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Foreword

This data package discusses the geology of the single-shell tank (SST) farms and the geologic history
of the area. The purpose of this report is to provide the most recent geologic information available for the
SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal
Facility geology with information available after those reports were published. Revision 1 presents
information on the Post-Ringold basalt-rich gravels in a more clear fashion, provides additional geologic
contact data in Table 4.1, replaces a duplicate figure with the correct one, and corrects typographical
errors.

Both metric and English units of measurement are used in this document. However, English units are
used for descriptions and discussions of drilling activities and samples because that is the system of units
used by drillers to measure and report depths and well construction details. To convert feet to meters,
multiply by 0.3048; to convert inches to centimeters, multiply by 2.54; to convert meters to feet, multiply
by 3.28.
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Terms

Abbreviations and Acronyms

bgs below ground surface

BP before present

CCu Cold Creek unit

CCy, lower Cold Creek unit

CCU, upper Cold Creek unit (Cold Creek fine-grained unit)
CD compact disk

CLEW Cle Elum-Wallula (deformed zone)

CRBG Columbia River Basalt Group

DOE U.S. Department of Energy

DOE-RL U.S. Department of Energy Richland Operations Office
EC electrical conductivity

Hf/CCU Hanford formation/Cold Creek unit

HR-NR Hog Ranch-Naneum Ridge (anticline)

IDF Integrated Disposal Facility

OWL Olympic Wallowa lineament

pH negative logarithm of the hydrogen ion activity
PNNL Pacific Northwest National Laboratory

Qrg Quaternary flood gravels

Qss Quaternary flood silt and sand

RCRA Resource Conservation and Recovery Act of 1976

Rt Ringold Formation, member of Taylor Flat

Rui Ringold Formation, member of Wooded Island

Ruia Ringold Formation, member of Wooded Island, unit A
Ruie Ringold Formation, member of Wooded Island, unit E
SST single-shell tank

WMA waste management area

YFB Yakima Fold Belt

Units

0 degrees

g percent acceleration of gravity — a measure of the forces generated during an earthquake
ka kilo-annum — unit of time equal to one thousand years
Ibf/in® pound force per square inch

Ma mega-annum — unit of time equal to one million years
MPa megapascal

wit% weight percent
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1.0 Introduction

This data package discusses the geology of the single-shell tank (SST) farms, relating the site-specific
geology to the region’s geologic history. The purpose of this report is to provide the most recent geologic
information available for the SST farms and the Integrated Disposal Facility (IDF). This report builds
upon previous reports on the tank farm geology (Reidel et al. 2006) and IDF geology (Reidel 2005) with
information available after those reports were published. Horton (2007) recently published a companion
report to this one that discusses the groundwater flow and contamination beneath the SST farms.

The Hanford Site (Figure 1.1) lies within the Columbia Plateau, a broad plain situated between the
Cascade Range to the west and the Rocky Mountains to the east, and is underlain by the Miocene
Columbia River Basalt Group (CRBG) (Figure 1.2). The northern Oregon and Washington portion of the
Columbia Plateau is often called the Columbia Basin because it forms a broad lowland surrounded on all
sides by mountains. In the central and western parts of the Columbia Basin and Pasco Basin where the
Hanford Site is located, the basalt is underlain predominantly by Tertiary continental sedimentary rocks
and overlain by late Tertiary and Quaternary fluvial and glaciofluvial deposits. All these were folded and
faulted during the Cenozoic to form the current landscape of the region.
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Figure 1.1. Geographic Elements of the Pasco Basin Portion of the Columbia Basin, Washington
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2.0 Physiographic Setting of the Hanford Site

The physiography of the Hanford Site (Figure 2.1) is dominated by the low-relief plains of the Central
Plains physiographic region and anticlinal ridges of the Yakima Folds region (Figure 1.2). The physio-
graphy of the Columbia Basin is controlled by the late Cenozoic faulting and folding of the CRBG and
overlying sediments of the Ringold Formation. Surface topography in the Columbia Basin has been
modified within the past several million years by geomorphic processes related to 1) Pleistocene
cataclysmic floods, 2) Holocene eolian activity, and 3) landslides.

%\
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Figure 2.1. Physiographic Map of the Pacific Northwest

Cataclysmic flooding of the Hanford Site occurred when ice dams in western Montana and northern
Idaho were breached, allowing large volumes of water to spill across eastern and central Washington
(DOE 1989). The last major flood occurred about 13,000 years ago, during the late Pleistocene Epoch.
Anastomosing flood channels, giant current ripples, bergmounds, and giant flood bars are among the
landforms created by the floods and are readily seen on the Hanford Site. Most of the large landslides in
the region occurred when these flood waters eroded steep slopes of the ridges. The single-shell tank
(SST) farms are located on a major Pleistocene flood bar, the Cold Creek bar.

Since the end of the Pleistocene, winds have locally reworked the flood sediments, depositing sand
dunes in the lower elevations and loess (windblown silt) around the margins of the Pasco Basin.
Generally, sand dunes have been stabilized by anchoring vegetation but do become reactivated after
vegetation is disturbed, and an active dune field is present in an area on the eastern side of the site.
Localized landslides still occur along the Columbia River at the White Bluffs, where irrigation water
above the bluffs is reducing friction on some of the bedding planes.
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3.0 Geologic History of the Hanford Site

This section describes how the Hanford Site evolved within the context of the Pacific Northwest. It
also forms the basis for extrapolating the detailed geology of the tank farms to the surrounding area.

3.1 Structural Setting of the Hanford Site with Respect to the
Pacific Northwest

The structure of the Pacific Northwest is controlled by a basement rock assemblage of accreted
terranes fused onto the structurally complex North American craton by accretion during the early
Mesozoic to early Cenozoic. The accreted terranes form the backbone of the Cascade Range, Okanogan
Highlands, and the Blue Mountains. The terranes east of the Cascades now are mostly covered by a thick
sequence of Cenozoic rocks that were folded and faulted in a north-south—oriented compressive regime.
North-south compression is continuing today east of the Cascades, and this pattern of Cenozoic
deformation is expected to continue into the future.

The Columbia Basin is a structurally and topographically low area surrounded by mountains ranging
in age from the late Mesozoic to recent (Figure 1.2). The Columbia Basin is composed of two funda-
mental subprovinces, the Palouse Slope and the Yakima Fold Belt (YFB; Figure 1.2). The Palouse Slope
is a stable, undeformed area overlying the old continental craton that dips westward toward the Hanford
Site. The YFB is a series of anticlinal ridges and synclinal valleys in the western and central parts of the
Columbia Basin. The edge of the old continental craton lies at the junction of these two structural sub-
provinces east of the Hanford Site.

The Blue Mountains subprovince of the Columbia River flood-basalt province is a northeast trending
anticlinorium that extends 250 km from the Oregon Cascades to Idaho and forms the southern border of
the Columbia Basin and the southern part of the Columbia Plateau.

3.2 Major Structural Features of the Columbia Basin

Three major structural features are present in the Columbia Basin. One, the YFB, forms the western
part of the Columbia Basin. Two features crosscut the Columbia Basin and influence the geology of the
Hanford Site. These are the Olympic Wallowa lineament (OWL) (Figures 1.2 and 3.1) and the Hog
Ranch-Naneum Ridge (HR-NR) anticline. The OWL passes along the southern boundary of the Hanford
Site, and the HR-NR anticline forms the western structural boundary of the Pasco Basin and Hanford Site.

3.21 The Olympic-Wallowa Lineament

The OWL (Figure 3.1) is a major topographic feature in Washington and Oregon that crosscuts the
Columbia Basin and forms the southern boundary of the Hanford Site (Raisz 1945). This alignment of
structural features parallels pre-basalt structural trends along the northwest margin of the Columbia Basin,
but it has not been linked to any individual structure (Campbell 1989; Reidel and Campbell 1989).
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Figure 3.1. Main Structural Features of the Pasco Basin and Surrounding Area

The portion of the OWL that crosses the Columbia Basin is called the Cle Elum-Wallula (CLEW)
deformed zone (Figure 3.1) (DOE 1988). It is defined by a 10-km-wide, moderately diffuse zone of

anticlines that have an N50°W orientation. As defined in Davis (1981), the CLEW deformed zone
consists of three structural parts: 1) a broad zone of deflected or anomalous fold and fault trends
extending south from Cle Elum to Rattlesnake Mountain on the Hanford Site; 2) a narrow belt of

topographically aligned domes and doubly plunging anticlines extending from Rattlesnake Mountain to

Wallula Gap; and 3) the Wallula fault zone, extending from Wallula Gap to the Blue Mountains.

Northwest of the CRBG margin, numerous northwest- and north-trending faults and shear zones of
the Straight Creek fault system lie subparallel to the OWL (Tabor et al. 1984). The Snoqualmie batholith
intrudes these faults but is not cut by them, indicating that any possible movement along the OWL at the

western margin of the Columbia Basin must be older than the batholith, 17 to 19.7 Ma.
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The structural significance of the OWL has been called into question by two recent geophysical
studies. Neither a seismic profiling survey (Jarchow 1991) nor a gravity survey (Saltus 1993) could find
any obvious geophysical signature for the OWL below the CRBG.

3.2.2 Hog Ranch-Naneum Ridge Anticline

The western structural boundary of the Pasco Basin, the basin containing the Hanford Site, is the Hog
Ranch-Naneum Ridge anticline (Figure 3.1). The HR-NR anticline is a broad south-trending anticline in
the CRBG that crosses the Yakima Fold Belt in a north-south direction. This south-plunging structure
passes through five Yakima Folds and the OWL (Figure 3.1). The HR-NR anticline was active in late to
middle Miocene, as demonstrated by thinning of basalt flows across it (Reidel et al. 1989a), but the east-
trending Yakima Folds show no apparent offset across this structure (Campbell 1989; Tabor et al. 1984;
Reidel et al. 1989a). Growth of the anticline continued from the Miocene to Recent and is evidenced by
the highest structural points along the ridges that cross it.

3.2.3 The Yakima Fold Belt

The YFB covers about 14,000 km? of the western Columbia Basin (Figure 1.2) and formed as basalt
flows and intercalated sediments were folded and faulted under north-south directed compression. The
YFB overlies a large pre-basalt basin that has been subsiding since the early Tertiary. The ridges, valleys
and basins in the western Columbia Basin are the product of north-south compression that began in the
early Tertiary prior to the eruption of the CRBG and continues today. The rates of deformation in the
Columbia Basin have declined since the early Tertiary (Reidel et al. 1994). The current rate of ridge
growth is estimated at 0.04 mm/yr, and the rate of subsidence in the basin is estimated at 3 x 10 mm/yr.

The Hanford Site lies in the Pasco Basin, which is one of the larger structural basins near the eastern
limit of the YFB. Deformation in the YFB has controlled the location of the Columbia River system
since the late Miocene and the depositional pattern of the post-basalt sediments in the Pasco Basin.

3.23.1 Characteristics of the Yakima Folds

The YFB consists of asymmetrical anticlinal ridges and synclinal valleys. The anticlines are typically
segmented and usually have a north vergence, although some folds have a south vergence. Synclines are
typically asymmetrical with a gently dipping north limb and a steeply dipping south limb. Fold length is
variable, ranging from several kilometers to over 100 km; fold wavelengths range from several kilometers
to as much as 20 km. Structural relief is typically about 600 m but varies along the length of the fold.
The greatest structural relief along the Frenchman Hills, the Saddle Mountains, Umtanum Ridge, and
Yakima Ridge occurs where they intersect the north-south trending HR-NR anticline (Reidel et al.
1989a).

Synclines generally form passively, i.e., they are simply lows between two folds. One significant
exception to this is the Cold Creek syncline where it crosses the Pasco Basin. Here, the syncline has been
actively deforming and subsiding throughout deposition of suprabasalt sediments.

In general, the axial trends produce a “fanning” pattern across the fold belt (Figures 3.1 and 3.2).
Anticlines on the western side of the fold belt generally have a N50°E trend (Swanson et al. 1979a).
Anticlines in the central and eastern part of the fold belt have east-west trends except along the CLEW
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Figure 3.2. General Trend of Yakima Folds Across the Pacific Northwest

deformed zone where a N50°W trend predominates. The Rattlesnake Hills, Saddle Mountains, and
Frenchman Hills have overall east-west trends across the fold belt, but Yakima Ridge and Umtanum
Ridge change eastward from east-west to N50°W in the zone of the CLEW deformed zone. In the central
part of the fold belt, the Horse Heaven Hills, the Rattlesnake Hills, and the Columbia Hills have eastward
terminations against the CLEW deformed zone.

3.2.3.2 Fold and Fault Geometry

Within the Hanford Site and surrounding area, the geometry of the anticlines typically consists of
steeply dipping to overturned north flanks and gently dipping (<5°) south flanks (Figure 3.3). Exceptions,
however, include the doubly plunging anticlines within the Rattlesnake-Wallula alignment of the CLEW
deformed zone and the conjugate box-fold geometry of parts of the anticlines such as the Smyrna segment
of the Saddle Mountains (Reidel 1984). The main variable in fold profiles is the width of the gently
dipping limb that varies from as little 5 km to as much as 35 km (Figure 3.3).

Figure 3.3. Generalized Cross Section Through the Yakima Fold Belt
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Segmentation of the anticlines is common throughout the fold belt and is defined by abrupt changes
in fold geometry or by places where regional folds die out and become a series of doubly plunging
anticlines. Segment lengths are variable but average about 12 km (7 mi) (ranging from 5 to 35 km [3 to
34 mi]) near the Hanford Site; some of the larger segments contain subtler changes in geometry, such as
different amplitudes, that could also be considered segment boundaries. Segment boundaries are often
marked by cross or tear faults that trend N20°W to north and display a principal component of strike-slip
movement (e.g., Saddle Mountains) (Reidel 1984). Near the Hanford Site, these cross faults are confined
to the anticlinal folds and usually occur only on the steeper limb, dying out onto the gentler limb.

Segment boundaries may also be marked by relatively undeformed areas along the fold trend where
two fold segments plunge toward each other. For example, the Yakima River follows a segment
boundary where it crosses the Rattlesnake-Wallula alignment at the southeast termination of Rattlesnake
Mountain (Figure 3.1).

The steep limb of the asymmetrical anticlines is almost always faulted (Figure 3.3). Where exposed,
these frontal fault zones have been found to be imbricated thrusts, as, for example, at Rattlesnake
Mountain, Umtanum Ridge near Priest Rapids Dam (Bentley 1977; Goff 1981), the Horse Heaven Hills
(Hagood 1986), and the Saddle Mountains near Sentinel Gap (Reidel 1984).

Yakima Folds have emergent thrust faults at the ground surface. Faulted material moves along the
fault onto the surface in front of the fold, giving the appearance the fault is a low-angle thrust fault with
detachment surfaces either within the CRBG, in the sediments below the basalts, or at the basalt-sediment
contact. However, where erosion provides deeper exposures into the cores of folds, the frontal faults are
observed to be reverse faults (e.g., the Columbia water gap in the Frenchman hills, 45°S [Grolier and
Bingham 1971]; the Columbia Hills at Rock Creek, Washington, 50 to 70°N). Drilling of the Umtanum
fault near Priest Rapids Dam (PSPL 1981) suggests that this fault dips southward under the ridge with a
dip of at least 30° to 40° (PSPL 1981) but perhaps as high as 60° (Price and Watkinson 1989).

3.3 Geologic History of the Hanford Site with Respect to the
Pacific Northwest

The Hanford Site is a small portion of the Columbia Basin, but the geologic record of the Site is
representative of the geologic history of the Pacific Northwest. The following discussion puts the
Hanford Site geology into perspective with the regional geologic setting.

3.3.1 Stratigraphy of Rocks Older Than the Columbia River Basalt Group

Rocks older than the CRBG are exposed mainly along the margin of the Columbia Basin. However, they
are important to understanding the history of the Hanford Site because many are thought to extend under the
basalt and form the foundation of the area. Stratigraphy along the margin of the CRBG is complex and varies
widely in both age and lithology. The principal age, lithologies, and importance to the history of Hanford
were taken from Reidel et al. (1994) and are summarized below.

e The oldest rocks in the Pacific Northwest are found along the northeast and east margins of the
Columbia Basin near the Idaho border. These are late Precambrian and early Paleozoic
metavolcanic and metasedimentary rocks (2.3 billion-300 million years before present) interspersed
with younger igneous intrusive rocks. These older rocks represent the ancient North American
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craton and the remnants of the 1-billion-year-old supercontinent Rodinia that broke apart 750
million years ago to form the Pacific Ocean. The boundary of that rifted margin occurs east of the
Hanford Site.

e Late Paleozoic, Mesozoic, and early Cenozoic metavolcanics and metasediments are exposed along
the south and western margin of the Columbia Basin. These are the rocks that were added onto the
North America Plate remnants of Rodinia between 200 and 50 million years ago. Although many
are of similar age to rocks along the north and east margins of the Columbia Basin, they formed as
ocean islands and microcontinents far away from the Pacific Northwest. Through the process of
plate tectonics, these rocks were carried along on the oceanic plate that collided with the North
American Plate beginning 200 million years ago. During the collision process, these ocean islands
and microcontinents were accreted onto North America and resulted in the westward growth of
North America. Similar accreted terrane rocks are thought to occur deep beneath the Hanford Site.

e Along the west and northwest margin, a series of sedimentary basins formed in early Tertiary time
(Campbell 1989). These basins formed in the accreted terranes and are now separated by tectonic
“blocks” or uplifts exposing the accreted terranes. The Tertiary rocks extend under the Columbia
Basin and Hanford Site and were the targets of oil exploration in the latter half of the 20th century.
The rocks include the volcanic and sedimentary rocks that are 50 to 20 million years old and were
derived from the erosion of highlands in the Pacific Northwest.

3.3.2 Columbia River Basalt Group and Ellensburg Formation

The CRBG forms the main bedrock of the Columbia Basin and Hanford Site. This consists of over
200,000 km?® of tholeiitic flood-basalt flows that were erupted between 17 and 6 Ma and now cover
approximately 230,000 km? of eastern Washington, eastern Oregon, and western ldaho (Camp et al. 2003).
Eruptions had volumes as great as 5,000 km® (Reidel et al. 1989b), with the greatest amounts being erupted
between 16.5 and 14.5 million years before present. The flows were erupted from north-northwest—
trending fissures or linear vent systems in north-central and northeastern Oregon, eastern Washington,
and western ldaho (Swanson et al. 1979b). These flows are the structural framework of the Columbia
Basin, and their distribution pattern reflects the tectonic history of the area over the past 16 million years
(Reidel et al. 1989a).

The CRBG has been divided into five formations (Swanson et al. 1979b); only the Grande Ronde
Basalt, the Wanapum Basalt, and the Saddle Mountains Basalt are exposed on the Hanford Site
(Figure 3.4). The Imnaha Basalt occurs at the base of the Columbia River basalt under the Hanford Site.
The Picture Gorge Basalt is not present on the Hanford Site.

The basalt flows of the CRBG are recognized using a combination of lithology, chemistry, and
paleomagnetic data (Swanson et al. 1979b). Chemical composition and paleomagnetic data have proven
to be the most reliable criteria for flow recognition and correlation. Lithology is reliable for many flows
primarily within the Wanapum and Saddle Mountains Basalts, but chemical compositions still are used to
confirm identifications.

More than 65% of the CRBG was erupted in a 1-million-year span of the Grande Ronde Basalt. In
the field, the Grande Ronde Basalt is divided into four magnetostratigraphic units, which, from oldest to
youngest, are Reversed 1, Normal 1, Reversed 2, and Normal 2 (Swanson et al. 1979b). The Grande
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Figure 3.4. Generalized Stratigraphy of the Pasco Basin and Vicinity

Ronde Basalt is further subdivided into 17 groups of flows based on chemical compositions (Reidel et al.
1989b). The Wanapum Basalt has been subdivided into four members, and the Saddle Mountains Basalt
has been subdivided into ten members. The Elephant Mountain Member and Ice Harbor Member are the
uppermost basalt lava flows at Hanford.

The younger basalt flows of the Wanapum and Saddle Mountains Basalts on the Hanford Site have
been locally eroded to various degrees. Some erosion of the basalt occurred between eruptions, as well as
before and during deposition of the oldest Ringold sediments. Uplift along anticlinal ridges has resulted
in erosion to different depths along the margin of the Pasco Basin and Cold Creek syncline. Within the
synclines where the basalt surface is covered by sediment fill, the upper basalt flows have been locally
eroded by fluvial activity and proglacial flooding. North of the 200 Areas near Gable Gap, the Saddle
Mountains Basalt has been eroded down to the oldest member, the Umatilla Member.

Intercalated with and in some places overlying the CRBG are sedimentary rocks of the Ellensburg
Formation (Swanson et al. 1979a). In the western Columbia Basin, the Ellensburg Formation is mostly
volcanic-derived sediment; in the central and eastern basin, fluvial sediments of the ancestral Clearwater and
Columbia Rivers form the dominant lithologies (Fecht et al. 1987).
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3.3.3 Post-Columbia River Basalt Stratigraphy

Most post-CRBG sediments are confined to the synclinal valleys of the YFB. Although the sedimentary
record is incomplete, the sedimentation pattern is what is expected in an area with limited rainfall and
significant structural development (Fecht et al. 1987). The dominant source of sediment between the upper
Miocene to middle Pliocene (10 to 3 million years ago) is the Columbia River system. The upper Ellensburg
Formation and the Ringold Formation are the main sediment packages that contain this history and record the
migration of rivers and streams into their present channels (Fecht et al. 1987). Capping the sedimentary
sequence in the synclines and basins are sediments comprising the Pleistocene Hanford formation deposited
during cataclysmic floods and recent eolian deposits.

The upper Ellensburg Formation at the Hanford Site mainly records the path of the ancestral Clearwater-
Salmon River system as it flowed from the Rocky Mountains west to its confluence with the Columbia River
near the present Priest Rapids Dam. During this time, the Columbia River flowed along the western margin
of the Columbia Basin. The Snake River did not enter the Columbia Basin until the end of the Pliocene. The
Clearwater-Salmon River geologic record consists of main stream and overbank deposits that occur between
lava flows of the Saddle Mountains Basalt. These sediments are important to Hanford because they form part
of the confined aquifer system.

Ridges of the YFB were growing during the eruption of the CRBG but usually were buried completely
by each new basalt eruption. After the last major basalt eruption, the ridges began to develop significant
topography. The highest topography first developed where the ridges intersected the north-south trending
HR-NR anticline (Figure 3.1) along the western boundary of the Pasco Basin. Continued uplift of the
HR-NR anticline and the ridges of the YFB forced the Columbia River and its confluence with the Salmon-
Clearwater River eastward. By 10.5 million years ago, the Columbia River was flowing along the western
boundary of the Hanford Site and then turning southwestward through Sunnyside Gap (Figure 3.1) and south
past Goldendale, Washington. This is when the Snipes Mountain conglomerate (Figure 3.4), the last
Ellensburg Formation unit in the Pasco Basin, was deposited.

Sediment of the Ringold Formation represents evolutionary stages of the ancestral Columbia River as it
was forced to change course across the Columbia Basin by the growth of the YFB. Ringold Formation time
began approximately 8.5 million years ago when the Columbia River abandoned Sunnyside Gap (Figure 3.1),
a water gap through the Rattlesnake Hills, and began to flow across the Hanford Site, leaving the Pasco Basin
through the present Yakima River water gap along the southwest end of the Rattlesnake Mountain anticline.
The northern margin of the 8.5-million-year-old Ice Harbor basalt controls the Columbia River channel as it
exits the Pasco Basin.

The first record of the Columbia River at Hanford is in the extensive gravel and interbedded sand of
unit A, Ringold Formation member of Wooded Island (Figure 3.4). The Columbia River was a gravelly braid
plain and widespread paleosols.

