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Summary 
 
 Hotspot sampling designs are used in environmental sampling to identify the location of 
one (or more) contiguous regions of elevated contamination.  These regions are known as 
hotspots.  The problem of how to calculate the probability of detecting an elliptical hotspot using 
a rectangular or triangular grid of sampling points was addressed by Singer and Wickman in 
1969.  This approach presumed that any sample which coincided with a hotspot would detect the 
hotspot without error.  However, for many sampling methodologies, there is a chance that the 
hotspot will not be detected even though it has been sampled directly--a false negative.   We 
present a mathematical solution and a numerical algorithm which account for false negatives 
when calculating the probability of detecting hotspots that are circular in shape.   

 
1. Introduction 
 

Hotspot sampling designs are used in environmental sampling to identify the location of 
one (or more) contiguous regions of elevated contamination.  These regions are known as 
hotspots. Elevated contamination is defined as contamination that exceeds a threshold, or action 
level, where the action level reflects a level of risk that is unacceptable.  If the sampling 
methodology is qualitative and only indicates the presence or absence of contamination (as 
opposed to a quantitative measurement), the action level is simply defined as the "presence" of 
contamination.  The objective of a hotspot design is to determine the sample locations that will 
yield a high probability of detecting a hotspot of a given size and shape, if such a hotspot exists.  
Typically, samples are placed at the nodes of a predetermined square, rectangular, or triangular 
shaped grid.  Hotspots are typically characterized as being circular or elliptical in shape.   
Hotspot design methodology is summarized by Gilbert (1987).   
 

The problem of how to calculate the probability of detecting an elliptical hotspot using a 
rectangular or triangular grid of sampling points was addressed by Singer and Wickman (1969).  
This approach presumed that if a sample point “hit” a hotspot, the hotspot would be detected 
without error.  However, in many situations, there is a chance that the hotspot will not be 
detected even though it has been sampled directly (a false negative).   Likewise, it is possible that 
a hotspot will be "detected" even though none exist (a false positive).   We assume the 
consequences of a false negative are more severe than those of a false positive.  For this reason, 
we will ignore the possibility of a false positive measurement. 
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The Singer-Wickman algorithm can be used to calculate the probability that at least one 
sample point in a rectangular or triangular grid hits an elliptical hotspot of a given shape and 
size. In the remainder of this section, we give a heuristic explanation of the Singer-Wickman 
algorithm. To simplify the explanation, we will restrict ourselves to the case where the grid is a 
square and the hotspot is a circle. Suppose we want to be able to detect a hotspot with radius R.  
Select any given square (a collection of four sample points) from the grid of sample points.  Now 
draw four circles of radius R that are centered at the four sample points of the square, indicated 
by the red circles in Figure 1.  We assume that if there is a hotspot, it will be centered somewhere 
inside the square. (And if it isn’t, the center of the hotspot will lie inside another equivalent 
square in the grid of sample points).  If the center of the actual hotspot lies inside one of the red 
circles, then the hotspot will be detected, because it will overlap with a sample point.  This is 
demonstrated by the green circle in Figure 1.  If the center of the actual hotspot does not lie 
within one of the red circles, it will not be detected, as shown by the blue circle in Figure 1.   
 

 

 
Figure 1:  Illustration of the Singer-Wickman algorithm.  All circles have a radius 
R = 0.48 units.  The length of the side of the square, s, is 1 unit. The black points 
are the sample points. Hotspots with radius 0.48 units whose centers lie inside one 
of the red circles will be detected (e.g. green circle).  Hotspots whose centers do 
not lie inside a red circle will not be detected  (e.g. blue circle). 

