
PNNL-18355

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

GAiN: Distributed Array
Computation with Python

JA Daily

May 2009

GAIN: DISTRIBUTED ARRAY COMPUTATION WITH PYTHON

By

JEFFREY ALAN DAILY

A thesis submitted in partial fulfillment of
the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

WASHINGTON STATE UNIVERSITY
School of Electrical Engineering and Computer Science

MAY 2009

To the Faculty of Washington State University:

The members of the Committee appointed to examine the thesisof JEFFREY ALAN

DAILY find it satisfactory and recommend that it be accepted.

Robert R. Lewis, Ph.D., Chair

Li Tan, Ph.D.

Kevin Glass, Ph.D.

ii

ACKNOWLEDGEMENT

I would like to thank Dr. Lewis for his encouragement and for always setting such

high expectations. Also, Battelle Memorial Institute for funding my way through graduate

school.

iii

GAIN: DISTRIBUTED ARRAY COMPUTATION WITH PYTHON

Abstract

by Jeffrey Alan Daily, M.S.
Washington State University

May 2009

Chair: Robert R. Lewis

Scientific computing makes use of very large, multidimensional numerical arrays –

typically, gigabytes to terabytes in size – much larger thancan fit on even the largest

single compute node. Such arrays must be distributed acrossa “cluster” of nodes.

Global Arrays is a cluster-based software system from Battelle Pacific Northwest

National Laboratory that enables an efficient, portable, and parallel shared-memory

programming interface to manipulate these arrays. Writtenin and for the C and

FORTRAN programming languages, it takes advantage of high-performance cluster

interconnections to allow any node in the cluster to access data on any other node very

rapidly.

The “numpy” module is the de facto standard for numerical calculation in the

Python programming language, a language whose use is growing rapidly in the scientific

and engineering communities. numpy provides a powerful N-dimensional array class as

well as other scientific computing capabilities. However, like the majority of the core

Python modules, numpy is inherently serial.

Our system, GAiN (Global Arrays in NumPy), is a parallel extension to Python that

accesses Global Arrays through numpy. This allows parallelprocessing and/or larger prob-

lem sizes to be harnessed almost transparently within new orexisting numpy programs.

iv

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

LIST OF TABLES . viii

LIST OF FIGURES . ix

CHAPTER

1. INTRODUCTION . 1

2. BACKGROUND . 2

2.1 Python . 2

2.1.1 Operator Overloading . 2

2.1.2 object construction . 3

2.1.3 Slicing . 3

2.1.4 Function Decorators . 4

2.1.5 Bytecode . 5

2.1.6 Object Serialization . 5

2.1.7 ctypes . 6

2.2 NumPy . 6

2.2.1 ndarray . 7

2.2.2 Slicing . 7

2.2.3 Universal Functions . 9

v

2.2.4 Broadcasting . 10

2.3 Parallel Programming Paradigms 10

2.3.1 Master/Slave . 10

2.3.2 Single-Program Multiple-Data (SPMD) 11

2.4 Message Passing Interface (MPI) 11

2.4.1 MPI-2 . 12

2.4.2 mpi4py . 13

2.5 Global Arrays (GA) . 14

3. PREVIOUS WORK . 15

3.1 MITMatlab . 15

3.2 PyTrilinos . 15

3.3 GAMMA: Global Arrays Meets MATLAB 16

3.4 IPython and distarray .16

3.5 GpuPy . 16

3.6 pyGA . 17

4. DESIGN . 18

4.1 Supporting Two User Communities .. 18

4.2 Global Arrays in Python . 19

4.3 Whether to Subclass ndarray .. 20

4.3.1 Utilizing both NumPy and Global Arrays 22

4.3.2 Slicing . 23

4.4 Master/Slave Parallelism .. . 25

4.4.1 Using MPI-2 and Spawn . 25

4.4.2 Serializing Python Functions .. 25

4.4.3 Communication Protocol . 26

vi

4.5 Implicit versus Explicit Parallelism 27

4.6 Using GAiN . 28

5. IMPLEMENTATION . 29

5.1 Accessing Global Arrays in Python 29

5.2 gainarray.flat . 31

5.3 Implicit versus Explicit Parallelism 32

6. EVALUATION . 33

6.1 distmap . 33

6.2 Performance Python . 34

6.3 Implicit versus Explicit Parallelism 37

7. CONCLUSIONS . 38

8. FUTURE WORK . 39

8.1 Missing Functionality .. 39

8.2 Linearization of the Underlying Multidimensional Global Array 39

8.3 C Implementation . 40

BIBLIOGRAPHY . 41

APPENDIX

A. SOURCE CODE . 46

A.1 Python Function Decorators .. 46

A.2 Wrapping Global Array Pointers with an ndarray 47

vii

LIST OF TABLES

Page

4.1 GAiN Data Types. These are the data types supported by GAiN and their

NumPy equivalents. 28

5.1 Subset of Global Arrays C-API wrapped with Python’s ctypes, in alphabet-

ical order. 30

6.1 Performance Python Results. GAiN was run using 1, 2, 4, 8,and 16 nodes.

Times are in seconds. Missing values are represented by a “?”and indicate

thrashing during the test. 36

viii

LIST OF FIGURES

Page

2.1 Example of Python Function Decorators. 5

6.1 Distance Map Running Times forN × N Grid. This plot compares the

running times of the GAiN and NumPy implementations of the distance

map test. GAiN both scales better than NumPy and exceeds beyond the

limits of NumPy’s largets problem size. 34

6.2 Performance Python Running Times forN × N Grid. This plot com-

pares the running times of GAiN and various NumPy or Python extensions.

GAiN was run using 1, 2, 4, 8, and 16 nodes. GAiN scales only as well

as the best compiled implementation but does extend beyond the system

resource limitations. 35

ix

Dedication

To Nicole, Abigail, and Grace – for without my family I would have nothing.

x

CHAPTER ONE

INTRODUCTION

Scientific computing with Python typically involves using the NumPy package. NumPy

provides an efficient multi-dimensional array and array processing routines. Unfortunately,

like many Python programs, NumPy is serial in nature. This limits both the size of the

arrays as well as the speed with which the arrays can be processed to the available resources

on a single compute node.

NumPy programs are written, debugged, and run on single machines. This may be

sufficient for certain problem domains. However, NumPy may also be used to develop pro-

totype software. Such software is usually ported to a different, compiled language and/or

explicitly parallelized to take advantage of additional hardware.

GAiN is an extension to Python and provides parallel, distributed processing of arrays.

It implements a subset of the NumPy API so that for some programs, by simply importing

gain in place ofnumpy they may be able to take advantage of parallel processing auto-

matically. Other programs may require slight modification.This allows those programs to

take advantage of the additional cores available on single compute nodes and to increase

problem sizes by distributing across clustered environments.

Chapter 2 provides all of the background information necessary to understand GAiN.

Chaptper 3 highlights systems similar to GAiN. Chapter 4 describes all of the subsystems

and concepts that went into GAiN. Chapter 5 briefly documentsthe difficulties encountered

while carrying out the design. Chapter 6 evaluates the performance of GAiN compared to

NumPy as well as other attempts to make NumPy more efficient. Chapter 7 concludes and

Chapter 8 describes how GAiN can be extended or used as the basis of future research.

1

CHAPTER TWO

BACKGROUND

Like any complex piece of software, GAiN builds on many otherfoundational ideas and

implementations. This background is not intended to be a complete reference of the sub-

jects herein, rather only what is necessary to understand the design and implementation of

GAiN. Further details may be found by examining the references or as otherwise noted.

2.1 Python

Python[28, 46] is a machine-independent, bytecode interpreted, object-oriented program-

ming (OOP) language. It can be used for rapid application development, shell scripting,

or scientific computing to name a few. It gives programmers and end users the ability to

extend the language with new features or functionality. Such extensions can be written

in C[45], C++[15], FORTRAN[36], or Python. It is also a highly introspective language,

allowing code to examine various features of the Python interpreter at run-time and adapt

as needed.

2.1.1 Operator Overloading

User-defined classes may implement special methods that arethen invoked by built-in

Python functions. This allows any user-defined class to behave like Python built-in ob-

jects. For example, if a class defines__len__() it will be called by the built-inlen() .

There are special methods for object creation, deletion, attribute access, calling objects as

functions, and making objects act like Python sequences, maps, or numbers. Classes need

only implement the appropriate overloaded operators.

2

2.1.2 object construction

User-defined classes control their instance creation usingeither the overloaded__new__() ,

__init__() , or both.__new__() is a special-cased static method that takes the class

of which an instance was requested as its first argument. It must return a class instance,

but it need not be an instance of the class that was requested.If __new__() returns an

instance of the requested class, then the instance’s__init__() is called. If some other

class instance is returned, then__init__() is not called on that instance.__new__()

was designed to allow for subclasses of Python’s immutable types but can be used for other

purposes.

