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Executive Summary

The detection and identification of weak gaseous plumes using thermal imaging data is com-

plicated by many factors. These include variability due to atmosphere, ground and plume

temperature, and background clutter. This report presents an analysis of one formulation

of the physics-based model that describes the at-sensor observed radiance. The motivating

question for the analyses performed in this report is as follows. Given a set of backgrounds, is

there a way to predict the background over which the probability of detecting a given chem-

ical will be the highest? Two statistics were developed to address this question. These

statistics incorporate data from the long-wave infrared band to predict the background over

which chemical detectability will be the highest. These statistics can be computed prior

to data collection. As a preliminary exploration into the predictive ability of these statis-

tics, analyses were performed on synthetic hyperspectral images. Each image contained

one chemical (either carbon tetrachloride or ammonia) spread across six distinct background

types. The statistics were used to generate predictions for the background ranks. Then,

the predicted ranks were compared to the empirical ranks obtained from the analyses of the

synthetic images. For the simplified images under consideration, the predicted and em-

pirical ranks showed a promising amount of agreement. One statistic accurately predicted

the best and worst background for detection in all of the images. Future work may include

explorations of more complicated plume ingredients, background types, and noise structures.
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1 Introduction

For any estimation task, the ability to characterize unknowns depends on the delicate inter-

play between the underlying signal and the background noise. In the field of hyperspectral

imagery, the characterization of gaseous plumes often includes the following three main

tasks: detection, identification, and quantification [3]. Techniques for the characterization

of gaseous plumes have been studied extensively [2, 3, 4, 8].

Many of these studies have focused on the characterization of the background variability

where the term variability can include terms related to noise and clutter. The idea is that

as the understanding of the background behavior improves, the ability to detect (identify,

and quantify) gaseous plumes will also improve. As such, many of the current estimation

procedures provide information about chemical detectability after data have already been

collected. However, it would be helpful to have some information about detectability before

data are collected. That is, if one were planning a mission to certain sites with the goal of

detecting chemicals, it would be useful to have a mechanism in place that that could predict

chemical detectability at the sites of interest.

Such a mechanism may be referred to as a mission planning tool (MPT). Site-specific in-

formation (such as atmospheric transmissivity, background temperature, background emis-

sivity, and background clutter), chemical- and plume-specific information (such as chemical

absorbance and plume temperature), and sensor-specific information (such as calibration

corrections and response functions) can be used as inputs for the MPT. The MPT may

output a variety of information. For example, if information from several sites is available,

the MPT may be used to identify the site over which the relative probability of chemical

detection is the highest. Further extensions of the MPT could include the actual calculation

of the relative probability of detection at each site.

In this report, a preliminary framework for a MPT is proposed. The context for the MPT

in this report is as follows. Suppose there is one chemical of interest and several background

conditions over which the chemical is to be detected. The challenge is to be able to rank-

order the background conditions from best to worst in terms of the ease with which the

chemical of interest can be detected. Focusing on the characterization of weak gaseous

plumes, two statistics (one main statistic and then a simplified version of the main statistic)

are identified. These statistics serve as MPTs; i.e., tools that can be used to predict some
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aspect of detectability.

The statistics could also be used to rank-order a set of chemicals from easiest-to-detect to

hardest-to-detect; however, this type of application is not discussed in this report. Also,

plume detection is not addressed. Rather, the focus is on the detection of the signature of

a given chemical in a plume. For the scenarios presented in this report, preliminary results

from simplified synthetic hyperspectral images show that each of the identified statistics has

the ability to predict the empirical (i.e. observed) rank-orders of the background conditions.

This report is organized as follows. Section 2 includes a review of the governing plume

radiance model. Well-known assumptions are applied and a linear model for radiance is

developed. In Section 3, a distinction is made between chemical detection and chemical

identification. A hypothesis test for chemical detection is constructed. Computation of

the power function for this test reveals statistics that appear to drive chemical detectability.

Section 4 contains a description of experiments that were conducted in order to evaluate the

performance of the predictive statistics. These experiments were conducted on simplified

synthetic hyperspectral images. The results of the experiments are presented in Section 5

and a summary is presented in Section 6.

2 Background

2.1 Overview

Presented in this section is a review of the physics-based model that is used to characterize

the radiance of a gaseous plume. At this preliminary stage, it is assumed that the gaseous

plume contains exactly one chemical. Future work may include generalizations of the model

for more than one chemical. Well-known assumptions are applied to the radiance model

and a linear model for gas-plume radiance is developed.

2.2 Radiance Model

In order to gain insight into how background conditions affect the at-sensor observed plume

signal, the three-layer physics-based radiance model is explored [2, 4, 6]. This model can

2



be written as

Lobs(ν) = τa(ν)((1 − τp(ν))B(Tp; ν) + τp(ν)Lg(ν)) + Lu(ν) + e(ν), (1)

where Lobs(ν) represents observed radiance in W/cm2×Sr×cm−1 at wavenumber ν (cm−1),

τa(ν) and τp(ν) are dimensionless quantities representing atmospheric and plume transmis-

sivity, respectively, and are between 0 and 1, B(T ; ν) has radiance units and is Planck’s

Blackbody function at wavenumber ν and temperature T (K), Tp and Tg are the temper-

atures of the plume and gas, respectively, and Lg(ν) and Lu(ν) represent ground-leaving

radiance and atmospheric-upwelling radiance, respectively. Following the convention of

Burr [1, 2], e(ν) represents any unmodeled effects and instrument noise.