At about 6.7 million years ago, the Columbia River abandoned the Yakima River water gap along the
southeast extension of Rattlesnake Mountain and began to exit the Pasco Basin through Wallula Gap
(Figure 3.1). The main channel of the Columbia River in the Pasco Basin was still through Hanford and the
200 Areas. At this time, the Columbia River sediments change to a sandy alluvial system with extensive
lacustrine and overbank deposits (Fecht et al. 1987; Reidel et al. 1994; Lindsey 1995). A widespread
lacustrine-overbank deposit called the lower mud was deposited over some of the Hanford Site at this time
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and is a nearly continuous feature under the 200 West Area and much of the 200 East Area. The lower mud
was then covered by another extensive sequence of fluvial gravels and sands. The most extensive of these is
called unit E, Ringold Formation member of Wooded Island, but locally other sequences are recognized (e.g.,
units C and D). Unit E is one of the most extensive Ringold Formation gravels and appears to be continuous
under the 200 Areas. To the north near the 100 Areas, Ringold Formation sediments reflect mostly overbank
deposition of fine-grained sediments during this time.

The Columbia River sediments became more sand-dominated about 5 million years ago when over 90 m
(295 ft) of interbedded fluvial sand and overbank deposits accumulated at Hanford. These deposits are
collectively called the Ringold Formation member of Taylor Flat (Lindsey 1995). The fluvial sands of the
member of Taylor Flat dominate the lower cliffs of the White Bluffs.

Between 4.8 million years ago to the end of Ringold time at 3.4 million years ago, lacustrine deposits
dominated Ringold Formation deposition. A series of three successive lakes is recognized along the White
Bluffs and elsewhere along the margin of the Pasco Basin (Lindsey 1995). The lakes probably resulted from
damming of the Columbia River farther downstream, possibly near the Columbia Gorge. The lacustrine and
related deposits in the Pasco Basin are collectively called the Ringold Formation member of Savage Island.

At the end of Ringold time, the Pacific Northwest underwent regional uplift, resulting in a change in base
level for the Columbia River system. Uplift caused a change from sediment deposition to regional incision
and sediment removal. Regional incision is especially apparent in the Pasco Basin, where nearly 100 m
(328 ft) of Ringold Formation sediment has been removed from the Hanford Area. The regional incision
marks the beginning of Cold Creek time and the end of major deposition by the Columbia River.

Regional incision and erosion during Cold Creek time are most apparent in the surface elevation
change of the Ringold Formation across the Hanford Site (Figure 3.3). As incision of the Columbia
progressed eastward across Hanford, and less erosion occurred on the surface of the Ringold Formation in
the 200 West Area, leaving it at a higher elevation than in the 200 East Area (Figure 3.5). The surface of
the Ringold Formation in the 200 West Area is consequently also older than that in the 200 East Area and
thus was exposed to weathering processes for a much longer time. Less erosion of the 200 West Area
surface accounts for the isolated remnants of the fluvial sands of the Ringold Formation member of
Taylor Flat. At the north side of 200 East Area, the ancestral Columbia River was able to cut completely
through the Ringold Formation to the top of the basalt. The channel can be traced from Gable Gap across the
eastern part of the 200 East Area and to the southeast. The greatest amount of incision is near the current
river channel.

In the Pasco Basin, the Cold Creek unit records most of the geologic events between the incision by the
Columbia River and the next major event, the Missoula floods. The older Ringold Formation surface at the
200 West Area was exposed to weathering, resulting in the formation of a soil horizon on its surface.
Because the climate was becoming arid, the resulting soil became a pedogenically altered, carbonate-rich,
cemented paleosol. The development of this carbonate-rich paleosol is much greater in the 200 West Area
than in the 200 East Area due to longer exposure of the surface. This ancient paleosol is referred to as the
lower Cold Creek unit (CCU,) subunit.

3.9



|| Cold Creek Unit [ ] Ringold Formation -

Coarse-Grained Units
Ringold Formation -
Fine-Grained Units Water Table

= Fault Line, Dashed Where
Inferred

01 2 3 4 5 Kilometers

ué 4UY T roldauon ,~_~,,,/, Hanford Formation Columbia
S _ 1 River
< 1
» 100 —{Ringold _— '
2 _|Formation Basalt
<t L
2 0 Basalt Interbed < Basalt
g p >
2 7 | Basalt =N
- / et
-100

G06060011.2
Figure 3.5. Generalized Cross Section Through the Hanford Site

Concurrently, eolian sediments and minor fine-grained flood deposits from streams originating from the
nearby ridges were deposited on the paleosol, resulting in a wide variety of sediments that are called the
upper subunit of the Cold Creek unit (CCU,). Because of the long time interval (approximately 3.4 to
2 million years ago), several localized paleosols like the lower Cold Creek unit were able to develop in the
upper Cold Creek unit. Throughout Cold Creek time, streams from the Rattlesnake, Yakima, and Umtanum
Ridges were carving channels to the Cold Creek drainage, depositing basaltic gravels in their stream beds.
These form the side-stream alluvial facies of the Cold Creek unit.

During Cold Creek time in the central Pasco Basin, the Columbia River flowed through Gable Gap,
depositing gravels of mixed lithologies in a sand matrix. These gravels, informally called the “Pre-
Missoula gravels” (PSPL 1981), overlie the Ringold Formation and are up to 25 m (82 ft) thick. The
200 East Area lies along the boundary between these two geologic environments, undergoing signifi-
cantly more erosion than beneath the 200 West Area but with some soil development occurring in areas.
There may have been other periods of fluvial deposition near the 200 East Area that reworked the existing
Ringold Formation gravels. The difficulty and uncertainty in distinguishing between these similar units is
reflected in the differences in geologic contacts and their descriptions among authors.

During the Pleistocene, cataclysmic floods inundated the Pasco Basin several times when ice dams failed
in northern Washington (Baker et al. 1991). Current interpretations suggest as many as 40 flooding events
occurred as ice dams holding back glacial Lake Missoula repeatedly formed and broke. In addition to larger
major flood episodes, there were probably numerous smaller individual flood events. Deciphering the history
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of cataclysmic flooding in the Pasco Basin is complicated, not only because of floods from multiple sources
but also because the paths of Missoula floodwaters migrated and changed course with the advance and retreat
of the Cordilleran Ice Sheet.

Along with sedimentological evidence for cataclysmic flooding in the Pasco Basin, high-water marks and
faint strandlines occur along the basin margins. Temporary lakes were created when flood waters were
hydraulically dammed, resulting in the formation of the short-lived Lake Lewis behind Wallula Gap. High-
water mark elevations for Lake Lewis, inferred from ice-rafted erratics on ridges, range from 370 to 385 m
(1,214 to 1,261 ft) above sea level.

The sediment deposited by the cataclysmic flood waters has been informally called the Hanford
formation because the best exposures and most complete deposits are found there. The coarse-grained flood
facies (gravel-dominated facies of DOE-RL 2002) is generally confined to relatively narrow tracts within or
near flood channelways. The plane-laminated sand facies (sand-dominated facies of DOE-RL 2002), on the
other hand, occurs as a broad sheet over most of the central basin. Paleocurrent indicators within beds of
plane-laminated sands are unidirectional, generally toward the south and east within the Pasco Basin.

Rhythmite facies (interbedded silt and sand-dominated facies of DOE-RL 2002) occur in slackwater
areas around the margins of the basin and were deposited by multidirectional currents, including upvalley
currents. Individual rhythmites become finer and thinner both laterally and vertically upward.

The 200 West and 200 East Areas occur on a major depositional feature called the Cold Creek bar
(Figure 3.6). Recent studies using the magnetic polarity of the Hanford formation sediments have shown that
the earliest floods may have occurred as long ago as 2 million years. Four magnetic polarity reversals have
been found in sediments from core holes in the 200 East Area (Pluhar et al. 2006). These polarity reversals
have paleosols at the top of each reversed sequence of sediments. The oldest sediments occur in the ancestral
Columbia River channels where the Pre-Missoula sediments occur. The age of the Hanford formation in the
200 West Area is more difficult to determine because only normal-polarity sediments occur here.

Since the end of the Pleistocene, the main geologic process has been wind. After the last Missoula flood
drained from the Pasco Basin, winds moved the loose, unconsolidated material until vegetation was able to
stabilize it. Stabilized sand dunes cover much of the Pasco Basin, but there are areas, such as along the
Hanford Reach National Monument, where sand dunes remain active.
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4.0 Geology of the Pasco Basin and Hanford Site

As discussed in Chapter 3, the events occurring throughout the Pacific Northwest and Columbia
Basin are reflected in the sedimentary record in the Pasco Basin and consequently the Hanford Site. This
chapter provides a description of the large geologic framework for the Hanford Site.

4.1 Structure of the Hanford Site

The Cold Creek syncline (Figure 4.1) lies between the Umtanum Ridge-Gable Mountain uplift and
the Yakima Ridge uplift and is an asymmetric and relatively flat-bottomed structure. The Cold Creek
syncline began developing during the eruption of the CRBG and has continued to subside since that time.
The 200 Areas lie on the northern flank, and the bedrock dips gently (approximately 5°) to the south. The
300 Area lies at the eastern end of the Cold Creek syncline where it merges with the Pasco syncline. The
deepest parts of the Cold Creek syncline, the Wye Barricade depression and the Cold Creek depression,
are approximately 7.5 mi southeast of the 200 Areas and southwest of the 200 West Area, respectively
(Figure 4.1).
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Figure 4.1. Geologic and Geomorphic Map of the 200 Areas and Vicinity
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The Wahluke syncline north of Gable Mountain is the principal structural unit that contains the
100 Areas. The Wahluke syncline is an asymmetric and relatively flat-bottomed structure similar to the
Cold Creek syncline. The northern limb dips gently (approximately 5°) to the south. The steepest limb is
adjacent to the Umtanum-Gable Mountain structure.

The Umtanum Ridge-Gable Butte-Gable Mountain structural trend (Figures 3.1 and 4.1) is a
segmented anticlinal ridge extending for a length of 110 km in an east-west direction and passes north of
the 200 and 300 Areas and south of the 100 Areas. This structure consists of five segments. From the
west, the Umtanum Ridge plunges eastward and joins the Gable Mountain-Gable Butte segment just east
of the western boundary of the Hanford Site. The easternmost segment, the Southeast anticline, extends
southeast from the eastern boundary of the Gable Mountain-Gable Butte segment.

Umtanum Ridge is an asymmetrical, north-vergent to locally-overturned anticline with a major thrust
to high-angle reverse fault on the north side (Figures 3.1 and 4.1) (Goff 1981; Price and Watkinson 1989).
Gable Mountain and Gable Butte are two topographically isolated, anticlinal ridges that are composed of
a series of northwest trending, doubly plunging, en echelon anticlines, synclines, and associated faults.

The Yakima Ridge uplift extends from west of Yakima, Washington, to the center of the Pasco Basin,
where it forms the southern boundary of the Cold Creek syncline south of the 200 West Area (Figures 3.1
and 4.1). The easternmost surface expression of the Yakima Ridge uplift is represented by an anticline
that plunges eastward into the Pasco Basin (Myers et al. 1979). The eastern extension of Yakima Ridge is
mostly buried beneath late Cenozoic sediments and has much less structural relief than the rest of Yakima
Ridge.

41.1 Structural Setting of the 200 West Area Tank Farms

The 200 West Area sits on the western part of the Cold Creek bar, which is along the north flank of
the Cold Creek syncline (Figure 4.1). The surface of the Columbia River basalt bedrock under the
200 West Area has an overall strike to the northwest and is tilted to the southwest into the Cold Creek
depression (Figure 4.1). A deep structural low, the Cold Creek depression, developed along the Cold
Creek syncline southwest of the 200 West Area and greatly influences the structural attitudes of the
sedimentary layers that overlie the basalt.

4.1.2 Structural Setting of the 200 East Area Tank Farms

The 200 East Area sits on the eastern part of the Cold Creek bar, which is along the northern flank of
the Cold Creek syncline (Figure 4.1). Another deep structural low, the Wye Barricade depression,
developed along the Cold Creek syncline southeast of the 200 East Area. The May Junction fault is a
normal fault that marks the western boundary of the depression.

The 200 East Area sits at the southern end of a series of secondary doubly plunging anticlines and
synclines that are associated with the Umtanum-Gable Mountain anticlinal structure (Figure 4.1).
WMASs A, AX, B-BX-BY, and C in the 200 East Area lie near the southern flank of the closest secondary
anticline. A fault was recently detected during drilling of seismic test boreholes at the Waste Treatment
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Plant. The fault caused some displacement in the Pomona Basalt that lies beneath the Elephant Mountain
Basalt but is not thought to have caused any displacement in younger basalts or overlying sediments
(Barnett et al. 2007).

4.2 Stratigraphy of the Hanford Site

The generalized stratigraphy of the Pasco Basin and Hanford Site is shown in Figure 3.4. The prin-
cipal rocks exposed at the surface of the surrounding ridges are the CRBG and intercalated sedimentary
rocks of the Ellensburg Formation. In the low-lying basins and valleys, these are overlain by younger
sedimentary rocks of the Ringold Formation, Cold Creek unit, and the Pleistocene catastrophic flood
deposits of the Hanford formation.

421 Columbia River Basalt Group and Ellensburg Formation

The Elephant Mountain Member is the uppermost basalt flow beneath the 200 Areas and much of the
Hanford Site. Where folds and faults have formed basalt ridges, other flows from the Saddle Mountains,
Wanapum, and Grande Ronde Formations are exposed.

The Ellensburg Formation is intercalated with and overlies the CRBG in the Pasco Basin and includes
epiclastic and volcaniclastic sedimentary rocks (Waters 1961; Swanson et al. 1979b). At the Hanford
Site, the Ellensburg Formation consists of sediments deposited by the ancestral Clearwater and Columbia
Rivers. Relatively few boreholes in the 200 Areas penetrate the Ellensburg Formation. Those that do
generally find tuffaceous siltstones and sandstones, with conglomerates marking ancient main river
channels. The Ellensburg stratigraphy of the Hanford Site has been discussed in more detail in Fecht
et al. (1987).

4.2.2 Post-Columbia River Basalt Group Sediments

The Hanford Site and tank farms are situated on a sequence of Ringold Formation, Cold Creek unit,
and Hanford formation sediments overlying the CRBG (Figure 3.4). The upper Miocene to middle
Pliocene record of the Columbia River system in the Columbia Basin is represented by the upper
Ellensburg and Ringold Formations. Except for local deposits (e.g., the Cold Creek unit [CCU]), there
is a hiatus (erosion or lack of sedimentation) in the stratigraphic record between the end of the Ringold
Formation deposition (3.4 Ma) and the beginning of Pleistocene (1.6 Ma) time (DOE 1988; DOE-RL
2002).

Pleistocene to Recent sediments overlying the CRBG at the Hanford Site include cataclysmic flood
gravels and slackwater sediments of the Hanford formation; terrace gravels of the Columbia, Snake, and
Yakima Rivers; and eolian deposits.

4.3 Geology of the Central Plateau

Because of the need to understand the geologic controls on movement of contaminants in the vadose
zone and groundwater, the Central Plateau has become one of the best characterized areas on the Hanford
Site. The geology of the Hanford Site has largely been determined using samples from numerous
boreholes. Boreholes used in the following discussion are shown in Figure 4.2.
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Figure 4.2. Borehole Location Map

Figure 4.3, a fence diagram of the Central Plateau area, depicts the geology above the CRBG. By
necessity, Figure 4.3 is highly generalized, depicting the overall consistency of stratigraphy between the
200 East Area and 200 West Area. The major differences are in the thicknesses of the units in response to
the geologic history. For example, the Hanford formation thickens to the east as the Ringold Formation
thins. This variation is a response to the downcutting by the Columbia River after Ringold Formation
time and then further erosion and filling of the erosional channels by Missoula Flood deposits.

43.1 Basalt

The uppermost basalt flow beneath the Central Plateau is the Elephant Mountain Member. The top of
basalt surface dips to the southwest beneath 200 West Area and to the south-southwest beneath 200 East
Area (Figure 4.4). Low-amplitude secondary folds such as the one to the northeast of 200 East Area may
occur throughout the area and have probably not been fully identified. Between 200 East Area and Gable
Gap to the north, the Elephant Mountain has been eroded to expose underlying basalt flows. There is also
a suspected window eroded through the Elephant Mountain near the northeast corner of the 200 East
Area.
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Figure 4.3. Fence Diagram of Sediment Overlying the Columbia River Basalt Group in the Central
Plateau, Hanford Site

Figure 4.4. Structure Contour Map of the Top of Basalt
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4.3.2 Ringold Formation

Although exposures of the Ringold Formation are limited to the White Bluffs on the east side of the
Hanford Site and isolated exposures along the Rattlesnake Hills on the west side as well as the Smyrna
and Taunton Benches within the Othello Basin, extensive data on the Ringold Formation are available
from boreholes at the Hanford Site (e.g., Tallman et al. 1979; DOE 1988). The Ringold Formation at the
Hanford Site is up to 185 m thick in the deepest part of the Cold Creek syncline south of the 200 West
Area and 170 m thick in the western Wahluke syncline near the 100 B Area. The Ringold Formation
pinches out against the Gable Mountain, Yakima Ridge, Saddle Mountains, and Rattlesnake Mountain
anticlines. It is largely absent in the northern and northeastern parts of the 200 East Area.

The Ringold Formation consists of semi-indurated clay, silt, pedogenically altered sediment, fine- to
coarse-grained sand, and granule to cobble gravel. Ringold Formation strata typically are below the water
table on the Hanford Site, and the textural variations influence groundwater flow. The Ringold Formation
historically has been divided into a variety of units, facies types, and cycles (Newcomb 1958; Newcomb
etal. 1972; Tallman et al. 1979; DOE 1988; Lindsey 1995). However, these terminologies have proven
to be of limited use because they are too generalized to account for significant local stratigraphic variation
or they were defined in detail for relatively small areas and do not account for basin-wide stratigraphic
variation (Lindsey 1991, 1995).

Studies of the Ringold Formation in the Pasco Basin indicate it contains significant stratigraphic
variations (Lindsey 1991, 1995) that are best described on the basis of sediment facies. Sediment facies
in the Ringold Formation, defined on the basis of lithology, stratification, and pedogenic alteration,
include the following:

e The fluvial gravel facies consists of clast-supported granule to cobble gravels with a sandy matrix
and intercalated sands and muds. Clast composition is variable but typically includes basalt,
quartzite, porphyritic volcanics, and greenstone. Sands generally are quartzo-feldspathic, with less
than 25% basalt content. Bedforms have low angle to planar stratification, massive bedding, wide
shallow channels, and large-scale cross bedding. The facies was deposited in a gravelly fluvial
braidplain characterized by wide, shallow, shifting channels.

e The fluvial sand facies consists of quartzo-feldspathic, cross-bedded and cross-laminated sands that
are intercalated with lenticular silty sands, clays, and thin gravels. These sands usually contain
<15% basalt lithic fragments, and fining upwards sequences are common. Strata comprising the
association were deposited in wide, shallow channels.

e The overbank facies consists of laminated to massive silt, silty fine-grained sand, and paleosols
containing variable amounts of pedogenic calcium carbonate. Overbank deposits occur as thin
lenticular interbeds in the gravels and sands and as thick laterally continuous sequences. These
sediments record deposition in proximal levee to more distal floodplain conditions.

e The lacustrine facies is characterized by plane-laminated to massive clay with thin silt and silty sand

interbeds displaying some soft-sediment deformation. Deposits coarsen upwards. Strata were
deposited in a lake under standing water to deltaic conditions.
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e The alluvial fan facies is characterized by massive to crudely stratified, weathered to unweathered
basaltic detritus. These deposits generally are found around the periphery of the basin and record
deposition by debris flows in alluvial fan settings and in sidestreams draining into the Pasco Basin.

In the Pasco Basin, the lower half of the Ringold Formation, the member of Wooded Island, is the
main unconfined aquifer under the Hanford Site and contains five separate stratigraphic intervals domi-
nated by the fluvial gravels facies. These gravels, designated units A, B, C, D, and E (Figure 3.4, are
separated by intervals containing deposits typical of the overbank and lacustrine facies (Lindsey 1991).
In the 200 Areas, only fluvial gravel units A and E occur. Between these two gravel units in many places
is the lowermost of the fine-grained sequences, designated the lower mud sequence. Fluvial gravel units
A and E correspond to the lower basal and middle Ringold Formation units, respectively, as defined by
DOE (1988). Gravel units B, C, and D do not correlate to any previously defined units (Lindsey 1991,
1995) and do not occur beneath the tank farms. The lower mud sequence corresponds to the upper basal
unit and lower unit as defined by DOE (1988).

The following discussion of the geology of the Central Plateau is based on interpretations of new and
old wells for this report (Table 4.1) as well as geologic picks from Williams et al. (2000, 2002) and
Thorne et al. (1993). Well locations are shown in Figure 4.2. Specific lithologic descriptions and unit
distributions are discussed in more detail in Chapter 5 for each tank farm.

Ringold unit A occurs throughout much of the Central Plateau and ranges from 0 to more than 30 m
(0 to 100 ft) thick (Figure 4.5). This unit is thickest to the north and south of the 200 West Area. As can
be seen in Figure 4.6, beneath 200 West Area the top of this gravel unit dips to the southwest into the
Cold Creek Depression, while beneath the 200 East Area the unit dips to the south into the Cold Creek
syncline except in the northern part where it has been eroded. The dip of this unit into the syncline
indicates continued structural deformation during and after deposition of the sediments. Generally, unit A
is a conglomerate with clasts of basalt and other lithologies in a silty sand matrix intercalated with beds of
sand and silt. The sediments may be strongly cemented with silica or calcite in places.

The Ringold Formation lower mud unit has apparently had a more complex history than Unit A in the
200 Areas. As can be seen in Figure 4.7, the lower mud has been eroded from beneath most of the
200 East Area. There is also a poorly defined channel cut through the lower mud unit in the northeastern
corner of the 200 West Area. Near 200 East Area, the top of the mud dips to the southeast into the Cold
Creek syncline, indicating continuing structural deformation after deposition. In the 200 West Area, the
surface of the lower mud unit reflects erosion more than structural deformation, with elevations
decreasing in the southern and western parts of 200 West Area and then increasing above the Cold Creek
Depression. The lower mud unit ranges in thickness from 0 to 30 m (0 to 103 ft). Thickness of the lower
mud increases in the Cold Creek Depression (Figure 4.8), suggesting deformation during deposition of
the fine-grained sediments. The lower mud is thickest beneath the 200 East Area and decrease to the
south. Figure 4.8 shows a broad zone of decreased thickness bounded by the 50-ft contours that run
southeast from the 200 West Area and may trace an old river channel from early in Ringold Formation
unit E time. This unit consists primarily of lacustrine silt and clay, with at least one well-developed
paleosol noted in the 200 West Area. It is an aquitard, separating the suprabasalt confined aquifer in unit
A from the unconfined aquifer in unit E.
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Figure 4.5. Isopach Map of Ringold Unit A

Figure 4.6. Structure Contour Map of Ringold Unit A
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Figure 4.7. Structure Contour Map of Ringold Lower Mud Unit

Figure 4.8. Isopach Map of Ringold Lower Mud Unit
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Unit E of the member of Wooded Island is by far the thickest of the Ringold Formation units present
in the Central Plateau. It consists of well-rounded gravel in a sand and silt matrix deposited by major
rivers. Gravel lithologies are varied with sources outside the Columbia Basin. Cementation varies from
well- to poorly indurated. Unit E ranges from 0 to more than 90 m (0 to 300 ft) in thickness (Figure 4.9).
This variation in thickness is due in part to continued subsidence of the Cold Creek syncline and in part to
erosion during the Cold Creek unit and Hanford formation times. Increasing thicknesses to the west of
200 West Area and to the south of 200 East Area are a combination of both processes. Main channels
during both Cold Creek and Hanford floods went through Gable Gap and across the northeastern part of
200 East Area, removing unit E from most of that area and leaving a complicated surface in the 200 East
Avrea (Figure 4.10).