 
The strategy of the Singer-Wickman algorithm is to calculate the percentage of the area 

of the square that is occupied by the intersection of the square and the union of the four circles.  
If the circles do not overlap, the problem is trivial.  However, as the radius gets larger 
(corresponding to a larger hotspot, or, equivalently, a smaller grid size) the circles begin to 
overlap, creating more complex geometric regions.  In order to obtain relatively high 
probabilities of detecting a hotspot, the grid size must be small enough (or the hotspot large 
enough) for the four circles that are centered on the sample points to cover most, or all, of the 
square, resulting in substantial overlap among the circles.  A hotspot that is centered in a region 
of overlap will be sampled more than once.  If the false negative rate is non-zero, sampling a 
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hotspot more than once will increase the chance of actually detecting the hotspot.  Hence, the 
strategy for extending the Singer-Wickman algorithm to account for false negatives is to identify 
the regions of double, triple, and even quadruple overlap and then calculate the area of these 
overlapping regions. 
 
2. Methodology 
 
In this section we present the methodology for calculating the probability of detecting a circular 
hotspot using a square, rectangular or triangular grid of sampling points while accounting for 
false negatives.   This work builds upon the concepts of the original Singer-Wickman algorithm.  
The methodology relies on the following assumptions: 
 

1. The shape of the hotspot of concern is circular. 
2. The level of contamination that defines a hotspot (the action level) has been determined, 

which gives rise to binary outcomes.  Contamination above or below the action level 
defines the presence or absence of a hotspot, respectively. 

3. The location of the hotspot(s) is unknown, and all locations within the sampling area are 
equally likely to contain a hotspot. 

4. Samples are taken on a square, rectangular, or triangular grid pattern. 
5. Each sample is collected, handled, measured or inspected using approved methods that 

yield unbiased and sufficiently precise measurements. 
6. A very small proportion of the surface being studied will be sampled (the sample is 

much smaller than the hotspot of interest). 
7. Sample locations are independent of the measurement process. 
8. There are no false positives (a clean area is not mistakenly identified as a hotspot) 
9. The false negative rate is known and is the same for all measurements.   

 
False negative rates are influenced by the amount of contamination that is present at the 

sample location.  Large amounts of contamination are much more likely to be detected than trace 
amounts.  However, for the purposes of detecting hotspots that are defined by the presence of 
contamination above an action level, we suggest that the false negative rate be defined as the 
probability that a sample measurement indicates that contamination is below the action level, 
when, in fact, it is at (or just above) the action level.  Defining a false negative rate in this way is 
a conservative because it presumes that if a hotspot is present, the amount of contamination in 
the hotspot will be equal to the action level.  
 
 
2.1 Approach for rectangular grid sampling 
 

We begin by outlining the approach for rectangular grids (the square grid being a special 
case).  We define below some commonly used symbols: 
 

R = radius of circular hotspot to be detected. 
s = length of the short side of the rectangle (height). 
ρ = ratio of the long side to the short side of the rectangle.  Hence, sρ  is the length of the 

long side of the rectangle (width).  Note that ρ = 1 gives a square. 
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r = R/s, the standardized radius of the hotspot. 
η = false negative rate (indicated as a proportion between 0 and 1).  Formally, this is the 

probability that the amount of contamination in a single sample is observed to be below 
the action level, when, in fact, it is equal to the action level. 

|·| will denote the area function. Therefore, |A| is the area of an arbitrary region A calculated 
using standard Euclidean geometry. 

P(r,η) is a function that gives the probability of detecting a hotspot with standardized radius r 
and false negative rate η.  

 
The objective is to derive P(r,η) for any r and η.  The probability of detecting a hotspot 

consists of two components: 1) the probability distribution of the number of sample points that 
hit the hotspot, and 2) the probability that the hotspot is actually detected, given that one or more 
sample points have hit the hotspot.   
 

