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INTRODUCTION 

Modern industrial reprocessing techniques, including the PUREX and UREX+ family of 
separations technologies, are based on solvent extraction between organic and aqueous phases. In these 
bi-phase systems, product (actinide) and contaminant (fission and activation products) elements are 
preferentially driven (thermodynamically) to opposite phases, with small amounts of each remaining in 
the other phase.1

The distribution of each element, between the organic and aqueous phases, is determined by 
major process variables such as acid concentration, organic ligand concentration, reduction potential, and 
temperature. Hence, for consistent performance of the separation process, the distribution of each element 
between the organic and aqueous phases should be relatively constant. During “normal” operations the 
pattern of elements distributing into the product and waste streams at each segment of the facility should 
be reproducible, resulting in a statistically significant signature of the nominal process conditions. Under 
“abnormal” conditions, such as those expected under some protracted diversion scenarios, patterns of 
elements within the various streams would be expected to change measurably.  

The MIP monitoring approach utilizes changes in the concentrations of gamma-emitting elements 
as evidence of changes to the process chemistry.2,3,4  It exploits a suite of gamma emitting isotopes to 
track multiple chemical species and behaviors simultaneously, thus encompassing a large array of 
elements that are affected by chemical and physical changes.  In-process surveillance by the MIP monitor 
is accomplished by coupling the gamma spectrometry of the streams with multivariate techniques, such as 
Principal Component Analysis (PCA).  PCA is a chemometrics tool that finds combinations of variables 
(principal components or PCs) that best describe the common variance between differing datasets.5  Using 
multivariate analysis, such as PCA, the MIP monitoring technique is then capable of automatically 
evaluating the patterns of the gamma-emitting contaminants for statistically relevant signs of potential 
changes to the process chemistry.  The MIP monitor represents the first of its technology to combine 
gamma-ray spectroscopy with multivariate analysis for monitoring reprocessing operations.  
 
METHODOLOGY 
Methodology of the Simulations 
 A group of three computer models were used to simulate gamma spectra from reprocessing streams to 
test the MIP monitor concept.  Spent boiling water reactor (BWR) fuel was modeled using ORIGEN-
ARP.6  The fuel was modeled with various burnup levels for comparison purposes. The fuel type selected 
in ORIGEN-ARP (which includes the cross section libraries) was General Electric BWR fuel with 3% 
enrichment.   

As output, ORIGEN-ARP provides quantity, weight, and activity of the elements and isotopes in 
the fuel.  This output was used as a basis for predicting the elemental and isotopic composition in a 
simulated dissolved fuel solution. The results from the ORIGEN-ARP simulation were used as input for 
Argonne’s  Model for Universal Solvent Extraction (AMUSE) 7,8,9 code to simulate solvent extraction. 
AMUSE, in its entirety, can calculate the steady state compositions for both the aqueous and organic 
phases at each contactor stage for various processes as well as estimate the size and cost of the necessary 
equipment.  For the purposes of this study, only a portion of the code (Spreadsheet Algorithm for 
Speciation and Partitioning Equilibria, SASPE) was used to calculate the batch extraction distribution 
coefficient for the primary uranium and plutonium extraction in a PUREX process.  Regalbuto et. al.7 



 

 

explain that SASPE uses input compositions and the conditions of the aqueous and organic phases to 
calculate the distribution ratios. These calculations employ chemically correct models that use the 
thermodynamic activities of the major aqueous species. The approach of Bromley10 is used to calculate 
these activities from aqueous-phase compositions.  Solvent loading is also incorporated into the 
distribution coefficient.  

An aqueous feed solution with a standard uranium concentration of 1.3 M for a typical PUREX 
process was modeled. 11  Concentrations of major radioactive fission products were included in 
accordance to their respective ratios to the uranium in the dissolved fuel as simulated by ORIGEN-ARP.  
All fission and activation products were assumed to have dissolved completely into solution.  The total 
element concentration of the selected nuclides were entered into AMUSE and the distribution coefficient 
was calculated based on simulated contact with a 30% (V/V) Tri-Butyl Phosphate (TBP) in dodecane in a 
two-to-one volume ratio with the aqueous phase.  The distribution coefficients were calculated at different 
nitric acid concentrations of the feed solution.  

