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SUMMARY 

Microstructure evolution kinetics in irradiated materials has strong spatial correlation. For example, voids 
and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain 
boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of 
microstructure and thermomechanical properties.  Therefore, the simulation capability to predict three-
dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and 
performance is crucial for scientific design of advanced nuclear materials and optimal operation 
conditions and for reducing uncertainty in operational and safety margins.  

Recently, mesoscale phase-field (PF) models have been developed to predict gas bubble evolution, void 
swelling, void-lattice formation and void migration in irradiated materials. Although most phase-field 
simulations are qualitative today due to the lack of accurate thermodynamic and kinetic properties of 
defects,  and the scalability limitations of current research codes on high performance computers for large 
time and length scale simulations, PF method has demonstrated itself as one of the  promising simulation 
tools for predicting 3-D heterogeneous microstructure and property evolution, and for providing 
microstructure evolution kinetics for higher-scale simulations of microstructure and property evolution.  

This report consists of two parts. In Part I, we present a new phase-field model for predicting interstitial 
loop growth kinetics in irradiated materials. The model takes into account the effects of defect 
(vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic 
interaction, and inhomogeneous and anisotropic mobility on microstructure evolution kinetics. The model 
is used to study the influence of elastic interaction on interstitial loop growth kinetics, the interstitial flux, 
and the sink strength of interstitial loops for interstitials. In Part II, we present a generic phase-field model 
and discuss the thermodynamic and kinetic properties in phase-field models including the reaction 
kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice 
thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects.  An 
Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for 
quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.  
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FUEL CYCLE R&D PROGRAM 
Phase-field Model for Interstitial Loop Growth Kinetics  
and Thermodynamic and Kinetic Models of Irradiated  

Fe-Cr Alloys 

1. INTRODUCTION 
Complex microstructure evolutions occur in nuclear fuels and/or structural components in operating 
nuclear reactors due to fission products and radiation damage.   These microstructure evolutions include 
the formation of voids or gas bubbles, recrystallization, precipitation, solute segregation, oxidation and 
corrosion, etc, and they affect the materials’ thermo-mechanical properties and result in structural 
instability including volume swelling and cracking.  Extensive experiments demonstrated that the 
microstructure evolution kinetics in irradiated materials has strongly spatial correlation.1-3 For example, 
radiation-induced segregation near grain boundaries, enhanced swelling, void supper-lattices, and 
heterogeneous nucleation and growth of second phases at pre-existing defects (such as dislocations, grain 
boundaries, and cracks) are observed in the materials under neutron or heavy-ion irradiation. The 
heterogeneous microstructures eventually determine the material performance. Therefore, predicting 
microstructure evolution kinetics and its subsequent impact on material properties and performance is 
crucial for scientific design of advanced nuclear materials and optimal operating conditions and for 
reducing uncertainty in operational and safety margins. 

Microstructure evolution in irradiated materials is a very complicated process that involves defect 
generation, migration and reaction, nucleation of new defects/phases such as dislocations, voids, gas 
bubbles, and precipitates, defect/phase growth and coarsening.  The evolution process spans large time 
and length scales. Extensive effort has been made in modeling microstructure evolution in irradiated 
materials over the past 40 years. On the atomistic scale, the molecular dynamic (MD) method has been 
successfully used to study defect generation during cascades, defect migration, and the interaction 
between structural defects and irradiation defects.4-7  The kinetic Monte Carlo method8-10 and object kMC 
method11 have been proposed to investigate defect migration and microstructure evolution. Atomistic 
simulations revealed the thermodynamic and kinetic properties of point defects in various crystals under 
irradiation. On the macro-scale, based on a mean-field approximation of reaction kinetics with the 
generation of defects, rate theory (RT) models 12, 13 have been developed to a great extent in an attempt to 
explain the variety of phenomena observed: radiation-induced hardening, creep, swelling, segregation and 
second-phase precipitation. However, the models did not take into account the spatial arrangement of 
irradiation defects and microstructure as well as the inhomogeneity and anisotropy of defect mobility.  
The Production Bias Model (PBM)14-20 is a generalization of rate theory that accounts for more features of 
irradiation defects such as the production of point defect clusters, the one-dimensional (1-D) diffusion of 
self-interstitial atom (SIA) clusters, the reaction rate between 1-D migrating clusters and immobile sinks, 
and the recoil energy dependence of defect profiles. Although the mean-field models can deal with the 
microstructure evolution with a time scale spanning from atomic events such as small defect nucleation to 
macro-scale process including void swelling and creep, their predictive capability relies on the 
fundamental understanding and accurate reaction kinetics of defects. The reaction kinetics such as the 
generation rate of defect and defect clusters, nucleation rates of second phases, and defect mobility has 
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strong spatial correlation.  Mesoscale simulation methods such as OkMC11, Potts model21, and phase-field 
(PF) model22, which take into account 3-D inhomogeneous microstructure and 3-D reaction kinetics, can 
provide the microstructure evolution kinetics for the mean field models. 

