DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor Battelle Memorial Institute, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or Battelle Memorial Institute. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY
operated by
BATTELLE
for the
UNITED STATES DEPARTMENT OF ENERGY
under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401; fax: (865) 576-5728; email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161; ph: (800) 553-6847; fax: (703) 605-6900; email: orders@ntis.fedworld.gov; online ordering: http://www.ntis.gov/ordering.htm

This document was printed on recycled paper.

(9/2003)
The Geochemistry of Technetium: A Summary of the Behavior of an Artificial Element in the Natural Environment

JP Icenhower WJ Martin
NP Qafoku JM Zachara

December 2008

Prepared for
the U.S. Department of Energy
under Contract DE-AC05-76RL01830

Pacific Northwest National Laboratory
Richland, Washington 99352
Summary

Interest in the chemistry of technetium has only increased since its discovery in 1937, mainly because of the large and growing inventory of ^{99}Tc generated during fission of ^{235}U, its environmental mobility in oxidizing conditions, and its potential radiotoxicity. For every ton of enriched uranium fuel (3 percent ^{235}U) that is consumed at a typical burn-up rate, nearly 1 kg of ^{99}Tc is generated. Thus, the mass of ^{99}Tc produced since 1993 has nearly quadrupled, and will likely continue to increase if more emphasis is placed on nuclear power to slow the accumulation of atmospheric greenhouse gases. In order to gain a comprehensive understanding of the interaction of ^{99}Tc and the natural environment, we review the sources of ^{99}Tc in the nuclear fuel cycle, its chemical properties, radiochemistry, and biogeochemical behavior. We include an evaluation of the use of rhenium as a chemical analog of technetium, as well as a summary of the redox potential, thermodynamics, sorption, colloidal behavior, and interaction of humic substances with technetium, and the potential for reoxidation and remobilization of Tc(IV). What emerges is a more complicated picture of technetium behavior than that of an easily tractable transition of Tc(VII) to Tc(IV) with consequent immobilization. Reducing conditions (+200 to +100 mV E_{h}) are generally thought necessary to cause reduction of Tc(VII) to Tc(IV), but far more important are the presence of reducing agents, such as Fe(II) sorbed onto mineral grains. Catalysis of Tc(VII) by surface-mediated Fe(II) will bring the mobile Tc(VII) species to a lower oxidation state and will form the relatively insoluble Tc(IV)O$_2$·nH$_2$O, but even as a solid, equilibrium concentrations of aqueous technetium are nearly a factor of 20 times above the U. S. Environmental Protection Agency set drinking water standards. However, sequestration of Tc(IV) into Fe(III)-bearing phases, such as goethite or other hydrous oxyhydroxides of iron, may ameliorate concerns over the mobility of technetium. Further, the outcome of many studies on terrestrial and marine sediments that are oxidizing overall indicate that technetium is relatively immobile, because of the formation of oxygen-depleted microenvironments that develop in response to bacteriological activities. The rate of remobilization of technetium from these microenvironments is just beginning to be assessed, but with no firm consensus. Reassessment of the simple models in which technetium is mobilized and immobilized is therefore urged.
Acknowledgments

A number of individuals contributed comments and suggestions to this work, and they are gratefully acknowledged. These include: Matt Marshall, Dawn Wellman, Chris Brown, Ken Krupka, Kate Draper, and Jeff Serne. Any errors, however, are solely the responsibility of the primary author. This work was supported by the U.S. Department of Energy, Environmental Management Office of Engineering and Technology, and the Office of Science.
Acronyms and Abbreviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bq</td>
<td>bequerel</td>
</tr>
<tr>
<td>Ci</td>
<td>curie</td>
</tr>
<tr>
<td>DMRB</td>
<td>dissimilatory metal reducing bacteria</td>
</tr>
<tr>
<td>DWS</td>
<td>drinking water standard</td>
</tr>
<tr>
<td>eV</td>
<td>electron volt</td>
</tr>
<tr>
<td>EDTA</td>
<td>ethylene diamine tetraacetic acid</td>
</tr>
<tr>
<td>EMF</td>
<td>electromotive force</td>
</tr>
<tr>
<td>EPA</td>
<td>U.S. Environmental Protection Agency</td>
</tr>
<tr>
<td>EXAFS</td>
<td>extended x-ray absorption fine structure</td>
</tr>
<tr>
<td>Ga</td>
<td>giga annum (1 billion years)</td>
</tr>
<tr>
<td>HREE</td>
<td>heavy rare earth elements</td>
</tr>
<tr>
<td>K_D</td>
<td>Partition coefficient—mL/g</td>
</tr>
<tr>
<td>MT</td>
<td>metric tonnes</td>
</tr>
<tr>
<td>MWd/MT</td>
<td>megawatt day per metric tonne</td>
</tr>
<tr>
<td>OMCs</td>
<td>outer membrane c-type cytochromes</td>
</tr>
<tr>
<td>RRY</td>
<td>reference reactor year</td>
</tr>
<tr>
<td>SNF</td>
<td>spent nuclear fuel</td>
</tr>
<tr>
<td>SSE</td>
<td>selective solution extractions</td>
</tr>
<tr>
<td>Sv</td>
<td>sievert</td>
</tr>
<tr>
<td>TBP</td>
<td>tributyl phosphate</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>XANES</td>
<td>x-ray absorption near-edge spectroscopy</td>
</tr>
<tr>
<td>XAS</td>
<td>x-ray absorption spectroscopy</td>
</tr>
</tbody>
</table>
Contents

Summary ... iii
Acknowledgments ... v
Acronyms and Abbreviations .. vii
1.0 Introduction ... 1.1
2.0 Sources of Technetium in the Environment ... 2.1
 2.1 Technetium Resulting from Spontaneous Fission of 238U .. 2.1
 2.2 Technetium from Natural Reactors .. 2.1
 2.3 Technetium in Spent Fuel Rods ... 2.2
 2.4 Technetium in Nuclear Waste Awaiting Final Disposition .. 2.3
 2.5 Technetium in Glass Waste Forms ... 2.3
 2.6 Research Isotopes of Technetium .. 2.6
3.0 Chemistry of Element 43 .. 3.1
4.0 Use of Rhenium as a Geochemical Analog of Technetium .. 4.1
5.0 Radiochemistry—the Isotopes and Isomers of Technetium ... 5.1
6.0 Environmental Geochemistry ... 6.1
 6.1 Redox Chemistry .. 6.1
 6.2 Thermodynamics .. 6.4
 6.3 Sorption .. 6.8
 6.4 Colloids .. 6.11
 6.5 Interaction with Humic Substances .. 6.12
7.0 Potential for Remobilization ... 7.1
8.0 Biogeochemistry ... 8.1
 8.1 Microorganisms in the Environment and Bioreduction ... 8.1
 8.2 Reduction by Direct Enzymatic Activity ... 8.2
 8.3 Reduction of Tc(VII) Via Biogenic Iron (II) Catalysis .. 8.4
 8.4 Reduction Coupled with Sulfur Reduction .. 8.5
 8.5 Reduction Coupled with De-nitrification ... 8.6
9.0 Discussion and Recommendations for Future Studies ... 9.1
10.0 References .. 10.1
Figures

3.1 Block Diagram Indicating the Relative Positions of Technetium and Congeners in the Periodic Table

4.1 E_h-pH Diagrams for Technetium and Rhenium

6.1 E_h-pH Diagram for Technetium

8.1 Structural Diagrams of the Active Sites of [FeNi] and [FeFe] Hydrogenase Proteins

8.2 A Cartoon Cross-Section Showing the Inner and Outer Membranes Separated by the Periplasmic Space in a Gram-Negative Bacterial Cell Wall

Tables

3.1 Chemical and Electronic Properties of Technetium and Similar Elements

3.2 List of Cationic Radii of the VI, VII, and VIIIIB Block Elements in Picometers

5.1 A List of the Principle Technetium Isotopes and Isomers, Their Respective Half-Lives, Decay Mechanisms, Energies, and Decay Products

5.2 A List of the Principle Technetium Isotopes Produced by Fission of 235U, Their Percent Yields, and Half-Lives

6.1 Summary of Aeration Status of Soils and Their Correspondence With Biogeochemical Zones

6.2 Values of Standard Enthalpy and Free Energy of Formation and Entropy of the Principle Solids of Tc, Re, and Ru

6.3 Free Energies of Formation of Aqueous Technetium Species and the Perrhenate Anion

6.4 Standard Enthalpies and Free Energies of Formation of Cr, Mo, W, Mn, Tc, Re, Ru, and Os Compounds
1.0 Introduction

The discovery of a new element in by Perrier and Segrè in 1937 (1937a, 1937b) ushered in a new era in chemistry. The new element, which they named technetium, derived from the Greek word “technetos” (τεχνητός) or artificial, was produced synthetically by deuteron activation of a piece of molybdenum metal that had undergone bombardment in the cyclotron in Berkeley. Technetium turned out to be the lightest element (Z = 99) comprising only unstable isotopes, none of which are long-lived enough to be present from the formation of the Earth, and would merely be a chemical curiosity were it not for its environmental impact. Fission of enriched uranium (fuel rods of uranium dioxide that contain approximately 3 percent ^{235}U) produces a number of fission products, including several technetium isotopes. Fissionogenesis favors the heavier isotopes of technetium (Kotegov et al. 1968) with ^{99}Tc having the highest yield (6.06 percent). The other high-yield isotopes of technetium have short half-lives (18 min. to less than 60 s), but ^{99}Tc has a half-life of 2.13×10^5 years, making it the most important technetium isotope in the nuclear fuel cycle (Luykx 1984).

Although most of the ^{99}Tc is sequestered in minute dissolution-resistant metal aggregates in spent fuel rods (Buck et al. 2004), reprocessing the fuel rods results in liberation of technetium, which is carried along in solution with other radioisotopes in the reclamation effort (Colton 1965; Till 1984). When exposed to the atmosphere or any moderately oxidizing environment, technetium is manifested as the pertechnetate anion ($^{99}\text{TcO}_4^-$), which is highly soluble in aqueous solution, meaning that this anion can be found in solution well above the drinking water standard of 900 pCi/L (EPA 2002). In a number of settings where production of atomic weapons or waste from nuclear energy is stored or processed, the accidental or approved release of $^{99}\text{TcO}_4^-$ to the environment has led to widespread contamination of seawater (Brown et al. 1999; Dahlgaard et al. 2004; Keith-Roach and Roos 2004; Lindahl et al. 2003; McCubbin et al. 2006; Morris et al. 2000), rivers (Aarkrog et al. 1997), estuaries (Burke et al. 2006; Burke et al. 2005), groundwater (Brown et al. 2006; Brown et al. 2007; Serne et al. 2004; Serne 2001) and the sediments with which they are associated. Because typical sediments in temperate climates possess an overall negative charge at circum-neutral pH conditions, the pertechnetate anion is electrostatically repelled and is poorly attenuated (Kaplan and Serne 1998; Sheppard and Sheppard 1984; Wildung et al. 1984; Wildung et al. 1974). For these reasons, ^{99}Tc has been used as an excellent tracer of oceanic currents (Aarkrog et al. 1987) and is transported in the subsurface at nearly the same velocity as groundwater (Rudin et al. 1992).

When released to the environment, a number of plants and animals take up ^{99}Tc to an appreciable extent (Bennett and Willey 2003; Bonotto et al. 1985; Brown et al. 1999; Hattink et al. 2000; Hattink and Wolterbeek 2001; Oliver et al. 2006; Thorne 2003) and the biomagnifications of ^{99}Tc in the food chain is an obvious concern. What prevents this radioisotope from being a major pollution threat is that the distribution of ^{99}Tc in the environment, although widespread resulting from atomic weapons testing, is typically at very low concentrations (less than 10^{-10} g Tc/g sediment; Morris et al. 2000). At present, the concentrations of ^{99}Tc, even when biomagnified through the food chain, are such that uptake to humans through consuming contaminated food is not an obvious health risk. For example, Smith et al. (2001) showed that even heavy consumption of marine animals from the Irish sea contributes only 0.24 micro-Sievert(1) (μSv) per year, while average background radiation accounts for 1000 μSv per annum. In addition, the biological half-life of consumed ^{99}Tc is typically short (approximately 60 hours for humans).

1One Sievert (Sv) is equivalent to deposition of 1 J/kg of energy, or 100 rem.
and, coupled with the low-energy beta decay ($E_{\text{max}} = 0.292$ MeV), it is unlikely to pose a significant radiological threat under most conceivable exposure scenarios (EPA 2002). On the other hand, aspiration of 99Tc and resultant accumulation in lung tissue, which has a much longer biological excretion half-life, does present a significant risk. For this exposure pathway, inhalation of dust or vapor tainted with 99Tc could lead to lung cancer and related maladies. Therefore, because of its high mobility, high fission yield in nuclear energy production, long half-life, and moderate radiotoxicity, 99Tc is an element of intense concern for the environment.

Estimates of the quantity of 99Tc that has been produced vary somewhat, but a recent survey indicates that atmospheric nuclear testing has resulted in approximately 100 to 140×10^{12} Bq\(^1\) of 99Tc released, much of which has been deposited and become incorporated in sediments. An additional approximately 1×10^{15} Bq (1 PBq) of 99Tc has been released through reprocessing of spent fuel (Schulte and Scoppa 1987). However, this amount is small in comparison to the stock of 99Tc that is awaiting final disposition. For example, at the Hanford Site, Washington State, nearly 1990 kg of 99Tc (or 1.25 PBq) was produced between 1943 and 1987 (Darab and Smith 1996). A fraction of this technetium inventory has been shipped offsite, co-extracted with uranium oxide product, or released to the environment. The balance, estimated as 1310 ± 220 kg or $22,720 \pm 3820$ Ci, is stored in single- and double-shell tanks. Some of the single-shell tanks are suspected or known to have leaked, and concern persists that technetium may enter the groundwater and eventually reach the Columbia River.

In addition to that which has already been produced, technetium continues to be accumulated in large amounts because of active nuclear power generation. According to Kloosterman (2008), 21 kg of 99Tc (13.2 TBq) are produced annually in a large 1 GWe reactor. His estimated inventory of 99Tc produced in 2007 is 15.1 metric tonnes (MT). In 1994, there were approximately 78 MT of 99Tc. Accordingly, if the 2007 production value is roughly average, then there are approximately 290 MT (182.6 PBq) of 99Tc today. In other words, the inventory of 99Tc has nearly quadrupled between 1994 and 2008 so the specter of technetium pollution will continue to be a source of concern well into the future.

The available data indicate, therefore, that 99Tc contamination is widespread and, in some case, highly concentrated, and is environmentally mobile. Another body of data, however, indicates that the mobility of technetium in the environment may be substantially less than in the scenario sketched out above. In numerous settings, soil scientists, environmental chemists, agronomists and microbiologists have reported substantial retention of technetium in sediments in oxidizing environments that would otherwise be extremely mobile. For example, soil scientists have shown repeatedly, both through laboratory and field tests that the biological uptake of technetium into plants progressively decreases with time (Echevarria et al. 1997; Tagami and Uchida 1997; Tagami and Uchida 1999; Vandecasteele et al. 1989; Vandecasteele et al. 1985). The bioavailability of technetium appears to be related to its oxidation state; as the pertechnetate anion, technetium can be transported from soil to components of the plant, whereas the reduced form of technetium, Tc(IV), is immobile (Yanagisawa and Muramatsu 1995; Yanagisawa et al. 1999). Thus, technetium appears to be immobile, even for settings in which the bulk pH-E_0 conditions are consistent with oxidizing and, therefore, technetium-mobile, conditions. Other investigators have noted the relative immobility, or attenuated mobility, of technetium in vadose zone pore solutions. For example, Bondietti and Francis (1979) first called attention to the possibility that 99Tc migration was slower than thought, mainly because there is evidence for a heterogeneous subsurface environment that

\(^1\)One Becquerel (Bq) = 1 disintegration/second $= 2.7 \times 10^{-11}$ Ci. TBq = terabecquerel (10^{12}); PBq = petabecquerel (10^{15}).
may impose locally reducing conditions, causing a retardation of technetium mobility. In a similar vein, Hu and Smith (2004) and Hu et al. (2008) reported that technetium released during atomic weapons testing behaved less conservatively than expected. In these cases, as well as for those involving soil studies, the importance of microenvironments, in which the local redox state is much different than that surrounding it, is clearly an important consideration that needs to be addressed before overly-conservative models of technetium mobility in the environment are fashioned.

Accordingly, we will discuss the chemistry of technetium in the environment in terms of the controls on its mobility, such as oxidation/reduction potential, solubility, colloid formation, affinity for natural organic matter, the potential of incorporation into dissolution-resistant phases, and biogeochemistry. We preface this review by noting that, in the past, a number of excellent reviews have already been published. For example, Colton (1965) and Peacock (1966) published monographs on technetium, and these were followed by an excellent summary of technetium chemistry in the form of a book chapter in 1968 by Kotegov et al. In 1986, the Commission of the European Communities, Radiation Protection Programme, published a collection of papers on technetium behavior from a special seminar conducted in Cadarache, France (Desmet and Myttenaere 1986). In 1999, Rard and co-investigators published the outstanding review of the chemical thermodynamics of technetium (Rard et al. 1999). A year later, Schwochau (2000) completed a book on the radiopharmaceutical aspects of technetium, which is a response to the explosive growth of using 99mTc for cellular imaging in the human body. However, the discussion of technetium is not limited solely to books; an entire issue of *Health Physics* was dedicated to the behavior of technetium in the environment (Wildung 1989). It is not our intention to merely replicate the information contained in these reviews, but to summarize the salient data, place the data into one easily accessible source, and to update the state of knowledge of technetium behavior in the environment.
2.0 Sources of Technetium in the Environment

2.1 Technetium Resulting from Spontaneous Fission of ^{238}U

Nearly all of the technetium in existence today is the result of either neutron or deuteron activation of molybdenum isotopes or from fission of ^{235}U and ^{239}Pu. Only very small concentrations of “natural” technetium exist in nature and, because of relatively short half-lives compared to the age of the Earth, no primordial technetium is present today. However, small quantities of technetium can be produced by spontaneous fission processes in ^{238}U. Theoretically, the amount of ^{99}Tc that could be produced in secular equilibrium by natural fission events of ^{238}U is given by:

$$Y_{99}N_{238}\lambda_{238f} = N_{99}\lambda_{99}$$

(1)

Where N_{238} and N_{99} represent the number of ^{238}U and ^{99}Tc atoms, respectively; λ_{238f} and λ_{99} are, respectively, the spontaneous fission decay constants of ^{238}U and ^{99}Tc, and Y_{99} is the fission yield of ^{99}Tc, which is approximately 6.03 percent. Therefore, in one kg of pitchblende ore, there should be approximately 2.5×10^{-10} g of Tc (or 10.5 disintegrations per minute). With this as a guide, Kenna and Kuroda (1961) were able to demonstrate the first natural occurrence of technetium in a terrestrial sample. It is interesting to note that this report came nearly 10 years after the technetium spectra were observed in relatively young stars undergoing the S-process outside of our solar system (Merrill 1952).