In the Pasco Basin, the upper part of the Ringold Formation includes members of Taylor Flat and
Savage Island (Lindsey 1995). The member of Taylor Flat consists of a sequence of fluvial sands and
overbank deposits while the member of Savage Island consists of lacustrine sediments. The member of
Savage Island is found only along the White Bluffs in the eastern Pasco Basin and corresponds to the
upper Ringold Formation unit as originally defined by Newcomb (1958). In the 200 West Area, erosional
remnants of the member of Taylor Flat consists of fine-grained fluvial sand and overbank facies with
localized stringers of calcium carbonate. Member of Taylor Flat sediments are found beneath parts of the
T, TX, and TY tank farms and in the vicinity of the U tank farm and are discussed in more detail in
Chapter 5.

4.3.3 Pliocene to Pleistocene Transition

Two main alluvial units of the Pliocene to Pleistocene transition are recognized at the Hanford Site—
the CCU and the pre-Missoula gravels. Recently, the pre-Missoula gravels were tentatively incorporated
into the CCU (DOE-RL 2002); both units are discussed together here.

The laterally discontinuous CCU overlies the tilted and truncated Ringold Formation in an uncon-
formable relationship in the western Cold Creek syncline in the vicinity of 200 West Area (DOE-RL
2002). To the east, the pre-Missoula gravels replace the calcrete and silt-dominated subunits of the CCU.
The CCU appears to be correlative to other sidestream alluvial, eolian, and pedogenic deposits found near
the base of the ridges bounding the Pasco Basin on the north, west, and south. These sedimentary
deposits are inferred to have a late Pliocene to early Pleistocene age on the basis of stratigraphic position
and magnetic polarity of interfingering loess units (DOE 1988). Figure 4.11 shows a structure contour
map of the Cold Creek unit surface. Because of the difficulty in distinguishing the pre-Missoula gravels
from the underlying Ringold and overlying Hanford formation sediments, the structure contour of the
CCU does not extend into the 200 East Area. At a coarse scale, the surfaces of the Ringold Formation
and the CCU in the 200 West Area (Figures 4.10 and 4.11) dip to the south. This surface also dips to the
east between the 200 West and 200 East Areas. Local trends of the CCU are discussed in more detail for
each of the tank farms in Section 5.

The CCU is important because its fine-grained sediments and/or its carbonate-rich paleosols can have
a significant impact on contaminant movement in the vadose zone. Perched water zones above the CCU
have been encountered in several wells in 200 West Area.
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Figure 4.9. Isopach Map of Ringold Unit E

Figure 4.10. Structure Contour Map of Ringold Unit E
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Figure 4.11. Structure Contour Map of Cold Creek Unit
43.3.1 Pre-Missoula Gravels — Central Pasco Basin

The Pre-Missoula gravels disconformably overlie the Ringold Formation in much of the central basin
and may extend into areas in or near the 200 East Area. The nature of the contact between the pre-
Missoula gravels and the overlying Hanford formation is not clear. In addition, it is unclear whether the
pre-Missoula gravels overlie or interfinger with the CCU. In this report, we include the Pre-Missoula
gravels in the Cold Creek unit because they overlie the Ringold Formation and underlie the Hanford
formation, and thus are age-equivalent to the CCU. The gravel lying on basalt beneath much of the
northern half of the 200 East Area has been variously interpreted as Ringold Formation unit A, as gravels
deposited during Cold Creek time, or as part of the cataclysmic Hanford flood deposits that include some
reworked Ringold. The difficulty in distinguishing between these units is reflected in the cross sections
for the 200 East SST tank farms presented in Chapter 5.

43.3.2 Lower Cold Creek Unit Calcrete and Side-Stream Alluvium — 200 West Area

The lower Cold Creek unit (CCU,) in the 200 West Area is a highly weathered paleosurface that
developed unconformably on top of the Ringold Formation and side-stream alluvium. Other names used
to describe this facies have included “caliche” (Brown 1959) and “calcrete” (DOE 1988). The CCU,
consist of basaltic to quartzitic gravels, sands, silt, and clay that are cemented with one or more layers of
secondary, pedogenic calcium carbonate. Root traces and animal borrows, as well as other relict soil
structures, point to a pedogenic origin for the calcium carbonate, although Slate (1996, 2000) also
suggests the calcium carbonate could be associated with paleo groundwater levels. The concentration of
calcium carbonate within the CCU, is generally 20 to 30 wt% but can range from 5 to 70 wt%.

4.14



Considerable variability is found within the CCU, because of natural heterogeneity inherent in soils
and soil-forming processes, which vary under different physical, chemical, and biological conditions (e.qg.,
moisture, grain size, aspect, mineralogy, bioturbation, microbial activity). An additional complicating
factor is that the land surface during late Pliocene time was locally undergoing changes via fluvial and
eolian activity, which resulted in variable rates of aggradation, degradation, and soil development (DOE
1988; Slate 1996, 2000; Wood et al. 2001). The calcium carbonate overprint is superimposed onto a
variety of rock types, including silt, quartz-feldpsar-rich sand and gravel, and locally derived basaltic sand
and gravel (Slate 1996, 2000; Lindsey et al. 2000).

Fluvial activity included local streams with sources in the nearby basalt ridges which continued to
flow through the Cold Creek syncline and 200 West Area. These local side-streams to the Columbia
River deposited basaltic gravels across their channels. Most of these side-stream deposits have been
found in the ancestral Cold Creek drainage that ran more or less down the Cold Creek syncline (DOE
1988).

Recent review of old and new boreholes through the central portion of 200 West Area have identified
gravels up to 26 m (85 ft) thick in a channel cut into Ringold unit E (Table 4.1, Post-Ringold basalt-rich
gravels). Basalt content increases abruptly from 20-30% in Ringold Formation gravels to about 50% in
the basalt-rich gravels and generally continues to increase toward the top of the unit. In wells 299-W11-
25B, 299-W11-39, 299-W14-14, and 699-48-77B, the basalt-rich gravel has been interpreted as lying
within or below member of Taylor Flat sediments while in other boreholes it underlies the CCU; paleosol.
The high basalt content is not typical of the Ringold Formation across the Hanford Site. Information is
insufficient to determine what this basalt facies represents other than it is probably a sediment of the Cold
Creek unit. Because the identification of this unit is based on sparse data, this unit is undifferentiated
from Unit E on all maps and figures in this report except Figure 4.3. It is interesting to note that the
surface of the undifferentiated sediments forms a fairly smooth consistent contour map, as if both units
were later eroded prior to CCU deposition. The contacts for the wells where the Post-Ringold basalt-rich
gravels have been identified and shown in Figure 4.3 are given in Table 4.1. More work is needed to
determine whether this unit is part of the CCU or Ringold Unit E.

The upper boundary of the CCU, is usually sharp and distinct in contrast to the lower boundary,
which is commonly gradational and overprinted onto the underlying Ringold Formation within the west-
central Pasco Basin. The top of the CCU; is well defined by 1) a contrast in color, 2) an increase in
calcium carbonate content and decrease in mud content and sorting, and 3) a sudden drop in total gamma
activity (i.e., potassium-40) on borehole geophysical logs (Bjornstad 1990; DOE-GJO 1997). In this data
package, the top of the CCU; is defined as the top of the first pedogenically altered, carbonate-rich,
cemented zone accompanied by a sudden drop in natural gamma activity.

The CCU, subunit plays a major role in movement of water through the vadose zone in the 200 West
Area. The calcrete forms an impermeable barrier in places, causing lateral movement of water from
liquid waste disposal sites.

4.3.3.3 Upper Cold Creek Unit Silt-Dominated — 200 West Area

A distinctive silt-rich interval, referred to as the silt-dominated facies of the CCU (DOE-RL 2002)
and as Hanford formation/Cold Creek unit (Hf/CCU) deposits, overlies the CCU calcrete facies over most
of the 200 West Area (Brown 1960; Tallman et al. 1979; DOE 1988). Recent investigators have included
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the “early Palouse soil” (Hanford formation/Plio-Pleistocene deposits) as a subunit of the CCU (Lindsey
et al. 1994). Unlike the lower boundary of these strata, which is easily differentiated from the underlying
Cold Creek calcrete, the upper contact with the overlying Hanford formation can be difficult to identify in
well cuttings. The age of the silt-dominated deposits is bracketed by the Pliocene CCU calcrete (3.4 Ma)
and the well-established overlying Missoula flood deposits of the Hanford formation (Pleistocene Epoch).
This report will refer to these silt-dominated sediments as the CCU silt-dominated facies (upper Cold
Creek unit [Cold Creek fine-grained unit] [CCU, ]). Because the upper portion of these deposits may
appear similar to or grade upward into the Hanford formation, this interval is referred to in places as
undifferentiated Hf/CCU deposits.

Historically, these silt-dominated deposits have been described as a massive, unconsolidated,
micaceous, brown to yellow, loess-like silt and minor fine-grained sand (Price and Fecht 1976g; Price and
Fecht 1976h; Price and Fecht 1976i; Tallman et al. 1981; DOE 1988; Last et al. 1989; DOE-RL 1993).
Brown (1959) originally reported this well-sorted, buff-colored, eolian unit to be up to 21 m (70 ft) thick
in the southern portion of the 200 West Area.

More recent investigations have shown that the silt-dominated deposits may contain facies other than
eolian silt and fine sand (Lindsey et al. 1994, 2000; Slate 1996). For example, at WMA S-SX, these
deposits are composed of mostly intercalated layers of fine sand and silt, more characteristic of alluvial
deposits (Lindsey et al. 2000). It appears then that this interval may consist of a mixture of fine-grained
deposits under both eolian and alluvial conditions. Regardless of its exact stratigraphic relationship and
origin, the silt-dominated sediments are a distinctive lithostratigraphic unit that significantly influences
the moisture and contaminant distribution within the vadose zone.

The silt-dominated deposits can be correlated across most of the 200 West Area using fine-grained
texture and high natural gamma activity on geophysical logs (DOE 1988; Last et al. 1989). These
deposits generally are absent away from the 200 West Area. The top of the silt-dominated interval is
identified based on an increase in background gamma activity on geophysical logs (DOE-GJO 1997) and
an increase in mud content (up to 75 wt%). Calcium carbonate content often is a few weight percent
more than the overlying fine-grained Hanford formation (referred to as the H2 unit by Lindsey [2001a]),
and usually is significantly less than that for the underlying pedogenic calcrete facies of the Plio-
Pleistocene unit. The basal contact is distinct, indicated by a sharp drop in total gamma activity below
and percentage of mud content. Also, compared to the pedogenically altered and cemented Cold Creek
unit calcrete, the silt-dominated deposits are relatively loose and friable. Whereas the Hanford formation/
Plio-Pleistocene interval often contains moderate to high concentrations of calcium carbonate, it appears
to be evenly disseminated and therefore probably is of detrital origin (Wood et al. 2001).

4334 Cold Creek Unit — 200 East Area

The CCU as described above is largely absent from the 200 East Area. The exact origin of the
sedimentary deposits overlying the CRBG and underlying the Hanford formation is uncertain and still
open to interpretation. These deposits beneath the Hanford formation have been called the Hf/CCU
(undifferentiated Hanford/Cold Creek) (Wood et al. 2000) and undifferentiated Hanford formation/Cold
Creek unit/Ringold Formation unit (Hf/CCU/RF) (Lindsey et al. 2001b). In this data package, they are
placed in the CCU or lower Hanford gravel/CCU undifferentiated because they represent sediments
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deposited between the late Pliocene and early Pleistocene. This is the age range of the CCU in the
200 West Area. By assigning these deposits to this unit, only the age is implied, not the origin of the
deposits.

Wood et al. (2000) recognized two facies of the Hf/CCU beneath the 200 East Area tank farms: a
fine-grained eolian/overbank silt (silt facies Cold Creek unit), up to 10 m thick, and a sandy gravel to
gravelly sand facies Cold Creek unit. The thick, silt-rich interval is believed to be a pre-Pleistocene flood
fluvial deposit because silty layers associated with Ice Age flood deposits of the Hanford formation in this
area are generally much thinner (i.e., a few centimeters or less) (Wood et al. 2000). Where the silt unit is
absent, the gravel sequence below the silt unit is indistinguishable from similar-appearing facies of the
overlying Hanford formation (Wood et al. 2000). If the thick silt layer predates the Hanford formation,
however, then the underlying gravels also must predate the Hanford formation. Thus, the gravel sequence
beneath the silt layer must belong to either a mainstream alluvial facies of the ancestral Columbia River
(pre-Missoula gravels) or the Ringold Formation.

4.3.4 Quaternary Stratigraphy of the Pasco Basin

Quaternary sediments, as much as 100 m thick within the Pasco Basin, overlie the Ringold Formation
and/or CCU at the tank farms. The most extensive of these is the Pleistocene-aged Hanford formation
(Figure 3.4), but the sediments also include eolian deposits and recent alluvium.

434.1 Eolian Deposits

Loess deposits at the Hanford Site contain a detailed Quaternary record; five units are represented
within the Pasco Basin (Reidel et al. 1992). These units are informally referred to as L1 through L5 and
differentiated on the basis of 1) position relative to other stratigraphic units, 2) color, 3) soil development,
and 4) paleomagnetic polarity. They are discussed in more detail in Section 6.

4342 Hanford Formation

The Hanford formation is the main stratigraphic unit at the surface of the tank farms. The Hanford
formation consists of pebble to boulder gravel, fine- to coarse-grained sand, and silt. These deposits are
divided into three facies: 1) gravel-dominated, 2) sand-dominated, and 3) sand- and silt-dominated.
These facies are referred to as coarse-grained deposits, plane-laminated sand facies, and rhythmite facies,
respectively, in DOE (1988). The rhythmites also are referred to as the Touchet Beds. The Hanford
formation is thickest beneath the Cold Creek bar, particularly in the vicinity of the 200 East Area, where it
is over 100 m thick (Figure 4.12).

The gravel-dominated facies association generally consists of coarse-grained basaltic sand and
granule to boulder gravel. These deposits display massive bedding, plane to low-angle bedding, and
large-scale planar cross-bedding in outcrop. The gravel facies dominates the Hanford formation in the
100 Areas north of Gable Mountain, the northern part of the 200 East and West Areas, and the eastern
part of the Hanford Site including the 300 Area. The gravel-dominated facies was deposited by high-
energy flood waters in or immediately adjacent to the main cataclysmic flood channelways.

The sand-dominated facies association consists of fine- to coarse-grained sand and granule gravel
displaying plane lamination and bedding and, less commonly, plane bedding and channel-fill sequences in
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Figure 4.12. Isopach Map of Hanford Formation

outcrop. These sands may contain small pebbles and rip up clasts in addition to pebble-gravel interbeds
and silty interbeds less than 1 m thick. The silt content of these sands is variable. These sands typically
are basaltic, commonly being referred to as black, gray, or salt-and-pepper sands. This facies is most
common in the central Cold Creek Syncline, in the central to southern parts of the 200 East and 200 West
Areas. The laminated sand facies was deposited adjacent to main flood channelways during the waning
stages of flooding. The facies is transitional between the gravel-dominated facies and the rhythmite
facies.

The interbedded sand- and silt-dominated facies association consists of thinly bedded, plane-
laminated and ripple cross-laminated silt and fine- to coarse-grained sand that commonly display
normally graded rhythmites a few centimeters to several tens of centimeters thick (Myers et al. 1979;
DOE 1988; DOE-RL 2002). This facies is found throughout the central, southern, and western Cold
Creek syncline within and south of the 200 East and 200 West Areas. These sediments were deposited
under slackwater conditions and in back-flooded areas (DOE 1988).

Cataclysmic floods inundated the Pasco Basin several times during the Pleistocene when ice dams
failed in northern Washington and Idaho. Net erosion by these floods was minimal and probably
associated with only the earliest floods; later floods only partially incised into older flood deposits before
backfilling. The Hanford formation usually is divided into units based on facies association (e.g., H1, H2,
and H3 of Lindsey [1995]). However, it is difficult to correlate between these units for any distance
because no characteristics have been identified that can be used to distinguish layers if the facies are the
same. Because of the difficulty in correlating a specific layer in the Hanford formation across a larger
area, the discussion in this section does not distinguish units within the Hanford formation.
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Recent work on subdividing the Missoula flood deposits at the Hanford Site has shown that
paleomagnetic polarity is a useful technique (Pluhar 2003; Pluhar et al. 2006). In a detailed study at the
200 East Area, four magnetic polarity reversals were recognized (Figure 4.13). These reversals were
equated to the Brunhes normal subchron (present to 780,000 years BP) and the Matuyama reversal
subchron (780,000 to 1.76 Ma). The Matuyama reversal has a normal excursion at 1 Ma, which Pluhar
attributed to the normally magnetized sediments between the upper and lower reversal. The age of the
lowest reversal is constrained by the lower limit of 1.76 Ma of the Matuyama subchron.
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Figure 4.13. Stratigraphic Correlations in the 200 East Area Based on Stratigraphy and Magnetic
Polarity (Pluhar et al. 2006)
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In the 200 West Area, mainly normally polarized sediments were found with two possible reversed
horizons. Pluhar et al. (2006) interpreted the Hanford formation at the 200 West Area as being deposited
during the Brunhes normal subchron (present to 780,000 years BP) and the two possible reversals as short
magnetic excursions during the Brunhes subchron.

The results of the Pluhar et al. (2006) study suggest that the Hanford formation sediments at the
200 East Area are older than those in the 200 West Area. This further implies that the Hanford
subdivisions—upper coarse-dominated (H1), sand-dominated (H2), and lower coarse-dominated (H3)
(Lindsey 1995)—are not the same flooding event in both areas and, thus, cannot be correlated across the
Cold Creek bar.

435 Clastic Dikes

Clastic dikes are vertical to subvertical sedimentary structures that crosscut normal sedimentary
layering and could locally affect the vertical and horizontal movement of water and contaminants. Clastic
dikes are a common geologic feature of Pleistocene flood deposits of the Hanford formation, although
they also have been found in the underlying Ringold Formation and in CRBG and intercalated sedi-
mentary interbeds. Clastic dikes on the Hanford Site have been described in detail in Fecht et al. (1999).

Clastic dikes typically occur in swarms and occur as regularly shaped polygonal patterns, irregularly
shaped polygonal patterns, pre-existing fissure fillings, and random occurrences. Regular polygonal
networks resemble four- to eight-sided polygons. Dikes in irregularly shaped polygon networks generally
are crosscutting in both plane and cross section, resulting in extensive segmentation of the dikes. Clastic
dikes often occur in zones of pre-existing weakness.

Clastic dikes typically show a wide range in width, depth, and length. They are especially notable
within the sand- and silt-dominated facies of the Hanford formation. The vertical extent of clastic dikes
has been observed to range from 30 cm to greater than 55 m (~1 to 180 ft), while width ranges from about
1 mm to greater than 2 m (0.04 in. to more than 6.6 ft).

In general, a clastic dike is composed of an outer skin of clay with coarser infilling material. Clay
linings are commonly 0.03 mm to 1.0 mm (0.012 in. to 0.039 in.) thick, but linings up to about 10 mm are
known. The clay skins may have a great influence on transport both within and adjacent to the clastic
dikes. The width of individual infilling layers ranges from as little as 0.01 mm (0.0039 in.) to more than
30 cm (11.8 in.), and their length can vary from about 0.2 m (0.66 ft) to more than 20 m (65.6 ft).

Infilling sediments are typically poorly to well-sorted sand but may contain clay, silt, and gravel.

Clastic dikes have been reported at several of the SST waste management areas (WMAS). Price and
Fecht (1976g, 1976h) stated that clastic dikes were detected in the S and SX tank farms but could not be
mapped. Clastic dikes (and/or polygonally patterned ground often associated with clastic dikes) have also
been observed at a number of locations surrounding the 200 West Area SST farms, including the SY tank
farm to the north, the Environmental Restoration and Disposal Facility to the east, and throughout Cold
Creek Valley to the south and west (including the former 216-S-16 pond). Tallman et al. (1979) indicated
that identification of clastic dikes in the 200 West Area also was based on examination of cable-tool
drilling samples. Horton and Johnson (2000) reported that possible clastic dikes had been encountered by
at least two Resource Conservation and Recovery Act of 1976 (RCRA) groundwater monitoring wells
south of the SX tank farm (i.e., 299-W22-48 and 299-W22-50). Lindsey et al. (2000) also noted a few
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structures suggestive of clay skins on clastic dikes in splitspoon samples from well 299-W22-50. Clastic
dikes have been found also in the 200 East Area at the Integrated Disposal Facility and the Waste
Treatment and Immobilization Plant.

Some clastic dikes were noted during excavation of the T, TX, and TY tank farms (Price and Fecht
1976i, 1976j, 1976k), and clastic dikes were previously reported for two boreholes (299-W15-134 and
299-W15-180) within the TX tank farm (Wood et al. 2001). Borehole C3381 intersected a dike in the
Hanford formation H2 unit; borehole 299-W10-27 appears to have intersected two dikes, one in the
Hanford formation H2 unit and another in the Ry.

Clastic dikes are present in all SST WMAs but actual locations were not mapped when the tank farms
were constructed. To estimate the potential intersections, Johnson et al. (1999) created a plausible
hypothetical network of clastic dikes for the S and SX tank farms (Figure 4.14) based on polygonally
patterned ground mapped between Army Loop Road and State Highway 240 and scaled based on the best
cell size estimate from Fecht et al. (1999).

Figure 4.14. Hypothetical Projection of Clastic Dikes into the S and SX Tank Farms. These are not
actual dikes but an example of how they might occur.
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4.3.6 Volcanic Ash Deposits

Volcanism in the Cascade Range has been active throughout the Pleistocene Epoch (approximately
2 million years before present [BP] to 10,000 years BP), and throughout the Holocene Epoch
(10,000 years BP to present). The eruption history of the Holocene best characterizes the most likely
types of activity in the next 100 years. Many volcanoes have been active in the last 10,000 years,
including Mount Mazama (Crater Lake) and Mount Hood in Oregon, and Mount St. Helens, Mount
Adams, Mount Baker, and Mount Rainier in Washington. The Quaternary sediments recorded these
eruptions in the form of ash deposits that are interlayered with the sediments.

4.3.7 Surface Soil

Hajek (1966) lists and describes 15 different soil types on the Hanford Site, varying from sand to silty
and sandy loam. The 200 East Area consists of the Burbank Loamy Sand, the Ephrata Sandy Loam, and
the Rupert Sand. The Rupert Sand has now been reclassified as the Quincy Sand (Neitzel et al. 1996).
The 200 West Area consists of the Quincy Sand and the Burbank Loamy Sand. The SST WMAs in the
200 East Area are developed in the Burbank Loamy Sand and the Ephrata Sandy Loam. The SST WMAs
in the 200 West Area are developed mainly in the Quincy Sand.

The Burbank Loamy Sand is dark-colored, coarse-textured soil underlain by gravel. The surface soil
is usually about 40 cm (16 in.) thick but can be 76 cm (30 in.) thick. The gravel content of the subsoil
ranges from 20 to 80%. The surface of the Ephrata Sandy Loam is dark—colored, and the subsoil is dark
grayish-brown, medium-textured soil underlain by gravelly material, which may continue for many feet.
The Quincy Sand (formerly Rupert Sand) is brown to grayish-brown coarse sand grading to dark grayish-
brown at about 90 cm (35 in.). Quincy Sand developed under grass, sagebrush, and hopsage in coarse
sandy alluvial deposits that were mantled by windblown sand.