2.1.3 Slicing

Python supports two types of built-in sequences, immutableand mutable. The immutable

sequences are thestring s,unicode s, andtuple s while the only mutable type is the

list . Python sequences generally support access to their items via bracket “[]” notation

and accept either an integerk where0 <= k < N andN is the length of the sequence,

or aslice object. Out-of-bounds indices will result in an error, however negative indices

are supported by the built-in Python sequences by calculating offsets from the end of the

sequence. It is up to the implementing class whether to support negative indices when

overloading the sequence operators.

slice objects are used for describingextended slice syntax. slice objects describe

the beginning, end, and increment of a subsequence via thestart , stop , andstep

attributes, respectively. Whenslice s are used within the bracket notation, they can be

represented by using theslice() constructor or as colon-separated values. The start

value is inclusive of its index while the stop value is not. Ifthe start value is omitted it

defaults to 0. Similarly, stop defaults to the length of the sequence and step defaults to 1.

The slice can be used in lieu of an index for accessing a subsequence of the sequence

3

object. Slicing a built-in Python sequence always returns acopy of the returned subse-

quence. User-defined classes are free to abandon that convention. Further,slice s that

are out-of-bounds will silently return an in-bounds sequence which is different behavior

than simple single-item indexing.

To illustrate both index andslice access to Python sequences assume we have the

list of int sA=[0,1,2,3,4,5,6,7,8,9] . An example of single-item access would

beA[1]=1 . Usingslice syntax would looke likeA[1:2]=[1] . A negative single-item

index looks likeA[-1]=9 . Finally, an example ofslice syntax that includes astep

is A[2:9:3]=[2,5,8] . Note in these examples how single-item access returns anint

whereas slicing notation returns alist .

2.1.4 Function Decorators

Everything in Python is anobject , including functions. That means functions can be

passed as arguments to other functions. This allows functions to wrap other functions

quite easily and has always been available to the Python programmer. As of Python 2.4,

a function that takes another function as its first argument and returns a function is given

special importance as adecorator.

Decorators allow a form of metaprogramming[37], allowing functions to be wrapped

by one or more additional functions at the time of their definition. They are defined like any

other Python function. The decorator’s label is then placedimmediately above the function

to be decorated and denoted by the “@” symbol. Python uses decorators internally to im-

plement class and static methods,@classmethod and@staticmethod respectively.

One use for decorators besides those already mentioned would be for logging function

calls. Other uses might be to enforce the types of inputs or ofoutputs since Python is

dynamically typed. See the sample code in Appendix A.1 for clarity.

4

def my_decorator(function_to_wrap):
def new_function():

print "Hello World"
return function_to_wrap

return new_function
@my_decorator
def function_getting_wrapped():

pass

Figure 2.1: Example of Python Function Decorators.

2.1.5 Bytecode

Python is a machine-independent bytecode-interpreted language. When a Python program

is written, the source code is compiled by Python into an intermediate, internal Python

representation called bytecode. The bytecode is machine-independent and consists of in-

structions for the Python interpreter to carry out. This bytecode is cached as *.pyc or *.pyo

files so that running the same code is faster after the first time. Bytecode can be exam-

ined or replaced at run-time. For a function, the bytecode isaccessible from the attribute

func_code as acode object . The returned object can be replaced with any other

code object , allowing functions to change their behavior at run-time.

2.1.6 Object Serialization

Many languages have the need for object serialization and de-serialization. Serialization is

the process by which a class instance is transformed into another, often succinct, represen-

tation (like a byte stream) which can persist or be transmitted. It can then be de-serialized

back into its original object. This is also commonly known asmarshalling and unmar-

shalling. In Python this is also called pickling and unpickling.

pickle [28] is part of the Python Standard Library and can serializenearly everything

in Python. It is designed to be backwards compatible with earlier versions of Python. Cer-

tain Python objects, such as modules or functions, are serialized by name only rather than

5

by their state. They can only be de-serialized so long as the same module or function exists

within the scope where the de-serialization occurs. There is no guarantee that the same

function will result from the de-serialization or that the function exists in that namespace.

There is another module for performing serialization called marshal [28]. marshal

does not support as many classes aspickle nor is it version independent. However,

marshal supports serializing Python code objects whilepickle does not. Recall from

2.1.5 thatcode object s represent Python bytecode and are the instructions of defined

functions. By using themarshal module one can serialize Python functions.

2.1.7 ctypes

ctypes [46] is a Python module that allows functions in shared libraries to be called di-

rectly from Python. This allows libraries written in C to be wrapped in pure Python versus

other wrapping options[6].ctypes also has representations of the C data types which

are are more efficient yet less flexible than the Python built-ins. All functions called via

ctypes must have their parameters converted to one of these C data types. Automatic

conversion is only available for integers and strings.ctypes also exposes the otherwise

internal Python C-API to native Python programs.ctypes became a part of the Python

Standard Library as of Python 2.5.

2.2 NumPy

numpy[32, 31] is a Python extension module which adds a powerful multidimensional

array classndarray to the Python language. NumPy also provides scientific computing

capabilities such as basic linear algebra and Fourier transform support. NumPy is the de

facto standard for scientific computing in Python and the successor of the other numerical

Python packages Numarray[42] and numeric[2].

6

2.2.1 ndarray

The primary class defined by NumPy is thendarray . Thendarray is implemented as

a contiguous memory segment that is either FORTRAN- or C-ordered. Recall that in FOR-

TRAN, the first dimension changes the fastest while it is the opposite (last) dimension in

C. All ndarray s have a pointer to the location of the first element as well as the attributes

shape , ndim , andstrides . ndim describes the number of dimensions in the array,

shape describes the number of elements in each dimension, andstrides describes the

number of bytes between consecutive elements per dimension. shape can be modified

while ndim andstrides are read-only and used internally, although their exposureto

the programmer may help in developing certain algorithms.

The ndarray does not implement Python’s__init__() object constructor. In-

stead,ndarray s use the__new__() classmethod , treatingndarray s as if they

were immutable objects. Recall from 2.1.2 that__new__() is Python’s hook for subclass-

ing its built-in objects since otherwise the__init__() method of the built-in’s subclass

would never be called. The creation ofndarray s is complicated by the need to return

views of ndarray s that are alsondarray s. However, due to the use of__new__() ,

subclasses ofndarray would never get the chance to modify their attributes duringcon-

struction.__array_finalize__() is called instead of__init__() for ndarray

subclasses to avoid this limitation.

2.2.2 Slicing

Unlike slicing with built-in Python sequences, slicing in NumPy is performed per axis.

Each sliced axis is separated by commas within the usual bracket notation. Further, slicing

in NumPy produces “views” rather than copies of the originalndarray . If a copy of the

result is truly desired, it can be explicitly requested. This allows operations on subarrays

without unnecessary copying of data. To the programmer,ndarray s behave the same

7

whether they are the result of a slicing operation. Views have an additional attribute,base ,

assigned that points to thendarray that owns the data. The originalndarray ’s base

is None (effectively a null pointer.) When anndarray is sliced, the resultingndarray

may have differentshape , strides , andndim attributes appropriately. There is no

restriction on taking slices of already slicedndarray s, either.

For example, the following arrayA is a 3x4x5 array of integers. Zeros were prepended

to smaller numbers for clarity.

000 001 002 003 004

010 011 012 013 014

020 021 022 023 024

030 031 032 033 034

100 101 102 103 104

110 111 112 113 114

120 121 122 123 124

130 131 132 133 134

200 201 202 203 204

210 211 212 213 214

220 221 222 223 224

230 231 232 233 234

Below is a sample of slicing notations and their results onA.

A[0, 2, 4] = 024.

A[1, 0 : 2, 1 : 5 : 2] =
101 103

111 113

A[:, :: −1, 1 : 5 : 2] =

031 033

021 023

011 013

001 003

131 133

121 123

111 113

101 103

231 233

221 223

211 213

201 203

There are a few special cases of slicing implemented by NumPy. The form described

previously is standard slicing. NumPy also supports a form of slicing calledfancy slicing.

Fancy slicing allows otherndarray s to be used as the indices into other arrays so long

as they consist of integers or booleans. The result of indexing with an integerndarray

causes the resulting array to have the same shape as the indexarray with its integer elements

8

replaced by their corresponding values in the array being indexed. Indexing with a boolean

array causes the correspondingTrue elements to be selected.

2.2.3 Universal Functions

The element-wise operators in NumPy are known asUniversal Functions, orufuncs. Many

of the methods of thendarray simply invoke the corresponding ufunc. For example, the

operator+ callsndarray.__add__() which invokes the ufuncadd . Ufuncs are either

unary or binary, taking either one or two arrays as input, respectively. Ufuncs always return

the result of the operation as an array. Optionally, an additional array may be specified to

receive the results of the operation. Specifying this output array to the ufunc avoids the

sometimes unnecessary creation of a new array.