2.2 Technetium from Natural Reactors

Present day uranium is made up of only approximately 0.72 percent ^{235}U, but in the past, the proportion of ^{235}U to ^{238}U was higher, owing to the relatively shorter half-life of ^{235}U compared to ^{238}U. If the mass, the amount of water present, and certain geometric aspects of a uranium deposit are suitable, if the ratio of ^{235}U to ^{238}U is high, if there are neutron reflectors, like quartz, that bound the deposit, and if the concentrations of neutron absorbers (e.g., boron, lithium, manganese, vanadium, and heavy rare earth elements (HREE) are low, then a nuclear chain reaction can be induced.

With the restrictions that these conditions impose, it is perhaps surprising that any “natural reactors” could have operated. Yet, there has been several localities in which “natural reactors” were known to exist, the most studied of which were the deposits at Oklo, in the central West African country of Gabon (e.g., Brookins 1990; Curtis 1986; Curtis et al. 1989; Gauthier-Lafaye et al. 1996; Janeczek 1999). In all, 15 natural reactors are known to have operated for various durations in the nearly 2 billion-year-old (2.0 Ga) uranium deposits. In total, nearly 730 kg of ^{99}Tc were thought to be produced in the reactors, and today that technetium is represented by ^{99}Ru, the stable daughter of ^{99}Tc. In the Oklo deposits, metallic phases containing ruthenium, rhodium, tellurium, arsenic, sulfur, lead, and palladium are observed and bear resemblance to the metallic “epsilon” phases (ruthenium, rhodium, palladium, molybdenum, and technetium) in spent nuclear fuel (see below). These observations are consistent with a lack of large-scale migration of ^{99}Tc after fission genesis, because most of the ^{99}Ru-bearing “metal aggregates” are within 10 meters of the reactor “core” (Gancarz et al. 1980; Hidaka et al. 1999; Hidaka et al. 1993; Janeczek 1999). The apparent lack of mobility of ^{99}Tc in this setting has led some investigators to conclude that loss of technetium from spent fuel rods disposed in geologic formations will be unimportant, since so little mobility was observed in a deposit of approximately 2.0 Ga. This may be somewhat misleading, however, because the Oklo deposits are bounded by organic-rich sediments that
not only impose a reducing oxidation state on the lithologies, but also provides sorption sites for uranium and other radionuclide elements (Janeczek 1999). The potential for organic matter to immobilize technetium will be discussed more fully below.

2.3 Technetium in Spent Fuel Rods

The greatest source of 99Tc is its artificial production by neutron-induced fission and because the fission yield of 99Tc is 6.06 percent, one ton of 235U-enriched fuel (3 percent enrichment) will produce approximately 1 kg of 99Tc at a typical burn up rate (Chen et al. 2000). Similar estimates were provided by Till (1984). Till estimated the amount 99Tc generation on one reference reactor year (RRY), which is based on irradiation of 40 metric tons of enriched UO$_2$ (3.2 wt% 235U). When “burned” at a rate of 33,000 MWd/MT, (megawatt day per metric tonne) spent fuel still contains 0.84 wt% 235U. Reprocessing the spent fuel and re-irradiation will produce more 99Tc as well as other isotopes of technetium whose half-lives are short. Other isotopes that are fissile will also be produced and some of these will contribute to the production of 99Tc. For example, 233U fission produces 4.8 percent and 239Pu 5.9 percent 99Tc, and fast neutron fission will yield 5.9 percent 99Tc from 239Pu, 6.3 percent from 238U, and 2.7 percent from 232Th. When normalized on the RRY basis, the amount of 99Tc produced is between 11.9 and 14.5 Ci/MT, depending on the type of reactor. Reprocessing of spent uranium fuel rods to recover 235U, 239Pu, and other fissile elements is the chief means by which technetium becomes part of the waste stream.

Without human intervention, technetium in spent nuclear fuel (SNF) is immobilized in metallic phases that form in void spaces within fuel rods (Kleykamp 1985). These small, metallic aggregates, known as “epsilon phases” (or ε-phases; also known as “white phases”) contain ruthenium, rhodium, platinum, molybdenum, and technetium. Therefore, in order to mobilize technetium, a great deal of uranium dioxide would have to be dissolved to expose the ε-phases to aqueous solution (Buck et al. 2004). Although there are no specific data on the rate of aqueous dissolution of ε-phases, dissolution experiments on radionuclide-bearing metallic waste forms indicate that release of technetium is slow (Johnson et al. 2002) and, therefore, technetium in this manifestation constitutes a minor source. On the other hand, use of chelating agents to separate metals during reprocessing of SNF or to isolate plutonium produced in irradiated uranium targets for atomic weapons production typically results in soluble forms of technetium (Colton 1965; Lieser and Bauscher 1987). For example, technetium is solubilized during the plutonium and uranium recovery and extraction (PUREX) process, one of the main procedures for reclaiming uranium and plutonium. Spent fuel is dissolved in concentrated nitric acid and then tributyl phosphate (TBP) is added to complex uranium and plutonium. Some technetium follows uranyl nitrate as HTcO$_4$ through the extraction process and is converted to Tc$_2$O$_7$ during denitration and calcining. About 20 percent of technetium remains in the separated uranium fraction and approximately 80 percent follows either fission products waste stream or the plutonium fraction. For every 34 MT of uranium returned for re-enrichment, there will be 100 Ci (approximately 6 kg or 176 ppm technetium). Regulations specify that only 4 ppm 99Tc be present in reprocessed fuel (2.3 Ci or 0.14 kg). Thus, the rest of the 99Tc (or approximately 508 Ci/RRY) must go to the high-level waste stream (Till 1984).

Dissolution of uranium and fluorination to produce U(VI)F$_6$ also produces fluoride complexes of technetium, such as Tc(VI)F$_6$ and Tc(VII)O$_7$F$_4$, with the former more abundant than the latter. Although these are potentially fugitive species because of their volatility, most of the contamination caused by technetium fluorides is because of accidental release into water, where it hydrolyzes and disproportionates
into Tc(VII) and Tc(IV). In localities where gaseous diffusion operations occurred, such as Paducah, Kentucky, and Oak Ridge, Tennessee, nearly 97.5 percent 99Tc is discharged to the environment through aqueous solution and only 2.5 percent by gaseous pathways (Till 1984).

2.4 Technetium in Nuclear Waste Awaiting Final Disposition

In some cases, small quantities of technetium are disposed directly to seawater (such as in Sellafield, United Kingdom, or Le Hague, France), or to engineered storage ponds in river systems (in Mayak, Russia). However, by far, the majority of technetium is stored along with other waste in storage tanks or other retaining culverts excavated in surface sediments, as illustrated in the example of the Hanford Site in Washington State. At Hanford, atomic weapons production necessitated the construction of 177 single- and double-shell underground storage tanks to accommodate the large amount of waste. Clusters of tanks, known as “tank farms”, were built in scattered locations and the earliest ones (from the 1950s) were of the single-shell variety. Unfortunately, nearly one-third of the tanks has leaked or is suspected to have leaked based upon anecdotal and “hard” evidence (Gee et al. 2007). So far, leaks have occurred exclusively in the single-shell farms or from ruptures along associated underground transfer pipes or diversion boxes. In addition, there have been cases of inadvertent overfilling of tanks with consequent loss of waste to surrounding soils. As much as 460 Ci of 99Tc have been released to the underlying sediments resulting from these mishaps with concentrations of greater than 1.5×10^5 mole/L technetium detected in some areas. In addition to this, a series of cribs, trenches, and holding ponds were carved out of the sediments near plutonium production plants and these were filled with aqueous solutions containing technetium and other radionuclide elements. As much as 930 Ci of technetium were intentionally discharged to the vadose zone where, at the time, it was presumed that radionuclide elements would not pose a migration risk. However, because the vadose zone at Hanford is oxidizing, the presumed technetium species is the pertechnetate anion, TcO_4^-, which exhibits high mobility in such settings. Accordingly, there is ample reason to think that technetium-laced waste will rapidly migrate from the vadose zone to the underlying aquifer. Some estimates set a travel time of only 40 to 50 years in the 200 East and 125 to 135 years in the 200 West areas before technetium reaches the Hanford aquifer (Hartman et al. 2004). Already, there is some indication that technetium has already reached groundwater beneath Waste Management Area T. Because the groundwater at the Hanford Site discharges into the nearby Columbia River, a major waterway in the Pacific Northwest, a great deal of environmental harm could result unless intervening remediation strategies are employed.

Another source of technetium pollution occurs through the mishandling of raffinates, which are solutions that were used to clean and decontaminate tools and facilities in uranium-enrichment plants. For example, concentrations as high as 2.2×10^8 pCi/L have been recorded in some raffinates. Mishandling of raffinates may result in pollution of groundwater near such facilities, as demonstrated by high technetium concentrations of 1000 to 3000 pCi/L in Paducah, Kentucky, and Portsmouth, Ohio, gaseous diffusion plants (Liang et al. 1996).

2.5 Technetium in Glass Waste Forms

In the future, a major source of potential technetium release to the environment will be from reaction of low-activity waste glass with groundwater. In the previous section we alluded to the high- and low-activity waste streams resulting from processing of irradiated uranium produced for the purpose of atomic weapons manufacturing. In the case of the Hanford Site in Washington State, nearly 90 percent
by volume of waste will be made up by the low-activity fraction, which contains approximately \(2.4 \times 10^6\) curies of radioactivity, much of this represented by technetium. Current plans call for removing waste that is stored in 177 underground single- and double-shell tanks and converting the low-activity fraction into glass. Approximately 160,000 m\(^3\) of low-activity glass will be encased in metal canisters and will be buried in shallow trenches on site (McGrail et al. 2001). As water percolates through the disposal system over time a small percentage of the canisters will be breached and the glass will react with a prospect that technetium will be released to the subsurface environment. Currently, the data are sparse concerning the mechanism by which technetium would be released from glass.

Part of the problem in understanding technetium release from glass arises because of uncertainties in the speciation of technetium in the glassy environment. Early studies yield apparently contradictory and anti-intuitive data. For example, Freude et al. (in Darab and Smith 1996) conducted square-wave voltammetry (SWV) measurements on technetium-bearing borosilicate glass in order to determine the redox state of technetium in melts produced under reducing or oxidizing conditions. They acquired a redox potential of the melt of \(-250\) mV, consistent with Tc(IV) in the glass, for melts generated in a reducing atmosphere. For glass melted under oxidizing conditions, they found a redox potential of \(-50\) mV. They assigned this redox potential to the presence of Tc(VII) in glass. In contrast, Antonini et al. (1985) found that glasses formed during either reducing or oxidizing conditions contained predominantly Tc(IV), as revealed by x-ray absorption near-edge spectroscopy (XANES) and extended x-ray absorption fine structure (EXAFS) methods. These results are surprising, because it is assumed that under oxidizing conditions, technetium should be in the +7 state. Further mystery surrounds the results of the study on glass generated under reducing conditions; in addition to the presence of Tc(IV), the authors also reported the presence of Tc(0) (i.e., metallic technetium). Darab and Smith (1996) suggested that one potential reason for this apparent contradiction is that the oxidation state of technetium depends strongly on the starting materials used to make the glass.

For example, Darab and Smith (1996) showed that if starting materials contained a modicum of organic materials, like what is expected in real tank waste, then reaction between molten nitrate salts and organics such as ethylene diamine tetraacetic acid (EDTA) yields CO\(_2\), NO\(_x\), CH\(_4\) and even H\(_2\) gases that lower the partial pressure of O\(_2\) in the melter, resulting in a lower oxidation state of the glass. The theme of the importance of starting materials was amplified by a study of Lukens et al. (2004), who showed that by including a small amount of reducing components the resulting glass contained predominantly Tc(IV) in octahedral coordination [i.e., Tc(IV)O\(_6\)] evenly disseminated throughout the glass. Increasing the amount of reducing components or using TcO\(_2\)-2H\(_2\)O in the starting material resulted in solid TcO\(_2\) inclusions within the glass. However, if an oxidized form of technetium was used in the starting materials (e.g., NaTcO\(_4\)(s)) in the absence of reducing components, then the predominate form of technetium in the glass was Tc(VII).

Both the studies of Darab and Smith (1996) and Lukens et al. (2004) were also interested in the volatility of technetium as the starting materials were heated and melted. This is a concern, because a number of Tc(VII) compounds boil at relatively low temperatures: TcO\(_3\)Cl and TcO\(_3\)F boil at temperatures less than 100°C, and Tc\(_2\)O\(_7\) boils at 350°C. Therefore, if these compounds are present in the waste and are sent to the melter, there is a good chance that much of the technetium will be lost to the gaseous phase during the heating process. Darab and Smith (1996) showed, for example, that glass formation under reducing conditions resulted in 75 percent of the technetium budget retained in the glass product. In contrast, only 45 percent of the technetium was withheld in the glass during melting under oxidizing conditions.
Other factors affect the volatility of technetium as well. If the starting form of technetium is \(\text{NH}_4\text{TcO}_4 \), then this material will go through a phase transition to form \(\text{Tc}_2\text{O}_7 \), which, as mentioned earlier, volatilizes at low temperatures (350°C). However, it is likely that other salts of pertechnetate will form the bulk of technetium-bearing solids in the waste feed. Of these, the likeliest candidates include \(\text{KTcO}_4 \), \(\text{NaTcO}_4 \), and \(\text{CsTcO}_4 \), in decreasing likelihood of occurrence. Upon heating, the alkali metal salts will not volatilize until they melt and reach their boiling points \((T_b) \), which are much higher (e.g., \(T_b = 1095°C \) for \(\text{KTcO}_4 \)) than that of \(\text{Tc}_2\text{O}_7 \) \((T_b = 350°C) \). In addition, the temperature at which the waste feed materials densify prior to melting will also exert a strong effect on technetium volatility. As pointed out by Darab and Smith (1996), the higher the melting temperature and the lower the consolidation temperature will act to forestall technetium loss.

Fugitive technetium may be a problem for both typical and atypical waste feed stocks. Even when aggressive recovery technologies are used to reclaim lost technetium from the melter and related apparatus, the loss of technetium to the environment is still likely to be approximately 2 percent (Darab and Smith 1996). Loss of 2 percent of the total technetium budget translates to roughly 26 kg or 460 Ci, which would be an unacceptable release to the environment.

Dissolution of technetium-bearing glass in the disposal environment will likely result in the release of technetium at nearly the same rate at which other glass components are released (Pierce et al. 2006; Pirlet 2001). Once released from glass, the mobility of technetium will be dictated by the redox conditions of the sediments and associated pore solutions. If the conditions are oxidizing, then there is an expectation that the mobile \(\text{TcO}_4^- \) anion will travel virtually unimpeded through the sediments. On the other hand, if conditions are reducing enough, then \(\text{Tc(IV)} \) will either sorb onto solid phases that make up the sediments, or will precipitate as the relatively insoluble \(\text{TcO}_2\cdot n\text{H}_2\text{O}_{(s)} \) compounds (where \(n = 1.6 \) to 2.0). However, the presence of neo-formed iron phases on the surface of enclosing metallic canisters may exert a strong affect on technetium retention. Pirlet (2001) found that concentrations of technetium in solution were a factor of 100 times less when magnetite, as a surrogate for oxidized canister materials, was present along with the glass. Other experimental studies (Krupka et al. 2006), using rhenium as an analog for technetium, also showed that interaction of rhenium with corrosion products is significant and can be construed to indicate significant retardation of technetium mobility.

It is not clear at this juncture if the redox state of technetium in glass will influence its rate of release from glass interacting with aqueous solutions. While relevant data are lacking, it is possible to speculate that even if technetium were present in the \(\text{Tc(IV)O}_6 \) form, diffusion of water into glass ahead of the alteration front would likely result in oxidation to \(\text{Tc(VII)} \). The mobility of technetium would thus be tied to how fast water diffuses into glass coupled with the removal of \(\text{Tc(VII)} \) from the glass matrix. The only relevant study on this subject was reported by McKeown et al. (2007), who showed that a glass sample containing oxidized technetium (pertechnetate) exposed to a vapor hydration test at 238°C for 24.9 days, exhibited a buildup of technetium near the surface of the reacted glass coupon. Interestingly, these investigators showed that technetium near the surface appeared to be in the reduced state, based upon XANES data. The spectra collected for the glass surface was consistent with the presence of technetium in the form of amorphous \(\text{TcO(IV)}_2\cdot n\text{H}_2\text{O}_{(s)} \) and \(\text{Tc(IV)O}_6 \). These data indicate that, in the glassy environment, \(\text{Tc(IV)} \) is less mobile than \(\text{Tc(VII)} \). However, it is not readily apparent if these results are applicable to the disposal environment, since dissolution took place under reducing conditions (argon atmosphere) that likely affected the redox state of the technetium near the surface. Clearly, more tests specifically designed to elucidate the behavior of technetium in glass exposed to aqueous solution are necessary.
2.6 Research Isotopes of Technetium

A number of the longer-lived isotopes, such as 95mTc and 99mTc, have a number of research applications, especially in the medical field. Most artificially-produced technetium, including 99mTc, which is widely used in medical imaging, results from neutron or deuteron bombardment of various isotopes of molybdenum, and to a lesser extent, niobium and ruthenium. Even though 150,000 Ci of medical tests are performed with 99mTc each year (with the decay product of 99Tc), medical isotopes represent only a small fraction of 99Tc (1 Ci 99mTc decays to 3 nCi 99Tc) that could potentially be released to the environment (Jurisson et al. 2004; Wildung et al. 1979). For example, the average amount of 99Tc released to the sea by the Sellafield, United Kingdom reprocessing plant after 1980 is 4.6 TBq/y, which is a factor of 2.8×10^5 more than that released through medical diagnostic testing worldwide.

