2+x	 the	 corresponding	
activation	energies	were	reported	to	be	7.8	and	2.6	eV,	respectively.	 In	Ref.	[3]	we	
used	density	 functional	 theory	calculations	to	 investigate	the	activation	energy	 for	
uranium	 diffusion.	 Even	 though	 the	 agreement	 between	 theory	 and	 experiments	
was	rather	good	[3],	the	model	used	for	calculating	the	activation	energies	from	the	
calculated	 thermodynamic	 and	 kinetic	 data	 was	 incomplete.	 A	 second	 paper	 [5]	
explored	 this	 in	 more	 detail	 for	 stoichiometric	 UO2	 and	 we	 achieved	 improved	
agreement	with	experiments	compared	to	the	earlier	study	[5].	The	most	up	to	date	
activation	 energy	 for	uranium	diffusion	 in	UO2	 is	 4.4	eV	 [13]	 and	our	 calculations	
predict	4.1‐4.9	eV	[5].	Whether	the	meso‐scale	simulations	should	use	the	calculated	
migration	 barrier	 or	 the	 activation	 energy	 to	 describe	 the	 Arrhenius	 rates	 in	 the	
transport	 equations	 depends	 on	 the	 conditions	 that	 are	 being	 simulated,	 e.g.	
irradiation	 environments	 or	 thermal	 concentration	 of	 defects,	 and	 how	 the	
deviation	from	thermodynamic	equilibrium	is	formulated.	The	effective	value	of	the	
uranium	 vacancy	 formation	 energy	 depends	 on	 stoichioemtry	 and	 chemical	
environment.	For	strictly	stoichiometric	UO2	we	suggest	2.69	eV	[3].	
	
Fission	gas	
In	 order	 to	 understand	 fission	 gas	 transport	 one	 must	 first	 determine	 how	 the	
atoms	interact	with	the	fluorite	UO2	host,	both	what	is	the	most	stable	equilibrium	
trap	 site	 but	 also	 high	 energy	 positions	 that	 might	 result	 as	 a	 consequence	 of	
irradiation,	and	the	subsequent	transport	mechanisms	for	all	forms	of	the	gas	within	
the	matrix.		Among	the	fission	gases,	Xe	is	the	most	prominent.		Miekeley	and	Felix	
[14]	 performed	 early	 experiments	 on	 the	 release	 of	 Xe	 during	 post‐irradiation	
diffusion	 anneal	 from	UO2±x	with	 a	 range	 of	 different	 stoichiometries	 (x).	 Perhaps	
the	most	 striking	 conclusion	 from	 their	work	was	 that	 the	 activation	 energies	 for	
release	exhibited	unique	values	in	the	UO2‐x	(6.0	eV),	UO2	(3.9	eV)	and	UO2+x	(1.7	eV)	



regimes,	 respectively,	 while	 they	 were	 almost	 constant	 within	 each	 of	 these	
composition	sets.		This	was	interpreted	as	Xe	atoms	occupying	vacancy	trap	sites,	a	
concept	 that	 was	 investigated	 by	 Catlow	 [16]	 using	 empirical	 potentials	 of	 the	
Buckingham	 type.	 Later	 Ball	 et	 al.	 [15]	 applied	 similar	 techniques	 to	 investigate	
stability	of	Xe	in	trap	sites	as	function	of	stoichiometry	and	charge	state.		According	
to	Ball	et	al.	[15],	Xe	atoms	either	reside	in	a	neutral	trivacancy	cluster	for	UO2‐x	and	
UO2,	a	divacancy	for	UO2	or	in	a	U	vacancy	for	UO2+x.		These	conclusions	agree	well	
with	earlier	results	by	Catlow	[16]	and	also	by	more	recent	DFT	work	[19].		The	Xe	
solution	thermodynamics	establishes	the	foundation	for	species	transport,	and	Ball	
et	al.	[15,17]	further	investigated	how	the	Xe	atoms	may	move	from	one	lattice	site	
to	another	by	binding	a	second	U	vacancy	to	the	respective	Xe	trap	sites	–	a	vacancy	
mediated	diffusion	mechanism.	 	They	proposed	that	Xe	transport	occurs	by	the	Xe	
atom	 jumping	 from	 its	 original	 trap	 site	 to	 the	 second	 bound	 vacancy,	 which	
constitutes	the	center	of	a	new	Xe	trap	site	after	this	migration	step.	In	order	for	net	
Xe	transport	to	take	place,	motion	of	the	second	vacancy	bound	to	the	Xe	trap	site	
must	be	considered.	Since	Ball	et	al.	did	not	attempt	to	study	the	latter	step,	they	did	
not	compare	their	calculated	data	with	measured	activation	energies.	
	