The PF method based on the fundamental thermodynamic and kinetic information has been emerging as a 
powerful computational approach at the meso scale for predicting phase stability and microstructural 
evolution kinetics during many materials processes such as solidification, precipitation in alloys, 
ferroelectric domain evolution in ferroelectric materials, martensitic transformation, dislocation dynamics, 
and electrochemical process23-27.  This method describes a microstructure using a set of conserved and 
nonconserved variables that are continuous across the interfacial regions. The temporal and spatial 
evolution of the variables, i.e., the microstructural evolution, is governed by the Cahn-Hilliard nonlinear 
diffusion equation and the Alan Cahn relaxation equation. It uses input of thermodynamic and kinetic data 
from atomistic simulations, thermodynamic calculations and experiments, and outputs kinetic information 
of microstructure evolution.  

Very recently the application of phase-field modeling has been extended into irradiated materials. 
Reaction kinetics of radiation kinetics, heterogeneous and homogeneous nucleation, 1-D migration of 
SIAs, inhomogeneous mobility, the Sorét effect, anisotropic interfacial energy, and long-range elastic 
interaction have been integrated into phase-field models for investigating the microstructure evolution in 
nuclear fuels and cladding materials.28-33  A general phase-field model was proposed to simulate gas 
bubble evolution in a polycrystalline material with defects.28, 29 The model considered two phases 
coexisting, i.e., a matrix phase with the generation of fission gas atoms, and a fission gas phase. Elastic 
interactions among defects such as dislocations, grain boundaries, small vacancy clusters, and fission gas 
atoms were taken into account in addition of the equation of state of the gas phase. It enables one to 
investigate the heterogeneous nucleation of gas bubbles on dislocations, grain boundaries, and small 
vacancy clusters and to study the effect of radiation conditions, dislocation distributions, and grain sizes 
on gas bubble microstructure and evolution kinetics. The evolving gas bubble microstructure from the 
simulations can be used to evaluate the effect of microstructure on thermal conductivity. In irradiated 
materials the two features play an important role in the microstructure evolution.  One feature is that self-
interstitials migrate along close packing directions of crystals. The other one is that the mobility of 
interstitials is much larger than that of vacancies.  A phase-field model integrating 3-D vacancy diffusion 
and 1-D migration of SIAs was proposed to account for these two important features.30 The critical 
conditions for the formation of void lattices and the effect of radiation rates on void lattice morphology 
were examined with the developed model for a given crystal.  Temperature gradient in nuclear 
components in operating nuclear reactors causes defect migration, i.e., the so-called Sorét effect.  The 
inhomogeneous mobility of vacancies in bulk and surfaces was considered in a phase-field model by Hu 
and Henager31 and Li et al.32 The model can be used to study the migration mobility of a single void and 
the effect of temperature gradient and reaction kinetics of radiation defects. Void swelling kinetics was 
studied by the phase-field method as well by  accounting for the competition between void nucleation and 
vacancy diffusion.33 A bell-shaped temperature dependence of void swelling was predicted with the 
model, which is in agreement with the experimental observation. Although most results of the phase-field 
simulations are qualitative due to the lack of accurate thermodynamic and kinetic properties of defects, 
possible missing of important kinetic properties and processes, and the limitations of current codes and 
computers for large time- and length-scale modeling, the simulations have demonstrated that the PF 
method is a promising simulation tool for predicting the 3-D heterogeneous microstructure and property 
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evolution, and able to provide the microstructure evolution kinetics for higher level simulations in large 
time and length scales about microstructure and property evolution such as mean field methods.  

This report includes two parts. In Part I, we present a new phase-field model for predicting interstitial 
loop growth kinetics in irradiated materials. The effects of defect (vacancy/interstitial) generation, 
diffusion and recombination, sink strength, long-range elastic interaction, and inhomogeneous and 
anisotropic mobility on microstructure evolution kinetics are taken into account in the model. The model 
is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and 
the sink strength of interstitial loops for interstitials. In Part II, we present a generic phase-field model of 
multi-phase evolution in Fe-Cr alloys and discuss the thermodynamic and kinetic properties in a phase-
field model including the reaction kinetics of radiation defects and local free energy of irradiated 
materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free 
energy of alloys with irradiated defects. Finally, the great challenges ahead in phase-field modeling will 
be discussed. 

2. PART I: PHASE-FIELD MODEL FOR INTERSTITIAL LOOP 
EVOLUTION KINETICS IN BCC IRON 

Interstitial loops are one of the important sinks for SIAs.  Experimental observations34-37 and atomistic 
simulation studies38, 39 demonstrated that two kinds of interstitial loops with Burgers vector 

 100ab  on }100{  planes and Burgers vector  1112/ab  on }110{  planes, (where a is the 

lattice constant), exist in ferritic steels.  Experiments and molecular dynamic (MD) simulations have also 
shown that interstitial loops with  100ab  have a strong bias for SIAs as well as solutes.40-42  

Formation mechanisms of interstitial loops with  100ab  have been studied using MD and 
experiments.42, 43  In this work, we developed a phase-field model to study the stability and growth 
kinetics of an interstitial loop with  100ab  in an irradiated body-centered cubic (bcc) metal.  The 
details of the model and simulation results are shown in the following sections. 