Soil horizons have been disturbed or removed over much of the surface within the 200 East and West
Area boundaries. It can still be found in undisturbed areas within and between these areas.
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5.0 Geology of the Single-Shell Tank Farms

SST farms S, SX, T, TX, TY, and U are located in the 200 West Area; SST farms A, AX, B, BX, BY,
and C are located in the 200 East Area (Figure 5.1). This chapter describes the geology of those tank farms.

Figure 5.1. Activities in the 200 Areas

5.1 Source of Data

Data used in this compilation were obtained from published reports, unpublished data on surface
geologic studies, and from borehole data. Some figures are directly from various published reports,
leading to a mixture of English and metric units. Where possible, both units are shown, but this was not
possible in all cases.

The surface geology and geomorphology of the Hanford Site has been mapped and published in
(Reidel and Fecht 1994a, 1994b). The principal geologic units exposed at the surface are fluvial and
eolian sands and backfill (Reidel and Fecht 1994a, 1994b).

Subsurface information comes from borehole data consisting of drilling logs, archived samples, and
geophysical logs. These are the principal data sets used to interpret the subsurface at the SST farms. In
addition, numerous reports describing the geology of the area and vicinity are available and are a valuable
source of information (e.g., Tallman et al. 1979; DOE 1988; Connelly et al. 1992a; Williams et al. 2000,
2002). Older geophysical logs include some logs from surrounding waste disposal sites obtained prior to
discharge of effluent and provide an additional source of information for stratigraphic correlations.

Particle size distribution and calcium carbonate content information are available for some boreholes
from the ROCSAN database and studies on the Integrated Disposal Facility well samples. The ROCSAN
database, created by Rockwell Hanford Operations, contains particle size distribution data. New data are
no longer added but the database is available through the Virtual Library maintained by Fluor Hanford.
ROCSAN data were considered only for those samples collected by drive barrel because hard-tool drilling
pulverizes the sediments so that results are not representative of actual particle size distribution. Other
methods of drilling were rarely used during the period ROCSAN was being updated.
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Calcium carbonate and moisture contents are available for some boreholes. Available data are in the
borehole packages on file at PNNL and in various reports. The data were obtained from discrete samples
collected by the borehole geologist during drilling. The moisture data were used to supplement the
geologist’s log and the gross gamma-ray log in determining lithologic variations. For obvious reasons,
moisture data are valuable for only those samples collected above the water table.

Gross gamma-ray logs and neutron moisture logs exist for many of the boreholes used for Chapter 3
of the SST performance assessment (DOE-ORP 2006). These logs were used in the interpretation of the
geology at the SST farms.

Finally, drill cuttings are available from most of the boreholes used for the ROCSAN database and
the information in Chapter 3 of the SST performance assessment (DOE-ORP 2006). The same precau-
tions pertaining to the ROCSAN data pertain to the physical samples. That is, drill cuttings obtained from
hard tool drilling methods will yield an unrepresentative particle size distribution; lithologies, however,
remain unchanged. All available physical samples are on file in the Hanford Geotechnical Sample
Library currently under custody of Fluor Hanford.

5.2 Uncertainty in Stratigraphic Interpretations

The principal source of uncertainty for the lateral continuity of the layers and thickness of the beds is
borehole data. Surface mapping is well controlled at the Hanford Site and has been done by geologists
with extensive mapping experience at the Hanford Site and in the Columbia Basin. The quality of
subsurface data is related to the drilling technique, the logging of the borehole, and the sample collection.
Subtle differences between some stratigraphic units such as silty sandy layers of the Hanford formation
and units of the underlying Ringold Formation (e.g., upper Ringold and intercalated silty units) make
identification of the contact difficult. The quality of the drillers’ and geologists’ logs, archived samples,
and use of geophysical logs becomes crucial to reducing this type of uncertainty.

In addition to the uncertainty in borehole data, there is uncertainty in the geometric shape of the
sediment body. Because of the nature of the cataclysmic flooding that produced the Hanford formation,
very few analogs are available for comparison to the Hanford Site. Borrow pits in the Pasco Basin and
excavations at the Hanford Site provide a glimpse into the geometric shape of a sediment body, but often
the nature of the sediment body must be interpreted from boreholes.

521 Uncertainty Due to Drilling Techniques and Logging

Most boreholes at the Hanford Site have been drilled using cable-tool techniques and, less often, air
rotary techniques. Newer boreholes now are drilled using the Becker-Hammer technique that allows
high-quality core samples to be recovered. The principal source of uncertainty here is in the depth and
thickness of the sedimentary beds due to straightness of the boreholes, which have not been surveyed for
straightness. However, this is deemed to be minor because most boreholes have been shown to have only
minor deviations when the groundwater pumps and risers were installed.

Cable-tool drilling has been the standard technique from earliest drilling at the Hanford Site because
drive-barrel drilling can be done without adding water and cuttings are easy to contain. The borehole
advances by use of drive barrel or hard tool and driven temporary casing. Hard-tool drilling routinely
requires added water in the vadose zone. The technigue generally provides acceptable sample control and
has proven successful. More recently, in uncontaminated areas, air rotary has been the preferred technique.
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There are several disadvantages to cable-tool drilling:
e Samples can be difficult to retain in the drive barrel, especially samples from very dry zones.
e Gravels are not easily retrieved because they are not easily retained in the drive barrel.

e Cemented units or large gravels must be drilled with a “hard tool,” which breaks up the sample and
alters the grain-size distribution of samples.

e Water added during hard-tool use in a cable tool invalidates moisture logs.
The disadvantages to air rotary drilling are as follows:
e Samples can be difficult to retrieve. The quantity of sample is often related to the air pressure used.

e Low pressures in the air line can result in excessive grinding of particles by bits; thus, the sample
may not be representative of the sediment body.

Most boreholes prior to the 1980s were drilled without a well-site geologist present to log the
samples. Thus, the only records of early drilling are drillers’ logs that vary in the quality of the sample
description. Drillers’ logs are extremely inconsistent because a driller’s attention is focused on operating
the rig and not on describing the samples. The quality of the geologists’ logs also varies from borehole to
borehole. For example, a geologist new to the site will recognize the major sediment changes in drill
cuttings but may not recognize the subtler changes that also represent changes in stratigraphy.

Many boreholes at the Hanford Site were completed without the benefit of being geophysically
logged. Geophysical logging can be an important tool for determining the depth of lithologic changes.
Geophysical logs show subtle lithology differences stemming from differing amounts of natural
gamma-ray emitters (most commonly potassium-40). Gamma-ray response typically is proportional to
clay and silt abundance and can provide information on changes in grain size. When geophysical logs are
used along with the well-site geologists’ logs and archived samples, the uncertainty in the depth of
lithologic changes is reduced.

522 Uncertainty Due to Borehole Coverage

Borehole coverage is usually dictated by factors other than addressing a geologic problem. There-
fore, the coverage of boreholes is generally inadequate to address many geologic problems. For the
Hanford Site 200 Areas, borehole coverage is good because characterization studies for various projects
were conducted and because of the installation of groundwater wells.

523 Uncertainty Due to Sampling

Sample retrieval is often difficult, and sample quantities are limited. Vadose zone drilling is difficult
for sample recovery because the samples are typically dry and not easily retained in the drive barrel. As
indicated above, the grain size of the sample can also be affected by the drilling technique, such as in hard
tool drilling that generates an increase in the fine-grained portion of the sediment samples.
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To perform certain tests, samples from several depths often must be composited. Also, certain tests
performed on samples in the past may have destroyed the integrity of the sample. In the past, particle size
testing resulted in loss of fines when the samples were returned to the Hanford Geotechnical Sample Library.

5.3 Geology of the 200 West Area Single-Shell Tank Farms

Information presented below is primarily from a series of reports by Hanford contractors in the late
1990s and early 21st century on the subsurface conditions of each of the single-shell tank farms.

531 Geology of Waste Management Area S-SX

Geologic characteristics of WMA S-SX (Figure 5.2) have been extensively studied. Price and Fecht
(19764, 1976h) presented an initial detailed interpretation of the geology. DOE-GJO (1996) presented an
interpretation of the geology that was based primarily on geophysically logged groundwater monitoring
wells constructed around the perimeter of the tank farm in the early 1990s. In Johnson and Chou (1998),
the geologic interpretation was refined and updated. Johnson et al. (1999) further described the geology
and other subsurface contaminants. Lindsey et al. (2000) provided additional interpretations on the
geology. Most recently, Sobczyk (2000) presented a reinterpretation of the geology based on gross
gamma-ray logs of 98 boreholes within the SX tank farm and the most recently published geology reports
of the area by Johnson et al. (1999) and Lindsey et al. (2000). Detailed geologic and geochemical
characterization of two boreholes is given in Serne et al. (2002a, 2002b). As noted in Section 4, the
natural vertical and horizontal variations in fluvial sediments limit the distinctive characteristics that can
be used to identify different geologic layers. Consequently, authors may interpret the geology and select
contacts at differing depths for the same geologic layer. The main source of geologic information for the
S and SX tank farms is borehole information. The key boreholes used for the compilation of geologic
data on the S and SX tank farms are given in Table 5.1.

The S and SX tank farms were constructed in the upper Hanford formation sediments underlying the
200 West Area, along the north limb of the Cold Creek syncline (Figure 4.4). Stratigraphic units in the
vadose zone underlying or adjacent to these tank farms include CRBG, the Miocene- to Pliocene-age
Ringold Formation, the CCU, the Hanford formation, and backfill materials (Figure 5.3 and Table 5.2).
More detailed cross sections of the geology of WMA S-SX are shown in Figures 5.4 through 5.9.

All but the surface of the Hanford formation have a general tendency to dip west to southwest toward
the axis of the Cold Creek syncline (Figure 5.10). The water table lies in the Ringold Formation, and the
unconfined aquifer is located entirely in the Ringold Formation.

53.1.1 Columbia River Basalt Group

The Elephant Mountain Member of the CRBG lies at an elevation of approximately 26 m (85 ft)
above mean sea level beneath the S and SX tank farms (a depth of approximately 175 m [575 ft]) and dips
gently to the southwest toward the axis of the Cold Creek syncline (Figure 4.4) (Price and Fecht 1976g,
1976h; DOE-RL 1993; Johnson et al. 1999). It forms the base of the suprabasalt confined aquifer
contained in Ringold formation unit A.

5.4



WMAU

O

WHB-311(-

W18-40(-)

W18-26)

Tank Farm',

W1B-33 @

. _216-U1.2
Cribs

2|

_,
T

U

216-8-23 Crib -X.ww-s

!
WMA SY
- Tank Farm
(wW22-84
WMAS-SX ||/~ ~
Tank Farms /-~ Q’;g‘j{' 2 O 216-89 Crib
i i’;(: j'&f) . 2 z -
| Q? % 2 2 (yw22-48
:_sza-i;l E . «G E :
,/ F :
=, - N owazet -
E— B 2\l
| - == X .
N :i O.‘L"":z 2 :____' Wazas H1eve -
216-5-25 crib 70 |- “Jllowz265,>) 216-5-1,2 Cribs
LB gg il H 216-S-6 Crib
I - “te e
! Cizixioooo||Mwaes 216.8.7 Crib
RN Ao DASSO A CIw22-82
| ~ | mw22-50 (oo
: w2150 O Cw22-45 |
i W22-80 ) i
| ©wzz-e3 | REDOX
: ! Plant
I -
| ool |
! 216-8-13 ! N
([ Buildings Well Prefixes 299- Omitted . , —_
I
L~ Waste Sites | | f
Fences i i
~ Roads 0 75 150 225 a0m | T !
L . Il Il |
- H i f i i 1 - o
© RCRA Monitoring Well 5 0 a0 ew &m0 won|l—
® Other Monitoring Well

jse_gwrep02_014 February 18, 2003 12:09 PM

Figure 5.2. Well Location Map for Waste Management Areas S-SX and U

55



009 719 dN dN 199 v.-€ZM\

165 TT9 dN dN 199 €L-€ZM

§/G 065 dN dN 99 89-€ZM

895 565 dN dN €99 ¥9-€ZM

965 €19 dN dN 599 29-€ZM

vs dN 985 2029 dN dN 99 LG-€ZM

025 dN VS dN dN 165 Tv9 999 999 LT-€ZM

GTS dN .15 GvS dN €85 885 €29 0.9 0.9 9T-€ZM

005 dN 505 92§ dN L1G 565 0v9 dN 259 ST-€ZM

805 dN 605 8€S dN 195 985 929 dN 199 YT-€ZM

805 dN 0TS 8es dN 895 065 €29 dN €99 €T-€ZM

T0S dN V1S S5 dN dN §/G 919 dN 99 TT-€ZM

€67 | dN GTS v dN 65G 695 609 dN 8'799 0T-€2M

vey | dN 605 7SS dN dN 895 29 dN 5799 6-EZM

8sy | dN v0S EVS dN 19 €29 dN dN 99 L-€ZM

v6r | dN €25 VS dN 65 609 559 dN 99 G-EZM

67 | dN V1S vS dN dN GG 29 €99 €99 v-EZM

167 | dN 91§ 9€§ dN 85 09 dN dN 199 €-€ZM

05 dN 905 €eg dN 209 V19 dN dN 199 2-€ZM

005 dN 505 GvS dN 565 5029 dN dN 299 T-EZM

v.T | T2 | 82§ dN vES VS dN 209 TT9 959 dN 0.9 05-2ZM

0€S dN €S 8vS dN 865 09 659 dN 899 9v-2ZM

067 | dN L16 | 9v¥S | dN 529 0€9 659 dN €99 S-2eM

4] dN dN VS dN 519 6€9 299 dN 5.9 vr-2ZM

815 dN dN vvS dN 809 519 659 dN 599 6€-CCM

67 | dN 6ES 995 dN €9 299 dN dN 89 8€-2¢M

A4’ 08T | 9g¢ | &6V dN VS S5 dN 509 0v9 599 dN 189 L2-TTMN

S dN dN S5 dN v19 €9 6v9 T.9 1.9 LT-2ZMN

G25 dN V€S At dN 519 529 259 2.9 2.9 ST-2ZM

yeseg | MY | Y™ | ™Y | 'n0D | "NDD | IenelB | pues [anelh |Bneib | BTH | 4y uonens|3 "ON [13M
jodor | dop | doy | dor | dor | doL dol €H ZH TH eTH dol | a2epng punoio

dog dog Jodol Jo aseg

(@4 U1 uoneAd|3) $321d 108100

(©XS-S BaIV Juawabeue|\ 81se/ Ul sajoyalog 10} SUoIeAs|3 19.1u0D dlydesbiens ‘1°g ajqeL

5.6



‘sjane.b yoL-1jeseq pjobury-isod pue 3 1un pjobury paiennualayip Joj Ty 3|0eL 89S '3 1un ‘pue|S| PSPOOAA JO JQUIBW ‘UoIeWIOH pjobury = "y
"W 1lUN ‘pue|S| PAPOOAA JO Jaquiaw ‘uoijewlod pjobury = ®"y
"Teld JojAe Jo Jaquisw ‘uonew.od pjobury = *y

"JIUN pPNW JaMO] ‘uoirewo pjobury = Wy

‘Jussaid 10N = dN
"paleuIWIop-jaAeIb J1amo| 0] JusjeAInba ‘EH 11UN ‘UoIleW.I0) piojueH = £H

"paYeUILIOP-PUES 0] JUBJRAINDS ‘ZH 11UN ‘UONBWLIOY PIOJUBH = ZH

‘pareulwop-janelf Jaddn 03 JusjeAinba (TH 11un ‘uonewlo) pJojueH = TH

‘(pareuiwop-janelb Jaddn) uonewloy piojueH ‘g Hun jaARIS = 99
‘(pajeuIWOp-|aARIB JaMO]) UOIIBWIO) PIOJURH ‘W 1UN [9ARID) = VO

"(1un paurelb-auly 39319 plod) 1un 38319 pjod Jaddn = "NdD
“(uun pauteiBb-auly X981 pjo Jemo =TNID

"UOITRARIXS WLLIEJ YUE) JO WONO( T8 U Jo uoleAsd|3 (9)

"$1913W 0] 198} L8AU0I 0] 8¥0S 0 Aq Aldinil (q)
‘paysijgnd sem 1odal Teyy 39UIS PAJJLIP SA|OUBIOG JUBASISA |[B SapN|oul ISt SIYL “(666T) “[e 10 uosuyor (&)

S5 dN G6S 09 6v9 9/9 ZT-92M

85 G565 dN dN 5029 199 TLT-€ZM

265 dN dN 2029 199 €9T-€ZM

265 dN 085 009 dN dN 199 EVT-€ZM

T€S dN 265 19 dN dN 099 SZT-€ZM

8¢S dN 0.5 285 dN dN 799 TZT-€ZM

885 dN dN 199 LTT-€ZM

685 dN dN 799 ETT-EZM

16 dN dN 199 60T-€ZM

195 265 dN dN 799 80T-EZM

65 dN dN 199 SOT-€ZM

965 dN dN 199 00T-€ZM

V€S dN €5 065 dN dN 299 v6-€ZM

yeseg | My | “iY My oy 'N2D | "NDD | Ienelb | pues | |aneld [onesf | eTH (@} UONEAd|T “ON [19M
jodol | dor | doL dop | doy doy doy €H ZH TH eTH doL | aoepng punoio

dog dog Jodol 10 aseg

(4 U1 uoneAs|3) $Ho1d 108IU0D

(P1uod) "T°G8|qeL

5.7



The top sand layer corresponds to subunit Hla. Gravel Unit B is subunit H1, and the next three lower
units (sand, Gravel Unit A, and sand) compose the subunit H2.

Figure 5.3. Fence Diagram of Stratigraphy Underlying Waste Management Area S-SX (Johnson et al.
1999)

5.3.1.2 Ringold Formation

The Ringold Formation lies directly on top of the CRBG and is approximately 125 m (410 ft) thick
beneath the S and SX tank farms (Figure 5.3 and Table 5.2). The group locally consists of the units of
Ringold Formation Member of Wooded Island. At WMA S-SX, there are three principal stratigraphic
facies in the Ry, unit: 1) the fluvial gravels of unit A, 2) a fine-grained, paleosol-lacustrine sequence
referred to as the lower mud unit, and 3) fluvial gravels of unit E (Table 5.2). Ringold Formation unit E
forms the main unconfined aquifer beneath the 200 West Area. Member of Taylor Flat sediments are not
present beneath WMA S-SX.

The thickness of Ringold Formation unit A is approximately 30 m (100 ft) (DOE-RL 1993). Tallman
et al. (1979) describe this unit as silty-sandy gravel that is composed predominantly of gravel supported
by a coarse-to-fine sand matrix with intercalated, lenticular beds of sand and silt.

The thickness of the overlying lower mud unit is approximately 12 to 30 m (40 to 100 ft) (Tallman
et al. 1979; DOE-RL 1993). This unit consists predominantly of mud (i.e., silt and clay); the lower
portion contains well-developed argillic to calcic paleosol sequence (DOE 1988). The lower mud is an
aquitard separating the confined and unconfined suprabasalt aquifers.
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Table 5.2. Stratigraphic Terminology and Unit Thickness for the S and SX Tank Farms

Stratigraphic

Symbol Formation Facies/Subunit Description Thickness
Holocene/Fill | NA Backfill Poorly-sorted gravel to medium sands and silt 18.6 m
derived from the Hanford formation
(Price and Fecht 1976g, 1976h).
Hla Sand Sand to silty sand sequence occurs 0-8m
sporadically on either side of both tank farms
and in a channel beneath SX farm
Unit H1b — gravelly | Top coarse sand and gravel sequence 12m
sand, upper gravel- | equivalent to the Johnson et al. (1999) “Gravel
dominated unit Unit B.” This is not shown on Figure 5.2 due
to the scale of the drawing.
Hanford Qnit Hla.— slightly | Fine sand and silt sequence 9-12m
formation silty sand; upper
sand-dominated unit
H1 Unit H1 — lower Middle coarse sand and gravel sequence 1-10 m
gravel-dominated equivalent to “Gravel Unit A” described by
unit Johnson et al. (1999) and “Hanford Unit A”
described by Sobczyk (2000).
H2 Unit H2 - slightly Lower fine sand and silt sequence 243 m
silty sand; lower
sand-dominated unit
CCUy, and/or Upper Very fine sand to clayey silt sequence is 10.7m
Hf/ICCU interstratified silt to silty very fine sand and
clay deposits at least partially correlative with
the “early Palouse soils” described by Tallman
et al. (1979) and DOE (1988) and the
“unnamed Hanford formation [?] or Plio-
Pleistocene Deposits [?]” described by Lindsey
et al. (2000), and the Hf/PP deposits in Wood
Cold Creek et al. (2001).
CCy, unit Lower Carbonate-rich sequence. Weathered and 1-4m
naturally altered sandy silt to sandy gravel,
moderately to strongly cemented with
secondary pedogenic calcium carbonate.
Ruie Member of Wooded | Moderate to strongly cemented, well-rounded | Unit E: 75-85m;
Island gravel and sand deposits, and interstratified Lower Mud: 12-30 m;
finer-grained deposits. Unit A: 30 m

CCU, = Lower Cold Creek unit.
CCU, = Upper Cold Creek unit (Cold Creek fine-grained unit).
Hf/CCU = Hanford formation/Cold Creek unit.
NA = Not applicable.
Rwie = Ringold Formation, member of Wooded Island, unit E.
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Elevation contours in subgraphs A and C mark the bottom of subunits H1 and H2, respectively.

Figure 5.10. Elevation Contour Maps on Top of Stratigraphic Unit Underlying Waste Management
Area S-SX (modified from Johnson et al. 1999)
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The thickness of unit E is estimated to be approximately 75 to 85 m (250 to 280 ft) (Tallman et al.
1979; DOE-RL 1993). This unit consists of well-rounded, clast-supported pebbles and small cobbles in a
matrix of sand and mud. The amount of cementation is variable, with the lower portion of this unit
described as moderately- to well-indurated conglomerate (Tallman et al. 1979). However, zones of
poorly indurated gravel and sand also occur within this zone. The upper part of the unit is generally
poorly indurated. Borehole data in the immediate vicinity of the S and SX tank farms indicate that this
upper portion is dominated by sandy gravel and muddy sandy gravel, with sand to muddy sand beds
becoming more prevalent toward the top of the unit.

5.3.1.3 Cold Creek Unit

The CCU includes the “early Palouse soils,” “unnamed Hanford formation [?] or Plio Pleistocene
Deposits [?] and Plio Pleistocene unit,” and Hanford formation/Plio-Pleistocene deposits described in
Wood et al. (2001). Two distinct facies of the CCU are recognized beneath the SX tank farm; these
consist of an upper (CCU,) and lower (CCU,) subunit (Table 5.2). The coarse-grained, side-stream
alluvial facies (DOE 1988; Slate 1996, 2000) of subunit CCU, is not present beneath the S and SX tank
farms. The eastern edge of this gravel facies occurs along the southwest boundary of the 200 West Area.
The combined total thickness of the CCU is up to 13.1 m (43 ft) in the vicinity of the S and SX tank farms
(Figure 5.3 and Table 5.2). Subunit CCUj is relatively thick (up to 10.7 m [35 ft]), compared to the
subunit CCU,, which measures only 1 to 4 m (4 to 13 ft) in thickness.

The lower subunit CCUj is characterized by pedogenic calcium carbonate cement occurring as either
one discrete layer or as a diffuse zone. This suggests slow or negligible aggradation and/or subsequent
erosion during paleosol development. In contrast, other areas to the west and south show up to five
separate calcic horizons separated by relatively noncalcareous, uncemented sand, silt, and even
indigenous basaltic sand and/or gravel of the side-stream facies (Slate 1996, 2000).

Calcium carbonate content generally does not exceed 25 wt% in the vicinity of the S and SX tank
farms.