Following the convention of Burr [2] and Schott [8], the ground-leaving radiance is modeled

as

Lg(ν) = ǫg(ν)B(Tg; ν), (2)

where ǫg(ν) is a dimensionless quantity (between 0 and 1) representing the emissivity of the

ground at wavenumber ν. It is important to note that this formulation ignores the reflected

atmospheric downwelling radiance. This assumption is reasonable because the contribution

of the reflected radiance to the observed signal is negligible in the LWIR band [8].

The Beer-Bourger-Lambert Law [5] gives an explicit expression for the transmissivity of a

gas in terms of the chemical effluent’s concentration path-length, c, where c is measured in

parts-per-million-meter, denoted ppm-m. The expression is

τp(ν) = exp{−A(ν)c}, (3)

where A(ν) is the absorbance coefficient of the gas at wavenumber ν and has units of inverse

ppm-m. For optically thin plumes [2], this term is well-approximated by a Taylor series

expansion to the linear term, i.e.,

τp(ν) ≈ 1 − A(ν)c. (4)

Substitution of Equations (2) and (4) into Equation (1) yields the following working gas

plume linear model (GPLM):

Lobs(ν) ≈ τa(ν)(B(Tp; ν) − ǫg(ν)B(Tg; ν))A(ν)c + τa(ν)ǫg(ν)B(Tg; ν) + Lu(ν) + e(ν). (5)
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By collecting terms across the spectral dimension, a vector-form of the GPLM can be formed.

Let the wavenumbers under consideration be denoted ν1, ν2, ..., νn, and let ν = (ν1, ..., νn)

be the collection of these wavenumbers. Effectively, this means that there are n spectral

channels. Then, Equation (5) can be expressed as

Lobs ≈ τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Ac + τa ⊙ ǫg ⊙ B(Tg) + Lu + e, (6)

where all bold terms are n× 1 vectors and ⊙ denotes the Hadamard product (element-wise

multiplication). Examination of Equation (6) shows that the radiance due to the chemical

plume is:

τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Ac. (7)

In previous work, the term (B(Tp) − ǫg ⊙ B(Tg)) has been referred to as the Temperature-

Emissivity contrast [10].

2.3 An Application to Hyperspectral Imagery

Hyperspectral images may contain on-plume pixels (pixels that have a gas plume that influ-

ences the signal) and off-plume pixels (pixels that do not have a gas plume influencing the

signal) [2]. Using Equation (6) as a guide, the at-sensor observed radiance for an on-plume

pixel, indexed i, can be modeled as:

Li
on = τ

i
a ⊙ (B(T i

p) − ǫ
i
g ⊙ B(T i

g)) ⊙ Aci + τ
i
a ⊙ ǫ

i
g ⊙ B(T i

g) + Li
u + ei, (8)

and the at-sensor observed radiance for an off-plume pixel, indexed j, can be modeled as:

L
j
off = τ

j
a ⊙ ǫ

j
g ⊙ B(T j

g ) + Lj
u + ej. (9)

Off-plume pixels are also sometimes called background pixels and the radiance in off-plume

pixels is often referred to as background radiance. In traditional estimation procedures, the

background radiance is subtracted from the radiance found in the on-plume pixels [1, 2, 3].

This is done to isolate the radiance that is solely due to the chemical plume. At this

preliminary stage, it is assumed that atmospheric transmissivity and up-welling radiance are

constant across all pixels. Then, taking the average of L
j
off across all background pixels
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yields

Loff = τa ⊙ ǫg ⊙ B(Tg) + Lu + e, (10)

and Loff is viewed as the average background radiance. The background radiance in Equa-

tion (10) is subtracted from the on-plume radiance in Equation (8) yielding

Li
on − Loff = τa ⊙ (B(T i

p) − ǫ
i
g ⊙ B(T i

g)) ⊙ Aci + η
i (11)

where

η
i = τa ⊙ (ǫi

g ⊙ B(T i
g) − ǫg ⊙ B(Tg)) + (ei − e) (12)

contains clutter and noise terms. Then, dropping the pixel-identifying index i, the radiance

in each pixel is modeled according to the following mean-corrected GPLM

Lon − Loff = τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Ac + η (13)

and it is assumed that E(η) = 0 and V ar(η) = Σg where Σg is an n × n background

covariance matrix.

3 A Hypothesis-Test-Based Definition of Detection

3.1 Overview

In this section, the gas plume linear model developed in Section 2 is used to construct a

hypothesis-test-based definition of detection. By computing the power of the hypothesis

test, a statistic that drives chemical detectability is isolated. When given a set of background

conditions, it is shown that this statistic can be used to rank-order the background conditions

on the basis of chemical detectability.