2.1 Description of phase-field model  

Here we consider the interstitial loops with Burgers vectors  100ab  on }100{  planes and study 

their evolution in irradiated bcc materials.  We view all mobile vacancies and small vacancy clusters as 
single vacancies with effective concentration and mobility.  Mobile interstitials and small interstitial 
clusters are construed as single interstitials with their effective concentrations and mobilities.  The 
interstitial loops are assumed to be immobile.  Therefore, five phase-field variables are used to describe 

the microstructural features: ),( tcI r  and ),( tcV r  for SIA and vacancy concentrations, respectively, and 

three order parameters 3,2,1),,( mtm r , for three different orientations of the interstitial loops with 

Burgers vectors  100ab , where r=(r1, r2, r3) is the spatial coordinate and t is time.  The interstitial 
loops are viewed as disc-shaped precipitates that consist of 100% SIAs.  A perfect interstitial loop in bcc 
metals consists of two SIA layers as depicted by Wirth44, and has its equilibrium SIA concentration of 

1)( Tceq
I  and equilibrium vacancy concentration of 0)( Tceq

V .  The order parameter ),( tm r  is equal 

to 1 inside the interstitial loop and 0 outside, and it changes smoothly from 0 to 1 across the interface 
between the interstitial loop and matrix.  The solubilities of vacancies and SIAs in the matrix depend on 
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temperature T, and are denoted as )(0 Tceq
I  and )(0 Tceq

V , respectively.  The free energy of the system, 

including the chemical free energy ),,,( Tccf mVI  , interfacial energy interE  and elastic energy elastE , 

can be written as 

 dVEETccfF
V

elastinter
mVI  ),,,(  . (1) 

The diffusion of vacancies and interstitials are described by the Cahn-Hilliard equations:45 

),(),(),( tstRtg
c
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M

t

c
VIVV

V
V
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
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
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

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c
IIVI

I
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







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


, (3) 

where VM  and IM  are the mobilities of vacancies and interstitials, respectively. The variables VIg , , 

IVR , and VIs ,  are the generation rate, recombination rate, and sink strength of vacancies and interstitials, 

respectively. The generation rate46 can be calculated by dtdpadgg VI /)(  , where dpa denotes the 

displacements per atom. The recombination rate47 is generally given by 2/)(6 VIVIIVIV ccDDZR  , 

where ID  and VD  are the diffusivities of the interstitials and vacancies, respectively, and IVZ  (the 

recombination cross section) is a constant in the range 3.3~7.2.   is the jump distance. The sink strengths 

are calculated by )( 0eq
IIIII ccDks   and )( 0eq

VVVVV ccDks   where the coefficients Ik  and Vk  

depend on the type and density of sinks48, 49.  

The evolution rate of the order parameters is assumed to be a linear function of the thermodynamic 
driving forces.  The simplest form of the kinetic equation is the time-dependent Ginzburg-Landau 
equation:50 

 )3,2,1(, 



m
F

L
t m

m




,  (4) 

where L  is the kinetic coefficient characterizing the interface mobility of the interstitial loops. In Eqs. (2-

4), F is the total energy given in Eq. (1). ),,(, mVI ccXXF   , is the variational derivative of F with 

respect to variable X, i.e., the thermodynamic driving force. 

The Kim’s model26 is employed to construct the system chemical free energy. One advantage of the 
Kim’s model is that a larger grid size can be used in simulations for given interfacial energy and interface 
mobility. In consequence, larger time and length scales can be reached in the simulations. Following the 
Kim’s model, the chemical free energy as a function of the concentrations and order parameters is 
described as  

),,(),,()],,(1[),,(),,(),,,( 321321321  wgTccfhTccfhTccf VILVIMmVI  ,  (5) 
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where ),,( Tccf VIM  and ),,( Tccf VIL  are the free energies of the matrix phase and the interstitial loop 

phase, respectively.   
m

mmh 32
321 23),,(   is a shape function that represents the volume fraction 

of the matrix and interstitial loop phases at a spatial point r.   
m

mmg )1(),,( 22
321   is a double 

well potential, and w  is the height of the double well.  Taking the unirradiated material as the reference 

state, the free energy of the matrix phase ),,( Tccf VIM  with vacancies and SIAs can be described by  

),(),()(),,( 0
VIVIMVIM ccTSccHTfTccf  ,  (6) 

where )(0 TfM  is the free energy of the reference state. It can be obtained from phase diagram calculations 

such as CALPHAD. ),( VI ccH  and ),( VI ccS  are the enthalpy and entropy changes due to the 

introduction of defects at temperature T. Generally, the enthalpy change can be expressed by a 
polynomial in terms of vacancy and interstitial concentrations while the entropy change can be described 

as WkccS BVI ln),(  . Bk  is the Boltzmann constant and W  is the thermodynamic probability as a 

possible combination of the numbers of vacancies, interstitials and lattice atoms of the system. In the 

dilute solution limit, ),,( Tccf VIM  can be written as 

 ,)]1ln()1(ln)1ln()1(ln[

)(),,( 0

VVVVIIIIBI
f

IV
f

V

MVIM

ccccccccTkcEcE
N

TfTccf
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




,  (7) 

where f
VE  and f

IE  are the vacancy and interstitial formation energies, respectively. N  is the Avogadro 

constant, and   is the molar volume. The Kim’s model assumes that at each point r  the matrix and 

interstitial loop phases have the same chemical potentials but different concentrations, i.e., ( M
V