1The designation “m” refers to the metastable isomer. An isomer possesses a higher energy state in its nucleon than the lower-energy isotope of the same mass and decays to the ground state isomer by means of an isomeric transition. In this case, the isotope 99Tc is the ground state, and is sometimes designated as 99gTc in the literature.
3.0 Chemistry of Element 43

Technetium resides in column seven, sometimes also called VIIB, in the periodic table sandwiched between manganese above and rhenium below (Figure 3.1). The similarity between elements in this column comes from similar electronic structure; all elements have a partially filled d-shell comprising electrons that have nearly the same energies as the outermost s-shell electrons. Elements that reside to the left and right of technetium (molybdenum and ruthenium), and down to the left and right (tungsten and osmium) also have a similar arrangement of d- and s-shell electrons. Thus, a defining characteristic of “d-block” elements is that they have d-shell electrons that participate along with s-shell electrons in bonding and reaction. In many ways, therefore, the behavior of this set of elements (chromium, manganese, iron, molybdenum, technetium, ruthenium, tungsten, rhenium, and osmium) is similar.

<table>
<thead>
<tr>
<th>Cr 24</th>
<th>Mn 25</th>
<th>Fe 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Ar]3d⁵4s¹</td>
<td>[Ar]3d⁵4s²</td>
<td>[Ar]3d⁶4s²</td>
</tr>
<tr>
<td>Mo 42</td>
<td>Tc 43</td>
<td>Ru 44</td>
</tr>
<tr>
<td>[Kr]4d⁵5s¹</td>
<td>[Kr]4d⁶5s¹</td>
<td>[Kr]4d⁷5s¹</td>
</tr>
<tr>
<td>W 74</td>
<td>Re 75</td>
<td>Os 76</td>
</tr>
<tr>
<td>[Xe,4f¹⁴]5d⁶6s²</td>
<td>[Xe,4f¹⁴]5d⁶6s²</td>
<td>[Xe,4f¹⁴]5d⁶6s²</td>
</tr>
</tbody>
</table>

Figure 3.1. Block Diagram Indicating the Relative Positions of Technetium and Congeners in the Periodic Table. The number next to the atomic symbol is the atomic number of the element and below it is the electronic structure of each atom. Red symbols and atomic numbers represent the elements of column VIIB in the Periodic Table. Data from Huheey et al. 1993.

An example of this is the hydrolysis of these metals and formation of anionic complexes. Chromate (CrO₄²⁻), molybdate (MoO₄²⁻), ruthenate (RuO₄²⁻), tungstate (WO₄²⁻), rhenate (ReO₄²⁻), and osmate [OsO₄(OH)₄²⁻] have similar molecular structures, as do the permanganate (MnO₄⁻), pertechnetate (TcO₄⁻), perrhenate (ReO₄⁻), perruthenate (RuO₄⁻), and perosmate [OsO₄(OH)₂²⁻].
Figure 3.1 also lists the electronic structures of the nine elements noted above. The short-hand way of writing the electronic structures of the elements is to write the noble gas “core” as a prefix followed by the electronic structure of the outermost electrons.

As mentioned above, all the elements identified in this study have outermost electrons in a d-shell, which has a capacity for 10 electrons, and comports to these elements a number of characteristic properties. For example, all the elements in this list, and those assigned to the group of transition elements in general, exhibit multiple oxidation states (Table 3.1). In the case of technetium, oxidation states of -1 to +7 are possible, although the most common oxidation states are +4 and +7, as discussed below. Table 3.1 lists the common oxidation states of the eight congeners of technetium. Note that the “common” oxidation states are neither a list of all possible oxidation states nor a sequence of all environmentally relevant cations, but simply the most typical. For example, hexavalent chrome (Cr$^{6+}$) is an element of environmental concern that exists in a number of metal-contaminated sites, even though divalent chrome (Cr$^{2+}$) is the most stable oxidation state of chromium. Also note that the elements with larger atomic numbers tend to exist in higher oxidation states (e.g., tungsten, rhenium, and osmium) than those directly above them in the periodic table. Table 3.1 also tabulates the (first) ionization energies and electronegativities of the nine elements. Both ionization energies and electronegativities trend towards higher values from chromium down to osmium, but are numerically similar.

Table 3.1. Chemical and Electronic Properties of Technetium and Similar Elements. Data from Huheey et al. 1993, and Pauling 1947.

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic Number</th>
<th>Common Oxidation States</th>
<th>Atomic Weight</th>
<th>Ionization Energy (kJ/mol)</th>
<th>Atomic Radii (Å)</th>
<th>Electronegativity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>24</td>
<td>2+</td>
<td>51.996</td>
<td>653</td>
<td>1.27</td>
<td>1.6</td>
</tr>
<tr>
<td>Mn</td>
<td>25</td>
<td>2+</td>
<td>54.938</td>
<td>718</td>
<td>1.26</td>
<td>1.5</td>
</tr>
<tr>
<td>Fe</td>
<td>26</td>
<td>3+</td>
<td>55.847</td>
<td>763</td>
<td>1.26</td>
<td>1.8</td>
</tr>
<tr>
<td>Mo</td>
<td>42</td>
<td>4+, 5+, 6+</td>
<td>95.940</td>
<td>694</td>
<td>1.39</td>
<td>1.8</td>
</tr>
<tr>
<td>Tc</td>
<td>43</td>
<td>4+, 7+</td>
<td>98.913</td>
<td>720</td>
<td>1.36</td>
<td>1.9</td>
</tr>
<tr>
<td>Ru</td>
<td>44</td>
<td>3+, 4+</td>
<td>101.070</td>
<td>711</td>
<td>1.34</td>
<td>2.2(a)</td>
</tr>
<tr>
<td>W</td>
<td>74</td>
<td>5+, 6+</td>
<td>183.850</td>
<td>771</td>
<td>1.39</td>
<td>1.7</td>
</tr>
<tr>
<td>Re</td>
<td>75</td>
<td>3+, 4+, 7+</td>
<td>186.207</td>
<td>761</td>
<td>1.37</td>
<td>1.9</td>
</tr>
<tr>
<td>Os</td>
<td>76</td>
<td>4+, 6+, 8+</td>
<td>190.200</td>
<td>842</td>
<td>1.35</td>
<td>2.2(a)</td>
</tr>
</tbody>
</table>

(a) From Griffith 1967.

Because the outermost d- and s-shell electrons have nearly the same energies, shielding of the nucleus has similar effects, one of which is that there is little difference in size of the element or cation within the group. Table 3.2 lists the atomic radii of the neutrally charged metals in 12-fold coordination; the values of the radii only range from 1.26 to 1.39 angstroms (less than 10 percent variation).
Table 3.2. List of Cationic Radii of the VI, VII, and VIIIB Block Elements in picometers (pm). The coordination number refers to the number of associated ligands and LS and HS stand for “low spin” and “high spin” configurations, respectively. Data from Huheey et al. 1993.

<table>
<thead>
<tr>
<th>Element</th>
<th>Cation</th>
<th>Coordination Number</th>
<th>Radii (pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>Fe²⁺</td>
<td>6, LS</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6, HS</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Fe³⁺</td>
<td>6, LS</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6, HS</td>
<td>78.5</td>
</tr>
<tr>
<td>Chromium</td>
<td>Cr³⁺</td>
<td>6</td>
<td>75.5</td>
</tr>
<tr>
<td></td>
<td>Cr⁴⁺</td>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Cr⁶⁺</td>
<td>6</td>
<td>69</td>
</tr>
<tr>
<td>Manganese</td>
<td>Mn²⁺</td>
<td>6, LS</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6, HS</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Mn³⁺</td>
<td>6, LS</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6, HS</td>
<td>78.5</td>
</tr>
<tr>
<td></td>
<td>Mn⁴⁺</td>
<td>4</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Mn⁷⁺</td>
<td>4</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>60</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Mo⁴⁺</td>
<td>6</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Mo⁶⁺</td>
<td>4</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>73</td>
</tr>
<tr>
<td>Osmium</td>
<td>Os⁴⁺</td>
<td>6</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Os⁶⁺</td>
<td>6</td>
<td>68.5</td>
</tr>
<tr>
<td>Rhenium</td>
<td>Re⁴⁺</td>
<td>6</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Re⁷⁺</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>67</td>
</tr>
<tr>
<td>Ruthenium</td>
<td>Ru⁴⁺</td>
<td>6</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Ru⁷⁺</td>
<td>4</td>
<td>52</td>
</tr>
<tr>
<td>Technetium</td>
<td>Tc⁴⁺</td>
<td>6</td>
<td>78.5</td>
</tr>
<tr>
<td></td>
<td>Tc⁷⁺</td>
<td>4</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>70</td>
</tr>
<tr>
<td>Tungsten</td>
<td>W⁴⁺</td>
<td>6</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>W⁶⁺</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>62</td>
</tr>
</tbody>
</table>
The similarity in size also extends to the cations as well, provided that charge and the number coordinating ligands are the same (Table 3.2). This attribute mimics the trends in the “lanthanide contraction”, in which rare earth elements are essentially the same size, decreasing slowly in ionic radii from lanthanum to lutetium. Thus, for example, the ionic radii of the M^{4+} cations in 6-fold coordination are 67, 79, 77, 76, 78.5, and 80 picometers for manganese, molybdenum, rhenium, technetium, and tungsten, respectively. Because the similarity in radii of Tc^{4+} and the common cations, such as Fe^{3+}, Fe^{3+} and Mn^{2+}, there is a good prospect that the reduced form of technetium can “camouflage” in sites in iron- or manganese-bearing solids. This possibility will be discussed further below. For the heptavalent (M^{7+}) cations in 4-fold coordination, the ionic radii are 39, 52, 52, and 51 picometers for manganese, rhenium, ruthenium, and technetium, respectively. Therefore, the behavior of these elements in environments typical of near-surface aqueous settings, are similar.

Technetium metal [$\text{Tc}(0)$] crystallizes with hexagonal closest packing (hcp), which is the same for rhenium, ruthenium, and osmium (Kotegov et al. 1968). The unit cell contains two atoms with a radius of 1.358 Å. Based on an atomic weight of 99, the density of technetium metal is 11.497 g/cc (Mooney 1948). Both manganese and rhenium atoms possess similar sizes (1.306 Å and 1.373 Å). Although the atomic radii are similar, the radii of the heptavalent (+7) cations display major differences between technetium and rhenium on the one hand (both 0.56 Å), and manganese on the other (0.46 Å) (Kotegov et al. 1968). For the cations in the heptavalent oxidation state, the metal-oxygen bond lengths show a similar pattern. The $\text{Tc}^{(VII)}$—O and $\text{Re}^{(VII)}$—O bond lengths are 1.711 Å and 1.737 Å, respectively (Faggiani et al. 1980), whereas that of Mn^{2+} is 1.607 Å (Krebs and Hasse 1976), which is significantly shorter. Pertechnetate and perrhenate salts containing the relatively small NH_4^+ and Na^+ units are tetragonal and crystallize in the scheelite structure (CaWO$_4$) (Colton 1965), whereas both cesium salts are orthorhombic. The bond lengths of the reduced oxides, i.e., $\text{Tc}^{(IV)}$—O and $\text{Re}^{(IV)}$—O, are very similar (1.99 Å and 1.94 Å, respectively). However, there are differences in coordination: technetium is coordinated by 6 and rhenium by 4 oxygen atoms (Wharton et al. 2000). In the sulfide system, the $\text{Tc}^{(IV)}$—S and $\text{Re}^{(IV)}$—S bond lengths are indistinguishable in length (2.33 Å) and coordination number (3). For the heptavalent sulfides, bond lengths and coordination numbers are also very similar. In Tc_2S_7, the $\text{Tc}^{(VII)}$—S bond has a length at 2.39 Å (4-fold coordinated) and a Tc—Tc distance of 2.78 Å. Nearly identical bonding has been measured in Re_2S_7: 4 S bonds at 2.37 Å and a Re—Re distance of 2.76 Å (Wharton et al. 2000). Despite these subtle differences, Tc_2S_7 and Re_2S_7 are reportedly isomorphous (Cotton and Wilkinson 1980).

The bond lengths of the other congeners of technetium are quite similar; the Ru—O and Os—O bond lengths are 1.706 Å and 1.712 Å for the perrhenate and perosmate ions, respectively. Like $\text{Tc}^{(IV)}$, $\text{Mo}^{(IV)}\text{O}_2$ has 6 oxygen nearest neighbors surrounding molybdenum. Although structurally different, the Mo^{2+} and W^{6+}–O_6 anions are 1.77 Å and 1.78 Å, respectively (Krebs and Hasse 1976). In general, although ionic radii and bond lengths are similar amongst the congeners of technetium, differences in chemical behavior exists because of the charge density (charge per radius squared) possessed by each. Because the d^0 elements undergo a contraction of the radii across the d-block, similar to that for the rare earths, changes in charge density will lead to differences in behavior.

There are other subtle differences between elements in column VIIB, which includes manganese, technetium, and rhenium, and these are worth mentioning. Although manganese can have oxidation states as high as +7, $\text{Mn}^{(II)}$ is the most stable state, especially in the high-spin state. In contrast, both rhenium and technetium are stable as the heptavalent cation, although differences exist between the ease of reduction of these two cations (see below). The dioxides TcO_2, ReO_2, and MoO_2 all possess the
distorted rutile structure, but MnO₂ is not isomorphous (Colton 1965). Similarly, TcS₂ and ReS₂ are isomorphous and are similar in structure to MoS₂ (Kotegov et al. 1968). Whereas the pertechnetate and perrenenate ions are stable in alkaline solutions, the permanganate ion is not.

In the more reduced compounds, there are fewer similarities between technetium and rhenium compounds, however. For example, Re(III) is stable over a wide range of pH-E₄₅ conditions (see below), but Tc(III) is not. Further, Re(V) compounds are known to exist, but Tc(V) and Tc(VI) compounds do not exist unless stabilized by organic ligands. Instead, Tc(V) and Tc(VI) tend to disproportionate rapidly into Tc(IV) and Tc(VII):

\[
3\text{Tc(V)} \rightarrow 2\text{Tc(IV)} + \text{Tc(VII)} \quad (2)
\]
\[
3\text{Tc(VI)} \rightarrow \text{Tc(IV)} + 2\text{Tc(VII)} \quad (3)
\]

The lifetime of either Tc(V) or Tc(VI) is short, especially in oxidizing environments. For example, the half-life of Tc(VI) in air is only approximately 10 msec (Cotton and Wilkinson 1980), so it is likely that only Tc(VII) and Tc(IV) species will be found in nature. In the heptavalent state, Re₂O₇ is deliquescent and consists of ReO₄ tetrahedra and ReO₆ octahedra in corner-sharing arrays. In contrast, Tc₂O₇ is made up of TcO₄ tetrahedra in which the tetrahedra share an oxygen atom and the Tc—O—Tc chain is linear.
4.0 Use of Rhenium as a Geochemical Analog of Technetium

Despite the similarities in cationic size and in geochemical behavior, there may be some reasons why using rhenium as an analog of technetium in experiments or tracer studies might yield incorrect conclusions. Kim and Boulégue (2003) investigated the dissolution behavior of Re-oxides in which rhenium had oxidation states of +7, +4, and +3 (or VII, IV, and III, respectively) over a pH and E_h interval.

Like technetium, Re-oxide solubility depends on both pH and E_h of the aqueous solution. Under oxidizing conditions, rhenium exists as the perrhenate (ReO_4^-) anion, just as the pertechnetate anion (TcO_4^-) is the dominant species under similar conditions. On the other hand, Re(III) compounds, such as Re_2O_3, ReO_3 are stable, but no similar Tc(III) solids are stable. Dissolution of ReO$_2$ showed no dependence on pH, and the presence of oxygen did not appear to affect its solubility. The lack of dependence of dissolution on oxygen partial pressure makes the behavior of ReO$_2$ different from that of TcO$_2$; Lieser et al. (1987) reported that TcO$_2$ dissolution is strongly dependent upon the presence of oxygen. Dissolution in neutral pH regimes releases neutral species of Re, just as in the case of technetium:

$$\text{ReO}_2(\text{cr}) + \text{H}_2\text{O} \leftrightarrow \text{ReO}($$\text{(OH)}_2^\circ)(\text{aq}) \tag{4}$$

At higher pH values (i.e., greater than 9), the specie $\text{ReO}($$\text{(OH)}_3^\circ$) may begin to form, which is behavior similar to that of technetium. Kim and Boulégue (2003) argue that Re(III) solids are unstable and persist metastably. The instability of Re(III) solids in aqueous solution does not result in the precipitation of ReO$_2$, although concentrations of Re(aq) are high enough to saturate in this phase. Instead, the authors argue that dissolution of Re(III) results in the formation of Re(IV) polymers or colloids that forestalls the precipitation of ReO$_2$. Again, this characteristic is similar to that of technetium, in which dimers $[\text{TcO}($$\text{(OH)}_2^\circ$)]$_2$ form at concentrations greater than 10^{-5} mol/L (Maes et al. 2004). Thus, the data in this study indicate that ReO$_2$(cr) has a larger stability field than previously thought and is therefore closer in behavior to technetium than realized. The stability of ReO$_2$(cr) in anoxic waters is reflected in its low solubility value of $4 \times 10^{-7} - 10^{-6}$ mol/L (Kim and Boulégue 2003). This compares well with the solubility values of TcO$_2$(cr) ($\sim 10^{-9}$) and TcO$_2$(am)($10^{-7} - 10^{-6}$ mol/L).

