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Summary

Waste Management Area (WMA) TX-TY contains underground, single-shell tanks that were used to
store liquid waste that contained chemicals and radionuclides. Most of the liquid has been removed, and
the remaining waste is regulated under the Resource Conservation and Recovery Act (RCRA) as modified
in 40 CFR Part 265, Subpart F and Washington State’s Hazardous Waste Management Act (HWMA,
RCW 70.105 and its implementing requirements in the Washington State dangerous waste regulations
[WAC 173-303-400]). WMA TX-TY was placed in assessment monitoring in 1993 because of elevated
specific conductance. A groundwater quality assessment plan was written in 1993 (Caggiano and Chou
1993) describing the monitoring activities to be used in deciding whether WMA TX-TY had affected
groundwater. That plan was updated in 2001 (Hodges and Chou 2001) for continued RCRA groundwater
quality assessment as required by 40 CFR 265.93 (d)(7). This document further updates the assessment
plan for WMA TX-TY by including (1) information obtained from ten new wells installed at the WMA
after 1999 and (2) information from routine quarterly groundwater monitoring during the last five years.
Also, this plan describes activities for continuing the groundwater assessment at WMA TX-TY.

This plan describes the data quality objectives (DQO) process used to guide information gathering to
further the assessment at WMA TX-TY. The general approach of the assessment is to (1) determine what
effects the newly expanded 200-ZP-1 pump-and-treat operation will have on the monitoring being done at
the WMA, (2) improve our understanding of the lateral and vertical distributions of contaminants and
their relationship to potential sources within the study boundary, and (3) continue routine quarterly
groundwater sampling and analysis to comply with RCRA regulatory requirements.

This assessment plan includes a sampling and analysis plan (Appendix A) consisting of a field
sampling plan and a quality assurance project plan. The sampling and analysis plan is used as the
principal controlling document to conduct the work identified by the data quality assessment process.
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1.0 Introduction

Waste Management Area (WMA) TX-TY, containing the TX and TY Tank Farms, is located in the
central portion of the 200 West Area (Figure 1.1) and was used for the interim storage of radioactive
waste from chemical processing of reactor fuel for plutonium production. The WMA is regulated under
the Resource Conservation and Recovery Act (RCRA) as modified in 40 CFR Part 265, Subpart F and
Washington State’s Hazardous Waste Management Act (HWMA, RCW 70.105 and its implementing
requirements in the Washington State dangerous waste regulations [WAC 173-303-400]). WMA TX-TY
was placed in assessment monitoring in 1993 because of elevated specific conductance, a RCRA indicator
parameter, in two downgradient wells. A groundwater quality assessment plan was written in 1993
(Caggiano and Chou 1993) describing the monitoring activities to be used in deciding whether WMA
TX-TY had affected groundwater. That plan was updated in 2001 (Hodges and Chou 2001) for continued
RCRA groundwater quality assessment as required by 40 CFR 265.93 (d)(7). This document further
updates the assessment plan for WMA TX-TY by including (1) information obtained from ten new wells
installed at the WMA since the previous version of this plan and (2) information from routine, quarterly
groundwater monitoring during the last 5 years. Also, this plan describes activities for continuing the
groundwater assessment at WMA TX-TY. Information pertinent to the WMA TX-TY groundwater
assessment available through April 2006 is considered in this plan.

1.1 Background

Figure 1.2 shows the general layout of WMA TX-TY. A detection level RCRA groundwater
monitoring program for WMA TX-TY was initiated in 1989 (Jensen et al. 1989; Caggiano and Goodwin
1991). The WMA was placed into assessment monitoring in 1993 because specific conductance values in
downgradient wells 299-W10-17 and 299-W14-12 exceeded the upgradient background value (critical
mean) of 667 uS/cm (Caggiano and Chou 1993). In the case of well 299-W14-12, the increased specific
conductance was accompanied by elevated technetium-99, iodine-129, tritium, nitrate, calcium, magne-
sium, sulfate, and chromium. The first assessment report (Hodges 1998) concluded that: (1) elevated
technetium-99 and co-contaminants in well 299-W14-12 was consistent with a source within the WMA,
and contaminant chemistry was consistent with a small volume source of tank waste; and (2) an
upgradient source (the 216-T-25 trench) was possible. Subsequent drilling and sampling of well
299-W15-40, located between the 216-T-25 trench and the WMA, eliminated the 216-T-25 trench as
a possible source because high levels of contamination were not found in the well. Accordingly,
continuation of the groundwater assessment is required. This plan describes the activities for the
continued assessment.
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1.2 Objectives

The objectives for the continued assessment of groundwater quality at WMA TX-TY, as required by
40 CFR 265.93(d)(7)(i), are to determine

(i) the rate and extent of migration of the hazardous waste or hazardous waste constituents in the
groundwater and

(ii) the concentration of hazardous waste or hazardous waste constituents in the groundwater.

An additional objective of this groundwater quality assessment stems from the expansion of the
200-ZP-1 Operable Unit carbon tetrachloride pump-and-treat system. In July 2005, the 200-ZP-1 pump-
and-treat system was expanded by adding four additional extraction wells. All four wells are located
upgradient of WMA TX-TY and include the upgradient monitoring wells 299-W15-40, 299-W15-44, and
299-W15-765 (Figure 1.2). These wells are expected to add about 380 liters per minute to the extraction
system and are anticipated to affect the existing groundwater monitoring network by reversing the
direction of groundwater flow at WMA TX-TY. Thus, an additional objective of this groundwater
assessment is to evaluate the effects of the expanded pump-and-treat system on the capability of the
existing groundwater monitoring network to detect and track contamination originating from the WMA.

These objectives are related to the remedial investigation of the vadose zone for the RCRA facility
investigation/corrective measures study (RFI/CMS) at WMA TX-TY as described in the Hanford Federal
Facility Agreement and Consent Order Change Request M-45-98-03 (Tri-Party Agreement, Ecology et al.
1989). In accordance with the agreement between the U.S. Department of Energy (DOE), and the
Washington State Department of Ecology (Ecology) concerning this change request, the continuing
RCRA groundwater quality assessment and the RFI/CMS work will be conducted under separate but
coordinated plans. Data from the RCRA groundwater quality assessment will be used in RFI/CMS
planning and will be included either by reference or directly with the vadose zone data from the RFI/CMS
efforts.

1.3 Scope

The scope of this plan is to acquire the necessary groundwater data to reach the above objectives and
integrate the RCRA groundwater quality assessment with the 200-ZP-1 groundwater operable unit and the
single-shell tank RFI/CMS.

Groundwater monitoring objectives of RCRA, Comprehensive Environmental Response,
Compensation, and Liability Act (CERCLA), and the Atomic Energy Act (AEA) often differ slightly and
the contaminants monitored are not always the same. For RCRA regulated units, monitoring focuses on
non-radioactive dangerous waste constituents. Radionuclides (source, special nuclear, and by-product
materials) may be monitored in some RCRA unit wells to support the objectives of monitoring under the
AEA and/or CERCLA. Please note that pursuant to RCRA, the source, special nuclear and by-product
material component of radioactive mixed waste, are not regulated under RCRA and are regulated by DOE
acting pursuant to its AEA authority. Therefore, while this report may be used to satisfy RCRA reporting
requirements, the inclusion of information on radionuclides in such a context is for information only and
may not be used to create conditions or other restrictions set forth in any RCRA permit.
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1.4  General Approach

The data quality objectives (DQO) process was used to guide information gathering to further the
assessment at WMA TX-TY and the DQO results are described in Chapter 3. The resulting, general
approach to meet the specific or immediate objectives for the continued assessment (i.e., to determine the
concentration, rate of movement and extent of contamination) includes the following major components:

e Evaluate the adequacy of the groundwater monitoring network for determining the rate of movement
and extent of contaminants in the aquifer. The recent modifications to the 200-ZP-1 pump-and-treat
operation upgradient of WMA TX-TY most likely will adversely affect the monitoring network’s
ability to adequately monitor contaminants. The pump-and-treat also may restrict the further
migration of those contaminants; but may also transfer them to another location if they are not
removed by the treatment process.

e Use spatial and temporal mapping of the contaminant plumes to delineate the extent and concentra-
tion of contaminants and their relationship to potential sources within the study boundary. In concert
with hydrogeologic data, estimate the approximate rate, direction, and extent of contaminant
migration both horizontally and vertically within the aquifer.

e Use the results of special isotopic studies to aid the identification of contaminant sources (e.g.,
differentiation of tank leaks, distinguish cribs versus tanks) affecting groundwater quality.

e Continue routine, quarterly groundwater sampling and analysis to comply with RCRA regulatory
requirements.

¢ Continue annual reporting.

1.5 Plan Organization

A review of existing data including waste characteristics, geology and hydrology, and vadose zone
and aquifer contamination is presented in Chapter 2.0. The DQO process for this groundwater assessment
is given in Chapter 3.0. An updated conceptual model is given as part of the DQO chapter. References
cited are listed in Chapter 4.0. A sampling and analysis plan (including a field sampling plan and a
quality assurance plan) for the groundwater quality assessment at WMA TX-TY is included in
Appendix A. Appendix B provides pertinent hydrogeologic and monitoring well information.

1.5



2.0 Background

2.1 Facility Description and Operational History

WMA TX-TY occupies an area of approximately 74,000 m* and contains 24 underground single-shell
tanks constructed in 1947 and 1948, for the tanks in the TX Tank Farm, and in 1951 and 1952 for the
tanks in the TY Tank Farm. Each of the 24 tanks has a capacity of 2.87 million liters. The 18 tanks in the
TX Tank Farm are arranged in three 4-tank and two 3-tank cascades. The six tanks in the TY Tank Farm
are arranged in three 2-tank cascades. In addition to the tanks, six diversion boxes and ancillary pumps,
valves and pipes are included in the Hanford Facility Dangerous Waste Part A Permit Application (DOE
2000a) for single-shell tank farm system TX-TY.

The single-shell tanks are constructed of carbon steel (ASTM A283 Grade C) lining the bottom and
sides of a reinforced concrete shell. The concrete dome top is unlined. The tanks are 22.9 meters in
diameter and are about 11.4 meters in height. The bottoms of the tanks are about 14 meters below grade
with about 2.4 meters of fill over the top. Various ports in the tank tops are available for waste transfer
and monitoring. In addition, vadose zone monitoring wells (drywells) are located around the tanks and
extend generally to 22 to 45 meters depth to allow monitoring of radionuclide and moisture migration
outside the tanks by geophysical methods. All tanks in the TX and TY Tank Farms have been interim
stabilized (Hanlon 2004). Interim stabilized means that a tank contains less than 189,250 liters of
drainable interstitial liquid and less than 18,925 liters of supernatant. Table 2.1 lists the volume contents
of each tank in WMA TX-TY.

The routing of liquid waste from the operations buildings to the tank farms was done with under-
ground lines and diversion boxes. The diversion boxes are concrete boxes that were designed to contain
any waste that leaked from the high-level waste transfer line connections. Diversion boxes generally
drained to nearby catch tanks where any spilled waste was stored and then pumped to single-shell tanks.
It is estimated that each diversion box contains 23 kilograms of lead (DOE 2000Db).

Two septic tanks are located within the WMA TX-TY area. The 2607-WT septic tank is west of the
242-T Evaporator and between the TX and TY Tank Farm. The unit is connected to a sanitary tile field,
began operating in 1952, and received approximately 20 liters per day (DOE 1991). The septic system
probably no longer receives effluent but could have been a source for moisture in the vadose zone in the
past. The 2607-WTX septic system, located at the south fence line of the TX Tank Farm, received
740 liters of sanitary wastewater per day beginning in 1950. Although no end date for use of the
2607-WTX septic system was found in the literature, a field investigation done in June 2006 verified
that the septic system was inactive (WIDS).

The tanks in TX Tank Farm were constructed in 1947 and 1948 and initially were used to support the
bismuth phosphate process. (The bismuth phosphate process operated from 1944 to 1956.) The TY Tank
Farm was constructed in 1951 and 1952 and, by 1952, both the TX and TY Tank Farms were used to
support the uranium recovery program being conducted in the U Plant, as well as the bismuth phosphate
process. (The uranium recovery program lasted from 1954 to 1957.) Some of the tanks in WMA TX-TY
also received waste from the Reduction-Oxidation (REDOX) (REDOX operated from 1952 to 1966) and
Plutonium-Uranium Extraction (PUREX) Plant operations (PUREX operated from 1956 to 1988).
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Table 2.1.

Inventory by Tank (Hanlon 2004)

Drainable Liquid
Tank Tank Integrity Remaining (L)® Sludge (L) Salt Cake (L)
TX Tank Farm
TX-101 Sound 26,495 280,090 64,345
TX-102 Sound 102,195 7,570 813,775
TX-103 Sound 68,130 0 548,825
TX-104 Sound 41,635 128,690 124,905
TX-105 Assumed Leaker 94,625 30,280 2,149,880
TX-106 Sound 140,045 18,925 1,298,255
TX-107 Assumed Leaker 26,495 0 109,765
TX-108 Sound 30,280 22,710 457,985
TX-109 Sound 22,710 1,373,955 0
TX-110 Assumed Leaker 52,990 140,045 1,627,550
TX-111 Sound 37,850 162,755 1,214,985
TX-112 Sound 98,410 0 2,399,690
TX-113 Assumed Leaker 68,130 352,005 2,062,825
TX-114 Assumed Leaker 64,345 15,140 1,998,480
TX-115 Assumed Leaker 94,625 30,280 2,062,825
TX-116 Assumed Leaker 79,485 249,810 2,017,405
TX-117 Assumed Leaker 37,850 109,765 1,707,035
TX-118 Sound 117,335 0 934,895
TY Tank Farm
TY-101 Assumed Leaker 7,570 272,520 177,895
TY-102 Sound 49,205 0 261,165
TY-103 Assumed Leaker 87,055 389,855 193,035
TY-104 Assumed Leaker 18,925 162,755 0
TY-105 Assumed Leaker 45,420 874,335 0
TY-106 Assumed Leaker 3,785 60,560 0

(a) Drainable liquid equals the sum of supernatant and drainable interstitial liquid.

2.2

Waste management operations have created a complex intermingling of the tank waste. Nonradio-
active chemicals have been added to the tanks and varying amounts of waste- and heat-producing
radionuclides have been removed. In addition, natural processes have caused settling, stratification, and
segregation of waste components. Waste was also cascaded (allowed to flow by gravity from one tank to
another) through a series of tanks; cooling and precipitation of radionuclides and solids occurred in each
tank of the cascade. Some of the supernatant from the last tank in a cascade was sent to cribs, via surface
pipelines, because of shortage of tank storage capacity. As a result, it is very difficult to estimate the
composition of the wastes remaining in the tanks through operational records. A detailed history of tank
farm operations is given by Anderson (1990).




Several past-practice liquid disposal facilities are in the vicinity of the WMA TX-TY. In some
instances, it is difficult to distinguish single-shell tank waste from crib and trench waste because similar
waste was stored in or disposed in both. The 216-T-21 through T-24 specific retention trenches, located
west of the TX Tank Farm, were used in 1954 and received a total of 5,000,000 liters of first cycle
supernatant waste from the TX-109, TX-110, and TX-111 single-shell tanks. The 216-T-25 trench was
active during September 1954 and received 3,000,000 liters of evaporator waste from the 242-T
Evaporator. Evaporator waste was also stored in the single-shell tanks.

The 216-T-26, 216-T-27, and 216-T-28 cribs are located east of the TY Tank Farm. The 216-T-26
crib operated between August 1955 and November 1956 and received 12,000,000 liters of first-cycle
scavenged tributyl phosphate supernatant wastes routed through the TY-101, TY-103, and TY-104 single-
shell tanks. The 216-T-27 crib operated between September and November 1965 and received about
7,190,000 liters of 300 Area laboratory waste and waste from the 221-T Building routed through the
T-111 and T-112 single-shell tanks. Wastes were routed to the 216-T-27 crib following breakthrough of
contaminants to groundwater under the 216-T-28 crib (DOE 1991). DOE 1991 states that waste routed to
the crib consisted of material generated during periods when a sudden increase (four orders of magnitude)
in radionuclide activity in the wastes occurred. Each time waste was pumped to the 216-T-27 crib,
groundwater samples taken near the 216-T-28 crib increased in radioactivity (DOE 1991).

The 216-T-28 crib was active from February 1960 until February 1966 and it received
42,300,000 liters of waste that included steam condensate decontamination waste, miscellaneous waste
from 221-T Building, decontamination waste from the 2706-T Building and 300 Area laboratory waste.

Finally, the 216-T-19 crib and tile field, located south of the TX Tank Farm, operated from 1951 to
1980. The crib and tile field received 455,000,000 liters of effluent from the 242-T Evaporator and
T Plant operations.

The wastes disposed to some of the cribs and trenches adjacent to WMA TX-TY were similar to the
wastes stored in the single-shell tanks. This similarity of wastes makes it difficult to distinguish waste
sources for existing groundwater contamination.

Initial corrective actions have been implemented at WMA TX-TY. Surface water controls were
placed adjacent to WMA TX-TY in 2001 to stop run-on of natural precipitation and all water lines
leading to the farms were cut and capped at that time.

2.2 Tank Leaks and Unplanned Releases

Thirteen of the tanks at WMA TX-TY have been declared leakers (Hanlon 2004). Information about
these leaks is given in Table 2.2. However, little information and no previous leak inventory estimate has
been developed for seven of the tanks (TX-105, TX-110, TX-113, TX-114, TX-115, TX-116, and
TX-117) (Field and Jones 2005). Contamination associated with these tanks may be from waste pipeline
leaks or from nearby tanks that are known to have leaked. Leaks associated with the remaining six tanks
are discussed in the following paragraphs.

Tank TX-107 was declared a leaker in 1984. Hanlon (2004) lists a leak volume of 9,460 liters.
Tank TX-107 was used as the 242-T Evaporator receiver tank. Spectral gamma logging in drywells
around tank TX-107 showed high levels of cobalt-60 and europium-154 contamination in the vadose zone
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(Jones et al. 2000). The leak volume for tank TX-107 was increased by Field and Jones (2005) to
30,280 liters based on the size of the vadose zone contaminant plume.

Table 2.2. Tank Leak Volume Estimates
Date Declared
Confirmed, or Volume Leaked Volume Leaked Interim Stabilized
Tank Number Assumed Leaker (L)® @L)® Date

241-TX-105 1977 30,280 No basis for April 1983
estimate

241-TX-107 1984 9,460 30,280 October 1979

241-TX-110 1977 30,280@ No basis for April 1983
estimate

241-TX-113 1974 30,280 No basis for April 1983
estimate

241-TX-114 1974 30,280 No basis for April 1983
estimate

241-TX-115 1977 30,280 No basis for September 1983
estimate

241-TX-116 1977 30,280 No basis for April 1983
estimate

241-TX-117 1977 30,280 No basis for March 1983
estimate

241-TY-101 1973 <3,785 3,790 April 1983

241-TY-103 1973 11,360 11,360 February 1983

241-TY-104 1981 5,300 5,300 November 1983

241-TY-105 1960 132,500 132,480 February 1983

241-TY-106 1959 75,700 75,700 November 1978

(a) Data from Hanlon (2004).

(b) Data from Field and Jones (2005).

A 1973 leak of less than 3,785 liters from tank TY-101 is reported in Hanlon (2004) based on
observed liquid level decreases in the tank. The existing drywells associated with tank TY-101 provide
no indication of a major leak (Jones et al. 2000).

Tank TY-103 was listed in 1973 as having leaked about 11,300 liters. The tank stored tributyl
phosphate waste from 1957 through early 1968. From 1968 through 1973, tank TY-103 contained
PUREX and B Plant waste (Jones et al. 2000). Spectral gamma logging indicates cesium-137 and

cobalt-60 contamination in the vadose zone near the tank. The combination of cesium-137 and cobalt-60
suggests a tributyl phosphate waste source (Jones et al. 2000).

Hanlon (2004) lists tank TY-104 as having leaked 5,300 liters in 1981 based on liquid level decreases
in the tank. However, neither the spectral gamma logging data nor the waste transfer records provide a
rationale for listing tank TY-104 as a potential leaker (Jones et al. 2000).
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Hanlon (2004) lists a leak volume of 132,500 liters and a leak date of 1960 for tank TY-105. The
waste transfer records indicate a 132,500 liter leak of tributyl phosphate waste in 1959. Spectral gamma
logging indicates cesium-137 and cobalt-60 contamination around the tank that is consistent with tributyl
phosphate waste (Jones et al. 2000).

Hanlon (2004) lists a leak volume of 75,700 liters and a leak date of 1959 for tank TY-106. Although
the waste transfer records indicate an apparent waste loss in 1959, the gamma contamination profiles
around the tank do not support listing tank TY-106 as a leaker (Jones et al. 2000).

In addition to leaks, eleven unplanned releases have been documented in or near the WMA. The
following information about those releases is from DOE (1991) and the Waste Information Data System.

e Unplanned release UN-200-W-17 occurred in 1952 south of the TX Tank Farm when a spill
occurred during transfer of waste from tank 241-TX-106 to 241-TX-114. Surface contamination
resulted over a 91 meter by 183 meter area. Some highly contaminated areas were stabilized with
asphalt.

e Unplanned release UN-200-W-76 occurred in August 1977 around the 241-TX-155 diversion box.
The release consisted of contaminated rabbit fecal pellets. The pellets and soil were removed and
remaining contamination was covered with clean soil.

o Unplanned release UN-200-W-99 occurred in September 1968 along Camden Avenue near the
southeast corner of the TX Tank Farm. Airborne contamination of strontium-90 was released from
the 241-TY-153 diversion box resulting in 20,000 to 100,000 counts per minute. Road contami-
nation was covered with new tar and the area between Camden Avenue and the TX Tank Farm was
covered with gravel and marked with underground contamination signs. Test plots in 1978 showed
strontium-90 particulate matter still present.

e Unplanned release UN-200-W-100 occurred in November 1954 from a process line extending from
tank TX-105 to tank TX-118. The spill was first cycle waste containing approximately 10 curies of
fission products. The contaminated area was covered with 0.3 meter of clean soil.

e Unplanned release UPR-200-W-126 occurred in May 1975 next to the 241-TX-153 diversion box.
Spotty contamination became airborne when maintenance was being done on the transfer line from
the diversion box. The occurrence report describes personnel contamination but does not refer to
any ground contamination.

e Unplanned release UPR-200-W-129 occurred in January 1979 at the pump pit at tank TX-113.
Caustic radioactive solution was released through the pit cover while testing a jumper assembly. The
area was surveyed and the pump pit hosed down.

e Unplanned release UPR-200-W-149 occurred during 1977 surrounding tank TX-107. This
unplanned release is the suspected tank leak from tank TX-107.

e Unplanned release UPR-200-W-150 occurred in 1973 surrounding tank TY-103. Overflow of the
241-TX-155 diversion box resulted in backflow into the tank, depositing 3.3 centimeters of sludge.
Drywells around the tank showed no significant increase in gamma activity attributable to the event.
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e Unplanned release UPR-200-W-151 occurred in 1974 surrounding tank TY-104. Approximately
5,300 liters of supernatant leaked from the tank. The leak consisted of REDOX ion exchange waste,
PUREX organic waste, bismuth phosphate first-cycle waste, tributyl phosphate waste and
decontamination waste. Jones et al. (2000), however, state that spectral gamma logging suggests
extensive near-surface, waste transfer piping leaks and that neither the gamma logging nor the waste
transfer records support listing the tank as a leaker.

e Unplanned release UPR-200-W-152 occurred in 1960 surrounding tank TY-105. An unknown
quantity of tributyl phosphate waste was reported to have leaked from the tank.

o Unplanned release UPR-200-W-153 occurred during 1959 surrounding tank TY-106. Routine
surveillance of drywells indicated a change in the gamma profile. The waste was listed as an
unknown quantity of tributyl phosphate waste. The tank was stabilized with diatomaceous earth.

2.3 Waste Characteristics

Two basic chemical processing operations were the source of most of the hazardous waste transferred
to the TX and TY Tank Farms. These were the bismuth phosphate process and the tributyl phosphate
process; lesser quantities of waste from the REDOX and PUREX processes were also sent to the tank
farms. The bismuth phosphate, REDOX, and PUREX processes were chemical separations programs for
recovery of plutonium from irradiated reactor fuels. The tributyl phosphate process recovered uranium
metal in waste generated by the bismuth phosphate process. Waste from all these processes was made
alkaline for storage in the tanks (Anderson 1990).

Table 2.3 gives a partial listing of specific waste transferred to each tank in WMA TX-TY. Anderson
(1990) gives approximate chemical compositions for the major waste types sent to the TX and TY Tank
Farm single-shell tanks. Most recently, Higley et al. (2004) give estimates of the chemical and
radiological inventories for each waste stream. Jones et al. (2000) have recently given estimates for the
composition of the leaked fluids from tanks TX-107, TY-103, TY-105, and TY-106. Table 2.4 gives a
partial leak inventory from their data.

2.4 Geology and Hydrogeology

This section updates the description of the geology beneath the single-shell tanks WMA TX-TY with
new information from ten wells drilled since the previous version of this plan (Hodges and Chou 2001).
This information assists decisions concerning well location and well construction if new wells are added
to the monitoring network. The geologic interpretation is also used to evaluate pathways to groundwater
through the vadose zone and groundwater flow properties.
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Table 2.3.

Partial Listing of Tank Contents and Waste Received for the TX and TY Tank Farm
Single-Shell Tanks (Agnew et al. 1997)

Tank Waste Type

241-TX-101 Metal waste from bismuth phosphate, evaporator bottoms, REDOX high-level waste, cladding
waste, organic wash waste from PUREX, REDOX ion exchange, tributyl phosphate waste,
REDOX ion exchange, first cycle decontamination waste, B Plant low-level waste, Battelle
Northwest Laboratory waste, B Plant high-level waste, laboratory waste, cesium recovery ion
exchange waste, N Reactor decontamination waste, PUREX low-level waste, and Z Plant waste.

241-TX-102 Metal waste from bismuth phosphate, evaporator bottoms, REDOX high-level waste, cladding
waste, organic wash waste from PUREX, and REDOX ion exchange.

241-TX-103 Metal waste from bismuth phosphate, evaporator bottoms, tributyl phosphate waste.

241-TX-104 Metal waste from bismuth phosphate, evaporator bottoms, REDOX high-level waste, organic
wash waste from PUREX, REDOX ion exchange, tributyl phosphate waste, and B Plant low-
level waste.

241-TX-105 Metal waste from bismuth phosphate, evaporator bottoms, REDOX high-level waste, cladding
waste, organic wash waste from PUREX, and REDOX ion exchange.

241-TX-106 Metal waste from bismuth phosphate, REDOX high-level waste, cladding waste, organic wash
waste from PUREX, and REDOX ion exchange.

241-TX-107 Metal waste from bismuth phosphate, evaporator bottoms, and REDOX high-level waste.

241-TX-108 Metal waste from bismuth phosphate, evaporator bottoms, tributyl phosphate waste, and
decontamination waste.

241-TX-109 Evaporator bottoms, tributyl phosphate waste, and first cycle decontamination waste.

241-TX-110 Evaporator bottoms, tributyl phosphate waste, and first cycle decontamination waste.

241-TX-111 Evaporator bottoms, tributyl phosphate waste, and first cycle decontamination waste.

241-TX-112 Evaporator bottoms and first cycle decontamination waste.

241-TX-113 Evaporator bottoms and first cycle decontamination waste.

241-TX-114 Evaporator bottoms and first cycle decontamination waste.

241-TX-115 Metal waste from bismuth phosphate, REDOX high-level waste, evaporator bottoms, cladding
waste, tributyl phosphate waste, and decontamination waste.

241-TX-116 Evaporator bottoms.

241-TX-117 Evaporator bottoms and first cycle decontamination waste.

241-TX-118 Evaporator bottoms, cladding waste, tributyl phosphate waste, first cycle decontamination
waste, and Z Plant waste.

241-TY-101 Evaporator bottoms, REDOX high-level waste, tributyl phosphate waste, and first cycle
decontamination waste.

241-TY-102 Evaporator bottoms, REDOX high-level waste, organic wash waste from PUREX, REDOX ion
exchange, tributyl phosphate waste, first cycle decontamination waste, and B Plant low-level
waste.

241-TY-103 Evaporator bottoms, REDOX high-level waste, organic wash waste from PUREX, REDOX ion
exchange, tributyl phosphate waste, first cycle decontamination waste, B Plant low-level waste,
and decontamination waste.

241-TY-104 REDOX high-level waste, organic wash waste from PUREX, REDOX ion exchange, tributyl
phosphate waste, first cycle decontamination waste, B Plant low-level waste, and
decontamination waste.

241-TY-105 Tributyl phosphate waste.