M
I cc , ) for 

the matrix and ( L
V

L
I cc , ) for the interstitial loop phase, respectively. This implies that the conditions: 

I
L
V

L
ILI

M
V

M
IM cTccfcTccf  /),,(/),,( , V

L
V

L
ILV

M
V

M
IM cTccfcTccf  /),,(/),,( ,  (8a) 

  I
L
I

M
I cchch  ),,(1),,( 321321  ,    V

L
V

M
V cchch  ),,(1),,( 321321  ,   (8b) 

should be satisfied during microstructure evolution. The free energy of the interstitial loops ),,( Tccf VIL  

is assumed as,  

]))(())([()(),,( 220 TccTccATfTccf eq
VV

eq
IILLVIL  . (9) 

The coefficient LA  and 0
Lf  can be determined by the equilibrium thermodynamic properties that the free 

energies ),,( Tccf VIM  and ),,( Tccf VIL  have a common tangent at their equilibrium concentrations.  
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For alloys, )(0 TfM  should depend on alloy concentrations.  Since the radiation defects (vacancies and 

interstitials) occupy the host and interstitial lattices, a general two-sublattice thermodynamic model with 
multi-components can be used to describe the enthalpy and entropy changes for the alloy system.51, 52  

The second term on the right side of Eq. (1) is the gradient energy associated with the interfacial energy 
of the interstitial loops.  The interfacial energy of the broad in-plane interfaces of the loop  depends on 
whether the loop is a perfect loop or a faulted loop;  however, it should be much smaller than that along 
the rim of the loop.  In order to describe the strong anisotropy of the interfacial energy, we separate the 
interfacial energy into two parts as 

 
m

mm
m

m
interE

212

22
 n . (10)  

The first term on the right side of Eq. (10) describes the isotropic interfacial energy.  The coefficient   
together with the double-well height w  of Eq. (5) can be determined by the interfacial energy and 
interface thickness of the broad interface of the loop. Since we consider a perfect interstitial loop, the 

interfacial energy of the broad interface of the loop is zero. Therefore, 0  is used in the simulations 
and w  is chosen to ensure the free energy presenting two phases coexisting. The second term describes 

the interfacial energy along the rim of the loop with mn  being its unit normal vector.  This term is zero on 

the planar interface because mn  and m  are parallel vectors.  The coefficient 1 is associated with the 

interstitial loop core energy dis  by 001 / drdis  , where 0r  is the dislocation core radius, and 0d  is the 

interplanar distance of the dislocation slip plane. dis  can be calculated from atomistic simulations. 53-55   

The last term in Eq. (1) is the elastic energy.  If the variation of the stress-free lattice parameter, a , with 
given defect (vacancy and interstitial) concentrations is assumed to obey Vegard’s law, the local stress-
free strain caused by the defect inhomogeneity is given by  

    ij
eq
II

I
ij

eq
VV

VVI
ij cccc  0000*  ,   (11)

 

where V
V dcdaa /)/1(0   and I

I dcdaa /)/1(0   are the expansion coefficients of the lattice 

parameter due to the introduction of vacancies and interstitials, respectively, and ij  is the Kronecker-

delta function. However, since the interstitial concentration is equal to 1 inside an interstitial loop, 
Vegard’s law may no longer be applicable.  Thus, an additional term is used for correction  

  
m

mmmmm

L
L

ij injnjnin )()()()()(
2

)(
0

* rr  ,   (12) 

where 0L  describes the change of the interplanar distance due to the interstitial loop and )(inm , (i=1, 2,  

3) is the component of the unit vector mn .  Therefore, the total stress-free strain tensor is  
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The elastic energy density elastE  can be calculated by:56 

el
kl

el
ijijkl

elastE 
2

1
  ,  (14) 

where the summation convention over i, j, k, l (i, j, k, l=1, 2, 3) is used. ijkl  is the elastic constant tensor 

and el
ij  is the elastic strain given by 

)()( * rr ijijij
el
ij   ,       (15) 

where ij  is the homogeneous macroscopic strain characterizing the macroscopic shape and volume 

change and )(rij  is the heterogeneous strain which satisfies  
V ij dV 0)(r . The elastic strain el

ij  

can be obtained by solving the mechanical equations of 0, jij  with ij  being the stress component 

and el
klijklij   . For elastic inhomogeneous solids, such as polycrystalline materials, the elastic solution 

can be obtained using an iteration method.57 

We use the following normalizations for our numerical calculations: 0
2
0044
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* tDkk VVV   with 0l  being a characteristic length 

and 0ID  being the interstitial diffusivity at a given temperature T0.    is the ideal gas constant and 44C  

is the shear modulus of the considered material. With )/,/,/( 321 rrr 
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By solving Eqs. (16-18), we can obtain the temporal and spatial distribution of ),( tcI r , ),( tcV r , and 

),( tm r  (m=1, 2, 3).  We use the semi-implicit Fourier spectral method58 for the time-stepping and 

spatial discretization. In the simulations, pure bcc Fe is considered. The dimensionless materials 
properties and model parameters are listed in Table 1. 