Figure 4.1, which was taken from Darab and Smith (1996), displays the E_h-pH diagrams for technetium and the corresponding one for rhenium. The differences between the sizes of the TcO$_2$ and ReO$_2$ fields are apparent, as are the lack of corresponding TcO$_3$ or Tc$_2$O$_3$ stability fields.

A modeling investigation contrasting technetium and rhenium sorption onto iron and sulfur-bearing minerals was carried out by Anderson et al. (2007). The authors were motivated by the possibility that rhenium and technetium behave differently in systems in which redox conditions become prominent. They note that compounds stable in E_h-pH diagrams are not the same in the rhenium and technetium systems, as discussed above. While TcO$_4^-$ is in equilibrium with TcO$_2$ over a wide area in E_h-pH space, ReO$_4^-$ is in equilibrium with Re$_2$O$_3$ and ReO$_3$ (see Figure 4.1). They also note that rhenium and technetium exhibit different behavior on mackinawite (FeS) surfaces (Wharton et al. 2000). Part of the difference between the two elements may be a reflection of their chemical properties, such as their binding energies. Respectively, the binding energy of TcO$_4^-$ and ReO$_4^-$ is -388.7 and -371.1 eV. However, bond lengths of Tc—O and Re—O are nearly the same (1.71 Å, and 1.74 Å, respectively), as are their hydration energies (-2.4 eV and -2.5 eV, respectively).
Figure 4.1. E_h-pH Diagrams for (a) Technetium and (b) Rhenium. Note that the stability field of TcO$_2$ is much larger than that of ReO$_2$ and that there is no stability field for Tc(III) species. The shaded boxes represent the E_h-pH conditions expected in the tank waste environment. From Darab and Smith (1996).

The modeling exercise that they conducted was based on a quantum mechanical program (Gaussian03). Calculations show that on galena terrace surfaces, TcO$_4^-$ and ReO$_4^-$ sorption was similar. On the other hand, TcO$_4^-$ will be reduced by galena near step edges, but ReO$_4^-$ will not. In the presence of other ions (Na$^+$, Cl$^-$, and chlorine-complexes), both TcO$_4^-$ and ReO$_4^-$ sorption is unfavorable in the presence of chlorine, but favorable in the presence of sodium. However, the behavior of the rhenium and technetium chlorine complexes may be very different, as shown through the rather large difference in energies between the two (20 eV, in some cases).

A series of sorption experiments were conducted by Krupka et al. (2006) to determine the partitioning of technetium between steel materials, their corrosion products, and solution. The experiments used rhenium as a non-radioactive analogue of technetium, but results of other tests using technetium were also discussed. The authors found that rhenium sorbs onto or is co-precipitated with corrosion products, such as goethite (α-Al(O)(OH)), lepidocrocite (γ-Al(O)(OH)), and maghemite (γ-Fe$_2$O$_3$) as Re(VII). This behavior contrasts with that of technetium, in which sorption takes place as Tc(IV), rather than Tc(VII). Because of the low solubility of TcO$_2$-type compounds, technetium precipitates or forms a co-precipitate with Fe(III) minerals. Krupka et al. (2006) suggest that the standard potential of the Re(VII)/Re(IV) couple is significantly lower than that for Tc(VII)/Tc(IV), which indeed it is. The oxidation potential of the former is -0.510 V, whereas the latter has a value of -0.738 V, according to Kotegov et al. (1968).

In summary, Anderson et al. (2007) and Krupka et al. (2006) conclude that perrhenate and pertechnetate behave similarly under many environmental conditions, except where electron transfers are involved. In these cases, the two elements behave very differently. Also, the differences in complexation energies between the chloride species of rhenium and technetium may render the usefulness of the chemical analogy void. Complexation of technetium with chloride results in a higher solubility, whereas the chloride complexes of rhenium results in virtually no difference in solubility, as confirmed by experiment by Xiong and Wood (1999).
5.0 Radiochemistry—the Isotopes and Isomers of Technetium

As previously mentioned, all technetium isotopes are anthropogenic, except a small amount of technetium that forms by spontaneous fission in uranium ores. The two principle ways to make technetium is by fission of 235U (as well as 239,241Pu) or activation of molybdenum metal by neutrons or deuterons. The first isotopes of technetium that were discovered were 95Tc and 97Tc, which were produced by bombardment of a thin metal sheet of molybdenum (Perrier and Segrè 1937a). Currently, there are 22 known isotopes of technetium with mass numbers from 90Tc to 111Tc. For the most part, the half-lives of the technetium isotopes are short (seconds to days), with the exception of three. These are: 97Tc with $t_{1/2} = 2.6 \times 10^6$, 98Tc with $t_{1/2} = 4.2 \times 10^6$, and 99Tc with $t_{1/2} = 2.14 \times 10^5$ years. Table 5.1 lists the most important isotopes, their mode of decay and half-lives. However, 99Tc is a factor of 10^{11} times and 10^6 times more abundant than 97Tc and 98Tc, respectively (Luykx 1984). The reason for this is that the fission yield of technetium isotopes favors the heavier isotopes, starting with 99Tc. Of these isotopes, 99Tc has a relatively high fission yield (approximately 6.06 percent; Table 5.2). As can be seen from Table 5.2, other isotopes of technetium have relatively high fission yields, but have half-lives that are too short for them to be environmentally relevant. Therefore, only 99Tc has the combined attributes of high fission yield and relatively long half-life, which means that 99Tc is the main isotope of environmental concern.

<table>
<thead>
<tr>
<th>Technetium Isotope</th>
<th>Half-life</th>
<th>Decay Mechanism</th>
<th>Energy (MeV)</th>
<th>Decay Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>95mTc</td>
<td>61 d</td>
<td>EC</td>
<td></td>
<td>95Mo</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.204, 0.582, 0.835</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT</td>
<td>0.0389, e</td>
<td>95Tc</td>
</tr>
<tr>
<td>96Tc</td>
<td>4.3 d</td>
<td>EC</td>
<td>96Mo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.778, 0.849, 0.812</td>
<td>--</td>
</tr>
<tr>
<td>97Tc</td>
<td>2.6×10^6 y</td>
<td>EC</td>
<td>97Mo</td>
<td></td>
</tr>
<tr>
<td>97mTc</td>
<td>90 d</td>
<td>IT</td>
<td>0.965, e</td>
<td>97Tc</td>
</tr>
<tr>
<td>98Tc</td>
<td>4.2×10^6 y</td>
<td>β^-</td>
<td>0.4</td>
<td>98Ru</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.745, 0.652</td>
<td>--</td>
</tr>
<tr>
<td>99Tc</td>
<td>2.12×10^5 y</td>
<td>β^-</td>
<td>0.294</td>
<td>99Ru</td>
</tr>
<tr>
<td>99mTc</td>
<td>6.01 h</td>
<td>IT</td>
<td>0.142, 0.002</td>
<td>99Tc</td>
</tr>
<tr>
<td></td>
<td></td>
<td>γ</td>
<td>0.14</td>
<td>--</td>
</tr>
</tbody>
</table>

Notes:
EC = electron capture
β = beta decay
IT = isomeric transition
γ = gamma emission.
The specific activity of 99Tc is 1.7×10^{-2} Ci/g, which translates to 37,800 disintegrations per minute per microgram. However, the low energy β particle ($E_{\text{max}} = 0.292$ MeV) emitted by 99Tc decay is difficult to detect by conventional counting methods, but a number of advances in liquid scintillation counting (LSC) and inductively-coupled plasma mass spectroscopy (ICP-MS) today make for routine analysis. It is interesting to note that in many early assays of environmental samples that total β counts were reported in which the identity of the β particles could not be distinguished. It is likely that many of these samples contained 99Tc in addition to other β emitters, such as 137Cs and 90Sr, whose beta particle energies masked that of 99Tc.

In addition to the isotopes, there are seven identified isomers of technetium, in which the nucleon possesses a higher energy configuration than its daughter in the ground state with the same mass number. The isomers of technetium are written with the letter “m” after the mass number to designate the energetically metastable form: 93mTc, 94mTc, 95mTc, 96mTc, 97mTc, 99mTc and 102mTc. The isomer 99mTc has applications in geochemical studies as a tracer and is also used extensively in medical isotope applications. According to the U.S. Environmental Protection Agency (EPA), approximately 10×10^6 medical imaging procedures are carried out every year using 99mTc (EPA 2002). Neutron activation of 99Mo produces 99mTc with a half-life of approximately 6 hours, which decays by β emission (140 keV) to 99Tc, which in turn decays to 99Ru.

<table>
<thead>
<tr>
<th>Technetium isotope:</th>
<th>99Tc</th>
<th>101Tc</th>
<th>102Tc</th>
<th>103Tc</th>
<th>104Tc</th>
<th>105Tc</th>
<th>107Tc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield (%)</td>
<td>6.06</td>
<td>5.6</td>
<td>4.3</td>
<td>3.0</td>
<td>1.8</td>
<td>0.9</td>
<td>0.19</td>
</tr>
<tr>
<td>Half-life</td>
<td>2.12×10^5 yr</td>
<td>14.3 min</td>
<td>4.5 min</td>
<td>50 sec</td>
<td>18 min</td>
<td>7.7 min</td>
<td><1 min</td>
</tr>
</tbody>
</table>

Notes: 99Tc decays at 37,800 dpm/μg and a specific activity of 1.7×10^{-2} Ci/g
6.0 Environmental Geochemistry

An understanding of the behavior of technetium in the environment has been fashioned from studies in diverse fields such as soil science, marine chemistry, geochemistry, phytobiology and health physics (e.g., Brown et al. 1999; Goudard et al. 1998; Harms et al. 1999; Krijger et al. 2000; Lindahl et al. 2003; Uchida et al. 2000). For the most part, much of these data have remained in specialized journals and there has been little effort expended to marshal relevant facts together to advance the understanding of technetium in the geosphere.

6.1 Redox Chemistry

Because technetium is a redox-sensitive element and its solubility and mobility in subsurface pore waters depends on its oxidation state, a great deal of effort has gone into quantifying stability fields of the various technetium species in terms of E_h, pH, and oxidation potential. The fundamental measurement that describes the stability of reduced and oxidized technetium is the electromotive force (EMF) of the $\text{TcO}_4^-/\text{TcO}_2$ couple.

A number of investigators have attempted to measure the EMF of the $\text{TcO}_4^-/\text{TcO}_2$ couple, including Cobble et al. (1953), Cartledge and Smith (1955), Liebscher and Münze (1975) and Meyer and Arnold (1991). Rard et al. (1999) reviewed these studies and pointed out that several measurements were plagued by the presence of oxygen in the reaction cell, the lack of demonstrated achievement of steady-state conditions, or lack of evidence of reversibility. Note also that the pH-range of the experiments were mainly between 1.05 and 3.99; only two measurements were conducted at pH greater than 4.0. Approximately two thirds of the data discussed by Rard et al. (1999) were taken from Meyer and Arnold (1991), so the focus of this review will be on these data.

Meyer and Arnold (1991) determined by experiment the standard potential of the $\text{TcO}_4^-/\text{TcO}_2$ couple, which is represented by:

$$\text{TcO}_4^- + 4\text{H}^+ + 3e^- \rightarrow \text{TcO}_2(s) + 2\text{H}_2\text{O} \quad (5)$$

They carefully minimized the oxygen fugacity by conducting the experiments in a controlled atmosphere argon box. Further, they kept the concentration of TcO_4^- low and precipitated $\text{TcO}_2-n\text{H}_2\text{O}$ by electrodeposition on a platinum mesh. Steady-state values were demonstrated, further lending credence to the measurements. The slopes of the plots of electrode potential versus pH and activity of TcO_4^- were reported to be $-0.0773 \pm 0.0023 \text{ V/pH unit}$ (or $0.0211 \pm 0.0050 \text{ V/log unit}$). The theoretical slope is $-0.0788 \text{ V/pH unit}$ (or $0.01971 \text{ V/log unit}$), so the measured value is within experimental uncertainty. From these data, the value of E^o was reported to be $0.747 \pm 0.004 \text{ V}$, and this value overlaps with the one advocated by Rard et al. (1999), which is $E = 0.746 \pm 0.012 \text{ V}$.

The thermochemical data derived from these measurements and from separate measurements discussed below (see section on Thermodynamics) yield the following E_h-pH diagram for technetium in low carbonate, sulfate, and halide systems (Figure 6.1).
Potentials for the elements directly above and below technetium in the periodic table are as follows (Kotegov et al. 1968):

\[
\begin{align*}
\text{MnO}_4^-/\text{MnO}_2: & \quad E = 1.695 \text{ V} \\
\text{ReO}_4^-/\text{ReO}_2: & \quad E = 0.510 \text{ V}
\end{align*}
\]

Therefore, the TcO\(_4^-\)/TcO\(_2\) couple is more oxidizing than that of rhenium, but much less so than that for manganese. These data also show that ReO\(_4^-\) is more difficult to reduce than TcO\(_4^-\), making some experiments in which rhenium is substituted for technetium difficult to interpret.

Figure 6.1. \(E_h\)-pH Diagram for Technetium. The shaded area represents the region in which the amorphous solid, TcO\(_2\)-2H\(_2\)O(am) is stable.

In the natural environment, retention or mobility of technetium depends mainly on the redox conditions of the system. For typical agricultural and horticultural soils, the \(E_h\) values range from 100 to 600 mV and pH values of 4 to 8 (Koch-Steindl and Pröhl 2001). Table 6.2 lists the ranges of \(E_h\) and pH values in typical soils and subdivides the field into normal, wet, and waterlogged (in decreasing \(E_h\)). This table also lists the corresponding biogeochemical zones (Burke et al. 2005). The kinds of redox reactions that take place in each are as follows (Koch-Steindl and Pröhl 2001). For normal soil, NO\(_3^-\) reduction begins between 550 to 450 mV, while Mn\(^{2+}\) formation is initiated between 450 to 350 mV. In wet soils, O\(_2\) and NO\(_3^-\) are no longer detectable (at 330 and 220 mV, respectively). Iron(II) begins to form around 150 mV. For waterlogged soil, SO\(_4^{2-}\) and sulfide formation commences at -50 mV. Methane begins to form at -120 mV and by -180 mV, sulfate is no longer detectable. At neutral pH values Tc(VII) is reduced between 200 and 100 mV (Lieser and Bauscher 1987), which is approximately the point at which nitrate disappears and Fe(II) begins to form.
Table 6.1. Summary of Aeration Status of Soils and their Correspondence with Biogeochemical Zones

<table>
<thead>
<tr>
<th>Soil Aeration Status</th>
<th>Redox Reaction</th>
<th>E_{eq}(a) (mV)</th>
<th>Biogeochemical Zone</th>
<th>ΔG(b) (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Well-aerated soils</td>
<td>Initial nitrate reduction</td>
<td>550-450</td>
<td>Oxic respiration</td>
<td>-856</td>
</tr>
<tr>
<td>Wet soil</td>
<td>O$_2$ no longer detectable</td>
<td>330</td>
<td>Initial nitrate reduction</td>
<td>-806</td>
</tr>
<tr>
<td>Wet soil</td>
<td>Nitrate no longer detectable</td>
<td>220</td>
<td>Manganese reduction</td>
<td>-569</td>
</tr>
<tr>
<td>Wet soil</td>
<td>Technetium reduction</td>
<td>200-100</td>
<td>Technetium reduction</td>
<td>-436</td>
</tr>
<tr>
<td>Wet soil</td>
<td>Initial Fe$^{2+}$ formation</td>
<td>150</td>
<td>Iron reduction</td>
<td>-361</td>
</tr>
<tr>
<td>Waterlogged soil</td>
<td>Sulfate reduction</td>
<td>-50</td>
<td>Sulfate reduction</td>
<td>-48</td>
</tr>
<tr>
<td>Waterlogged soil</td>
<td>Initial methane production</td>
<td>-120</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Waterlogged soil</td>
<td>Sulfate no longer detectable</td>
<td>-180</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a) $E_{\text{eq}} = E_n$ at pH 7
(b) Free-energy change per mole of acetate consumed as electron donor.

For soils with pH between 7.5 and 5.5 and E_n values between 600 and 100 mV, plant growth is optimal (Koch-Steindl and Pröhl 2001). These conditions are also favorable for mobility of technetium as the pertechnetate anion. In many cases, however, technetium is present as a reduced species, as inferred from plant uptake studies (Echevarria et al. 1997; Tagami and Uchida 1997; Tagami and Uchida 1999; Vandecasteele et al. 1989; Vandecasteele et al. 1985). These departures from expected behavior are likely because of control by biogeochemical processes or reduction caused by the presence of organic matter. On the other hand, there are cases in which technetium persists in the oxidized form, even though the E_n of the system is below the reduction threshold. These conditions arise because of the availability and steric distribution of electron donors is more critical than the overall E_n of the system. For example, Cui and Eriksen (1996b) showed that even under conditions in which ferrous iron [Fe(II)] activity in solution were relatively high, reduction kinetics of Tc(VII) were sluggish. Therefore, even though the reduction reaction:

$$\text{Tc(VII)O}_4^- + 3\text{Fe}^{2+} + (n + 7)\text{H}_2\text{O} = \text{Tc(IV)O}_2\cdot n\text{H}_2\text{O(s)} + 3\text{Fe(OH)}_3(s) + 5\text{H}^+$$ (8)

is thermodynamically feasible [log $K_{298} = -21.8$; (Fredrickson et al. 2004b)], the kinetics of this homogeneous reaction are rate-limited. In contrast, when Fe(II) is sorbed onto other mineral phases, especially iron oxyhydroxides, surface-mediated heterogeneous catalysis becomes important and reduction of Tc(VII) to Tc(IV) takes place rapidly above pH 6 (Peretyazhko et al. 2008a; Peretyazhko et al. 2008b; Zachara et al. 2007).