241-TY-106 Tributyl phosphate waste.
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Table 2.4.  Partial Inventory Estimates for Tank Leak Fluids from Tanks in Waste Management Area
TX-TY (data from Jones et al. 2000; mol/L have been converted to ug/L)

Element or Concentration

Radionuclide® TX-107 TY-103 TY-105 TY-106
Sodium (ug/L) 2.32E+08 2. 11E+08 9.18E+07 8.99E+07
Chromium (pg/L) 4.33E+06 4.00E+06 1.72E+05 1.69E+05
Calcium (pg/L) 1.13E+06 1.13E+06 3.66E+05 3.61E+05
Nitrate (mg/L) 2.49E+05 2.34E+05 1.63E+05 1.61E+05
Nitrite (mg/L) 7.04E+04 6.90E+04 9.80E+03 9.66E+03
Sulfate (mg/L) 1.95E+04 1 82E+04 1 40E+04 1 38E+04
Fluoride (mg/L) 1.54E+03 1.92E+03 0.00E-+00 0.00E+00
Uranium (pg/L) 1.83E+06 1.96E+06 3.76E+05 3.69E+05
Tritium (pCi/L) 1.52E-04 1.22E-04 5.16E-06 5.08E-06
Cobalt-60 (pCi/L) 2.39E-05 1.62E-05 1.63E-07 1.61E-07
Strontium-90 (pCi/L) 8.09E-02 5.71E-02 1.16E-02 1.14E-02
Technetium-99 1.51E-04 1.13E-04 4.94E-06 4.87E-06
(pCi/L)
Ruthenium-106 4.65E-09 3.01E-09 6.78E-04 6.67E-14
(pCi/L)
Todine-129 (pCi/L) 2.91E-07 2.17E-07 9.32E-09 9.17E-09
Cesium-137 (pCi/L) 2.23E-01 2.38E-01 1.30E-02 1.28E-02

(a) Radionuclides are decayed to January 1, 1994.

The regional geologic setting of the Pasco Basin and the Hanford Site has been described previously
by Delaney et al. (1991) and Reidel et al. (2002). Tallman et al. (1979) and Lindsey et al. (1994) and,
most recently, Williams et al. (2002) have described the geology of the 200 West Area. The reader is
referred to those references for descriptions of the regional geology.

The geology specific to WMA TX-TY was first described by Price and Fecht (1976a, b) and then by
Caggiano and Goodwin (1991). More recently the WMA TX-TY geology was summarized by Lindsey
and Reynolds (1998) and by Wood et al. (2001). Reidel et al. (2006) updated previous work to include
observations from several new wells at the WMA. Their geologic description is comparable to recent,
regional studies (Williams et al. 2002; Wood et al. 2001) and ensures coherence within the larger
framework of stratigraphic interpretations of the Hanford Site. Any small differences that exist between
the geologic description given in Reidel et al. (2006) and descriptions in previous reports result primarily
from differences in survey elevations used to interpret lithologic contacts. These are small differences
and do not represent any significant change or discrepancy. The geologic description given below is
summarized from Reidel et al. (2006).

Figure 2.1 shows the locations of all wells in the vicinity of WMA TX-TY that were used for
geologic interpretation. The quality of data obtained from these wells varies and is a function of when
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Figure 2.1. The Locations of Wells and Cross-Sections at Waste Management Area TX-TY
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Lithologic logs were interpreted from the well-site geologist’s (or driller’s) logs. Geophysical logs,
particle size distributions, and laboratory moisture data were then compared with the lithologic logs. In

Appendix B. In general, data from RCRA standard boreholes are of higher quality than data from the
some cases, geophysical logs (e.g., gross gamma-ray) allowed refinement of the data by permitting more

they were drilled, drilling methods, and their purpose. Pertinent information about the wells is given in
older (pre-1988) boreholes.



precise placement of geologic contacts than when lithologic logs alone were used. This was particularly
true for wells where only older, driller’s logs and no geologist’s logs were available.

2.4.1 Stratigraphy and Lithology at Waste Management Area TX-TY

The vadose zone beneath WMA TX-TY is between about 66 and 70 meters thick and consists of the
Hanford formation, the Cold Creek unit, the Taylor Flats member of the Ringold Formation, and the
upper part of unit E of the Wooded Island member of the Ringold Formation. The water table is at about
136.3 meters elevation and the unconfined aquifer beneath WMA TX-TY is estimated to be between
about 50 to 58 meters thick based on March 2005 water levels and the elevation of the Ringold Formation
lower mud unit in wells local to WMA TX-TY.

The geology beneath WMA TX-TY consists of basalt basement overlain by nine sedimentary
sequences distinguished mainly by texture (particle size), mineralogy, responses to natural gamma logs,
and stratigraphic position. These sequences are (from top to bottom):

e Holocene eolian sediments and/or backfill material

e Hanford formation gravel-dominated sequence

e Hanford formation sand-dominated sequence

e Cold Creek unit silts and sands

e Cold Creek unit calcic paleosols

e Ringold Formation, member of Taylor Flats (not present in all boreholes)
e Ringold Formation, member of Wooded Island unit E

¢ Ringold Formation, member of Wooded Island lower mud

e Ringold Formation, member of Wooded Island unit A

Figure 2.2 shows a generalized stratigraphic column for the WMA TX-TY area. The site specific
stratigraphic information used to construct geologic cross-sections, thickness maps and structure contour
maps at WMA TX-TY is given in Appendix B. The cross-sections are shown in Figures 2.3 through 2.5.
(See Figure 2.1 for locations of cross-sections).

The dense interior of the Elephant Mountain Member of the Saddle Mountains Basalt is the base of
the suprabasalt aquifers in the area. The Elephant Mountain Member was not encountered in any
boreholes in the WMA TX-TY area. Based on driller’s logs from nearby deep well 299-W11-26, located
about 270 meters northeast of the TY Tank Farm, the elevation of the top of the Elephant Mountain
Member is at about 60 meters above sea level. The Elephant Mountain Member dips gently to the
southwest into the Cold Creek syncline.

The Ringold Formation, member of Wooded Island unit A overlies the Elephant Mountain Member
beneath WMA TX-TY. Unit A is described on borehole logs of cuttings and samples from wells near the
WMA TX-TY area as pebble to cobble gravel with up to 15% sand and very little silt. Some interstrati-
fied sand horizons exist within the gravel and there are some highly cemented zones. Unit A was
completely penetrated in only one borehole in the area of WMA TX-TY (well 299-W11-26) where it was
found to be 23 meters thick.
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The Ringold Formation, member of Wooded Island lower mud unit (Ryy,) overlies unit A. The lower
contact of the lower mud unit is usually sharp and easy to distinguish from drill cuttings and natural
gamma logs. The lower mud unit is described as laminated to massive clay, silt, and sandy silt. Sedi-
ments in the lower mud unit are consolidated and generally contain no calcium carbonate. The lower mud
unit was completely penetrated in two wells near WMA TX-TY; well 299-W14-14 where it was found to
be 11 meters thick and well 299-W11-26 where it was found to be 5.2 meters thick.

The lower mud unit is equivalent to hydrogeologic unit 8 of (Williams et al. 2002). They describe
hydrogeologic unit 8 as separating the suprabasalt aquifer into an upper unconfined aquifer in the
sediments above the lower mud unit and a lower, confined aquifer in the Ringold Formation unit A.
Groundwater in the unconfined aquifer and the confined Ringold Formation unit A aquifer does not flow
vertically through hydrogeologic unit 8 (Williams et al. 2002).

Where the lower mud unit is not present, the suprabasalt aquifer is a single system. The data
available from the WMA TX-TY area suggests that the lower mud unit is continuous beneath the entire
WMA.

Overlying the lower mud unit is the Ringold Formation, member of Wooded Island unit E (Rg). The
contact between the two is easily distinguished on natural gamma logs by a considerable drop in gamma
activity in going from the lower mud unit upward into unit E. Unit E is described on borehole logs of
cuttings and samples from wells near the WMA TX-TY area as a pebble to cobble gravel with a fine- to
coarse-grained sand matrix. Gravel content is usually greater than 60 to 70%. Occasionally, what are
interpreted as large boulders are encountered during drilling. The sediments are variably consolidated,
usually poorly sorted and show variable amounts of calcium carbonate. Iron oxide staining is common.
“Slow drilling,” “hard drilling,” and “switched to hard tool” are common comments on the geologists’
logs when drilling in unit E sediments.

Unit E was fully penetrated by two wells in the WMA TX-TY area: well 299-W14-14 where it was
found to be 85 meters thick and well 299-W11-26 where it was 83 meters thick. Many wells in the WMA
TX-TY area penetrate the top of unit E. Unit E is fairly flat beneath WMA TX-TY although there may be
a slight dip toward the west or southwest (Figure 2.6 D).

Unit E is overlain by bedded sandy silt, sand, and silty sand of the Ringold Formation, member of
Taylor Flats (Rrg). These sediments are unconsolidated to consolidated and poorly to well sorted. Local
pebbly areas occur. In places, calcium carbonate occurs as stingers and nodules whereas in other places
no calcium carbonate exists. The lower boundary of the member of Taylor Flats is easily recognized by
the difference in texture between this fine-grained member and the underlying unit E gravels.

The member of Taylor Flats is up to 5 meters thick beneath WMA TX-TY, but is not present in most
wells toward the southern end of the WMA (Figure 2.7 C). Based on the elevations at the top of the
member of Taylor Flat, the member has a general, gentle dip toward the southwest (Figure 2.6 C).
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The Cold Creek unit calcic paleosol sequence (CCU¢) formerly known as the Plio-Pleistocene
caliche) overlies the member of Taylor Flats. The contact between the two is marked by a substantial
increase in calcium carbonate in the paleosol sequence and a substantial decrease in the natural gamma
log going from the underlying sands and silts into the paleosol sequence. The Cold Creek paleosol
sequence consists of calcium carbonate-cemented silt, silty sand, and sandy silt with some gravel in
places. In most wells the amount of calcium carbonate is fairly continuous throughout the unit, but in
others there are caliche-rich and caliche-poor zones. In places, the sediment becomes so cemented with
calcium carbonate that the driller has to change from drive barrel to hard tool in order to continue drilling.
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The Cold Creek unit calcic paleosol sequence occurs in all wells at WMA TX-TY. The sequence
ranges in thickness from 0.6 to 7.6 meters with an average thickness of about 4.25 meters under the
WMA.

Cold Creek unit fluvial and/or eolian sediments (CCUy7) overlie the calcic paleosol sequence at WMA
TX-TY. These sediments are slightly to well consolidated, moderately to well sorted silt and sandy silt.
They may contain calcium carbonate but lack the extensive cementation found in the underlying calcic
paleosols. The Cold Creek fluvial and/or eolian sequence is between 2 and 5 meters in thickness and
averages about 3 meters thick at WMA TX-TY (Figure 2.7 B). The surface of the unit dips very gently to
the southwest (Figure 2.6 B).

The driller’s log for well 299-W10-2, located about 170 meters north of TY Tank Farm, noted
perched water from 26 to 31 meters depth. This closely corresponds to the top and bottom of the Cold
Creek fluvial and eolian sequence in the well. Perched water has not been found associated with the Cold
Creek unit beneath the WMA TX-TY. (Perched water also was noted associated with a silt lens in the
overlying Hanford formation sand-dominated sequence in well 299-W15-7, located about 150 meters
south of the TX Tank Farm.)

A Hanford formation sand-dominated sequence overlies the Cold Creek fluvial sediments beneath
WMA TX-TY. The sequence is equivalent to the sandy sequence of Lindsey et al. (1992) and to Qfs of
Reidel and Fecht (1994).

The Hanford formation sand-dominated sequence is described on borehole logs of cuttings in the
WMA TX-TY area as variably bedded silty sand, sand, and slightly gravelly to gravelly sand. The
sediments are poorly to well sorted and unconsolidated. Fine-grained, silt-rich lenses are common and
range from about 5 to 10 centimeters up to about 30 centimeters in thickness. Based on observations of
outcrop and intact core, the sand-dominated sequence is interpreted to have been deposited during the
waning stages of glacial flooding.

The Hanford formation sand sequence ranges from about 10 to 20 meters and averages about
16 meters in thickness beneath the WMA (Figure 2.7 A). The sandy beds are “salt and pepper” sands
ranging from about 30% basaltic and 70% felsic sand to 70% basaltic and 30% felsic sand. The sequence
is not cemented but does contain zones bearing calcium carbonate occurring as small concretions and as
coatings on grains.

Thin silt lenses cap some individual beds within the Hanford formation sand-dominated sequence.
These lenses are generally 15 centimeters or less in thickness but range up to about 30 centimeters thick.
Generally, the silt lenses cannot be correlated among boreholes.

The base of the Hanford formation sand-dominated sequence is recognized by a change from the
finer-grained silty sand to coarser grained deposits and is reflected by a decrease in natural gamma
activity when logging upward from the sediments of the Cold Creek unit into the Hanford formation. The
top of the sand-dominated sequence is more difficult to distinguish and is usually chosen at the top of the
shallowest sand bed that is greater than 3 meters thick, beneath gravel-dominated deposits. In some
wells, this corresponds to a decrease in natural gamma activity when going from the sand-dominated
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sequence upward into the gravel-dominated sequence. The Hanford formation sand-dominated sequence
tends to be thicker beneath the eastern part of the WMA (Figure 2.7 A) and dips slightly toward the west
or southwest (Figure 2.6 A).

A Hanford formation gravel-dominated sequence overlies the sand-dominated sequence. The gravel-
dominated sequence is described on borehole logs of cuttings as consisting of silty sandy gravel and
sandy gravel with some interbedded sand and silty sand. This sequence is equivalent to the Hanford
formation upper gravel sequence of Lindsey et al. (1992) and Qfg of Reidel and Fecht (1994). Caggiano
and Goodwin (1991), in the original groundwater monitoring plan for single-shell tanks, did not
differentiate this sequence and the underlying Hanford formation sand-dominated sequence. The upper
gravel-dominated sequence was deposited by high-energy, glacial flood waters.

The Hanford formation gravel-dominated sequence ranges from 6 to 18 meters thick in the WMA
TX-TY area and averages about 10 meters thick. Much or the entire unit was removed from most, if not
all, of the tank farm during construction and replaced as backfill after construction was complete. The
base of the gravel-dominated sequence was chosen at the top of the first sand or silty sand sequence that
is at least 3 meters thick. This contact may be somewhat arbitrary, particularly in boreholes with only a
driller’s log and no natural gamma log.

Holocene deposits overly the Hanford formation at WMA TX-TY. These deposits are limited to wind
blown silt and sand. Eolian sheet sands occur sporadically at the surface and generally are less than about
3 meters thick. Eolian sediments were removed during tank farm construction. Backfill material occurs to
about 15 meters depth in the tank farm. The backfill is poorly sorted, gravelly sand to sandy gravel (Price
and Fecht 19764, b) from the gravel-dominated sequence of the Hanford formation.

Price and Fecht (1976a, b) state that clastic dikes were detected in the TX and TY Tank Farms during
construction although they could not be mapped. Recently, clastic dikes have been recognized in core
samples from RCRA monitoring well 299-W10-27, from characterization borehole C3102 at the
216-T-26 crib, and from borehole C3831 drilled adjacent to tank TX-107 (Serne et al. 2004).

2.4.2 Aquifer Properties

This section provides information on the properties of the unconfined aquifer in the immediate region
of WMA TX-TY. Aquifer properties were determined from stratigraphic interpretations, current water
level elevations, and aquifer testing. Most of the information given in this section is summarized from
Serne et al. (2004) and Reidel et al. (2006).

Currently, the water table at WMA TX-TY is about 136 meters above sea level. The suprabasalt
aquifer system beneath WMA TX-TY is estimated to be about 76 meters thick based on the depth to top
of basalt in well 299-W11-26, located about 270 meters northeast of the WMA. The suprabasalt aquifer
system consists of the confined or semi-confined aquifer in the Ringold Formation unit A, which is about
21 meters thick and lies between the top of basalt and the bottom of the lower mud unit, and the
unconfined aquifer, which is about 50 to 58 meters thick and lies above the lower mud unit. (The lower
mud unit is a confining or semi-confining unit.) All wells in the WMA TX-TY monitoring network are
screened in the unconfined aquifer, hydrogeologic unit 5 (Williams et al. 2002) (the Ringold Formation
unit E).
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Water levels in the unconfined aquifer were raised by as much as 20 meters (above the pre-Hanford
Site natural water table of about 125 meters above sea level; Kipp and Mudd 1974) beneath WMA
TX-TY because of artificial recharge from liquid waste disposal operations active between the mid 1940s
and 1995. The largest volumes of discharge were to the 216-T pond system and the 216-U-10 pond
system.

Figure 2.8 shows the groundwater elevations in several wells adjacent to WMA TX-TY since the
early 1950s. The figure shows that the increase in water-table elevation was most rapid in the early 1950s
(and late 1940s) and was somewhat stable between the late 1960s and the late 1980s. Water levels began
to decline in the late 1980s beneath WMA TX-TY when wastewater discharges in the 200 West Area
were reduced. The decline in water levels may have implications for the groundwater monitoring
network at the WMA TX-TY as will be discussed later.
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Figure 2.8. Hydrographs of Selected Wells Adjacent to Waste Management Area TX-TY

Accompanying the changes in water level were changes in groundwater flow direction. Histograms
(in rose diagram format) showing groundwater flow directions beneath the northern part of 200 West
Area during different time periods are shown in Figure 2.9. The rose diagrams plot the solutions to
numerous three-point analyses using water level information from various well triplets in the north central
part of 200 West Area. The petals of the rose diagrams point in the direction of groundwater flow and the
length of the petals represent the percentage of measurements showing that groundwater flowed in the
indicated direction. It should be noted that the changes in groundwater flow directions did not occur
abruptly but most likely took place over a period of months.
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|
(C) 1983-19'8; (D) 1997—%003
Figure 2.9. Groundwater Flow Directions in the North Part of 200 West Area. (A) 1954 to 1956, 1 well
triplet, 17 measurements; (B) 1957 to 1982, 2 well triplets, 56 measurements; (C) 1983 to

1995, 4 well triplets, 21 measurements; (D) 1997 to 2003, 3 well triplets, 6 measurements
(from Reidel et al. 2006).
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Pre-Hanford Site (circa 1942) groundwater flow direction was toward the east (Kipp and Mudd
1974). The rose diagram in Figure 2.9A shows that groundwater flow had changed toward the south in
the area by the early 1950s. This shift resulted from disposal of large volumes of liquid to the 216-T pond
system, located north of the T Tank Farm. In 1956, groundwater flow direction changed again and started
flowing towards the northeast due to the increasing influence of the groundwater mound under 216-U
pond and a decreasing influence of the mound under 216-T pond (Figure 2.9B). Discharges to 216-T
pond ended in 1976 but continued at 216-U pond until 1984. As discharges to the 216-U pond declined
in the early 1980s, groundwater flow shifted to a more northward direction as the groundwater mound
began to decrease and discharges to the 216-U-14 ditch continued. The slight westward component to the
groundwater flow direction between early 1980s and mid 1990s (Figure 2.9C) may be a result of the
discharges to the 216-U-14 ditch, located southwest of WMA TX-TY, influencing water levels in some of
the wells used in the analysis. All non-permitted discharges to the ground ceased and the influence of the
216-U pond mound on the groundwater beneath the TX and TY Tank Farms diminished in 1995.
Consequently, the flow direction changed again in about 1996 and began to return toward an eastward
direction (Figure 2.9D).

These large shifts in groundwater flow direction have large implications for contaminant distribution
in the uppermost aquifer beneath WMA TX-TY. In the late 1940s and early 1950s, any contamination in
the aquifer would have moved toward the south. Then, in the late 1950s and until the mid-1990s any
contamination present would have moved northward. Today, groundwater contamination beneath WMA
TX-TY and surrounding area is generally migrating east.

Phase I of the 200-ZP-1 pump-and-treat operation began in 1994 with one extraction well. The
operation was expanded to three extraction wells in 1996 (Phase I1) and then to six extraction wells in
August 1997 (Phase III). The first distinct effects of the pump-and-treat operation on groundwater flow
direction beneath WMA TX-TY were observed on the June 1998 water table map (Hartman 1999). Since
that time groundwater flow beneath the southern part of the WMA has been toward the south or south
southwest toward the extraction wells.

In July 2005, four extraction wells were added to the 200-ZP-1 Operable Unit, carbon tetrachloride
pump-and-treat system. All four of these wells are immediately upgradient (west) of WMA TX-TY. Itis
expected that these new extraction wells soon will alter the direction of groundwater flow and the
direction of groundwater flow will change toward the west. Increasing concentrations of contaminants,
seen in one of these wells (299-W15-765) beginning in November 2005, is probably a direct result of
drawing contaminants from beneath the tank farms to the wells.

A March 2005 water table map for WMA TX-TY is shown in Figure 2.10. The influences of the
early phases of the 200-ZP-1 pump-and-treat are clearly seen south of the WMA. The most recent
extraction wells to the pump-and-treat system were not yet added in March 2005 when the map was
made.

Borehole tracer dilution and tracer pumpback tests were conducted in five new RCRA monitoring
wells at the TX and TY Tank Farms between fiscal years 1999 and 2002. These tests provided some
information about flow rate and aquifer heterogeneity. The tests allowed direct observation of the effect
of lateral groundwater flow through the well screens and, thus, provided an indication of the variability of
flow through the screened intervals. Details of the test methods, computations, and results are included in
Spane et al. (2001a, 2001b, 2002, and 2003).
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A significant feature of the tracer dilution test results is evidence for downward, vertical hydraulic
gradients within the upper portion of the aquifer in wells 299-W10-26, 299-W14-13, and 299-W14-14.
Vertical flow within two of these wells was first indicated by electromagnetic flow meter surveys
(Waldrop and Pearson 2000). Vertical flow was subsequently corroborated by tracer-dilution studies and
later verified in two wells by vertical tracer tests specifically designed to detect vertical flow within a
borehole (Spane et al. 2001a). Data from all three types of tests are shown in Table 2.5.

The existence of vertical flow in a well does not necessarily reflect actual groundwater flow
conditions within the surrounding aquifer, but its presence implies a vertical flow gradient in the well
bore and has implications pertaining to how representative are the groundwater samples collected from
the wells. Also, the vertical gradient in some wells along the downgradient edge of WMA TX-TY may

have an impact on contaminant distribution in the aquifer.

Table 2.5.  In-Well, Downward Vertical, Flow-Velocity Summary for Wells 299-W10-26,
299-W14-13, and 299-W14-14 at Waste Management Area TX-TY (Spane et al.
2001a, 2003; Waldrop and Pearson 2000).
Tracer-Dilution Profile Vertical Tracer Test® Electromagnetic Flow-Meter Survey
Average
Test Well Range (m/min) (m/min) Range (m/min) | Average (m/min) | Range (m/min) | Average (m/min)
Waste Management Area TX-TY
299-W10-26 0.002 — 0.004 0.003 0.004 — 0.008 0.005 0.003 - 0.006 0.004
! ! ! ! ! !
299-W14-13 0.008 — 0.015 0.011 0.013-0.014 0.012 0.012-0.013 0.012
! ! ! ! ! !
299-W14-14 0.0054 I 0.0058 0.0?56 ND ND ND ND

(a) In-well, vertical, flow-velocity range calculated using tracer peak arrival method for selected sensor depth, while the
average was determined using the center-of-mass technique.

(b) | Directional symbol indicating vertical flow direction.

ND = Not determined.

A second feature of the hydrologic test data is the suggestion of higher or lower permeability at
certain depths within the screened interval of some wells relative to other depths. For example, tracer
tests indicate that the highest permeability in the screened interval of well 299-W14-15 is within approxi-
mately the upper 1 meter below the water table (calculated well screen velocity of 0.170 meter/day).
Beneath this zone is a low permeability zone (calculated well screen flow velocity of 0.077 meter/day)
and velocity below the low permeability zone is intermediate (0.096 to 0.120 meter/day). Similar tests
show lower permeability in the upper part of the well screen in well 299-W15-41 with higher
permeabilities at depth. Thus, apparent differences in permeability do not appear to correlate over
appreciable distances from well to well.

For the WMA TX-TY groundwater assessment, additional hydraulic property data were obtained
from slug tests and drawdown tests conducted in new wells drilled since 1999. Effective porosities were
determined from tracer drift and tracer pumpback tests. Hydraulic properties are discussed in detail by
Spane et al. (2001a, 2001b, 2002, 2003) and are presented in Tables 2.6 and 2.7.
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Table 2.6.  Results from Tracer-Dilution and Tracer-Pumpback Tests in Wells at Waste Management
Area TX-TY (Spane et al. 2001a, 2001b, 2002)
Horizontal
Groundwater® Flow Average In-Well
Velocity in the Aquifer Horizontal Flow
Well Effective Porosity® (m/d) Velocity® (m/d)
299-W10-26" 0.010 0.124 0.086
299-W14-13@ 0.009 0.191 ND
299-W14-14° 0.020 0.122 0.041
299-W14-15 0.002 1.1 0.119
299-W15-41 0.068 0.374 0.311
(a) Data from tracer pump back tests.
(b) Data from tracer dilution tests.
(c) Slight downward vertical flow, data uncertain.
(d) Strong downward vertical flow, data highly uncertain.
Table 2.7.  Hydraulic Properties from Slug and Constant Rate Pumping Tests and Calculated
Horizontal Flow Velocities at New Wells at Waste Management Area TX-TY
Hydraulic®™" Hydraulic®™® Transmissivity®® | Specific®® Calculated Flow
Well Conductivity (m/d) Conductivity (m/d) (m?/d) Yield Velocity (m/d)
299-W10-26 1.39-1.95 1.49 82 0.14 0.0149
299-W10-27 0.05-0.07 ND ND ND 0.0007
299-W14-13 1.66 —2.43 2.45 135 0.12 0.020
299-W14-14 231-3.22 221 121 0.12 0.0279
299-W14-15 3.52-4.92 4.09 225 0.01 2.460
299-W14-16 3.90 - 5.08 ND ND ND 0.051¢©
299-W14-17 3.71 - 4.89 ND ND ND 0.489
299-W14-18 0.39 - 0.54 ND ND ND 0.005
299-W15-40 0.88 —1.22 ND ND ND 0.012©
299-W15-41 14.2-19.9 19.6 1130 0.12 0.290
299-W15-763 0.71-0.93 ND ND ND 0.009
(a) Data from Spane et al. 2001a, 2001b, 2002, and 2003.

(b)
(©)
(d)

Slug test data.
Constant rate pumping test data.
Estimated using maximum hydraulic conductivity value, a gradient of 0.001, and specific yield from this table.

Specific yield was used because downward flow in the well resulted in uncertain effective porosity.

(e)

Estimated using maximum hydraulic conductivity value, a gradient of 0.001 and effective porosity values of 0.1.

(f) Estimated using maximum hydraulic conductivity value, a gradient of 0.001, and effective porosity value from Table 2.6.
ND = Not determined.
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The horizontal groundwater flow velocities determined from tracer pump back tests (Table 2.6) are
greater than the calculated velocities (Table 2.7) for wells which have downward vertical flow in the well
bore and the vertical flow in these wells probably resulted in overestimation of the measured flow
velocity. Both the measured and calculated velocities are about the same for wells which have no vertical
flow.

Overall, there are four orders of magnitude difference in the flow velocities in Table 2.7. The flow
velocity in well 299-W10-27 is substantially less than the velocities calculated for some of the other
wells. The well had low water production and excessive drawdown during well development and
extremely long recovery times during slug testing both of which are indicative of low permeability. Well
299-W10-26 is nearest to well 299-W10-27 and the hydraulic conductivity at well 299-W10-26 is typical
of other wells in the area. Thus, the low permeability zone at well 299-W10-27 appears to be a local
feature of the aquifer formation.

Taken as a whole, the geologist’s logs, geophysical logs, development pumping data, and the
hydrologic testing data all indicate heterogeneity in the aquifer properties within the screened intervals of
several individual wells and among wells at WMA TX-TY. No widespread trends have been identified.

The hydrographs in Figure 2.11 show that water levels have declined by about 3.2 meters since the
beginning of 1998 beneath the WMA TX-TY. Between 1998 and 2004 the average rate of water table
decline has been between about 0.3 to 0.4 meter/year in all monitoring wells at WMA TX-TY, although
the decline in wells at the southern end of the WMA is overprinted by artificial changes in water levels
brought on by the 200-ZP-1 pump-and-treat system. The rapid decrease in water levels has resulted in
monitoring wells going dry more quickly than previously predicted and has necessitated the drilling of
fifteen new monitoring wells since 1999. Given an estimated pre-Manhattan project water table elevation
of 125 meters above mean sea level (Kipp and Mudd 1974), the only monitoring wells currently in the
WMA TX-TY groundwater monitoring network that are expected to go dry are wells 299-W14-6 and
299-W15-41, although water levels will decrease to near the bottom of the open interval in several of the
wells (Table 2.8).

2.5 Contamination at Waste Management Area TX-TY

This section summarizes the current and historical groundwater contamination at WMA TX-TY.
Vadose zone contamination is also discussed in this section because residual vadose zone contamination
is a potential source for future groundwater contamination.