Table I.  Parameters used in the simulations. 

*t  0.002 

T 600 K 
T0 673 K 

*
LA  

64.5 

*w  0.013 
*
IM  

1. 

*
VM  

10-3 

*L
 

1.0 

0eq
Ic  

)/7.116088.4exp( T
0eq

Vc  
)/7.116085.1exp( T  

*
 

00.0  
*
1  

0.085 

ijkl  
145,243,116 121144  CCC (MPa) 

2.2 Results and discussion  

The interstitial loops with Burgers vectors  100ab  on }100{  planes have a strong bias for 

interstitials such that their growth consumes interstitials in the matrix.  Therefore, the growth kinetics of 
these interstitial loops is directly related to the loop bias or sink strength for interstitials.  In the following 
sections, the developed phase-field model is used to study the effects on the interstitial loop growth 
kinetics of interstitial concentration, generation rate, recombination rate, sink strengths of other defects 
for vacancies and interstitials, and elastic interactions. 
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radius 00 8lR   and Burgers vector ]100[ab  on a )100(  plane was placed at the center of a 

000 649696 lll   simulation cell. The initial concentrations of 01.000  VI cc  in the matrix were used, 

and the generation rate, recombination rate and sink strength for both interstitials and vacancies were set 
to be zero in the simulations.  The shadowed region in Figure 2 represents the interstitial loop extent 
where the interstitial concentration is equal to 1.  The interstitial concentration sharply goes to the 

equilibrium concentration of )(0 Tceq
I  outside the loop.  As seen in the figure, the growth rate in <100> 

directions is slightly larger than that in <110> directions in the interstitial loop plane. As a result, the 
shape of the loop changes from a circle to a square with rounded corners. The growth anisotropy is 
attributed to the anisotropic elastic constants of bcc Fe which cause an anisotropic stress field and elastic 
interaction around the loop.  

 
Figure 2. Snapshots of the morphology evolution of an interstitial loop during aging (a) in three 
dimensions; and (b) the projection on the plane of the interstitial loop. 

The growth of an interstitial loop without elastic interaction is also simulated for comparison.  The results 
suggest that the interstitial loop grows isotropically without elastic interaction.  For the both cases, the 
radius R of the interstitial loop along [100] and [110] directions and the total area S of the interstitial loop 

versus time are plotted in Figure 3. It shows that a linear relationship ( **
0

* AtRR  ) between the radius 

of the interstitial loop and time exists for the both cases with and without elastic interaction.  A linear 
growth rate of the interstitial loop radius was observed in Fe-16Cr-14Ni alloys under electron radiation60 
and was theoretically predicted for plate-like precipitates under diffusion-controlled growth.61 
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Figure 3.  Interstitial loop area and radius versus time during aging. 

2.2.3 Effect of interstitial concentrations on the growth kinetics during aging 

With the same simulation cell above, the evolution of interstitial loops as a function of initial interstitial 
and vacancy concentrations with and without elastic interaction is simulated. The results are presented in 

Figures 4 and 5 for  00
VI cc 0.01, 0.005, and 0.0025.  The total area of the interstitial loop can be fitted 

by a quadratic function of time as 2*
2

*
10

* tStSSS  . This indicates that ** / dtdS  is linear versus 

time. ** / dtdS , the absorption of interstitials per unit time *t , is directly related to the sink strength of 

the interstitial loop for interstitials. Figure 5a shows that ** / dtdS  and the average radius of the 

interstitial loop have a linear relationship of *** ~/ ARdtdS . Fitting the coefficient A  in terms of the 

interstitial supersaturation )( 00 eq
II cc  , we found that A  is proportional to )( 00 eq

II cc   as shown in Figure 

5b.  

 
Figure 4. Size of an interstitial loop versus time for different initial interstitial concentrations. 
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Figure 5.  (a) ** / dtdS  versus *R  for different initial interstitial concentrations during aging, with *R  

and *S  being the average radius and area of an interstitial loop, respectively. (b) Coefficient A of 
*** ~/ ARdtdS  is linear versus )( 00 eq

II cc  . 

2.2.4 Effect of the interstitial generation rate on the interstitial loop growth 
kinetics 

The generation rates of interstitials ( *
Ig ) and vacancies ( *

Vg ) are proportional to the rate of displacement 

per atom (dpa). The effect of the generation rates on the interstitial loop growth kinetics is simulated, and 
the results are presented in Figure 6. In the simulations, both the initial interstitial and vacancy 

concentrations were set to be 510  and their generation rates change within a large range from 

 **
VI gg   310  to 610 . Their recombination and sinks were ignored. The elastic interaction was taken 

into account. The results in Figure 6(a) show that a larger generation rate results in a faster growth rate. 