3.2 Relevant Point Estimates

Let the absorption spectrum for chemical j be denoted Aj. Then, Equation (13) can be

generically written as

r = xjβj + η, (14)
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where r = Lon − Loff is an n × 1 vector of mean-centered at-sensor observed radiances.

Following the convention of Burr [2], the n × 1 vector xj given by

xj = τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Aj (15)

is called the chemical signature and βj is viewed as the amount of chemical signature. For

the work presented in this report, the sign or nature of βj is not investigated; however, these

topics may be explored in future work.

Given xj (that is, given τa, Tp, Tg, ǫg, and Aj), the generalized least-squares estimator

(GLSE) for βj is

β̃j = (x′
jΣ

−1
g xj)

−1x′
jΣ

−1
g r (16)

and this estimator has variance γj where

γj ≡ V ar(β̃j) = (x′
jΣ

−1
g xj)

−1. (17)

In Equations (16) and (17), Σg is unknown and must be estimated. In traditional analyses,

an estimate for Σg is computed from the off-plume pixels in the hyperspectral image that is

being analyzed. However, in terms of the mission planning perspective, there is no “current”

image from which an estimate can be computed. Fortunately, a potential solution exists.

If there were previous fly-bys at the location of interest, then a covariance library may be

available and an estimate for Σg may be gleaned from this library. Alternatively, one may

obtain an estimate of Σg from domain experts. When absolutely no information is available,

one may consider using an identity matrix as a temporary estimate for Σg. Thus, provided

that a covariance matrix estimate, Σ̂g, is available, the updated estimates are

β̂j = (x′
jΣ̂

−1
g xj)

−1x′
jΣ̂

−1
g r (18)

and

γ̂j ≡ ̂
V ar(β̂j) = (x′

jΣ̂
−1
g xj)

−1. (19)

3.3 A Hypothesis Test for Chemical Detection

Using Equation (18), a point estimate for the amount of signature associated with chemical

j can be obtained; to evaluate the significance of this result (i.e. to see if the value appears
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to be different from zero), a t-test can be used [7]. Of interest are the hypotheses

Ho : The signature for chemical j is not present.

Ha : The signature for chemical j is present.

where Ho is called the null hypothesis and Ha is called the alternative hypothesis. A test

of these hypotheses is equivalent to testing the following set of hypotheses:

Ho : βj = 0

Ha : βj 6= 0.

Here, a two-tailed test is used. Future work may include studies of other types of tests;

however, those topics are not covered in this work.

In the absence of other information, it is assumed that the errors follow a normal distribution,

i.e., η ∼ N(0, Σg). Then, the appropriate test statistic is t∗ given by

t∗ =
β̂j√
̂

V ar(β̂j)

=
β̂j√
γ̂j

, (20)

where Equation (19) has been applied [7]. Small values of t∗ provide evidence in support

of the null hypothesis while large values of t∗ provide evidence in support of the alternative

hypothesis.

The model in Equation (14) is a type of no-intercept simple linear regression model. There-

fore, the degree of freedom, df , for the t-test is n−1 since only one parameter (the slope term)

is being estimated [7]. Under the null hypothesis, t∗ follows a t-distribution with df = n−1.

Let t1−α/2;n−1 be the value such that the probabilty that a t-distributed random variable

with df = n− 1 is smaller than t1−α/2;n−1 is 1−α/2. The value t1−α/2;n−1 is also sometimes

called the critical value for the test. The two decision rules for the test are as follows. (1)

If |t∗| > t1−α/2;n−1, then the null hypothesis is rejected. That is, if |t∗| > t1−α/2;n−1, then

the signature for chemical j is said to be detected. (2) If |t∗| ≤ t1−α/2;n−1, then the signature

for chemical j is said to be undetected. For the remainder of this report, the term detected

is defined as in Defintion 1. This definition may be refined in future work.

Definition 1: (Detected) The signature for chemical j is detected in a plume if its associated

7



regression coefficient, βj, is statistically significant based on a two-tailed level α hypothesis

test.

The level of the test, α, controls the probability of a false alarm (also called a Type I Error).

In this scenario, a false alarm occurs when the signature for chemical j is detected by the

test when, in truth, the signature is not present. Obversely, the probability that the test

correctly does not detect the chemical signature is 1 − α. Typically, α is selected by the

researcher. Common values of α are 0.01, 0.05, or 0.10, which correspond to 1%, 5%, or 10%

false alarm probabilities.

Here, a distinction is made between the terms detection and identification. As detailed in

Definition 1, the signature for a chemical is detected if its associated regression coefficient is

statistically significant. However, the definition is not designed to imply that the chemical

itself has been identified. This distinction is made because two different chemicals with

similar absorbance spectra can lead to similar chemical signatures. In cases like these, both

of the chemical signatures may have statistically significant regression coefficients. Thus,

while the chemical signatures for both chemicals have been detected, neither chemical has

been identified as the chemical in the plume.