Unconformably overlying subunit CCU; is the upper subunit CCU, which consists of interstratified,
uncemented fine sand, silt, and/or clay that displays only rare very weak soil development in the vicinity
of the S and SX tank farms. Subunit CCU, sediments appear to be predominantly fluvial overbank types
of deposits intercalated with some eolian deposits (Johnson et al. 1999; Lindsey et al. 2000; Slate 2000).
This subunit can be difficult to distinguish from fine-grained Hanford sediments in borehole samples, but
a slight increase in calcium carbonate content and gamma log response are used to differentiate CCU,
sediments from those of the Hanford formation.

Plot C in Figure 5.10 shows a low amplitude north-south trending trough in the CCU surface that runs
beneath the S and SX tank farms and may be related to an ancestral Cold Creek era drainage system or to
erosion during Hanford formation floods.

5.3.1.4 Hanford Formation

Pleistocene-age deposits of the Hanford formation overlie the CCU and represent the dominant
vadose zone materials directly beneath the S and SX tank farms. Paleomagnetic polarity data collected
from the Hanford formation at the S and SX tank farms have all been normal polarity and, thus, do not
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provide a means to further subdivide the sediments based on age as has been done at the 200 East Area
(Pluhar 2003). Three subunits are identified in the S-SX area; the H2, H1, and H1la subunits in ascending
order.

Subunit H2, the lower fine sand and silt sequence of the Hanford formation (Table 5.2), consists
primarily of interstratified silty sands. This sequence generally thins from about 24.3 m (80 ft) east of the
S and SX tank farms to approximately 10.7 m (35 ft) west of these tank farms. Johnson and Chou (1998)
suggest that this thinning may signify some scouring on top of the subunit, perhaps associated with a
secondary flood channel similar to the north-south trending flood channel that bisects Cold Creek bar.
The grain-size within the Hanford H2 subunit appears to coarsen upward slightly. Johnson et al. (1999)
and Sobczyk (2000) report that the top of this unit generally dips about 6° to the southwest with some
local relative highs and lows present throughout (Figure 5.10). Below subunit H2 are slightly finer-
grained deposits of interstratified very fine sand, silt, and clay associated with the upper subunit CCU,, as
defined by a diagnostic increase in total gamma activity on borehole geophysical logs (Johnson et al.
1999; Sobczyk 2000; Wood et al. 2001).

Subunit H2 is bounded above by subunit H1 (Table 5.2), which is a coarse unit dominated by gravel
to gravelly sand and intercalated coarse sand that can be correlated beneath the S and SX tank farms.
This middle sequence is referred to as “Gravel Unit A” in Johnson et al. (1999) and as “Hanford Unit A”
in Sobczyk (2000) and is equivalent to the H1 unit described in DOE-GJO (1996) and Lindsey et al.
(2000). Subunit H1 ranges in thickness from 1 m (3 ft) to nearly 10 m (30 ft) beneath the S and SX tank
farms. Sobczyk (2000) reports subunit H1 to be thickest beneath tank SX-102, where coarse-grained
flood deposits backfilled an apparent channel eroded into the top of the underlying subunit H2.

Particle size results using dry sieving for 100 selected samples from seven wells drilled in and around
the tank farm show that this unit averages approximately 30% gravel, 66% sand, and only 4% mud. This
is compared to the materials directly above and below it, that both average <1% gravel, nearly 90% sand,
and 9% mud. Based on the modified Folk/Wentworth classification scheme, the classification of the
average particle size for subunit H1 falls near the boundary between the sandy gravel and gravelly sand
classes.

Above the coarse facies of subunit H1 lies an upper fine sand to silty-sand sequence (Johnson et al.
1999) equivalent to subunit Hla (Table 5.2) described in Lindsey et al. (1994, 2000), and the “silty sand”
described in Sobczyk (2000). This sequence consists predominantly of interstratified slightly silty
medium to very fine sands and ranges in thickness from 0 m, where it was removed during excavation of
the tank farm, to about 9 to 12 m (30 to 40 ft) to the southwest. Johnson et al. (1999) and Sobczyk (2000)
reported that the top of this unit dips slightly (approximately 2°) to the southwest. Sobczyk (2000) also
suggested that this unit may become coarser-textured to the west.

A coarse-grained sand to gravelly sand unit overlies the fine-sand sequence of subunit Hla
(Table 5.2) and appears to be intercalated with sandy gravel to the west. This unit is equivalent to Gravel
Unit B (Johnson et al. 1999) and Hanford Unit B (Sobczyk 2000). It is the uppermost stratigraphic unit in
the tank farm area, but is completely missing beneath the tank farm, where it was removed during con-
struction. In surrounding boreholes, however, this unit ranges from a few meters in thickness to the east
up to 12 m (40 ft) to the west.
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5.3.1.5 Backfill

Price and Fecht (1976g, 1976h) describe the backfill surrounding the SSTs as consisting predomi-
nantly of poorly-sorted cobbles, pebbles, and coarse to medium sands to silt derived from the Hanford
formation. Lindsey et al. (2000) describe the backfill as relatively non-cohesive, friable, massive sand
with variable amounts of silt and pebbles. A hardened zone at the base of the backfill was also observed,
extending to a depth of approximately 19 m (61 ft) that was significantly harder and drier than the
overlying materials.

5.3.2 Geology of Waste Management Areas T and TX-TY

The geology of the T, TX, and TY tank farms and vicinity is well understood as a result of several
decades of site characterization activities. It has been described in numerous reports (Price and Fecht
1976i, 1976j, 1976k; Tallman et al. 1979; Last et al. 1989; Connelly et al. 1992b; DOE-GJO 1997; Wood
et al. 2001).

The T, TX, and TY tank farms (Figure 5.11) were constructed into the upper Hanford formation
sediments underlying the 200 West Area, along the north limb of the Cold Creek syncline (Figure 4.4).
The main source of geologic information for the tank farms is borehole information (Table 5.3). Detailed
geologic and geochemical characterization of a number of boreholes is given in Serne et al. (2004a,
2004b). Stratigraphic units underlying or adjacent to these tank farms (in ascending order) include the
CRBG, the Miocene- to Pliocene-age Ringold Formation, the CCU, the Hanford formation, and backfill
materials (Figure 5.12 and Table 5.4). Detailed cross sections through the tank farms are shown in
Figures 5.13 through 5.15. All but the surface of the Hanford formation have a general tendency to dip
west to southwest toward the axis of the Cold Creek syncline (Figures 5.16 and 5.17).

5.3.2.1 Columbia River Basalt Group

The bedrock underlying the T, TX, and TY tank farms is Elephant Mountain Member; the bedrock
strikes northwest-southeast with a southwest dip into the Cold Creek syncline. The Elephant Mountain
Member is encountered only in 299-W11-26 in the area of WMASs T and TX-TY. That well hit basalt at
an elevation of 60 m (197 ft) above sea level (Figure 4.4, Table 5.3).

5.3.2.2 Ringold Formation

The Ringold Formation was deposited on the CRBG and is up to 185 m (600 ft) thick in the Cold
Creek syncline. Under the T, TX, and TY tank farms, the Ringold Formation consists mainly of fluvial
gravels and sands; these belong to the Ry, unit and the Ry (Lindsey et al. 2001b).

The Ringold Formation, member of Wooded Island, unit A overlies the Elephant Mountain Member
beneath WMASs T and TX-TY (Table 6.4). Unit A is a pebble to cobble gravel with up to 15% sand and
very little silt. Some interstratified sand horizons occur within the gravel, and there are some highly
cemented zones. Unit A is 21 m (70 ft) thick in well 299-W11-26, the well closest to the T, TX, and TY
tank farms penetrating the entire Ringold Formation.
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Figure 5.11. Well Location Map for Waste Management Areas T and TX-TY
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Table 5.4. Stratigraphic Terminology and Unit Thickness for the T, TX, and TY Tank Farms

Stratigraphic

Symbol Formation Facies/Subunit Description Thickness
Backfill NA Backfill — Anthropogenic | Gravel-dominated consisting of poorly to 18 m
moderately sorted cobbles, pebbles, and
coarse to medium sand with some silt derived
from coarse-grained Hanford formation (H1
unit) excavated around tanks (Price and Fecht
1976i, 1976j, 1976k; Wood et al. 2001);
occasional layers of sand to silty sand occur
near the base of the backfill sequence.
H1 Unit H1 (Gravel- Gravel-dominated flood sequence; composed 10-12 m
dominated facies of mostly poorly-sorted, basaltic, sandy
association). gravel to silty sandy gravel. Equivalent to the
Cataclysmic flood upper gravel sequence discussed by Last et al.
deposits (high-energy) (1989), the Qsy documented by Reidel and
Fecht (1994b), Hanford Gravel Unit A of
Johnson et al. (1999), coarse-grained
sequence (H1 unit) of Wood et al. (2001) and
gravel facies of unit H1 of Lindsey et al.
(2001b), and gravel-dominated facies
association of DOE-RL (2002).
H2 Unit H2 (Sand- Sand-dominated flood sequence; composed of 9-18 m
dominated facies mostly horizontal to tabular cross-bedded
Hanford association). sand to gravelly sand. Some sand beds
formation Cataclysmic flood capped with thin layers of silty sand to sandy
deposits (moderate silt. Equivalent to Hanford Sands of Johnson
energy) et al. (1999), Fine-Grained Sequence (H2
unit) of Wood et al. (2001) and unit H2 of
Lindsey et al. (2001b), the sandy sequence of
Last et al. (1989) and Lindsey et al. (1992),
and to Qs documented by Reidel and Fecht
(1994b), and sand-dominated facies
association of DOE-RL (2002).
H3 Unit H3 (Gravel- Gravel-dominated flood sequence; composed 0-10 m
dominated facies of poorly sorted, basaltic, sandy gravel.
association). Distinguished from the H2 sands by a sharp
Cataclysmic flood decrease in gamma response in the gravels.
deposits (high-energy)
Hf/CCU Undifferentiate | NA Silty sequence. Similar to Cold Creek unit 2-5m
d Hanford but distinguished by having a lower natural
formation and gamma response.
Cold Creek unit
CCU, Upper subunit Post- Silty sequence; consisting of interstratified 2-7m

Cold Creek unit

Ringold Formation
eolian and/or overbank
alluvial deposits

well-sorted silt and fine sand. Uncemented
but may be moderately to strongly calcareous
from detrital CaCOs. Equivalent to the “early
Palouse soil” (Tallman et al. 1979; DOE
1988; DOE-GJO 1997) and the Hf/PP
deposits of Wood et al. (2001). Also equiva-
lent to the upper Plio-Pleistocene unit in
Lindsey et al. (2001b) and the fine-grained,
laminated to massive lithofacies of the Cold
Creek unit DOE-RL (2002).
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Table 5

4. (contd)

Stratigraphic

Symbol Formation Facies/Subunit Description Thickness
CCy, Lower subunit Calcic Calcic paleosol sequence; consisting of 0-8m
paleosols developed on interbedded layers of pedogenically altered to
eroded Ringold or post- unaltered gravel, sand, silt, and/or clay,
Ringold Formation eolian | cemented together with one or more layers of
and/or fluvial deposits secondary CaCOs, originally referred to as
“caliche” (Brown 1959). Since then the name
has evolved from the Plio-Pleistocene unit
(DOE 1988; DOE-GJO 1997; Slate 2000), the
Plio-Pleistocene calcrete facies (DOE 1988;
Wood et al. 2001), the lower Plio-Pleistocene
unit (Lindsey et al. (2001b), and the coarse- to
fine-grained, CaCOs-cemented lithofacies of
the Cold Creek unit (DOE-RL 2002).
Ryt Member of Taylor Flat Fine-grained Ringold Formation sequence 10 m
Ancestral Columbia River | consisting of interstratified, well-bedded fine
System fluvial channel, to coarse sand to silt. Equivalent to the upper
crevasse splay, and Ringold Formation unit (DOE 1988).
overbank deposits
Ryi unit Rlngolql Member of Wooded Island | Coarse-grained Ringold Formation sequence, | Unit E: 85 m;
Formation Ancestral Columbia River | consisting of mostly moderately sorted, LM: 6-11 m;
System braided-stream quartzitic sandy gravel to silty sandy gravel. | Unit A: 20 m

deposits

Equivalent to middle Ringold unit (DOE
1988) and the Ringold Formation unit E and
unit A gravels (Wood et al. 2001; Lindsey
et al. 2001b). Contains mud (LM).

CaCO; = Calcium carbonate.

CCU, = Lower Cold Creek unit.

CCU, = Upper Cold Creek unit (Cold Creek fine-grained unit).
Hf/CCU = Hanford formation/Cold Creek unit.

LM = Lower mud unit.
NA = Not applicable.

The lower mud unit overlies Ringold Formation unit A and is a fine-grained lacustrine deposit. The
lower mud is 7 m (22 ft) thick in well 299-W11-26 (Table 5.3) and appears to be continuous under the
WMA:s, although it pinches out a few thousand feet to the east. The top of the lower mud unit generally
conforms to the top of basalt, dipping gently (~6°) to the southwest.

The lower mud unit is equivalent to hydrogeologic unit 8 of Williams et al. (2002). They describe
hydrogeologic unit 8 as separating the suprabasalt aquifer into an upper unconfined aquifer in the
sediments above the lower mud unit and a lower, confined aquifer in the Ringold Formation unit A.
Groundwater in the unconfined aquifer and the confined Ringold Formation unit A aquifer does not flow
vertically through hydrogeologic unit 8 (Williams et al. 2002). Where the lower mud unit is not present
such as the paleochannel in the northeast corner of 200 West Area (Figure 4.7), the suprabasalt aquifer is
a single system.
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Figure 5.16. Structure Contour Maps on Selected Units Beneath the T Tank Farm

Overlying the lower mud unit is the Ringold unit E. The contact between the two is easily distin-
guished on natural gamma logs by unit E’s considerably lower gamma activity. Unit E is described as a
pebble to cobble gravel with a fine- to coarse-grained sand matrix. Gravel content is usually >60 to 70%.
Occasionally, features interpreted as large boulders were encountered during drilling. The sediments are
variably consolidated, usually poorly sorted, and show variable amounts of calcium carbonate. Iron oxide
staining is common. “Slow drilling,” “hard drilling,” “switched to hard tool” are common comments on
the geologists’ logs when drilling in unit E sediments. Unit E is between 39 m and 85 m thick; the upper
boundary of unit E dips slightly toward the west or southwest beneath WMA T (Figures 5.16 and 5.17).
The unconfined aquifer lies in unit E.
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Figure 5.17. Structure Contour Maps of Selected Units Beneath Waste Management Area TX-TY
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During construction of the Central Plateau fence diagram for this report, a basalt-rich gravel was
identified below what has been interpreted previously as member of Taylor Flat sediments. As discussed
in Section 4, up to 80% of these gravels are basalt clasts, which is unusual for Ringold unit E gravels.
This gravel has been identified in wells 299-W11-26, 299-W11-25B, and 299-W14-14, as well as in other
wells in the northern 200 West Area (Table 4.1) and seems to run roughly north-south. The basalt-rich
gravel lies above the water table and does not affect groundwater flow but could affect flow through the
vadose zone. It is not shown on Figures 5.13, 5.14, or 5.15.

Overlying these sediments is the Ringold member of Taylor Flat. These sediments range in thickness
from 10 m (30 ft) thick in the north to none near the southern boundary of the TX tank farm (Figures 5.18
and 5.19). The Ry is a mixture of fluvial-sand and overbank facies associations consisting of bedded,
unconsolidated to consolidated and poorly to well-sorted sandy silt, sand, and silty sand. Local pebbly
areas occur. In places, calcium carbonate occurs as stingers and nodules of calcite, whereas in other
places no calcium carbonate exists. The lower boundary of this unit is easily recognized by the difference
in texture. The upper surface dips gently toward the west-southwest (Figures 5.16 and 5.17).

5.3.2.3 Cold Creek Unit

The CCU lies unconformably on the tilted and truncated Ringold Formation surface. Weathering and
soil development associated with the overlying CCU is often overprinted the Ry and/or the R,;e. Because
the degree of post-Ringold Formation pedogenesis decreases with depth, the contact with the overlying
CCU is gradational and generally defined by an upward increase in gamma activity from naturally
occurring radionuclides, increase in calcium carbonate content, and/or decrease in mud content (indicative
of more cementation).

The CCU, and the CCUj are present beneath the T, TX, and TY tank farms. The CCU, subunit
consists of calcium carbonate-cemented silt, silty sand, and sandy silt with some gravel in places
(Table 5.4). In most wells, the calcium carbonate is fairly continuous with depth throughout the unit, but
in others there are caliche-rich and caliche-poor zones. In well 299-W11-38 (adjacent to and replaced by
well W11-42), three distinct caliche zones were recognized. The CCU, subunit ranges in thickness from
2 to 10 m (8 to 32 ft) with an average thickness of 5 m (17 ft) under the WMAs (Figures 5.18 and 5.19).

The CCU, consists of unconsolidated, fine-grained, fluvial-overbank and/or eolian facies sediments
generally thought to be derived from the eolian reworking of the underlying Ry and/or the underlying
CCU, (Brown 1960; DOE 1988). These sediments are slightly- to well-consolidated, moderately- to well-
sorted silt and sandy silt. They may contain calcium carbonate but lack the cementation found in the
underlying calcic paleosols. The CCUy is between 2 and 7 m (6 and 22 ft) in thickness (Figures 5.18 and
5.19). The surface of the unit dips gently to the southwest.

The driller’s log for well 299-W10-2, drilled in 1951 about 35 m (115 ft) southwest of T tank farm,
noted perched water from 26 to 31 m (85 to 102 ft) depth. This closely corresponds to the top and bottom
of the CCU, in the well. Perched water also was found in 1994 just above the contact of the CCU, and
the overlying Hanford formation in well 299-W10-22, north of WMA T. Although perched water has not
been found beneath WMA T, the CCU, sediments extend throughout the area so that perched water may
occur locally in areas that have not been drilled.
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Figure 5.18. Thickness of Selected Stratigraphic Units in Waste Management Area T

The CCU, has been called the Hanford/CCU by some workers because of its indeterminate age; that
is, it appears to have some characteristics similar to the CCU and some characteristics of the silt-rich part
of the Hanford formation. Regardless of its exact age and origin, the CCU silt-rich facies is a distinctive
lithostratigraphic unit that can be correlated across most of the 200 West Area based on its fine-grained
texture and high natural gamma activity on geophysical logs (DOE 1988; Last et al. 1989). Although the
exact age of the CCU, is in question, the upper and lower contacts of this subunit can be readily estab-
lished. Thus for this report, the CCU, will be retained for all deposits defined by the criteria above. The
age, however, is not necessary to map the unit.
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Figure 5.19. Thickness of Selected Stratigraphic Units in Waste Management Area TX-TY
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5.3.2.4 Hanford Formation

The Hanford formation at the T, TX, and TY tank farms is about 27.4 m (90 ft) thick (Figure 5.12 and
Table 5.4) subdivided into a lower sand-dominated and an upper gravelly subunit. These are the H1 and
H2 units of Lindsey (1991). A third subunit, the H3 lower gravel subunit, has been identified in a well
just north of the T tank farm but does not extend beneath the tank farms. The contact between the two is
marked by a sharp increase in total natural gamma from the upper gravelly unit to the lower sandy unit.

The sand-dominated sequence H2 subunit is described on borehole logs as variably bedded silty sand,
sand, and slightly gravelly to gravelly sand. The sediments are poorly- to well-sorted and unconsolidated.
Fine-grained, silt-rich lenses are common and range from about 5 to 10 cm up to about 30 cm in thick-
ness. Based on observations of outcrop and intact core, the sand-dominated sequence is interpreted to
have been deposited during the waning stages of glacial flooding.

The H2 subunit ranges from about 4 to 20 m (13 to 66 ft) in thickness beneath WMAs T and TX-TY
(Figures 5.18 and 5.19). The sandy beds are salt-and-pepper sands ranging from about 30% basaltic and
70% felsic sand to 70% basaltic and 30% felsic sand. The sequence is not cemented but does contain
zones with calcium carbonate as small concretions and as coatings on grains. Thin silt lenses cap some
individual beds within the Hanford formation sand-dominated sequence. These lenses are generally
0.15 m or less in thickness but range up to about 0.3 m (0.9 ft) thick. The silt lenses cannot be correlated
among boreholes.

The base of the H2 subunit is recognized by a change from the finer-grained silty sand to coarser-
grained deposits that is also reflected by a decrease in natural gamma activity from CCU to H2 sediments.
The top of the sand-dominated sequence is more difficult to distinguish and is usually picked at the top of
the shallowest sand bed that is >3 m (10 ft) thick beneath gravel-dominated deposits. In some wells, this
corresponds to an increase in natural gamma activity within the sand-dominated sequence. The Hanford
formation sand-dominated sequence tends to be thicker beneath the eastern part of WMAs T and TX-TY
and has a slight dip toward the west or southwest (Figures 5.16 and 5.17).

The H1 subunit overlies the H2 subunit everywhere beneath the T, TX, and TY tank farms, except
where the H1 unit has been removed by excavation. The H1 subunit generally is thicker in the western
portion of WMASs T and TX-TY, perhaps because of higher energy deposition associated with the north-
south trending paleochannel. The gravel-dominated sequence is described as consisting of silty sandy
gravel and sandy gravel with some interbedded sand and silty sand. The Hanford formation gravel-
dominated sequence varies from 6 to 17 m (20 to 55 ft) thick in the area. At some wells, the sequence lies
at the surface, whereas in other wells, the sequence is covered by a thin layer of Holocene sediment.
Much of the entire unit was removed from most, if not all, of the tank farms during construction and
replaced as backfill after construction was complete. The base of the gravel-dominated sequence was
picked at the top of the first sand or silty sand sequence that is at least 3 m (10 ft) thick. This contact may
be somewhat arbitrary, particularly in boreholes with only a driller’s log and no natural gamma log
available.
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5.3.25 Holocene Deposits and Backfill

Holocene deposits overlie the Hanford formation near WMAs T and TX-TY but have been removed
from within the tank farms. These deposits are limited to windblown silt and sand. Eolian sheet sands
occur sporadically at the surface and generally are less than 1 to 2 m thick. Backfill material occurs to
about the 15-m (50-ft) depth in the tank farm. The backfill is poorly sorted, gravelly sand to sandy gravel
(Price and Fecht 1976i, 1976j, 1976Kk) from the gravel-dominated sequence of the Hanford formation.

5.3.3 Geology of Waste Management Area U

WMA U is located on the Hanford Site in the south central portion of the 200 West Area between
WMA S-SX to the south and WMASs T and TX-TY to the north (Figures 5.1 and 5.2). The geology of
WMA U is well understood and has been described in several reports. These reports include Price and
Fecht (1976l), Hodges and Chou (2000), Smith et al. (2001), and Lindsey (1991, 1995).

Geologic characterization of WMA U is based principally on borehole logs (i.e., geologic and
drillers’ logs) from 25 boreholes near the tank farm (Table 5.5). The logs describe the physical and
chemical characteristics of the subsurface system and include data such as grain size distribution, calcium
carbonate content, and moisture content. Interpretation is based also on existing reports that describe the
regional, Hanford Site, 200 Areas, and local geology.

WMA U lies within a shallow, north-south—oriented topographic low. This low formed within the
southwestern extent of a flood bar deposit known as the Cold Creek bar and likely represents a braided
stream channel that cuts across the bar (Figure 4.1). Within the U tank farm, isolated anthropogenic
topographic depressions occur just southwest of tank U-110 and northwest of tank U-109. Until run-on
and run-off controls were recently constructed around the site, these depressions were conducive to the
collection and subsequent infiltration of surface run-off.