As stated in Section 1.3, groundwater monitoring objectives of RCRA, CERCLA, and the AEA often
differ slightly and the contaminants monitored are not always the same. For RCRA regulated units,
monitoring focuses on non-radioactive dangerous waste constituents. Radionuclides (source, special
nuclear and by-product material) may be monitored in some RCRA unit wells to support objectives of
monitoring under the AEA and/or CERCLA. Please note that pursuant to RCRA, the source, special
nuclear and by-product material component of radioactive mixed wastes, are not regulated under RCRA
and are regulated by DOE acting pursuant to its AEA authority. Therefore, while this report may be used
to satisfy RCRA reporting requirements, the inclusion of information on radionuclides in such a context is
for information only and may not be used to create conditions or other restrictions set forth in any RCRA
permit.
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Figure 2.11. Hydrographs for Three Wells at Waste Management Area TX-TY

Table 2.8.  Calculated Life Expectancy for Wells in the Waste Management Area TX-TY Monitoring
Network
Elevation at Bottom Water Above
of Screened Interval Water Table Elevation, Bottom of Screen, Year Well is
Well Name (m amsl) May 2005 (m amsl) May 2005 (m) Expected to be Dry(a)
299-W10-26 127.82 135.960 9.14 NA
299-W10-27 126.88 135.681 8.80 NA
299-W14-6 134.53 135.891 1.36 2009
299-W14-11 121.57 135.839 14.27 NA
299-W14-13 127.63 135.899 8.27 NA
299-W14-14 127.82 135.548 7.73 NA
299-W14-15 126.99 135.691 8.70 NA
299-W14-16 126.78 135.767 8.99 NA
299-W14-17 126.77 135.710 8.94 NA
299-W14-18 127.13 135.859 8.73 NA
299-W14-19 126.02 135.581 9.56 NA
299-W15-40 127.93 136.157 8.23 NA
299-W15-41 132.40 135.744 3.34 2016
299-W15-44 127.59 135.735 8.14 NA
299-W15-763 126.95 135.820 8.87 NA
299-W15-765 126.79 136.138 9.35 NA

(a) Assume 0.3 meter/year decline in water table and 125 meters pre-Hanford elevation.
NA = Not applicable. Well is not expected to go dry based on 0.3 meter/year water table decline and 125 meters pre-Hanford
water-table elevation.
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251 Groundwater Contamination

Most of the information presented in this section is from Horton et al. (2002), Hartman et al. (2000,
2001, 2002, 2003, 2004, 2005), and Serne et al. (2004).

Chromium, carbon tetrachloride, and trichloroethene are the only dangerous waste constituents found
in the groundwater beneath WMA TX-TY. Carbon tetrachloride and trichloroethene are monitored as
part of the 200-ZP-1 Operable Unit. Nitrate is also found in groundwater beneath the facility. In addition
to the dangerous waste constituents, the non-RCRA-regulated constituents technetium-99, iodine-129,
and tritium are found in groundwater at the WMA.

Carbon tetrachloride is present in the unconfined aquifer beneath most of the 200 West Area
(Figure 2.12). (Note that all plume maps in this document represent conditions in the upper approxi-
mately 9 to 10 meters of the unconfined aquifer.) The highest average carbon tetrachloride concentrations
at the top of the aquifer near WMA TX-TY in fiscal year 2005 were along the western edge of the WMA
where concentrations were equal to or greater than 2,400 pg/L in wells 299-W15-44, 299-W15-40, and
299-W15-765. The carbon tetrachloride is believed to be from pre-1973 waste from the Plutonium
Finishing Plant and not from WMA TX-TY.

The major sources for trichloroethene are disposal sites associated with the Plutonium Finishing
Plant. As with carbon tetrachloride, the maximum trichloroethene concentrations found near WMA
TX-TY, in 2005, were along the western and upgradient edge. The highest fiscal year 2005 average
concentrations at the top of the aquifer were in well 299-W15-40 (12 pg/L), 299-W15-44 (14 pg/L), and
well 299-W15-765 (11 pg/L) (Figure 2.13). The waste management area is not considered a source for
trichloroethene.

A regional tritium plume lies beneath WMA TX-TY and much of the north half of the 200 West Area
(Figure 2.14). There is also a small, local area of very high tritium concentration east of the WMA
TX-TY; the highest average tritium concentration in 2005 was 1,500,000 pCi/L in well 299-W14-13 in
this area. The source for the tritium may be the TY Tank Farm because Corbin et al. (2005) estimate that
only tanks TX-107, TY-103, TY-105, and TY-106 had concentrations of tritium greater than 1 million
pCi/L. Alternatively, the 216-T-19 crib and tile field may be the tritium source because they received
waste with tritium concentrations greater than 1 million pCi/L in the 1960s and early 1970s. However, no
other wells between the 216-T-19 tile field and well 299-W14-13 have tritium above the drinking water
standard.

Figures 2.15 and 2.16 show the tritium distribution with depth in the upper part of the unconfined
aquifer as determined by sampling and analysis during drilling of new wells. The graphs in Figure 2.15
show that the tritium concentration generally increases with depth in the tested wells located east and
south of the TX Tank Farm. Two of the wells show a decrease in concentration between 20 and
30 meters below the water table. Well 299-W14-14 also shows a decrease but at a deeper level and at the
level of the Ringold Formation lower mud unit. (The top of the lower mud is at 56 meters below the
water table in well 299-W14-14.) Below the lower mud unit, the tritium concentration begins to increase
again. The available data suggest that the tritium concentration in the area of WMA TX-TY has a
maximum at some depth below the water table, but the depth of the maximum is different in different
wells. The situation is complicated by variable permeability in the aquifer, vertical in-well hydraulic
gradients, and by perturbations resulting from the 200-ZP-1 pump-and-treat operation.
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Figure 2.16 shows the tritium distribution with depth in well 299-W14-11, located in the local high
tritium concentration plume east of WMA TX-TY. The tritium concentrations in this well are much
higher than the concentrations in other wells at WMA TX-TY. The tritium concentration in well
299-W14-11 decreases with depth, unlike the distribution shown in Figure 2.15. However, the concen-
tration in the deepest sample is 27,400 pCi/L, which is much greater than any concentration in the other
wells. The extremely high tritium concentration very near the water table suggests a local source for the
tritium, and these high concentrations probably mask any concentration changes associated with the
regional plume. Also shown on Figure 2.16 is the tritium concentration of the latest pumped sample from
well 299-W14-13, located about 5 meters from well 299-W14-11. That value is from the screened, top
8 meters of the aquifer and is about 1,180,000 pCi/L, which is a reasonable mean of the concentrations in
the upper 8 meters of well 299-W14-11. These data contradict the earlier interpretation using data from
well pair 299-W14-13 and 299-W 14-12 that tritium was evenly distributed throughout the aquifer (Horton
2002).

A regional plume underlies WMA TX-TY and much of the north part of the 200 West Area
(Figure 2.17). All monitoring wells in the WMA TX-TY monitoring network have nitrate concentrations
in excess of the 45 mg/L. maximum contaminant level. As with tritium, there is a local nitrate high in
wells 299-W14-13 and 299-W14-11, located east of the WMA. The highest nitrate concentration in this
area during 2005 was 553 mg/L in well 299-W14-13. There is also an area of relatively low nitrate
concentration, relative to the regional plume, north of well 299-W14-13 (Figure 2.17) that has existed
since at least the mid-1990s. The cause for the low nitrate in the area is not known.

The nitrate concentration versus depth below the water table in several wells at WMA TX-TY is
shown in Figures 2.18 and 2.19 and in Table 2.9. The two wells shown in Figure 2.18 are about 3 meters
apart and located in the local nitrate plume east of WMA TX-TY. Both wells show extremely high nitrate
concentrations very close to the water table and the nitrate concentration drops off rapidly with depth.
The nitrate concentration in well 299-W14-13 appears to drop off much more rapidly than in well
299-W14-11. The situation is complicated, however, because of a downward, in-well hydraulic gradient
in well 299-W14-13 (see Section 2.4.2), because of differences in the sample collection methods (samples
from well 299-W14-11 were collected during drilling by air lift and pump; samples from well
299-W14-13 were collected by in-situ dialysis in the completed well screen), and because the samples
were collected at different times (samples were collected from well 299-W14-13 during September 2002;
samples were collected from well 299-W14-11 during April and May 2005). However, the very high
concentrations at shallow levels in the aquifer, and the limited aerial distribution of the high nitrate
concentrations east of WMA TX-TY, suggest a nearby source for the contamination.

Figure 2.19 and Table 2.9 show nitrate concentration versus depth for wells at WMA TX-TY that are
not located in the local plume east of the WMA. The two wells in Figure 2.19 show a decrease in nitrate
concentration through the upper part of the aquifer, similar to the decreases seen in the high concentration
plume east of the WMA, although the absolute concentrations are much less than those in the high
concentration plume. (Well 299-W15-44 is strongly influenced by the 200-ZP-1 pump-and-treat
operation so that the pump-and-treat system may have influenced the vertical nitrate distribution in that
well.) However, both wells show an increase in nitrate concentration with depth starting at about 12 to
20 meters below the water table. Several of the wells in Table 2.9 show similar increases in nitrate
concentration with depth in the aquifer, although no samples deeper than 15 meters are available for most
of the wells. (The nitrate data for the 12.6 meter sample from well 299-W14-18 is questionable because
concentrations for most cations and anions in the sample are unreasonably low.)
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Figure 2.17. Average Concentrations of Nitrate in the North Part of 200 West Area, Top of the
Unconfined Aquifer (from Hartman et al. 2006)

The nitrate concentration profiles from wells at WMA TX-TY are interpreted to show two plumes.
The shallow, high concentration plume, east of the WMA (Figure 2.18), is interpreted to be a small,
localized plume from a nearby source because the plume has not traveled sufficiently to disperse the high
concentrations to any appreciable depth and because the high concentrations are not found in wells
adjacent to those shown in Figure 2.18. The deeper plume, illustrated by the increasing nitrate
concentrations below 15 to 20 meters, is interpreted to represent a more regional plume perhaps
associated with the carbon tetrachloride plume found beneath most of the 200 West Area.
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Table 2.9.  Nitrate Concentration in Groundwater Collected during Drilling of New RCRA Wells at
Waste Management Area TX-TY (data from Horton and Hodges 1999, 2001 and Horton

2002)
Nitrate Concentration | Depth Below the Water |  Nitrate Concentration
Depth Below the Water Table (m) (mg/L) Table (m) (mg/L)
299-W14-15® 299-W14-16®
3.4 64 3.1 30
5.1 94 6.1 46
9.6 111 9.1 80
299-W15-765® 13.1 149
55 243 299-W14-14®
13.8 174.1 430 62.9
299-W14-18® 14.5 226
At the water table 56.8 30 414
12.6 3.3 39.8 32.5
56.9 42.8
68.5 40.2

(a) Field analysis.
(b) Laboratory analysis.
(c) Sample from screened interval after well completion.

A plume map for technetium-99 in the groundwater in the area of WMA TX-TY is shown in
Figure 2.20. The figure shows a local, high concentration plume located east of WMA TX-TY,
coincident with the local, high tritium and nitrate plumes. The first indication of high technetium-99 in
the groundwater in the area was the first sample from well 299-W14-12, collected in April 1992
(Figure 2.21). The concentration in the well at that time was 8,240 pCi/L. The technetium-99 concen-
tration subsequently reached ~13,300 pCi/L in 1993 at which time the concentration began to decrease
until January 1997. At that time, technetium-99 concentration began to increase and reached 6,200 pCi/L
in January 1999 when the well went dry (Serne et al. 2004). The increasing technetium-99 trend was
continued in the replacement well 299-W14-13 (although offset to lower concentrations) until early 2000
when technetium-99 concentrations climbed to ~8,000 pCi/L. In early 2000, technetium-99 began to
decrease and dropped to ~3,300 pCi/L in early 2001. This was followed by a second increase in
technetium-99 concentration (up to 9,080 pCi/L) in well 299-W14-13 which lasted until August 2004.
Since that time, the technetium-99 concentration in well 299-W14-13 has decreased to 7,590 pCi/L.

The technetium-99 concentrations in wells 299-W14-12 and 299-W14-13 have been used to presume
a technetium-99 concentration gradient in the upper part of the aquifer (Horton 2002; Serne et al. 2004).
The concentration of technetium-99 in the last sample from well 299-W14-12 was ~6,000 pCi/L. This
represents the concentration of technetium-99 in the top part of the aquifer in January 1999 when the well
went dry. The sample from replacement well 299-W14-13 (located about 3 meters away), taken about the
same time, contained ~1,500 pCi/L technetium-99. That sample represented a mean technetium-99
concentration from the upper, screened 10 meters of the aquifer. The conclusion was that technetium-99
existed at the top of the aquifer at about 6,000 pCi/L and the concentration decreased deeper in the aquifer
(Horton 2002; Serne et al. 2004). The 2,500 pCi/L technetium-99 value from well 299-W14-13 is a
mixture of relatively high concentration technetium-99 near the water table with more dilute groundwater
from deeper in the aquifer.
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Analytical results from sampling during drilling of well 299-W14-11 in early 2005 and depth discrete,
multi-level dialysis sampling in well 299-W14-13 in 2002 supported a significant technetium-99 gradient
in the upper part of the unconfined aquifer in the area east of WMA TX-TY. Figure 2.22 shows the
technetium-99 concentration versus depth in the two wells. Although there is substantial difference in the
absolute values of the concentrations, both wells show the same trend with depth. The technetium-99
concentration increases rapidly from near the water table to a maximum concentration between 1 and
5 meters below the water table, and thereafter decreases with depth. No sample was taken between the
water table and 5 meters below the water table in well 299-W14-11 so it is not known that the maximum
technetium-99 actually corresponds to 5 meters depth in the aquifer at that well. The reason for the offset
in absolute values of the concentrations between the two wells, located about 3 meters apart, is not
known. However, and as mentioned above in the nitrate discussion, the situation is complicated by
differences in the sample collection methods, the long time period over which data were collected
(approximately 3 years between the dialysis sampling 299-W14-13 and drilling 299-W14-11), and a
downward hydraulic gradient in well 299-W14-13. Nevertheless, the available data indicate a substantial
concentration gradient in the upper part of the aquifer with the highest concentrations near the water table.
Note that technetium-99 exceeds the drinking water standard of 900 pCi/L in well 299-W14-11 to a depth
of 27 meters below the water table.

The localized extent of the high technetium-99 concentration at wells 299-W14-11 and 299-W14-13
and the fact that the highest concentrations are near the water table suggest that the technetium-99
contamination east of WMA TX-TY is from a source local to the wells. Given the current direction of
groundwater flow, the most likely source for the technetium-99 is the TY Tank Farm. However, the
216-T-26 through 216-T-28 cribs also are potential sources. Fecht et al. (1977) state that gross gamma
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logs obtained prior to 1977 showed contamination at the 216-T-28 crib extended from near the surface to
the water table and that breakthrough to groundwater could have occurred at the site. They also state that
waste from the crib was noted in well 299-W14-1, located 38 meters south of the crib so that considerable
lateral spreading had occurred in the vadose zone beneath the TY cribs. Therefore, it is possible that
some of the contamination encountered at wells 299-W14-11 and 299-W14-13 may have originated from
the TY cribs.
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Figure 2.22. Technetium-99 Concentration versus Depth in Two Wells East of Waste Management
Area TX-TY. Open diamonds are less than the instrument quantitation limit.

Figure 2.23 shows technetium-99 versus time for wells located near the southwest edge of WMA
TX-TY, in the area greatest perturbed by the 200-ZP-1 pump-and-treat system. Phase 1 of the 200-ZP-1
pump-and-treat operation began in 1994 with one extraction well. The operation was expanded to three
wells (Phase 2) in 1996 and, finally, to six extraction wells (Phase 3) in August 1997. Phase 4 occurred in
July 2005 with the addition of four extraction wells. The first effect of the pump-and-treat operation on
groundwater flow direction beneath WMA TX-TY was observed on the June 1998 water-table map
(Hartman 1999), which showed perturbations in the water-table contours at the south part of the WMA.
Well 299-W15-22, located at the southwest corner of the WMA and originally drilled as an upgradient
well, was the closest to the 200-ZP-1 pump-and-treat extraction wells before it went dry in 1998.
Technetium-99 began to increase in this well in May 1997, exceeded the maximum contaminant level in
August 1997, and reached a high of 3,680 pCi/L in May 1998.

Well 299-W15-4 is an older pre-RCRA well originally drilled to monitor the 216-T-19 crib at the
southeast corner of the WMA. Prior to May 1998, the well was sampled only on an annual basis;
however, available data indicate that technetium-99 started to increase in this well in mid-1997 and
reached a peak concentration of 980 pCi/L in July 1999. Well 299-W15-763 was completed as a
replacement well for 299-W15-4 in 2001. The first routine sample from this well indicated a
technetium-99 concentration of 57 pCi/L. The most recent sample taken from this well contained
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Figure 2.23. Technetium-99 versus Time in Wells Disturbed by the 200-ZP-1 Pump-and-Treat
Operation at Waste Management Area TX-TY. “Phase” refers to the number of extraction
wells in operation (see text).

1,190 pCi/L technetium-99 (Figure 2.23). Finally, well 299-W15-41 was completed in January 2000 and
was first sampled in March 2000. The initial sampling yielded a technetium-99 concentration of

1,980 pCi/L. Concentrations of technetium-99 subsequently decreased to about 300 pCi/L before
increasing again to 1,430 pCi/L in May 2005.

Given the southerly groundwater flow direction imposed on the southern portion of the WMA by the
pump-and-treat operation, one explanation for the increasing technetium-99 south of the WMA is that
groundwater contaminated with technetium-99 is being drawn from beneath the WMA into the pump-
and-treat system. Alternatively, technetium-99 may be originating from the 216-T-19 crib and tile field
(DOE 2002).

Upgradient wells 299-W15-40 and 299-W15-765 and downgradient well 299-W15-44 were among
the wells added to the 200-ZP-1 pump-and-treat system in July 2005. Since that time the technetium-99
concentration has increased in wells 299-W15-44 and 299-W15-765 (Figure 2.23). The increase is
probably due to extracting technetium-99 from beneath the WMA.

A local chromium plume is centered east of WMA TX-TY at well 299-W14-13. The plume has
existed at least since April 1992 when well 299-W14-12 was first sampled (Figure 2.24). The highest
concentration recorded in the plume was 768 ug/L in February 2005. There is some discrepancy among
the data concerning the depth distribution of chromium in the aquifer at this location. The chromium
concentrations in well pair 299-W14-12 and 299-W14-13 suggested that the chromium concentration is
relatively low near the water table and increases with depth when well 299-W14-13 was drilled in 1998
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Figure 2.24. Chromium in Well Pair 299-W14-12 and 299-W14-13 East of Waste Management Area
TX-TY

(Horton 2002). In 2002, depth discrete samples were obtained by dialysis from the screened interval of
well 299-W14-13 which suggested that the chromium concentration may be slightly higher at the water
table than at depth (Serne et al. 2004). Figure 2.25 shows that the concentrations of chromium and
technetium-99 in well 299-W14-13 track each other through time and the ratio of the two is fairly
constant. This indicates a single source for the two contaminants and supports a downward decrease in
chromium concentration similar to the downward decrease in technetium-99 concentration shown in
Figure 2.22.

A small, localized iodine-129 plume exists coincident with the technetium-99 and chromium plumes
in well 299-W14-13, east of WMA TX-TY (Figure 2.26). The plume was first noted in April 1992 when
well 299-W14-12 was first sampled for iodine-129 (Figure 2.27). The largest iodine-129 concentration in
the well was 64 pCi/L in September 1993, and the last measured concentration (above detection limit)
was 22 pCi/L in August 1998 when the well went dry. Iodine-129 continues to be detected in well
299-W14-13 (about 3 meters from well 299-W14-12) where the most recent concentration is 24.5 pCi/L
in February 2006.

Samples were collected for iodine-129 analyses during drilling of well 299-W14-11 in early 2005.
Figure 2.28 shows the depth distribution of iodine-129 in the well. The maximum iodine-129 concentra-
tion was 72 pCi/L near the water table and the concentration decreased with depth in the aquifer. The
concentration of iodine-129 in the most recent (February 2006) pumped sample from well 299-W14-13 is
a reasonable average of the concentrations seen in interval of well 299-W14-11 corresponding to the
screened interval of well 299-W14-13. The most recent (February 2006) iodine-129 concentration in well
299-W14-11 was below detection limit. The source for the iodine-129 is not known for certain. The
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Samples from Well 299-W14-13

shallow occurrence of iodine-129 in the aquifer is consistent with a nearby source. The estimated
iodine-129 concentrations in the waste disposed to the 216-T-28 crib and in the leaks from tanks TX-103,
TY-103, TY-105, and TY-106 (Corbin et al. 2005) are all large enough to account for the iodine-129 in
the aquifer at well 299-W14-13.

25.1.1 Early Contamination at Waste Management Area TX-TY

Groundwater contamination was first noted in the area of WMA TX-TY in the early 1950s. The
earliest contamination was in groundwater wells 299-W14-1, 299-W14-2, and 299-W14-3 and was
probably the result waste disposal to the TY cribs. The concentrations of nitrate in wells 299-W14-1 and
299-W14-2 were 2,300 and 840 mg/L respectively when the wells were first sampled in October 1957
(Figure 2.29). A year earlier, a series of eleven uranium analyses between November 1955 and January
1956 showed concentrations between about 16 and 22 pg/L uranium in well 299-W14-2.
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Figure 2.29. Early Nitrate Concentrations in Selected Wells Near Waste Management Area TX-TY

The earliest analyses of gross beta in wells 299-W14-1 and 299-W14-2, located at the 216-T-28 crib,
were from 1959 and 1955 respectively and showed between 1,000 and 10,000 pCi/L beta activity. Gross
beta analyses then were stopped in these wells and did not begin again until 1966 when gross beta was
extremely high in both wells. The highest gross beta in the area was between 12,000,000 and
18,000,000 pCi/L from August 1965 to July 1966 in wells 299-W14-2 and 299-W14-3 (Figure 2.30).

Cobalt-60 currently is not detected in any of the monitoring wells at WMA TX-TY. However,
cobalt-60 was detected in well 299-W14-12 until mid-1996 when the well went dry (Figure 2.31). The
last concentration measured in the well was 16.4 pCi/L. Higher levels of cobalt-60 had been found in two
other wells throughout the 1970s (Figure 2.31). Concentrations as high as 74 pCi/L were found in well
299-W14-2, located at the 216-T-28 crib, in early 1971. These concentrations decreased to less than
5 pCi/L in the early 1980s and cobalt-60 was undetectable from the mid-1980s to the life of the well in
1990. (Cobalt-60 has a half-life of 5.3 years which accounts for much of the decrease.)
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Two other wells in the area showed contamination in the groundwater in the mid 1950s. Well
299-W15-3 is located about 10 meters southwest of tank 241-TY-106. The well was first sampled in
October 1956 and the sample contained 11,000 pCi/L gross beta and, between November 1956 and
December 1957, eight groundwater samples from the well contained 8 to 20 pg/L uranium. Groundwater
from the well was first analyzed for nitrate in November 1957, at which time the concentration was
1,100 mg/L.

Well 299-W15-4 is located just south of the TX Tank Farm and adjacent to the 216-T-19 crib and tile
field. In late 1956 through early 1958, extremely high levels of cobalt-60, gross beta (Figure 2.30), and
nitrate (Figure 2.29) were found in groundwater samples from the well. Cobalt-60 concentrations were
between 2,000 and 3,400 pCi/L, gross beta was up to 460,000 pCi/L, and nitrate was up to 5,100 mg/L at
that time.

The most likely source for the early contamination east of WMA TX-TY is the 216-T-26 through
216-T-28 cribs. As mentioned earlier, Fecht et al. (1977) noted that gross gamma logs from wells near
the 216-T-28 crib showed radioactivity from near the ground surface to the water table and that
contaminant breakthrough to the groundwater could have occurred at that site. The most likely source for
the early contamination in well 299-W15-4 is the adjacent 216-T-19 crib and tile field. The first effluent
was discharged to the tile field in September 1951. The tile field had been in use for five years before the
first groundwater samples were collected from well 299-W15-4. The first samples showed very high
cobalt-60, nitrate, and gross beta contamination. That contamination decreased fairly abruptly in late
1957 to mid 1958 soon after groundwater changed flow direction from southerly to northeasterly. The
flow direction after early 1957 would have moved contamination from the tile field away from the well.

Well 299-W15-3 is located about 10 meters southwest of tank TY-106. Tank TY-106 was reported to
have leaked 75,700 L of liquid waste in 1957 (Field and Jones 2005). Elevated gross beta and uranium
were found in the first sample collected from the well in November 1956, prior to the reported leak.
Therefore, it is unlikely that tank TY-106 was the source of the late 1956 groundwater contamination.
However, there is no other known then upgradient (northern) source for the contamination found in the
well in the mid 1950s.

25.2 Vadose Zone Contamination

Contaminants that reach the water table must pass through the vadose zone. Spectral gamma logging
in boreholes drilled around the single-shell tanks in WMA TX-TY was conducted in 1996 and 1997 to
delineate the location of gamma emitting radionuclides in the vadose zone (DOE 2000 b, ¢). Whereas
most of the radioactive contaminants detectable by gamma logging are considered fairly immobile in the
Hanford Site sediments, their identification provides a minimum indication of how deep the more mobile
constituents may have migrated.

Figure 2.32 contains selected figures from the addendum (DOE 2000b) to the TX Tank Farm spectral
gamma logging report. These figures show the general distribution of gamma contamination around the
tanks. The actual gamma logs are included in the logging report (DOE 2000b).

Figure 2.32 shows a general representation of detected contamination at progressively deeper levels
beneath the ground surface ranging from 1.8 to 28 meters deep. Contaminant distribution at the
1.8 meters depth illustrates the extent of contamination at and near the surface and just above the top of
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the single-shell tanks (Figure 2.32A). The interpretation is that the europium-154, adjacent to tank
TX-117, is the result of a pipeline leak (DOE 2000a). The highest near-surface cesium-137 concentration
is in the northern part of the tank farm between tanks TX-117 and TX-118. The maximum depth of the
cesium-137 originating from near surface sources is about 4 meters (DOE 2000b).

Figure 2.32B shows the distribution of gamma emitting contamination at 14.6 meters depth which
corresponds to the approximate base of the tanks. Several contaminant plumes exist at this depth. The
highest cesium-137 concentration measured in the TX Tank Farm vadose zone was measured adjacent to
tank TX-114 at this depth (62,700 pCi/g) (DOE 2000b). The maximum lateral extent of uranium-235/
-238, adjacent to tank TX-105 is shown on Figure 2.32C. The maximum lateral extent of cobalt-60 was
found 2.1 meters deeper at 20.7 meters depth.

The deepest level illustrated in Figure 2.32 is 28 meters below the ground surface (Figure 2.32D).
The cobalt-60 plume that was associated with tank TX-107 at 18.6 meters depth, has moved away from
the tank toward the southwest at 28 meters depth.

The contaminant distribution at various depths in the vadose zone at the TY Tank Farm is shown in
Figure 2.33. Figure 2.33A shows the distribution of near-surface contamination at 0.6 meter depth. The
maximum cesium-137 concentration is adjacent to tank TY-104. The maximum vertical extent of
cesium-137 contamination originating from a surface source is about 6.1 meters deep (DOE 2000c¢).
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The contaminant distribution at 14.3 meters depth, which is slightly above the base of the tanks, is
shown in Figure 2.33B. The maximum cesium-137 concentration measured in the vadose zone at the
TY Tank Farm was measured at this depth, adjacent to tank TY-103 (about 10’ pCi/g). The maximum
vertical extent of the cesium-137 contamination, associated with tanks TY-103 and TY-105 was about
22.9 meters below ground surface (DOE 2000c).

The contaminant distribution at 29.6 meters depth, within the Cold Creek silt unit, is shown in
Figure 2.33C. Because most boreholes in the TY Tank Farm extend to only 30.5 meters depth, the
contaminant distribution in Figure 2.33C is the deepest for which data are available beneath the entire
tank farm. Only one borehole penetrates to 44.2 meters depth. Cobalt-60 contamination was detected at
that depth between tanks TY-105 and TY-106 (Figure 2.33D). This is the deepest well in the tank farm
so that the maximum vertical extend of the cobalt-60 contamination is not known.

Several drywells and groundwater wells at the 216-T-19 crib and tile field and the 216-T-26 through
T-28 cribs were periodically monitored in the past. Fecht et al. (1977) state that in 1959, three years after
the disposal to the 216-T-19 crib was temporarily terminated, radioactive contaminants were detected in
well 299-W15-4 from 8.2 meters below the ground surface to the water table. Thus, groundwater
contamination due to discharges to the 216-T-19 crib and tile field is probable.