Ufuncs are more than just callable functions. They also havesome special methods

such asreduce andaccumulate . reduce is similar to Python’s built-in function of

the same name that repeatedly applies a callable object to its last result and the next item of

the sequence. This effectively reduces a sequence to a single value. When applied to arrays

the reduction occurs along the first axis by default, but other axes may be specified. Each

ufunc defines the function that is used for the reduction. Forexample,add will sum the

values along an axis whilemultiply will generate the running product.accumulate

is similar toreduce , but it returns the intermediate results of the reduction.

Ufuncs can operate on objects that are notndarrays . In order for subclasses of the

ndarray or ndarray -like objects to utilize the ufuncs, they may define three meth-

ods and one attribute which are__array_finalize__() , __array_wrap__() ,

__array__() , and__array_priority__ , respectively.__array_wrap__ takes

anndarray as its only argument and expects a subclass ofndarray to be returned. In

the case of binary ufuncs, the input arrays may be different subclasses of thendarray .

Since ufuncs return the basendarray as a result of their execution,__array_wrap__

9

is used to return a subclass ofndarray for the input array with the highest

__array_priority__ . If an object is specified to receive the results of the ufunc and

implements__array__() , the results from the ufunc will be written to the array returned

by that method.

2.2.4 Broadcasting

NumPy introduces the powerful feature of allowing otherwise incompatible arrays to be

used as operands in element-wise operations. If the number of dimensions do not match

for two arrays, 1’s are repeatedly prepended to the shape of the array with the least number

of dimensions until theirndim s match. Arrays are then broadcast-compatible (alsobroad-

castable) if for each of their dimensions their shapes either match orone of them is equal

to 1. For example, the shapes(3, 4, 5) and(2, 3, 4, 1) are broadcastable. In this way, scalars

can be used as operands in element-wise array operations since they will be broadcast to

match any other array. Broadcasting relies on thestrides attribute of thendarray . A

stride of 0 effectively causes the data for that dimension torepeat, which is precisely what

happens when broadcasting occurs in element-wise array operations.

2.3 Parallel Programming Paradigms

Parallel applications can be classified into a few well defined programming paradigms.

Each paradigm is a class of algorithms that have the same control structure. The literature

differs in how these paradigms are classified and the boundaries between paradigms can

sometimes be fuzzy or intentionally blended into hybrid models[7]. The Master/Slave and

SPMD paradigms are discussed further.

2.3.1 Master/Slave

The master/slave paradigm, also known as task-farming, is where a single master process

farms out tasks to multiple slave processes. The control is always maintained by the master,

10

dispatching commands to the slaves. Usually, the communication takes place only between

the master and slaves. This model may either use static or dynamic load-balancing. The

former involves the allocation of tasks to happen when the computation begins whereas the

latter allows the application to adjust to changing conditions within the computation. Dy-

namic load-balancing may involve recovering after the failure of a subset of slave processes

or handling the case where the number of tasks is not known at the start of the application.

2.3.2 Single-Program Multiple-Data (SPMD)

With SPMD, each process executes essentially the same code but on a different part of

the data. The communication pattern is highly structured and predictable. Occasionally, a

global synchronization may be needed. The efficiency of these types of programs depends

on the decomposition of the data and the degree to which the data is independent of its

neighbors. These programs are also highly susceptible to process failure. If any single

process fails, generally it causes deadlock since global synchronizations thereafter would

fail.

2.4 Message Passing Interface (MPI)

Message passing is one form of inter-process communication. Each process is considered

to have access only to its local memory. Data is transferred between processes by the

sending and receiving of messages which usually requires the cooperation of participating

processes. Communication can take the form of one-to-one, one-to-many, many-to-one, or

many-to-many.

Message passing libraries allow efficient parallel programs to be written for distributed

memory systems. MPI[19], also known as MPI-1, is a library specification for message-

passing that was standardized in May 1994 by the MPI Forum. Itis designed for high

performance on both massively parallel machines and on workstation clusters. An MPI

implementation exists on nearly all modern parallel systems and there are a number of

11

freely available, portable implementations for those systems that do not[7]. As such, MPI is

the de facto standard for writing massively parallel application codes in either FORTRAN,

C, or C++.

MPI programs are typically started with eithermpirun or mpiexec , specifying the

number of processes to invoke. If the MPI program is run without the use of those, then it

is run as if only one process was specified. Not all MPI implementations support running

without the use of thempirun or mpiexec programs. MPI programs can query their

environment to determine how many processes were specified.Further, each process can

query to determine which process they are out of the total number specified.

MPI programs are typically conform to the SPMD paradigm[7].The mpiexec pro-

grams by default launch programs for this type of parallelism. A single program is specified

on the command line which gets replicated to all participating processes. This same pro-

gram is then executed within its own address space on each process, such that any process

knows only its own data until it communicates with other processes, passing messages

(data) around. A “hello world” program executed in this fashion would print ”hello world”

once per process.

2.4.1 MPI-2

The MPI-2 standard[20] was first completed in 1997 and added anumber of important

additions to MPI including, but not limited to, process creation and management, one-sided

communication, parallel file I/O, and the C++ language binding. With MPI-2, any single

MPI process or group of processes can invoke additional MPI processes. This is useful

when the total number of processes required for the problem at hand cannot be known a

priori.

Before MPI-2, all communication required explicit handshaking between the sender

and receiver viaMPI_Send() andMPI_Recv() in addition to non-blocking variants.

12

MPI-2’s one-sided communication model allows reads, writes, and accumulates of remote

memory without the explicit cooperation of the process owning the memory. If synchro-

nization is required at a later time, it can be requested viaMPI_Barrier() . Otherwise,

there is no strict guarantee that a one-sided operation willcomplete before the data segment

it accessed is used by another process.

Parallel I/O in MPI-2, sometimes referred to as MPI-IO, allows for single, collective

files to be output by an MPI process. Before MPI-IO, one such I/O model for SPMD pro-

grams was to have each process write to its own file. Having each process write to its

own file may be fast, however in most cases it requires substantial post-processing in order

to stitch those files back together into a coherent, single-file representation thus diminish-

ing the benefit of parallel computation. Other forms of parallel I/O before MPI-IO was

introduced included having all other processes send their data to a single process for out-

put. However, any computational speed-ups from the parallelism are reduced by having to

communicate all data back to a single node. MPI-IO hides the I/O model behind calls to

the API, allowing efficient I/O routines to be developed independently of the calling MPI

programs. One such popular implementation of MPI-IO is ROMIO[41].

2.4.2 mpi4py

mpi4py is a Python wrapper around MPI written to mimic the C++language bindings.

It supports point-to-point communication as well as the collective communication models.

Typical communication of arbitrary objects in the FORTRAN or C bindings of MPI require

the programmer to define new MPI datatypes. These datatypes describe the number and

order of the bytes to be communicated. On the other hand, strings could be sent without

defining a new datatype so long as the length of the string was understood by the recipient.

mpi4py is able to communicate anypickle able Python object sincepickle d objects

are just byte streams. mpi4py also has special enhancementsto efficiently communicate

13

any object implementing Python’s buffer protocol, such as NumPy arrays. It also supports

dynamic process management and parallel I/O. [10, 9, 11]

2.5 Global Arrays (GA)

The GA toolkit[30, 29, 17] is a software system from BattellePacific Northwest National

Laboratory that enables an efficient, portable, and parallel shared-memory programming

interface to manipulate physically distributed dense multidimensional arrays, without the

need for explicit cooperation by other processes. GA compliments the message-passing

programming model and is compatible with MPI so that the programmer can use both in

the same program. The GA library handles the distribution ofarrays across processes and

recognizes that accessing local memory is faster than accessing remote memory. However,

the library allows access mechanisms for any part of the entire distributed array regardless

of where its data is located. Local memory is acquired viaNGA_Access() returning

a pointer while remote memory is retrieved viaNGA_Get() filling an already allocated

array buffer. GA has been leveraged in several large computational chemistry codes and

has been shown to scale well.

14

CHAPTER THREE

PREVIOUS WORK

GAiN is similar in many ways to other parallel computation software packages. It attempts

to leverage the best ideas for transparent, parallel processing found in current systems. The

following packages provided insight into how GAiN was to be developed.

3.1 MITMatlab

MITMatlab[24, 33] provides a client-server model for interactive, large-scale scientific

computation. It does so by providing a transparently parallel front-end through the pop-

ular MATLAB[25] numerical package and sends the parallel computations to its Parallel

Problem Server workhorse. Separating the interactive, serial nature of MATLAB from the

parallel computation server allows the user to leverage both of their strengths. This also

allows much larger arrays to be operated over than is allowedby a single compute node.