These data demonstrate that the fate of technetium is intimately tied to the geochemistry of iron and, as we shall see, sulfur. Further, the mobility of technetium is affected by biogenic Fe(II), and not simply on Fe(II) produced in inorganic reactions. Therefore, the geochemical behavior of technetium is governed not so much by the overall redox conditions, but by the availability of reducing agents.
6.2 Thermodynamics

Rard et al. (1999) critically analyzed much of the relevant thermodynamic data for technetium compounds and proposed “best” values for each. Many of these are listed in Table 6.2 below. A fairly complete list of thermodynamic values for the solid technetium compounds can be found in (Kotegov et al. 1968), and these agree substantially with those recommended by Rard et al. (1999). Other values for technetium, plus additional ones for rhenium, are published in Wagman et al. (1982) and are provided in Table 6.2. In addition, Rard (1985) published a critical list of data on ruthenium compounds, whose values can be compared against those of the technetium and rhenium compounds.

The data show that for similar compounds (e.g., TcS$_2$, ReS$_2$, and RuS$_2$), the values are fairly similar. Values for other sets of compounds, such as TcO$_2$, ReO$_2$, and RuO$_2$, exhibit significant differences. For the hydrated MO$_2$ ($M = \text{Tc, Re, and Ru}$) compounds, exercise must be cautioned in comparing the correct thermodynamic values. Meyer et al. (1991) found that the average number of water molecules in TcO$_2·n$H$_2$O is 1.6 (but with a rather large standard deviation). Thermodynamic values should only be compared with compounds having the same number of water molecules, so values for MO$_2·2$H$_2$O are listed to facilitate comparison. Note that for the technetium compounds, thermodynamic values are not listed for TcO$_3$, for the reason that its existence is in question (see Rard et al. 1999 for further discussion on this topic).

Table 6.2. Values of Standard Enthalpy and Free Energy of Formation and Entropy of the Principle Solids of Technetium, Rhenium, and Ruthenium

<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔH° (kJ/mol)</th>
<th>ΔG° (kJ/mol)</th>
<th>S$^\circ$ (J/mol/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcO$_2$</td>
<td>-457.8±11.7$^{(a)}$</td>
<td>-401.8±11.8$^{(a)}$</td>
<td>50.0±4$^{(a)}$</td>
</tr>
<tr>
<td>TcO$_2·1.6$H$_2$O</td>
<td>--</td>
<td>-758.5±8.4$^{(a)}$</td>
<td>--</td>
</tr>
<tr>
<td>TcO$_2·2$H$_2$O</td>
<td>--</td>
<td>-837.3$^{(b)}$</td>
<td>--</td>
</tr>
<tr>
<td>Tc$_2$O$_7$</td>
<td>-1126.5±14.9$^{(a)}$</td>
<td>-950.3±15.5$^{(a)}$</td>
<td>192.0±15$^{(a)}$</td>
</tr>
<tr>
<td>Tc$_2$O$_7·$H$_2$O</td>
<td>-1414.2±14.9$^{(a)}$</td>
<td>-1194.3±15.5$^{(a)}$</td>
<td>278.9±72.1$^{(a)}$</td>
</tr>
<tr>
<td>HTO$_4$</td>
<td>-699.0$^{(b)}$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Tc$_2$S$_7$</td>
<td>-615.0±57.4$^{(a)}$</td>
<td>-580.9±60.4$^{(a)}$</td>
<td>175.7±63.2$^{(a)}$</td>
</tr>
<tr>
<td>HTO$_4$</td>
<td>-610.9$^{(b)}$</td>
<td>-368$^{(b)}$</td>
<td>--</td>
</tr>
<tr>
<td>ReO$_2$</td>
<td>-505$^{(b)}$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>ReO$_3$</td>
<td>-605$^{(b)}$</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Re$_2$O$_7$</td>
<td>-1241.4$^{(c)}$</td>
<td>-1066.9$^{(c)}$</td>
<td>207.3$^{(c)}$</td>
</tr>
<tr>
<td>HReO$_4$</td>
<td>-762.3$^{(b)}$</td>
<td>-656.4$^{(b)}$</td>
<td>158.2$^{(b)}$</td>
</tr>
</tbody>
</table>
The free energies of formation of the aqueous species of technetium and of ReO₄⁻ are listed in Table 6.3. The recommended values of Δ𝐻°, Δ𝐺° and 𝑃° for TcO₄⁻ are -729.4 ± 7.6 kJ/mol, -637.4 ± 7.6 kJ/mol, and 199.6 ± 1.5 J/mol/K, respectively. Most of the values for technetium come from Rard et al. (1999), but note that several measured or estimated values for carbonate (Lemire and Jobe 1996) and sulfate complexes (Langmuir 1997) are also included. Four mixed hydroxyl-carbonate species are listed that have net charges of neutral to minus three. All of these are Tc(IV) species, except Tc(OH)₂(CO₃)₂³⁻, which contains the Tc(III) cation. From a stability standpoint, it is not clear which of these species will dominate at any particular set of conditions, and the lack of thermodynamic data hampers the evaluation of this problem. Note also that the value of Δ𝐺° for TcOSO₄⁺ is an estimate (Langmuir 1997); clearly, thermodynamic data for sulfate and sulfide species are needed, especially because of the propensity of technetium and sulfur to bond.

Table 6.3. Free Energies of Formation of Aqueous Technetium Species and the Perrhenate Anion

<table>
<thead>
<tr>
<th>Aqueous Species</th>
<th>Δ𝐺° (kcal/mol)</th>
<th>Δ𝐺° (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TcO²⁺</td>
<td>-24.04⁽ᵃ⁾</td>
<td>-100.6⁽ᵃ⁾</td>
</tr>
<tr>
<td>TcOOH⁺</td>
<td>-79.18⁽ᵃ⁾</td>
<td>-331.3⁽ᵃ⁾</td>
</tr>
<tr>
<td>TcO(OH)₂⁻</td>
<td>-132.89⁽ᵃ⁾</td>
<td>-556.0⁽ᵃ⁾</td>
</tr>
<tr>
<td>[TcO(OH)₂⁻]₂</td>
<td>-274.67⁽ᵃ⁾</td>
<td>-1149.2⁽ᵃ⁾</td>
</tr>
<tr>
<td>TcO₄⁻</td>
<td>-152.34⁽ᵃ⁾</td>
<td>-637.4⁽ᵃ⁾</td>
</tr>
<tr>
<td>TcO(OH)₃⁻</td>
<td>-174.08⁽ᵇ⁾</td>
<td>-728.4⁽ᵇ⁾</td>
</tr>
<tr>
<td>Tc(OH)₂CO₃⁺</td>
<td>-228.04⁽ᵇ⁾</td>
<td>-954.1⁽ᵇ⁾</td>
</tr>
<tr>
<td>Tc(OH)₃CO₃⁻</td>
<td>-273.45⁽ᵇ⁾</td>
<td>-1144.1⁽ᵇ⁾</td>
</tr>
<tr>
<td>Tc(OH)₃(CO₃)₂⁻</td>
<td>-324⁽ᶜ⁾</td>
<td>-1355⁽ᶜ⁾</td>
</tr>
<tr>
<td>Tc(OH)₂(CO₃)₂⁻</td>
<td>-354⁽ᶜ⁾</td>
<td>-1483⁽ᶜ⁾</td>
</tr>
<tr>
<td>TcOSO₄⁺</td>
<td>-205.27⁽ᵇ⁾</td>
<td>-858.9⁽ᵇ⁾</td>
</tr>
<tr>
<td>ReO₄⁻</td>
<td>-166.0⁽ᵈ⁾</td>
<td>-694.5⁽ᵈ⁾</td>
</tr>
</tbody>
</table>

Sources:
(a) (Rard et al. 1999) (c) (Lemire and Jobe 1996)
(b) (Langmuir 1997) (d) (Wagman et al. 1982)
To evaluate the similarity in behavior between technetium and its congeners chromium, molybdenum, tungsten, manganese, rhenium, ruthenium, and osmium, Table 6.4 is a compilation of the heats and free energies of formation of a variety of crystalline compounds and aqueous species. Values of Δ_fH° for CrO$_2$, WO$_2$, MoO$_2$, MnO$_2$ and ReO$_2$ are comparable (-610 to -520 kJ/mol), and the values for TcO$_2$ and RuO$_2$ are slightly lower (-458 and -307 kJ/mol). These numbers indicate that substitution of between the dioxides should be thermodynamically permissible.

Table 6.4. Standard Enthalpies and Free Energies of Formation of Chromium, Molybdenum, Tungsten, Manganese, Technetium, Rhenium, Ruthenium, and Osmium Compounds
(Data from Wagman et al. 1982; Rard 1985)

<table>
<thead>
<tr>
<th>Compound</th>
<th>State</th>
<th>Δ_fH° (kJ/mol)</th>
<th>Δ_fG° (kJ/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CrO$_2$</td>
<td>cr</td>
<td>-598</td>
<td>--</td>
</tr>
<tr>
<td>CrO$_4^{2-}$</td>
<td>aq</td>
<td>-881.15</td>
<td>-727.75</td>
</tr>
<tr>
<td>MoO$_2$</td>
<td>cr</td>
<td>-588.94</td>
<td>-533.01</td>
</tr>
<tr>
<td>MoO$_4^{2-}$</td>
<td>aq</td>
<td>-997.9</td>
<td>-836.3</td>
</tr>
<tr>
<td>MoS$_2$</td>
<td>cr</td>
<td>-235.1</td>
<td>-225.9</td>
</tr>
<tr>
<td>WO$_2$</td>
<td>cr</td>
<td>-589.69</td>
<td>-533.89</td>
</tr>
<tr>
<td>WO$_4^{2-}$</td>
<td>aq</td>
<td>-1075.7</td>
<td>--</td>
</tr>
<tr>
<td>WS$_2$</td>
<td>cr</td>
<td>-209</td>
<td>--</td>
</tr>
<tr>
<td>MnO$_2$</td>
<td>cr</td>
<td>-520.03</td>
<td>-465.14</td>
</tr>
<tr>
<td>MnO$_4^{2-}$</td>
<td>aq</td>
<td>-541.4</td>
<td>-447.2</td>
</tr>
<tr>
<td>MnO$_4^{2-}$</td>
<td>aq</td>
<td>-653</td>
<td>-500.7</td>
</tr>
<tr>
<td>TcO$_2$</td>
<td>cr</td>
<td>-457.8</td>
<td>-401.8</td>
</tr>
<tr>
<td>TcO$_4^{-}$</td>
<td>aq</td>
<td>-729.4</td>
<td>-637.4</td>
</tr>
<tr>
<td>TcO$_4^{2-}$</td>
<td>aq</td>
<td>-575.76</td>
<td>--</td>
</tr>
<tr>
<td>Tc$_2$O$_7$</td>
<td>cr</td>
<td>-1414.2</td>
<td>-1194.3</td>
</tr>
<tr>
<td>TcS$_2$</td>
<td>cr</td>
<td>-223.8</td>
<td>-216.1</td>
</tr>
<tr>
<td>Tc$_2$S$_7$</td>
<td>cr</td>
<td>-651.0</td>
<td>-580.9</td>
</tr>
<tr>
<td>ReO$_2$</td>
<td>cr</td>
<td>-610.9</td>
<td>-694.5</td>
</tr>
<tr>
<td>ReO$_4^{2-}$</td>
<td>aq</td>
<td>-787.4</td>
<td>-694.5</td>
</tr>
<tr>
<td>Re$_2$O$_7$</td>
<td>cr</td>
<td>-1241.4</td>
<td>-1066.9</td>
</tr>
<tr>
<td>ReS$_2$</td>
<td>cr</td>
<td>-180.0</td>
<td>--</td>
</tr>
<tr>
<td>Re$_2$S$_7$</td>
<td>cr</td>
<td>-451.5</td>
<td>--</td>
</tr>
<tr>
<td>RuO$_2$</td>
<td>cr</td>
<td>-307.2</td>
<td>-253.1</td>
</tr>
<tr>
<td>RuO$_4^{2-}$</td>
<td>aq</td>
<td>-332.4</td>
<td>-250.1</td>
</tr>
<tr>
<td>RuO$_4^{2-}$</td>
<td>aq</td>
<td>-457.0</td>
<td>-306.6</td>
</tr>
<tr>
<td>RuS$_2$</td>
<td>cr</td>
<td>-197.0</td>
<td>--</td>
</tr>
<tr>
<td>OsS$_2$</td>
<td>cr</td>
<td>-146.0</td>
<td>--</td>
</tr>
</tbody>
</table>
The solubility of $\text{TcO}_2\cdot n\text{H}_2\text{O}$, written as:

$$\text{TcO}_2\cdot n\text{H}_2\text{O}(s) = \text{TcO(OH)}_2^\circ + (n-1)\text{H}_2\text{O}$$

(9)

has been measured by several investigators (Eriksen et al. 1992; Meyer et al. 1991) and these results have been reviewed by Rard et al. (1999). Some solubility measurements have been hampered by a number of factors. First, measurements must be made in a low-oxygen environment. Experiments that have been carefully performed to minimize the oxygen concentration report relatively low solubilities (Eriksen et al. 1992; Meyer et al. 1991). Second, the effects of radiolysis must be taken into account. For example, (Meyer et al. 1991) found that radiolysis of the water near the surface of the $\text{TcO}_2\cdot n\text{H}_2\text{O}$ crystals caused oxidation and dissolution of the solid to yield TcO_4^-. Analyses of the solution by liquid scintillation counting that ignored this quantity of TcO_4^- would yield spuriously higher solubility values. (Meyer et al. 1991) remedied this by separating TcO_4^- out of solution using tetraphenylarsonium chloride in chloroform. Third, the solubility depends on the crystallinity of the $\text{TcO}_2\cdot n\text{H}_2\text{O}$. Not only does poorly crystalline TcO_2 dissolve more rapidly into solution (Lieser et al. 1987), the solubility of amorphous technetium dioxide [TcO$_2$(am)] is about a factor of 10 times higher than that of crystalline $\text{TcO}_2\cdot n\text{H}_2\text{O}$ (Rard et al. 1999). In consideration of these caveats, the accepted value of solubility of $\text{TcO}_2\cdot n\text{H}_2\text{O}$ at 25°C in dilute solutions between pH 4 to pH 10 is $10^{-8.2}$ mol/L (Eriksen et al. 1992) to $10^{-8.44}$ mol/L (Rard et al. 1999), which overlaps in value within experimental uncertainty. This translates into 16,800 pCi/L Tc [as TcO(OH)$_2^\circ$ in neutral pH waters] in equilibrium with the hydrated crystalline TcO$_2$ phase, which is about 20 times higher than the drinking water standard (DWS) of 900 pCi/L established by the EPA. Accordingly, any remediation scheme that relies simply on reduction and precipitation of a TcO$_2$ solid will still result in concentrations of aqueous Tc above the drinking water limit.

At acidic conditions the solubility of $\text{TcO}_2\cdot n\text{H}_2\text{O}$ increases. Between pH 4 and 0, the solubility of $\text{TcO}_2\cdot n\text{H}_2\text{O}$ increases by nearly a factor of 10^4 times. Between pH 2.43 and 1.37 the dominant aqueous species is TcO(OH)$^+$ and below pH 1.37 the dominant aqueous species is TcO$_2^+$. The solubility (s), hydrolysis (h1 and h2), and dimerization (dim) constants are:

$$\text{TcO}_2\cdot n\text{H}_2\text{O} + (1-n)\text{H}_2\text{O} = \text{TcO}^{2+} + 2\text{OH}^- \hspace{1cm} K_s = 4.47 \times 10^{-33}$$

(10)

$$\text{TcO}^{2+} + \text{H}_2\text{O} = \text{TcO(OH)}^+ + \text{H}^+ \hspace{1cm} K_{h1} = 4.3 \times 10^{-2}$$

(11)

$$\text{TcO(OH)}^+ + \text{H}_2\text{O} = \text{TcO(OH)}_2^\circ + \text{H}^+ \hspace{1cm} K_{h2} = 3.7 \times 10^{-3}$$

(12)

$$2\text{TcO(OH)}_2^\circ = [\text{TcO(OH)}_2]^\circ \hspace{1cm} K_{dim} = 3.14 \times 10^6$$

(13)

The average stoichiometry of n in Equation (10), from experiments at both acidic and basic conditions, is 1.63 ± 0.28 (Meyer et al. 1991). This value makes handling Equation (10) somewhat clumsy, because the value in the parentheses on the left-hand side $(1-n)$ is less than 1.

1The solubility of technetium is greater in solutions with high dielectric constants. In the presence of chloroform, which has a low dielectric constant, technetium partitions into the tetraphenylarsonium chloride (Anders 1960).