Fecht et al. (1977) also noted that wells monitoring the 216-T-28 crib showed radioactivity from near
the ground surface to the water table and that, during disposal to the crib, the radiation intensity increased
through the entire sediment column. Radioactivity adjacent to the 299-W14-1 well, located 38 meters
southeast of the crib, showed that substantial lateral spreading of contamination had occurred in the
vadose zone at that area.
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3.0 Data Quality Objectives

This chapter applies the relevant components of the general DQO process as an aid in designing a
cost-effective data collection plan to support decision making for the RFI/CMS and for the groundwater
assessment at WMA TX-TY. The process was originally designed by the U.S. Environmental Protection
Agency (EPA) to expedite cleanup activities at RCRA corrective action or superfund sites (EPA 2000).
Thus, not all of the steps apply to a groundwater quality assessment. The important or essential aspects of
the DQO process are that key decisions are identified in the form of questions or statements and that data
acquired are appropriate to make the necessary decisions.

The process for developing DQOs involves the following seven primary steps:

State the problem (Section 3.1).

Identify the decision and expected action (Section 3.2).

Identify decision inputs (Section 3.3).

Define the study boundaries (Section 3.4).

Develop decision rules (Section 3.5).

Specify limits on decision errors (not applicable to groundwater monitoring plans).
Optimize the sampling design (Section 3.6).

Nk W=

3.1 Statement of the Problem

The problem addressed by this DQO is the uncertainty in the conceptual model pertaining to
determination of (1) contaminant source, (2) groundwater flow rate and flow direction, (3) lateral and
vertical contaminant distributions, (4) driving forces to move contaminants to groundwater, and
(5) contaminant pathways to groundwater.

The uncertainties in the conceptual model of WMA TX-TY are discussed in this section.
3.1.1 Scoping Process

The scoping process gathers the information that will be used to develop the conceptual model of
WMA TX-TY. Such information includes the following items:

e History of operations at WMA TX-TY.

e Waste characteristics.

e Characterization of existing vadose zone and groundwater contamination.
e Site geology and hydrology.

This information was discussed in Chapter 2.0 as background information to refine the conceptual model
and define problem statements and key issues.

3.1.2 Regulatory Drivers

WMA TX-TY is regulated under RCRA interim-status regulations (40 CFR 265, Subpart F) and
Washington’s HWMA (RCW 70.105). Implementing requirements are provided in Washington’s
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Dangerous Waste Regulations (WAC 173-303). The site was originally placed in groundwater
assessment monitoring status (40 CFR 265.93 [d]) in 1993 because specific conductance values in
downgradient wells 299-W10-17 and 299-W14-12 exceeded the upgradient background value of
667 uS/cm (Caggiano and Chou 1993).

The elevated specific conductance in well 299-W10-17 was principally due to sodium and nitrate in a
regional contaminant plume. The high specific conductance in well 299-W14-12 was accompanied by
elevated technetium-99, iodine-129, tritium, nitrate, calcium, magnesium, sulfate, and chromium (Hodges
and Chou 2001). In the first assessment report, Hodges (1998) concluded that: (1) elevated
technetium-99 and co-contaminants in well 299-W14-12 were consistent with a source within the WMA
TX-TY and that contaminant chemistry was consistent with a small volume tank waste source; and (2) an
upgradient source (216-T-25 trench) was possible. The subsequent construction and sampling of well
299-W15-40 showed that no contamination exists in the groundwater between the 216-T-25 trench and
the WMA; therefore, the trench has been eliminated as a possible source for the contamination in well
299-W14-12.

As a result of the first assessment report (Hodges 1998), a revised assessment plan was written
(Hodges and Chou 2001) to guide the investigation into the rate and extent of aquifer contamination
beneath the WMA. This document updates the revised assessment plan (Hodges and Chou 2001).

This DQO considers both RCRA regulated dangerous waste constituents and certain non-dangerous
waste constituents to satisfy the integration of the RCRA groundwater quality assessment with the
200-ZP-1 Operable Unit and the vadose zone RFI/CMS. This provides comprehensive interpretations of
groundwater contamination.

Groundwater monitoring objectives of RCRA, CERCLA, and the AEA often differ slightly and the
contaminants monitored are not always the same. For RCRA regulated units, monitoring focuses on non-
radioactive dangerous waste constituents. Radionuclides (source, special nuclear and by-product
material) may be monitored in some RCRA unit wells to support objectives of monitoring under the AEA
and/or CERCLA. Please note that pursuant to RCRA, the source, special nuclear, and by-product
material component of radioactive mixed waste, are not regulated under RCRA and are regulated by DOE
acting pursuant to its AEA authority. Therefore, while this report may be used to satisfy RCRA reporting
requirements, the inclusion of information on radionuclides in such a context is for information only and
may not be used to create conditions or other restrictions set forth in any RCRA permit.

3.1.3 Conceptual Model for Waste Management Area TX-TY

This section describes the current conceptual model for WMA TX-TY. This model will be modified
as new data become available and new understanding is developed. The current conceptual model for
WMA TX-TY illustrates the complexity and the spatial and temporal relationships of five important
parameters: contaminant sources, driving forces, migration pathways to groundwater, changes in
groundwater flow direction and flow rate, and the current contaminant distributions in the aquifer. The
model described in this section is a synthesis of the information given in Chapter 2.0.
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3.1.31 Contaminant Sources
Several potential sources for groundwater contamination exist at the WMA TX-TY area:

Tank leaks.

Liquid wastes disposed to past-practice facilities located east, south, and west of WMA TX-TY.
Unplanned releases including leaking pipelines.

Regional contamination from far-field sources (e.g., Plutonium Finishing Plant).

Each of these potential sources is discussed in Chapter 2.0. Currently, it is not possible to distinguish
sources within WMA TX-TY from sources outside the WMA in instances where tank waste was
purposely discharged to nearby, past-practice facilities.

There are regional sources for most of the tritium, carbon tetrachloride, and nitrate found in the
groundwater beneath WMA TX-TY with the exception of a probable local source for the extremely high
tritium and nitrate near well 299-W14-13. Results discussed in Chapter 2.0 indicate that both tank waste
from the WMA and waste from past-practice cribs, trenches, and tile fields, located east and south of
WMA TX-TY, have impacted groundwater in the vicinity of the WMA.

All tanks in WMA TX-TY have been interim stabilized, which means each tank contains less than
189,000 liters of drainable liquid and less than 18,900 liters of supernate (Hanlon 2004). Consequently
there is little risk that large, new leaks will occur from the tanks. However, a total of 1,203,630 liters and
211,960 liters of drainable liquid remain in all tanks in the TX and TY Tank Farms respectively and
3 tanks in the TX Tank Farm still containing greater than 100,000 liters of drainable liquid; so, the
possibility of future impacts to groundwater remains.

Spectral gamma ray logging in WMA TX-TY has shown that there are substantial amounts of
cesium-137 and cobalt-60 with lesser amounts of europium-152, -154, antimony-125, and uranium-235,
-238 in the vadose zone (DOE 2000b, c). Although these constituents are relatively immobile in the
vadose zone environment (except cobalt-60 and possibly uranium), their presence indicates that more
mobile (and non-gamma ray emitting) contaminants such as nitrate, chromium, and technetium-99 are
probably also present. Therefore, most future tank waste contamination in the groundwater is expected to
result from either remobilization of residual vadose zone plumes or leaks associated with liquid waste
transfers and single-shell tank remediation.

All non-permitted, liquid discharges were terminated at the Hanford Site in 1995. Therefore, no
flushing of contaminants to groundwater will result from future intentional discharges. However, residual
vadose zone pore water and associated contaminants remain in the vadose zone beneath past-practice
disposal facilities and WMA TX-TY. This residual contamination is expected to slowly bleed into the
aquifer for the foreseeable future under the influence of natural infiltration.

Non-tank sources have contributed to groundwater contamination in the past. The earliest evidence
of groundwater contamination is high levels of gross beta, nitrate, and uranium in wells located at the
216-T-28 crib, east of WMA TX-TY, in the mid to late 1950s. The earliest groundwater contamination
pre-dates any reported tank leak from the TX-TY Tank Farms (Hanlon 2004).
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3.1.3.2 Driving Forces

In general, there are two ways to transport contaminants to groundwater. The first is associated with
very large leaks when the amount of liquid is sufficient to reach groundwater through gravitational forces
and capillary action. The second is associated with smaller volumes of water (or other liquid) available to
remobilize residual waste in vadose zone plumes. Since most tanks in WMA TX-TY no longer contain
large amounts of liquid waste and since large volume disposal to cribs and tile fields no longer takes place,
it is unlikely that a sufficient source of liquid large enough to reach groundwater unassisted will exist at
WMA TX-TY.

The second mechanism is to move existing vadose zone contamination to groundwater. This involves
an external source of water and is the most likely possibility at WMA TX-TY. The most likely external
sources are broken water lines and natural precipitation. Broken water lines can produce large volumes of
water; however, all known water lines in the area have been pressure tested and all unnecessary water
lines have been turned off and capped. It is possible but unlikely that a previous and unidentified water
line will leak and substantially mobilize existing vadose zone contamination to groundwater in the area.

Remobilization of vadose zone waste also can occur as a result of heavy rainfall and sudden
snowmelt. Johnson and Chou (1998) discuss the extent that rapid snowmelt from recent years has
contributed to increased infiltration at WMA S-SX. A rapid snow melt in February 1979 caused
extensive flooding in the T Tank Farm (Hodges 1998). The detrimental effects of natural recharge can be
enhanced by gravel surfaces, lack of vegetation, and the presence of surface depressions that collect and
pond runoff and snow melt. Recently, berms have been constructed around the TX and TY Tank Farms
to eliminate run-on from adjacent areas so extensive flooding such as that of February 1979 at the T Tank
Farm should not occur in the future.

The surface of the TX and TY Tank Farms is covered with gravel and kept free of vegetation.
Recently, Gee and Ward (2002) used a water balance model based on surface sediment texture and the
past 20-year climate record to predict the amount of annual drainage in selected tank farms. Drainage
estimates from the model suggest an annual drainage of 28 to 56 millimeters/year for the U Tank Farm
and the S Tank Farm in 200 West Area. No analysis was specifically made for the TX or TY Tank Farm
but surface conditions are similar.

3.1.3.3 Migration Pathways

The water table at WMA TX-TY is approximately 67 to 71 meters below the surface. Because the
vadose zone is so thick, much of the migration pathway from a near-surface source to a groundwater
monitoring well will be in the unsaturated zone. Liquid migration through the unsaturated zone is highly
dependent on heterogeneities and anisotropy in the sediment. The sediments making up the vadose zone
beneath WMA TX-TY consist of moderate to high-energy Hanford formation flood deposits with a large
variability in grain size and grain sorting; the Cold Creek unit with variable caliche development; and the
Ringold Formation member of Taylor Flats and member of Wooded Island unit E with variable grain size,
grain sorting, cementation, and compaction. These variabilities occur at scales of centimeters to meters.
Consequently, it is not realistic to define specific migration pathways through the vadose zone beneath
WMA TX-TY.
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The sediment layer with the most influence on moisture migration through the vadose zone is the
Cold Creek unit. The relatively low permeability of the Cold Creek unit has two important effects on
migration of moisture. First, the fine-grained nature of the Cold Creek silt unit requires that it essentially
become saturated before moisture breakthrough to underlying units. This tends to lengthen the time
required for moisture to reach the water table and results in lateral spreading of moisture and contami-
nation. Second, the cemented Cold Creek caliche unit tends to pond water locally in several places
beneath the 200 West Area. This also lengthens the time required for moisture to reach the water table
and results in lateral migration.

Clastic dikes are sub-vertical, sedimentary features that crosscut existing near- horizontal bedding.
Recent work by Ward et al. (2004) shows that at low water fluxes the fine-textured region of clastic dikes
dominate flow, at intermediate fluxes both the coarse sand host matrix and the fine-textured regions
contribute to flow, and at high input fluxes the coarse-textured host sediments dominate flow.

Clastic dikes exist in the subsurface at several areas of the Hanford Site and have been documented at
TX-TY Tank Farm (Price and Fecht 1976; Fecht et al. 1999). Clastic dikes also have been noted at the
other tank farms in 200 West Area and in drill cores from wells in the area (C3102 at the 216-T-26 crib,
288-W22-48 at the WMA S-SX, 299-W23-16 at the 216-U-14 ditch, and 299-W10-22 at the 216-T-4-2
ditch). Several clastic dikes are known to extend at least 20 meters into the subsurface; the maximum
vertical extent known for a clastic dike is about 45 meters.

Another feature that can act as a preferential, vertical pathway is the annular space of wells
and boreholes with no, or poorly constructed, annular seals. There is documentation indicating that only
6 of the 95 drywells in the TX Tank Farm and none of the drywells in the TY Tank Farm (Chamness and
Merz 1993), used for secondary leak detection, have been retrofitted with annular seals to prohibit
downward migration of fluids between the casing and the vadose zone sediments. Most drywells were
drilled between 15.2 to 45.7 meters deep and the water table beneath WMA TX-TY is about 68 to
70 meters below ground surface. Thus, there is about 22 to 55 meters of vadose zone between the bottom
of the drywells and the water table.

All WAC 173-160 compliant monitoring wells at WMA TX-TY have annular seals. However, the
as-built diagram for groundwater monitoring well 299-W14-6, part of the current monitoring network and
located on the east side of the TX Tank Farm, does not show a well seal. Also, well 299-W14-5, which is
now dry and located adjacent to WMA TX-TY, has no documentation concerning an annular seal. These
wells are potential preferential pathways for any contaminants that encountered the wells in the past or
may encounter the wells in the future. Other older wells in the area have been decommissioned.

Field studies at the Hanford Site suggest that relatively narrow, vertical zones of moisture can flow
through unsaturated sediment. Gee and Ward (2001) describe infiltration tests with different ionic
strength fluids and how the fluid properties influence formation of moisture “fingers.” Once such vertical
pathways are established by an initial infiltration event, subsequent infiltration events will prefer the same
pathways.

Further evidence to support this type of flow behavior comes from direct observation of infiltration
tests performed at the 105A mock tank site, 200 East Area (Narbutovskih et al. 1996). Electrical
resistivity tomography was used at that site to track leaked saline water, as fingered flow, from the surface
to a depth of about 21 meters. Furthermore, analysis of the infiltration rate, time to reach depth, and total
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volume of leaked fluid indicated that a low-volume, point leak might reach groundwater in that area
within a few months (Hartman and Dresel 1997). Of note, however, is the more heterogeneous
stratigraphy in 200 West Area (specifically the existence of the Cold Creek unit) which would tend to
increase the travel time through the vadose zone to groundwater.

3.1.34 Changing Groundwater Flow Direction

Historical changes in groundwater flow direction were discussed in Section 2. Using the general flow
directions from Figure 2.9 and the water-table gradients in Reidel et al. (2006) and assuming an average
hydraulic conductivity of 2.5 meters/day (within the broad range given in Table 2.7) and an effective
porosity of 0.2, groundwater could have traveled and carried contaminants from WMA TX-TY or other
nearby sources approximately (1) 34 meters toward the south between 1954 and 1957, (2) 170 meters
northeast between 1957 and 1982, (3) 110 meters north or northwest between 1983 and 1995, and
(4) 49 meters toward the east between 1997 and 2006. (The earliest reported tank leak at WMA TX-TY
is tank TY-106 in 1959.) Although these distances are estimates, they show that changes in the
groundwater flow direction could have contributed to relatively widespread contaminant distribution.

3.1.35 Contaminant Distribution

Section 2.5.1 showed that the concentrations of several constituents decrease with increasing depth in
the unconfined aquifer in the area east of the 242-T Evaporator. Most concentration gradients (tritium,
nitrate, technetium, iodine-129) decrease quite rapidly in the upper couple of meters of the aquifer.
Vertically, this part of the aquifer is bracketed by only two samples such that the detailed description of
contaminant distribution near the water table is not known. Section 2.5.1 also provided information about
the known lateral extent of contamination at WMA TX-TY, particularly at wells 299-W14-11 and
299-W14-13 where the highest concentrations of contaminants are found. The lateral extent of
contamination downgradient of this area is not well known, although it does not extend as far as wells
299-W14-16 and 299-W14-17.

3.14 State the Problem

The problems addressed by this DQO are the uncertainties in the conceptual model which are
summarized in Table 3.1.
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Table 3.1. Summary of Problem Statement

Problem Statement

Source of the Problem

The source or sources for contamination at
WMA TX-TY are not well known.

Multiple potential sources include tank leaks, spills,
transfer pipelines, adjacent cribs and trenches, and the
242-T Evaporator.

Groundwater flow rate and direction at WMA
TX-TY have changed through time and are
currently being altered by the 200-ZP-1 pump-
and-treat system.

Groundwater flow rate and direction are required by
40 CFR 265.93(d)(4)(i) and WAC 173-303-400.

The mechanism(s) driving contamination to
groundwater at WMA TX-TY are not well
defined.

Potential driving forces include natural infiltration,
past intentional disposal to ground, and past water line
leaks. Elimination of driving forces mitigates further
contamination of groundwater from vadose zone
sources.

The general lateral and vertical extents of
contamination in groundwater at WMA TX-TY at
the large and intermediate scale (10s to

~100 meters) is bounded. The lateral and vertical
distributions of contamination in groundwater at
WMA TX-TY at smaller scales (<10 meters) are
known for the high contamination area east of the
WMA.

The extent of contamination is required by 40 CFR
265.93(d)(4)(i) and WAC 173-303-400.

The concentrations of dangerous waste contami-
nants in groundwater at WMA TX-TY are well
defined in the upper 10 meters of the aquifer at
monitoring well locations but the concentrations
change with time. The concentrations of
dangerous waste contaminants in groundwater at
WMA TX-TY will probably change due to the
effects of the 200-ZP-1 pump-and-treat operation.

The concentrations of dangerous waste constituents
is required by 40 CFR 265.93(d)(4)(i) and
WAC 173-303-400.

The pathway(s) for contaminant migration to
groundwater at WMA TX-TY are not well
defined.

The natural pathways to groundwater are through a
heterogeneous and anisotropic unsaturated zone.
Man-made pathways include poorly constructed wells
and boreholes. Eliminating or inhibiting migrations
pathways mitigates further contamination of ground-
water from vadose zone sources.

3.2

Identify Decisions

The decision statements identified below are regulatory driven as stated in 40 CFR 265.93(d)(4)(1)

and (i) [and by reference WAC 173-303-400] and as indicated in the Technical Enforcement Guidance
Document (EPA 1986). The primary information needed for the ongoing groundwater quality assessment
at WMA TX-TY is the information to make the following decisions:

1.  Determine if the well network is consistent with the rate and direction of groundwater flow and,

therefore, requires no action or if the well network is inconsistent with the rate and direction of
groundwater flow and, therefore, requires modification. (Addresses problem statements 2 and 4.)
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2. Determine whether changes in concentration of dangerous waste constituents in the groundwater
originating from the regulated unit are well defined by the existing sampling frequency, in which
case no change in sampling schedule is required, or whether changes in concentrations are not
well defined, requiring an increase in sampling frequency. (Addresses problem statement 5.)

Additional information is needed to support decisions concerning facility and groundwater remedia-
tion activities at WMA TX-TY. This information is the data needed to address the following decision
statements:

3. Determine whether the source or sources of groundwater contamination beneath WMA TX-TY
are adequately identified, requiring no change in the assessment well network, or if the source or
sources of groundwater contamination are not adequately identified, requiring modification of the
well network. (Addresses problem statement 1.)

4.  Determine whether identified driving forces account for migration of contamination through the
vadose zone to groundwater, requiring no action, or whether driving forces for contaminant
migration are not well understood, requiring modification to the assessment well network or
additional studies. (Addresses problem statement 3.)

5. Determine whether the pathways that allowed contamination to traverse the vadose zone and
enter groundwater at WMA TX-TY are adequately known, requiring no action, or whether the
pathways for contaminant migration are not well identified, requiring modification to the
assessment well network or additional studies. (Addresses problem statement 6.)

The information needed to make these decisions is discussed in Section 3.3.

3.3 Decision Inputs

This section describes the information needs for addressing the general decisions and site-specific
questions identified above. A summary of the information needs is given in Table 3.2. More detailed
discussion of the information needs is given in the sections following Table 3.2.

3.3.1 Groundwater Flow Rate and Direction

The rate and direction of groundwater flow is fundamental to assessing the rate of migration and
extent of groundwater contamination from the assumed source. Estimating contaminant arrival times at
some point of potential exposure (or point of compliance) depend on knowing the rate and direction of
groundwater flow.

3.3.11 Data Needs and Approach

The flow rate and flow direction where tank waste constituents have been observed in groundwater
need to be determined.

This fundamental information must be acquired by investigative techniques based on field
measurements.
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Table 3.2. Required Information and Sources

Decision
Statement™® Variable Required Information Source
1 Groundwater Calculated groundwater flow rate Hydraulic conductivity, effective porosity,
flow rate and water-table gradient
Hydraulic conductivity, effective Some hydraulic properties data exist from
porosity, and water-table gradient aquifer testing. Water-table gradient
determined from water-level
measurements.
1 Groundwater Water-table elevations Quarterly and annual water-level
flow direction measurements
1 Lateral extent of | Groundwater flow rate and flow See above
contamination direction
Groundwater chemical composition | Concentrations are determined from
quarterly, semi-annual, and annual
(depending on constituent) groundwater
sampling and analysis
1 Vertical extent of | Groundwater chemical composition | Depth-discrete groundwater data are
contamination available at the local, high contamination
area ecast of the WMA. Additional data
are needed if high contamination is found
in other areas.
2 Contaminant Concentration of contaminants in Concentrations are determined from
concentrations groundwater (1) quarterly, semi-annual, and annual
(depending on constituent) groundwater
sampling and analysis and (2) analysis of
depth-discrete groundwater samples.
3,4,5 Contaminant Lateral and vertical contaminant See above.
source(s), driving | distribution
fo'rces,'and Contaminant concentrations See above.
migration —
pathways Isotopic signatures Analyses of groundwater samples for

Ru-101, -102, and 104; Sr-87/Sr-86; N-15,
and O-18 in nitrate; uranium isotopes; and
stable chromium isotopes. Preliminary
data are available. Additional data needed
from groundwater and source term fluids.

Possible new wells

Any new wells needed to differentiate
contaminant sources require prioritization
through the well drilling data quality
objectives.

(a) From Section 3.2.

Flow Rate. Flow rate is a fundamental parameter for predicting plume movement and distribution.
The configuration of wells in the monitoring network at WMA TX-TY is not conducive to measurement
of flow rate using multi-well methods such as tracer tests. Instead, the more classic method to estimate
flow rate, using the Darcy equation, will be done. This approach is based on hydraulic conductivity of the
aquifer in combination with the water-table gradient and effective porosity. The effective porosity and
hydraulic conductivity have been estimated from the results of aquifer tests (slug tests, tracer tests, and
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pumping tests) in several wells at WMA TX-TY. The water-table gradient is determined from water-
level measurements. Water-level measurements are collected quarterly at WMA TX-TY. Groundwater
flow rates at WMA TX-TY currently are influenced by the 200-ZP-1 carbon tetrachloride extraction
wells.

Flow Direction. Groundwater flow direction will be inferred from water-table elevations in available
wells. This approach depends on accurate depth-to-water measurements. Water-level measurements are
collected quarterly during sampling events and annually (usually March) for constructing the annual
Hanford Site water-table map. Barometric corrections will be made to the measured data if needed.
Reliable casing elevations will be obtained or assessed based on available information. Also, recent
measurements of borehole straightness with a down-hole gyroscope have shown that both new and older
monitoring wells can deviate significantly from vertical. These deviations affect the depth-to-water
measurements and the resulting water-table map from which flow directions are inferred.

Currently, the 200-ZP-1 pump-and-treat operation artificially alters the direction of groundwater flow
beneath most of WMA TX-TY. No special studies and no special efforts other than water-level
measurements will be done while the pump-and-treat system is operating near WMA TX-TY. The
quarterly and annual water-level measurements will be used to construct water-table maps and will be
used as input for a series of three point problems to infer flow directions.

The current estimate of flow direction is shown in Figure 2.10.

3.3.1.2 Data Uses

The flow rate and flow direction are necessary input to the understanding the extent of contamination
at WMA TX-TY. The uses of this input are described in Section 3.3.2.

3.3.2 Extent of Contamination

The spatial and vertical distribution of contaminants in the aquifer is required by 40 CFR
265.93(d)(4)(i) and provides indications of the nature of the vadose zone source, the driving forces and
likely transport processes through the vadose zone and groundwater, input to risk assessments, and
information supporting corrective measures and remediation.

3.3.2.1 Lateral Extent of Contamination

The lateral extent of contamination in the vicinity of WMA TX-TY will be estimated using the results
from routine, quarterly samples to construct plume maps.

Data Needs and Approach
The lateral extent of contamination in the aquifer needs to be determined.

This fundamental information must be acquired by investigative techniques based on field measure-
ments and analytical laboratory data obtained from monitoring wells. These data need to be integrated
with historical groundwater compositions and historical groundwater flow characteristics.
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Groundwater Flow Rate and Flow Direction. The groundwater flow rate and flow direction are input
obtained from the decision inputs described in Section 3.3.1.

Groundwater Chemical Composition. Analyses of routinely collected groundwater samples are
necessary to know the concentrations of contaminants and to estimate the lateral extent of contamination.
The samples are collected from all wells in the monitoring network quarterly, semi-annually, or annually
(depending on constituent). Samples are collected by pump after purging a minimum of three well
volumes and after stabilization of pH, specific conductance, temperature, and turbidity. Sample collec-
tion, storage, and transportation are done by subcontractors to the Hanford Groundwater Performance
Assessment Project according to specifications in a statement of work to the subcontractor. Sample
analyses are routinely done by subcontracted laboratories. Analytical procedures are based on EPA-
approved methods or, in the case of radionuclides, on laboratory-specific procedures based on best
laboratory practice. The analytical data are used to construct contaminant plume maps. The extent to
which a plume map reflects the actual plume depends heavily on the distribution of monitoring wells.

Placement of Monitoring Wells. The current groundwater monitoring network at WMA TX-TY
consists of 16 wells (Figure 3.1), 15 of which were installed since early 1998. Nominally the monitoring
network consists of two upgradient wells and 14 downgradient wells. However, continued use of the
200-ZP-1 pump-and-treat system probably will result in a reversal in groundwater flow beneath the WMA
in the future.

Monitoring wells must be strategically located to delineate contaminant plumes coming from the
regulated unit.

In 2003, a DQO study was done with the Hanford Groundwater Performance Assessment Project,
DOE, and the regulatory agencies that determined the location of one new well at WMA TX-TY (Byrnes
and Williams 2003). That well, well 299-W14-11, was intended to complete the groundwater detection
and assessment network for the tank farm and was drilled in fiscal year 2005. However, the two
upgradient wells for the WMA were modified to serve as extraction wells for the 200-ZP-1 pump-and-
treat operation in July 2005. Prior to the recent addition of extraction wells to the pump and treat system,
the number and spacing of wells on the downgradient side of the WMA was considered adequate for
detection of contamination along the downgradient side of WMA TX-TY after completion of well
299-W14-11 (Byrnes and Williams 2003). If the pump-and-treat system operates for a sufficient period
of time and extracts sufficient quantities of water, some or all of the original downgradient wells will
become upgradient wells and there may be insufficient downgradient wells.

The addition of wells 299-W15-44, 299-W15-40, and 299-W15-765 as extraction wells was designed
to capture carbon tetrachloride along the entire west side of WMA TX-TY. Thus, as long as the
temporary flow direction is toward the west (toward the extraction wells), any contamination coming
from the WMA to the west should be detected at these wells.

It is not recommended adding wells to the WMA TX-TY monitoring network until the wells along

the western side of the WMA are no longer used as extraction wells and the network is subsequently
shown to be inadequate.
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Figure 3.1. Current Groundwater Monitoring Network for Waste Management Area TX-TY
Data Uses

The analytical results from groundwater sampling and analysis are used to construct contaminant
plume maps illustrating contaminant distributions. These maps are produced quarterly and published
annually for chromium, nitrate, uranium, carbon tetrachloride, trichloroethene, fluoride (annual only),
sulfate (annual only), iodine-129, technetium-99, strontium-90, and tritium. The quarterly and annual
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maps typically show contaminant concentrations at the top of the unconfined aquifer. Plume maps for
additional analytes can be made if necessary. Plume maps are also an aid in identification of source areas
in cases where distinct plumes emanate from specific facilities.

The extent of contaminant plumes can be modeled using the simple, two-dimensional analytical
transport model of Domenico and Robbins (1985). The model assumes that a solute is released along a
continuous line source in a uniform aquifer, and predicts the concentrations that would be observed at
points downstream of the source. Inputs to the model include the width of the source, the longitudinal
and transverse dispersion coefficients, time, hydraulic conductivity, groundwater gradient, effective
porosity, and retardation factors.

3.3.2.2 Contaminant Depth Distribution

The vertical extent of contamination at WMA TX-TY has been determined from sample and analysis
of groundwater at a few, specific wells.

Data Needs and Approach
The vertical extent of contamination in the aquifer needs to be determined.

This fundamental information must be acquired by investigative techniques based on field measure-
ments and analytical laboratory data described below.