3.4 The Power of the Test

As stated earlier, the probability that the test does not detect the chemical signature when,

in truth, the chemical signature is not present is 1 − α. Now, suppose one is interested in

finding out the probability that the test detects the chemical signature when, in truth, the

chemical signature is present at some level. Intuition dictates that as a chemical’s signal

strength increases (relative to the amount of background noise), the probability of detecting

that chemical’s signature increases as well. In fact, one can compute the probability that a

hypothesis test correctly detects a given chemical’s signature; this is known as the power of

the test.

The power of a hypothesis test is the probability that the test rejects the null hypothesis

when, in truth, the alternative hypothesis is true [7]. In the context of this report, the

power of the test is the probability that the test detects the signature for a chemical when,
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in truth, the signature is present; that is:

Power(k; γj) = Pr(Reject Ho : βj = 0|Ha : βj = k is true; γj) (21)

where the vertical line “|” is read as “given that.” Power is viewed as a function of k (the

true amount of chemical signature), and γj (the variance term defined in Equation (17),

which is a function of τa, Tp, Tg, ǫg, Aj, and Σg).

It is important to note that the power function can be computed prior to data collection. As

shown earlier, the test power is a function of τa, Tp, Tg, ǫg,Aj, and Σg. Parameters τa, Tp, Tg

and ǫg can be estimated or selected based on the nature of the mission plan. Additionally,

if some prior estimate for Σg is available (i.e. from a covariance library that holds data

collected from previous fly-bys at the mission sites of interest, or data from a similar site),

then, the power function can be computed for various choices of chemicals and background

materials. Even if an informative estimate for Σg is not available, an identity matrix can be

used as a temporary estimate. Of particular interest is the fact that with k held constant,

the power function can be computed for various choices of background, and the background

associated with the highest power can be thought of as the best background for detection

since the relative probability that the chemical will be detected on that background is the

highest. With this in mind, the power function is interrogated further.

Since the null hypothesis is rejected if |t∗| > t1−α
2
;n−1, the power function in Equation (21)

can be expressed as follows:

Power(k; γj)

= Pr(|t∗| > t1−α
2

,n−1|Ha : βj = k is true; γj)

= Pr(t∗ > t1−α
2

,n−1|Ha : βj = k is true; γj) + Pr(t∗ < −t1−α
2

,n−1|Ha : βj = k is true; γj)

= 1 − Pr(t∗ ≤ t1−α
2

,n−1|Ha : βj = k is true; γj + Pr(t∗ < −t1−α
2

,n−1|Ha : βj = k is true; γj).

(22)

The distribution of t∗ depends on which hypothesis (Ho or Ha) is true. When the null

hypothesis is true (i.e. when Ho : βj = 0 is true), t∗ follows a t-distribution with df = n− 1.

When the alternative hypothesis is true (generically written as Ha : βj = k for some non-zero

value k), t∗ follows a noncentral t-distribution with df = n− 1 and noncentrality parameter

|k|/√γj where where γj = (x′
jΣ

−1
g xj)

−1 is as defined in Equation (17) [7].
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Let Ψ(·; df, δ) be the cumulative distribution function (cdf) for the noncentral t-distribution

with df degrees of freedom and noncentrality parameter δ. Here, the symbol Ψ is used

instead of a capital T in order to distinguish the cdf from the notation for temperature.

Then, the power function in Equation (22) can be expressed as

Power(k; γj) = 1 − Ψ(t1−α/2;n−1; n − 1, |k|/√γj) + Ψ(−t1−α/2;n−1; n − 1, |k|/√γj). (23)

Using properties of the noncentral t-distribution, it can be shown that:

lim
|k|→0

Power(k; γj) = lim
γj→∞

Power(k; γj) = 1 −
(
1 − α

2

)
+

(α

2

)
= α (24)

lim
|k|→∞

Power(k; γj) = lim
γj→0

Power(k; γj) = 1 − 0 + 0 = 1. (25)

The results of Equations (24) and (25) are entirely expected and reveal the effects that the

signal (summarized as k) and the variance term (γj) have on the test power, i.e., on the test’s

ability to detect the signature of a given chemical when the signature is present. Equation

(24) shows that when the signal strength decreases relative to the variance term, the test

power approaches its minimum value, α. In fact, when k = 0, the test power is equal to

α which means that when no chemical signature is present, the test detects the chemical

signature with probability α. This is consistent with the definition of α since α is the

probability of a false positive.

Of particular interest is the relationship between the variance term, γj and the power func-

tion. Equation (25) shows that as the variance term decreases relative to signal strength,

the probability that the test detects a given chemical’s signature increases and approaches 1.