2In vadose zone sediments, the concentration of 99Tc will indeed be greater than that of the DWS, but the rate of transfer to underlying aquifer may be such that the concentration of 99Tc will be below the DWS.
The solubility of TcO$_2$·$_n$H$_2$O was also determined from neutral to basic conditions by Eriksen et al. (1992). The solubility values determined by these investigators over the same pH conditions as Meyer et al. (1991) overlap within experimental uncertainty. At pH values between 10 and 12, Eriksen et al. (1992) reported that the solubility of TcO$_2$·$_n$H$_2$O increased by a factor of approximately 10 times. They proposed a general equation to describe the dependency of the solubility on pH:

\[[\text{Tc(IV)}]_{\text{tot}} = K_{s1} + K_{s2}/[H^+] \]

in which $[\text{Tc(V)}]_{\text{tot}}$ is the total amount of Tc(IV) species and $\log K_{s1}$ and $\log K_{s2}$ have the respective values of -8.16 ± 0.06 and -19.2 ± 0.3. The authors also carried out experiments in which CO$_2$ was added. The effect of CO$_2$ is to increase the solubility of TcO$_2$·nH$_2$O. When the pCO$_2$ was increased from 0 to 50 percent the solubility increased by nearly 10 times. Eriksen et al. (1992) report the following equilibrium constants between TcO$_2$·nH$_2$O, CO$_2$, H$_2$O and hydroxo and hydroxo-carbonato complexes:

\[
\begin{align*}
\text{TcO}_2\cdot_n\text{H}_2\text{O} &= \text{TcO(OH)}_2^- + (n-1)\text{H}_2\text{O} \\
K_s &= 6.76 \times 10^{-9} \\
\text{TcO}_2\cdot_n\text{H}_2\text{O} + \text{H}_2\text{O} &= \text{TcO(OH)}_3^- + \text{H}^+ + (n-2)\text{H}_2\text{O} \\
K_{s2} &= 8.71 \times 10^{-20} \\
\text{TcO}_2\cdot_n\text{H}_2\text{O} + \text{CO}_2 &= \text{Tc(OH)}_2\text{CO}_3^- + (n-1)\text{H}_2\text{O} \\
K_{s3} &= 8.13 \times 10^{-8} \\
\text{TcO}_2\cdot_n\text{H}_2\text{O} + \text{CO}_2 + \text{H}_2\text{O} &= \text{Tc(OH)}_3\text{CO}_3^- + \text{H}^+ + (n-2)\text{H}_2\text{O} \\
K_{s4} &= 4.47 \times 10^{-16}
\end{align*}
\]

Although Meyer et al. (1991) did not find evidence for an increase in solubility because of the presence of chloride in solution, Hess et al. (2004) concluded otherwise. These latter investigators showed that in chloride solutions of 1 × 10$^{-3}$ to 5 M NaCl, technetium likely forms TcCl$_6^{2-}$ and TcCl$_4^{\circ}$ complexes. An increase in the solubility of technetium was also reported by Lieser et al. (1987), although only at relatively low pH values. In general, the data of Hess et al. (2004) are consistent with those of Lieser et al. (1987).

6.3 Sorption

Sorption relates the quantity of a chemical species associated with solid components of soil to the concentration in the contacting solution. Partitioning between solids and solution is generally assumed to take place under equilibrium conditions and is dependent on the solution composition (pH, concentration of competing ions) and soil characteristics (point-of-zero-charge, surface area). Partitioning is typically expressed as the distribution coefficient, K_D:

\[K_D = \frac{[(C_{\text{initial}} - C_{\text{final}})V_{\text{initial}}/M_{\text{sed}}]/C_{\text{final}}} \]

in which C_{initial} is the beginning concentration of technetium in solution, C_{final} is the concentration of technetium at the end of the experiment, V_{initial} is the beginning volume of water before soil is added, and M_{sed} is the mass of sediment added. Although interaction of the ion with the solid is assumed to be surface sorption, there are a number of cases, especially when the concentration of the species is relatively high, when precipitation occurs on the mineral surface. Accordingly, sorption should be regarded as an empirical value rather than a mechanistic description. Because technetium is also redox sensitive, its partitioning behavior will also depend on the E_h of the system and the presence of materials that lead to
reduction, such as organic matter. As previously discussed, the reduction of Tc(VII) to Tc(IV) takes place between 200 and 100 mV over circum-neutral pH values (Lieser and Bauscher 1987).

Partitioning behavior is starkly different for Tc(VII) and Tc(IV). As amplified more fully below, pertechnetate sorbs poorly onto typical soil materials whereas Tc(IV) sorbs reasonably well onto a variety of materials. If Tc(VII) could be reduced to Tc(IV), the sorption (mostly irreversible) will increase by a factor of 10^3 (Lieser and Bauscher 1987). Further, Tc(IV) is also prone to sorb onto FeS$_2$ (Bruggeman et al. 2007), although it is not clear if the sorbed technetium forms a Tc—S bond. Because most aquifers are assumed to be in contact with the atmosphere, and because most arable soils display E_h values in the mildly oxidizing to oxidizing range (Koch-Steindl and Pröhl 2001), most partitioning experiments are conducted under aerobic conditions. These experimental conditions seem justified because of the observed fast transit (90 percent of the groundwater velocity) of technetium in aquifers (Rudin et al. 1992).

Results of partitioning experiments have demonstrated that pertechnetate sorbs weakly onto solid phases. Wildung et al. (1974) for example, reported that 22 different soils were equilibrated with pertechnetate for 24 hours and yielded K_D values (pCi sorbed per g soil/pCi solute per mL solution) of 0.007 to 2.8 mL/g. Subsequent studies have yielded similar results. Sheppard and Sheppard (1984) reported small values of K_D (<0.005 mL/g) measured on soils using lysimeters. These results reflect the electrostatic repulsion between the negatively charged pertechnetate anion (TcO$_4^-$) and the negative surface charge carried by sedimentary materials in temperate climates at near-neutral pH values. Kaplan and Serne (1998) reported small positive to negative K_D values (-0.16 to +0.11 mL/g) for soils sampled from the Hanford Site, Washington State. Negative K_D values are possible because of the principle of excluded water. Water molecules will orient themselves with the positive end of their dipole towards the negatively charged mineral surface and, depending on the properties of the metal—oxygen surface species and ambient solution pH, a zone of structured water develops that repels negatively charged species, such as pertechnetate. Solution extracted from the experiment will typically not include the water sorbed at the surface of the mineral grains, so the pertechnetate is concentrated in the sampled “excluded” bulk solution. Thus, the concentration of pertechnetate in the final compared to the beginning solution may be higher, yielding negative K_D values (see Equation 19).

In an attempt to determine the controls on pertechnetate partitioning Wildung et al. (1984) carried out longer-termed experiments (1050 hours) on 30 different soils representing a wide range in climate, composition (including high- and low-carbon soils), and physical properties (such as surface area). Sorption of pertechnetate was correlated with particle size distribution, major element composition, mineralogy, the presence of amorphous iron, aluminum, silicon, and manganese, and solution properties such as E_h, pH, organic carbon and nitrogen. The reservoirs of extractable metals, such as aluminum and iron, were quantified by use of selective solution extractions (SSE) while organic carbon was extracted using hydrogen peroxide. They observed that K_D values (<1 to 12.7 for grassland-shrub and 8.3 to 46.6 for forest-marshland soils) were related to both organic carbon and nitrogen, especially over long experimental durations. Over the same time interval (1050 hours), technetium sorption also correlated well with extractable iron (using ammonium oxalate) and fine to coarse clay. Over shorter periods of time (48 hours), technetium sorption correlated well with organic carbon, nitrogen, extractable iron (using either ammonium oxalate or citrate-bicarbonate- dithionite solutions), extractable aluminum, and coarse clay. Values of K_D obtained from shorter duration experiments are lower (less than 1 to 5.7 for grassland-shrub and 5.1 to 31.0 for forest-marshland soils) than that of longer-duration experiments, indicating some form of early kinetic control. In both short- and long-term experiments technetium sorption was
negatively correlated with pH. These trends were especially pronounced in forest-marshland compared to grassland-shrub soils. Their overall conclusion was that technetium sorption is very limited, even in soils that contain a large amount of organic carbon and nitrogen.

Note, however, that use of H₂O₂ to remove organic carbon from a soil sample can potentially produce experimental artifacts. A number of investigators (Geraedts et al. 2002; Stalmans et al. 1986; Van Loon et al. 1986; Wolfrumm and Bunzl 1986) have reported a strong affinity between technetium and organic matter, with relatively high K_D values (see Section 6.5). In these soils, it appears that technetium is reduced in the presence of organic matter, and exposure to H₂O₂ results in rapid oxidation of technetium to pertechnetate. Therefore, K_D values for technetium in organic-rich soils may be higher than extraction using H₂O₂ would indicate.

It is important to point out that the small K_D values reported by geochemists seem to be contradicted by the results obtained from soil scientists. Despite the relatively oxidizing conditions of most farm lands, technetium appears to be bound up in soil, especially in periodically wet conditions (Ishii et al. 2004a; Ishii et al. 2004b; Tagami and Uchida 1997; Tagami and Uchida 1999). The relative immobility of technetium in agricultural fields was first noticed by Henrot (1989), who proposed that microbial activity may be causing reduction with consequent sorption and precipitation in the soil. In this model microbial activity in the soil causes depletion of oxygen in the interstices of mineral grains, and diffusion of O₂ through a layer of water becomes rate-limiting. Therefore, technetium immobility may occur, even in soils in which oxidizing conditions are assumed.

Because of the low solubility of TcO₂(am) and TcO₂·nH₂O(cr) compounds, experiments carried out under reducing conditions typically contain technetium concentrations that exceed the solubility limit. Lower technetium concentrations could be used, but this imposes nearly insurmountable analytical challenges to experiments, typically precluding this option. For example, Baston et al. (2002) described the behavior of technetium in an experimental apparatus that mimics the conditions expected for technetium disposal in Boom Clay. The Boom Clay system is naturally reducing and pore water, presumably in equilibrium with it, contains high concentrations of organic matter as well. The pH of the system is near neutral (approximately 8) and the E_h value was measured at -230 mV, well below the threshold of Tc(VII) reduction. Introduction of pertechnetate to the system resulted in reduction and immobilization of technetium, probably through precipitation. The absence of organic matter, accomplished through filtration at 30 000 MWCO¹, did not appear to affect the solubility or sorption of technetium. Migration experiments yielded calculated K_D values of 0.8 to 1.8 mL/g, which are larger than the values typically reported in pertechnetate sorption studies. Larger K_D values are not expected because the likely species at this pH value is TcO(IV)(OH)₂°, which probably has a low sorption potential.

The same patterns of technetium distribution emerge from studies of marine sediments and suspended particulate matter. In near-surface waters, conditions are oxidizing and technetium is in the pertechnetate form. Distribution coefficients of less than 1 mL/g have been reported for pertechnetate distribution in seawater and suspended particles (McCubbin et al. 2006). On the other hand, much higher K_D values were reported for sorption of technetium in reduced marine environments. Typical K_D values for technetium partitioning between marine sediments and seawater are between 10^2 and 10^3 (Harvey and Kershaw 1984; IAEA 2004). For example, McCubbin et al. (2006) reported K_D values between approximately 3×10^2 and approximately 5×10^3 mL/g for sediments from the Irish Sea sampled between

¹MWCO = molecular weight cut-off. The 30 000 MWCO is approximately equivalent to 0.22 μm pore filter.
1995 and 2002. However, the measured K_D values were calculated based on technetium concentrations in seawater, and not from pore water in contact with the sediments. The authors also point out that their K_D values are about an order of magnitude larger than those obtained from experiments. They attribute this discrepancy to non-equilibrium binding between sedimentary particles and technetium in seawater, with the implication that K_D values are kinetically governed.

In contrast to the simple pattern of technetium distribution discussed above, there are several cases where technetium behavior is not consistent with that expected. Zhang et al. (2000) conducted a series of tests over an interval of pH (5 to 9.6), aqueous nitrate (0.0005 to 0.10 M), and aluminum-bearing solids (boehmite, Al-oxyhydroxide gels, and simulated tank wastes) in order to measure the partitioning of rhenium and technetium between solids and solution. Concentrations of perrhenate were generally 5×10^4 mol/L (which is higher than the concentrations of technetium typically found in waste streams). Measured K_D values vary from 5 to 105 mL/g, depending on nitrate concentration, solution pH, and identity of the solid. In boehmite [AlO(OH)] suspensions, the highest K_D values were measured in pH = 5 solutions with low nitrate concentrations. Competition between nitrate and perrhenate sorption was fairly strong; increasing activities of nitrate caused a decrease in perrhenate sorption, but in a non-linear fashion (higher activities of nitrate had a relatively small effect on K_D values). High K_D values were also found for aluminum-rich gels (21 to 111 mL/g). This might be an important scenario for tanks leaking into the environment; the alkaline solutions may partially dissolve aluminum-bearing phases resulting in the formation of amorphous Al-oxyhydroxides that sequester technetium. Experiments were also undertaken in which technetium, rather than rhenium, was used to confirm the results of tests with perrhenate. Additional tests were conducted with SeO$_4^{2-}$, ReO$_4^-$ and TcO$_4^-$ with a variety of stimulant tank sludge materials that possessed chemical similarity to various sludge materials produced using the five waste streams (Bi-phosphate, U-recovery, REDOX, PUREX-Al clad, and PUREX-Zr clad). Sorption of these anions was highest in sludge simulants that contained the highest concentrations of aluminum. X-ray diffraction confirmed that boehmite was the main phase in the high-aluminum sludge.

6.4 Colloids

In experiments with high concentrations of technetium (greater than 10^{-5} M Tc), several investigators have reported formation of colloids of technetium at moderately acidic (pH \leq 4) (Lieser et al. 1987; Sekine et al. 2004; Vichot et al. 2002) and under reducing conditions (Sekine et al. 2002). They report brown to brownish-black turgid solutions that are consistent with the presence of colloids. Congeners of technetium, such as rhenium and ruthenium, are also known to form collections or clusters of molecules at the same scale of colloids, but technetium does not display this tendency to the magnitude that ruthenium does (Rard 1985). At the same time, it is well-known that dimers of technetium, such as [TcO(OH)$_2$]$_2^-$, can form and other types of dimers [(H$_2$EDTA)$_2$Tc$_2$(μ—O)$_2$] can be synthesized in the presence of EDTA (Bürgi et al. 1981). In the latter case, technetium in octahedral coordination connects to other octahedrons through double bridging between two ligands (i.e., edge-sharing polyhedra), rather than by direct metal—metal bonding. Sekine et al. (2002, 2004) also showed that colloids of technetium will form from pertechnetate solutions exposed to radiolysis at acid to near-neutral pH values. Radiolysis caused reduction of Tc(VII) and formation of Tc(IV) polymers and colloids, first as Tc(IV), then as TcO$_2$·nH$_2$O nanoparticles as the solution pH increased. Lukens et al. (2002) also showed that radiolysis of pertechnetate solutions can produce polymers similar to the (H$_2$EDTA)$_2$Tc$_2$(μ—O)$_2$ structure, but in alkaline solutions. In this case, the solutions contained citrate, dibutyl phosphate, and aminopolycarboxylates, similar to some of the organic materials in Hanford waste storage tanks. X-ray
absorption spectroscopy of the run products showed that the objects consisted of one-dimensional chains with bridging O atoms shared between two metal centers and water ligands in the *trans* position. Because of the tendency for colloids of technetium to form at concentrations above saturation, it is best to approach solubility measurements from undersaturated conditions.

The influence of colloids on the geochemical behavior of technetium was explored through a set of experiments performed by Maes et al. (2004). The authors imposed reducing conditions on a groundwater solution spiked with pertechnetate and the resulting solution was equilibrated with natural (Gorleben) sand. Technetium was rapidly reduced with some Tc(IV) sorbing onto magnetite or pyrite grains. Interestingly, the concentration of technetium in solution was much higher than expected and the authors attributed this to the presence of humic substances that increased the solubility of technetium. A set of experiments without the organic-rich Gorleben sand, but carried out in synthetic systems containing magnetite and pyrite, revealed slow reduction kinetics, with more than 200 days required before significant reduction occurred. XANES indicated that nearly all the technetium was in the Tc(IV) state. The technetium atoms were coordinated by 6.1 to 7.2 oxygen atoms at a distance of 2.01 to 2.03 Å, as determined by EXAFS methods. These data are consistent with TcO₂-like structures (Wharton et al. 2000), including polymeric Tc(IV) species. Evidence for Tc—S and Tc—C bonding were sought for, but were not found.

The lack of data for direct Tc—C bonding is somewhat surprising because of the preponderance of organometallic species reported in the literature. However, it is equally likely that technetium imitates the behavior of uranium in that reduction occurs in the presence of organic matter, but no bonds form between uranium and carbon. Sites on organic matter that can be used to transfer electrons for reduction may be abundant, but reduction does not accompany a shift between Tc—O and Tc—C bonds. The link between technetium and organic material is a complex problem, and is examined in more detail below.

6.5 Interaction with Humic Substances

In the natural environment, there appears to be a modicum of evidence for interaction between technetium and organic matter. For example, in the marine environment, seawater containing high concentrations of organic matter (typically at depths well below the oxygen-rich surface waters) yields high partition coefficients (K_D up to 1500 mL/g) (Brown et al. 1999). In terrestrial environments, a number of investigators have reported retention of technetium in soils containing relatively high amounts of organic matter (Bors et al. 1999; Geraedts et al. 2002; Wolfrumm and Bunzl 1986). In addition, soil scientists have noted that the bioavailability of technetium in plants diminishes with time (Cataldo et al. 1989; Echevarria et al. 1997), and some investigators have speculated that binding between organic matter and technetium may be one reason for the diminishing uptake of technetium into plants with time (Stalmans et al. 1986).

The availability of technetium for uptake into biological systems will depend in large part on the chemical form of technetium [i.e., Tc(VII) vs. Tc(IV)]. For example, Stalmans et al. (1986) argued that organic matter provides an important sink for technetium in soils and sediments and this interaction is strong enough to diminish or prevent uptake by plants. In their experiments immobilization of technetium by organic matter appears to be very strong; addition of complexing agents, such as EDTA, causes little re-solubilization of technetium. However, this argument rests on the assumption that there is significant interaction between EDTA and technetium (see discussion of experiments by...
Maset et al. 2006). They note that particularly strong bonds between technetium and humic acids occur on hydroxyl sites that are adjacent to carboxylic groups. It was not clear from this study, however, if the presence of humic acids provided an environment in which reoxidation and resolubilization was resisted, or if technetium was expressed as a TcO$_2$ precipitate. In experiments in which concentrations of technetium are relatively high (mM Tc concentrations) formation of TcO$_2$ precipitates may occur, but this is unlikely to mimic the majority of settings where technetium contamination has occurred (µM Tc concentrations).

An example of this is provided by the experiments conducted by Maes et al. (2004), who showed that in systems containing high concentrations of dissolved organic matter and high concentrations of technetium (2.2×10^{-3} M), reduction and consequent immobilization of technetium occurs. Analyses by EXAFS revealed that the reduced technetium was in the form of a hydrated TcO(IV)$_2\cdot n\text{H}_2\text{O}$ solid, most likely expressed as a colloid or polymer rather than a crystal. The data showed no evidence for a carbon backscatterer near the technetium center, so it appears that Tc—C bonds were not formed. The relatively high concentrations (approximately 10^{-3} M in experiments versus 10^{-8} to 10^{-9} M in contaminated systems) render these conclusions ambiguous, however.