Groundwater Chemical Composition. Samples to describe lateral contaminant distribution are
collected by purging a well and then pumping the samples after the well has been completed. Samples
collected for vertical contaminant distribution are collected at specific depth intervals in the aquifer,
typically during drilling. Wells drilled deep into the aquifer can be screened at depth during well
completion. Sampling of wells screened at depth can help define the vertical extent of contamination.

Depth-discrete groundwater samples were collected from new well 299-W14-11, drilled as part of the
WMA TX-TY groundwater assessment in 2005. Samples were collected every 1.5-vertical-meter interval
throughout the drilled part of the aquifer. The results from these samples, along with previously collected
depth-discrete data from adjacent well 299-W14-13, have defined the vertical distribution of
technetium-99, nitrate, trititum, and chromium in the area of the well pair.

Currently, contamination potentially from the WMA is restricted to the area local to wells
299-W14-13 and 299-W14-11 (excluding the contamination being drawn toward the 200-ZP-1 extraction
wells). If the local contaminant plume spreads, additional vertical profile data are required to determine
the vertical distribution of contamination in the newly affected area.

Data Uses

The available analytical data has been used to make concentration versus depth profiles for each
tested well. The depth distribution of contaminants may help infer the size of the plumes and distance to
contaminant sources from the wells and provide inputs to remedial decisions. For example, a large utility
line leak that mobilizes contaminants by localized saturated flow may result in a deeper contaminant
distribution in the aquifer than mobilization by slowly migrating moisture from natural infiltration. Also,
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a deeper contaminant distribution is expected from vertical dispersion from distal sources, whereas a
shallow contaminant plume is expected from proximal sources.

The depth distribution of contaminants is basic information needed by the regulatory agencies and
DOE to make decisions concerning remedial actions and risk assessments.

3.3.3 Contaminant Concentrations
The concentrations of contaminants in the uppermost aquifer need to be determined.
3.3.3.1 Data Needs and Approach

The results of groundwater sampling and analysis are the data needed to determine the concentrations
of contaminants in the aquifer. These are the same data needs described above for determining the lateral
and vertical extent of contamination.

3.3.3.2 Data Uses

Contaminant concentrations are evaluated and used to generate plume maps, trend plots, and cross-
sections. Contaminant concentrations are reported in RCRA quarterly and annual reports.

3.34 Contaminant Sources, Driving Forces, and Migration Pathways
3.34.1 Data Needs and Approach

Lateral and Vertical Contaminant Distribution. This information is supplied from the decision inputs
described above for determining the lateral and vertical contaminant distributions (Section 3.3.2).

Contaminant Concentrations. This information is supplied from the decision input described above
for determining the contaminant concentrations (Section 3.3.3).

Isotopic Signatures. The isotopic signature work is planned in the scope of work funded by the
Hanford Site Groundwater Protection Program’s Science and Technology Project and not the scope of
this groundwater assessment. However, this assessment will use information provided by the Science and
Technology Project to the fullest extent possible.

A proposal was submitted to Science and Technology Project to use isotopic signatures of various
waste streams in the vicinity of WMAs T and TX-TY and isotopic measurements of groundwater from
WMASs T and TX-TY monitoring wells as tools to distinguish the source or sources of groundwater
contamination at WMA TX-TY and elsewhere. The special isotopic work is a joint project between
Lawrence Berkeley National Laboratory and PNNL. The isotopic systems proposed include

e Ruthenium-101, -102, and -104.
e Strontium-87 and strontium-86.
e "N and 6'0 in nitrate.

e Uranium isotopes.

e Stable chromium isotopes.
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All of these isotopic systems, except stable chromium, have been used previously at the Hanford Site.
Although the chromium isotopic system may show little difference in the isotopic compositions of
chromium from different Hanford Site sources, this proposition will be tested. It is speculative at the
moment, but the chromium isotopes may reflect the sources of hexavalent chromium groundwater
contamination.

New Monitoring Wells. Evaluation of information gathered during this assessment concerning
source(s) of contamination, may lead to a conclusion that one or more new upgradient and/or
downgradient wells are needed. Any new proposed wells will be submitted to the DQO process for
prioritizing drilling and construction of new wells.

3.34.2 Data Uses

Results from these special isotopic studies may help determine the source or sources for the ground-
water contamination at WMAs T and TX-TY. Examples of the uses of the isotopic systems are given in
the following paragraph. These types of information may be applicable to the groundwater assessment at
WMA TX-TY.

A ruthenium fission isotope investigation in the WMA B-BX-BY area found that the
technetium-99:ruthenium-101 ratio was higher than expected from the fission yield and that there were
two geographically distinguishable technetium-99:ruthenium-101 populations, suggesting possible
separate technetium-99 sources in the area (Dresel et al. 2002). The ruthenium isotopic ratios also
suggest that there are two sources for fission products in the area: material processed at B Plant and
material processed at PUREX Plant. Strontium isotopic ratios have been found to vary in Hanford Site
groundwater due to a combination of exchange with sediments and quantity of infiltration. Areas with
very high strontium-87 or strontium-86 are believed to reflect disposal of large volumes of process water
(Maher et al. 2003). The stable nitrogen and oxygen isotopes in nitrate have been used at the Hanford
Site to help distinguish high-level tank waste from low-level process waste and nitric acid (Singleton
et al. 2005). Uranium isotopic ratios have been used at the Hanford Site to provide constraints on the
source of uranium groundwater contamination in the WMA B-BX-BY area (Christenson et al. 2004).

3.4 Define the Boundaries of the Study

This section defines the boundaries for groundwater quality assessment monitoring at WMA TX-TY.
Spatial and temporal boundaries are described as well as well as boundaries on the monitoring network
and the analytes to be monitored. This step in the DQO process defines the set of circumstances covered
by the questions being addressed.

3.4.1 Spatial Boundaries

The spatial boundaries for groundwater quality assessment monitoring at WMA TX-TY are
boundaries defining the WMA, the area upgradient of the WMA between the WMA and upgradient
monitoring wells, and the boundaries of downgradient contaminant plumes emanating from the WMA.
The uppermost aquifer within this geographical area is the unit of most concern. The uppermost aquifer
extends down to the Ringold Formation lower mud unit. The vadose zone within the above described
area is also of concern because contaminants in the vadose zone are a source for groundwater
contamination.
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3.4.2 Temporal Boundaries

The first assessment report (Hodges 1998) found that the tank waste constituent technetium-99 had
impacted groundwater. This implies that associated RCRA constituents chromium and nitrate have
impacted groundwater in proportion to their concentrations relative to technetium-99 in tank waste.
Under 40 CFR 265.93 (d)(7)(i), groundwater quality assessment monitoring must continue until final
closure of WMA TX-TY. The expected closure date for all single-shell tanks is 2024.

3.4.3 The Monitoring Network

The current groundwater monitoring network at WMA TX-TY is based on a recent interpretation of
subsurface conditions. The initial groundwater monitoring network was designed based on a combination
of professional judgment and modeling (Caggiano and Goodwin 1991; MEMO, Wilson et al. 1992). This
provided an initial basis for the spacing and locations of wells. Subsequent wells were added to the
network based on the same combination of judgment and modeling (Hodges and Chou 2001).

All but one (299-W14-6) of the original eleven detection wells at WMA TX-TY are dry as a result of
the declining water table. These wells have been replaced with 15 WAC 173-160 compliant monitoring
wells. The current groundwater monitoring network at WMA TX-TY consists of the 16 wells shown on
Figure 3.1. As-built diagrams for the current WMA TX-TY assessment network wells are presented in
Appendix B. One of these wells is an older well constructed before WAC 173-160 was implemented.
Well 299-W14-6 has been used as a downgradient well since flow directions shifted from a northward
direction toward the east. It is an older well, with a 9-meter perforated interval.

Two of the wells, 299-W14-16 and 299-W14-17, are mid-field wells located about 100 meters
northeast and southeast respectively of well 299-W14-13. The latter well marks the location of the small
technetium-99, iodine-129, tritium, nitrate, and chromium plume found east (downgradient) of the WMA.
Wells 299-W14-16 and 299-W 14-17 are used to monitor the downgradient extent of the high
contamination in well 299-W14-13.

Currently, no new wells are planned at WMA TX-TY. Also, no new wells are recommended until the
perturbing effects of the 200-ZP-1 pump-and-treat operation have abated. If, at some point, new wells are
recommended at WMA TX-TY, the recommendation will be submitted to the well drilling DQO for
consideration along with the rest of the Hanford Site’s well drilling needs.

3.43.1 Constituents to be Monitored

The constituents to be monitored at WMA TX-TY include (1) RCRA-regulated, dangerous-waste
constituents of concern, (2) non-RCRA non-dangerous-waste constituents of interest, and (3) supporting
groundwater quality constituents. The constituents of concern are those constituents monitored for
RCRA and discussed in the following paragraph. The constituents of interest are those constituents
monitored under CERCLA and AEA to support tank farm retrieval and remediation and are discussed in
subsequent paragraphs. In addition, the supporting groundwater quality constituents are also discussed.
All constituents to be monitored are listed in Table 3.3.
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Table 3.3.  Constituents of Concern, Constituents of Interest, and Supporting Groundwater Quality
Constituents to be Monitored at Waste Management Area TX-TY

Constituents of Concern

Chromium Nitrate

Constituents of Interest

Technetium-99 Todine-129
Tritium Gross alpha
Gross beta Gamma scan

Supporting Groundwater Quality Constituents

Major metals Major anions

pH Alkalinity
Specific Conductance Turbidity
Temperature Dissolved oxygen

Oxidation-reduction potential

Constituents of Concern. Chromium and nitrate are included as constituents of concern for RCRA
monitoring at WMA TX-TY. The constituents of concern are those dangerous waste constituents
regulated by RCRA that exist in the waste stored in WMA TX-TY and that are found in groundwater
downgradient of WMA TX-TY. The specific constituents that have been documented in groundwater
include chromium, nitrate, and carbon tetrachloride. Carbon tetrachloride is monitored under CERCLA
and is not included as a WMA TX-TY groundwater assessment constituent of concern.

Constituents of Interest. The constituents of interest are non-RCRA regulated, non-dangerous waste
constituents. The constituents of interest are compiled from existing contaminants in groundwater
downgradient of WMA TX-TY that are not covered in the above paragraph and certain screening
parameters for potential radionuclide contaminants.

The constituents of interest that are identified in the groundwater beneath WMA TX-TY are
technetium-99, tritium, and iodine-129. The screening parameters gross alpha and gross beta are also
included in the constituents of interest. These analyses are used to indicate the possible presence of
common radionuclide contaminants in the groundwater including strontium-90, and various isotopes of
uranium and plutonium. If a screening parameter indicates an increase in alpha or beta activity that
cannot be explained by an increase in a specific radionuclide that is already included as a constituent of
interest, then additional radionuclide-specific analyses will be initiated. The screening parameters are less
expensive than most radionuclide-specific analyses and their use greatly decreases the cost of monitoring.
Finally, the isotopes measured by gamma scan are included as constituents of interest because they
include cesium-137, cobalt-60, and other isotopes known to exist in the vadose zone that could potentially
reach groundwater.

Supporting Groundwater Quality Constituents. Table 3.3 gives the supporting groundwater quality
constituents. The supporting groundwater quality constituents are used to evaluate the chemical and
physical quality of the sample. Basic hydrochemical information is obtained from the supporting
groundwater quality constituents to allow quality control checks (e.g., cation/anion charge balance,
specific conductance versus the sum of major constituents). Changes in pH and alkalinity also would be
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expected if tank waste or reaction products reached groundwater. Some groundwater quality constituents
can also help evaluate the size of liquid leaks and leak sources.

3.4.4 Practical Constraints

Although not strictly boundaries, practical constraints place limits on planned activities that get
accomplished. The most obvious practical constraint is cost. Every effort is made to ensure the
collection of the right types of data to support the decisions while keeping the cost of this assessment at a
minimum. However, unforeseen changes in budgets may preclude some of the scope proposed for this
groundwater assessment.

3.5 Decision Rules

Decision rules address the major or key questions and issues previously discussed. In accordance
with the DQO process, “if-then” statements are formulated that lead to actions based on the data or
information. However, not all issues or questions identified are amenable to this approach. Table 3.4
summarizes the decision rules and the following sections provide more detail.

351 Groundwater Flow Rate and Direction

The groundwater flow rate and flow direction are fundamental inputs to evaluating the lateral (and to
some extent the vertical) distribution of contamination. The flow rate and flow direction are also valuable
input to determine contamination sources. Therefore, the flow rate and flow direction where
contaminates are encountered in the groundwater need to be known. However, a decision rule regarding
flow rate and flow direction is not feasible because estimations of groundwater flow rate and flow
direction are dependent on estimations of hydraulic conductivity and effective porosity, the accuracy of
water-level measurements, and heterogeneities in the hydrogeologic system. The best possible recourse is
to continue collecting hydrologic data as they become available to refine existing estimates of
groundwater conditions.

3.5.2 Extent of Contamination

The extent of groundwater contamination from WMA TX-TY is required by 40 CFR 265.93(d)(4)(i).
In addition, the extent of contamination is helpful to determine the source of contamination. Thus, it is
important to know the spatial and vertical distribution of contaminants in the unconfined aquifer at WMA
TX-TY. A decision rule regarding the lateral extent of contamination is:

If a given contaminant plume is enclosed laterally and downgradient by WMA TX-TY network
wells or additional operable unit wells with concentrations of one-half or less of the drinking
water standard for the given contaminant, then the lateral extent of the given contaminant
plume is well understood.
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Table 3.4.

Summary of Decision Rules

Decision Statement®

Decision Rule

What is the rate and extent of migration of dangerous waste or
dangerous waste constituents in the groundwater?

A decision rule for flow rate is not appropriate because flow
rate and direction are dependent on estimates of hydrologic
properties from a heterogeneous and anisotropic system.

If a given contaminant plume is enclosed laterally and
downgradient by WMA TX-TY network wells or additional
operable unit wells with concentrations of one-half or less of
the drinking water standard for the given contaminant, then
the lateral extent of the given contaminant plume is well
understood.

If sampling within a single well shows that, at some depth, the
concentration for a given contaminant is at the local back-
ground level, and that concentrations above that depth passed
through a maximum value, then the vertical extent of contami-
nation for the given contaminant in the area is well known.

What are the concentrations of dangerous waste constituents in
the groundwater originating from the regulated unit?

If contaminant concentrations are stable or on an established
trend line, then no frequency change will be made to the
sampling schedule.

If a screening constituent shows an increase that can not be
accounted for by other monitored constituents, then additional
groundwater evaluation will be done.

If results of the additional evaluation indicate that additional
constituents of concern or constituents of interest have
adversely impacted groundwater quality and are attributed to
WMA TX-TY, then that (those) constituent(s) will be added to
the list of constituents of concern or to the list of constituents
of interest as appropriate.

What is the location or source of groundwater contamination at
WMA TX-TY?

If more data are needed in a specific area to distinguish
among two or more potential sources of contamination, then
the location for appropriately placed new wells will be
submitted for consideration in the next update of the well
drilling DQO.

What are the driving forces that account for the temporal and
spatial occurrences of contaminants in the groundwater at
WMA TX-TY.

A decision rule for this decision statement is not appropriate
because determination of migration pathways results from a
synthesis of historical data, data gathered during this assess-
ment, and data gathered as part of other Hanford Site projects.

What are the pathways that allowed contamination to traverse
the vadose zone and enter groundwater at WMA TX-TY?

A decision rule for this decision statement is not appropriate
because determination of driving mechanisms results from a
synthesis of historical data, data gathered during this assess-
ment, and data gathered as part of other Hanford Site projects.

(a) From Section 3.2.
(b) DQO = data quality objective.
(¢) WMA = waste management area.

For cases where the lateral extent of a given contaminant plume is not known, additional wells may
be necessary to define the extent of the plume. The installation of new wells is prioritized by the DQO
process at the Hanford Site. Therefore, the addition of new wells to the WMA TX-TY monitoring
network will be prioritized along with other Hanford Site’s needs.

An additional decision rule regarding the vertical extent of contamination is:

If sampling within a single well shows that, at some depth, the concentration for a given
contaminant is at the local background level, and that concentrations above that depth
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passed through a maximum value, then the vertical extent of contamination for the given
contaminant in the area is well known.

For cases where the concentration for the given contaminant remains high at the total depth of the
well, the vertical extent of contamination in the area is not well known. Decisions can be made to
prioritize a new, deeper well at that location.

A complicating factor is the continued, overall decline in the regional water table. The absolute
elevation at which the contamination ceases to be a problem may change as the water table declines. The
water table is expected to decline an additional 5 miters based on current water levels and estimated post-
Hanford water levels (Bergeron and Wurstner 2000).

3.5.3 Sampling and Analysis Considerations
3.5.3.1 Sampling Frequency

A quarterly sampling frequency is required by 40 CFR 265.93(d)(7)(i) and by reference
WAC 173-303-400(3) for RCRA-regulated constituents at WMA TX-TY. There are no requirements for
sampling frequency associated with non-dangerous waste constituents at a WMA under groundwater
quality assessment. The sampling frequency for each constituent sampled under this groundwater quality
assessment plan is given in the Sampling and Analysis Plan (Appendix A).

A decision rule covering sampling frequency is as follows:

If contaminant concentrations are stable or on an established trend line, then no frequency
change will be made to the sampling schedule.

All groundwater data are reviewed quarterly and the sampling schedule is reviewed annually. The
sampling schedule will be changed if it is thought necessary by the project scientist.

3.5.3.2 Analyzed Constituents

The constituents of concern were defined in Section 3.4.3.1 as those dangerous waste constituents
regulated by RCRA, and that exist in the waters stored in WMA TX-TY, and are found in the
groundwater downgradient of WMA TX-TY: specifically chromium and nitrate. The definition of
constituents of concern allows for the list of those constituents to be changed (if additional dangerous
wastes are found in the groundwater in the future). Decision rules addressing a change in the list of
constituents of concern are as follows:

If a screening constituent shows an increase that can not be accounted for by other monitored
constituents, then additional groundwater evaluation will be done.

This additional evaluation may include more frequent sampling, or the analysis of specific consti-
tuents previously covered by a screening constituent (e.g., strontium-90 as indicated by gross beta), or
analysis of other heretofore unconsidered constituent.

If results of the additional evaluation indicate that additional constituents of concern or
constituents of interest have adversely impacted groundwater quality and are attributed to
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WMA TX-TY, then that (those) constituent(s) will be added to the list of constituents of
concern or to the list of constituents of interest as appropriate.

354 Contaminant Source(s), Migration Pathways, and Driving Mechanisms

Determinations of contaminant source(s), migration pathways, and driving mechanisms results from
syntheses of historical data, data gathered during this assessment, and data gathered as part of other
programs such as the River Protection Project Tank Farm Vadose Zone Project and the 200-ZP-1
Operable Unit. One likely outcome from these determinations is that more information is needed from a
specific area to differentiate between two or more contaminant sources. The major access way for
gathering additional information is through additional boreholes or wells. A decision rule addressing this
is as follows:

If more data are needed in a specific area to distinguish among two or more potential
sources of contamination, then the location for appropriately placed new wells will be
submitted for consideration in the next update of the well drilling DQO.

The well drilling DQO process will be used to prioritize the needed wells with wells required by other
Hanford Site projects.

Other means of gathering information concerning contaminant sources and possibly migration
pathways and driving mechanisms are (1) analysis of constituents not previously analyzed, (2) use of
contaminant ratios not previously used, and (3) analysis by contaminant suites.

3.6 Optimize the Sampling Design

The groundwater quality assessment program for WMA TX-TY outlined in this DQO section is
judged to be the current most resource-effective data collection design for gathering data to satisfy the
DQOs. The resulting data collection design is given in the Sampling and Analysis Plan in Appendix A.
However, priority and on-going activities frequently change at the Hanford Site and these changes could
lead to further design optimization. Also, additional groundwater quality assessment information may
lead to further design optimization. This assessment plan will be reviewed annually to determine whether
the activities for the groundwater assessment remain the most resource-effective data generating
activities.

An additional cost savings is realized by coordination of sampling activities among RCRA,
CERCLA, and AEA monitoring. The sampling schedules for the three monitoring programs are
integrated to minimize well trips and duplicate analyses.
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Appendix A

Sampling and Analysis Plan

This appendix consists of a field sampling plan (FSP) and a quality assurance project plan (QAPP).
The FSP specifies the data collection design and the QAPP includes the procedures and project manage-
ment controls intended to ensure the data collected and associated measurement errors are appropriate to
meet the quantitative and qualitative data quality objectives (DQO). Together these two plans form the
Sampling and Analysis Plan. The Sampling and Analysis Plan is used as the principal controlling
document for conducting the work identified in Section 3.

A.1l Field Sampling Plan

This section contains the data collection design and activities for the continued groundwater quality
assessment of Waste Management Area (WMA) TX-TY. A description of each task is provided.
Additional discussion and background information associated with the tasks are provided in the main
body of the plan.

A.1.1 Task Description

The tasks described are a subpart of the Groundwater Performance Assessment Project (groundwater
project) managed for the U.S. Department of Energy (DOE) by Pacific Northwest National Laboratory
(PNNL). Project management and organizational interfaces and procedures are described in Section A.2.

A.1.1.1 Determine Groundwater Flow Direction

Water Level Measurements. The depth to water will be measured quarterly in all wells at the time
of sampling. These measurements are an indicator of conditions in the well at the time of sampling.
However, because these measurements are generally taken over a time period of a few days, they are
subject to differential barometric effects due to diurnal and storm-related changes in atmospheric
pressure. Therefore, depth-to-water measurements taken at the time of sampling and used to construct
water table maps will be corrected for changes in atmospheric pressure if substantial pressure changes
occurred over the time period of data collection.

Additionally, depth to water is measured annually in March to construct the annual Hanford Site
water-table map. At WMA TX-TY, these March measurements are generally taken in all wells within a
few hours time. Thus, the March measurements are not as susceptible to barometric effects as are the
quarterly measurements.

A.1.1.2 Well Drilling and Testing

Currently, no new wells are planned for WMA TX-TY. If site conditions change such that new wells
are deemed necessary, new wells will be recommended to the well drilling DQO to be prioritized with
other Hanford Site well requirements. If new wells will be constructed as a result of the DQO
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prioritization, appropriate sampling and analysis activities during drilling, geophysical logging activities,
and aquifer testing will be described and documented in a separate sampling and analysis plan for drilling
new wells.

A.1.1.3 Quarterly Groundwater Sampling and Analysis

Sampling in the WMA TX-TY well network identified for this assessment is an ongoing activity. A
quarterly frequency is required by 40 CFR 265.93(d)(7)(i) by reference of WAC 173-303-400(3) for
Resource Conservation and Recovery Act (RCRA)-regulated constituents. This frequency also is adopted
for some constituents of interest and groundwater quality indicators. Other constituents of interest are
sampled semi-annually or annually. These frequencies are judged to be adequate for assessing the rate
and extent of contaminant migration in the groundwater, and contaminant concentrations for the WMA
TX-TY based on the time response of previous contaminant occurrences in monitoring wells and a
relatively slow groundwater flow rate in the north central part of 200 West Area.

The selection of the constituents to be monitored was discussed in Section 3.4 of the main body of
this assessment plan. The wells to be monitored and the monitoring schedule are shown in Table A.1.

A.1.1.4 Special Isotopic Studies

Special isotopic investigations are planned under the scope of the Science and Technology Project
and in conjunction with Lawrence Berkeley National Laboratory to try and distinguish the source or
sources for contamination downgradient of WMA TX-TY. The WMA TX-TY groundwater assessment
will take full advantage of any results from the special isotope studies as is appropriate for the assessment.
The isotopic systems to be investigated include:

e Ruthenium-101, -102, and -104.
e Strontium-87 and strontium-86.
e 3N and §'®0 in nitrate.

e Uranium isotopes.

e Stable chromium isotopes.

Several sample sets will be used for these studies. Depth-discrete samples of pumped groundwater
from the new well 299-W14-11 were collected for isotopic analyses when the well was drilled.
Supplementing these samples are aliquots of groundwater samples collected during routine, quarterly
sampling events between 1999 and 2003. Additional samples can be collected if needed.

A.1.1.7 Project Planning and Direction

This task involves ensuring that tasks are on schedule, that resources and personnel will be available
when they are needed, and developing workarounds when schedule conflicts occur. Preparation of the
assessment plan (this document), preparation of further assessment work plans that may be necessary to
implement individual tasks, and any subsequent revisions of the assessment plan are also included in this
task. Attending meetings with stakeholders and the integration project team leads to ensure coordination
with other related projects is part of this task.
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Table A.1. Sampling Schedule for Groundwater Monitoring at Waste Management Area TX-TY

RCRA Constituents of
Concern Constituents of Interest and Supporting Groundwater Quality Constituents
g 7l 8 H S = g =
X Water = 2 = S T £ ] = = = . 2
Well Name Purpose(h) | WAC Compliant Level® g _ s % ﬁ 3 2 = T > o g 5 kS § =3 = ::
sg| gl £ S £ 8 gl ¢ 5| g %% 2 g o3g  § ¢
£2 = 3 = s e e S5 2 = E 25 5 5| 2% 3 5
(SR b4 = = (U] o o =) < < = [7Xe] = [ [aYe) o o |Sr-90
299-W10-26  |Downgradient Y Q Q Q Q Q A A A Q Q Q Q Q Q Q Q Q _® _
299-W10-27 Downgradient Y Q Q Q Q Q A A A Q Q Q Q Q Q Q Q Q — —
299-W 14-6 Downgradient N Q Q Q Q Q — A A Q Q Q Q Q Q Q Q Q — —
299-W14-11 Downgradient Y Q Q Q Q Q SA SA SA Q Q Q Q Q Q Q Q Q Q A
299-W14-13  |Downgradient Y Q Q Q Q Q SA SA SA Q Q Q Q Q Q Q Q Q Q A
299-W14-14 Downgradient Y Q Q Q Q Q A A A Q Q Q Q Q Q Q Q Q — —
299-W 14-15 Downgradient Y Q Q Q Q Q A A A Q Q Q Q Q Q Q Q Q Q —
299-W14-16 Mid-field® Y Q Q Q Q Q — — — Q Q Q Q Q Q Q Q Q Q —
299-W14-17 Mid-field Y Q Q Q Q Q _ — — Q Q Q Q Q Q Q Q Q Q _
299-W14-18 Downgradient Y Q Q Q Q Q A A A Q Q Q Q Q Q Q Q Q Q —
299-W14-19  |Downgradient Y Q Q Q Q Q A A A Q Q Q Q Q Q Q Q Q — —
299-W15-40  |Upgradient Y Qv Q Q Q Q _ A A Q Q Q Q Q Q Q Q Q — _
299-W15-41 Downgradient Y Q Q Q Q Q A A A Q Q Q Q Q Q Q Q Q SA —
299-W15-44  [Downgradient Y Q¥ Q Q Q Q A A A Q Q Q Q Q Q Q Q Q SA _
299-W15-763 |Downgradient Y Q Q Q Q Q A A A Q Q Q Q Q Q Q Q Q — —
299-W15-765 |Upgradient Y QU Q Q Q Q A A A Q Q Q Q Q Q Q Q Q SA —
Footnotes
(@) Gamma Scan - Analytes include but are not limited to cobalt-60, cesium-137, europium-152, -154.
(b) Gross Beta - Indicator paramenter for strontium-90 and other beta emiters
(c) Gross Alpha - Indicator paramenter for uranium isotopes and other alpha emitters
(d) Metals - Analytes include but are not limited to alumium, bismuth, chromium, manganese, sodium, magnesium, potassium, and calcium
() Anions - Analytes include but are not limited to nitrite, nitrate, chloride, sulfate, and fluoride
(f) Field Measurement
(9) Dash indicates analysis is not performed for the indicated well.
(h) Mid-field wells are wells located downgradient of the downgradient wells and used to determine lateral extent of contamination.
(i) Water levels are not taken in extraction wells.
Codes
Q = Quarterly
SA = Semi-annual
A = Annual




A.2 Quality Assurance Plan

The groundwater quality assessment investigation at WMA TX-TY is an integral part of the RCRA
groundwater-monitoring program of the groundwater project. The scope of the consolidated project
includes groundwater monitoring and the hydrogeologic services necessary to install, design, and monitor
well networks for groundwater quality and contaminant movement on the Hanford Site. The project is
administered by PNNL for the Richland Operations Office of DOE, Environmental Restoration (ER)
Branch.

The groundwater project was established in 1996 when scope and personnel for the RCRA
groundwater and related operational monitoring activities were transferred from Westinghouse Hanford
Company to PNNL. The groundwater project quality assurance plan and current subcontractor
procedures/manuals cover much of the work activities required for conducting the WMA TX-TY
groundwater quality assessment.

Project description, project organization and designated responsibilities, and project management
interfaces between DOE and subcontractor organizations are described in the groundwater project quality
assurance plan.