The expression for γj appears in Equation (17); however, it is restated here using a slightly

different notation:

γj = γj,g = (x′
jΣ

−1
g xj)

−1 (26)

The variance term is written in this way in order to track the effect that background condition

“g” has on the power function. Suppose a background condition has associated parameters

τa, ǫg, Tg, with a plume temperature term Tp leading to a variance term denoted γj,1. Then,

suppose another background condition has similarly defined parameters leading to a variance

term γj,2. Then, it can be shown that:

If γj,1 < γj,2, then Power(k; γj,1) > Power(k; γj,2). (27)
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That is, holding k constant, if the variance term associated with background 1 is smaller than

the variance term associated with background 2, then, the probability that the test detects

the signature for chemical j is larger on background 1 compared to background 2. Thus,

this variance term can be used to order or rank the backgrounds from “best” to “worst” in

terms of the probability that the test will detect the signature of the chemical of interest.

This last result can be used to construct the preliminary MPT that was described in the

introduction of this report. Prior to data collection, variance terms for selected background

condition scenarios can be computed. Using these terms, the background conditions can be

ranked and the relative “best” background for chemical detection can be identified.

3.5 Statistics for Background Ranking

The variance term identified in the previous section can be used to construct a statistic to

predict relative chemical detectability across background conditions of interest. Suppose

chemical j with absorbance spectrum Aj is of interest. Let g = 1, ..., G be a set of G

background conditions under consideration. For ease of notation, suppose that all of the

background conditions share the same τa and Tp. Using Equation (26), the variance term

associated with background condition g can be expressed as follows:

γj,g = ((τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Aj)
′Σ−1

g (τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Aj))
−1 (28)

As shown in the relationship in Equation (27), relatively small values of γj,g lead to relatively

large values of the power function. Thus, relatively large values of γ−1
j,g lead to relatively

large values of the power function. Hence, the following statistic is proposed for background

ranking

M1,g = (τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Aj)
′Σ̂−1

g (τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Aj), (29)

where Σg is replaced with some estimate Σ̂g. As stated earlier, this estimate may come

from a covariance library. Thus, given a set of background conditions indexed by g where

g = 1, ..., G, M1,g can be computed for each background condition. Then, background

conditions indexed by g = 1, ..., G can be ranked from best to worst by ordering the M1,g’s

from largest to smallest.
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When estimates for the background covariance matrices are not available, an identity matrix

can be used as a temporary estimate leading to the following alternative statistic:

M2,g = (τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Aj)
′(τa ⊙ (B(Tp) − ǫg ⊙ B(Tg)) ⊙ Aj)

=
n∑

i=1

(τa(νi))
2(B(Tp; νi) − ǫg(νi)B(Tg; νi))

2(Aj(νi))
2.

(30)

Then, background conditions indexed by g = 1, ..., G can be ranked from best to worst by

ordering the M2,g’s from largest to smallest. That is, a relative large value of M2,g indicates

that the chemical of interest has a relative large probability of detection over background

condition g.

The form of M2 is particularly interesting because its structure is in agreement with intuition

(and, thus, so is the structure of M1). The reasoning is as follows. Intuition dictates that

it is easier to detect a chemical when (i) the atmospheric interference is small, i.e., when the

τa(νi)’s are close to 1, (ii) the (B(Tp; νi)− ǫg(νi)B(Tg; νi))’s are large in magnitude (as noted

in previous work [10]), and (iii) the chemical of interest has a large absorbance spectrum.

In fact, (i)-(iii) correspond to the case where M2 is large. Thus, justification for the use of

statistics M1 and M2 follows from both a theoretical argument as well as from intuition.

In general, M1 and M2 will not be of the same scale. However, the concept of background

ranking still holds for both statistics. Therefore, prior to embarking on a mission, M1,g or

M2,g can be computed in order to predict the background condition over which the t-test will

have the (relative) highest probability of detecting the signature of the chemical of interest.

4 Experimental Methods

4.1 Overview

Six scenarios for chemical detection were constructed. Using these scenarios as guides,

the InfraRed Systems Analysis in General Environments (IR-SAGE) code [9] was used to

construct six simplified LWIR hyperspectral images of gas plumes over organized background

pixels. IR-SAGE uses the physics-based model in Equation (6) to simulate a radiance

vector from the LWIR band using a chemical absorbance spectrum, a background emissivity
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spectrum, and a given set of atmospheric conditions, while perturbing these quantities with

Gaussian noise. For each image, the empirical relative best background for detection is

identified. Then, this result is compared to the predictions generated by statistics M1 and

M2.

4.2 Generation of Synthetic Hyperspectral Images

Two gases, carbon tetrachloride (CCl4) and ammonia (NH3) were used for image simulation.

Their spectra are presented in Figures 1(a) and 1(b). These spectra are plotted on the same

scale in order to highlight the fact that the absorbance spectrum for CCl4 is much larger

than that of NH3. The spectrum for CCl4 exhibits one strong peak at around 790 cm−1

while the spectrum for NH3 exhihibits several relatively smaller peaks spread out over the

LWIR band. One chemical was inserted into each synthetic image.

A total of six background materials were considered. The corresponding background emis-

sivity spectra are presented in Figure 1(c) and are considered to be representative of asphalt-

concrete-soil (ACS ), Brick, miscellaneous (MSC ), Paint, Snow, and steel-copper-tubing

(STCOP). These spectra are averages of clusters of laboratory-measured individual back-

ground materials from the Nonconventional Exploitation Factors Data System (NEFDS), a

government database of surface reflection parameters.