Similar to the aging process, a linear relationship of *** ~/ BRdtdS  also holds equal under irradiation 
with different dpa rates. Interstitial loop growth in pure Fe under electron irradiation at different 
temperatures follows a nearly linear relationship between loop radius and dpa.35 The variation of 

coefficient B  versus the interstitial generation rate *
Ig  is plotted in Figure 6(b). Their relationship can be 

approximately expressed by 95.2)ln(154.0 *  IgB  .  
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Figure 6.  (a) ** / dtdS  versus *R  for different generation rates under irradiation, with *R  and *S  being 

the average radius and area of an interstitial loop, respectively. (b) Coefficient B of *** ~/ BRdtdS  is 

approximately linear to )ln( *
Ig . 

2.2.5 Effect of recombination rate and sink strength on the growth kinetics  

Figure 7(a) displays the growth kinetics of an interstitial loop varying with the recombination rate 

between interstitials and vacancies. The simulation parameters were set as: 01.000  VI cc , 

0.0**  VI gg  ,  and 0.0**  VI kk , but *  0, 1, 3, 6, 10, 15, and 30.  As expected, the growth rate 

decreases as the recombination rate increases. Figure 7(b) demonstrates the effect of sink strengths of 
other defects for vacancies and interstitials on the growth kinetics of the interstitial loop. The results were 

obtained by varying  **
VI kk  0, 50, and 200 under 500 10 VI cc , 3** 10 VI gg  , and 10*  .  

Because both the recombination between interstitials and vacancies and the absorption of interstitials and 
vacancies at sinks reduce the vacancy and interstitial concentrations in the matrix, it is expected that the 
interstitial loop growth rate will decrease as the recombination rate and/or sink strength increases.  
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Figure 7.  Interstitial loop size versus time for different recombination rates (a) and different sink 
strengths (b). 

In summary, a phase-field model has been developed to simulate the growth kinetics of interstitial loops 
in irradiated materials. The interstitial loop with a Burgers vector  100ab  on a }100{  plane of bcc 

Fe was studied. The thermodynamic and kinetic properties of defects such as formation energy, migration 
energy, and formation volumes of defects in bcc Fe were used to determine the model parameters. The 
stresses of an interstitial loop obtained through molecular dynamic simulations were employed to 
determine the stress-free strains of an interstitial loop.  The evolution of an interstitial loop during aging 
and irradiation was simulated. The results show that 1) the elastic interaction speeds up the loop growth 
kinetics; 2) the elastic interaction also causes anisotropic growth rates; 3) the loop growth follows a linear 

growth rate, i.e., *** ~/ ARdtdS  or ** ~ AtR  during aging and irradiation, which is in agreement with 
experimental observation.  The effect of defect concentration, generation rate, recombination rate, sink 
strength, and elastic interaction on the interstitial loop growth kinetics is investigated separately, which 
demonstrates the advantage of simulations. The simulations show that the developed phase-field model is 
capable of studying the effect of thermodynamic and kinetic properties of defects and irradiation 
conditions on the sink strength of interstitial loops for interstitials. 

3. PART II: THERMODYNAMIC AND KINETIC MODELS OF 
IRRADIATED FE-CR ALLOYS  

Fe-Cr alloys have been used or considered for use in fast fission and fusion reactors due to their superior 

swelling resistance, high creep-rupture strengths, and good oxidation and corrosion resistance at elevated 

temperatures. A major concern for Fe-Cr alloys in nuclear reactors is the effect of irradiation on fracture. 

Neutron irradiation might cause a variety of microstructure changes such as solute segregation, 

precipitation, precipitate dissolution, and formation of voids and gas bubbles. All the microstructure 

changes affect mechanical properties such as strength, fracture toughness, and ductile-brittle transition 

temperature. The microstructure evolution in alloy systems during irradiation at elevated temperatures is 
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determined by a number of factors including 1) coupled transport of the solute atoms by point-defect 

fluxes to and away from sinks, such as grain boundaries, free surfaces, dislocation loops and interfaces 

between precipitate and matrix; 2) the inverse Kirkendall effect, whereby the faster-diffusing species 

exchange more often with the irradiation-induced vacancies migrating to sinks than slow-diffusing 

species. The fast-diffusing solutes are therefore depleted at sinks while the concentrations of the slow-

diffusing species increase; 3) prior grain size and morphology, dislocation density, and precipitate size 

distribution; and 4) radiation conditions and temperatures.  

Extensive experimental and theoretical results on microstructure evolution, thermodynamic and kinetic 

properties of Fe-Cr alloys are available in the literature.62, 63  Therefore, Fe-Cr alloy is a good model alloy 

to demonstrate the capability of the phase-field modeling. Next we present a generic phase-field model 

describing multiple microstructure evolution phenomena in irradiated Fe-Cr alloys. 