The first component is addressed by expanding the Singer-Wickman algorithm. The 
likelihood of detection increases when multiple sample points hit the hotspot.  The number of 
hits increases as the hotspot size increases (or as the grid size decreases).  Since the standardized 
radius r = R/s completely describes the proportion of the area of the rectangle that will be 
occupied by the four circles that are centered at the vertices of the rectangle, we can assume that 
s = 1 without loss of generality. For the present, we restrict our attention to the case where 1≤r  
(i.e. ). This prevents the circles which are centered at the sample points of adjacent 
rectangles from intruding upon the rectangle of interest (which occurs in Figure 3). 

sR ≤

 

1 1

11 2

2

2 2
3 3

33
4

 
Figure 2:  Regions of overlap within a rectangular sample grid of s = 1, ρ = 1.4, 
and r = 0.938.  The numbers in the figure represent the number of times a hotspot 
would be sampled if it were centered in that region. 

 
As we consider values of r ranging from 0 to 1, the circles centered on the sample points 

begin to overlap.  The areas of these overlapping regions give rise to the probability distribution 
of the number of sample points that hit the hotspot. To describe this symbolically, let A1(r), A2(r), 
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A3(r), and A4(r)  denote the regions inside the rectangle where a hotspot centered in that region 
would be sampled once, twice, thrice, or four times, respectively. These four types of regions are 
shown in Figure 2.  Note that A1(r) is the union of the regions labeled “1”, A2(r) is the union of 
the regions labeled “2”, etc.  Sometimes we refer to the regions simply as A1, A2, etc., even 
though they always depend on r.   

 
So long as 1≤r , the maximum number of times a hotspot centered inside the rectangle 

could be sampled is four or less.  Assuming that the hotspot is centered inside the rectangle, and 
that the distribution of the possible locations of that center point is uniform within the rectangle, 
the probability that a hotspot is centered in a region where it will be sampled k times is given by 

the area of Ak divided by the area of the rectangle:  ( ) ( )2
kA r sρ .  Since we assume s = 1, this 

reduces to ( )kA r ρ .  The derivations of ( ) 4,,1   , …=krAk , are given in the Appendix A. 

 
The second component of the probability of detection is a function of the false negative 

rate for a single sample, η. If a single sample point hits a hotspot, the probability that a hotspot 
will be detected is .1 η−    If two or more sampling points hit a hotspot, the probability of 
detecting the hotspot is equal to the probability that at least one of those sampling points detects 
the hotspot, or, equivalently, one minus the probability that none of those sampling points detects 
the hotspot, 21 η− .  Consequently, the probability of detecting a hotspot that is sampled k times is 

, assuming that sample measurements are independent.   kη−1
 

Using the law of total probability, we may combine the two components for the four 
levels of overlap and thereby write the probability of detecting the hotspot as a function of r and 
η: 

 ( ) ( )( ) 10       ,11,
4

1
≤<−= ∑

=

rrArP
k

k
k η

ρ
η  (1) 

 
Depending on the value of r, |Ak(r)| for k = 2, 3, or 4 may be zero, since the regions of multiple 
overlap begin to appear as r increases from zero to one. 
 

If the false negative rate, η, is large, values of r > 1 may be necessary in order to achieve 
the desired probability of detection.  While the analytical solution for P(r,η) when r > 1 does 
exist, it becomes increasingly complicated because the circles from adjacent rectangular grids 
begin to encroach upon the rectangular grid of interest.  This phenomenon is demonstrated with a 
square grid in Figure 3.  

 
Consequently, it is convenient to approximate P(r,η) using a numerical algorithm for 

values of r > 1.  We chose to design the approximation algorithm only for r ≤ 2 because we 
found that for reasonable false detection rates (η < 0.50), being able to approximate P(r,η) for 
values of r up to 2 units was adequate to obtain sufficiently high probabilities of detection.  For 
example, for rectangular grids with ρ = 1, 2, and 3, the probability of detecting a hotspot with 
standardized radius of 2 units when the false negative rate is 50% is 0.9998, 0.9843, and 0.9383, 
respectively.  However, the algorithm presented below could be constructed to approximate 
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P(r,η) for virtually any finite r > 0.  When calculating P(r,η), we suggest using the exact solution 
for 0 < r ≤ 1 and the numerical approximation for 1 < r ≤ 2. 