Stratigraphic units beneath WMA U (from oldest to youngest) include Miocene age CRBG; late
Miocene- to Pliocene-age fluvial gravel; sand and silt of the Ringold Formation; Pliocene- to Pleistocene-
age gravel, sand, and silt, including calcic paleosol of the CCU; Pleistocene-age flood gravels and sand of
the Hanford formation; and recent Holocene sediments (Table 5.6 and Figure 5.20). Boreholes used in
the analysis are shown in Figure 5.21. Figures 5.22 through 5.25 show more detailed geology of
WMA U. The sequence of suprabasalt sediment is about 170 m (560 ft) thick at WMA U (Wood and
Jones 2003; Smith et al. 2001).

Except for the surface of the sediments, most sedimentary layers tilt gently to the southwest (<1°).
This is consistent with other 200 West Area WMASs where the layers tilt southwest into the Cold Creek
syncline.

5.3.3.1 Columbia River Basalt Group

The CRBG forms the bedrock beneath WMA U. The Elephant Mountain Member of the Saddle
Mountain Basalt Formation is the uppermost and youngest basalt beneath WMA U. Depth to basalt is
about 170 m (560 ft) beneath WMA U. The Elephant Mountain Member is about 25 m (80 ft) thick in the
200 West Area (Myers et al. 1979).
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Table 5.6. Stratigraphic Terminology and Unit Thickness for the U Tank Farm

Stratigraphic

Symbol Formation Facies/Subunit Description Thickness®

Backfill NA Backfill — Gravel-dominated consisting of poorly to 12m
Anthropogenic moderately sorted cobbles, pebbles, and coarse to

medium sand with some silt derived from coarse-
grained Hanford formation (H1 unit) excavated
around tanks (Price and Fecht 19761; Wood et al.
2001); occasional layers of sand to silty sand
occur near the base of the backfill sequence.

H1 Unit H1 — (Gravel- Gravel-dominated flood sequence; composed of 2-7m
dominated facies mostly poorly-sorted, basaltic, sandy gravel to
association). silty sandy gravel. Equivalent to the upper gravel
Cataclysmic flood sequence discussed by Last et al. (1989), the Qg
deposits (high-energy) | documented by Reidel and Fecht (1994b),

Hanford Gravel Unit A of Johnson et al. (1999),
coarse-grained sequence (H1 unit) of Wood et al.
(2001) and gravel facies of unit H1 of Lindsey
et al. (2001b), and gravel-dominated facies
association of DOE-RL (2002).

H2 Hanford formation | ypjt H2 - (Sand- Sand-dominated flood sequence; composed of 24m
dominated facies mostly horizontal to tabular cross-bedded sand to
association). gravelly sand. Some sand beds capped with thin
Cataclysmic flood layers of silty sand to sandy silt. Equivalent to
deposits (moderate Hanford Sands of Johnson et al. (1999), Fine-
energy) Grained Sequence (H2 unit) of Wood et al.

(2001) and unit H2 of Lindsey et al. (2001a), the
sandy sequence of Last et al. (1989), and to Qs
documented by Reidel and Fecht (1994b) and
sand-dominated facies association of DOE-RL
(2002).

Hf/CCU Undifferentiated NA Silty sequence. Similar to Cold Creek unit but 4-8m

Hanford formation and distinguished by having a lower natural gamma
Cold Creek unit response.
CCU, Upper subunit post- Silty sequence; consisting of interstratified well- 3-6m

Cold Creek unit

Ringold Formation
eolian and/or
overbank alluvial
deposits

sorted silt and fine sand. Uncemented but may be
moderately to strongly calcareous from detrital
CaCO;. Equivalent to the “early Palouse soil”
(Tallman et al. 1979; DOE 1988; DOE-GJO
1997) and the Hf/PP deposits of Wood et al.
(2001). Also equivalent to the upper Plio-
Pleistocene unit in Lindsey et al. (2001b) and the
fine-grained, laminated to massive lithofacies of
the Cold Creek unit DOE-RL (2002).
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Table 5.6. (contd)

Stratigraphic

Symbol Formation Facies/Subunit Description Thickness®
CCUy, Lower subunit calcic | Calcic paleosol sequence; consisting of inter- 1-2m
paleosols developed | bedded layers of pedogenically altered to
on eroded Ringold unaltered gravel, sand, silt, and/or clay,
Formation or post- cemented together with one or more layers of
Ringold Formation secondary CaCO;, originally referred to as
eolian and/or fluvial | “caliche” (Brown 1959). Since then the
deposits name has evolved from the Plio-Pleistocene
unit (DOE 1988; DOE-GJO 1997; Slate
2000), the Plio-Pleistocene calcrete facies
(DOE 1988, Wood et al. 2001), the lower
Plio-Pleistocene unit (Lindsey et al. 2001b),
and the coarse- to fine-grained, CaCO3-
cemented lithofacies of the Cold Creek unit
(DOE-RL 2002).
Ryt Member of Taylor Fine-grained Ringold Formation sequence Absent
Flat consisting of interstratified, well-bedded fine
Ancestral Columbia | to coarse sand to silt. Equivalent to the
River System fluvial | upper Ringold Formation unit (DOE 1988).
channel, crevasse
splay, and overbank
deposits
Rui Member of Wooded | Coarse-grained Ringold Formation sequence, | Unit E:
Island consisting of mostly moderately sorted, 90 m;
. . Ancestral Columbia | quartzitic sandy gravel to silty sandy gravel. | LM: 15 m;
Ringold Formation | Rijver System Equivalent to middle Ringold Formation unit | Unit A:
braided-stream (DOE 1988) and the Ringold Formation unit | 30 m

deposits

E gravels (Wood et al. 2001; Lindsey et al.
2001b). Well-stratified clay and interbedded
silt and silty sand is equivalent to the lower
mud Ringold Formation unit (DOE 1988).
Fluvial gravels with intercalated sands are
equivalent to the basal Ringold Formation
unit (DOE 1988) and the Ringold Formation
unit A gravels (Wood et al. 2001; Lindsey et
al. 2001b).

(&) Multiply by 3.281 to convert meters to feet.
CaCO; = Calcium carbonate.

CCU = Cold Creek unit.

CCU, = Lower Cold Creek unit.

CCU, = Upper Cold Creek unit (Cold Creek fine-grained unit).
Hf/CCU = Hanford formation/Cold Creek unit.

LM = Lower mud unit.

NA = Not applicable.

Qs = Quaternary flood gravels.

Qs = Quaternary flood silt and sand.

Ryt = Ringold Formation, member of Taylor Flat.

Ryi = Ringold Formation, member of Wooded Island.
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Figure 5.21. Location of Boreholes Used in This Report and Cross-Section Lines of Waste Management
Area U for Figures 5.22 and 5.23

5.40



(T00Z ‘[ 18 YHWS WoJ) palyipow) N ealy Juswabeue|y 81Sepn JO UOIDAS $S04D) 2160]099) YINOS—YLON  °22'S 94nbi4

5.41



(TO0Z ‘Ie 18 YUWS Woiy palipow) N ealy luswabeur|n 31SeAA JO UONDIAS $S01D) 2160]099) 1SLaYINOS—ISSMULION  "€2'G a4nbiH

5.42



—_— T

187
-330 -33 0
wie-33 W19-10@ wis 33166 Wi19-10@
188 166
meters meters
25 50 75 100 125 150 0 25 50 75 100 125 150
—_— (Contour interval in m) @ —_ (Contour interval in m)

——
0 100 200 3do 4o sbo il
feet

(G040200802a (G04020080.2b

——
0 100 2080 3do 480 sbo
feet

W15-5 @ 165

| W15-5 @164 |
1M\

(A) Structure contour map on surface of Hanford formation, unit H2; equivalent to middle
sand-dominated.

(B) Structure contour map on surface of upper Cold Creek unit.

(C) Structure contour map on surface of lower Cold Creek unit.

(D) Structure contour map on surface of Ringold Formation, member of Wooded Island, unit E.

Figure 5.24. Structure Contour Maps of Waste Management Area U (modified from Smith et al. 2001)

5.43



Figure 5.25. Isopach Map of the Hanford H2 Unit at Waste Management Area U (modified from Smith
et al. 2001)

5.3.3.2 Ringold Formation

The Ringold Formation overlies the Elephant Mountain Member and consists of fluvial lacustrine
sediments that were deposited by the ancestral Columbia River drainage system. Near the WMA, three
units of the member of Wooded Island (Lindsey 1995) are present—in ascending order, these are unit A,
the lower mud unit, and unit E. The member of Taylor Flat is absent beneath WMA U, although it is
found to the southeast and northwest (Figures 5.20, 5.22, and 5.23).

Unit A, the lowest subunit, consists of fluvial gravels with intercalated sands. Unit A is up to 30 m
(98 ft) thick and dips to the south-southwest (WHC 1991; Smith et al. 2001) (Table 5.6 and Figure 5.20).
The lower mud unit, a lacustrine mud deposit, overlies unit A and is approximately 15 m (50 ft) thick.
The lower mud unit is an aquitard and forms the bottom of the unconfined aquifer beneath WMA U. It is
characterized by well-stratified clay and interbedded silt and silty sand (Singleton and Lindsey 1994).
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Unit E is the uppermost sequence of the Ringold Formation beneath WMA U. Like unit A, unit E
consists of fluvial gravels with intercalated sands. Where the lower mud unit is not present outside the
WMA, it is commonly undistinguishable from unit A. Unit E is about 90 m (295 ft) thick, is the host
stratum for the unconfined aquifer, and dips gently to the southwest (Figure 5.24) (Smith et al. 2001).

During preparation of this report, a basalt-rich gravel was identified below what has been interpreted
as member of Taylor Flat sediments in the T-TX tank farm area. In wells 299-W19-45 and 299-W19-47,
up to 80% of the gravels are basaltic, which is more like the CCU side-stream facies than Ringold
Formation unit E gravels. This gravel has been identified in the northern 200 West Area (Table 4.1), and
seems to run roughly north-south. The basalt-rich gravel lies above the water table and does not affect
groundwater flow but could affect flow through the vadose zone. It is not shown in Figures 5.22 or 5.23.

5.3.3.3 Cold Creek Unit

The CCU unconformably overlies the Ringold Formation (Wood and Jones 2003) and basalt-rich
gravel and is divided into two subunits, the CCU, and the CCU,. The CCUj is a caliche-rich zone about
1to 2 m (3 to 6 ft) thick that developed on the paleo-surface of the Ringold Formation. It is a calcium
carbonate-rich layer with locally derived basalt detritus, silt-rich deposits, and reworked Ringold
Formation material. The calcium carbonate zones are probably discontinuous and occur as layers,
nodules, and clast coatings. The upper subunit (CCU,) is a silt-rich, sandy soil about 3 to 6 m (9 to 15 ft)
thick that is relatively uniform and shows little depositional structure. Both subunits dip slightly to the
southwest (Figure 5.24). The fine-grained nature of this unit has significant influence on the vertical
movement of moisture in the vadose zone. Perched water above the CCU has been found to the east
beneath the 216-U-14 ditch and 216-U-1 and U-2 cribs in the past.

5.3.34 Hanford Formation

The Hanford formation consists of sediments deposited during several episodes of cataclysmic
flooding and consists of pebble-to-boulder gravel, fine- to coarse-grained sand, and silt. The Hanford
formation is divided into two major sequences based on lithology beneath WMA U—Ilower sand-
dominated (H2) and upper gravel-dominated sequences (H1).

The lower sand-dominated sequence (H2) consists primarily of a sand layer that averages about 24 m
(79 ft) thick across WMA U (Figure 5.25) (Wood and Jones 2003). It thins to the east and northeast and
dips to the east as well (Figure 5.24, plot A). Repetitive sequences of very thin, flat-lying lamina of silt
and sand have been observed in intact core samples and may provide a sedimentary structure that
influences moisture movement in the vadose zone.

The upper gravel-dominated sequence (H1) is distinguished from the sand-dominated sequence by a
marked difference in grain-size distribution. A significant fraction of the upper unit is gravels with less
sand, indicating deposition in a higher-energy environment. In the vicinity of WMA U, the contact
between the two units is irregular. The unit varies between 2 and 7 m (8 and 22 ft). Beneath WMA U,
the contact between the two sequences is near the base of the original excavation along the eastern edge
of the tank farm. The contact is closer to the surface toward the west and northwest and therefore has had
little influence on tank waste migration.
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5.3.35 Holocene Deposits and Backfill

Holocene-aged deposits in the 200 West Area are dominated by eolian sand. These sands tend to
consist of very fine- to medium-grained, occasionally silty sands. Eolian deposits were removed from
WMA U during construction of the tank farm. The tank farms were excavated to a depth of about 12 m
(40 ft) during construction and backfilled with silt, sand, and gravel of the Hanford formation and eolian
sand.

5.4 Geology of the 200 East Area Single-Shell Tank Farms

SST farms A, AX, C, B, BX, and BY are located in the 200 East Area (Figure 5.1). Because of their
proximity, WMAs A-AX and C are discussed together.

541 Geology of Waste Management Areas A-AX and C

This section provides a detailed description of geologic and stratigraphic relationships beneath tank
farms A, AX, and C and adjoining areas of the 200 East Area (Figure 5.26). The discussion of these
parameters is based on a compilation of historical information (Brown 1959; Price and Fecht (1976a,
1976b, and 1976f; Tallman et al. 1979; Lindsey et al. 1992; Jones et al. 1998; and Williams et al. 2000)
and some new interpretations allowed by new borehole emplacement and research conducted in calendar
year 2003 (Williams and Narbutovskih 2003, 2004). Detailed geologic and geochemical characterization
of recent boreholes is given in Brown et al. (2006). The most recent detailed description of the A, AX,
and C tank farms is that in Wood et al. (2003), and most of the discussion presented below is built on that
report.

Numerous wells have been drilled over the years in the vicinity of the SSTs. Table 5.7 provides
geologic contacts for those wells used in the following geologic discussion and cross sections.
Figure 5.27 shows well locations. For some wells, several interpretations of stratigraphic contacts or
“picks” have been rendered by various authors over the years. Most of the illustrations presented here
reflect picks represented by Wood et al. (2003) with some modification arising from new well logs.

The A, AX, and C tank farms were built in Hanford formation sediments. Based on Wood et al.
(2003), seven stratigraphic units lie beneath WMAs A-AX and C. From oldest to youngest, the primary
geologic units are

e CRBG

o undifferentiated CCU fine unit and/or Ringold Formation (CCU/R)

o undifferentiated Hanford formation gravel and/or CCU gravel and/or Ringold Formation, unit A
(H3/CCUIR)

¢ Hanford formation — lower gravel-dominated sequence (H3 unit)

¢ Hanford formation — sand-dominated sequence (H2 unit)

¢ Hanford formation — upper gravel-dominated sequence (H1 unit)

o recent deposits.

The CCU is equivalent to the “Plio-Pleistocene Unit” in Wood et al. (2003). Cross sections
(Figures 5.28 through 5.37) illustrate the distribution and thicknesses of these units.
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Figure 5.26. Fence Diagram of the A, AX, and C Tank Farms
54.1.1 Columbia River Basalt Group

The Elephant Mountain Member is the uppermost basalt flow beneath the A, AX, and C tank farms
and lies at an elevation of approximately 100 m (328 ft) above mean sea level and dips gently to the
southwest toward the axis of the Cold Creek syncline (Figure 5.36) (Price and Fecht 1976a, 1976b, 1976f;
DOE 1988). Up to 15 m (50 ft) of topographic relief exists on the basalt surface as a result of tectonic
deformation and/or erosion.

Four boreholes (299-E25-2, 299-E26-8, 299-E27-3, and 299-E27-6) in WMAs A-AX and C extend to
the top of basalt. One borehole (299-E26-8) fully penetrated the Elephant Mountain Member and
advanced through the first sedimentary interbed (Rattlesnake Ridge) into the underlying Pomona Member
of the CRBG (Figure 5.33). In this borehole, the Elephant Mountain Member and the Rattlesnake Ridge
Interbed were 27 m (90 ft) and 15 m (50 ft) thick, respectively.
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Table 5.7. Stratigraphic Contact Elevations for Boreholes in Waste Management Areas A-AX and C®

Ground Surface Contact Picks (Elevation in ft)®
Elevation Top H1 Top H2 Top H3 Top Top Top of

Well Number ft® gravel sand gravel CCU,R CCUJR Basalt
E24-4 700 670 615 NP NP 440
E24-5 699 699 644 NP NP 439
E24-13 691 691 571 NP 421 401
E24-20 689 689 589 NP 414 409
E25-1 694 663 609 NP 434 414
E25-2 677 663 557 472 422 412 322
E25-6 662 NP 662 472 397 392
E25-7 660 NP 660 340 NP 395
E25-35 675 675 605 465 415 405
E25-41 672 672 572 472 417 402
E25-42 686 686 600 460 NP 415
E25-46 698 698 605 NP 425 415
E25-48 683 683 593 463 423 403
E25-93 680 669 560 435 NP 375
E26-4 649 649 635 515 425 415
E26-5 652 652 632 507 NP 422
E26-6 655 655 595 485 410 406
E26-8 620 620 585 NP NP NP 370
E27-3 685 685 650 NP 408 NP 333
E27-4 672 646 562 NP NP 432
E27-6 675 674 575 NP 420 409 332
E27-12 661 661 501 NP NP 436
E27-13 670 670 550
E27-14 659 689 650 NP NP 434
E27-15 654 654 593 NP NP 429
E27-21 673 673 608 NP NP 433
E27-22 632 632 552 NP NP 417 364
E27-23 675 664 575 NP NP 450

(a) Bjornstad (2004) and Wood et al. (2003).

(b) Multiply by 0.3048 to convert feet to meters.

NP = Unit not present.

CCUy/R = Undifferentiated Cold Creek unit/Ringold Formation fine-grained sediments.
CCU//R = Undifferentiated Cold Creek unit/Ringold Formation coarse-grained sediments.
H1 = Hanford formation, unit H1; equivalent to upper gravel-dominated.

H2 = Hanford formation, unit H2; equivalent to sand-dominated.

H3 = Hanford formation, unit H3; equivalent to lower gravel-dominated.

Rwia = Ringold Formation, Member of Wooded Island, unit A.
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54.1.2 Undifferentiated Hanford and/or Cold Creek Unit and/or Ringold Formation

WMAs A-AX and C lie along the edge of a paleochannel that eroded much or all of the Ringold
Formation during CCU and/or Hanford time. Because of the difficulty in distinguishing reworked
Ringold Formation gravels and Pre-Missoula mainstream Columbia River gravels from original Ringold
Formation gravels, these units are undifferentiated here and shown on the cross sections as CCU-Ringold
(CCU/R) or as Hanford-CCU-Ringold gravels (H3/CCU/R). A similar problem arises with fine-grained
sediments overlying the basal gravels. In places, these fine-grained layers appear to correlate to Ringold
Formation sediments, based in part on color, but in other areas appear to be more closely related to CCU
or even Hanford formation sediments. Therefore, the lower fine-grained sediments are also
undifferentiated here.

Gravelly facies immediately overlying basalt within most of the study area belong to the H3/CCU/R.
An exception is in the northeast of WMA C near borehole 299-E26-8, where the top of basalt rises above
the CCU(/R, leaving Hanford formation sediments lying directly on top of basalt (Figure 5.33). The
CCU//R consists of predominantly sandy pebble- to cobble-sized gravel with occasional boulders.
Mineralogically, the sand fraction consists of 15 to 60% basalt grains with generally less than 1 wt%
calcium carbonate. The total thickness of this unit is less than 27 m (90 ft), based on a limited number of
boreholes where the upper and lower boundaries are represented. The top of undifferentiated Hanford-
CCU-Ringold gravels ranges from about 120 to 130 m (390 to 425 ft) elevation above mean sea level.

A coarse-grained unit, undifferentiated Hanford-CCU-Ringold gravels, is found in most boreholes
beneath WMA A-AX but not beneath WMA C. It occurs at a depth of about 79 m (260 ft) (Figures 5.28
through 5.37) and ranges in thickness from 0-7 m (0-21 ft). Descriptions of this unit vary significantly,
which may be due to 1) subjective descriptions and/or interpretations by different drillers and geologists;
2) heterogeneities within the unit, which may include multiple lithologic units (i.e., CCU silts overlying
Ringold Formation mud); or 3) a combination of the above. Where present, this fine-grained unit is
described in about half of the boreholes as a blue-, gray-, or olive-colored clay or mud; remaining
borehole logs describe the unit as a tan to brown sandy silt to “heavy” silt, which may display a laminated
to mottled structure. The former description fits that of Ringold Formation paleosol facies (DOE 1988),
whereas the latter fits descriptions for the Cold Creek silt facies (Wood et al. 2000), interpreted as eolian-
overbank in origin. Unlike most other fine-grained units in the 200 Areas, the undifferentiated Cold
Creek silt and/or Ringold Formation mud unit is generally noncalcareous, containing only a few weight
percent or less calcium carbonate.

Some gross gamma-ray logs show a moderate increase in activity occasionally accompanied by an
increase in moisture. No perched water was noted on top of the sequence (Caggiano and Goodwin 1995),
but the water table was higher in the past. Thus, the increased moisture content may be a remnant of a
higher water table.

5.4.1.3 Hanford Formation

The Hanford formation makes up the majority of the suprabasalt sedimentary sequence beneath
WMAs A-AX and C, ranging in thickness from 61 to 83 m (200 to 275 ft). The Hanford formation has
been divided into three informal units (H1, H2, and H3 from top to bottom) in the 200 East Area. These
units do not correspond to similarly named units in the 200 West Area.
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The H3 unit is the Hanford formation’s lower gravel-dominated sequence in the area and overlies
undifferentiated Cold Creek/Ringold Formation deposits. This sequence is equivalent to the lower
coarse-grained unit of the Hanford formation of Last et al. (1989), to the lower gravel-dominated
sequence of Lindsey et al. (1992), and to the Hanford formation H3 sequence of Lindsey et al. (1994).

The H3 unit consists of clast-supported, sandy, pebble to boulder gravel to matrix-supported pebbly
sand. This unit appears in the east and southeast parts of the study area, but appears to be missing from
beneath most of WMA A-AX and all of WMA C. The unit is probably absent from these areas because
of lateral facies changes that take place between gravel-dominated facies to the north and sand-dominated
facies to the south away from the axis of primary flood channel that exists north and east of the study
area. The surface of the H3 unit slopes to the south and west, with the highest elevations occurring in the
northeast and east portions of the study area.

The H2 unit is continuous beneath WMAs A-AX and C. It overlies the undifferentiated CCU/R units
or the H3 unit where present. The H2 unit is equivalent to the middle sand unit (Last et al. 1989), the fine
sequence of Lindsey et al. (1992), and the Hanford formation H2 sequence of Lindsey et al. (1994).

Dominantly a fine- to coarse-grained sand, the H2 unit also contains lenses of silty sand to slightly
gravelly sand. Minor sandy gravel to gravelly sand beds occur sporadically. Consolidation ranges from
loose to compact. Cementation is very minor or absent. Silt lenses and thinly interbedded zones of silt
and sand are common but are not abundant in the H2 unit. These thin (<0.3 m [1 ft]) fine-grained zones
generally cannot be correlated between boreholes and are not reflected in the gross gamma-ray logs or
moisture data. Sampling intervals are probably too large to detect such thin zones. The fine structure
observed in some older gross gamma-ray logs may reflect changes in the silt content that were not
detected during drilling.

The upper portion of H2 may have been scoured by a southeast trending Ice Age flood channel,
associated in part with deposition of the overlying gravelly H1 unit. This is indicated by a south to
southeast-trending trough present at the top of the H2 unit (Figures 5.29, 5.30, 5.31, 5.34, and 5.35).
Furthermore, over 40 m (130 ft) of relief exists on top of the H2 unit at right angles to the axis of this
trough (Figures 5.29 and 5.30). These same figures show that H2 is interpreted to occur at the surface in
the easternmost part of the study area where the overlying H1 unit is missing.