MITMatlab does not allow parallel programs to run without the bottleneck imposed by the

client-server model because MATLAB is still run serially. Only the server is ever run in

parallel.

3.2 PyTrilinos

Trilinos[23] consists of a suite of related solvers built onestablished libraries such as

PETSc[4, 3, 5], Aztec[44], BLAS[12], LAPACK[1], and othersand strives to make them

more capable, robust and user friendly. PyTrilinos[39] takes this a step further by wrap-

ping selected Trilinos packages in Python. This adds the convenience and capabilities of

Python to many of the Trilinos features, such as its parallelism. PyTrilinos supplements the

capabilities of SciPy[26] and NumPy[32] by providing a highdegree of compatibility with

those packages.

15

3.3 GAMMA: Global Arrays Meets MATLAB

GAMMA[34] provides a MATLAB binding to the Global Arrays toolkit, thus allowing

for larger problem sizes and parallel computation. MATLAB provides an interactive inter-

preter, however to fully utilize GAMMA one must run within a parallel environment such

as provided by MPI and a cluster of compute nodes. GAMMA was shown to scale well

even within an interpreted environment like MATLAB.

3.4 IPython and distarray

IPython[35] provides an enhanced interactive Python shellas well as an architecture for

interactive parallel computing. IPython supports practically all models of parallelism but

more importantly in an interactive way. For instance, a single interactive Python shell could

be controlling a parallel program running on a super computer. This is done by having a

Python engine running on a remote machine which is able to receive Python commands.

distarray[18] is an experimental package for the IPython project. distarray uses IPython’s

architecture as well as MPI extensively in order to look and feel like NumPy’sndarray .

Only the SPMD model of parallel computation is supported, unlike other parallel models

supported directly by IPython. Further, the status of distarray is that of a proof of concept

and not production ready.

3.5 GpuPy

A Graphics Process Unit (GPU) is a powerful parallel processor that is capable of more

floating point calculations per second than a traditional CPU. However, GPUs are more dif-

ficult to program and require other special considerations such as copying data from main

memory to the GPU’s on-board memory in order for it to be processed, then copying the

results back. The GpuPy[14, 13] Python extension package was developed to lessen these

burdens by providing a NumPy-like interface for the GPU. Preliminary results demonstrate

16

considerable speedups for certain single-precision floating point operations.

3.6 pyGA

The Global Arrays toolkit was wrapped in Python for the 3.x series of GA by Robert

Harrison[21]. It was written as a C extension to Python and only wrapped a subset of

the complete GA functionality. It illustrated some important concepts such as the benefits

of integration with NumPy and the difficulty of compiling GA on certain systems.

In pyGA, the local or remote portions of the global arrays were retrieved as NumPy

arrays at which point they could be used as inputs to NumPy functions like the ufuncs.

However, the burden was still on the programmer to understand the SPMD nature of the

program. For example, when accessing the global array as anndarray , the array shape

and dimensions would match that of the local array maintained by the process calling the

access function. Such an implementation is entirely correct, however there was no attempt

to handle slicing at the global level as it is implemented in NumPy. In short, pyGA recog-

nized the benefit of returning portions of the global array wrapped in a NumPy array, but it

did not treat the global arrays as if they were themselves a subclass of thendarray .

17

CHAPTER FOUR

DESIGN

There comes a point at which a single compute node does not have the resources necessary

for executing a given problem. The need for parallel programming and running these pro-

grams on parallel architectures is obvious, however, efficiently programming for a parallel

environment can be a daunting task. One area of research is toautomatically parallelize

otherwise serial programs and to do so with the least amount of user intervention.[7] GAiN

attempts to do this for certain Python programs utilizing the NumPy module. It will be

shown that some NumPy program can be parallelized in a nearlytransparent way with

GAiN and its multidimensional distributed array objectgainarray .

4.1 Supporting Two User Communities

Both NumPy[32, 31] and Global Arrays[30, 29, 17] are well established in their respective

communities. However, as stated in 1, NumPy is inherently serial. Also, the size of its

arrays are limited by the resources of a single compute node.NumPy’s computational

capabilities may be efficient, however parallelizing them using the SPMD paradigm will

allow for larger problem sizes and may also see performance gains. This design attempts

to leverage the substantial work that is Global Arrays in support of large parallel array

computation within the NumPy framework.

Python is known for among other things its ease of use, elegant syntax, and its inter-

active interpreter. Python users would expect these capabilities to remain intact for any

extension written for it. As discussed in Section 3.4, the IPython project is a good exam-

ple of supporting the interactive interpreter and parallelcomputation simultaneously[35].

Users familiar with NumPy would expect its syntax and semantics to remain intact if large

parallel array computation were added to its feature set.

18

High performance computing users are familiar with writingcodes that optimize every

last bit of performance out of the system where they are are being run. Although message-

passing is a useful and widely adopted computation model, Global Arrays users have come

to appreciate the abstraction of a shared-memory interfaceto a distributed memory array.

In either case, users are familiar with the challenges involved in maintaining scalability as

problem sizes increase or as additional hardware is added. Maintaining these codes may be

difficult if they are muddled with FORTRAN and/or C and various message-passing API

calls. If one of these users were to switch to NumPy in order toleverage its strengths, they

would hope to not sacrifice the performance and scalability they once may have enjoyed.

Not all NumPy programs are suitable for parallel execution.If the Python interpreter

is to be used interactively, or if the NumPy program has made assumptions about a single

process environment, there must be a separation between Python running as a single process

and a parallel back-end where the parallel computation is performed. For example, the

program might open a connection to a database. Doing so with multiple processes and in

addition having each process make multiple updates to that database would be disastrous.

Explicit knowledge on the user’s part of the parallel natureof the execution environment

would be needed to mitigate database access.

Mitigating those NumPy programs unsuitable for parallel execution can be handled by

utilizing master/slave parallelism. The master NumPy program could run as usual until

an expression was reached involving againarray . This expression would then be sent

to the slave processes for execution. This strategy cleanlyseparates the serial from the

parallel.

4.2 Global Arrays in Python

Robert Harrison’s work to wrap a subset of Global Arrays functionality in the Python lan-

guage was successful[21]. However, it was our goal to make GAiN a pure Python extension

19

module. Further, there may have been API incompatibilitiesbetween the 3.x release of GA

and the current 4.x release series or the version of the NumPyC-API used. Rather than

leverage the existing pyGA code, it was decided to leverage its best ideas and usectypes

to wrap what was needed from the Global Arrays toolkit.

Even though a compiled extension module generally performsfaster than its pure Python

counterpart, there were a number of benefits to writing at least the first version of GAiN

as pure Python. First and foremost it would require very little to be installed by the end

user. Second, it leverages Python’s strengths such as its readability, maintainability, and the

elimination of the need to compile machine code. It is beyondthe scope of this thesis to

compare the performance ofctypes to a compiled extension, however if the need arose

it would only be a matter of time to write GAiN as a compiled C extension.

4.3 Whether to Subclass ndarray

Both NumPy and GA provide multidimensional arrays and implement element-wise or

matrix operations, as well as linear algebra routines. Although they have a number of

differences, the primary one is that NumPy programs run within a single address space.

When manipulatingndarray s, thendarray s in their entirety are being manipulated in

a serial fashion. With Global Arrays, each process gets a subarray of the distributed array.

When translating from NumPy to Global Arrays, each process must translate NumPy

calls into calls with respect to their local array portions.The first thought would be to sim-

ply have thegainarray subclass thendarray and implement the appropriate methods

by which the subclass could integrate with NumPy. However, there are a few cases where

this would result in unwanted behavior.

One must be careful whether NumPy mechanisms may attempt to allocate the entire

ndarray per process. There are a few ways in whichndarray s are created, either

invoking thendarray constructor directly or one of the many array creation functions.

20

It would be simple enough to replace all of the array creationfunctions and override the

__new__ operator within thendarray subclass to appropriately handle the creation of

ourgainarray . However, the ufuncs present a challenge.

The ndarray methods used by the ufuncs are insufficient to handle the duality re-

quired by ourgainarray . An instance of our subclass both represents the entire array as

well as its local portion, if any. The problem arises in the case of inputs to binary ufuncs.

Take, for example, a binary ufunc such asadd . If a gainarray is input and anndarray

is input, how should this be handled? For maximum computational efficiency, only the

subarray represented by thegainarray should be operated over per process. The shape

of thegainarray is likely broadcastable with the shape of thendarray , however, the

shape of the subarray of thegainarray is certainly not so, not to mention broadcasting

a subarray to be compatible with the other input is illogical. The other input must then be

sliced to match that of the subarray.