The output from AMUSE consisted of the distribution coefficients for each element. Elements 
included in AMUSE defined by the default distribution coefficient included barium (Ba), carbon (C), 
cadmium (Cd), and cesium (Cs).  In addition, the palladium (Pd) distribution coefficients as a function of 
acid concentration from literature12 were used instead of the default constant.  The input to AMUSE 
assumed that all of the plutonium existed in the IV oxidation state.  This assumption was adequate since 
the gamma rays from Pu did not add appreciably to the overall spectra of spent fuel.  AMUSE did not 
have the capability to model distribution coefficients for Antimony (Sb), Tellurium (Te), Tin (Sn), Nickel 
(Ni), and Niobium (Nb).  These elements were left out of the model simulations. 

The distribution coefficients generated by AMUSE were used to derive the element 
concentrations in both the organic extract and aqueous raffinate solutions.  The fraction of each element 
extracted combined with its relative isotopic abundances from ORIGEN-ARP output were used to 
distribute the nuclide activity between phases and propagate a list of nuclides and their activity. The 
nuclide activity list was used as source characterization for input into a third computer program, PNNL’s 
Synth code,13  to simulate gamma spectra of the feed, raffinate and organic extract solutions.  Synth is a 1-
D radiation transport code designed to mimic the response of a selected detector type among several 
choices, including sodium iodide (NaI), high purity germanium (HPGe) and cadmium zinc telluride 
(CZT) crystals.  Spectra are populated based on the nuclide source list and a library that attributes the 
gamma-rays and their branching ratios to each nuclide.  Here, the gamma spectrum from the dissolver and 
the organic extract were simulated using HPGe.   

For all spectral simulations, a point source was assumed.  For the acid concentration variations, 
the energy calibration was set to 0.5 keV per channel and 4096 channels were used, resulting in full scale 
energy of 2048 keV.  The live time was set to one hour and the source was located 5 centimeters from the 
detector. For the direct measurement of dissolver solutions, the detector was modeled with 0.3 keV per 
channel with 8192 channels resulting in an energy scale up to 2457 keV.  The count time was ten minutes 
and the source was located 10 centimeters from the detector. The HPGe detector was a coaxial model 
with 50% efficiency and the default settings were used, including a resolution of 1.9 keV (0.14%) at 1332 
keV.13  These gamma spectra for the organic extract and aqueous dissolver were simulated as a function 
of acid concentration and burnup level, respectively.  
 
Methodology of the Experiment 

A segment of boiling water reactor (BWR) spent commercial nuclear fuel were used in the 
experimental analysis of the MIP monitor.  The dissolution and separation of the fuel was performed at 
the Shielded Analytical Laboratory hot cell facility at Pacific Northwest National Laboratory.   

The segment of fuel used in the experiment was part of the ATM 109 fuel rod group, which was 
BWR fuel irradiated in the Quad Cities I reactor.  This rod was fabricated by GE, post-irradiation 
examinations were performed at GE’s Vallecitos Nuclear Center, and then the fuel was sent to Argonne 
National Laboratory (ANL) followed by Pacific Northwest National Laboratory (PNNL) for use as an 
Approved Testing Material.  The segment of fuel dissolved for the demonstration had an initial 



 

 

enrichment of 3% and a burnup level of approximately 67 - 70 MWd/kgU.  The fuel was irradiated from 
February 1979 until September 1987 at which point the rod was removed from its bundle and placed in a 
carrier assembly.  The carrier assembly was placed back into the reactor and the rod was irradiated from 
November 1989 until September 1992.14,15  As of September 2009, the fuel had been cooling for 
approximately 17 years. 

The dissolution and extraction of the fuel segment was performed in a hot cell by manipulators.  
The segment was removed from its cladding (12 – 15 grams) and dissolved in concentrated nitric acid.  
The undissolved fines were removed by centrifuging the solution.  A total of five feed/dissolver samples 
were prepared for solvent extraction by a TBP and dodecane mixture.  Each of these feed solutions had a 
uranium concentration of roughly 0.7 M and nitric acid concentrations of approximately 0.3, 1.3, 2.5, 3.8 
and 5.1 M, respectively.  Following dissolution, each of the fuel segments underwent the first stage of a 
PUREX-type extraction in  batch wise fashion. These aqueous samples were mixed with an equal volume 
of 30% (V/V) Tri-Butyl Phosphate (TBP) in dodecane solution and then centrifuged to separate the 
phases.  Portions of the feed, aqueous raffinate and organic extract were removed and stored for analysis.  