The H1 upper gravel sequence is equivalent to the upper coarse-grained unit of Last et al. (1989), the
upper gravel sequence of Lindsey et al. (1992), and the Hanford formation H1 sequence of Lindsey et al.
(1994). This unit consists of predominantly loose, sandy gravel to gravelly sand, with minor beds of sand
to silty sand. Coarser beds may contain boulder-sized materials. Occasional thin, discontinuous lenses of
fine sand and silt may also be present.

Figures 5.29 through 5.32 show the H1 unit thickens near the center of the study area and beneath
WMA A-AX where it reaches approximately 30 m (100 ft) thick.
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54.14 Recent Deposits

Two types of recent deposits are present in WMAs A-AX and C—1) eolian sand and silt and
2) backfill material. Backfill is found within the tank farms and other disturbed areas. Fine to medium
sand to silty sand caps the sedimentary sequence outside the tank farms. These fine-grained eolian
deposits are up to 6 m (20 ft) thick and contain up to 10 wt% calcium carbonate associated with recent
soil development.

54.2 Geology of Waste Management Area B-BX-BY

The geology of the B, BX, and BY tank farms and vicinity is well understood as a result of several
decades of site characterization activities. It has been described in numerous reports, including Price and
Fecht 1976c, 1976d, 1976e; Tallman et al. 1979; Last et al. 1989; Connelly et al. 1992a; DOE-GJO 1997;
Wood et al. 2000; and Lindsey et al. 2001a.

The B, BX, and BY tank farms were constructed into the upper Hanford formation sediments
underlying the 200 East Area, along the north limb of the Cold Creek syncline (Figure 4.1). The upper
surface of Cold Creek bar in the 200 East Area forms a broad plain at about 210 m (700 ft) elevation. The
WMA is located on the grade that slopes gently to the northeast from the Cold Creek bar.

The main source of geologic information for the WMA is borehole information (Figure 5.38 and
Table 5.8). Stratigraphic units underlying or adjacent to these tank farms (in ascending order) include
CRBG, the Miocene- to Pliocene-age Ringold Formation, the CCU, the Hanford formation, and backfill
materials (Figure 5.39 and Table 5.9). More detailed geologic cross sections through the WMA are
shown in Figures 5.41 through 5.43. Detailed physical and geochemical characterizations of recently
drilled vadose zone boreholes have been described in Lindenmeier et al. (2002, 2003) and Serne et al.
(2002a).

54.2.1 Columbia River Basalt Group

The bedrock underlying the B, BX, and BY tank farms is the CRBG; the bedrock strikes northwest-
southeast with a southwest dip into the Cold Creek syncline (Figure 4.4). The uppermost basalt unit is the
Elephant Mountain Member of the Saddle Mountain Basalt. It is also the base of the unconfined aquifer
in the WMA B-BX-BY area. The Elephant Mountain Member is at depths of 70 to 100 m (230 to 320 ft).
There is about 8 m (26 ft) of relief on the surface of the basalt, which is mainly the result of post-basalt
erosion. However, the orientation of the relief on the top of basalt also corresponds in orientation with the
secondary anticlines of the Yakima Folds just north of 200 East Area (Reidel and Fecht 1994b).

5.4.2.2 Ringold Formation

The Ringold Formation is largely absent under the B, BX, and BY tank farms. The Ringold
Formation has been removed by fluvial downcutting of the ancestral Columbia River and cataclysmic
Pleistocene flooding (Lindsey et al. 2001a). The Ry; unit is present south of the WMA in the central part
of 200 East Area (Figures 4.3 and 4.5).
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Table 5.8. Stratigraphic Contact Elevations for Boreholes in Waste Management Area B-BX-BY®

Ground Contact Picks (Elevation in ft)®

Surface Top

Elevation | TopH1 | TopH2 | H3 Top Top Top | Top Top of

Well No. ft® gravel sand | gravel | HfICCU, | HFICCU, | Ryie | Rim | TOpRwia | Basalt

E33-1 630 NP 605 NP NP 459 NP NP NP 389
E33-5 632 NP 582 NP NP 452 NP NP NP 397
E33-13 626 NP 606 NP NP 436 NP NP NP 391
E33-16 642 NP 618 NP 439 422 NP NP NP 402
E33-18 653 NP 607 NP 443 NP NP NP NP 383
E33-19 649 NP 614 NP 444 429 NP NP NP 404
E33-20 652 NP 616 NP 443 432 NP NP NP 402
E33-21 664 NP 620 NP NP 424 NP NP NP 384
E33-26 630 NP 600 NP NP 480 NP NP NP 390
E33-31 648 NP 583 NP 453 450 NP NP NP 398
E33-32 657 NP 617 NP 437 427 NP NP NP 387
E33-33 641 NP 604 NP 441 431 NP NP NP 391
E33-36 644 NP 604 NP NP NP NP NP NP 384
E33-39 624 NP 594 NP NP 444 NP NP NP 394
E33-41 651 NP 616 NP 436 411 NP NP NP 391
E33-42 650 NP 595 NP NP 415 NP NP NP 390
E33-43 662 NP 617 NP 452 432 NP NP NP 387

(a) Bjornstad (2004) and Wood et al. (2000).

(b) Multiply by 0.3048 to convert feet to meters.

CCU = Cold Creek unit.

Hf/CCU = Hanford formation/Cold Creek unit undifferentiated.

H1 = Hanford formation, unit H1; equivalent to upper gravel-dominated.
H2 = Hanford formation, unit H2; equivalent to sand-dominated.

H3 = Hanford formation, unit H3; equivalent to lower gravel-dominated.
Rwia = Ringold Formation, Member of Wooded Island, unit A.

NP = Not present.

54.2.3 Undifferentiated Hanford Formation/Cold Creek Unit

The exact origin of the sedimentary deposits overlying the CRBG and underlying the H2 unit is
uncertain and still open to interpretation, as is the case at the A-AX and C WMAs. Recent reports have
designated deposits beneath the H2 unit as the undifferentiated Hanford formation/Cold Creek unit
(Wood et al. 2000) and Hanford formation/Cold Creek unit/Ringold Formation unit (Lindsey et al.
2001a). Others call these deposits the H3 unit (Serne et al. 2002c). The Hf/CCU designation is used in
Table 5.8 and in the following cross sections. Wood et al. (2000) recognized two facies of the Hf/CCU
beneath the B, BX, and BY tank farms—a fine-grained eolian/overbank silt (silt facies) and a sandy
gravel to gravelly sand facies.

The thick silt-rich interval is believed to be primarily a pre-Pleistocene flood deposit because silty
layers associated with coarse-grained Pleistocene flood deposits in this area are generally only a few
centimeters thick (Wood et al. 2000). The texture, structure, and color of the thick silt layer are all
identical to that of the early Palouse soil (Tallman et al. 1979; DOE 1988), more recently referred to as
the CCU,, which is widely distributed beneath the 200 West Area (Johnson et al. 1999; Wood et al. 2000;
DOE-RL 2002). Here, the fine-grained facies is referred to as the undifferentiated Hanford formation/
CCuU fine subunit (Hf/CCU fine).
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Table 5.9. Stratigraphic Terminology and Unit Thickness for the A-AX and C Tank Farms

Stratigraphic Facies/ A-AX c
Symbol Formation Subunit Description Thickness | Thickness
Backfill NA Backfill - Gravel-dominated consisting of poorly to 10m 10m
Anthropogenic | moderately sorted cobbles, pebbles, and
coarse to medium sand with some silt derived
from coarse-grained Hanford formation (H1
unit) excavated around tanks (Price and Fecht
1976a, 1976b, 1976f; Wood et al. 2003);
occasional layers of sand to silty sand occur
near the base of the backfill sequence.
H1 Unit H1 - Gravel-dominated flood sequence; composed 20-30 m 10-30m
(Gravel- of mostly poorly sorted, basaltic, sandy gravel
dominated to silty sandy gravel. Equivalent to the upper
facies gravel sequence discussed by Last et al.
association). (1989), the Qsy documented by Reidel and
Cataclysmic Fecht (1994b), coarse-grained sequence (H1
flood deposits | unit) of Wood et al. (2003) and gravel facies
(high-energy) | of unit H1 of Lindsey et al. (2001a), and
gravel-dominated facies association of
DOE-RL (2002).
H2 Unit H2 - Sand-dominated flood sequence; composed of | 30-65m | 45->70 m
(Sand- mostly horizontal to tabular cross-bedded
dominated sand to gravelly sand. Some sand beds
Hanford facies_ _ cf'ipped with thin Iay!ars of si_lty sand to sandy
formation association). silt. Equivalent to Fine-Grained Sequence
Cataclysmic (H2 unit) of Wood et al. (2003) and unit H2 of
flood deposits | Lindsey et al. (2001b), the sandy sequence of
(moderate Last et al. (1989) and Lindsey et al. (1992), to
energy) Qs documented by Reidel and Fecht (1994b),
and sand-dominated facies association of
DOE-RL (2002).
H3 Unit H3 - Gravel-dominated flood sequence; composed 0-20 m 0
(Gravel- of open framework gravel and poorly sorted,
dominated basaltic, sandy gravel to silty sandy gravel.
facies Equivalent to the lower coarse-grained unit of
association). the Hanford formation of Last et al. (1989), to
Cataclysmic the lower gravel sequence of Lindsey et al.
flood deposits | (1992) and to the Hanford formation, H3
(high-energy) | sequence of Lindsey et al. (1994).
CCUyR Upper subunit | Silty sequence; locally thick layer of silt 0-6m 0
overlying the gravelly sediments of the lower
subunit. Silt facies is light olive-brown to tan
colored, massive, well-sorted, fine, calcareous
. . silt to sand with pedogenetic traces (i.e., root
Undifferentiated casts).
CCU/R Cold C_:reek unit 7" ower subunit | Lower gravel sequence equivalent to pre- 0—>15m 0-25m
and R|r}gold Missoula gravels; sandy gravel to gravelly
/Foorrrgs\t;c;n and sand beneath the silt-dominated facies and

Hanford gravel

above the top of basalt. Occurs as muddy,
sandy gravel to sandy gravel. Moderate to
uncemented with some caliche fragments. In
the absence of CCU,, this cannot be
distinguished from H3.
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Table 5.9. (contd)

Stratigraphic Facies/ A-AX c
Symbol Formation Subunit Description Thickness | Thickness
Rui Ringold Ryi unit — Coarse-grained Ringold Formation sequence, Probably | Probably
Ancestral consisting of mostly moderately sorted, not present | not present
Columbia quartzitic sandy gravel to silty sandy gravel.

River System | Equivalent to middle Ringold Formation unit
braided-stream | (DOE 1988) and the Ringold Formation unit E
deposits gravels (Wood et al. 2003; Lindsey et al. 2001a).

CCUU/R = Upper Cold Creek unit/Ringold Formation.

CCU|/R = Lower Cold Creek unit/Ringold Formation.

H1 = Hanford formation, unit H1; equivalent to upper sand-dominated.
H2 = Hanford formation, unit H2; equivalent to middle sand-dominated.
H3 = Hanford formation, unit H3; equivalent to lower sand-dominated.
NA = Not applicable.

Qry = Quaternary flood gravels.

Qss = Quaternary flood silt and sand.

Ryi = Ringold Formation, member of Wooded Island.

The silt layer has an irregular surface (Figure 5.39) and may not extend much beyond WMA B-BX-
BY. The silt facies of the Hf/CCU is divided into two distinctive beds. The upper bed consists of a light
olive-brown- to tan-colored, massive, well-sorted fine calcareous silt to sand. Pedogenetic traces (i.e.,
root casts) occur locally. The silt bed is present locally mainly in the B tank farm area where the silt layer
is up to 10 m (30 ft) thick. In well 299-E33-338, it is 3 m (9.9 ft) thick (Figure 5.37). Elsewhere, it either
was not deposited or more likely was eroded.

A sequence of sandy gravel to gravelly sand occurs at the B, BX, and BY tank farms beneath the silt
facies and above the top of basalt that represents either cataclysmic flood deposits or ancestral Columbia
River deposits. Where the fine-grained facies is absent, the gravel sequence below the silt unit is
indistinguishable from similar-appearing facies of the H3 unit that is found in other areas such as WMA
A-AX (Wood et al. 2000). However, geophysical logs have been able to detect a calcium carbonate layer
in several wells, suggesting that, locally, it can be distinguished from the Hanford formation in the
absence of the silt-dominated sediment. Prior to the discovery of the thick silt layer, reported in Wood
et al. (2000), gravels overlying basalt bedrock were always included in the Hanford formation (Tallman
et al. 1979; Last et al. 1989; Connelly et al. 1992a; Lindsey et al. 1992). If the thick silt layer predates the
Hanford formation, however, then the underlying gravels must also predate the Hanford formation. Thus,
the gravel sequence beneath the silt layer must belong to either a mainstream alluvial facies of the
ancestral Columbia River (CCU time) or possibly the Ringold Formation, which was deposited by the
ancestral Columbia River. This unit is referred to as the Hf/CCU coarse subunit in this report.

In core, this sediment occurs as muddy sandy gravel to sandy gravel, consisting of approximately
30 to 80% gravel, 15 to 65% sand, and up to 15% mud (Lindenmeier et al. 2003). The gravel clasts consist
of a mixture of mostly quartzite, basalt, and some highly weathered friable granite. Where unbroken, the
gravel clasts are subrounded to rounded and range up to at least 60 mm in diameter (intermediate axis). The
matrix ranges from mostly very fine sand to poorly-sorted coarse to medium sand, with variable mud
content. These materials are moderate to uncemented with some caliche fragments.

The thickness of the gravel-dominated sediments ranges from 10 to 30 m (30 to 100 ft) (Figures 5.38
through 5.41). The upper surface of the sandy gravel to gravelly sand has approximately 10 m of relief
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Table 5.10. Stratigraphic Terminology and Unit Thickness for the B, BX, and BY Tank Farms

Stratigraphic

Symbol Formation Facies/Subunit Description Thickness®
Backfill NA Backfill - Gravel-dominated consisting of poorly to moder- 12m
Anthropogenic ately sorted cobbles, pebbles, and coarse to
medium sand with some silt derived from coarse-
grained Hanford formation (H1 unit) excavated
around tanks (Price and Fecht 1976¢, 1976d,
1976e; Wood et al. 2000); occasional layers of
sand to silty sand occur near the base of the
backfill sequence.
H1 Unit H1 — (Gravel- Gravel-dominated flood sequence; composed of Upto20m
dominated facies mostly poorly-sorted, basaltic, sandy gravel to silty
association). sandy gravel. Equivalent to the upper gravel
Cataclysmic flood sequence discussed by Last et al. (1989), the Qs
deposits (high- documented by Reidel and Fecht (1994b), Hanford
energy) Gravel Unit A of Johnson et al. (1999), coarse-
grained sequence (H1 unit) of Wood et al. (2000)
and gravel facies of unit H1 of Lindsey et al.
(2001a), and gravel-dominated facies association
Hanford of DOE-RL (2002).
H2 formation Unit H2 — (Sand- Sand-dominated flood sequence; composed of 30-60 m
dominated facies mostly horizontal to tabular cross-bedded sand to
association). gravelly sand. Some sand beds capped with thin
Cataclysmic flood layers of silty sand to sandy silt. Equivalent to
deposits (moderate Hanford Sands of Johnson et al. (1999), Fine-
energy) Grained Sequence (H2 unit) of Wood et al. (2000)
and unit H2 of Lindsey et al. (2001a), the sandy
sequence of Last et al. (1989) and Lindsey et al.
(1992), and to Q¢ documented by Reidel and Fecht
(1994b), and sand-dominated facies association of
DOE-RL (2002).
Hf/ICCU, Upper Post-Ringold Silty sequence; consisting of interstratified well- 0-10m
Formation eolian sorted silt. Uncemented but may be moderately to
and/or overbank strongly calcareous from detrital CaCO;. Equiva-
alluvial deposits lent to the “early Palouse soil” (Tallman et al.
1979; DOE 1988; DOE-GJO 1997) and the Hf/PP
deposits of Wood et al. (2000). Also equivalent to
Undiffentiated the upper Plio-Pleistocene unit in Lindsey et al.
Hanford (2001a) and the fine-grained, laminated to massive
formation/Cold lithofacies of the Cold Creek unit DOE-RL (2002).
Hf/CCU, Creek unit Lower gravel Gravelly sequence; consisting of open framework 10-30 m

resulting from eroded
Ringold or post-
Ringold Formation
fluvial deposits

gravel and sandy gravel to gravelly sand; may be
equivalent to pre-Missoula gravels in part and/or to
H3 gravel facies of the Hanford formation where
the fine facies is not present. It is possible some of
these gravels are remnants of Ringold Formation
unit A gravels.

(&) Multiply by 3.281 to convert meters to feet.
CaCO; = Calcium carbonate.
CCU, = Lower Cold Creek unit.
CCU, = Upper Cold Creek unit.
Hf/CCU = Hanford formation/Cold Creek unit.
NA = Not applicable.

Qsy = Quaternary flood gravels.

Qs = Quaternary flood silt and sand.
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(Wood et al. 2000). There is a depression in this unit over the northwest corner of the B tank farm. The
depression appears to be filled with the overlying silt-dominated sediments. The gravel facies is thinnest
and structurally low while the silt facies is thickest here, suggesting that it was eroded before the
depression was backfilled with silt (Wood et al. 2000).

5.4.2.4 Hanford Formation

The Hanford formation at the B, BX, and BY tank farm ranges from about 46 to 70 m (150 to 225 ft)
thick (Figures 5.38 through 5.41) and consists of a series of massive sands intercalated with beds of sand
and gravelly sands, and thinner lens of silts and clayey silts. It can be subdivided into a lower undiffer-
entiated Hanford formation/CCU gravel-dominated unit, a lower sand-dominated unit (H2), and an upper
gravel-dominated unit (H1). The contacts between the three are marked by a sharp increase in total
natural gamma from the gravelly units to the sandy unit.

The lower undifferentiated Hanford/CCU sediments are discussed above. Overlying them is the H2
unit, consisting of a sand-dominated sequence. The H2 unit is predominantly a poorly- to well-sorted,
medium- to coarse-grained sand with some silt layers (Wood et al. 2000). The upper part of the H2 unit is
slightly coarser than the lower part, with occasional pebbles floating in a coarse sand matrix. With depth,
the medium to coarse sand becomes more frequently interstratified with layers of fine- to medium-grained
sand. The salt-and-pepper appearance of the sand is distinctive and caused by the approximately equal
concentrations of basalt and quartz and feldspar. The H2 unit ranges from 30 m (110 ft) in the north to
60 m (200 ft) in the central and southern parts of the WMA (Wood et al. 2000). Two thin (<0.5 ft), fine-
grained silty layers were observed within the Hanford formation, H2 unit in borehole 299-E33-338
(Lindenmeier et al. 2003).

H1, the upper gravel-dominated unit, consists of mostly sandy gravel to silty sandy gravel, with lesser
amounts of gravelly sand. Thin (0.5-ft) silt layers are locally present within this sequence. The gravels
are multi-lithologic but generally contain a high percentage of basalt. The gravel clasts are generally
subrounded to well-rounded, and the finer fraction is described as mostly very coarse to coarse sand with
perhaps as much as 5 to 7% mud. The samples generally display no cementation or obvious sedimentary
structure.

Paleomagnetic data have been used to subdivide the Hanford formation based on magnetic polarity
reversals. Three polarity reversals have been identified in samples from boreholes 299-E33-335 and
299-33-338 in the WMA B-BX-BY area, while four reversals have been identified at the Integrated
Disposal Facility site to the south (Figure 4.13).

The lowermost Hanford/CCU gravels have normal polarity. The H2 sediment has three polarities.
The lower and middle parts have normal polarity, and the upper part of the H2 unit has reversed polarity.
The H1 unit has primarily reversed polarity; the upper part of H1 unit was not sampled but it probably has
the normal polarity of the current Earth magnetic field. The polarity sequences correlate well with the
Integrated Disposal Facility site (discussed in Chapter 6). The oldest reversed polarity found at the
Integrated Disposal Facility site appears not to be present at WMA B-BX-BY.
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5.4.25 Holocene Deposits and Backfill

Locally up to 13 m (45 ft) of backfill are present at WMA B-BX-BY. The backfill is poorly sorted,
gravelly sand to sandy gravel (Price and Fecht 1976c, 1976d, 1976e) from the gravel-dominated sequence
of the Hanford formation.
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6.0 Geology of the Integrated Disposal Facility

The Integrated Disposal Facility (IDF) is located south of the 200 East Area tank farms. The geology
of the IDF trench, which was constructed in 2004-2005, is summarized in Reidel and Fecht (2005). The
location is important in understanding the geology of the 200 East Area tank farms because of the detailed
characterization work in the trench exposure. The geology presented in this chapter is from Reidel
(2005).

6.1 Site Stratigraphy

The stratigraphy at the new IDF site consists of the Hanford formation and Ringold Formation
overlying the CRBG. Surficial sediments are mainly eolian deposits consisting of reworked Hanford
sands and silts.

The stratigraphy and the stratigraphic model developed for this study are summarized in Figure 6.1
and Table 6.1. The stratigraphy has been determined using data from numerous boreholes in the vicinity
(Figure 6.2) and detailed cross sections (Figures 6.3, 6.4, 6.5, and 6.6).

The stratigraphy of the new IDF site is divided from youngest to oldest into the following units:

e eolian deposits
o Hanford formation, upper gravel-dominated facies
e Hanford formation, sand-dominated facies

e Hanford formation, lower gravel-dominated facies

e Ringold Formation
— unitkE
— lower mud
— unit A

Columbia River Basalt Group.

A series of gravel and sand/silt units can be recognized in the Hanford formation layers (Table 6.1).
These units are not formally defined but are tentatively correlated across the IDF site. Additional work
will be necessary to verify these correlations. They are shown on the cross sections and in Table 6.1.
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Figure 6.1. Integrated Disposal Site Stratigraphy
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Figure 6.2. Fence Diagram of the IDF Site and Vicinity (modified from Reidel 2005)

6.1.1 Columbia River Basalt Group

Previous studies (Reidel and Fecht 1994a) have shown that the Elephant Mountain Member of the
CRBG underlies the IDF site, forming the base of the suprabasalt aquifers. No erosional windows are
known or suspected to occur in the IDF site area. Figures 4.4 and 6.3 show the elevation of the top of the
CRBG under the 200 East Area and vicinity. Borehole C4562 adjacent to 299-E17-21 encountered the
Elephant Mountain Member vesicular flow top at 165 m (540 ft) below ground surface (59.4 m [195 ft]
above mean sea level).
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Figure 6.3. Locations of Cross Sections A-A', B-B', and C-C' (modified from Reidel 2005)
6.1.2 Ringold Formation

Because few boreholes penetrate the entire Ringold Formation at the IDF site, data at depth are
limited. The Ringold Formation reaches a maximum thickness of 87 m (285 ft) on the west side of the
IDF site and thins eastward. It consists of three units of Ringold Formation member of Wooded Island;
unit A, lower mud, and unit E. The Ringold Formation member of Taylor Flat is not present at the IDF
site but has been identified in the southeast corner of the 200 East Area in borehole 299-E37-47A. These
sediments pinch out or were eroded beneath the IDF site.

The surface of the Ringold Formation is irregular beneath the IDF site area (Figures 6.4, 6.5, and 6.6).
A northwest-southeast—trending erosional channel is centered along the northeast portion of the site. The
deepest portion near boreholes 299-E24-7 and 299-E24-21 (Figure 6.6) is in the northern portion of the
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IDF site. Near wells 299-E17-23 and 299-E17-22, the channel may have cut all the way down to basalt.
This trough is interpreted to be a smaller part of a much larger trough under the 200 East Area resulting
from scouring by the Missoula floods or post-Ringold Formation fluvial incision prior to the Missoula
floods.