In all images, the atmospheric transmissivity was the US 1976 Standard Atmosphere. A

plot of the atmospheric transmissivity spectrum appears in Figure 1(d).

Each simulated image has dimension 150 × 120 × 126 (rows by columns by spectral di-

mension). The spectral dimension is 126 because the LWIR wavenumber range under

consideration is defined to be 750 cm−1 to 1250 cm−1 in steps of four. The six background

spectra are inserted across the rows in six 25-pixel long swaths. The chemical of interest

is inserted as six 20-column wide bands at concentration path-lengths of 16, 8, 4, 2, 1, and

0 ppm-m. This configuration produces 500 pixel replicates within each of the 36 back-

ground material/concentration path-length combination. A sample broadband image (i.e.

a hyperspectral image averaged over the spectral dimension) appears in Figure 2.

Using IR-SAGE, images were created for three temperature cases: Tp > Tg, Tp = Tg, and

Tp < Tg. In each case, Tg was fixed at 300K while Tp was allowed to be either 310K, 300K,
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or 290K. Simulated zero-mean instrument noise was used to perturb the spectra in each

pixel.

4.3 Analyses Performed on Synthetic Images

In a basic mission planning scenario (such as the one presented in the introduction of this

report), there is one chemical of interest and several background conditions on over which

the chemical signature may be detected. Therefore, at a minimum, it is assumed that the

chemical absorbance and background emissivity spectra are known and available. Addition-

ally, at this preliminary stage, it is assumed that τa, Tp, and Tg are either known or specified

by the mission plan.

The GLSE, β̂j, from Equation (18) is used as a gas detector where

β̂j = (x′
jΣ̂

−1
g xj)

−1x′
jΣ̂

−1
g r (31)

and xj = τa⊙ (B(Tp)−ǫg ⊙B(Tg))⊙Aj. This GLSE is applied to each of the 500 replicates

within each background material/concentration path-length combination. For each of the

500 trials, if the GLSE is deemed statistically significant based on a level α = 0.05 test,

then the signature for the chemical of interest is said to be detected in that pixel. For

each background material/concentration path-length combination, the number of detections

is recorded across the trials and the sample detection proportion, p̂, is computed where

p̂ =
# of detections

500
. (32)

The statistic, p̂, is treated as an estimate of the gas detection probability. For each image,

36 such proportions are computed. Then, for each background, the empirical detection

proportion is plotted as a function of concentration path-length. Examination of these

curves reveals the empirical best background material for detection and the empirical ranking

of the background materials. Additionally, the empirical detection curves are compared to

the predicted power function curves as defined in Equation (23).
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5 Results and Discussion

Calculation of M1 and the power function requires estimates of the background covariance

matrices in each image. Using the IR-SAGE images, a covariance matrix for each background

was computed from the 0 ppm − m pixels. These covariance matrices are referred to as

the background covariance matrices because they are computed from off-plume pixels. For

illustrative purposes, this collection of matrices was treated as the covariance matrix library

and this library was used to compute M1 and the power function. Effectively, this can be

viewed as a best-case scenario, where the library estimate of the covariance matrix is exactly

the covariance matrix observed in the scene.

For the results presented in this report, the actual observed data are used to compute M1

and the power function. Therefore, the results stemming from M1 and the power function

are not theoretical predictions in the strictest sense. However, proceeding in this way allows

the study of the performance of M1 (a statistic that incorporates an informative covariance

matrix) and M2 a statistic that does not incorporate an informative covariance matrix).

5.1 Results for the CCl4 Images

Beginning with the case where Tp = 310K and Tg = 300K, the results of the analyses per-

formed on the IR-SAGE images containing CCl4 are presented. The background ranking

prediction statistics M1 and M2 were computed for each of the six background materials un-

der consideration and the results are summarized in Figures 3(a) and 3(b). Using Equation

(23), the predicted power function for each background material was computed; a plot of the

resulting curves appears in Figure 3(c). A plot of the empirical detection curves for each

background material appears in Figure 3(d).

Recall that M1 (like M2) is constructed such that if a background material yields a relatively

larger value of the statistic, this means that the chemical of interest has a relatively larger

chance of being detected on that background material. Examination of Figures 3(a) and

3(b) shows that the prediction statistics agree that Paint is the relative best background

material for detection of CCl4 (under the given atmospheric and temperature conditions and

under the various assumptions highlighted in Sections 2 and 3). Additionally, M1 implies

that ACS is the worst background for detection while M2 implies that Snow is the worst
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background material for detection. A complete list of the background ranks implied by the

statistics appears in Table 1. Consider Figure 3(c). The background ordering implied by

M1 and by the power function are one-to-one since M1 is the (inverse of the) term that was

found to drive the power function. It is important to note that the power functions for the

various background materials do not cross; this illustrates the fact that given k, background

materials can be rank-ordered using the associated variance term (or its inverse, M1).