The samples were removed from the hot cell for additional preparation and analysis.   The 
solutions were sub-sampled to reduce the gross amount of radiation emitted by each sample.  Portions 
(0.1 mL) of each sample were placed in 4 mL glass vials and diluted to 1 mL with 0.5 M nitric acid 
(aqueous samples) or 30% (V/V) TBP in dodecane (organic samples) in order to provide sufficient 
volume to facilitate collimation during counting.  In the case of the organic samples, the radiation levels 
of the undiluted samples were already low, but the sub-sampling during dilution further eliminated any 
aqueous carry over incompletely separated in the hot cell. 

Gamma counting was performed in the Radiological Process Laboratory using a high purity 
germanium (HPGe) detector. The organic samples were counted on either a 70% or a 74% relative 
efficiency Ge detector at close range for a total live count time of two hours.  Calibrations, performed on 
the detector daily, showed minimal drift (approximately ± 0.1 keV).   

All samples were counted at least once.  The five organic extract samples were also counted 10 
times each in a random order, resulting in additional spectra for use with PCA. 
 
Multivariate Analysis Techniques 

Several multivariate analyses were performed on the data set for each detector, including 
Hierarchical Cluster Analysis (HCA), Principle Component Analysis (PCA), and the Partial Least 
Squares (PLS) method.  The PLS Toolbox16 for Matlab17 was used to perform all of the multivariate 
analyses mention above.  All of the techniques required data preprocessing before they could be applied.  
In our case, preprocessing consisted of normalization to unit area and mean-centering.  Normalizing by 
area removes the effect of source intensity on the spectra while maintaining the pattern.  Though intensity 
is a valid indicator of fuel history or process conditions, it is also easily influenced by source/detector 
geometry.  While this effect can be easily managed during simulations, it may be difficult to control size 
and geometry of the samples to maintain precision between samples during an actual deployment.  
Normalization should reduce these artificial pattern variances.  Because normalization would be used in 
an actual deployment, it was used exclusively for the first step of the simulated data preprocessing. 

The analysis of the spectra included both supervised and unsupervised pattern recognition.  
Supervised pattern recognition takes into account sample information, such as which samples are normal 
and which are off-normal, in order to establish groups of interest and compare new samples to the groups.  
Unsupervised pattern recognition does not consider the sample’s origins, but instead allows the samples 
to group based solely on the similarities and differences found in the spectra.  This allows the intrinsic 
organization to emerge resulting in increased insight into the reaction of the samples to the analysis 
technique.   

After analysis by PCA, PLS method was applied to the organic extract spectra to predict the acid 
concentration of the fuel represented by the spectra.  PLS is a multivariate calibration method that uses an 
approach analogous to PCA.  The general version of PLS described and used in this manuscript is PLS1. 



 

 

18  Using PLS1, it is necessary to develop separate models for each property of interest (i.e., burnup level 
or acid concentrations) to extract quantitative information.   
 

RESULTS 

Non-Optimized Experimental Estimation of MIP Monitor for Determining Acid Concentration  
The first stage of a PUREX type extraction was applied to dissolved spent fuel at the Hot Cell facility at 
PNNL. The organic phase after extraction was removed from the hot cells and counted using a HPGe 
detector. Figure 1 shows typical spectra from the organic phase as a function of the acid concentration of 
the aqueous feed solution. These spectra were mean centered normalized and analyzed using 
unsupervised PCA. Results from these analyses (shown in Figure 2) illustrate that spectra can be grouped 
according to acid concentration. Nine replicates at each acid concentration were then used to generate a 
supervised and calibrated (PLS) PCA model. One replicate at each acid concentration was then treated as 
an unknown and superimposed on the model to test the ability of the model to predict their acid 
concentration (Figure 3). The root mean squared error of the prediction (RMSEP) is shown in the figure, 
which is an estimate of the performance of this approach. These preliminary results were limited by two 
major factors: (1) the number of experimental samples available; (2) the linear nature of the PLS model 
used to predict a nonlinear system. Considering these limitations, this approach was able to predict acid 
concentration of the feed from the experimental gamma spectra of the organic phase following extraction 
to within  +0.1 M at three sigma. 
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Figure 1.  Simulated gamma spectra generated from High Purity Ge detector for BWR fuel 69-70 
MWd/kgU, 16 years cooled, as a function of acid concentration. 
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Figure 2.   PCA grouping of above spectra.   
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Figure 3.   PLS model results generated from data shown in Figure 2.   
 