The slicing of the otherndarray input to match that of thegainarray ’s subarray

must happen as part of the call to the binary ufunc. NumPy has no mechanism to manip-

ulate the inputs to ufuncs.__array__() and__array_wrap__() only operate on

the output array, if specified. Therefore, the ufuncs must bewrapped with functionality

that handles making anyndarray s compatible with the subarrays of anygainarray s

passed as arguments to ufuncs. Similarly, if twogainarray s are used as inputs to a bi-

nary ufunc, their subarrays relevant to the calculation at hand must be made to match. This

is just one example where NumPy must be made to understand thedistributed nature of the

gainarray . Subclassingndarray in this case would not provide sufficient means to

handle the distributedgainarray .

The last case against subclassingndarray is when the NumPy program is to be run

in the master/slave configuration. In this configuration, when againarray is created,

it must communicate to the slaves to also create thegainarray within their memory

21

space. If thegainarray subclassed thendarray then it would override__new__() .

To initialize the data members that are defined by thendarray.__new__() , that class

method would also need to be called. That call would attempt to allocate the memory for

thendarray . This would cause the distributedgainarray to be allocated both within

the slaves as well as entirely on the master. There is no way toinitialize thendarray

members without allocating the array’s memory. Subclassing thendarray would make it

impossible to run GAiN in the master/slave configuration.

Rather than subclass thendarray , then, we must create anndarray work-alike re-

placement. Besides being impractical, such as in the master/slave configuration, there is

no benefit to subclassing thendarray since the majority ofndarray attributes would

need to be replaced with GAiN-specific, distributed functionality. Further, not subclass-

ing thendarray ensures no memory will ever be allocated by any NumPy mechanisms

inadvertently.

4.3.1 Utilizing both NumPy and Global Arrays

Regardless of whethergainarray subclassesndarray , memory will be allocated by

Global Arrays. This memory must be made available to NumPy asndarray s. There

are a few ways of doing this, either from within NumPy’s C-APIor from within Python.

ndarray s hold a pointer to a memory location representing the beginning of the under-

lying C array. Using a pointer obtained from eitherNGA_Access() or NGA_Get() is

relatively straightforward. Recall from 3.6 that pyGA usedNumPy’s C-API in order to cre-

atendarray s in this way. However, NumPy does not expose those same arraycreation

functions from within Python. Instead, a Python buffer object must be created first and

then used as input to a specialndarray creation function. However, creating buffer ob-

jects from C pointers is only possible from Python’s C-API. Thankfully, Python’sctypes

module exposes Python’s C-API, so we can use it to create our buffer object which can

22

then be passed to NumPy[22]. See the code sample in Appendix A.2 for details.

There is a fair bit of overlap between NumPy and Global Arraysfunctionality including

certain element-wise operations and linear algebra support. In the cases where overlap

occurs, we need to choose which library should implement thefunctionality. Using Global

Arrays directly might be faster since there would be no overhead in creating thendarray s

from the Global Arrays data pointers. However, it was noticed in a set of test programs

that the same program written using GA directly versus GAiN produced slightly different

results due to different round-off error between the two implementations. Even though

there are differences in the results, it might still be beneficial to use the Global Arrays

methods if there is a significant speedup, such as with the matrix multiplication algorithm

used by GA[27].

4.3.2 Slicing

GAiN would be incomplete if it didn’t handle the slicing ofgainarray s. NumPy extends

the functionality of slicing in a number of ways, as noted earlier, to include single-element

access, subarray slices, and indexing using other arrays. Each are valuable in their own

right. All types of slicing operations utilize the same overloaded operator__getitem__

and so are dispatched to appropriate handlers based on the arguments to this function.

Single-element access is the easiest to implement. Given a single index in each dimen-

sion, the value can simply be retrieved using GA’sNGA_Get() without regard to where

the actual data resides. This value can be directly returned.

Simple Slicing

Subarray slices, also known as “simple slicing” in NumPy, represent the more traditional

form of slicing. The slice itself can be a single Python int, slice, Ellipsis, or None object or

a sequence thereof. NumPy’s C-API provides a convenient collection of routines for cal-

culating the number of dimensions, shape, strides, and memory offset of a newndarray

23

given an existingndarray and the slicing argument. These functions are not exposed to

Python, but their functionality is vital for maintaining the global view of the distributed

arrays. This and other functionality found in NumPy’s C-APIbut not in NumPy’s Python

interface must be ported to Python. Perhaps in the future these functions will be exposed

to Python directly without having to create and slice anndarray to get the same results.

Recall that simple slicing in NumPy produces newndarray s that are views of their

sliced originals. However, these views are still typed asndarray s. Slicing in GAiN pro-

duces similar results. Slicing againarray will produce a newgainarray that shares

its memory with its original. The resultinggainarray will have its ownndim , shape ,

andstrides arguments and itsbase attribute will refer to the originalgainarray .

Global Arrays maintains information on both the global properties of an array as well

as its distribution across processes. Therefore, there will be onegainarray instance per

process containing both information about the global arrayas well as that process’s local

distribution. Thegainarray must behave as if it were anndarray , so it’s attributes

shape , strides , ndim , etc. will refer to the global representation of the array. When

a slicing operation occurs, the local distribution information does not change. It is only

when thegainarray is to be used in an expression that thendarray wrapper is pro-

duced. At that time, each process determines whether it holds a local portion of the sliced

gainarray , returning immediately if they don’t.

Slice Arithmetic

As slices are taken from thegainarray the underlying memory remains unchanged but

the view onto that memory changes. If a view of againarray must be converted into

an ndarray , we must be able to reconstruct anndarray with the correct shape and

data elements. Therefore, as slices are taken, the slicing operand is cached within the

gainarray . If a slice of a view is taken, the cached operand is further sliced to reflect

24

the new view which we callslice arithmetic.

4.4 Master/Slave Parallelism

It was mentioned in the opening of this chapter that master/slave parallelism was needed for

those NumPy programs unsuitable for parallel execution as well as for supporting interac-

tive parallel programs via the interactive Python interpreter. The original program assumes

the role of the master while the parallel portions of the program are sent to separate, par-

allel slaves. Unless the data being operated on already exists on the slaves, both data and

the function to operate on the data must be transmitted. To accomplish this parallelism, we

need to use the process management features of the MPI-2 specification as well as a custom

pickle subclass.

4.4.1 Using MPI-2 and Spawn

MPI-2 added dynamic process management to the MPI specification. The function we

will use is MPI_Spawn which allows one group of processes to create another group of

processes. In our case the first group of processes will consist of the single master pro-

cess. The number of slaves to spawn will be determined eitheras a parameter from the

master’s command-line invocation or from an external configuration file. mpi4py has an

implementation of the spawn function.

4.4.2 Serializing Python Functions

Telling the slaves what actions to perform could be accomplished by establishing a com-

mand language. The commands would be sent from the master andthen interpreted by the

slaves. The language would only consist of a certain set of commands, likely pertaining

to either NumPy or GA operations. This sort of command language might be needed for

languages like C or FORTRAN that are not interpreted, however, since Python is already

an interpreted language it is itself the command language that we need. All we need, then,

25

is a means of sending arbitrary objects and functions as our commands.

mpi4py makes this communication simpler since anypickle able object can be com-

municated. Thepickle operation is usually performed automatically bympi4py , if

needed. Unfortunately, as stated earlier, a function’s byte code is not pickled but rather its

name only. If we assumed that pickling functions by name was acceptable, requiring the

slaves to run the same versions of the Python libraries (and the Python interpreter itself,)

then we might be okay. However, the NumPy array creation function fromfunction

accepts any user-defined function as an argument. That user-defined function would need

to be communicated to the slaves or elsefromfunction would need to create the ar-

ray on the master before sending it to the slaves. Further, that user-defined function might

come from an interactive Python session as opposed to being written as part of a module

that could be imported by a slave.

pickle may not be sufficient for our function pickling needs, however themarshal

module is able to serialize Python byte code. Unfortunately, marshal does not share other

desirable features ofpickle such as tracking objects that have already been serialized so

they won’t be serialized again and support of more than just the built-in Python types.

Our solution was to subclass thepickle machinery to add function marshalling.

Functions are like any other object in Python whose attributes can be inspected at run-

time. The important attributes of Python’sFunctionType include func_globals ,

func_code , and func_defaults which represent the objects within the function’s

scope, the byte code of the function, and the default arguments to the function, respec-

tively. All three of those attributes are necessary and sufficient to reconstruct a function.

4.4.3 Communication Protocol

The communication between the master and the slaves consists of two messages. The first

message is a one-to-many message from the master to the slaves consisting of the function

26

to execute and the functions arguments. The second message is a many-to-one message

from the slaves to the master and consists of the function’s returned values. If the slave

encounters an exception (most likely some sort of evaluation error), then the message will

contain the exception instance generated by the slave. Slaves may fail independently, so

there may be one or more exceptions within the message. To be correct, the entire message

must be scanned for exceptions.