3.1 Generic phase-field model of microstructure evolution in 
irradiated Fe-Cr alloys  

“Microstructures” refers to the compositional and structural inhomogeneity.  A phase-field model 
describes a microstructure, (both the compositional/structural domains and interfaces), as a whole by 
using a set of field variables. The field variables are continuous across the interface regions, and hence the 
interfaces in a phase-field model are diffuse. There are two types of field variables, conserved and 
nonconserved. Conserved variables have to satisfy the local conservation condition. In irradiated bcc Fe-
Cr alloys, neutron irradiation generates vacancies at the host bcc lattices, and Fe and Cr interstitials at 
interstitial lattices. Vacancies and interstitials may form their respective clusters. We assume that 1) 
mobile point defects and defect clusters are replaced by single vacancies or single interstitials with 
equivalent concentration and mobility;  2) immobile vacancy clusters act as void nuclei; 3) immobile 
interstitial clusters act as the nuclei of  interstitial loops; and 4) mobile interstitials have <110> dumbbell 
configuration which is the energetically favorable in pure bcc Fe as well as in dilute and concentrated Fe-
Cr alloys..  If solute segregation, voids, interstitial loops, and Cr-rich precipitates are considered 
simultaneously, two sets of field variables are required to describe the microstructure: one set of 

conserved variables )...,,2,1),,(( nitci r  describing the concentrations of vacancies, Fe atoms, and Cr 

atoms at the host bcc lattices and interstitial lattices, respectively, and the other set of nonconserved 

variables )...,,2,1),,(( mptp r  describing structural inhomogeneity including grain orientation 

),...,,2,1( mggp  , voids )1(  gp , Cr-rich precipitates )2(  gp , and (100) interstitial loops 

)5,4,3(  gggp .  At equilibrium, the order parameters )...,,2,1),,(( mptp r  are zero in the 

matrix while they are equal to 1 inside their respective domains. For instance, 1),(1  tg r  and 

1,0),(  gptp r  inside the voids, and 0),(1  tg r  outside the voids. The concentrations 

)...,,2,1),,(( nitci r  have their equilibrium concentrations in each phase at equilibrium.  For the 

inhomogeneous microstructure system described by conserved field variables )...,,2,1),,(( nitci r  and 

nonconserved field variables )...,,2,1),,(( miti r , the total free energy can be calculated by  
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where f  is the local free energy density, and i  and ij  are the gradient energy coefficients. The first 

volume integral represents the contribution to the free energy from short-range chemical interactions and 
the interfacial energy from the gradient terms. The second integral represents the contributions of long-
range interactions to the total free energy, such as elastic interactions, electrostatic interactions.  Both 
short and long-range interactions depend on the field variables. 

With the total free energy of a microstructure discussed above, the evolution of field variables can be 
obtained by solving the following Cahn-Hilliard and Allen-Cahn equations, 
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where ijM  and pqL  are related to atom or defect mobility and interface mobility, respectively. c
ig , c

iR , 

c
iS  and c

i  are the generation rate, recombination rate, sink strength, and fluctuation of atom or defect ic

, respectively. 
pg  is the generation rate of defect cluster p )...,,1( mgp  . 

3.2 Thermodynamic and kinetic properties 

Modeling the microstructure evolution using the phase-field approach is reduced to finding solutions to 
the kinetic equations (20, 21) together with long-range interaction and boundary conditions. The 
reliability of simulation results depends on the thermodynamic and kinetic properties used in the model 
including the reaction kinetics of irradiation defects and the local free energy of each phase existing in the 
system. 

3.2.1 Reaction kinetics of irradiation defects 

The reaction kinetics of irradiation defects required in phase-field models are listed below: 

 generation rate c
ig  of point defects  

 recombination rate c
iR  of interstitials and vacancies 

 sink strength c
iS  for mobile defects  
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 generation rate 
pg  of immobile defect clusters  

 migration energy and mobility ijM  of defects  

 interfacial energy and interface mobility pqL   

 formation energy and solubility of defects  

 formation volume of defects, etc.  

Actually most of these properties of defects have been used in mean field methods15, 64.  Therefore, the 
same formulism can be directly plugged into the phase field modeling. Speaking in general, atomistic 
simulations can provide all these data used in phase-field models. 

3.2.2 Local free-energy formulation in phase-field model  

One of the key components in a phase-field model is the local free-energy density function. For a given 
system, if free energies of different phases are valid from thermodynamic calculations such as 
CALPHAD, these free energies can be directly employed in the phase-field model. However, the local 
free energy of irradiated materials is usually not available in the literature. We have to develop the free 
energy density function based on the thermodynamic properties of the system.  In Fe-Cr alloys under 
irradiation, multiple phases usually coexist. The matrix phase coexists with voids, Cr-rich precipitates, 

and interstitial loops. Define ),...,,,( 21 Tcccf nM  and ),...,,,( 21 Tcccf np , with )...,,2,1( mp  , as the 

free energies of the matrix phase and the different second phases, respectively. By using the Kim’s 
formulation,26 the chemical free energy as a function of the concentrations and order parameters is 
described as  
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    (22) 

where 32 23)( ppph    is a shape function that represents the volume fraction of the matrix and the 

second phase p at a spatial point r.   
m

mmmm wg )1()..,,,( 22
21   is a double-well potential with 

respect to m , and mw  is the height of the corresponding double well.   