 

 
Figure 3:  When r > 1, the circles from neighboring squares (green circles) begin 
to encroach upon the grid of interest (shown in black) creating many different 
types of overlap areas. 

 
 

We describe the algorithm informally as follows.  Begin with a 44 ×  grid of 16 sample 
locations, like those shown in Figure 3.  Place a dense, two dimensional array of evenly spaced 
"dots" inside the central rectangular grid (the grid of interest).  Each dot represents the center of a 
possible hotspot. For each dot, count the number of the sixteen sample locations that lie within a 
distance r of that dot.  This count represents the number of times that a hotspot of radius r 
centered at that dot would be "hit" by a sample location. The percentage of dots with k hits is an 
approximation of |Ak(r)|.  Naturally, the approximation improves as the density of the array of 
dots increases.  Based on comparisons of the analytical representation of P(r,η) (given by 
equation (1)) and the numerical approximation of P(r,η) for 0 < r ≤ 1,  we found that arrays with 
around 90,000 dots provide approximations of P(r,η) that were within 0.0027 of the true 
probability for an extensive number of example cases. 
 
2.2 Approach for triangular grid sampling 
 
 The general approach for the derivation of P(r,η)  for equilateral triangular grids is 
essentially the same as the one described in Section 2.1 for rectangular grids.  The primary 
difference is that the geometry of overlapping circles induced by the triangular grid results in 
different expressions for |Ak(r)|, k = 1,…,4.  We use the same notation as was used for 
rectangular grids, except that s will now represent the length of the side of each equilateral 
triangle in the grid. As before, we assume we are trying to detect a circular hotspot of radius R.  
Since the ratio r = R/s completely describes the proportion of the area of the triangle that will be 
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occupied by the three circles that are centered at the vertices of the triangle, we can assume that s 
= 1 without loss of generality. The only difference in the formula for P(r,η) for triangular grids 
when 0 < r ≤ 1 arises in the fact that the |Ak(r)| must be scaled by the area of the equilateral 
triangle, which is 3 4 when s = 1.   Thus, 

 ( ) ( ) ( )
4

1

4, 1 ,        0 1
3

k
k

k
P r A r rη η

=

= −∑ < ≤  (2) 

 
Derivations of |Ak(r)| for the triangular grid case are given in Appendix B.  
 
 

 
 

Figure 4:  When r > 1, the encroachment of circles from neighboring triangles 
(green circles) increases the complexity of the overlap areas. 

 
As with the rectangular grid case, if r > 1, the complexity of calculating P(r,η)  increases 

substantially due to the extra regions of overlap within the triangle that are created by the 
encroaching circles from adjacent triangles, as shown in Figure 4. For r > 1, a numerical 
approximation algorithm analogous to the one used for rectangular grids can be used.  As with 
the rectangular grid, we designed the algorithm to approximate P(r,η) for values of r up to 2 
since r = 2 was sufficient to obtain high detection probabilities even when the false negative rate 
was high (e.g.,  P(2, 0.50) = 0.9998).  To implement the algorithm, locate 12 sample points in a 
triangular grid as shown in Figure 4.  Place a dense array of evenly spaced "dots" inside the 
central triangular grid (the grid of interest).  Each dot represents the center of a possible hotspot. 
For each dot, count the number of the twelve sample locations that lie within a distance r of that 
dot.  This count represents the number of times that a hotspot of radius r centered at that dot 
would be hit by a sample location. The percentage of dots with k hits is an approximation of 
|Ak(r)|.  Based on comparisons of the analytical representation of P(r,η) and the numerical 
approximation of P(r,η) for 0 < r ≤ 1,  we found that arrays with around 45,000 dots provide 
approximations of P(r,η) that were within 0.0031 of their true values.   As with rectangular grids, 
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when calculating P(r,η), we suggest using the exact solution for 0 < r ≤ 1 and the numerical 
approximation for 1 < r ≤ 2. 
 