 

R2: 0.995 
RMSEP: 0.149 

Calibration Bias: 2.66E-15 
Prediction Bias: 0.889 



 

 

Simulated Sensitivity of the MIP Monitor for Monitoring Acid Concentration 
Simulations designed to mimic experimental investigations described above were conducted. Figure 4 
shows simulated spectra from the organic phase as a function of the acid concentration of the aqueous 
feed solution. These spectra were mean centered normalized and analyzed using PLS. Five of these 
spectra were used to generate a supervised and calibrated (PLS) PCA model. The remaining two spectra 
were used as unknowns to test the predictive capability of the model (Figure 5). The RMSEP is shown in 
the figure, which is an estimate of the performance of this approach. These simulations suggest the MIP 
approach, once optimized for a linear PLS model, may be able to predict the acid concentration of the 
feed using gamma spectra of the organic phase following extraction to within  +0.05 M. Data points in 
Figure 5 show some level of nonlinearity, suggesting that a nonlinear model may be more accurate and 
appropriate for this application. 
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Figure 4.  Simulated gamma spectra generated from High Purity Ge detector as a function of acid 
concentration for spent BWR fuel (16 MWd/kgU, 26 year cooling).  
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Figure 5.  PLS model results from spectra shown in Figure 4.

R2: 0.997 
RMSEP: 0.058 

Calibration Bias: -4.62E-14 
Prediction Bias: 0.0581 



 

 

 
Simulated Sensitivity of the MIP Monitor for Determination of Burnup 
Traditional gamma spectrometry has been employed in the past to estimate burnup. However, this 
technique typically relies on the measurement of the 661 keV 137Cs line, which in turn depends upon an 
accurate estimate of the baseline underneath this peak. We hypothesized that the MIP approach may 
provide a better estimate of burnup by utilizing multiple indicator peaks and more accurately accounting 
for the unresolved baseline. This hypothesis was tested using simulated gamma spectra of three-year 
cooled, dissolved, spent fuel taken from a fictitious dissolver tank (shown in Figure 6) as a function of 
burnup. In all, nine spectra were generated from simulations. These spectra were mean centered and 
normalized and then analyzed using unsupervised PCA. Six spectra were then used to generate a 
supervised and calibrated (PLS) PCA model, while three spectra were treated as unknowns and used to 
test the model predictive capability. The model developed from spectra that were mean centered and 
normalized (Figure 7) was found to be less accurate than the model based on spectra that simply were 
mean centered before use (Figure 8), indicating intensity was an important determinant in model output.  
The RMSEP is shown in each of the figures. These results suggest the MIP approach could be used to 
estimate burnup at the dissolver tank to within +0.1 % of the actual burnup. Model estimates of the MIP 
performance for this type of application need to be confirmed through experiments. 
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Figure 6. Simulated gamma spectra of 3-year cooled dissolved spent fuel as a function of burnup, 
generated from High Purity Ge detector. 
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Figure 7.   PLS model results generated from spectra shown in Figure 6 after mean centering and 
normalization.   
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Figure 8.   PLS model results generated from spectra shown in Figure 6 after mean centering.   
 
 
 

R2: 0.98 
RMSEP: 4.03 

Calibration Bias: 1.78E-13 
Prediction Bias: 2.92 

R2: 1.00 
RMSEP: 0.036 

Calibration Bias: -2.14E-14 
Prediction Bias: 0.027 
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