Van Loon et al. (1984), in contradiction to the conclusions of Maes et al. (2004), argued for direct bonding between technetium and organic matter. In their model formation of organometallic technetium is generally a two-step process: formation of complex with labile ligands [such as K$_2$TcBr$_6$ in their experiments] and by then by reduction in the presence of complexing agents (some material, like cysteine, both reduces and complexes with technetium). In general, binding between technetium and organic matter occurs when there are combinations of two functional groups. Typical functional groups include:

- Hydroxyacarboxylates (citrate, malate, tartrate, gluconate, β-hydroxyisobutyrate).
- Aminocarboxylates (EDTA, DTPA, NTA [nitrilotriacetic acid], etc.).
- Polyamines (ethylenediamine, tri-, tetra- and pentamines, and cyclam [1,5,8,12-tetra-azocyclotetradecane]).
- Sulphydryl amino acids (methionine, cysteine and their derivatives, such as N-acetylcysteine, penicillamine, cysteine-ethylester).

Other functional groups, such as di- and tri-carboxylic acids cannot stabilize reduced technetium “unless at least one adjacent hydroxyl group is present.” (Van Loon et al. 1986) These functional groups, or ones like them, are present in large amounts in soil organic matter, and typically in sterically favorable positions, yet an unambiguous, direct linkage between technetium and organic groups has not been presented.

In contrast, other investigators have not found a strong link between technetium immobilization and organic matter in soil. For example, Kaplan (2003) conducted an experimental study to determine the pH-dependent K_D values of technetium and iodine on two different soils, one a wetland sample with relatively high organic matter content, the other an upland soil with virtually no organic matter, but with significant Fe-, Al-coatings on primary mineral grains. However, even the soil samples with relatively high organic matter contents displayed very low Tc K_D values, and within error of those reported for soils lacking organic matter.
Further support for a limited role between organic matter and technetium (or its analogue, rhenium) was reported in experiments by Kim et al. (2004) and Maset et al. (2006). Kim et al. (2004) reported the results of sorption tests in which organic materials containing either carboxyl (—COOH), sulfonate (—SO₃H) or amine (—NH₂) groups were exposed to solutions containing aqueous perrhenate. They found that only protonated amine groups (NH₃⁺) were reactive towards perrhenate. Results of experiments in which EDTA, NTA or isosaccharinic acid (ISA) were added to systems in which TcO₄⁻ or ReO₄⁻ were reduced were reported by Maset et al. (2006). They found that even in soils that contained 12 percent organic carbon that the solubility of Tc(IV) in solution was unaffected. The lack of any observed effect by EDTA on solubility weakens the argument presented by Stalmans et al. (1986), in which a lack of interaction between technetium and EDTA was cited as evidence for strong Tc—OM interactions (see above). Gu and Ruan (2007), on the other hand, reported limited complexation between Tc(IV) and EDTA or humic acids using a Surface-Enhanced Raman Spectroscopy (SERS) technique. Low concentrations of Tc(IV)(aq) can be detected by Raman spectroscopy when technetium sorbs onto nanoparticles of gold that have surfaces modified with positively charged dimethylamine functional groups. The gold particles enhance the Raman signal such that concentrations as low as 10⁻⁷ M technetium can be detected and the valence state determined. These investigators found that complexation occurred, but when exposed to an oxidizing environment, the Tc(IV) was readily oxidized. The preponderance of evidence suggests, therefore, that strong interactions between technetium and organic matter either do not occur, or are very sensitive to the presence of oxygen. In very unusual chemical environments, such as those represented by tank waste, stronger interaction may occur, as demonstrated by Xia et al. (2006). They found that strong Tc-oxalate complexes formed in solutions with high ionic strength.

Collectively, the data cited above can be interpreted to show that Tc—OM interactions occur when concentrations of the organic ligand are above a threshold value. For the concentrations of technetium typically found in pore water solutions, this appears to be a condition that is not typically met. At higher technetium concentrations, technetium is immobilized as a TcO₂-like compound, rather than as an element chelated by organic functional groups. In any event, the data indicate that even if complexation occurs, re-oxidation takes place rapidly and cannot be counted on to immobilize technetium for long. In summary, the results indicate that another mechanism takes place to cause reduction of technetium and a likely candidate is discussed in the section on biogeochemistry.
7.0 Potential for Remobilization

As the preceding section illustrates, reduction of technetium may be ephemeral when technetium-bearing sediments, soils, or solutions become exposed to oxidizing conditions or to agents that catalyze oxidation. Addressing the issue of re-oxidation and remobilization of technetium is extremely pertinent for understanding the mobility of technetium between sources and sinks in the natural environment. In the study cited above, Van Loon et al. (1984) reported experimental evidence that suggested rapid re-oxidation of reduced forms of technetium. Subsequent studies, however, paint a more complex picture with some studies indicating slow or fast re-oxidation or rates in between. Remobilization of reduced technetium during re-oxidation events has been addressed by Ashworth and Shaw (2005), Begg et al. (2007), Burke et al. (2005, 2006), Morris et al. (2000, 2008). The main theme of these papers is that technetium fate is intimately related to iron and sulfur geochemistry and these, in turn, are strongly governed by microbiological processes.

Estuarine sediments, along with their indigenous microbial population, were amended with Tc(VII) after progressive anoxia had developed (Burke et al. 2005). Anoxia occurred through stimulation of the nitrate-, iron- and sulfur-reducing microbes in the sediments. Control experiments in which the sediments were sterilized showed that Tc(VII) reduction did not occur, strongly implicating the role of microorganisms on the valence state of technetium. Although a detailed reckoning of the microbial population was not carried out, populations of nitrate-, iron-, and sulfate-reducing bacteria were separated and sterilized sediments were inoculated with the various microbes. These investigators found that Tc(VII) reduction occurred when iron- and/or sulfate-reducing bacteria were present, but not when nitrate-reducing bacteria alone were present. Data obtained by x-ray absorption spectroscopy (XAS) reveal that the reduced technetium is manifested as hydrous Tc(IV)O2 solids. Some Fe(II) was present from the initial materials, mostly as Fe(II) in solution. Control experiments indicated that Fe(II) concentrations in the initial solutions had no effect on Tc(VII) reduction, indicating that biogenic Fe(II) is somehow more effective as a reducing agent than inorganically-generated Fe(II).

In a subsequent study Burke et al. (2006) carried out similar experiments in which the indigenous population of microbes in sediments was stimulated so that progressive anoxia occurred. The soils were then amended with Tc(VII) and the concentrations and valence states of Tc, Fe and S were determined and E₅₃ monitored. The run products were then exposed to a variety of oxidizing conditions and the remobilization of Tc assessed. During progressive anoxia, Fe(II) and sulfide began to build up in the sediments. As in the previous experiments, nearly all of the Tc(VII) was rapidly reduced and disappeared from solution during iron and sulfate reduction. In sterilized control experiments, Tc(VII) reduction did not occur.

In re-oxidation experiments, the remobilization of technetium was dependent upon the oxidant. For O₂ as the oxidant, about 50 percent of the technetium was remobilized as pertechnetate (Burke et al. 2006). Rapid re-mobilization of technetium (in approximately 66 days) occurred in both the Fe(III) and sulfate-reducing sediments, but the balance of technetium (35 to 45 percent) remained recalcitrant. During O₂ re-oxidation, both E₅₃ and Tc in solution increased while Fe(II) decreased. In general, iron was oxidized faster than technetium. Similar to the Fe-oxidation behavior the sulfate-reducing experiments showed that a fraction of the sulfur was rapidly oxidized, but the balance remained reduced beyond the two months of the experiment’s duration. According to the authors, the presence of recalcitrant sulfur even in oxidizing experiments has been previously recorded and may help explain the stabilization of
heavy metal and radionuclide elements. Thus, the lack of correlation between sulfate and technetium oxidation and re-mobilization, coupled with the XAFS results, which did not show evidence for Tc—S bonding, indicate that sulfide stabilization of technetium is not occurring.

In contrast to O₂, when nitrate was used as the oxidant, less than 10 percent of the technetium was re-mobilized, even though extensive Fe(II) and sulfide re-oxidation occurred. The authors speculate that sulfide and Fe(III) re-oxidation results from a nitrate-mediated bio-oxidation process that does not affect technetium. They suggest a two-stage process:

\[
\text{FeS} + \text{NO}_3^- + \text{H}_2\text{O} \rightarrow \text{SO}_4^{2-} + \text{Fe}^{2+} + \text{NH}_4^+ + 2\text{OH}^- \tag{20}
\]

\[
2\text{Fe}^{2+} + \text{NO}_3^- + \text{H}_2\text{O} \rightarrow 2\text{Fe}^{3+} + \text{NO}_2^- + 2\text{OH}^- \tag{21}
\]

In other words, iron oxidation is de-coupled from technetium oxidation because of nitrogen reduction. The stoichiometry of products (SO₄²⁻/NH₄⁺; Fe²⁺/NO₂⁻) evolved during the experiments appears to support the argument.

A significant finding of this study was that the \(E_h \) of the re-oxidized system rose to +150 mV, which would lead to re-oxidation of technetium, yet very little of the total technetium budget was remobilized. This is evidence that supports the idea that the \(E_h \) of the system is less important than the availability of oxidizing or reducing agents. Slow re-oxidation of technetium has been reported elsewhere (Cui and Eriksen 1996a; Standring et al. 2002; Wharton et al. 2000), but the present authors conclude that re-oxidation, at least a fraction of it, occurs rapidly. Accordingly, exposure to air results in oxidation of some of the technetium, some of which is mobile, but there is also a fairly large fraction of technetium that remains unaffected by oxidation and is immobile.

Morris et al. (2000), conducted an investigation to trace the distribution of radionuclide elements (\(^{99}\text{Tc}\) \(^{137}\text{Cs}\), \(^{237}\text{Np}\), \(^{238}\text{Pu}\), \(^{239}\text{Pu}\), \(^{240}\text{Pu}\), \(^{239,240}\text{Pu}\), and \(^{241}\text{Am}\)) in intra-tidal marsh sediments from the Irish Sea. The radionuclide elements were released to seawater from the Sellafield reprocessing plant, in the United Kingdom. The study examined how radionuclide elements became sorbed to small-size particulate matter suspended in the ocean and how the elements became redistributed after deposition.

The contemporary model for radionuclide element distribution is that fine sediments have higher \(K_D \) values than coarse sediments. Even so, \(K_D \) values for \(^{99}\text{Tc}\) are low compared to other elements. For example, the \(K_D \) values for transuranic elements are between 10⁴ to 10⁶ mL/g, and 10³ mL/g for \(^{137}\text{Cs}\), but are less than 10 mL/g for \(^{99}\text{Tc}\). Even though the \(K_D \) value for \(^{99}\text{Tc}\) is smaller than for other radionuclide elements, there is a substantial degree of particle association because of the high concentration of suspended solids in the water column. Part of the data in this study, therefore, pertains to the control of the mobility of technetium as a function of particle size.

The residence time for technetium in sediments depends on the redox state, which in turn depends on the \(E_h \) of the system. An \(E_h \) of approximately +200 to +100 mV at pH 7 is needed to reduce Tc(VII) (Lieser and Bauscher 1987), but reduction was catalytically aided by reactions at mineral surfaces of oxyhydroxides and sulfides. The presence of sorbed Fe(II) on mineral surfaces appears to be a key to inducing Tc(VII) reduction, despite the overall \(E_h \) of the system. The redox state of the sediments varied between +180 to +270 mV (mildly anoxic), with the \(E_h \) nearly coincident with the manganese redox couple, and above that of the iron couple. Experiments have shown that the \(E_h \) must be below +300 to
form Mn(II), but an E_h of -100 mV is necessary before evidence of Fe(II) formation. Thus, there is the possibility that the presence of Mn(IV) is buffering the E_h of the sediments and thereby preventing the evolution of Fe(II) (c.f., Heron and Christensen 1995) and, therefore, the reduction of Tc(VII). Yet, despite the overall mildly anoxic character of the sediments, and the relative lack of Fe(II), and the periodic upwelling of pore solutions from the underlying sand and gravel deposits, technetium is relatively immobile in the tidal sediments. The authors speculate that technetium immobility has more to do with reduction resulting from the presence of iron sulfide phases than with particle size of the sediments.

The studies cited above further highlight the importance of iron and sulfur geochemistry on the fate of technetium, but the character of any bioprecipitated FeS phase has been elusive. Accordingly, co-precipitation of technetium (and rhenium) with iron sulfide minerals was studied by Wharton et al. (2000). The mineral mackinawite (tetragonal FeS) was synthesized in the presence of either reduced or oxidized technetium or rhenium. Mackinawite was chosen because it is the first iron sulfide mineral that forms in a paragenetic sequence. The synthesis materials and the products of re-oxidation experiments were studied using XAS to characterize the technetium and rhenium bonding environments and oxidation states.

Formation of mackinawite caused reduction of Tc(VII) and Re(VII) and co-precipitation of a TcS$_2$ phase. Synthesis of FeS in the presence of either Tc(IV) or Re(IV) resulted in no change in the oxidation state of either metal. When exposed to an oxidizing atmosphere, the coordinating atoms around Tc(IV) switch from sulfur to oxygen. Bond lengths and coordination numbers of the technetium compound are characteristic of TcO$_2$-like structure, even though iron is oxidized and secondary goethite forms. The data show that when iron is oxidized, technetium remains in a reduced state, although it is not entirely clear why this happens or how long Tc(IV) will remain reduced.

Similar experiments were performed by Livens et al. (2004), in which mackinawite was synthesized inorganically and then reacted with a solution containing Tc(VII)O$_4^-$.

 Partitioning of Tc(IV) into or co-precipitation with iron phases can occur only when technetium has been reduced. The next section indicates that reduction can occur, but the mechanisms require the action of microbial species. Further, reduction of pertechnetate is intimately tied with the geochemistry of iron and sulfur.
8.0 Biogeochemistry

8.1 Microorganisms in the Environment and Bioreduction

A major breakthrough in geochemistry since the earlier reviews of technetium chemistry was the recognition that microbial activity affects the redox state of metals and, thereby, affects their mobility in the environment. A wide range of endemic bacteria are able to couple oxidation of H₂ and organic material to metal reduction during anaerobic respiration. One such set of microbes are the dissimilatory metal reducing bacteria (DMRB) (Liu et al. 2002; Lovely 1993; Wildung et al. 2000) and these are well-represented in aquifer (Anderson et al. 2003), marine (Pignolet et al. 1989), and estuarine (Burke et al. 2005, 2006) sediments. Estimates of the number of microbes present in soil varies, but one estimate states that there are up to 10⁸ to 10⁹ bacteria per gram of soil, although only a fraction of these are active at any given time (Henrot 1989 and references therein). Even in relatively oligotrophic sediments in which the sediments are heavily contaminated by radioactive elements, viable populations of microorganisms have been documented (Fredrickson et al. 2004a), although the size of the population is relatively small compared to more hospitable environments. Stimulating the growth and active anaerobic respiration of environmentally-limited population may be possible if the soil were amended with an electron donor source. Therefore, there is a strong prospect that the oxidized form of technetium, Tc(VII)O₄⁻, may be reduced to hydrous Tc(IV)O₂-like or a Tc(IV)S₂ solids and the mobility of technetium thus hindered.

Henrot (1989) showed, for example, that water-bearing sediments inoculated with the sulfate-reducing obligate anaerobe, Desulfovibrio vulgaris and D. gigas, resulted in a loss of technetium from solution. She speculated that during sulfate reduction, biologically aided precipitation of sulfides of technetium (TcS₂ and Tc₂S₇) occurred outside the cell outer membrane. Gram-negative and -positive marine bacteria, Moraxella sp. and Planococcus sp., respectively, reduced technetium, but only under anaerobic conditions (Pignolet et al. 1989), a finding consistent with that of Henrot (1989). Subsequently, a wide variety of anaerobic microbes have been shown to reduce Tc(VII), including Geobacter metallireducens (Lloyd and McCaskie 1996), Geobacter sulfurreducens (Lloyd et al. 2000), Escherichia coli (Lloyd et al. 1997), Desulfovibrio desulfuricans (Lloyd et al. 1999), Shewanella putrefaciens (Wildung et al. 2000), Desulfovibrio fructosovorans (De Luca et al. 2001). An additional number of investigators also noted that technetium behaves as a reduced form in near-surface terrestrial sediments that are periodically waterlogged (Ishii et al. 2004a; 2004b; Tagami and Uchida 1999) that would otherwise expected to be oxidizing. In these settings, oxidation of organic material by microorganism yields a local oxygen-depleted zone in which facultative anaerobic bacteria thrive and technetium is reduced. In these microenvironments oxygen is diffusion-limited, so re-oxidation and remobilization of technetium, even in an overall oxidizing setting, is hampered.

Because a number of other terminal electron-accepting species exist in natural sediments, such as Fe(III) and Mn(III,IV), and in contaminated aquifers, such as nitrate, that have a higher reduction potential, reduction of Tc(VII) typically occurs later in the sequence as progressive anoxia develops (e.g., Abdelouas et al. 2002; Burke et al. 2005; Fredrickson et al. 2004b; and Istok et al. 2004). Although this can cause problems in successfully treating contaminated sediments, the production of biogenic reduced solids and reduced aqueous species, such as Fe(II), can have a strong bearing on the fate and transport of technetium. The mechanisms by which technetium is reduced, either by direct enzymatic or an indirect processes, is discussed below.
8.2 Reduction by Direct Enzymatic Activity

A number of investigations have established that a variety of metal- and sulfate-reducing bacteria, especially those of the *Shewanella*, *Desulfovibrio*, *Anaeromyxobacter* and *Geobacter* species, can induce reduction of Tc(VII) enzymatically (De Luca et al. 2001; Liu et al. 2002; Lloyd et al. 1997; Lloyd et al. 1999; Lloyd et al. 2000; Marshall et al. in press; Wildung et al. 2000). DMRB couple oxidation of H₂ and, to a lesser degree, organic matter to reduction of Tc(VII) via enzymatic electron transfer reactions.