We	 applied	 the	 DFT+U	 methodology	 to	 study	 diffusion	 of	 Xe	 under	 a	 variety	 of	
conditions	 [3];	 in	particular	applying	 the	 thermodynamic	model	originally	derived	
by	 Catlow	 [16]	 to	 calculate	 activation	 energies	 for	 Xe	 in	 the	UO2‐x,	 UO2	 and	UO2+x	
ranges.		This	transport	model	requires	calculation	of	the	binding	energy	of	a	second	
U	vacancy	 to	 the	Xe	 trap	 site	 and	 the	barrier	 for	moving	one	of	 the	 constituent	U	
vacancies	 to	 another	 location	 such	 that	 net	 transport	 is	 enabled.	 This	 diffusion	
mechanism	involves	three	components:	the	VU	formation	energy,	the	binding	energy	
of	 this	 vacancy	 to	 the	 Xe	 trap	 site,	 and	 the	 intra‐cluster	migration	 barrier	 for	 the	
individual	U	vacancies	bound	to	this	cluster.		That	is,	the	rate‐limiting	step	is	not	Xe	
motion	 within	 the	 cluster,	 but	 the	 migration	 of	 the	 second	 vacancy	 within	 the	
cluster;	without	the	motion	of	the	second	bound	U	vacancy	Xe	does	not	diffuse.		
	
We	 note	 that	 many	 earlier	 studies	 dismissed	 vacancy	 mechanisms,	 which	 was	
motivated	 by	 a	 number	 of	 experimental	 observations	 summarized	 by	 Matzke	 [9]	
and	Miekeley	and	Felix	[14].		For	example,	the	activation	energy	in	the	UO2+x	regime	
was	 found	 to	 be	 a	 constant	 and	 it	 did	 not	 change	with	 stoichiometry.	 	 However,	
according	to	our	understanding,	in	experiments	where	the	composition	is	allowed	to	
vary	as	function	of	temperature	according	to	thermodynamic	equilibrium	relations,	
the	 Xe	 activation	 energy	 should	 contain	 an	 additional	 term	 coming	 from	 the	
temperature	 dependence	 of	 the	 stoichiometry.	 Miekeley	 and	 Felix	 [14]	 estimated	
the	corresponding	Arrhenius	energy	to	be	‐0.3	eV	for	UO2	and	UO2+x	based	on	their	
experiments.	 	 According	 to	 the	 thermodynamic	model	 derived	 by	 Catlow	 [16]	 for	
UO2+x	we	should	add	twice	this	energy	to	the	Xe	activation	energy	if	the	composition	
is	not	kept	fixed	in	the	experiments.		This	contribution	was	not	accounted	for	in	any	
computational	studies	so	far,	but	adding	this	term	to	the	calculated	values	for	the	Xe	
activation	 energy	 in	 the	 UO2+x	 range	 in	 fact	 improves	 the	 agreement	 with	 the	
experimental	data	of	Miekeley	and	Felix	[14].	Preliminary	work	indicates	that	when	
the	appropriate	thermodynamic	models	are	applied	the	activation	energies	derived	



from	density	functional	theory	calculations	are	very	close	to	the	values	measured	by	
Miekeley	and	Felix	[14]	for	all	stoichiometries.		Moreover,	Govers	[18]	showed	that	
alternative	 mechanisms	 based	 on	 migration	 via	 interstitial	 sites	 are	 unfavorable,	
thus	lending	support	for	the	vacancy	mechanism.	The	barriers	for	moving	one	of	the	
uranium	vacancies	from	one	part	of	the	Xe	trap	site	to	another	is	3.91,	5.00	and	5.51	
eV	for	the	XeU	(Xe	occupies	one	uranium	vacancy),	XeUO	(Xe	occupies	one	uranium	
and	 one	 oxygen	 vacancy)	 and	 XeUO2	 (Xe	 occupies	 one	 uranium	 vacancy	 and	 two	
oxygen	 vacancies)	 trap	 sites,	 respectively.	 The	 corresponding	 defect	 formation	
energies	are	listed	in	Ref.	[3].	For	strictly	stoichiometric	UO2	we	suggest	4.35	eV.	
	
Fission	gases	can	also	diffuse	via	interstitial	mechanisms.	Due	to	the	large	size	of	Xe	
atoms	 it	 is	 however	 unlikely	 that	 such	 mechanisms	 are	 important	 at	 high	
temperature	since	the	interstitial	Xe	atoms	would	quickly	recombine	with	uranium	
vacancies.	 If	 the	Xe	atom	stays	 in	 interstitial	positions	 it	may	diffuse	with	a	rather	
low	barrier	(1.6	eV)	compared	to	vacancy	mechanisms	[4].		
	
Defect	formation	volumes	
Table	1	lists	the	formation	volumes	of	oxygen,	uranium	and	fission	gas	(Xe)	defects	
in	 stoichiometric	 UO2.	 They	were	 all	 calculated	 according	 to	 the	 definition	 of	 the	
corresponding	 defect	 formation	 energies	 [3].	 Note	 that	 this	 definition	 is	 slightly	
more	complex	than	in,	e.g.,	pure	metals,	which	must	be	accounted	for	in	the	meso‐
scale	models.	
	
Table 1: Formation volume of defects in stoichiometric UO2. 

Defect	type	 Formation	volume	[Å3]	
Oxygen	vacancy	 1.79	
Oxygen	interstitial	 1.79	
Uranium	vacancy	 42.3	
Schottky	defect	(unbound)	 	 45.8	
Schottky	defect	(bound)	 	 41.9	
Xe	 52.8	
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