3. Conclusion 
 
 In this report we present a mathematical solution and a numerical algorithm which 
account for false negatives when calculating the probability of detecting hotspots that are circular 
in shape using a rectangular or triangular grid of sample points.  A natural extension of this work 
would be to account for hotspots that are elliptical in shape.  
 

When implementing hotspot designs, an investigator may wish to determine the size of a 
hotspot that can be detected for a pre-specified probability of detection and grid size.  Likewise, 
it may be useful to determine the size of the grid that will achieve a desired detection probability 
for a given hotspots size.  Both of these objectives could be realized by solving P(r,η) for r 

analytically.  However, this approach would be formidable because ( )  for 2,3,4kA r k =  are 

piecewise functions of r.  A much simpler approach is to solve for r computationally using a 
binary search or some other numerical algorithm.  

  
The original Singer-Wickman algorithm, as well as the mathematical solution and the 

numerical algorithm which account for false negatives, have all been implemented in Visual 
Sample Plan (VSP), a freely-available software tool for creating environmental statistical 
sampling designs. 
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Appendix A:  Calculating ( )kA r  for rectangular grids when 0 < r ≤ 1: 

 
In presenting the derivations for ( ) 4,,1   , …=krAk , we begin with ( )rA4 .   In order for 

region A4 to exist, r must be greater than 212
1 ρ+ .   Assuming this is the case, we can, 

without loss of generality, designate the lower left sample point in the square of Figure 2 as the 
origin.  Note that A4 is symmetric about the vertical line x = ρ/2  and symmetric about the 
horizontal line y = ½, and the point (ρ/2, ½) lies in the center of A4.  Let 4A′  denote the upper 
right quadrant of A4, defined by the lines x = ρ/2, y = ½, and the arc of the lower left circle that is 
centered at the origin and described by the equation .  By translating the region 222 ryx =+ 4A′  
such that the point (ρ/2, ½) is now the origin, we have  

( )

4
1

4
1

4
1

42
arcsin4

11arcsin
2

  2
1

2

2
2

22
2

24
1

0

2
2
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⎟
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⎜
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⎥
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⎜
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⎠
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⎜
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−−

rr
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r
r

r

dxxrrA
r

ρρρ
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And by the symmetry of A4, we have:  

( )
( ) 2

4

4

14 12

0 otherwise .

A r r

A r

ρ⎧ ′ 1+ < ≤⎪
⎪⎪= ⎨
⎪
⎪
⎪⎩

 

 
In order to calculate ( ) ( ) ( )rArArA 321  and  , , , we define h(r,d), a function that gives the 

area of the intersection of two circles with common radii r whose center points are d units apart.  
Referring to Figure A1, the strategy for determining the area of the intersection will be to 
calculate the area of the circle sector CAD, minus the area of triangle CAD, and then multiply 
the result by 2.   Let d denote the distance between the centers of the circles (length of the line 
segment AB).  Since the circles have the same radius r, note that the lengths of the line segments 
AE and EB are both d/2.  And since the length of the line segment AC is r, the length of the 

segment CE is 422 dr − .  Since CEA is a right triangle, ⎟
⎠
⎞

⎜
⎝
⎛=

r
d
2

arccosθ .  By the symmetry of 

triangles CEA and DEA, the area of the circle sector CAD is 22

2
2 rr θπ
π
θ

= .  The area of triangle 

CAD is ( ) 42 22 drd − .    

 9



PNNL-16812 

A B

C

D

E
θ

 
 

Figure A1:  Diagram showing the approach for calculating the area of the 
intersection of two circles with common radii, r.   

 
 
This gives  

( )

2
2 22 arccos if  

2 4

,

0 othe

d dr d r
r

h r d

⎧ ⎛ ⎞⎪ − − ≥⎜ ⎟
⎪ ⎝ ⎠
⎪⎪= ⎨
⎪
⎪
⎪
⎪⎩

2

rwise .

dr

 

 
 

Referring to Figure 2, region A3 exists when diagonal circles intersect, which occurs 
when 212

1 ρ+>r .  Hence, |A3(r)| is given by the areas of the intersection of the diagonal 

circles less the twice over-counted area of A4(r): 

( ) ( )2
3 42 , 1     for  0 1A r h r A r rρ

⎛ ⎞⎛ ⎞= + − <⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
≤ . 