Recent work has centered on understanding the role of a class of hydrogenase enzymes on the metal reduction process (Marshall et al. 2008). In particular, attention has been focused on the sulfur-bridged di-iron and nickel-iron (designated as [FeFe] and [FeNi], respectively) forms, shown in (Figure 8.1). These enzymes catalyze the oxidation of molecular dihydrogen (H₂ oxidation) and reduction of protons (H₂ evolution) that comprises the bi-directional redox reaction of hydrogen. The metalloclusters in the [FeFe] and [FeNi] proteins, which consist of iron and nickel coordinated by carbon monoxide (CO) and cyanide (CN) ligands, are the localities where catalysis takes place. Hydrogenase is typically found in the periplasmic and cytoplasmic regions of cells; in gram-negative cells, the periplasm is located between the outer and inner membranes (Figure 8.2). The close association of technetium solids on the outer membrane or within the periplasm, and not within the cytoplasmic region, is often cited as indirect evidence for the agency of hydrogenase.

![Figure 8.1. Structural Diagrams of the Active Sites of [FeNi] (Left) and [FeFe] (Right) Hydrogenase Proteins](image)

\[(L) = H_2O, OH^-, HO_2^-, O_2^-, H^-, H_2, CO, or nothing\]

Figure 8.1. Structural Diagrams of the Active Sites of [FeNi] (Left) and [FeFe] (Right) Hydrogenase Proteins
Figure 8.2. A Cartoon Cross-Section Showing the Inner and Outer Membranes Separated by the Periplasmic Space in a Gram-Negative Bacterial Cell Wall (Dahl 2008). Reduction of Tc(VII) occurs through catalysis by hydrogenase and cytochrome enzymes in the periplasm or on the surface of the outer membrane.

Other lines of evidence strongly indicate that hydrogenase plays a direct role in technetium reduction. Lloyd et al. (1999) reported that cells of Desulfovibrio desulfuricans poisoned with Cu(II), which deactivates periplasmic, but not cytoplasmic, hydrogenase, were unable to reduce Tc(VII). A similar finding was reported by De Luca et al. (2001) for D. fructosovorans, and they additionally showed that strains lacking in the [FeNi] hydrogenase operon possessed a strongly diminished ability to reduce Tc(VII).

Intimately involved in redox catalysis are the physiological electron donors or acceptors for hydrogenase, such as ferredoxins, cytochrome c₃, and cytochrome c₆. The role of cytochromes in metal reduction has been discussed by Shi et al. (2006, 2007). Although De Luca et al. (2001) argued that cytochrome c₃, for example, does not directly reduce technetium, the presence of this enzyme with hydrogenase is considered to be necessary, though not sufficient, for reduction. In contradiction to this evidence, Marshall et al. (2008) argued for a direct role of outer membrane c-type cytochromes (OMCs) in reduction of pertechnetate to Tc(IV). A mutant of Shewanella oneidensis MR-1 lacking two decaheme OMCs, MtrC and OmcA, was found to be incapable of reducing pertechnetate in the presence of lactate as an electron donor. Furthermore, when these two OMCs were purified and chemically reduced, both MtrC and OmcA were oxidized by pertechnetate, thereby providing direct evidence for the electron transfer reaction. It is unclear at this point whether the direct role of OMCs is species-specific to Shewanella sp. or if differences in experimental procedures led to different conclusions.

In most of these studies, bio-reduced technetium [Tc(IV)] was manifested as a dark precipitate formed mainly within the periplasmic space and on the exterior surfaces of the cell outer membrane (Lloyd et al. 1997; 2000; Wildung et al. 2000). The black Tc(IV) precipitate that was characterized by Selected Area Electron Diffraction (SAED) (Wildung et al. 2000) and Transmission Electron Microscopy
TEM) in experiments with *S. putrefaciens* (Liu et al. 2002; Marshall et al. 2008; Wildung et al. 2000), *G. sulfurreducens* (Lloyd et al. 2000), and *E. coli* (Lloyd et al. 1997) and was shown to be amorphous to nanocrystalline. A number of atom-specific analytical techniques, including Proton-Induced X-ray Emission (PIXE) (Lloyd et al. 1997) and Energy Dispersive X-ray (EDX) (Abdelouas et al. 2002; Liu et al. 2002; Lloyd et al. 2000; Marshall et al. 2008; Wildung et al. 2000) analyses, indicate that technetium and oxygen, and not iron or sulfur, were the major components of the solid. XAS confirmed that the technetium solid was in a reduced form and had Tc—O bond lengths (approximately 2.00 Å) that are characteristic of hydrous Tc(IV)O₂-like solids, even in systems that contained sulfur (Burke et al. 2005). In some instances, it appears that technetium co-precipitates with iron sulfide phases (Abdelouas et al. 2002). However, even when sulfide minerals form, other investigations have shown that TcO₂-like bonding environments persist when the sulfide phase is oxidized (Livens et al. 2004; Wharton et al. 2000; see below). These data indicate that hydrated TcO₂ solids are the long-term reservoir of technetium that forms as a result of biological activity.

8.3 Reduction of Tc(VII) Via Biogenic Iron (II) Catalysis

Investigators have noted that an indirect route to reduction of technetium is also possible when ferric iron is reduced to the ferrous form through the agency of DMRB (Burke et al. 2005; Fredrickson et al. 2004b; Lloyd et al. 2000; Peretyazhko et al. 2008a; Zachara et al. 2007). As discussed previously, the reduction of Tc(VII) by Fe(II) is thermodynamically feasible, although kinetically hindered as a homogeneous reaction (Cui and Eriksen 1996b). In addition, surface-mediated reduction, such as Tc(VII) on the surface of magnetite (Fe₃O₄), is possible but ferrous iron preferentially reacts with dissolved oxygen such that Tc(IV) does not form (Farrell et al. 1999). In anoxic environments, Fe(II) that is sorbed onto mineral surfaces, especially iron oxyhydroxides (Fe₃O₄, α-FeO·OH, or γ-FeO·OH) (Begg et al. 2007; Cui and Eriksen 1996a; Lloyd et al. 2000; Peretyazhko et al. 2008a and 2008b; Zachara et al. 2007) causes rapid Tc(VII) reduction in a heterogeneous, surface-mediated reaction. Ferrous [Fe(II)] iron is present in numerous phases typical of sedimentary environments, including magnetite, ilmenite, phyllosilicates (e.g., chlorite, saponite, and biotite), and amphiboles. However, the availability of Fe(II) as a reductant for Tc(VII) in silicate minerals is limited (Cui and Eriksen 1996b; Fredrickson et al. 2004b).

Note that in the experiments where Tc(VII) was reduced, biological activity does not necessarily have to be ongoing (e.g., Fredrickson et al. 2004b; Marshall et al. 2009; Peretyazhko et al. 2008a; Zachara et al. 2007). In these studies, iron-containing sediments or synthetic iron oxides were supplied to DMBR in the presence of an electron donor source and the production of acid-extractable Fe(II) was monitored over time. The lack of evidence for biogenic Fe(II) minerals (as sought for by Mössbauer spectroscopy) indicated that Fe(II) was manifested as soluble forms that were sorbed onto minerals surfaces. Once significant quantities of Fe(III) had been reduced, cells were inactivated and pertechnetate was added to the assay and the disappearance of Tc(VII) from solution was observed. Concentrations of Tc(VII) dropped rapidly in the biogenically altered sediments, whereas a control experiment revealed no drop in pertechnetate concentration. Characterization of the technetium solids by XAS techniques indicated the presence of a reduced TcO₂-like phase (Fredrickson et al. 2004b). In similar experiments, Zachara et al. (2007) reported that technetium appears to have co-precipitated with iron oxyhydroxides. Significantly, technetium was not remobilized when these materials were exposed to oxidizing conditions, suggesting that a biologically indirect process could favorably affect the transport and fate of technetium in contaminated sediments.
A number of other investigations have also shown that the biogenic production of iron sulfides, such as mackinawite (tetragonal FeS), pyrrhotite (Fe₇S₈), and greigite (Fe₃S₄), will cause reduction and co-precipitation with Tc(IV) (Abdelouas et al. 2002; Watson et al. 2001). As discussed above, mackinawite oxidizes to form goethite-like phases and technetium becomes bonded to oxygen atoms (Livens et al. 2004; Wharton et al. 2000). However, the experiments showed that even though iron was oxidized, the technetium remained in the +4 state, either as substitution for Fe(III), or as a TcO₂(s) co-precipitate within iron oxyhydroxides.

8.4 Reduction Coupled with Sulfur Reduction

Sulfur, in a variety of forms, is present in most sedimentary environments. Respiration by certain bacteria causes sulfate to reduce to sulfide, where it can then bind to reduced metals, such as Tc(IV). Production of Tc sulfides is a potentially important process, because the sulfide minerals are insoluble in aqueous solution, so precipitation will cause the concentration of technetium in groundwater to rapidly decrease. A number of investigators have documented that *Shewanella putrefaciens*, *Shewanella algae*, *Geobacter metallireducens*, and *Desulfovibrio desulfuricans* can couple reduction of sulfur to oxidation of organic carbon. Under these conditions, Tc(VII) is also reduced.

Batch tests carried out by Abdelouas et al. (2002) on soil (clayey and sandy) and groundwater or sterilized groundwater were used to determine the interaction of technetium with sulfur- or nitrogen-reducing bacteria. The bacteria were indigenous to the soil tested and are considered to be naturally widespread in soil and groundwater. The test materials were amended by addition of lactate and phosphate (because the systems were both C- and P-limited) as well as either nitrate or sulfate. The concentration of technetium did not diminish when the system underwent de-nitrification, and these results contrast with those of Istok et al. (2004). When both lactate and phosphate were present, nitrate concentrations rapidly diminished from 310 mg/L to < 1 mg/L. Because de-nitrification consumes hydronium, the pH of the solution increases, while the E_h of solution remains relatively constant. Note that the behavior of technetium is different from that of uranium, in that de-nitrification results in a 45 percent decrease in soluble uranium because of biosorption or co-precipitation with calcite.

On the other hand, respiration by sulfate-reducing bacteria caused a reduction in the concentration of technetium. Removal of technetium by sulfate-reducing bacteria likely results from reduction of technetium to form either/or TcO₂ or TcS₂. Sulfate reduction can be written as:

$$3\text{SO}_4^{2-} + 2\text{C}_3\text{H}_5\text{O}_3^- = 6\text{HCO}_3^- + 3\text{HS}^- + \text{H}^+$$ (22)

Consistent with the de-nitrification experiments, when both sulfate and nitrate were present, de-nitrification occurred first (with a characteristic increase in pH and maintenance of constant E_h) and then sulfate reduction commences. The initiation of sulfate reduction is marked by the sharp drop in E_h and the formation of a black precipitate. Analysis of the solution and solid precipitates revealed that the concentration of Fe(II) increased and that the identity of the solid is mackinawite (tetragonal FeS). Closer scrutiny of the solids revealed that the mackinawite is mainly found in cell walls of microorganisms and that technetium is associated with the FeS phase. Autoclaved materials containing nitrate, lactate, and phosphate showed no reduction of technetium, which strongly implicates the importance of biologic processes in technetium immobilization. Further, experiments spiked with inorganic S²⁻, but lacking in nitrate, sulfate, lactate and phosphate evidenced minor reduction of technetium, but nowhere near the
extent of reduction that occurred during ongoing bacteria growth. The investigators conclude that addition of inorganic forms of sulfide is insufficient to remove technetium from groundwater.

8.5 Reduction Coupled with De-nitrification

For many cases of environmental remediation, the aqueous solution containing dissolved technetium also contains nitrate. For example, many of the solutions leaked from single-shell tanks at Hanford Site in Washington State, are nitrate-rich. Accordingly, it is imperative to understand how the presence of milligram to gram per liter concentrations of nitrate will affect technetium reduction and precipitation.

Istok et al. (2004) performed field experiments in which bioreduction of NO$_3^-$, Tc(VII) and U(VI) was attempted by adding an electron donor (ethanol, glucose, or acetate). In the absence of an electron donor, reduction of the target molecules was not achieved. However, upon addition of an electron donor, rapid NO$_3^-$ reduction was observed. The buildup of NO$_2^-$ and the lack of detectable NH$_4^+$ suggest that nitrate was being consumed because of the de-nitrification reaction:

$$12\text{NO}_3^- + 5\text{C}_3\text{H}_5\text{O}_3^- + 2\text{H}^+ = 6\text{N}_2 + 15\text{HCO}_3^- + 6\text{H}_2\text{O} \quad (23)$$

They observed a corresponding Tc(VII) reduction with NO$_3^-$ reduction. Down-well sampling revealed that addition of electron donor materials resulted in microbial growth, the imposition of anaerobic conditions, and an increase in Geobacter and other metal reducing microorganisms. This investigation demonstrates that even groundwater contaminated by NO$_3^-$ and containing redox-sensitive elements (technetium and uranium) can be remediated using microorganisms. However, nitrate anions compete with technetium for sorption sites on Fe(II)-bearing minerals (Watson et al. 2001), as predicted from the smaller free energy of hydration (ΔG_{hyd}) of nitrate compared to pertechnetate. Further, reduction of nitrogen appears to be necessary before reduction of technetium can commence, so it may be the case that a bioreduction strategy for nitrate-rich waters will be prohibitively expensive.
9.0 Discussion and Recommendations for Future Studies

The current state of knowledge regarding technetium chemistry is impressive, yet part of the problem related to remediation of technetium-contaminated materials lies in several unresolved problems. One problem stems from a lack of knowledge concerning the association of technetium in sediments—i.e., is technetium sorbed onto or incorporated into solid phases? A number of investigations reveal that experiments aimed at elucidating technetium binding are time-sensitive, such that the identity of the ligand changes because of oxidation or other kinetic factors (Livens et al. 2004; Wharton et al. 2000). Because of the long half-life of 99Tc, there is an unsettling prospect that the experiments do not replicate the future environmental setting. Furthermore, studies of technetium in sediments, where the technetium was released either accidentally or intentionally into the environment, have difficulty in identifying the phase or phases with which it is associated because of very low concentrations. Techniques used to extract and concentrate technetium from typical sediments rely on multiple steps in which the accumulation of analytical uncertain can become an important factor. In support of this statement, note that spiking the sediments with an isotopic tracer, such as 99mTc, has revealed poor recovery (58 ± 6 percent) in some cases (Tagami and Uchida 1997), underscoring the difficulty of extraction procedures. In addition, selective sediment extraction techniques may not be selective enough to adequately constrain the retention of technetium. In particular, use of H$_2$O$_2$ to oxidize the organic fraction will also oxidize any TeO$_2$(s), yielding ambiguous data.

In some cases, there is evidence for uptake of technetium into solid phases that are resistant to oxidation or dissolution. Because the size of the Tc(IV) atom is nearly identical to that of Fe(III) (both 78.5 Å) and because both metals are 6-fold coordinated, there is a prospect that Tc(IV) can be harbored in the lattice of certain iron-bearing phases. Because of the charge difference between Tc(IV) and Fe(III), the substitution must either be coupled or a defect must be generated. Tc(IV) may be incorporated into iron sulfides, but the proclivity of these phases to oxidize opens questions about how long technetium will remain immobile. Although a number of experiments have shown that technetium remains in the +4 state while the host sulfide oxidizes (Livens et al. 2004; Wharton et al. 2000), there is reasonable concern surrounding the longevity of this state. Long-term experiments in which the paragenetic sequence of sulfide phases evolve towards sulfates, with studies of the corresponding oxidation state of technetium, are needed.

Because of the importance of oxidation-reduction reactions to the mobility of technetium, there should be an emphasis on understanding the chemical fundamentals of these processes. For example, the coupled oxidation-reduction reaction, such as Equation (8), above, is an overall, rather than an elementary, kinetic reaction. It is likely, however, that Equation (8) is composed of a number of elementary reactions that sum together to the overall reaction. Clearly, it would matter a great deal if the elementary reactions were parallel or sequential, because in the case of the latter, there could be rate-limiting steps that have yet to be identified. On the other hand, if the elementary steps were made up of parallel reactions, it would be very useful to understand the relative importance of the various kinetic pathways by which iron and technetium oxidation states evolve. If catalysts or inhibitors to the reaction pathways could be fashioned, then the overall oxidation-reduction scheme could be modified in an environmentally favorable fashion.

Alternatively, if re-oxidation of Tc(IV) is kinetically straightforward and fast, then other studies are needed. The relatively rapid re-oxidation in laboratory experiments appears to contrast to field
investigations in which technetium remains in the relatively immobile Tc(IV) state. Development of microenvironments, in which the oxidation state on the local scale contrasts with that of the surrounding, general state, has been discussed in the literature (Hu and Smith 2004; Hu et al. 2008), but experimental evidence for how these conditions evolve are lacking. Carefully conducted laboratory experiments coupled with field studies and computer modeling may elucidate the evolution of such microenvironments. In this case, the blanket assessment that technetium is always mobile in an overall oxidizing setting will need to be clarified and long-term models forecasting the migration of technetium in the environments will need to be modified.
10.0 References

10.8

Distribution

<table>
<thead>
<tr>
<th>No. of Copies</th>
<th>Local Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>Pacific Northwest National Laboratory</td>
</tr>
<tr>
<td>1</td>
<td>KJ Cantrell</td>
</tr>
<tr>
<td>1</td>
<td>EP Dresel</td>
</tr>
<tr>
<td>5</td>
<td>JP Icenhower</td>
</tr>
<tr>
<td>1</td>
<td>MJ Marshall</td>
</tr>
<tr>
<td>1</td>
<td>NP Qafoku</td>
</tr>
<tr>
<td>1</td>
<td>MJ Truex</td>
</tr>
<tr>
<td>20</td>
<td>DM Wellman</td>
</tr>
<tr>
<td>1</td>
<td>JM Zachara</td>
</tr>
</tbody>
</table>