A.2.1 Groundwater Sampling and Analysis Protocol

Samples will be collected for this assessment during routine quarterly sampling. The sampling and
analysis methods and procedures and associated quality control for routine quarterly groundwater
sampling and analysis are described in EPA (1986).

A.2.1.1 Water-Level Monitoring

Field personnel measure depth to water before sampling or at other times as specified by the
groundwater project (e.g., annual water-level measurements). The tapes used to make depth measure-
ments are calibrated semi-annually. Field personnel obtain two consecutive measurements that agree
within 6 millimeters and record them along with date, time, measuring tape number, and other pertinent
information. Depth to water is subtracted from the elevation of a reference point (usually top of casing)
to obtain water-level elevation. Water-level elevations are used to construct water-table maps.
Groundwater flow direction beneath WMA TX-TY is determined from water-level measurements.

A.2.1.2 Routine Sampling and Analysis Protocol

Groundwater monitoring for WMA TX-TY is part of the groundwater project and follows project
quality assurance protocols. Groundwater monitoring for WMA TX-TY will follow the requirements of
the most recent revision of the project quality assurance protocols; this monitoring plan need not be
revised to cite future revisions of those protocols.

Project staff schedule sampling and initiate paperwork and oversee sample collection, shipping, and
analysis. Quality requirements for any work subcontracted are specified in statements of work or
contracts.
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The statement of work for sampling activities specifies that those activities will be conducted in
accordance with a quality assurance project plan that meets the requirements defined in Requirements for
Quality Assurance Project Plans, EPA/240/B-01/003 (EPA QA/R-5) (EPA 2001, as revised). Additional
requirements are specified in the statement of work.

Groundwater project staff conduct laboratory audits and field surveillances to assess the quality of
subcontracted work and initiate corrective action if needed.

Scheduling Groundwater Sampling

The groundwater project schedules well sampling. Many Hanford Site wells are sampled for multiple
objectives and requirements; e.g., RCRA, Comprehensive Environmental Response, Compensation, and
Liability Act (CERCLA), and Atomic Energy Act (AEA). Scheduling activities help manage the overlap,
eliminate redundant sampling, and meet the needs of each sampling objective. Scheduling activities
include the following:

e Fach fiscal year, project scientists provide well lists, constituent lists, and sampling frequency. Each
month, project scientists review the sampling schedule for the following month. Changes are
requested via change request forms and approved by the sampling and analysis task lead and
monitoring project manager.

o Project staff track sampling and analysis through an electronic schedule database stored on a server
at PNNL. Quality control samples also are managed through this database. A scheduling program
generates unique sample numbers, and a special user interface generates sample authorization forms,
field services reports, groundwater sample reports, chain-of-custody forms, and sample container
labels.

e Sampling and analysis staff verify that well name, sample numbers, bottle sizes, preservatives, etc.
are indicated properly on the paperwork, which is transmitted to the sample collector. Staff verify
that the paperwork was generated correctly.

e At each month’s end, project staff use the schedule database to determine if any wells were not
sampled as scheduled. If the wells or sampling pumps require maintenance, sampling is rescheduled
following repair. If a well can no longer be sampled it is cancelled, and the reason is recorded in the
database.

Chain of Custody

The sample collector uses chain-of-custody forms to document the integrity of groundwater samples
from the time of collection through data reporting. The forms are generated during scheduling and
managed by the sample collector. Samplers enter required information on the forms, including the
following:

Sampler’s name(s).

Method of shipment and destination.
Collection date and time.

Sample identification numbers.
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e Analysis methods.
e Preservation methods.

When samples are transferred from one custodian to another (e.g., from sampler to shipper or shipper
to analytical laboratory), the receiving custodian inspects the form and samples and notes any deficien-
cies. Each transfer of custody is documented by the printed names and signatures of the custodian
relinquishing the samples and the custodian receiving the samples, and the time and date of transfer are
recorded.

Sample Collection

All of the wells in the WMA TX-TY network are equipped with dedicated sampling pumps. Field
personnel measure water levels in each well prior to sampling, then purge stagnant water from the well.
Groundwater samples generally are collected after three casing volumes of water have been purged from
the well and after field parameters (pH, temperature, specific conductance, and turbidity) have stabilized.

For routine groundwater samples, preservatives are added to the collection bottles, if necessary,
before their use in the field. Samples for metals analyses are filtered in the field with 0.45 micrometer, in-
line, disposable filters. After sampling, pH, temperature and specific conductance are measured again.
Sample bottles are sealed with evidence tape and placed in a cooler with ice for shipping.

Analytical Protocols

Instruments for field measurements (e.g., pH, specific conductance, temperature, and turbidity) are
calibrated using standard solutions prior to use and are operated according to manufacturer’s instructions.
Each instrument is assigned a unique number that is tracked on field documentation and calibrated and
controlled.

Laboratory analytical methods are specified in contracts with the laboratories, and are standard
methods from Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods (EPA/SW-846;
EPA 1986, as revised) or Methods for Chemical Analysis of Water and Wastes (EPA-600/4-79-020, EPA
1983, as revised).

A.2.2 Borehole Drilling and Testing and Well Completion

Fluor Hanford, Inc. manages borehole drilling and well installation under their safety and related job
control procedures. Data needs and objectives for new wells transmitted by letter report to Fluor Hanford,
Inc. to include in the detailed specifications for the drilling contracts. No new wells for WMA TX-TY
currently are planned. If further assessment of the WMA indicate that new wells are needed,
requirements for sediment and groundwater sampling during drilling, analyses of groundwater samples,
geophysical logging, hydrologic testing, and well construction will be specified in a separate drilling
sampling and analysis plan.

Any requirements for sampling during drilling are specified in separate sampling and analysis plans

that are specific to each new well. Chain of custody is required for groundwater samples collected during
drilling.
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A.2.3 Quality Assurance

The groundwater project’s quality assurance program meets EPA Requirements for Quality Assurance
Project Plans, EPA/240/B-01/003 (EPA QA/R-5, EPA 2001 as revised). The quality assurance program
also is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and
10 CFR 830, Subpart A, “General Provisions/Quality Assurance Requirements,” as delineated in PNNL’s
Standards-Based Management System. A quality control plan is included in the groundwater project
quality assurance plan. Quality control sampling requirements for subcontracted work are discussed in
the statement of work with the subcontractor. The subcontractor’s quality assurance protocols also will
meet EPA Requirements for Quality Assurance Project Plans, EPA/240/B-01/003 (EPA QA/R-5, EPA
2001, as revised).

The groundwater project’s quality control program is designed to assess and enhance the reliability
and validity of groundwater data. This is accomplished through evaluating the results of quality control
samples, conducting audits, and validating groundwater data. This section describes the quality control
program for the entire groundwater project, which includes WMA TX-TY. The quality control practices
of the groundwater project are based on EPA guidance cited in the Tri-Party Agreement Action Plan,
Section 6.5 (Ecology et al. 1989). Accuracy, precision, and detection are the primary parameters used to
assess data quality (Mitchell et al. 1985). Data for these parameters are obtained from two categories of
quality control samples: those that provide checks on field and laboratory activities (field quality control)
and those that monitor laboratory performance (laboratory quality control). Table A.2 summarizes the
types of samples in each category and the sample frequencies and characteristics evaluated.

A.2.3.1 Quality Control Criteria

Method detection limits for WMA TX-TY groundwater monitoring shall be consistent with those
determined for the groundwater project, as discussed in the project quality assurance plan. Reporting
limits for radionuclides are defined in the laboratory contract. Reporting limits as low as one third the
derived 4-mrem-dose requirement are preferred, but not always achievable. Limits for precision and
accuracy for chemical analyses are based on criteria stipulated in the methods (e.g., EPA/SW-846, EPA
600 series). Method detection limits as low as one third the EPA drinking water standards are preferred,
but not always achievable.

Quality control data are evaluated based on established acceptance criteria for each quality control
sample type. For field and method blanks, the acceptance limit is generally two times the instrument
detection limit (for metals), or method detection limit (for other chemical parameters). However, for
common laboratory contaminants such as acetone, methylene chloride, 2-butanone, and phthalate esters,
the limit is five times the method detection limit. Groundwater samples that are associated (i.e., collected
on the same date and analyzed by the same method) with out-of-limit field blanks are flagged with a “Q”
in the database to indicate a potential contamination problem.
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Table A.2. Quality Control Samples

Sample Type Primary Characteristics Evaluated Frequency

Field Quality Control

Full Trip Blank Contamination from containers or transportation 1 per 20 well trips

Field Transfer Blank Airborne contamination from the sampling site 1 each day volatile organic
compound samples are collected

Equipment Blank Contamination from nondedicated sampling 1 per 10 well trips or as needed®
equipment
Duplicate Samples Reproducibility 1 per 20 well trips

Laboratory Quality Control

Method Blank Laboratory contamination 1 per batch
Lab Duplicates Laboratory reproducibility Method/contract specific®
Matrix Spike Matrix effects and laboratory accuracy Method/contract specific®
Matrix Spike Duplicate Laboratory reproducibility and accuracy Method/contract specific®
Surrogates Recovery/yield Method/contract specific®
Laboratory Control Sample Accuracy 1 per batch

(a) When a new type of non-dedicated sampling equipment is used, an equipment blank should be collected every time
sampling occurs until it can be shown that less frequent collection of equipment blanks is adequate to monitor the
equipment’s decontamination procedure.

(b) If called for by the analytical method, duplicates, matrix spikes, and matrix spike duplicates are typically analyzed at a
frequency of 1 per 20 samples. Surrogates are routinely included in every sample for most gas chromatographic methods.

Field duplicates must agree within 20%, as measured by the relative percent difference (RPD), to be
acceptable. Only those field duplicates with at least one result greater than five times the appropriate
detection limit are evaluated. Unacceptable field duplicate results are also flagged with a “Q” in the
database.

The acceptance criteria for laboratory duplicates, matrix spikes, matrix spike duplicates, surrogates,
and laboratory control samples are generally derived from historical data at the laboratories in accordance
with Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods (EPA/SW-846; EPA 1986,
as revised ). Acceptance criteria applicable to constituents analyzed for WMA TX-TY monitoring are
listed in Table A.3.

Table A.4 lists the acceptable recovery limits for the double-blind standards. These samples are
prepared by spiking background well water (currently wells 699-19-88 and 699-49-100C) with known
concentrations of constituents of interest. Spiking concentrations range from the detection limit to the
upper limit of concentration determined in groundwater on the Hanford Site. Investigations of double-
blind standards that are outside of acceptance limits may include (1) reviewing raw data from the
laboratory, (2) communicating the problem to the laboratory, (3) requesting reanalysis of the samples,
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Table A.3. Field and Laboratory QC Elements and Acceptance Criteria

Method® |  QCElement |  Acceptance Criteria | Corrective Action
General Chemical Parameters
MB® <MDL Flagged with “C”
LCS 80-120% recovery® Data reviewed?
. , DUP +20% RPD® Data reviewed?
Alkalinity - EPA 600 Series, 310.1 MS© 75-125% recovery® Flagged with “N"
EB, FTB <2X MDL Flagged with “Q”
Field Duplicate +20% RPD® Flagged with “Q”
Anions
MB <MDL Flagged with “C”
LCS 80-120% recovery® Data reviewed®
Anions by ICP - EPA 600 Series, 300.0 DUP 220%RPDY___ | Data reviewed”
MS 75-125% recovery Flagged with “N”
EB, FTB <2X MDL Flagged with “Q”
Field Duplicate +20% RPD® Flagged with “Q”
Metals
MB <CRDL Flagged with “C”
LCS 80-120% recovery'® Data reviewed
. . . MS 75-125% recovery"® Flagged with “N”
ICP Metals (including chromium) - SW-846, 6010 MSD 20% RPD® Data reviewed®
EB, FTB <2X MDL Flagged with “Q”
Field Duplicate +20% RPDY Flagged with “Q”
Radiological Parameters
Gamma Scan MB <2X MDA Flagged with “B”
Gross Alpha - SW-846, 9310 LCS 70-130% recovery Data reviewed®
Gross Beta - SW-846, 9310 DUP +20% RPD Data reviewed®
Iodine-129 MS® 60-40% recovery Flagged with “N”
Technetium-99 EB, FTB <2X MDA Flagged with “Q”
Strontium-90 Field Duplicate +20% RPD Flagged with “Q”
Tritium - SW-846, 906.0
(a) EPA/SW-846; EPA 1986, as revised.
(b) Does not apply to pH.
(c) Laboratory-determined, statistically derived control limits may also be used. Such limits are reported with the data.
(d) After review, corrective actions are determined on a case-by-case basis. Corrective actions may include a laboratory.
recheck or flagging the data as suspect (Y flag) or rejected (R flag).
(e) Applies to total organic carbon and total organic halides only.
® Applies only in cases where one or both results are greater than 5X the detection limit.
(2) Applies only to technetium-99 and total uranium analyses.
Data Flags:
B,C = Possible laboratory contamination (analyte was detected in the associated method blank).
N = Result may be biased (associated matrix spike result was outside the acceptance limits).
Q = Problem with associated field QC sample (blank and/or duplicate results were out of limits).
CRDL = Contract-required detection limit .
DUP = Laboratory matrix duplicate. MB = Method blank.
EB = Equipment blank. MDA = Minimum detectable activity.
FTB = Full trip blank. MDL = Method detection limit.
MS = Matrix spike. MSD = Matrix spike duplicate.
ICP = Inductively coupled plasma. RPD = Relative percent difference.
LCS = Laboratory control sample.

(4) scheduling additional quality control blinds or other quality control samples such as blanks or splits,
and (5) obtaining/evaluating laboratory quality control data. Depending on the results of the investiga-
tion, corrective action may include flagging data in the database, requiring the laboratory to fix a problem,
or identifying an alternative laboratory until the issue has been resolved.
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Holding time is the elapsed time period between sample collection and analysis. Exceeding
recommended holding times could result in changes in constituent concentrations due to volatilization,
decomposition, or other chemical alterations. Recommended holding times depend on the analytical
method, as specified in Test Methods for Evaluating Solid Wastes, Physical/Chemical Methods (EPA
1986, as revised) or Methods for Chemical Analysis of Water and Wastes (EPA 1983, as revised). These
holding times are specified in laboratory contracts. Data associated with exceeded holding times are
flagged with an “H” in the Hanford Environmental Information System (HEIS) database. Flagged data
generally are suitable for use in plume maps and trend plots, but may not be suitable for decision-making.

Additional quality control measures include laboratory audits and participation in nationally based
performance evaluation studies. The contract laboratories participate in national studies such as the EPA-
sanctioned water pollution and water supply performance evaluation studies. The groundwater project
periodically audits the analytical laboratories to identify and solve quality problems, or to prevent such
problems. Audit results are used to improve performance. Summaries of audit results and performance
evaluation studies are presented in the annual groundwater monitoring report.

Table A.4. Recovery Limits for Double Blind Standards

Recovery Limits

Constituent Frequency (%) Precision Limits (RSD) (%)
Specific conductance Quarterly 75-125 25
Fluoride Quarterly 75-125 25
Nitrate Quarterly 75-125 25
Chromium Annually 80-120 20
Gross alpha® Quarterly 70-130 20
Gross beta® Quarterly 70-130 20
Tritium Annually 70-130 20
Cobalt-60 Annually 70-130 20
Strontium-90 Semiannually 70-130 20
Technetium-99 Quarterly 70-130 20
lodine-120 Semiannually 70-130 20
Uranium Quarterly 70-130 20
(a) Gross alpha standards will be spiked with plutonium-239.
(b) Gross beta standards will be spiked with strontium-90.
RSD = Relative standard deviation.
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A.2.3.2 Groundwater Data Validation Process

The groundwater project’s data validation process provides requirements and guidance for validation
of groundwater data that are routinely collected as part of the groundwater project. Validation is a
systematic process of reviewing data against a set of criteria to determine whether the data are acceptable
for their intended use. This process applies to groundwater data that have been verified (see
Section A.2.4.1) and loaded into HEIS. The outcome of the activities described below is an electronic
data set with suspect or erroneous data corrected or flagged. Groundwater project staff document the
validation process quarterly. Documentation is stored in the project file.

Responsibilities for data validation are divided among project staff. Each monitored facility or
geographic region is assigned to a project scientist, who is familiar with the hydrogeologic conditions of
that site. The data validation process includes the following elements.

e Generation of data reports — Twice each month, data management staff provide tables of newly
loaded data to project scientists for evaluation (biweekly reports). Also, after laboratory results from
a reporting quarter have been loaded into HEIS, staff produce tables of water-level data and
analytical data for wells sampled within that quarter (quarterly reports). The quarterly data reports
include any data flags added during the quality control evaluation or as a result of prior data review.

e Project scientist evaluation — As soon as practical after receiving biweekly reports, project
scientists review the data to identify changes in groundwater quality or potential data errors.
Evaluation techniques include comparing key constituents to historical trends or spatial patterns.
Other data checks may include comparison of general parameters to their specific counterparts (e.g.,
conductivity to ions) and calculation of charge balances. Project scientists request data reviews if
appropriate (see Section A.2.4.2). If necessary, the laboratory may be asked to check calculations or
reanalyze the sample, or the well may be resampled. After receiving quarterly reports, project
scientists review sampling summary tables to determine whether network wells were sampled and
analyzed as scheduled. If not, they work with other project staff to resolve the problem. Project
scientists also review quarterly reports of analytical and water-level data using the same techniques
as for biweekly reports. Unlike the biweekly reports, the quarterly reports usually include a full data
set (i.e., all the data from the wells sampled during the previous quarter have been received and
loaded into HEIS).

o Staff report results of quality control evaluations informally to project staff, DOE, and Washington
State Department of Ecology (Ecology) each quarter. Results for each fiscal year are described in
the annual groundwater monitoring report.

A.2.4 Data Management and Reporting
This section describes how groundwater data are stored, retrieved, and interpreted.
A.2.4.1 Loading and Verifying Data

The contract laboratories report analytical results electronically and in hard copy. The electronic
results are loaded into HEIS. Hard copy data reports and field records are maintained as part of the
Hanford Facility operating record, unit specific file for the monitored facility. Project staff perform an



array of computer checks on the electronic file for formatting, allowed values, data flagging (qualifiers),
and completeness. Verification of the hard copy results includes checks for (1) completeness, (2) notes
on condition of samples upon receipt by the laboratory, (3) notes on problems that arose during the
analysis of the samples, and (4) correct reporting of results. If data are incomplete or deficient, staff work
with the laboratory to get the problems corrected. Notes on condition of samples or problems during
analysis may be used to support data reviews (see Section A.2.4.2).

Field data such as specific conductance, pH, temperature, turbidity, and depth-to-water measurements
are recorded on field records. Data management staff enter these into HEIS manually through data-entry
screens, verify each value against the hard copy, and initial each value on the hard copy.

A.2.4.2 Data Review

The groundwater project conducts special reviews of groundwater analytical data or field measure-
ments when results are in question. Groundwater project staff document the process on a review form,
and results are used to flag the data appropriately in HEIS. Various staff may initiate a review form: e.g.,
project scientists, data management staff, and quality control staff. The data review process includes the
following steps:

e The initiator fills out required information on the review form, such as sample number, constituent,
and reason for the request (e.g., “result is two orders of magnitude greater than historical results and
disagrees with duplicate”). The initiator recommends an action, such as a data re-check, sample
re-analysis, well re-sampling, or simply flagging the data as suspect in HEIS.

e The data review coordinator determines that the review form does not duplicate a previously
submitted review form, then assigns a unique review form number and records it on the form. A
temporary flag is assigned to the data in HEIS indicating the data are undergoing review (“F” flag).

o If laboratory action is required, the data review coordinator records the laboratory’s response on the
review form. Other documentation also may be relevant, such as chain-of-custody forms, field
records, calibration logs, or chemist’s sheets.

e A project scientist assigned to examine a review form determines and records the appropriate
response and action on the review form including changes to be made to the data flags in HEIS.
Actions may include updating HEIS with corrected data or result of re-analysis, flagging existing
data (e.g., “R” for reject, “Y” for suspect, “G” for good), and/or adding comments. Data manage-
ment staff updates the temporary “F” flag to the final flag in HEIS.

e The data review coordinator signs the review form to indicate its closure.
e Ifareview form is filed on data that are not “owned” by the groundwater project, the data review

coordinator forwards a copy of the partially filled review form to the appropriate contact for their
action. The review is then closed.
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A.2.4.3 Interpretation

After data are validated and verified, the acceptable data are used to interpret groundwater conditions
at the site. Interpretive techniques include the following.

Hydrographs

Hydrographs will be made using historical (and current) water-level information. Hydrographs show
water levels versus time for specified wells. Hydrographs are used to determine decreases, increases,
seasonal, or manmade fluctuations in groundwater levels.

Water-Table Maps

Water-table maps will be made using the water-level measurements obtained as described above.
Care must be exercised in using water table maps (and hydrographs) for interpretation purposes because
there are several potential problems with using historic water level data. In addition to unknown
barometric effects, other potential sources of error in resulting water table maps and calculated water table
gradients include (1) the straightness of the wells; (2) for some time periods, a relatively flat water table
coupled with measurement errors; (3) the communication between the aquifer and the screened or
perforated part of the well; (4) changes in lithology; and (5) periodic and local influence from nearby
liquid disposal facilities.

Trend Plots

Trend plots will be made using current and historic groundwater compositions. Trend plots graph
concentrations of constituents versus time to determine increases, decreases, and fluctuations; they may
be used in tandem with hydrographs and/or water-table maps to determine if concentrations relate to
changes in water level or in groundwater flow directions.

Plume Maps

Plume maps will be prepared for chromium and nitrate and for selected constituents of interest such
as technetium-99. These maps will be made using results of current groundwater sampling and analysis.
The maps will describe the current understanding of contaminant distribution. Changes in plume
distribution over time aid in determining movement of plumes and direction of flow. Plume maps are
prepared by the groundwater project and published annually. Plume maps generally reflect the
geographic distribution of contamination in the uppermost part of the aquifer where most wells are
screened.

Graphical Methods

Graphical methods are used to display differences and similarities among water quality analyses.
Graphical methods area also useful to help identify mixing of waters with different chemical
compositions (Hem 1992). Traditional graphical methods include spider diagrams, Stiff diagrams, ion-
concentration bar diagrams, and Piper diagrams. These methods will be used as appropriate to interpret
groundwater chemical analyses.
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Contaminant Ratios

Ratios of contaminant concentrations may be calculated and used to help distinguish different
groundwater plumes and to help distinguish between different sources for the contamination if possible.
Contaminant ratios are only useful where chemically different waste streams were disposed to two or
more different potential source facilities.

Three Point Analyses

Water-table elevations may be used to calculate groundwater flow direction using the three-point
analysis (three point problem) method. The method is commonly used by geologists to determine the
strike and dip of a plane from the elevations of three points. For this application, the groundwater flow
direction is equivalent to the dip of the water table determined by measured water-table elevations in three
wells. Several triplets of wells are generally used as available.

Transport Modeling

A simple transport models may be used to predict the distribution of hypothetical contaminants
released within the WMA. The monitoring analysis package (Golder 1991) includes the Plume
Generation Model (PLUME), the Monitoring Efficiency Model (MEMO), and the Contamination
Probability Model (COPRO). This task may use the PLUME model in conjunction with professional
judgment estimates to assess the extent of contamination at WMA TX-TY.

PLUME uses an analytical contaminant transport function to generate dilution contour plots of a
contaminant plume emanating from a line source of specified length. The model has been used since
1992 to generate the plumes used by the MEMO model. PLUME is based on the two-dimensional
analytical transport model presented in Domenico and Robbins (1985) and modified in Domenico (1987).
This model assumes that solute is released along a continuous line source in a uniform aquifer, and
predicts the concentrations that would be observed at points downstream of the source. The important
user input parameters include the following:

e Advection time.

e Source history.

e Width of line source.

e Longitudinal and transverse dispersivities.
¢ Diffusion coefficient.

e First order decay constant.

e Average contaminant velocity.

Because some of these parameters are not well known, the model may be run repeatedly as necessary to
simulate a variety of conditions.

The model can also be run “backwards.” That is, the contaminant configuration today can be used
with estimated historical conditions as input to the model, and the model can be run for different periods
of time representing the time periods when groundwater flow was to the south, north, and east. These
results may help verify potential source area for contamination.
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A.2.4.4 Reporting

Regular annual progress reports are required for RCRA sites that are in assessment. As required by
40 CFR 265.94(b)(2) [by reference of WAC 173-303-400(3)], the results of the groundwater quality
assessment program must be submitted to the regulator (Ecology) no later than March 1 following each
calendar year. Also, as part of the groundwater project, it is anticipated that quarterly status reports will
be submitted to DOE and Ecology. Borehole completion packages must also be prepared for each new
monitoring well installed to document compliance with WAC 173-160.
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Appendix B

Supporting Information
This section contains supporting geologic and groundwater monitoring information. This appendix
includes the following information:

o Data about wells used to interpret the geology and hydrology.
e Geologic data used to interpret the geology and hydrology.
e As-built diagrams for wells in the WMA TX-TY monitoring network.
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Table B.1. Wells and Data Sources Used in This Report

Surface
Sample Easting Elevation Vertical | Total Depth | Completion
Well Name Method® (m) Northing (m) (m) Datum (m) Date Data Sources
299-W10-17 DB 0-42; 566775 136491 204.60 NGVD29 67.9 1990 Geologist’s log; CaCO3, soil
HT 42-68 moisture, gamma log
299-W10-18 DB 0-34; 566847 136396 204.70 NGVD29 67.8 1990 Geologist’s log; CaCO3, soil
HT 34-68 moisture, gamma log
299-W10-26® | AR 0-80 566843  |136401 204.63 NAVD88 [79.8 1998 Geologist’s log, gamma log
299-W10-27 DB 0-15; 566844 136442 204.90 NAVD88 81.9 2001 Geologist’s log, gamma log,
SS 15-40; neutron log
HT 40-82
299-W14-2 HT 0-68 566945 136340 203.12 As built 68.0 1955 Driller’s log; gamma log
299-W14-5 DB 0-26; 566900 136007 202.36 As built 73.2 1974 Driller’s log
HT 26-73
299-W14-6 HT 0-9 and | 566900 136101 202.66 As built 73.2 1974 Driller’s log
32-73;
DB 9-32
299-W14-11 Becker 566902 136287 203.00 GPS 106.1 2005 Geologist’s log; gamma log
0-106
299-W14-12 DB 0-31; 566906 136284 203.33 NGVD29 67.8 1991 Geologist’s log, gamma log; CaCO3;
HT 31-68 soil moisture
299-W14-13 AR 0-80 566902 136282 204.35 NAVDS88 79.9 1998 Geologist’s log; gamma log
299-W14-14 CT 0-6 566898 136181 204.62 NAVDS88 135.0 1998 Geologist’s log; gamma log;
AR 6-135 neutron log
299-W14-15 CT 0-7; 566900 136231 204.58 NAVD88 79.3 2000 Geologist’s log
AR 7-79
299-W14-16 AR 0-81 567001 136318 205.37 NAVD88 80.8 2000 Geologist’s log; gamma log;
neutron log
299-W14-17 DB 0-6; 567007 136218 205.08 NAVD88 80.9 1000 Geologist’s log, gamma log;
AR 6-81 neutron log
299-W14-18 DB 0-80 566897 136344 204.26 NAVDS88 79.7 2000 Geologist’s log; gamma log;
neutron log
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Table B.1. (contd)

Surface
Sample Easting Elevation Vertical | Total Depth | Completion
Well Name Method® (m) Northing (m) (m) Datum (m) Date Data Sources
299-W14-19 Becker 566899 136135 204.90 NAVD88 104.9 2002 Geologist’s log, gamma log
0-105
299-W15-4 HT 0-66 566820 136019 201.14 As built 66.1 1956 Driller’s log; gamma log
299-W15-12 HT 0-69 566699 136369 203.42 As built 68.6 1973 Driller’s log
299-W15-22 DB 0-42, 566683 136111 203.52 As built 67.6 1991 Geologist’s log; gamma log; CaCO3;
HT 42-68 soil moisture
299-W15-40 AR 0-80 566653 136205 205.06 NAVD88 79.8 1998 Geologist’s log; gamma log
299-W15-41 AR 0-73 566757 136031 202.79 NAVD88 72.9 1999 Geologist’s log; gamma log
299-W15-44 Becker 566685 136066 204.17 NAVD88 104.2 2002 Geologist’s log; gamma log
0-104
290-W15-763 Becker 0-78 | 566809 136029 202.18 NAVD88 78.5 2001 Geologist’s log
299-W15-765 DB 0-47; 566697 136373 204.51 NAVD88 81.4 2001 Geologist’s log; gamma log;
HT 47-81 neutron log

(a) Sample methods: CT = cable tool, DB = drive barrel, HT = hard tool, AR = air rotary, Becket = dual wall percussion.
(b) Bold indicates wells in the RCRA groundwater monitoring network.
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Table B.2. Geologic Data for Waste Management Area TX-TY®

Elevation (meters above mean sea level)
Top of the Top of the Top of the
Hanford Top of the Ringold Top of the Ringold
formation Hanford Top of the Cold Top of the Formation Ringold Formation
Elevation at Gravel formation Sand | Creek Fluvial Cold Creek member of Formation Lower Mud
Well Name Bottom® Sequence Sequence Sequence Caliche Taylor Flats Unit E Unit
299-W10-17 136.7 201 194 177 174 170 167
299-W10-18 136.9 203 192 178 175 170 165
299-W10-26 125.769 204 192 178 175 171 169
299-W10-27 122.999 202 192 178 175 171 168
299-W14-2 135.12 199 192 177 175 Np® 167
299-W14-5 129.156 202 194 176 172 NP 166
299-W14-6 129.461 200 190 174 171 NP 167
299-W14-11 96.927 198 192 175 173 168 165
299-W14-12 203258.2 202 193 175 172 NP 165
299-W14-13 124.4862 201 194 177 174 171 166
299-W14-14 69.5913 203 195 176 173 171 167 82
299-W14-15 125.334 204 193 178 173 169 167
299-W14-16 124.598 203 196 179 175 173 167
299-W14-17 124.159 202 195 178 174 173 168
299-W14-18 124.563 200 194 177 175 171 168
299-W14-19 99.959 202 194 177 175 167 166
299-W15-4 135.038 201 187 173 169 NP 164
299-W15-12 134.823 203 190 176 172 NP 167
299-W15-22 135.918 204 189 172 170 167 165
299-W15-40 125.2801 203 185 175 172 167 165
299-W15-41 129.938 201 186 174 171 169 166
299-W15-44 99.928 204 194 174 171 NP 166
290-W15-763 123.655 200 190 174 171 NP 167
299-W15-765 123.125 204 192 176 173 171 166

(a) Elevation at total drilled depth.
(b) NP = not present.
Bold indicates wells in the groundwater monitoring network.