Pickling a function for the master/slave configuration is not perfect, however. If the

function being serialized is not a pure function, meaning its arguments are passed by ref-

erence and manipulated within the function but not returned, then the slaves will not com-

municate those arguments back to the master. Only the function’s returned arguments will

be communicated back to the master.

4.5 Implicit versus Explicit Parallelism

GAiN will ultimately operate as a stand-alone SPMD program (i.e. explicitly parallel) or

as a master controlling an SPMD slave program (i.e. implicitly parallel.) The factor that

decides which mode GAiN will be run under is whether GAiN is imported within a single

process. The MPI environment can be queried to determine howmany processes were

requested for the current process. If only one process was requested, GAiN will run in

the master/slave configuration. The user need not alter how GAiN is imported within their

programs since GAiN will determine at run-time which mode isdesired.

Whether GAiN is running explicitly or implicitly parallel,both modes will share a sig-

nificant amount of code. For most of GAiN’s functionality, the master simply needs to

communicate one of its own functions to the slaves. Rather than implement two versions

of GAiN that are practically identical, GAiN will be implemented as if it were only explic-

itly an SPMD program. Using Python’s function decorators, GAiN’s functionality will be

altered at import-time with proxied versions of its functions.

27

GAiN NumPy
gainint16 int16
gainint32 int32
gainint64 int64
gainfloat32 float32
gainfloat64 float64

Table 4.1: GAiN Data Types. These are the data types supported by GAiN and their NumPy
equivalents.

4.6 Using GAiN

Some of the goals of GAiN are to improve performance over NumPy and to require lit-

tle change to existing NumPy programs in order to use GAiN. For some NumPy pro-

grams, the only change necessary is to changefrom numpy to from gain or to change

import numpy to import gain as numpy . Some programs may require specify-

ing thegain data types instead of the NumPy ones to functions taking thedtype attribute.

Table 4.1 shows thegain types and their NumPy equivalent.

28

CHAPTER FIVE

IMPLEMENTATION

The design discussed previously and its evaluation programs were implemented in approx-

imately 10000 lines of purely Python code. The C versions of the evaluation programs are

the only exceptions to the pure Python target. The majority of the design was implemented

without undue effort. The exceptional cases are listed in more detail in the following sec-

tions.

5.1 Accessing Global Arrays in Python

pyGA[21] recognized that wrapping memory returned from Global Arrays within a NumPy

ndarray was the appropriate course of action. The pyGA distributionincludes some sam-

ple code demonstrating calling NumPy ufuncs onndarray -wrapped GA memory. This

is important functionality, however, rather than approachthe problem from the perspective

of having Global Arrays use NumPy, GAiN synergizes Global Arrays and NumPy.

Rather than continue or adapt pyGA to the needs of GAiN, it wasthis author’s goal to

make GAiN a pure Python extension module. Even though a compiled extension module

should perform faster than its pure Python counterpart, there were a number of benefits to

writing at least the first version of GAiN in pure Python. First and foremost it would require

very little to be installed by the end user. Pure Python modules are by far the simplest to

install. Second, it leverages Python’s strengths such as its readability, maintainability, and

the elimination of the need to compile machine code. It is beyond the scope of this thesis to

compare the performance ofctypes to a compiled extension, however if the need arose

it would only be a matter of time to write GAiN as a compiled C extension.

As with pyGA, only a subset of the complete GA API was ported. The subset of GA

functionality wrapped usingctypes and bundled with GAiN could be used independently

29

MA_init GA_Elem_minimum NGA_Release
NGA_Access GA_Fill NGA_Release_update

GA_Add_constant NGA_Get GA_Scale
GA_Compare_distr GA_Initialize NGA_Scatter
GA_Copy NGA_Inquire NGA_Select_elem

NGA_Create NGA_Locate_region NGA_Strided_get
GA_Destroy GA_Nnodes NGA_Strided_put

NGA_Distribution GA_Nodeid GA_Sync
GA_Duplicate NGA_Put GA_Terminate

Table 5.1: Subset of Global Arrays C-API wrapped with Python’s ctypes, in alphabetical
order.

of GAiN and may serve as the beginnings of a complete GA implementation for Python.

Functions were only wrapped on an as-needed basis until the subset in Table 5.1 was

established. Historically, GA only supported two-dimensional arrays. The two different

function prefixesGA_andNGA_are a result of maintaining backwards compatibility with

the original API when the move was made to supporting arbitrarily-dimensioned arrays.

Since GAiN’s wrapper interface for GA need not be backwards compatible, the prefixes

were stripped from the function names and the remaining partof the function name was

made lowercase. This follows Python naming conventions. All wrapped GA functionality

is now found in the modulega .

Althoughctypes makes it possible to call C functions directly from within Python, it

is not as simple as passing Python objects to C functions. Theonly native Python objects

that are directly supported arestr andint . Most GA function calls require one or more

integer arrays. The GA functions that move data also requirepointers to data arrays. Rather

than force the caller of the GA functions to use thectypes C data types for constructing

function arguments, Python sequences are converted internally to the appropriate types. In

an effort to minimize the overhead of Python-to-C type coercion, in functions returning

values thectypes types are returned rather than converted back into Python sequences.

30

5.2 gainarray.flat

The Performance Python[38] test program to be discussed in 6.2 makes heavy use of

the flat attribute on thegainarray . For anndarray , this attribute returns a 1-

dimensional view of the given array as aniterator without copying data. This is no

problem for thendarray where all data for the array lives in a single address space. In

that case, only a pointer to the beginning of the original array must be maintained as well

as the strides necessary to move between adjacent array elements. The flat iterator may be

passed to NumPy functions just like any otherndarray .

For gainarray s, the problem is much more difficult. Though it would be possible

to create aniterator for a gainarray , passing one to one of GAiN’s ufuncs would

be problematic. GAiN’s ufuncs expect to operate on their local piece of the input array.

An iterator argument would need to be split appropriately among the manyprocesses.

Unfortunately, the memory that each process maintains is not 1-dimensionally contigu-

ous. Instead, the low and high points defined by a subarray mayspan across dimensions

discontiguously.

It was attempted toflatten() the gainarray rather than use theiterator

approach, with just as poor results. Recall from the design that reshaping an array requires

a copy of the data since no such operation is implemented by Global Arrays to redistribute

or reshape an array. Each process must thenscatter() s its portion of the original array

into the flattened copy. This approach caused egregious communications overhead.

Recognizing thatflat was used such that thedot function would operate element-

wise on two 2-dimensional inputs, the test program was changed to instead call the appro-

priatemultiply andsum functions. To be fair, this change was also made to the original

laplace.py test program.

31

5.3 Implicit versus Explicit Parallelism

When running explicitly parallel, allN processes run the same program and therefore func-

tion calls behave as for a serial program. When running implicitly parallel, the functions

are sent to the slaves but the result of executing the function must be reduced down to as

single result to the master. If the functions that the implicitly parallelgainarray proxies

return large objects, such as anndarray , then it would be wasteful to sendN identical

results back to the master only to haveN − 1 discarded. As a solution, the primary slave

is the only slave that communicates actual results back to the master. The remaining slaves

only communicate Python’sNone or an exception object, if one were to be raised by the

function. The protocol initially designed had all slaves communicating their results back to

the master, which was unnecessary.

32

CHAPTER SIX

EVALUATION

The success of GAiN hinges on its ability to enable distributed array processing in NumPy,

to transparently enable this processing, and most importantly to efficiently accomplish

those goals. This chapter describes two benchmark codes developed to test GAiN and

reports on their performance. The programs were run on a homogeneous cluster of dual

3.2GHz P4 processors, 1GB main memory, using 1GBit Ethernet, TCP/IP socket commu-

nication, running Ubuntu 8.10. GAiN utilized 8 nodes of the cluster while NumPy and

others ran serially on a single node (as they must.)

6.1 distmap

The idea for the distmap program originated from Ben Eitzen’s work on transparently using

GPUs within NumPy[13]. The program randomly distributes points on anN×N grid, then

calculates the distance from any grid cell to its nearest point. When the results map is writ-

ten as a gray image, it produces a pattern similar to soap bubbles. This algorithm is used,

for example, as part of the level set method[40] and it is useful for demonstrating relative

performance of the algorithm when implemented in various ways. In GpuPy, two versions

of the distmap program were written, one using GpuPy and the other using NumPy. Simi-

larly for GAiN, there is a NumPy and a GAiN version of the distmap program.

For the first test, anN × N grid size was used withN varying from 1000 to 5000 at

intervals of 1000. The results appear in Figure 6.1 below.

GAiN was not only able to scale better than NumPy, it also was able to run a larger

problem size than NumPy. AtN = 8000, NumPy was unable to complete its task due to

memory swap thrashing. Even if it weren’t for the lack of memory, GAiN performed much

faster.