Examination of the empirical detection curves presented in Figure 3(d) shows that the curve

for Paint sits above all others. Thus, Paint is the background material with the highest

empirical power and is the empirical best background for detection of CCl4. This is con-

sistent with the predictions obtained from the prediction statistics. It is important to note

that unlike the predicted power functions, the empirical detection curves for the various

background materials can cross. As a result, the observed background ranking may be

different for different choices of concentration path-length (i.e. k). For the CCl4 data with

Tp = 310K and Tg = 300K, the concentration path-length at which the most background

separation is seen is at k = 2 ppm−m. A list of the empirical background ranking for this

choice of k appears in Table 1. Based on the empirical ranking, the three best backgrounds

for detection are Paint, STCOP, and MSC, which is consistent with the predictions from M1

and M2. This is particularly remarkable because M2 does not incorporate an informative

covariance matrix.

Next, the results of the analyses performed on the IR-SAGE image that contains CCl4 with

Tp = Tg = 300K are presented. Plots of statistics M1 and M2, the predicted power functions,

and the empirical detection curves are presented in Figure 4. For this temperature case, the

statistics provide identical predictions for the background rankings (see Table 2) and both

statistics agree that Paint is the relative best background material for detection of CCl4.

The empirical detection curves displayed in Figure 4(d) clearly demonstrate that Paint is

the empirical best background for detection of CCl4. The empirical background rankings

at k = 8 ppm − m (the point at which the most background separation is observed) are

summarized in Table 2. The predicted background rankings and the empirical background

rankings agree on the three best background materials (Paint, STCOP, MSC ) and the

worst background material (Snow). Thus, again, statistic M2 appears to perform as well as

statistic M1 for these data.

Finally, the results of the analyses performed on the IR-SAGE image that contains CCl4 with
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Tp = 290K and Tg = 300K are presented. Plots of statistics M1 and M2, the predicted power

functions, and the empirical detection curves are displayed in Figure 5. A shift is observed:

for this temperature case, the predicted best background material for CCl4 is Snow. This is

in contrast to the Tp ≥ Tg cases where the predicted best background material was found to

be Paint. The empirical background ordering shows the same type of background shifting.

The plot in Figure 5(d) shows that the empirical best background material for detection (at

4 ppm−m) is Snow. This type of background-rank shifting is consistent with observations

made in previous work [10].

The empirical background ranks at k = 4 ppm−m are summarized in Table 3. The empirical

ranks at this concentration path-length are the same as the ranks predicted by M1. While

the ranks implied by M2 are not identical to the empirical ranks, they agree on four out of

six ranks.

5.2 Results for the NH3 Images

Beginning with the case where Tp = 310K and Tg = 300K, the results of the analyses

performed on the IR-SAGE images containing NH3 are presented. Prediction statistics

M1 and M2 were computed and are presented in Figures 6(a) and 6(b); a summary of

the resulting predicted background ranks appears in Table 1. For this temperature case,

statistics M1 and M2 disagree on which background material is the best for detection. M1

implies that STCOP is the best background material with MSC following closely in second

place. M2 reverses this order and identifies MSC as the best background with STCOP

following closely in second place.

Examination of the empirical detection curves in Figure 6(d) shows that the empirical best

background for detection at 8 ppm − m is STCOP which is consistent with the prediction

provided by M1. A summary of the empirical background rankings at k = 8 ppm − m

appears in Table 1. For these data, statistic M1 accurately predicts the best two and the

worst two backgrounds for detection. Generally speaking, statistic M1 outperforms statistic

M2 for this case. Thus, this is a situation where having additional information from the

covariance matrix aids in the predictive ability of the statistics.

Next, the results of the analyses performed on the IR-SAGE image that contains NH3 with

Tp = Tg = 300K are presented. Plots of statistics M1 and M2, the predicted power functions,
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and the empirical detection curves are displayed in Figure 7. For this temperature case, the

statistics provide identical predictions for the background rankings (see Table 2) and they

both predict that that MSC is the best background material for detection of NH3. The

empirical best backround for detection is not entirely clear. Examination of the empirical

detection proportion curves in Figure 7(d) shows that the curves for the top two materials,

MSC and STCOP, overlap. The greatest amount of background seperation occurs at k = 16

ppm−m and at this concentration path-length, MSC is the best background for the detection

of NH3. A summary of the empirical background rankings at k = 16 ppm − m appears in

Table 2. At this concentration path-length, the predicted rankings implied by M1 and M2

agree with the empirical background rankings.

Finally, the results of the analyses performed on the IR-SAGE image that contains NH3 with

Tp = 290K and Tg = 300K are presented. Plots of statistics M1 and M2, the predicted

power functions, and the empirical detection curves are displayed in Figure 8. As seen in the

analyses of the CCl4 data, a shift is seen in the background rankings. For this temperature

case, the predicted best background material for detection of NH3 is Snow. For the Tp ≥ Tg

cases, the predicted worst background for detection is Snow. Figure 8(d) shows that the

empirical best background material for detection is Snow since its detection proportion curve

sits above all others. The empirical background ranks at k = 16 ppm − m are summarized

in Table 3 and are identical to the predictions implied by statistics M1 and M2.