Report Form: WELLS Project File, WELLS.GPJ

0502371

WELL CONSTRUCTION AND COMPLETION SUMMARY

Driling Sample WELL TEMPORARY
Method: Alr Rotary - TUBEX Method: Grab/Spilt Spoon NUMBER:  299-W10-26 B3548 WELL NO:  Not Allowsd
Drifing Additivas
Fluid Used: Reverss Alr Used: None [+ N Not d
Drilor's WA State o £ Not
Name: Willie Frankliin Lic Nr: Not Avallable d
Drilting Company Start
C Layne Chriat Location: Salt Lake City, Ut Card #: Not Available
Date Date E i
Started: 20Augss Compieted: 25Aughd Ground Surface: Brass Marker
Dmh to Water: 216.8ft 25Aug98 Elevation of Reference Paint: m
(Ground surfece) — Height of Reference Point Ab
e rence Point Above
GENERALIZED Geologist's Log & r Gm'%nd Surfa
STRATIGRAPHY Geophysical Logs Depth of Sudace Seal: 105t
Type of Surface Seal: 4x4 Concrete Pad
Fill Casing Screen
0-4n: Back 0-105f:
32221 Grave ) 4 N 9.125-inch hole ' :
22-42.5 R : Sandy gravel ". :“. Cement Seal X
2 i [
O K | :
42.5-64 1t : Sand - Ta ! !
", X i [
- - i [
(¥ :I M 1 !
64 - 88 fi : Gravelly sand - LA X
'-‘ “l‘ !
s % :
89 - 102 ft : Silty sand - calcarsous (97-100: (" " :
Caliche) - Y X
102 - 108 ft : Sand (108-110: caliche) ‘s e X
108 - 114 ft : Silty sand s s 10.5-20450: ,
114 - 118 ft: Sand . e 9.125-inch hole
116 - 124 1t : Sity sand S " Bentonite Chips | X
124 - 127 ft: Sand - [+ . .
127 - 159 it : Silty sandy gravel (152-156: large ‘: . ' :
cobbles) - [+ ] )
. Ky ! :
‘s - “ | [
1, ‘l a 1
159 - 161 ft : Graveily sand - “ 0
161 - 205 ft : Sandy gravel () K !
1 - '
o oy !
M ] P ,
TX Y :
205- 26211 Sity sandy gravel - - 204.5-2111: | !
) 9.125-inch hole ' : .
Bentonite Pellets’ 217 04 on: .21? 04 252.13 ft
211-217.04ft: 1 © 4inch
9.125-inch hole 4~ g5 e s Csg.4" Wire Wrap SS

2621t

Borehole drilled depth

0-262 ft: 9.125-in. B-5/8" Temp.

Drawing By:

Reference:
Revision:

TGB
Hanford Wells
0

Revision Date:. 213ep98

Print Date:

28Dec98

carbon steel csg.

20-40 Silica Sand,
217.04 - 252 13 ﬂ

'.010 Slot Screen

9.125-inch hole | 26243 - 25245 "n

20-40 Silica Sand
25213 -262 1t

4 inch
9.125-inch hole 4" SS End Cap

20-40 Siiica Sand
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Report Form: WELLS  Project File: WELLS.GPJ

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS

RESOURCE PROTECTION WELL - 299-W10-26

WELL DESIGNATION
CERCLA UNIT

RCRA FACILITY

DEPTH DRILLED (GS)
MEASURED DEPTH (GS)

AVAILABLE LOGS

DATE EVALUATED

EVAL RECOMMENDATION
LISTED USE

CURRENT USER

PUMP TYPE

MAINTENANCE
COMMENTS

TV SCAN COMMENTS

269-W10-26

262.0 ft

.Data not available
Data not avallable
Data not available

Data not avallable

RCRA & Operations

Data not available

Data not availabie
8-5/8" TUBEX Sys. 4-1/2" Reverse Cir. Drl. Pipe with interchange

Drawing By: TGB
Reference: Hanford Wells
Revision: 0

Revision Date: 21Sep98
Print Date: 28Dec98
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Report Form: WELLS  Project File: WELLS.GPJ

0532883

WELL CONSTRUCTION AND COMPLETION SUMMARY

Drilling Sample
Method: Cable Tool Method:
Drilling Additives
Fluid Used: none Used:
Driller's WA State
Name: M. Wraspir Lic Nr.
Drilling Company
Company: RSI Location:
Date Date
Started: 22Jant1 Completed:

WELL TEMPORARY
Grab/Split Spoon NUMBER:  299-W10-27 C3125 WELL NO:  Not Allowaed
water Coord :N  Notd ted
1509 | Coordinates: £ Notd 1
Start
‘Woodland, Ca, Card #: Mot Available
Elevation
23Mar01 Ground Surface:

Depth to Water:
{Ground surface)

SENERALIZEDY  Geologist's Log

0 -1 ft: Construction gravel

1-4.5ft: Sitty SAND (mS)
4.5-8.51: SAND (S)

8.5- 24 ft . Sandy GRAVEL (sG)

24 - 38 ft : Silty Sandy GRAVEL (msG)

38 - 41,5 ft : Sandy GRAVEL (sG)
41.5-88 ft: SAND (S)

89 -98.2 ft : Silt (M) Plio Pleistene top

98.2 - 102 ft : Caliche in Silty SAND (m35)

102 - 108 ft : Silty SAND (mS)

108 - 112 ft : Caliche in SAND(s)

112 - 117.5ft : SAND (S)

117.5 - 120.5 ft: SILT (M(

120.5-124.5 ft : SAND (S)

124.5 - 220 ft . Silty Sandy GRAVEL (msG)-
Ringoid E top

220 - 225 ft : Slightly Silty Gravelly SAND
225 - 268.7 ft : Silty Sandy Gravel (msg)

22063 ftft 23Mar01

1
t
1
1

o
r t
}

268.7 ft : Borehole drilled depth

0-60ft: 12-in. 11-3/4" CS Temp. csg
set wicable tool
60 - 268.7 ft : 9-in. 8-5/8" CS Temp. csg
set w/ cable tool

Drawing By:  JEA
Reference: Hanford Wells
Revision: 0

Revision Date: 16Apr01

Print Date: 16Apro1

Elevation of Reference Point: m
Height of Reference Point Above
Ground Surface:

Depth of Surface Seal: 109 ft

Type of Surface Seal: 4x4 Concrete Pad

Filt Casing Screen

0-109ft: 0-256 ft:
12-inch hole 4 inch
Cement Surface 4" 304 SSsch 5
Seal csg.

10.9-601f:

12-inch hole
Grannular
Bentonite

60-20461:
9-inch hole
Grannular
Bentonite

204.6-2101t:
9-inch hole
1/4" Bentonite
Pellets
210-257.76 ft :
9-inch hole
10/20 Silica Sand

221-256 ft :
4 inch
4" 304 55 .020
Slot wirewrap
scrm

257.76 - 268.7 ft; 256-257.86ft:
9-inch hole . 4 inch
10/20 Silica Sand 4" 304L SS Sump

263.3-268.7t:
g-inch hole
Slough

B.7




WELL CONSTRUCTION AND COMPLETION SUMMARY AS—BUILT

et Cable Tool _ jeo ouer: __299-W14-6  wet war
Poia Used: __Watar ree ey Moot toa: /5 _N41360 /e WI5440
Driter’s WA Stote Stote
Nome: Evans Ue. No. Coordinotes: N €
Company: INE_ &'2'.7’&;'1—" w{: T—R s
Sotwe:_12/11/73 __ Comptete: ——12/4/24 Oround Surfoce (f): INF. —
Depth to woter—_2050 WF
Doto source: ___Driller's Log Bevation of cosing: —INF
GENERALIZED Devation of refersnce point: _INF
STRATIGRAPHY
0—12: SAND . Concrete pod dimensions: —  INF
12-15: SAND & GRAVEL Depth of surfoce seat: —INF
15-29: COBBLES, SAND & GRAVEL Type of surfoce seok: INF
29-40: SAND, PEBBLES & SILT
40-47: SAND & SILT
47-49: SILT 1.D. of surfocs cosing (i present): INE.
49-95: SAND & SILT Type of surfoce cosing:
95-103: SILT
103—116: CALICHE & SAND Depth of surfoce casing: INF
Type of riser pipe: INF
Diemeter of b o - L ﬁ.—h
e Dlometer of perforoted borshole cosing: . 6—ifl
o Type of fier: INF
Devation/deoth of top of seok: INF
Type of seci:
Devation/depthy of top of pock: _ N/A
Type of gravel pack: A
W of top of screen 195.0

LLLLLLELLL LT

1O, of screen section: —N/A
mm«mumf 225.0
- Bevotion/desth of bottom of grevel pock . N/A
of bottom of __N/A

plugged waction:

<o}——— Type of filer beiow piugged section:
NOTES: N it beva

Bevetion/degth of bottom of borshole: . 240.0
Bevotion/deoth of remedioted borshole: . N/A
8831752\ 14540

Ly
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WELL SUMMARY SHEET stantoate 4/14/08 | page { of 3.
Fiish Date 5/l /¢ &
welld (4668 Well Name 0 49 - W14 ~l)
Locaton Eqst of TX/TY T m Pt FY(5 Monitoring Wells
prepared By JofErey Weigs Date 5/(1/05 |RoviewedBy  L.D. Uds/ke r  |Date §/17/05
Signature *{Hﬂﬁfd () eszs Sgnatwe 775 g,
NSTRUCTION DATA Depthin GEOLOGIC/HYDROLOGIC DATA
Descniption Diagram Feet G'::;'c Lithologic Description
|
B —
Gksfg‘m]g;; Steel pratectivel | B3| ° _>< 0-10" ve Recovery
Casing Set 0.9 abeve ¥* 12K 1.\ [lo~15" SAND
casing ] b ien|l5~36 SANDY GRAVE]

J97~110° GRAVELY SILTY

SAND

om0 114" Caliche
.2 15 -4 STITY SAND
o124 -126 SAND
L0126 ~133 STLTY SANDY |

(25

D

GRAVEL

$5([33- 1377 GRAVEL
623771627 SILTY SANDY

GRAVEL

B.9

8003-643 (03/03)



WELL SUMMARY SHEET Start Date 4/14/05 Page 2 of 3.
Finish Date 5/11 /05

Well ID C"!SBB Well Name jqq.w_“
Locaton Eqgt of TX/Tr _fank facs Proect FYD5 Monitoring Wells
Prepared 8y Jeffrey \Weiss Date §/ji/bg |RevewedBy  LD. U [Ker __|0%te S/i7/0s)
Signature Flﬁﬁ‘” ) “2{@ Signature 4@-%
CONSTRUCTION DATA Depth n GEOLOGIC/HYDROLOGIC DATA
Descniption Diagram "Feet Gr:::w Lithologic Description
‘ VK e 0
0 F [SO —la. o .._C)'o
[ : A ) 4 _:-I: 0590
/ a90
B P amans 4207 S
(- YA e sl1627- 170" sanor GRAVEL
A 1A 06@"
: = xRl
T T s 19 S0 175" GRAVELY SaND
/ ! U-'.c'b‘o o— .
¥ 4 -1 .a‘.. m—':ZHML
' I;\ ) ’O" : Q

Sand 2222412 5"

et
w N NN
N
L1
%
0.,
o

E

=
Y

e w
Ny
[y
[ =
(=]
]
O

og%
o P

Loy
242 5> 2 516" . Al e ;
Y 4 ’1 0%:&214=232° SILTY SANDY
v ]
0- 0 ] -7 1040 GRAVEL
Sand 2506227508 T | 225 S KDepth to Watec 2240 {tbes
e . HERLON
{To 304 sch 5 Slaidess | v F1 | 8. 2¥[2327241 GRAVELY SAND
kel screen 261722707 |1 | 9By
b R0/ 2428 saor GRAVEL |
250—'::6‘:;6.
_:,‘Q "I
{55
L0

198 Yy a0-19¢
17,2 [289-296" Sitehrey srory |
Jovq|___GRAVELY SAND

A-6003-643 (03/03)
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WELL SUMMARY SHEET

Start Date Y /14 /0 § Page 3 of 3
Finish Date 5/(1 /05

weio CYEAR

WellName 9 94w/ -I|

Location Eqst of TX/TY faak farn

n

Project

FY0S5 Manitoring Wells

Prepared By Jo ffrey Weiss
d -

Date 5/{l/55

ReviewedBy £ (). (ker |oate 5/17/p3

souses_peft g Wt w77 Sl
NSTRUCTION DATA Depth GEOLOGIC/HYDROLOGIC DATA
in
Description Feet | Graphic Lithologic Descnption

Log

476" dual_wall_casi
ladvanced fo 348 fthgs
USing Becker Hammer |

deill "methods

e 8 i
ina wel cti E
[Measurements ore in

30.,_1%',' V51296~ 331 SANDY GRAVEL |

S 331= 334’ GRAVELY SAND
:D'D" 52‘ r—. -
aQ'Q‘Q"MLﬁMMEL—

A-6003-643 (03/03)



Report Form: WELLS Project File: WELLS.GPJ

0502372

WELL CONSTRUCTION AND COMPLETION SUMMARY

Driling Sample WELL TEMPORARY
Method: Alr Rotary - TUBEX  Method: GrabiSplit Spoon NUMBER:  299-W14-13  BB549 WELLNO:  Not Allowed
Drilling Additives
Fluid Usad: Reverse Alr Used: None Coordinates: N Not documentsd
Dritecs WA State coordh E  Not
Name: Willie Franklin Lic Nr: Not Avallable
Driling Company Start
Company: Layne C Location:  Salt Lake City, Ut Card #: Not Avallable
Date Date Elevation
Started: 26Aug98 Completed: 31Aug98 Ground Surface: Brass Marker
Depthto Water: 21581t 31Aug98 Elevation of Referance Polnt m
(Ground surface) .
[ 1 Height of Reference Point Above
GENERALIZED  Geologist's Log & Ground Surface:
STRATIGRAPHY Geophysical Logs Depth of Surface Seal: 9.6
Type of Surface Seal: 4x4 Concrete Pad
Fill Casing Screen
0-4 it : Construction fil 0-9.6H: 0-21662ft:
AR S v N 9.125-nchhole | dinch !
+ Sandy g L Cement Seal 4" SS Sch. 5 Csg.
“ ! !
33-95ft: Sand I:,‘: | -
- ! .
.' - 1 1
- 1 L}
" ' '
¥ - [ 1
i | :
. :c.'. !
. :1 M ..
95- 88 ft : Sand, si calcareous . s ! X
98- 101 it : Caliche . oy 96-195.1Mt: | X
101 - 112 ft : Sandy gravel sl caicareous “ ,“‘. 9.125-inch hole .
112-125#t : Sand .‘ :‘- Bentonite Chips ' :
125 - 1631t : Sity sandy gravel N N ! !
' . X .
- - &
] “_4 :
B . |
163 - 210t : Sandy gravel b Ky | X
< ’..: : i
4 LA ! :
o "t ' '
- - Y - 1 i
b 4 - ' 1
- - 195.1 .20&4?9:: .
= .. 9.125-Inch hole . !
210 - 262 ft : Sandy gravel . .
4 Bentonite Pellets, 1216.62 - 251.73 ft
T 1 1 "
- 206.4-252.05R ;! ' 4inch
| 9.125-inch hole | 4" Wire Wrap 55
+ 20-40 Silica Sand' 1010 Slot Screen
252.05-262 ft: 251.73 - 252.05 ﬂ:
9.125-inch hole :
20-40 Silica Sand 4 inch

262 ft : Borehole drilled depth

0-262 ft: 9.125-in. 8-5/8" CS Temp.
Csg.

Drawing By: TGB
Reference: Hanford Walls
Revision: 0

Revision Date: 21Sep88

Print Date: 28Dec98

4" SS End Cap

B.12




Report Form: WELLS  Project Fils: WELLS.GPJ

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS

RESOURCE PROTECTION WELL - 299-W14-13

WELL DESIGNATION 299-W14-13
CERCLA UNIT

RCRA FACILITY

DEPTH DRILLED (GS) 26201t
MEASURED DEPTH (GS)

AVAILABLE LOGS Data not avallable
DATE EVALUATED Data not available
EVAL RECOMMENDATION Data not avallable
LISTED USE Data not available
CURRENT USER RCRA & Operations
PUMP TYPE Data not avallable
MAINTENANCE Data not available
COMMENTS 8-5/8" TUBEX Sys. 4-1/2" Reverse Cir. Drl. Pipe with Interchange
TV SCAN COMMENTS

Drawing By: TGB

Reference: Hanford Wells

Revision: 0

Revision Date: 21Sep98
Print Date: 28Dec98

B.13




Report Form: WELLS  Project File: WELLS GPJ

0502370

WELL CONSTRUCTION AND COMPLETION SUMMARY

Driling Sample WELL TEMPORARY
Method: AlrRotary - TUBEX  Method: GrabiSplit Spoon NUMBER:  299-W14-14  BB547 WELLNO: Not Allowed
Driling Additives
Fluid Used: Reverse Alr Used: None Ci Not d¢ d
Driker's WA State -
Name: Randy Smith Lic Nr: Not Avaliable Net
Driing Company Start
C Layne Chrk Locat Salt Lake City, Ut Card ¥ Not Avallable
Date Date Elevation
Started: 080ct98 Completed: 12Noves Ground Surface: Brass Marker
Depth to Water: 216 ft  240ct98 Elevation of Reference Point: m
(Ground surface) 217421t 14Nov9s
I 1 Height of Reference Point Above
GENERALIZED  Geologist's Log & Ground Surface:
STRATIGRAPHY  Geophysical Logs Depth of Surface Seal: 9.3 1
Type of Surface Seal: 4x4 Concrete Pad
Fill Casing Screen
0-4.5R: Backfil - Sand and gravel &, K 0-93f: |, g.21698f:
e 11 b il | %5 TR
14.5 - 16.5 R Sity Sandy GRAVEL : -] - C;;"‘_’;'OS;‘” 4" SS Sch, 5 Csg.
16.5 - 33 ft ; Sandy GRAVEL - - ! !
33-88.51t: SAND - - 13-inch hole !

- - Medium Bentonite' .

- - Chunks | !
86.5-93.5 ft : SAND (trace of caliche @ 86') - = : '
93.5- 123 ft: Sity SAND (Caliche 108 to 110" o -] ) i

- o 20-2023ft: | '

123 - 145 Rt : Sandy GRAVEL - - 9.125-inch hole ' !
- =4 Medium Bentonite, '
145 - 209 ft : Sandy GRAVEL - -4 Chunks ! '
- - 202.3-203.80: " '
209 - 217 ft : Gravelly SAND - ] i ;
217360 ft: Sity Sandy GRAVEL T T 8.42%inch hols | 21698 252 f:
T I Pellets | 4" SS Wire Wrap
T T 203.8 -_252.3 ft:, Screen - .010 Slﬂ!h
Al 9.125-inch hole ' 255 .2523f: '
20-40 Silica Sand, 9.125inch
252.3-257.3R:\ 4SS End Cap |
9.125-inch hole '
20-40 Silica Sand, '
257.3-3266M
9.125-inch hole ' ;
4-10,6-9, 8-12, | .
8-16 & 1020 1 -
360 - 402 ft : Sandy GRAVEL Silica Sand | '
326.6-438.81
9.125-inch hole '
402 - 41211 Sity CLAY Cement Grout |
412-41558: SILT !
415.5- 424 ft : SILT (trace of gravel) .
424 - 428 ft : GRAVEL ) .
428 - 438 ft : SILT 438.8-44311: ¢ '
438 - 443 ft: Sandy GRAVEL 9.125-inch hole
8-16 & 10-20
Silica Sand

443 ft : Borehole drilled depth

Q-20ft: 13-in. 12-3/4" Temp. Csg. set
w/Cable Tool
20-443ft: 9.125-in. 8-5/8" Temp. Csg.
Set wiTubex air rotary-rev. air 4-1/2" Drl.
Pipe

Drawing By: JEA
Reference:
Revision: 0

Hanford Walls

Revision Date: 160ct98

Print Date:

28Dec98

B.14



Report Form: WELLS  Project File: WELLS.GPJ

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS
RESOURCE PROTECTION WELL - 299-W14.14

WELL DESIGNATION
CERCLA UNIT

RCRA FACILITY
DEPTH DRILLED (GS)

MEASURED DEPTH (GS)

299-Wid-14

44301t
252.30 06Novs8

AVAILABLE LOGS Geologist & Geophysical Logs

DATE EVALUATED Data not avallable

EVAL RECOMMENDATION Data not avallable

LISTED USE RCRA Monltoring

CURRENT USER RCRA & Operations

PUMP TYPE ¢ Hydrostar

MAINTENANCE :  Data not availabie

COMMENTS : 12" Temp. Csg. to 20 ft.- Cable Tool. 20 ft. to 443 ft. 8-5/8" Temp. Csg.- Tubex Rev. Air
wi4-1/2" D.P.

TV SCAN COMMENTS

Drawing By:  JEA

Reference: Hanford Wells

Revision: 0

Revision Date: 1860ct98

Print Date: 28Dec8

B.15




0526574

WELL SUMMARY SHEET

Page | of 2_

Date: @-//-00

Well ID:

c3ny

Well Name:

299-w/y~-15

above the 4" casiug

“ “ well Casy
SS {ype 304
| 12.6'—> 219.75’

| Portland Cement Grout |

o'—» 13.5:

Granulgr Benjonite

13.5' - 99.3'

NS

LN

.

BHI-EE-188 (12/97)

B.16

Location: 26, £ of 24/~TX Tank Farm /200w |Prie: CY 2000 _RCRA Drilling
Prepared By: /.}. Gh /iy Date: 9-/[{-0o [Reviewed By: W |Dale: 9/?‘2/00
JSignatum: IM Signature: o
CONSTRUCTION DATA " GEOLOGIC/HYDROLOGIC DATA
Depth in
Description Diagram Feet G’f:g“" Lithologic Description
¢"dia_Profechiye cs_;mg_f_,p'_ o 40-22": Silty SAND

i 74 22 SAND
e o - . :..:‘. N : { -
1% /10 %" set af 207" | ,
8% /1%’ fo TD :‘:: g8~ 103": Sr”}! SAND
[ 1)
=gaa (o3> /g’ S S/
A " Al Gra SAND
:.o - l4_. r a 'D ! ‘
; ." --" : A (.* ' 3 . 4 S-
jg -.-., T 5t " SA”D
ili 125 4
| All cPepths i Fout helows | f?,ili Zahadia3 142" Silly Sand)) |
SIS GraveL
Al tfemp. castg remaved r.v e ZeaL ’
from ground. ¥ '!'!li CSAesd (42’ j43': SAND




Page 2 of 2

WELL SUMMARY SHEET Date: 9-//-00
Well ID: C 31}y Well Name:  299. w Y -/5
Location: 35 py. Emst of 241~TX Tank Farm |Proiectt CY 2000 RcRA_Drilling

—te s

|Prepared By: frb-WQ_”‘&r |Dete: 9-1l-00 |Reviewed By: es IDale: ?/}99/00
Signature: 2z Signature: 77
CONSTRUCTION DATA ¥ GEOLOGIC/HYDROLOGIC DATA
Depth in
Description Diagram Feet Gﬂ’;‘" Lithologic Description
z; 4,;] 150 : 43 75" Sﬂﬂgﬁg.ﬁ:@zﬂéi
| Benfonite Pellets E/r ::3
199.3'— 209.9’ gRESIEy
il
1 Vi
Silica Sand |, 10-20 mesh |} f,il
209.9' > 2400’ ; jfg 175 , ]
i ;,gi (75 => 221 : Sandy, GRAVEL
Well " . E 14
/ diile
- /n_slot Conftnuans wore- | ! a{l -
w Y] A4
I——ﬁh%l—hﬂ-ﬂ—"% i E: A
| 2/9.75 — 259.e2  |iify X 200
SHH -
Sump . 41D SSige 304 £ A
254. 62"~ 2547 L

22¢'— 200" S; Sa
Total SS_4'ID fa GRAVE L
is 259.30' (*24" 25(.17)
TD= 260.0°
- W= 29.20° bas
All_depths in feef be low 215 — (3- 5-00)
BHI-EE-188 (12/97)
B.17



Report Form: WELLS  Project File: WELLS.GPJ

0532873

WELL CONSTRUCTION AND COMPLETION SUMMARY

Drilling Sample WELL TEMPORARY
Method: Drill and Drive Air Rotarilethod: Grab/Split Spoon NUMBER:  209-W14-16 €3120 WELL NO:  Neot Allowed
Drilling Additives. |
Fluid Used:  Air Used: None ! Coordi N Notd ted
Driler's WA State | "
Name: K.Cowen Lic Nr: Not Avallable c E  Not
Drilling Company Start
Company: RSl Location: Woodland, Ca. Card #: Data not available
Date Date Elevation
Started: 250c¢t00 Completed:  0BNov00 Ground Surface:
Depth to Water: 22255 ft. ft 08Nov00 Elevation of Reference Point: m
{Ground surface) . .
Ee!ghtdcéRr?ference Point Above
GENERALIZED =~ goglogist's Lo round Surface:
STRATIGRAPHY 9 9 Depth of Surface Seal: 1.3t
Type of Surface Seal: 4x4 Concrete Pad
Filt Casing Screen
0-1.5ft : Sandy GRAVEL . : - :
1.5- B ft : Slightly Sitty SAND 0 1,1'3ﬂ' 0-222.94ft:
8-13.5f" SAND 10.75-inch hole 4 inch
13.5 - 34 ft : Silty Sandy GRAVEL { Cement surface 4" 304L SS
| seal
34 -89 ft: SAND !
89 - 99 ft: Sandy SILT
98 - 113 ft: Silty Sandy GRAVEL wicaliche
11.3-204.5#:
113 - 124 ft : Silty SAND 10.75-inch hole
- Granular
124 - 179 ft : Silty Sandy GRAVEL Bentonite
1
179 - 184 ft : Gravelly SAND
184 - 285 ft . Sandy GRAVEL b
i I
L " - 2045-2104 ft:

A

265 ft : Borehole drilled depth

0- 265 # : 10.75-in. 10-3/4" CS Temp.
csg set A.R. Drl. & Drive

Drawing By:  JEA
Refarence: Hanford Wells
Revision: 0

Revision Date: 19Mar01

Print Date: 19Mar01

10.75-inch hole
1/4" Bentonite
pellets
210.4 - 260.06 ft :
10.75-inch hole
10/20 Silica Sand

222.94 - 257.88 ft
4inch
4" SS Wire Wrap
020 Slot Scrn.