33

6.2 Performance Python

Performance Python[38] “perfpy” was conceived to demonstrate the ways Python can be

used for high performance computing. It evaluates NumPy andthe relative performance

of various Python extensions to NumPy including SciPy’s weave (blitz and inline)[43],

Pyrex[16], and f2py[36]. It represents an important benchmark by which any additional

high performance numerical Python module should be measured. The original program

laplace.py was modified by importinggain instead ofnumpy and then stripped of the

additional test codes so that onlygain remained. The latter modification makes no impact

on the timing results since all tests are run independently but was necessary becausegain

is run on multiple processes while the original test suite isserial. Recall from Chapter 5, the

original code was also modified to usemultiply andsum instead of theflat attribute

0.1

1

10

100

1000
2000

5000

R
u

n
n

in
g

T
im

e
(m

in
u

te
s)

N

Distance Map Running Times for N x N Grid

NumPy
GAiN

Figure 6.1: Distance Map Running Times forN ×N Grid. This plot compares the running
times of the GAiN and NumPy implementations of the distance map test. GAiN both scales
better than NumPy and exceeds beyond the limits of NumPy’s largets problem size.

34

1

10

100

1000

1000
2000

5000

R
u

n
n

in
g

T
im

e
(s

ec
o

n
d

s)

N

Performance Python Running Times for N x N Grid

GAiN-1
GAiN-2
GAiN-4
GAiN-8

GAiN-16
pyrex

fortran
fastinline

inline
blitz

NumPy

Figure 6.2: Performance Python Running Times forN × N Grid. This plot compares the
running times of GAiN and various NumPy or Python extensions. GAiN was run using 1,
2, 4, 8, and 16 nodes. GAiN scales only as well as the best compiled implementation but
does extend beyond the system resource limitations.

and thedot function. The results of running with the grid lengthN varying from 1000 to

5000 at intervals of 1000 appear in Figure 6.2. The data for Figure 6.2 can be found in

Table 6.1.

Using 8 or more nodes, GAiN scaled better than NumPy and its related just-in-time

compiled or pre-compiled codes. All codes appeared to scaleuniformly with each other.

GAiN was able to run much larger sizes ofN while the other tests thrashed due to a lack of

memory. The perfpy code represents in general a more realistic use case for GAiN whereas

the distmap program is idealized with very little communication.

35

Length GAiN-1 GAiN-2 GAiN-4 GAiN-8 GAiN-16 pyrex fortran fastinline inline blitz NumPy
1000 38 32 27 29 31 8 8 8 10 32 51
2000 144 100 66 55 47 44 45 45 54 178 223
3000 317 211 130 94 69 103 106 104 125 398 459
4000 555 366 217 149 98 177 183 180 217 684 841
5000 ? 570 326 217 135 267 276 270 325 997 ?
6000 ? ? 468 300 181 372 ? ? ? ? ?
7000 ? ? 644 397 233 493 ? ? ? ? ?
8000 ? ? ? 511 295 ? ? ? ? ? ?
9000 ? ? ? 660 364 ? ? ? ? ? ?
10000 ? ? ? 800 445 ? ? ? ? ? ?

Table 6.1: Performance Python Results. GAiN was run using 1,2, 4, 8, and 16 nodes. Times are in seconds. Missing values are
represented by a “?” and indicate thrashing during the test.

3
6

6.3 Implicit versus Explicit Parallelism

Using 8 processors, in the master/slave configuration the distance map program took ap-

proximately 15 seconds for a small test case while the SPMD configuration took approx-

imately 5 seconds. As expected, GAiN runs slower when implicitly parallel in the mas-

ter/slave configuration than if it is run explicitly in SPMD mode. Profiling results show

that the majority of the time is spent communicating betweenthe master and the slaves.

Even though an effort was made to reduce the number and size ofmessages communi-

cated, it was not enough. Other communication protocols between the master and slaves

must be devised or the current protocol must be optimized.

37

CHAPTER SEVEN

CONCLUSIONS

GAiN succeeds in its ability to grow problem sizes beyond a single compute node, how-

ever its performance in all cases does not scale as anticipated. In the case of the distance

map test, scalability across nodes was achieved. The performance of the perfpy code leaves

room for improvement. As described in 4.6 GAiN allows certain classes of existing NumPy

programs to run using GAiN with sometimes as little effort aschanging the import state-

ment, immediately taking advantage of the ability to run in acluster environment. Further,

GAiN seamlessly allows parallel codes to be developed interactively. Once a smaller-sized

program has been developed and tested on a desktop computer,it can then be run on a

cluster with very little effort. GAiN provides the groundwork for large distributed multidi-

mensional arrays within NumPy.

38

CHAPTER EIGHT

FUTURE WORK

GAiN is not a complete implementation of the NumPy API nor does it represent the only

way in which distributed arrays can be achieved for NumPy. The following sections de-

scribe some of NumPy’s important missing features within GAiN as well as discusses al-

ternative implementations for GAiN that would be worth exploring further.

8.1 Missing Functionality

GAiN successfully implements all of the ufuncs, simple slicing, simple slice assignment,

and many of the array creation functions. This is only a subset of the NumPy API and

really a small fraction of NumPy’s capabilities, many of which could benefit from similar

auto-parallelizing treatment. Notable missing features include fancy slicing, binary ufunc

special methods such as reduce and accumulate, and linear algebra. GAiN is certainly not

complete. Unlike GpuPy, missing functionality cannot default to a built-in NumPy routine.

This is due to thegainarray not subclassing thendarray . NumPy simply would not

know how to handle this type. Unless NumPy’s ability to integrate with classes that do not

subclass thendarray is extended to support distributed arrays they will continue to need

to exist as work-alike replacements to NumPy.

8.2 Linearization of the Underlying Multidimensional Global Array

The Global Arrays that make up the internals of thegainarray are multidimensional.

This differs from NumPy, where the arrays are always represented in memory as contigu-

ous memory segments. It was noted in a comparison of CoArray FORTRAN (CAF) and

Unified Parallel C (UPC) [8] that UPC suffered from performance problems due to its lin-

earization of multidimensional arrays, its synchronization model, and its communication

39

efficiency for strided data, among other issues. Considering the performance penalties as-

sociated with linearizing multidimensional arrays withinUPC, it is still worth exploring

whether GAiN would benefit from this one-dimensional approach since NumPy has used

this model successfully since its inception. Global Arraysalready exposes a 64-bit inter-

face to allow for the large one-dimensional arrays that would be required if this design were

attempted. Unfortunately, it would require a rewrite of much of GAiN since GAiN assumes

the multidimensional nature of the underlying Global Arrays data.

8.3 C Implementation

Python is inherently slower than its C equivalent due to its interpreted nature. Writing

the first version of GAiN in pure Python was easy for both development and accessibility

for end-users, however it is likely a cause of some of the lesssignificant performance

problems. Since GAiN is intended for use in high performancecomputing situations, it

would be possible to implement it as a C extension to further increase its performance.

40

BIBLIOGRAPHY

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK: A portable linear algebra
library for high-performance computers. LAPACK Working Note 20, Department of
Computer Science, University of Tennessee, Knoxville, Knoxville, TN 37996, USA,
May 1990.

[2] David Ascher, Paul F. Dubois, Konrad Hinsen, Jim Hugunin, and Travis Oliphant.
Numerical python. http://numpy.scipy.org/numpydoc/numdoc.htm ,
September 2001.

[3] Satish Balay, Kris Buschelman, Victor Eijkhout, William D. Gropp, Dinesh Kaushik,
Matthew G. Knepley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang.
PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne Na-
tional Laboratory, 2004.

[4] Satish Balay, Kris Buschelman, William D. Gropp, DineshKaushik, Matthew G. Kne-
pley, Lois Curfman McInnes, Barry F. Smith, and Hong Zhang. PETSc Web page,
2001. http://www.mcs.anl.gov/petsc.

[5] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient
management of parallelism in object oriented numerical software libraries. In E. Arge,
A. M. Bruaset, and H. P. Langtangen, editors,Modern Software Tools in Scientific
Computing, pages 163–202. Birkhäuser Press, 1997.

[6] Duncan Booth. Integrating python, c and c++. http://www.
suttoncourtenay.org.uk/duncan/accu/integratingpytho n.
html , 2003.

[7] Rajkumar Buyya.High Performance Cluster Computing: Architectures and Systems,
Vol. 1. Prentice Hall PTR, 1 edition, May 1999.

[8] Cristian Coarfa, Yuri Dotsenko, John Mellor-Crummey, François Cantonnet, Tarek
El-Ghazawi, Ashrujit Mohanti, Yiyi Yao, and Daniel Chavarrı́a-Miranda. An evalu-
ation of global address space languages: co-array fortran and unified parallel c. In
PPoPP ’05: Proceedings of the tenth ACM SIGPLAN symposium onPrinciples and
practice of parallel programming, pages 36–47, New York, NY, USA, 2005. ACM.