Note that by the definition of h(r,d) and |A4(r)|, |A3(r)| will be 0 when 212
1 ρ+≤r , i.e. when 

no region of triple overlap exists. 
 

Figure 2 demonstrates that regions of double overlap occur when adjacent circles 
intersect.  |A2(r)| is given by the area of the intersections of adjacent circles within the rectangle 
minus the over-counted regions of triple and quadruple overlap (if they are present): 

( ) ( ) ( ) 2
2 ,  ,1  4 , 1     for  0 1A r h r h r h r rρ ρ⎛ ⎞= + − + <⎜ ⎟

⎝ ⎠
≤ . 
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The strategy for calculating |A1(r)| is to add the areas of the four intersections of the 
rectangle with each of the circles and then subtract the areas of over-counted regions of double, 
triple, or quadruple overlap.   The area of the intersection of the rectangle with a single circle 
is 42rπ .  Naturally, the sum of the areas of these four intersections is .  By carefully 
subtracting the area of the over-counted regions of A2, A3, and A4 (if they exist), we have: 

2rπ

 

( ) ( ) ( ) ( )2 2
1 42 ,  ,1 , 1      for  0 1A r r h r h r h r A r rπ ρ ρ

⎛ ⎞⎛ ⎞= − + − + − < ≤⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
. 

 
 

Appendix B:    Calculating ( )kA r  for triangular grids when 0 < r ≤ 1: 

 
In presenting the derivations for ( ) 4,,1   , …=krAk , we begin with ( )rA4  for 

convenience.   In order for region A4 to exist, r must be greater than 3 2 .  Consequently, when 

3 2r > , the radii of the red circles begin to extend past the sides of the triangle into adjacent 
triangles—and three circles from adjacent triangles begin to enter the triangle in which we are 
interested.  This produces an area of quadruple overlap (see Figure B1).  Because A4 consists of 
three half-intersections of two circles whose centers are 3 units apart, we have 

( ) ( )4
3 , 3
2

A r h r= for 0 1r≤ ≤  where ( )h ⋅  is defined previously in Appendix A1. Note that 

the definition of  ensures that ( )h ⋅ ( )4 0 when  3 2A r r= ≤ . 

 

1

11

2 2

2

22
2

3

4 4

4

 
Figure B1:  When r exceeds 3 2 , regions of quadruple overlap begin to form.  
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To more easily visualize the calculation of ( )3A r , we consider A3 when there is no 

quadruple overlap, as shown in figures B2 and B3. Note that region A3  appears once 1 3r > .  
To illustrate why this is so, assume without loss of generality that the lower left sample point of 
the triangle is at the origin.  Note that the three circles will just touch one another at the point 

 

1

1 1

22

2

3

 
Figure B2:  Numbers represent the number of times a hotspot would be sampled 
if it were centered in that region. 

A

B
C

D

E

F

ϕ
θ

 
 

Figure B3:  Diagram of the geometry used to calculate the area of the region with 
triple overlap, A3.   
 

whose Euclidean x coordinate is ½ and whose polar coordinates are ( )6,πr .   Hence, the equation 

( )6cos2
1 πr=  holds at the point where the three circles touch one another, which implies that 