3.2.3 Two-sublattice free energy model of irradiated Fe-Cr alloys 

For low concentrations of alloy atoms and irradiation defects, the local free energy ),...,,,( 21 Tcccf nM  

and ),...,,,( 21 Tcccf np  can be described approximately by ideal and regular solution formulas such as 

Eqs. (6-7). But for high concentrations of alloy atoms and radiation defects, the excess Gibbs energy of 
mixing due to clustering and short-range ordering becomes important. In this case, the sublattice free 
energy formulism has been extensively used in thermodynamic calculations such as CALPHAD.52 We 
suggest using the two-sublattice model shown in Figure 8 to describe the irradiated Fe-Cr alloys. In the 
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model, one sublattice is the host bcc lattice, and the other one is the interstitial lattice. Both sublattices are 

occupied by Fe, Cr and vacancy (V). The two sublattices are denoted by    
IH zz VCrFeVCrFe ,,,,,  where 

H refers to host lattice, and I denotes interstitial lattice. Subscripts zH and zI are the lattice fractions of the 
host lattices and interstitial lattices, respectively, and satisfy 1 IH zz . Assume ,,, H

V
H
Cr

H
Fe ccc and 

I
V

I
Cr

I
Fe ccc ,,  are the lattice fractions of Fe, Cr, and vacancies at the host lattices and the interstitial lattices, 

respectively. They have the relationship: 1 H
V

H
Cr

H
Fe ccc  and 1 I

V
I
Cr

I
Fe ccc . The corresponding 

Gibbs free energy per mole can be expressed as 

mix
mf

xsmix
mf

id
mfmf GGGG      (23) 
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                                                                                 (24)  

where G  with subscripts is the Gibbs energy of the two sublattice structure (denoted as ) with one 

element in each sublattice, called end-members. The second term of Eq. (23) ( mix
mf

idG ) is the ideal 

mixing energy. Ideal mixing assumes mechanical mixing among atoms in each sublattice without 
interactions between atoms, i.e., all atomic bonds are identical. There is thus only an entropic contribution 
from the random distribution of atoms in each sublattice, i.e., 


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
VCrFeq

s
q

s
q

IHs
s

mix
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id cczRTG
,,,

ln ,     (25) 

where the first summation goes over all sublattices and the second summation goes over all constitutions 
in the corresponding sublattice. 

In real materials, the atomic bonding characteristics between different atoms is unique, and the atomic 
mixing would thus result in additional Gibbs energy change with preferred local atomic arrangements, 
i.e., short-range ordering. This can cause miscibility gaps, order-disorder transitions, or the formation of 

compounds depending on the sign and magnitude of the excess Gibbs energy of the mixing mix
mf

xsG .  The 

widely used mathematical formula for mix
mf

xsG  is the Redlich-Kister polynomial shown below:65 
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4. SUMMARY AND OUTLOOK 
Phase-field methods have been applied to simulate the evolution of different microstructures such as gas 
bubbles in polycrystallines, void lattice formation due to 1-D migration of SIAs, void migration under a 
temperature gradient, void swelling, and interstitial loop growth in irradiated materials. The simulation 
results demonstrate that the developed phase-field models can qualitatively predict the microstructure 
evolution kinetics observed in experiments. Therefore, future efforts are expected to focus on the 
development of quantitative phase-field models.  The development of a quantitative phase-field model 
relies on not only  a correct description of the microstructure evolution processes, but also  accurate 
thermodynamic and kinetic databases. These databases, in principle, can be obtained from atomistic 
simulations.  For specific fuel and reactor materials in practical applications, significant efforts are 
required to develop approaches in linking phase-field models with existing or future thermodynamic and 
kinetic databases. 

The assessment of phase-field models is also a challenge because of the specific time and length scales 
and complicated microstructure evolution occurring in the irradiated materials. However, specific 
experimental measurements are required on the microstructure and microstructure evolution kinetics for 
evaluating the prediction of phase-field simulations. 

Figure 9 shows the time and length scales of phase-field modeling in the multiscale simulation methods 
used currently. One of the important objectives of phase-field modeling is to provide the thermodynamic 
and kinetic properties of microstructure evolution for macroscale modeling. To achieve the goal, standard 
formats are expected for phase-field modeling output of microstructures, relationships between 
microstructure and properties, and evolution kinetics of microstructures and properties.  It is also expected 
to extend the phase-field models to simulate multi-phase evolution and multi-material processes that take 
place in irradiated materials.  Therefore, increasing efforts should be devoted in developing scalable 
parallel codes and in performing large-scale simulations in order to provide statistical and uncertainty 
quantification  of simulation results. 
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Figure 9. Time and length scales of multiscale simulation methods. 
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