260.06 - 265 ft . 257.88 -
10.75-inch hole
10/20 Silica Sand

260.06 ft

4inch
4" SS Sump

B.18




Report Form: WELLS  Project File: WELLS GPJ

0532879

WELL CONSTRUCTION AND COMPLETION SUMMARY

Drilling Sample WELL TEMPORARY
Method: Drill and Drive Air Rotarfylathod: Grab/Split Spoon NUMBER: 299-W1i4-17 C3121 WELL NO:  Not Allowed
Drilling Additives
Fluid Used:  Alr Used: None Coordinates: N Not documented
Driller’ WA State .
Name: K. Gowden Lic Nr: Not Available Coo :E  Not
Drilling Company Start
Company: RSI Location: Woodland, Ca. Card #: Not Available
Date Date Elevation
Started: 100ct00 Completed:  240ct00 Ground Surface:
Depth to Water:  221.69 ft 240ct00 Elevation of Reference Point: m
(Ground surface)
Ty geighldoéRr?;erence Point Above
GENERALIZED " round Surface;
Geologist's Lo
STRATIGRAPHY Geclogists Lag i Depth of Surface Seal: 106 .
| Type of Surface Seal: 4x4 Concrete Pad
|
‘JEQ Fill Casing Screen
0-2.5 ft: Sandy GRAVEL . . . .
2.5-12.5 ft Slightly Siity SAND N 100?51%‘3;1' o 02194 ft:
12.5 - 25 ft : Silty Sandy GRAVEL 1 .73-inch hole 4inc
i Cement Surface 4" 304L 55
25 - 34 It : Gravelly SAND Seal
) 10.6-20.6ft:
34-48 1. SAND 10.75-inch hole
Granular
48 - 52 ft: Slightly Silty SAND :
5293 ft' SAND Bentonile
93 - 98 ft : Silty SAND i
98 - 109 ft . Gravelly Silty SAND 1
109 - 113 ft : Silty Sandy GRAVEL .
113- 122t : SAND g%gg‘i‘i‘:‘igb
122 - 153 ft.; Silty Sandy GRAVEL Granular
Bentonite
153 - 159 ft ; Sandy GRAVEL :
159 - 168 ft : Silty Sandy GRAVEL I
168 - 193 ft : Sandy GRAVEL |
193 - 197 ft : Gravelly SAND
197 - 265.5 ft : Sandy GRAVEL -
® - 1 2047-211.91:
B o 8.625-inch hole
3/8" Bentonite 221.94 - 256.96 ft
pellets :
211.9- 259.01 ft: 4inch
8.625-inch hole 4" 304 S5 Wire
10/20 Silica Sand Wrap .020 slot
scrn.

8.625-inch hole
10/20 Silica Sand

265.5 ft : Borehole drilled depth

0-206ft: 11.75-in. 11-3/4" CS Temp.
csg. set w/Cable Tool
20.6 - 265.5 ft : 8.625-in. 8-5/8" CS
Temp. csg. set A.R. Drl & Drive

Drawing By:  JEA
Reference: Hanford Wells
Revision: 1]

Revision Date: 19Mar01
Print Date: 19Maro1

259.01 - 265.5 ft : 256.96 - 259.01 ft

4inch
4" 8S Sump

B.19




V540441

WELL CONSTRUCTION AND COMPLETION SUMMARY

Drilling Sample WELL TEMPORARY
Method: Cable Tool Method; Grab/Split Spoon NUMBER:  299-W14-18  C3386 WELL NO:  Not Allowed
Drilling Additives
Fluid Used: None Used: None C i N Notd
Driller's WA State I .
Name: M. Waspir Lic Nr: 1909 G E  Not
Drilling y . Start
Company:  RSI Location: Woodland, Ca. Card # RO37816
Date Date Elevation
Started: 30Aug01 Compieted:  01Nove1 Ground Surface:
Depth to Water:  220.45ft 07Novo1 Elevation of Reference Point: m
(Ground surface)
GENERALIZ gelghtd ofs R:feronoe Paint Above
IZED round Surface:
STRATIGRAPHY Geologist's Log Depth of Surface Seal: 1051
Type of Surface Seal: 4x4 Concrete Pad
Filt Casing Screen
0- 0.5 ft : Drill Pad Material .
"o 0-105#: 0-218.06ft:
0.5-8ft: Silty Sand 11-inch hole 4inch
8-13ft: Sand
13- 34 ft : Sandy Gravel Cement Surface  304L SSsch5
Seal csg
34 -88.5t: Sand
105-6861M:
11-inch hole
Granular
Bentonite
88.5 - 114 ft: Sandy Silt
114 - 120 Rt : Sitty Sand
120 - 125 ft : Sandy Silt
125 - 145 ft : Gravelly Sitt
686 -203.3Mt:
. 9-inch hole
145 - 155 ft ; Silty Gravel Granular
155 - 160 ft : Gravelly Siit Bentonite
160 - 165 ft : Silty Gravel
165 - 190 ft : Gravelly Sit
190 - 200 ft : Sandy Silt :
200 - 205 ft : Gravedly Sandy Silt RS -
205 - 210 ft : Silty Gravel - - 203.3-20841t:
210 - 215 ft : Sandy Silt - 9-inch hole
215 - 220 ft : Gravelly Silt : " F 06 - 253.05 &
220 - 235 ft . Gravelly Sandy Siit T v pB;ﬁ:::mte 218,08 :253
. . I 208.4 - 255.05 ft : 4 inch
2407895 1. Gravely Sandy Sit T -inch hole 304L SS Wire
B Y 1 10/20 Silica Sand Wrap .020 slot
B | scrm
. 255.05 - 261.5 ft : 253.05 - 255.05 ft,
9-inch hole :
10420 Silica Sand 4 inch
304L SS Sump

261.5 ft : Borehole drilled depth

0-68.6f: 11-in, Cable Tool 10-3/4" CS
Temp csg to 68.6 ft
68.6 - 261.5 ft : 9-in. Cable Tool 8-5/8"
CS Temp csg to 261.5 ft

Report Form: WELLS Project File: WELLS.GPJ

Drawing By:  JEA
Reference: Hanford Wells
Revision: L]

Revision Date: 13Nov01
Print Date: 13Nov01

B.20




Report Form: WELLS  Project File: WELLS.GPJ

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS
RESOURCE PROTECTION WELL - 299-W14-18

WELL DESIGNATION
CERCLA UNIT

RCRA FACILITY

DEPTH DRILLED (GS)
MEASURED DEPTH (GS)

AVAILABLE LOGS

DATE EVALUATED

EVAL RECOMMENDATION
LISTED USE

CURRENT USER

PUMP TYPE

MAINTENANCE
COMMENTS

TV SCAN COMMENTS

299-W14-18

26151t

255.05 07Nov01

Geologist & Geophysical
Data not avallable
Data not available

RCRA Monitoring

RCRA & Operations

Not Documented

Data not avallable
Cable Tool 10-3/4" CS csg to 68.6 ft & 8-5/8" CS csg to 261.5 ft

Drawing By:  JEA

Referenca: Hanford Wells

Revision: 0
Revision Date: 13Nov01
Print Date: 13Nov01

B.21




Repor Form: WELLS Project File: WELLS.GPJ

AS-BUILT WELL CONSTRUCTION AND COMPLETION SUMMARY

Sample WELL TEMPORARY
Method: Becker Hammer Method: GrabiSpiit Spoon NUMBER:  285-W14-19  C3987 WELL NO:  Not Allowed
Dri!ﬂ Additives
Fluid Used:  Alr Used: None C N  Notd ted
Dritler’ WA State X
Nome:  Paul Lodder UcNe 1628 Coordinates:E  Not documented
Driliing Company Stant
Company:  Layne Christensen Location: Salt Lake City, Ut Card ¥ Not Avallable
Dats Dats Elevation
Staried: 240ct02 Completed: 13Nov02 Ground Surface:
Depth to Water: ~ 223.55ftft 04Nov02 Elevation of Reference Point: m
{Ground surface)
f 1 Height of Referance Point Above
GENERALIZED Goologist's Log Ground Surface:
STRATIGRAPHY Depth of Surface Seal: oft
Type of Surface Seal: 4x4 Concrete Pad
0.3n / Fill Casing Screen
-3n: .Blcﬂ /i 0-10ft: 0- X :
3-41 ft: sty SAND (mS} 3 11.25-Inch hole f?:;ﬂ
Cement surface 10-30M:
10 !%3* a 10.75 inch
41 - 50 It ; sandy GRAVEL (sG) - : Left in hole
50 - 95 ft: SAND (S) 11.25-inch hole
Granular
Bentonite
95 - 100 ft : silty SAND (mS)
100 - 1091t SILT (m)
109 - 115 ft : CALICHE
115 - 125 ft ; siity SAND {mS) 30-208.31:
125 - 130 ft; sitty sandy GRAVEL (msG) :
130 135 - sandy GRAVEL (sG) 8 dnch hole
135 - 145t - GRAVEL (G) Bertonite
145 - 150 1 : slity sandy GRAVEL (maG)
150 - 175 it : sandy GRAVEL (sG)
175 - 185 A : silty sandy GRAVEL (maG)
185 - 190 ft : sandy GRAVEL (sG)
190 - 200 ft : siity sandy GRAVEL (maG)
200 - 205 ft : SAND (8)
208 - 220 A2 sandy GRAVEL (s0) - - 208.3-213.5R:
220 - 225 ft - sity sandy GRAVEL (msG) 1 1 9-inch hole . .
225 - 285 ft : sandy GRAVEL (sG} T I 1/4" Bentonite 223.54 "2'315.5 ft:
1 1 Pellets
+ o+ 213.5-26051;
T T 8-inch hole
10/20 Silica sand . .
e - 262_?“ CEB:D? ' 250.54—|ﬁ5 ft:
L}
285 - 205 it : silty sandy GRAVEL (msG) 10!205Uunnd:3°4"fﬁ.n°‘""d
205 .- 344 R : sandy GRAVEL (3G) 264.9-269.50: P
8-inch hole
1/4" Bentonite
Pellets
269.5- 3443 1t
9-inch hole
4/8 Silica sand

344.3 ft : Borehole drilled depth
0-301: 11.5-n. Auger 10-3/4" Temp
CS

csg
30 - 344.3 it : 9-in. Becker Hammer 9™ x
7" Temp CS cag

Drawing By: JEA
Reference: Hanford Wells
Revislon:

Revision Date: 16Dec02

Print Date: 18Dac02

B.22




Report Form: WELLS Project File: WELLS GPJ

0502373

WELL CONSTRUCTION AND COMPLETION SUMMARY

Drilling Sample TEMPORARY
Method: Air Rotary - TUBEX Method: Grab/Split Spoon NUMBER‘ 299-W15-40 BB560 WELL NO:  Not Allowed
Drifling Additives
Fluid Used: Reverse Air Used: None C N Notd ted
Driter's WA State Coordi E Notd tod
Name: Willie Franklin Lic Nr: Not Avallable
Driling Company Start
Company:  Layne Christensen Location: Salt Lake City, Ut Card #: Not Available
Date Date Elevation
Started: 25Aug9s Completed: 10SepS8 Ground Surface: Brass Marker
DOD"‘I to Water; 218,08 ft 10Sep98 Elevation of Reference Point: m
(Ground surface)
r 1 Height of Refsrenc.s Point Above
GENERALIZED Geologist's Log & ‘Ground Surface:
STRATIGRAPHY Geophysical Logs Depth of Surfaoe Seal: 104 ft
Type of Surface Seal: 4x4 Concrete Pad
$ Fill Casing Screen
0 - 1 ft: Backfill (silty sandy gravei) N 0-101ft:  0-217.95f:
499w ]ﬁ. N 9.125inchhole | 4inch |
7 - 67 t: Sandy gravel <4 Y Cement Seal 4" Sch. 5SS Csg.
l‘ : '. : i 1
- Y - 1 1
o P : T . X .
b Y v ' ¥
LY. p ‘4 a 1 I
XY ! |
67 - 80t ; Sand (ve-vl) [l % . |
80-97 t: Sand (m-vl) 5] Ky : |
Fel, : :c S :
97 - 98 ft : Sand L s ' !
88 - 98.3 ft : Silty sandy gravel b ! 10.1-195.4ft: |
98.3- 101 ft : Slightty sity sand o st 9.125-inch hole
101 - 107 Rt : Sit M v Bentonite Chips '
107 - 113.5 t ; Siity sand b .t |
113.5- 118 R : Gravelly sandy sitt b L. : .
118-125R: Siltygwund Fes s ! i
125- 132t : Si ba 4 o ' ]
132- 18?ll:smysmumd s R : '
[+ ] - . !
a-, ) ! . \ 1
_E . I 1
167 - 183 ft : Sandy gravel ‘] e ! :
Ce s <P ! '
183 - 187 ft  Silty sand Y . ' '
13?-2mn:3|uyurﬂunml bt e [ '
SN | - n [ ]
- = 1954-20831:; .
B - 9.125-inch hole 1 '
- Bentonite Pellets ' !
220 - 262t : Sandy gravel g ' .2'7 .95 253 08 ft
. 253.4-20831t:, ! 4inch
L.t 9.125-inch hole ' |4 Wire Wrap SS
- j: ' 20-40 Silica Sand, ! Screen .010 Slot
s s ! !
e T 253.4-262.41t: 253.08-2534 1,
9.125-inch hole 4 inch
20-40 Silica Sand 4" SS End Cap
262.4 it : Borehole drilled depth
0-262.4 ft:9.125-in. 8-5/8" CS Temp.
Csg.
Drawing By: TGB
Roferoncl Hanford Wells
0
Rmton ‘Date: 21Sep88
Print Date: 28Dec38
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Report Form: WELLS  Project File: WELLS.GPJ

SUMMARY OF CONSTRUCTION-DATA AND FIELD OBSERVATIONS
RESOURCE PROTECTION WELL - 299-W15-40

WELL DESIGNATION T 299-W1540
CERCLA UNIT

RCRA FACILITY

DEPTH DRILLED (GS) i 26241t
MEASURED DEPTH (GS)

AVAILABLE LOGS :  Data not avallable
DATE EVALUATED ¢ Data not avallable
EVAL RECOMMENDATION :  Data not avallable
LISTED USE : Data not avallable
CURRENT USER :  Data not avallable
PUMP TYPE :  Data not avaliable
MAINTENANCE :  Data not avallable
COMMENTS

TV SCAN COMMENTS

Drawing By: TGB

Reference: Hanford Walis

Revision: 0

Revision Date: 21Sep98
Print Date: 28Dwc98
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Report Form: WELLS Project File: WELLS.GPJ

WELL CONSTRUCTION AND COMPLETION SUMMARY

Driling Sample WELL TEMPORARY
Method: Gable Tool/Alr Ratary  Mathod: GrabiSpiit Spoon NUMBER:  299-W1E41  B3815 WELLNO:  Not Allowed
Driling Additives
Fluid Used:  water as nesded Used: None Coord N Notd d
Oriters WA State e £ Not
Name: Wes Worth Lic Nr: Not Avallable
Driking Company Start
Company:  Resonant Sonic Intl, Locaton:  Woodland, Ca. Card #: R43296
Date Date
Started: 30NovEd Completed: 17Jan00 Ground Surface: Brass Marker
Depth to Water: ~ 213.3ft.ft 17Jan00 Elevation of Reference Point: m
(Ground surface)
: Height of Reference Point Above
GENERALIZED Geologlst's Log Ground Surface:
STRATIGRAPHY Depth of Surface Seal: 136t
Type of Surface Seal: 4x4 Concrete Pad
Fill Casing Screen
0-21t; Gravel drill ,
z-sn:cuwsam 0-135f: | 0-215921t:
5-48 ft: Sandy GRAVEL 12.25-inch hole | , 4 inch
Cement Surface |4 304 SS Sch. §
Seal | ‘wellcsg.
135-55R: |
12.25-inch hole : t |
: Granular | |
48 - 55 ft : Gravelly SAND |
55-93ft: SAND Bentonite .f E
93- 104 !t : Siity SAND
104 - 112 1t : Calcareous Sitty SAND '
112- 121 ft : Sity SAND !
121- 132 1t : Sitty Sandy GRAVEL
55-200.11t:
S-inch hole |
139 - 147 ft : Gravely SAND Granular | i
147 - 180 ft : Sandy GRAVEL Bentonite ;
i
| i
180 - 199 ft : Sty Sandy GRAVEL ! 1|
i i
|
189 - 202 ft : Gravelly SAND | i
202 - 215 ft : Silty Sandy GRAVEL 200.1-20661: 1
8-inch hole | I
215 - 227 ft : Sandy GRAVEL Cement well seal 1215.92 - 230941
206.6-238.11: !
227 - 239 f1 : Silty Sandy GRAVEL 9-inch hole , | 4 mch
20/40 Silica Sand . | 4" 304 SS .010
T ea A 1230.94 21297 G0t Wire Wrap
9-inch hole 4 inch Sem.
Slough 4" PVC End Cap

239 ft : Borehole drilled depth

0-55ft: 12.25-in. Cable Tool 11-3/4"
CS Temp. Csg. to 55 ft.
55 - 239 ft : 9-in. Air Rotary 8-5/8" CS
Temp. Csg. o 239 ft.

Drawing By:
Reference:

JEA
Hanford Wells

Revision: ]
Revision Date: 07Mar00

Print Date:

08Mart0

&
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Report Form: WELLS  Project File: WELLS GPJ

AS-BUILT WELL CONSTRUCTION AND COMPLETION SUMMARY

Driting Sample WELL TEMPORARY
Method: Backer Hammer Msthod: Grab/Spiit Spoon NUMBER: 209-W1544  CI958 WELLNO:  Not Allowed
Driling Additives
Fluid Used:  Alr Used: Not Dx [e N  MNotd ted
Driter's WA State " M
Name: Chris Dean Lic Nr: 2854 ¢ E Nt
Driling Campany
Comp Layne Christ Location:  Salt Lake City, Ut Cand #: Not Documaented
Date Date
Started: 100ct02 Compioted: 230ct02 Ground Surfacs:
PG'N to Water 220.24 ft 170ct02 Elevation of Reference Point: m
RAALIZED I 1 Height og Raference Point Above
GEN Gfm urface:
STRATIGRAPHY Geologists Log Depth of Surface Seal: 1041
Type of Surface Seal: 4x4 Concrete Pad
| Fitt Casing Screen
0-151: Na Retuns 7 0-101ft: = 0.21825R:
15 - 27 ft : gravelly Sand (S) 11.5-inch hole 4 inch
. Cement Surface - 304L SSsch 5
27 - 20.5 1t : Gravel (G) Seal
28.5 - 35 it : sandy Gravel (sG) 10.1-345H: o9
35 - 50 ft : sity Sand (mS) L ?ch‘ :
50- 105 : Sand (S) 11.5-inch hole
Granular
Bentonite
105-1261t: sms-ml(ms: - trace of caliche
Han 34.5-201.410:
125 - 126.5 1t : gravedly Sand (gS) 8-inch hole
126.5 - 141 fi : sandy Gravel (sG) Granular
141 - 1431t : Sand (8)
143 - 150 1t ; sandy Gravel (3G) Bentonite
150 - 185 1t : sity sandy Gravet (msG)
165 - 180 ft : sandy Gravel (sG)
180 - 185 i : silty sandy Gravel (msG)
185 - 205 ft : sandy Gravel (sG)
205 - 210 fi : gravelly Sand (gS) bsd e 201.4-206.31t:
210 - 255 Nt - sandy Gravel (sG) 1 1 8-inch hole .
T T 1/4" Bentonite 216.25 .251‘25ﬂ
4 4 pallets i
+ ¥ 206.3-253.25 f: 204 SeWire
265 - 205 R sty sandy Gravel (meG) e 10720 Sica Sand 251.25-253.25 1 Wil o !
Lee pne pn 253.25 - zgoj:.m
8-inch ho
10£20 Silica Sand s‘s"""
286 - 202 ft : SAND (S) - haaving 260.3 - 2658 ft : sump
292 - 342t : sandy Gravel (sG) 9-inch hole
1/4" Bentonite
pellets :
2656 -340.31t:
S-inch hole
4/8 Silica Sand
340.3-3421:
9-inch hole
Muddy slough
342 i : Borehole drilled depth
0-34.5f: 11.5-in. Auger 10-3/4" Temp
CScsp
34.5 - 342 it : 9-in. Backer Hammer 9"
Dual Wall CS csg
Drawing By: JEA
Referance: Hanford Wells
Ravision: 0
Ravision Date: 08Nov02
Print Date: 08NovD2
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0532887

WELL CONSTRUCTION AND COMPLETION SUMMARY

Drilling Sample | WELL TEMPORARY
Method: Cable Tool Method: Grab/Split Spoon | NUMBER: 299-W15-763 C3339WELL NO:  Not Allowed
Drilling Additives |
Fluid Used: none Used: water | Coordinates: N Not documented
B:L‘:‘;’ M. Wraspir H:ﬁ?‘s 1908 | Coordinates: E  Not documented
Drilling Company | Start
Company: RSl Lecation; Woodland, Ca. | Card # Not Available
Date Date | Elevation
Started: 30Nov00 Completed:  17Jan01 | Ground Surface:
Depth to Water:  216.97 ftft 10Apr01 Elevation of Reference Point: m
(Ground surface)
r 1 geightdaéRﬁference Point Above
GENERALIZED ) round Surface:
Geologist's Lo
STRATIGRAPHY 9 o | Depth of Surface Seal 9.21t

Type of Surface Seal: 4x4 Concrete Pad

X | Fill Casing Screen
0-4 1t Gravely SAND N% R 0-9.21: 0-211.751:
4581 Sighty Sity SAND ' - 12-inch hole 4 inch
8-10.5 ft : Sandy GRAVEL o Cement Surface 4" 304 SS sch 5
10.5 - 20 ft ; Silty Sandy GRAVEL o | E Seal csg.
20 - 40.5 ft ;: Sandy GRAVEL !
40.5- 425 : Silty SAND
42,5 - 94 ft: SAND
] 92-13421t:
i 12-inch hole
Granulgr
94 - 100 ft: SILT Bentonite
100 - 101.5 ft : Silty SAND
101.5- 117 ft : Gravelly Silty SAND
117 - 120 ft : Sandy GRAVEL
120 - 142 ft - Sitty Sandy GRAVEL : |
142 - 170 ft - Sandy GRAVEL |
8 134.2-191.1 ft:
170 - 209 ft : Silty Sandy GRAVEL I Q-Ci;nch I'llnle
' ranular
I Bentonite
i B 191.1-202.4 ft:
& = 9-inch hole
209 - 211 ft : Gravelly Silty SAND Bentonite Pellets
211-230 ft : Silty Sandy GRAVEL r I 211.?5—'246.82 ft
I I 202.4 - 248,82t : 4 inch
230 - 235 ft : Sandy GRAVEL I I o-inch hole 47304 S5
235- 257 ft : Silty Sandy GRAVEL : - 10/20 Silica Sand Wirewrap .020
T T Slot scrn.
EIRURRGN 248.82 - 257.6 ft : 246.82 - 248.82 ft
'“ 9-inch hole U
10/20 Silica Sand 4 inch

4" 304 SS Sump
2576 ft : Borehole drilled depth

0-13421ft: 12-in. Cable Tool 11-3/4"
CS Temp. csg.

134.2 - 257.6 ft : 9-in. Cable Tool 8-5/8"
CS Temp. csg.

Report Form: WELLS  Progect File: WELLS.GPJ

Drawing By:  JEA
Reference: Hanford Wells
Revision: 0

Revision Date: 17Apr01

Print Date: 17Apro1
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Report Form: WELLS Project File: WELLS.GPJ

0540436

WELL CONSTRUCTION AND COMPLETION SUMMARY

Drilling Sample WELL TEMPORARY
Method: Air Rotary Drl & Drive Method: GrabiSplit Spoon NUMBER:  299-W15-765  C3387WELL NO:  Not Allowed
Driffing Additives
Fluid Used:  Air Used: None Coordi N Mot d
Driller's WA State - "
Name: Mike Gomez Lic N Not D 4 C E  Not
Drilling Company Start
RSI Location: Woodland, Ca. Card #: RO37816
Date Date Elevation
Started: 195ep01 Completed:  040ct01 Ground Surface:
Depth to Water:  219.8ft 27Sep01 Elevation of Reference Point: m
(Ground surface)
Ty geigll‘!:do; Referfa rence Point Above
GENERALIZED Geologist's L rou urface:
STRATIGRAPHY ogists Log Depth of Surface Seal: 10.2 ft
Type of Surface Seal: 4x4 Concrete Pad
Fili Casing Screen
0-2f: Dril Pad . i
2-51: Gravally Sand N N A 0-220%:
5- 251t : Sandy Gravel L LA -inch hole 4 inch
A . Cement Surface  304L SSsch5 |
25- 30 ft : Gravel kol o Seal csg
30 - 35 ft : Sitty Gravel e e
35- 40 1t : Slightly Siity Gravelly Sand e "0l .
40 - 92 ft : Sand . ha
4 KV
» ‘I- " ‘l :
2 KV
s N
P Tl
iy )
- ‘I“ ‘u'. :
92-93 fi : Silty Sand kol K
83- 105 ft : Sil A .". B
105 - 110 ft : Gravelly Silt [t T R .
110 - 117 ft ; Sandy Silt L e 12'12| zmislz .
117-120 ft : Sand SN SN -meh hoke
120 - 125 ft : Sandy Silt L7 X 8/20 Bentonite
125- 130 ft: Sit APy s Crumbles
130- 135 ft : Sand Lo e
135 - 136 ft : Silty Gravel Y fa s
136 - 140 ft : Gravel ool e
140 - 150 ft : Sandy Gravel ‘:-_ ':- -
150 - 151 ft : Gravelly Silty Sand > i
151 - 155 ft : Gravel T .
155 - 157 ft : Gravelly Sandy Silt Fat s N
157 - 160 It : Gravel WA N
160 - 170 ft : Sandy Gravel F L i
170- 175 ft : Gravel P .
175 - 180 ft : Silty gravel ne X
180 - 195 It : Gravelly Sand L "
195 - 200 ft : Sandy gravel “ [
200 - 220 ft : Sity Gravel L - -~ 204.8-2095f
My Grave 11-inch hole
220 - 230 ft : Silty Sandy Gravel 1/4" Bentonite 220-2551t:
. Pellets 4 inch
D i avel 2095-257.4ft: 304L SS Wire
240 - 250 ft : Silty Sandy Grave) 11-inch hole Wrap .020 slot
250 - 255 ft : Gravel 10/20 Silica Sand sem
55-265ft: Gravel -
#99-20 Sandy . 257.1-265Mf: 255-257.1ft:
e 11-inch hole 4inch
10/20 Silica Sand 304L SS Sump
265-267f:
11-inch hole
267 ft : Borehole drilled depth Slough
0 - 267 ft : 11-in. air Rotary Drl & Drive
10-5/8" CS Temp csg to 267 ft
Drawing By:  JEA
Reference: Hanford Wells
Revision: 0
Revision Date: 08Nov01
Print Date: 08Nov01
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Repon Form: WELLS  Project File: WELLS.GPJ

SUMMARY OF CONSTRUCTION DATA AND FIELD OBSERVATIONS
RESOURCE PROTECTION WELL - 299-W15-765

WELL DESIGNATION i 299-W15-765

CERCLA UNIT

RCRA FACILITY

DEPTH DRILLED (GS) ;26870

MEASURED DEPTH (GS) 1 257.1 27Sep01
AVAILABLE LOGS :  Geologist & Geophysical
DATE EVALUATED :  Data not avallable

EVAL RECOMMENDATION 1 Data not available
LISTED USE :  RCRA Monitoring
CURRENT USER :  RCRA & Operations
PUMP TYPE :  Not Documented
MAINTENANCE : Data not avallable
COMMENTS :  Alr Rotary Drg & Drive 10-5/8" CS Temp csg to 265 ft
TV SCAN COMMENTS

Drawing By:  JEA

Reference: Hanford Wells

Revision:

Revision Date: 08Nov01
Print Date: 08Nov01
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No. of
Copies

OFFSITE

2 Confederated Tribes of the Umatilla

Indian Reservation
P.O. Box 638
Pendleton, OR 97801
ATTN: The Honorable W. Burke
T. Rapaske

R. Jim, Manager
Environmental Restoration/
Waste Management Program

Confederated Tribes and Bands of the

Yakama Indian Nation
P.O. Box 151
Toppenish, WA 98948

2 Nez Perce Tribe
P.O. Box 365
Lapwai, ID 83540
ATTN: D. Powaukee
D. Landeen

S. Van Verst

PNNL-16005

Distribution

Washington State Department of Health

Division of Radiation Protection
P.O. Box 47827
Olympia, WA 98504

ONSITE
6 DOE-Richland Operations Office

B. L. Charboneau

R. D. Hildebrand

J. G. Morse

A. C. Tortoso

Public Reading Room (2)

A6-33
A6-38
A6-38
A6-38
H2-53

No. of

Copies

Distr.1

3 DOE-Office of River Protection

R. W. Lober H6-60
R. A. Quintero H6-60
S. A. Wiegman H6-60

4 Fluor Hanford, Inc.

M. W. Beneke E6-35
M. E. Byrnes E6-35
V. J. Rohay E6-35
L. C. Swanson E6-35

2 CH2M HILL Hanford Group, Inc.

J. G. Field H6-03
J. G. Kristofzsk H6-03

2 U.S. Environmental Protection Agency

C. E. Cameron B1-46
D. A. Faulk B1-46

3 Washington State Department of Ecology
D. Goswami (3) HO0-57

7 Pacific Northwest National Laboratory

P. E. Dresel K6-96
D. G. Horton (3) K6-75
S. P. Luttrell K6-96
Hanford Technical Library (2) P8-55
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