6 Conclusions

Presented in this report is a preliminary exploration of statistics that can be used to rank

background conditions based on chemical detectability. Currently, the statistics incorpo-

rate information related to atmosphere, temperature and background emissivity; however,

they do not yet incorporate other important factors (such as sensor calibration terms or

sensor-specific noise terms) that affect chemical detectability. Future work may include

investigations of these terms as well as analyses involving more complicated plume compo-

sitions, complex backgrounds, and realistic images.
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Figure 1: (a) Absorbance spectrum for CCl4, (b) Absorbance spectrum for NH3, Represen-
tative emissivity spectra for six selected materials, and (d) 1976 US Standard atmospheric
transmissivity spectrum.
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Figure 2: Example of a broadband image for CCl4 using synthetic data from IR-SAGE. This
image has been enhanced to better show the gradations between background materials and
concentration path-lengths.
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Figure 3: Graphical results for the IR-SAGE images containing CCl4 with Tp = 310K and
Tg = 300K: (a) M1 versus background material, (b) M2 versus background material, (c)
predicted power function, and (d) empirical detection curves. Note that plots (a) and (c)
incorporate covariance matrices computed from the 0 ppm − m pixels.
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Figure 4: Graphical results for the IR-SAGE images containing CCl4 with Tp = Tg =
300K: (a) M1 versus background material, (b) M2 versus background material, (c) predicted
power function, and (d) empirical detection curves. Note that plots (a) and (c) incorporate
covariance matrices computed from the 0 ppm − m pixels.
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Figure 5: Graphical results for the IR-SAGE images containing CCl4 with Tp = 290K and
Tg = 300K: (a) M1 versus background material, (b) M2 versus background material, (c)
predicted power function, and (d) empirical detection curves. Note that plots (a) and (c)
incorporate covariance matrices computed from the 0 ppm − m pixels.
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Figure 6: Graphical results for the IR-SAGE images containing NH3 with Tp = 310K and
Tg = 300K: (a) M1 versus background material, (b) M2 versus background material, (c)
predicted power function, and (d) empirical detection curves. Note that plots (a) and (c)
incorporate covariance matrices computed from the 0 ppm − m pixels.
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Figure 7: Graphical results for the IR-SAGE images containing NH3 with Tp = Tg = 300K:
(a) M1 versus background material, (b) M2 versus background material, (c) predicted power
function, and (d) empirical detection curves. Note that plots (a) and (c) incorporate co-
variance matrices computed from the 0 ppm − m pixels.
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Figure 8: Graphical results for the IR-SAGE images containing NH3 with Tp = 290K and
Tg = 300K: (a) M1 versus background material, (b) M2 versus background material, (c)
predicted power function, and (d) empirical detection curves. Note that plots (a) and (c)
incorporate covariance matrices computed from the 0 ppm − m pixels.
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CCl4 NH3

Rank M1 M2 Emp.(k = 2 ppm-m) M1 M2 Emp.(k = 8 ppm-m)
1 Paint Paint Paint STCOP MSC STCOP
2 STCOP STCOP STCOP MSC STCOP MSC
3 MSC MSC MSC Paint Paint Brick
4 Brick ACS Brick Brick Brick Paint
5 Snow Brick Snow ACS ACS ACS
6 ACS Snow ACS Snow Snow Snow

Table 1: Background ranking (1=best, 6=worst) implied by prediction metric M1, prediction
metric M2, and the empirical detection proportions (for selected values of k) for CCl4 and
NH3 where Tp = 310K and Tg = 300K.

CCl4 NH3

Rank M1 M2 Emp.(k = 8 ppm-m) M1 M2 Emp.(k = 16 ppm-m)
1 Paint Paint Paint MSC MSC MSC
2 STCOP STCOP STCOP STCOP STCOP STCOP
3 MSC MSC MSC Paint Paint Paint
4 ACS ACS Brick Brick Brick Brick
5 Brick Brick ACS ACS ACS ACS
6 Snow Snow Snow Snow Snow Snow

Table 2: Background ranking (1=best, 6=worst) implied by prediction metric M1, prediction
metric M2, and the empirical detection proportions (for selected values of k) for CCl4 and
NH3 where Tp = Tg = 300K.

CCl4 NH3

Rank M1 M2 Emp.(k = 4 ppm-m) M1 M2 Emp.(k = 16 ppm-m)
1 Snow Snow Snow Snow Snow Snow
2 Brick Brick Brick ACS ACS ACS
3 MSC ACS MSC Brick Brick Brick
4 ACS MSC ACS MSC MSC MSC
5 STCOP STCOP STCOP Paint Paint Paint
6 Paint Paint Paint STCOP STCOP STCOP

Table 3: Background ranking (1=best, 6=worst) implied by prediction statistic M1, predic-
tion statistic M2, and the empirical detection proportions (for selected values of k) for CCl4
and NH3 where Tp = 290K and Tg = 300K.
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