[9] Lisandro Dalcin, Rodrigo Paz, and Mario Storti. Mpi for python. Journal of Parallel
and Distributed Computing, 2005.

[10] Lisandro Dalcin, Rodrigo Paz, and Mario Storti. Mpi forpython docu-
mentation. svncohttp://mpi4py.scipy.org/svn/mpi4py/mpi4py/
trunkmpi4py , 2007.

41

[11] Lisandro Dalcin, Rodrigo Paz, Mario Storti, and Jorge D’Elia. Mpi for python: Per-
formance improvements and mpi-2 extensions.Journal of Parallel and Distributed
Computing, 2007.

[12] J. Dongarra. Basic linear algebra subprograms technical forum standard.Interna-
tional Journal of High Performance Applications and Supercomputing, 16(2):1–111.

[13] Benjamin Eitzen. Gpupy: Efficiently using a gpu with python. Master’s thesis, Wash-
ington State University Tricities, Richland, WA, August 2007.

[14] Benjamin Eitzen and Robert R. Lewis. Gpupy: Transparently and efficiently using a
gpu for numerical computation in python.in preparation, 2009.

[15] Dave Abrahams et al. Boost.python.http://www.boost.org/doc/libs/1_
38_0/libs/python/doc/index.html .

[16] G. Ewing. Pyrex, a language for writing python extension modules.http://www.
cosc.canterbury.ac.nz/greg.ewing/python/Pyrex , 2008.

[17] Global arrays webpage.http://www.emsl.pnl.gov/docs/global/ .

[18] Brian Granger. Ipython distributed arrays.https://code.launchpad.net/

˜ ipython-dev/ipython/ipythondistarray , July 2008.

[19] William Gropp, Ewing Lusk, and Anthony Skjellum.Using MPI: Portable Paral-
lel Programming with the Message-Passing Interface secondedition. MIT Press,
November 1999.

[20] William Gropp, Ewing Lusk, and Rajeev Thakur.Using MPI-2: Advanced Features
of the Message-Passing Interface. MIT Press, 1999.

[21] Robert J Harrison. Global arrays python interface 1.0.http://www.emsl.pnl.
gov/docs/global/pyGA/pyGA.html .

[22] Mark Helsep and Travis Oliphant. Numpy array from ctypes pointer object?
http://projects.scipy.org/pipermail/numpy-discussio n/
2006-July/009438.html , July 2006.

[23] Michael Heroux, Roscoe Bartlett, Vicki Howle Robert Hoekstra, Jonathan Hu,
Tamara Kolda, Richard Lehoucq, Kevin Long, Roger Pawlowski, Eric Phipps, An-
drew Salinger, Heidi Thornquist, Ray Tuminaro, James Willenbring, and Alan
Williams. An Overview of Trilinos. Technical Report SAND2003-2927, Sandia Na-
tional Laboratories, 2003.

[24] Parry Husbands and Charles Lee Isbell Jr. The parallel problems server: A client-
server model for interactive large scale scientific computation. In Palma et al. [33],
pages 156–169.

42

[25] William Palm III. A Concise Introduction to Matlab. McGraw-Hill, 1st edition,
October 2007.

[26] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source scientific tools
for Python, 2001–.

[27] Manojkumar Krishnan and Jarek Nieplocha. A matrix multiplication algorithm suit-
able for clusters and scalable shared memory systems. Proceedings of IEEE Interna-
tional Conference on Parallel and Distributed Processing Symposium, 2004.

[28] Fredrik Lundh.Python Standard Library. O’Reilly Media, Inc., May 2001.

[29] Jarek Nieplocha, Manojkumar Krishnan, Bruce Palmer, Vinod Tipparaju, and Jialin
Ju. The global arrays user’s manual, 2006.

[30] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju, Manojkumar Krishnan, Harold
Trease, and Edo Apra. Advances, applications and performance of the global arrays
shared memory programming toolkit.International Journal of High Performance
Computing Applications, 20(2):203–231, 2006.

[31] Travis E. Oliphant. Guide to numpy.http://www.numpy.org , December 2006.

[32] Travis E. Oliphant. Python for scientific computing.Computing in Science and Engg.,
9(3):10–20, 2007.

[33] José M. Laginha M. Palma, Jack Dongarra, and Vicente Hernández, editors.Vector
and Parallel Processing - VECPAR ’98, Third International Conference, Porto, Por-
tugal, June 21-23, 1998, Selected Papers and Invited Talks, volume 1573 ofLecture
Notes in Computer Science. Springer, 1999.

[34] Rajkiran Panuganti, Muthu Manikandan Baskaran, DavidE. Hudak, Ashok Krishna-
murthy, Jarek Nieplocha, Atanas Rountev, and P. Sadayappan. Gamma: Global arrays
meets matlab. ftp://ftp.cse.ohio-state.edu/pub/tech-report/
2006/TR15.pdf .

[35] Fernando Perez and Brian E. Granger. Ipython: A system for interactive scientific
computing.Computing in Science and Engg., 9(3):21–29, 2007.

[36] Pearu Peterson. F2py users guide and reference manual.http://cens.ioc.ee/
projects/f2py2e/usersguide/f2py_usersguide.pdf , January 2005.

[37] David Mertz PhD. Charming python: Decorators make magic easy. http://
www.ibm.com/developerworks/linux/library/l-cpdecor. html ,
December 2006.

[38] Prabhu Ramachandran. Performance python.http://www.scipy.org/
PerformancePython , May 2008.

43

[39] Marzio Sala, W. F. Spotz, and M. A. Heroux. Pytrilinos: High-performance
distributed-memory solvers for python.ACM Trans. Math. Softw., 34(2):1–33, 2008.

[40] J. A. Sethian.Level Set Methods and Fast Marching Methods: Evolving Interfaces in
Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
(Cambridge ... on Applied and Computational Mathematics). Cambridge University
Press, June 1999.

[41] Rajeev Thakur, Ewing Lusk, and William Gropp. Users guide for romio: A high-
performance, portable mpi-io implementation, May 2004.

[42] TODO. Todo. TODO, TODO TODO.

[43] Mike Trumpis. Weave.http://www.scipy.org/Weave , 2008.

[44] R. S. Tuminaro, M. Heroux, S. A. Hutchinson, and J. N. Shadid. Official aztec user’s
guide: Version 2.1, December 1999.

[45] Guido van Rossum. Extending and embedding the python interpreter. http://
docs.python.org/ext/ext.html , September 2006.

[46] Guido van Rossum. Python 2.6.1 documentation.http://docs.python.org ,
March 2009.

44

APPENDIX

APPENDIX ONE

SOURCE CODE

A.1 Python Function Decorators

1 def enhance(func):
2 def new(* args, ** kwargs):
3 print "I am enhanced"
4 return func(* args, ** kwargs)
5 return new
6
7 def old_style_decoration(a,b,c):
8 return a,b,c
9 old_style_decoration = enhance(old_style_decoration)

10
11 @enhance
12 def new_style_decoration(a,b,c):
13 return a,b,c

46

A.2 Wrapping Global Array Pointers with an ndarray

1 #!/usr/bin/env python
2
3 from ctypes import *
4 import gain.ga as ga
5 import numpy as numpy
6
7 shape = [2,2]
8
9 # create our global array and get its distribution

10 # single processes will hold the entire distribution
11 # e.g. here lo=[0,0] hi=[1,1]
12 g_a = ga.create(ga.C_FLOAT, shape)
13 lo,hi = ga.distribution(g_a)
14 ptr,ld = ga. access(g_a, lo, hi)
15
16 # calculate the size of the local portion of the distribution,
17 # if we have multiple processes
18 diffs = map(lambda x,y: y-x+1, lo, hi)
19 def safe_product(x,y):
20 if x == 0: x = 1
21 if y == 0: y = 1
22 return x* y
23 nelements = reduce(safe_product, diffs)
24
25 # set up the python function that creates buffers,
26 # from ctypes.pythonapi
27 func = pythonapi.PyBuffer_FromReadWriteMemory
28 func.restype = py_object
29
30 # ptr is returned as a c_types pointer to the actual type
31 # of the global array. This differs from the GA C API which
32 # normally returns a void pointer
33 buffer = func(ptr, nelements * sizeof(ptr))
34
35 # create the numpy array, wrapping our global array pointer
36 # note that without specifying a shape, we get a 1-dimensional array
37 a = numpy.frombuffer(buffer, numpy.float32)
38
39 # now return control of the global array memory
40 # should probably get rid of temporary numpy array so that

47

41 # we don’t try to use it later
42 del a
43 ga.release_update(g_a, lo, hi)

48