A3  appears  when 1 3r > .  We refer to Figure B3 to discuss the strategy for calculating |A3|.  
The approach is to calculate the area of the equilateral triangle FCD and then add in the area of 
the three “rounded pieces” which, when added to triangle FCD, complete A3. For example, one of 
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these rounded pieces is defined by the chord CD and the arc CD.  The area of a single rounded 
piece is the difference between the areas of the circle sector ACD and the triangle ACD (shown 
in blue).  We begin by finding angle EAC, which we define as θϕξ += .  Since the segment AE 

has length ½ and the segment AC has length r, ⎟
⎠
⎞

⎜
⎝
⎛=

r2
1arccosξ .  Since triangle ABD is 

equivalent to a reflection of triangle ACE, angle DAB is also equal toξ , which 

implies 3ϕ π= −ξ , and, by subtraction, ( )2 3 2 32arccos 1 rθ ξ π π⎡ ⎤= − −⎢ ⎥⎣ ⎦
= .  Hence, the area 

of circle sector ACD is 2 2rθ .  Relying on the fact that triangle ACD is isosceles, the length of 

segment CD is (2 sin 2r θ ) , and the area of triangle ACD is θsin
2

2r .  Using the length of 

segment CD, we find that the area of the equilateral triangle FCD is ( )23 1 cosr θ− 2 . This 

gives  

( ) ( ) ( ) ( )
2 2 2

2
3

3 311 cos 3 sin 3 1 cos 3 sin   for 
2 2 2 2 3

r r rA r r rθθ θ θ θ θ
⎛ ⎞ ⎡ ⎤= − + − = − + − < ≤⎜ ⎟ ⎢ ⎥⎜ ⎟ ⎣ ⎦⎝ ⎠ 2

.   

To generalize ( )3A r  for 0 < r ≤ 1, we must constrain the value of θ at 0 when 1 3r and we 

must subtract twice the value of 

≤

( )4A r  when 3 2 1r< ≤  (refer to Figure B1).  Therefore, let 

 

( )2arccos 1 2 3 1 3 1

0 o

r rπ

ϑ

⎧ ⎡ ⎤

therwise

− < ≤⎪ ⎢ ⎥⎣ ⎦
⎪⎪= ⎨
⎪
⎪
⎪⎩

 

Then, ( ) ( ) ( ) ( )
2

3 43 1 cos 3 sin 2     for 0 1
2
rA r A r rϑ ϑ ϑ⎡ ⎤= − + − − <⎢ ⎥⎣ ⎦

≤ .  Note that ( )3 0A r =  

when 1 3r ≤ .   
 

To explain the calculation of ( )2A r , we begin with Figure B4, which illustrates the 

regions of single and double overlap that are produced when 1 2 1 3r< ≤ .  It is clear from 
Figure B4 that A2 consists of three halves of the intersection of two circles whose centers are one 

unit apart.  Hence, ( ) ( )2
3 ,1   for 1 2 1 3
2

A r h r r= < ≤ .  To generalize ( )2A r  for 0 < r ≤ 1, 

we can use Figures B1 and B2 to identify the multiples of ( )3A r and ( )4A r  that should be 
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subtracted from ( )3 ,1h r 2  so as not to over count the area when r exceeds 1 3 .  This yields 

( ) ( ) ( ) ( )2 3 4 r3 ,1 3 5
2

A r h r A r A r= − − 1 for 0 < ≤ .  Note ( )2 0A r =  when r < ½. 

1

1

2 2

2
1

 
Figure B4:  Coverage where adjacent circles begin to overlap, 
for1 2 1 3r< ≤ . 

 

To explain the calculation of ( )1A r , we begin with Figure B5, which illustrates the 

regions of single overlap produced when 0 < r ≤ ½.   Since the triangle is equilateral, it is readily 

demonstrated that A1 is a semicircle, and therefore, ( ) 2
1 2A r rπ=  for 0 < r ≤ ½.  To generalize 

( )1A r  for 0 < r ≤ 1, we can use Figures B1, B2, and B4 to identify the multiples of ( )2A r , 

( )3A r , and ( )4A r  that should be subtracted from 2 2rπ  so as not to over count the area when 

r exceeds ½.  This yields ( ) ( ) ( ) ( )2
1 2 3 4 0 1r< ≤2 2 3 4A r r A r A r A rπ= − − −  for .   

1

1 1

 
Figure B5:  Coverage of the three circles when r < ½ 