Based on only three, possibly four, boreholes penetrating Ringold Formation unit A in the study area
(Table 6.1), this unit is interpreted to overlie the CBRG across much of the IDF site. New groundwater
well 299-E17-26 may have penetrated this unit near the base of the well, according to the well-site
geologist’s log. If it did, then this would represent an isolated outcrop in the paleochannel that underlies
the IDF site.

Unit A is 30 m (100 ft) thick on the west side of the IDF site but pinches out to the northeast
(Figures 6.3, 6.4, 6.5, and 6.6). Unit A is sandy gravel consisting of both felsic and basaltic rocks. There
are occasional yellow to white interbedded sand and silt with silt and clay lenses. One silt layer occurs at
142 to 145 m (465 to 475 ft), and a second was encountered in a borehole drilled next to 299-E17-21 for
shear wave velocity measurements (borehole C4562) from 151 to 157 m (495 to 515 ft). Green-colored,
reduced-iron staining is present on some grains and pebbles. Although the entire unit appears to be
partially cemented, the zone produced abundant water in well 299-E17-21.

A maximum of 19 m (61 ft) of the Ringold Formation lower mud was encountered on the east and
south sides of the IDF site. The uppermost part (about 1.2 m [4 ft]) consists of a yellow sandy to silty
mud. The silty mud grades downward into about 10 m (34 ft) of blue mud with zones of silt to slightly
silty mud. The blue mud, in turn, grades down into 7 m (23 ft) of brown silty mud with organic-rich
zones and occasional wood fragments. The lower mud, like unit A, is absent in the center of the IDF site
(Figures 6.3 and 6.4).

Ringold Formation unit E overlies the lower mud and underlies the Hanford formation. Unit E is as
much as 15 m (50 ft) of sandy gravel to gravelly sand with scattered large pebbles and cobbles up to
10 inches in size. The gravel consists of both felsic and basaltic clasts, which are well-rounded with a
sand matrix supporting the cobbles and pebbles. Cementation of this unit ranges between slight and
moderate. The upper contact of unit E is not easily identified at the IDF site. In the western part of the
study area, unconsolidated gravels of the Hanford formation lie directly over the Ringold Formation unit
E gravels, making exact placement of the contact difficult. The dominance of basalt in the Hanford
formation and the general absence of any cementation are the key criteria used for distinguishing them
here (Reidel et al. 1998). In the central and northeast part of the area, unit E is interpreted to have been
eroded (Figures 6.3, 6.4, 6.5, and 6.6). Unconsolidated gravels and sands typical of the Hanford
formation replace them.

6.1.3 Hanford Formation

The Hanford formation is as much as 116 m (380 ft) thick in and around the IDF site (Figure 6.5A).
The Hanford formation reaches its greatest thickness along a northwest-southeast—trending trough under
the eastern part of the IDF site and thins to the southwest along the margin of the trough (Figures 6.3, 6.4,
6.5, 6.6, and 6.7).
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The Hanford formation consists of poorly sorted pebble to cobble gravel and fine- to coarse-grained
sand, with lesser amounts of interstitial and interbedded silt and clay. In previous studies of the IDF site,
the Hanford formation was described as consisting of three units: an upper and lower gravelly facies and
a sandy facies between the two gravelly units. The upper gravelly facies appears to be thin or absent in
parts of the IDF area. In Table 6.1, the elevations of the tops of several of the more distinct and
tentatively correlated units of the Hanford formation are given.

6.1.3.1 Lower Gravel-Dominated Facies

The lowermost part of the Hanford formation encountered beneath the IDF site consists of the lower
gravel-dominated facies, which is equivalent to the gravel-dominated facies of DOE (2002). Drill core
and cuttings from these boreholes indicate that the unit is clast-supported pebble- to cobble-gravel with
minor amounts of sand in the matrix. The cobbles and pebbles are almost exclusively basalt with no
cementation. In outcroppings, these deposits display massive bedding, plane to low-angle bedding and
large-scale planar forset cross-bedding, but such features typically cannot be observed in borehole core.
At the northeast end of the IDF site, the Hanford formation is over 33 m (109 ft) thick in borehole
299-E24-21 and thins to the southwest (27 m [88 ft] thick in 299-E17-21). The lower gravel decreases in
elevation across the IDF site (Figure 6.5C).

6.1.3.2 Sand-Dominated Facies

The upper portion of the Hanford formation ranges from 82 m (270 ft) to 186 m (283 ft) of fine to
coarse-grained sand with minor amounts of silt and clay and some gravelly sands. This sequence is
equivalent to the sand-dominated facies of DOE-RL (2002).

The texture of the sand-dominated facies changes across the IDF site, reflecting a higher-energy
environment for the floodwater to the northeast and east part of the site.

6.1.3.3 Upper Gravel-Dominated Facies

The upper gravel-dominated facies is present as a relatively thin layer across much of the IDF site
(Figure 6.3). Texturally it is very similar to the lower gravel-dominated facies.

6.1.3.4 Paleosols

Three main paleosols (soils) were identified in the sand-dominated facies core and one gravel unit
that allow the Hanford formation to be subdivided into at least three layers. The paleosol horizons
represent intervals when no sediments were deposited and soil development took place between periods
of Pleistocene cataclysmic flooding. The paleosols have abrupt upper contacts and less well defined
lower contacts. The paleosols are typically 4-6 in. thick, bioturbated, a lighter color than the surrounding
sediments, and characterized by a slightly higher moisture content (e.g., borehole C3177-170 depth below
ground surface, 5.26%). Calcium carbonate development is also present, suggesting that these paleosols
represent the Stage | carbonate morphology.

Layer 1. A poorly developed paleosol of sand and silt slightly cemented by calcium carbonate
(Stage | or Il carbonate development) defines the top of this layer. Only the upper several inches show
any cementation, but elevated concentrations of calcium carbonate extend to a depth of about 3 m (10 ft)
below the top. Calcium carbonate fragments and grain coatings were found at greater depths.
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Layer 1 may be as much as 1 to 1.7 million years old, based on interpretation of the paleomagnetism
(Figure 4.13) (Pluhar et al. 2003).

Layer 2. Layer 2 is capped by a paleosol that occurs at approximately 198 m (650 ft) elevation under
the IDF site, although disseminated flakes of calcium carbonate and calcium carbonate-cemented sand
grains suggesting Stage Il carbonate development are disseminated throughout. Layer 2 is older than
13 ka and younger than 720 ka and has a normal magnetic polarity (Figure 4.13). This layer is probably
part of the Matuyama reversed polarity that began about 0.78 Ma. The surface of Layer 2 decreases in
elevation eastward under the site (Figure 6.7B).

Layer 3. Layer 3 has two paleosols, although one is not present everywhere in the IDF site. It also
has two polarity reversals—a reverse polarity at the base of the sequence and a normal polarity between
the surface and the top of the reverse polarity (Figure 4.13) (Pluhar et al. 2006).

The uppermost paleosol is a 3-m (1.1-ft) thick, oxidized and leached zone of fine-grained sand and
silt with some pebbles with a 10-cm (4-in.) caliche zone (sand and silt cemented by calcium carbonate).
This forms the surface of much of the IDF site north of the eolian deposits. The lower paleosol caps the
lower 8 to 10 m (25 to 30 ft) of Layer 3 and is the top of the reversed polarity zone. Several minor silt
lenses are locally present but are discontinuous.

6.1.4 Clastic Dikes

Although there is no evidence for clastic dikes on the surface of the IDF site, a clastic dike was
encountered during the drilling of well 299-17-24 between 155.5 ft and 157.5 ft, and clastic dikes were
mapped in the trench. Clastic dikes may occur in both Hanford and Ringold sediments.

6.1.5 Eolian Unit

Eolian deposits cover the southern part of the IDF disposal site. Borehole 299-E17-21 was sited on a
stabilized sand dune. The eolian unit is composed of fine- to coarse-grained sands with abundant silt, as
layers and as material mixed with the sand. Calcium-carbonate coating found on the bottom of pebbles
and cobbles in drill core through this unit is typical of Holocene caliche development in the Columbia
Basin. This unit is equivalent to mapping unit Qd, Holocene Dune Sand, of Reidel and Fecht (19944,
1994b).
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7.0 Tectonic Development of the Hanford Site

The geologic history of the Pacific Northwest from the Precambrian to the present and the resulting
geologic structures that have developed at the Hanford Site significantly affect the seismic hazards of the
Site (Geomatrix 1996). This section summarizes the principal tectonic events in the development of the
Hanford Site and their hazards.

7.1 Summary

Microseismicity, high in situ stress conditions, and the geometry of Quaternary-Holocene faulting
indicate that the basin is still experiencing north-south compression. Although known late-Cenozoic
faults are found exclusively on the anticlinal ridges, earthquake focal mechanisms and strain measure-
ments suggest that most stress release is occurring in the synclinal areas. No earthquake events have been
shown to be related to known faults.

7.2 Contemporary Stress and Strain

7.2.1 Seismicity

Seismic monitoring at the Hanford Site began when the U.S. Geological Survey installed a small
array of seismograph stations around the Site in summer 1969. In 1982, a closely spaced seismic network
was installed at the Hanford Site to characterize the microseismicity on the Site for a possible subsurface
geologic repository for high-level waste. This network operated until 1988 when the number of stations
was reduced. Earthquakes of magnitudes 1.0 (Coda Amplitude Magnitude) and larger are currently being
located at the Hanford Site, and earthquakes of magnitude 2.5 and larger are located throughout most of
eastern Washington. Figures 7.1 through 7.3 summarize the location of historical and more recent
seismic activity in the Columbia Basin.

7.2.2 Earthquake Environments

Past seismic hazard studies at the Hanford Site have shown that earthquakes can be related to three
crustal layers (Table 7.1) and five general sources (Table 7.2). All layers and sources are monitored at the
Hanford Site except the Cascadia Subduction Zone, which is monitored by the University of Washington.

7.2.3 Vertical Patterns

Three horizontal layers of seismicity (seismic stratigraphy) are related to the stratigraphy of the
Hanford Site and vicinity—the CRBG, the pre-basalt sediments, and the crystalline basement (Table 7.1).
About 75% of the earthquakes originated in the CRBG layer. The pre-basalt sedimentary layer has had
8% of the events and the crystalline basement has had 17%.

7.23.1 Shallow Earthquakes in the Basalts

The majority of the seismicity at the Hanford Site and the surrounding area comes from the basalt
layer, which extends from the surface to approximately 4 km under the Site.
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Figure 7.1. Earthquake Swarm Areas in the Pasco Basin
7.2.3.2 Earthquakes in Sedimentary Rock Below the Basalt

The seismicity in the pre-basalt sedimentary rock appears to be confined to the top 3 km. The
seismicity of this sedimentary layer at the Hanford Site is relatively low when compared to the basalt
layer but may be related to localized detachment zones related to the growth of the anticlinal structures.

7.2.3.3 Earthquakes in the Crystalline Basement

Deep earthquakes below 10 km appear to be concentrated in the west and southwest portion of the
Hanford Site. The deepest earthquakes located below the Hanford Site are shallower than 30.0 km.
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Includes all earthquakes between 1850 and 1969 with a Modified Mercalli Intensity of V or larger or a
Richter magnitude of 4 or larger.

Figure 7.2. Historical Seismicity of the Columbia Basin and Surrounding Area

Using first-motion data from the Eastern Washington Regional Network and from the Basalt Waste
Isolation Project, focal mechanisms show faulting that strikes between N30°W and N80°W. While the
west-northwest strike is consistent, the throw on the assumed faults is not. These data indicate reverse

faults or strike-slip faults.
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All earthquakes from 1969 to 2001 with a Richter magnitude of 3 or larger are shown.
Figure 7.3. Seismicity of the Columbia Basin and Surrounding Areas as Measured by Seismographs

Table 7.1. Depths of Earthquakes

Layer Depth
Columbia River Basalt Group 0-5km
Pre-basalt sediments 5-10 km
Crystalline basement >10 km
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Table 7.2. Principal Locations of Earthquakes

Area Layer
Major reverse faults on ridges Mainly basalt, also pre-basalt sediments
Secondary faults on ridges Basalt
Swarm area Basalt
Basement Crystalline basement
Cascadia subduction zone Lithosphere - plate tectonic boundary

7.3 Spatial Patterns

Past studies (Geomatrix 1996) have concluded that there are five different tectonic environments
(earthquake sources) where earthquakes can occur near the Hanford Site and in the Columbia Basin of
eastern Washington (Table 7.2):

e reverse/thrust faults in the CRBG associated with major anticlinal ridges such as Rattlesnake
Mountain, Yakima Ridge, and Umtanum Ridge (Figure 3.1)

e secondary faults occurring on the major anticlinal ridges

o small geographic areas of unknown geologic structure that produce clusters of events (swarms),
usually in the CRBG in synclinal valleys

e basement source structures — Because very little is known about geologic structures in the
crystalline basement beneath the Hanford Site, earthquakes cannot be directly tied to a mapped
fault.

o the Cascadia Subduction Zone — This source recently has been postulated to be capable of
producing a magnitude 9 earthquake.

7.3.1 Floating Earthquakes

A special tectonic environment covering the entire Columbia Basin, including the Hanford Site, is
considered to be a “floating” earthquake. A floating earthquake is one that, for seismic design purposes,
can happen anywhere in a tectonic province and is not associated with any known geologic structure. It
can be floated anywhere in the province.

7.3.2 Earthquake Swarm Areas

The major source of earthquakes at the Hanford Site is swarm activity. There are three areas of
significant swarm activity: the Wooded Island Swarm Area, Coyote Rapids Swarm Area, and the Saddle
Mountains Swarm Area. Several less active areas are shown in Figure 7.1. These swarm areas are
located in synclinal areas in the YFB, and the majority of earthquakes at the Hanford Site occur in these
swarms.
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Although the swarm earthquakes (magnitude 0 to 4) are geographically correlated with the YFB, they
do not tend to align along the projections of the fault traces (Figure 7.4). The Wooded Island Swarm
Area, near the 300 Area, occurs at the eastern edge of the YFB where it abuts against the Palouse Slope.
This boundary marks the suture zone between the old accreted terranes to the west and the stable
Precambrian-Paleozoic craton to the east (Reidel et al. 1994). This zone also is marked by an abrupt
increase in thickness of basalt and sub-basalt sediment over the accreted terranes and abrupt thinning of
basalt and sediment over the craton.

The Coyote Rapids Swarm Area is at the horn of the Columbia River between the 100 K and 100 N
areas; it occurs over no known geologic structure. The swarm lies at the intersection of two paleoslopes
that make a northeast-southwest trough extending from Spokane, Washington, to the Columbia Gorge.
This zone may be an old basement weakness zone, but there is no known reason for the swarm to occur in
its present position.

The Saddle Mountains Swarm Area is along the north side of the Saddle Mountains. The swarm area
is north of the Saddle Mountains fault zone in an area that has no mapped geologic structures. There is
evidence for recent (post 13,000 years) faulting, but this faulting is part of the Saddle Mountains fault
zone. The cause of the earthquake swarm is not known at this time.

7.3.3 Magnitude of Earthquakes

Earthquake activity at the Hanford Site and in the Columbia Basin is summarized in Tables 7.3 and
7.4 and in Figures 7.2 and 7.3. There is no direct comparison between Richter magnitude (not calculated
as Coda Amplitude Magnitude), Modified Mercalli Intensity, and ground accelerations.

The largest magnitude earthquake on the Hanford Site was a 3.8 magnitude earthquake on
October 25, 1971, in the Coyote Rapids Swarm Area (Figures 7.1 and 7.3). The largest recent, felt
earthquake was a 3.3 magnitude earthquake on June 12, 1995, in the Wooded Island Swarm Area
(Figure 7.1). The largest regional earthquake was the 5.7 Milton-Freewater earthquake on July 16, 1936
(Figure 7.2); this earthquake occurred 100 km southeast of the Hanford Site. The 1936 Milton-Freewater
earthquake was estimated to have a peak acceleration of 0.03 g.

Although the swarm earthquakes (magnitude 0 to 4) are geographically correlated with the YFB, they
do not tend to align along the projections of the fault traces (Figure 7.4).

7.3.4 Contemporary Stress in the Cold Creek Syncline

Geodetic surveys (DOE 1988) were performed across the Pasco Basin to determine rates of
shortening. The data suggest north-south shortening but the rate of shortening is not statistically
significant at the 95% confidence level and the measurements are within the error limits of the recording
instruments.

Contemporary stress measurements were performed at the Hanford Site in the 1980s as part of the
U.S. Department of Energy Basalt Waste Isolation Project. Core disking and spalling in boreholes drilled
in the Cold Creek syncline indicate relatively high in situ stress (DOE 1988). Hydraulic fracturing tests
were conducted in boreholes in the Cold Creek syncline at about 1 km depth (DOE 1988). The results
also indicated high in situ stress. The maximum horizontal stress ranges from 52.6 to 67.4 MPa (7,630 to
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Figure 7.4. Relationship of Small Earthquakes to Geologic Structures

9,780 Ibf/inz); the minimum horizontal stress ranges from 30.3 to 35.7 MPa (4,400 to 5,180 Ibf/inz) with a
mean horizontal to vertical ratio of 1.77 + 0.20. The mean orientation of induced fractures, and the
direction of the maximum horizontal stress, is consistent with north-south compression (Reidel et al. 1994).
7.4 Geologic Hazards
74.1 Volcanic Hazard Assessment

Two types of volcanic hazards have affected the Hanford Site in the past 20 million years:

¢ continental flood basalt volcanism that produced the CRBG, which underlies the Hanford Site,
outcropping in the surrounding ridges, which is no longer a hazard

¢ volcanism associated with the Cascade Range, which still remains a hazard due to ash fall.
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Table 7.3. Earthquakes Equal to or Greater Than Modified Mercalli Intensity V in Columbia Plateau and
Surrounding Area from 1870 through 1980@"

Epicentral
Universal Intensity®
Date Time Magnitude Coordinates Location/Remarks

March 5, 1892 LT VI 46.6°N 120.5°W North Yakima, Washington
March 5, 1893 LT VI 45.9°N 119.3°W Umatilla, Oregon
July 5, 1911 08:00 \Y 47.0°N 120.5°W Ellensburg, Washington
February 28, 1918 23:15 \Y 46.5°N 120.5°W Yakima, Washington
November 1, 1918 17:20 Vi 46.7°N 119.5°W Corfu, Washington
September 14, 1921 11:00 VI 46.1°N 118.25°W Dixie-Walla Walla, Washington
September 18, 1934 24:00 LT \Y 47.0°N 120.5°W Ellensburg, Washington
September 26, 1934 16:15LT \% 47.0°N 120.5°W Ellensburg, Washington
September 26, 1934 16:45 \% 47.0°N 120.5°W Ellensburg, Washington
September 26, 1934 21:15 \Y 47.0°N 120.5°W Ellensburg, Washington
October 19, 1934 23:31LT \Y 47.0°N 120.5°W Ellensburg, Washington
November 1, 1934 07:28 \% 47.0°N 120.5°W Ellensburg, Washington
November 2, 1934 15:17 LT \Y 47.0°N 120.5°W Ellensburg, Washington
July 16, 1936 07:07:49.0 VIl, 6.1 MS 46.2°N 118.20°W Milton-Freewater, Oregon

5.75 ML (WCC Relocated)
July 18, 1936 16:30 \% 46.9°N 118.4°W Milton-Freewater, Oregon
August 4, 1936 09:19 \Y 45.8°N 118.6°W Helix, Oregon
August 28, 1936 04:39 \Y 45,9°N 118.4°W Milton-Freewater, Oregon
February 23, 1942 14:03 \% 47.6°N 120.2°W Wenatchee-Chelan Falls, Washington
October 31, 1944 11:34:28.7 \% 47.8°N 120.6°W Fish Lake, Washington
January 13, 1948 06:55:00 \Y4 47.9°N 120.3°W Lucerne-Waterville, Washington
January 7, 1951 22:45:00 \% 45.9°N 119.2°W McNary, Oregon
January 20, 1959 About 23:15 \Y 46.2°N 118.2°W Milton-Freewater, Oregon
July 23, 1966 01:57:08.8 4.3 MB 47.2°N 119.5°W Ephrata, Washington
December 20, 1973 01:08:28.2 V,4.4 MC 46.9°N 119.35°W 2.4-km depth Corfu, Washington
April 8, 1979 07:29:37.8 42 MC 46.0°N 118.4°W Walla Walla, Washington (UW)

(a) Davis (1981).
(b) DOE (1988).

(c) Latitude and longitude are used to define the location of historical earthquakes. Some times and coordinates have been
modified from the original source times and coordinates to better reflect the possible error of these early earthquakes.

(d) Modified Mercalli Intensity.

LT = Local time.

MB = Body-wave magnitude.

MC = Coda-length magnitude.

ML = Local magnitude.

MS = Surface-wave magnitude.

UW = University of Washington.
WCC = Woodward-Clyde Consultants.
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Table 7.4. Earthquake Listing for the Columbia Plateau and Surrounding Area from 1866 to 1966 " ©

Universal

Date Time

Intensity @/
Magnitude

Coordinates

Remarks

Earthquakes with Magnitude >3 or Inte

nsity 21V, 1866 to 1966

November 24, 1866 18:10 v 45.6°N 121.2°W The Dalles, Oregon

December 15, 1872 05:40 VI 49.0°N 121.0°W Lake Chelan, Washington
September 2, 1891 10:30 LT \V4 47.1°N 118.4°W Ritzville, Washington
September 17, 1891 04:30 v 44.9°N 121.0°W Salem, Oregon

February 29, 1892 10:45 v 45.6°N 121.2°W The Dalles, Oregon

March 5, 1892 LT VI 46.6°N 120.5°W North Yakima, Washington
March 5, 1893 LT VI 45.9°N 119.3°W Umatilla, Oregon

December 15, 1897 LT \% 47.8°N 120.0°W Lakeside, Washington

October 18, 1905 23LT \ 47.8°N 120.0°W Chelan, Washington

January 2, 1906 LT VI 48.7°N 117.8°W Stevens County, Washington
November 2, 1906 01:49 \Y 48.5°N 117.9°W Reported felt information
February 18, 1907 12:20 LT \ 47.8°N 120.0°W Chelan, Washington

January 21, 1909 05LT v 47.8°N 120.0°W Chelan, Washington

May 24, 1909 22LT \Y 47.7°N 120.4°W Chelan-Leavenworth, Washington
June 12, 1908 Unknown \% 45.0°N 117.25°W Cornucopia, Oregon

July 5, 1911 08:00 \% 47.0°N 120.5°W Ellensburg, Washington
October 14, 1913 23:00 \Y 45.7°N 117.1°W Seven Devils, Idaho

March 5, 1915 05:10 \V4 47.8°N 120.0°W Lakeside, Washington

March 5, 1915 05:30 v 47.8°N 120.0°W Lakeside, Washington

July 18, 1915 20:54 v 47.8°N 120.0°W Lakeside, Washington

August 18, 1915 14:05 \% 48.5°N 121.4°W Felt over 78,000 km? (30,000 mi?)
December 10, 1915 20:45 \V4 47.7°N 117.4°W Spokane, Washington

February 21, 1918 LT v 46.9°N 121.3°W Bumping Lake, Washington
February 28, 1918 23:15 \% 46.5°N 120.5°W Near Yakima, Washington
March 12, 1918 03:26 \Y 47.6°N 117.0°W Spokane, Washington

April 18, 1918 21:13 v 47.6°N 117.4°W White Bluffs Prairie, Washington
November 1, 1918 17:20 VI 46.7°N 119.5°W Corfu, Washington

October 7, 1920 02LT \Y 47.6°N 120.1°W Waterville, Washington
November 28, 1920 11:30 V-V 45.7°N 121.5°W Hood River, Oregon

September 14, 1921 11:00 Vi 46.1°N 118.2°W Dixie-Walla Walla, Washington
June 1, 1922 23:30 v 47.7°N 117.4°W Spokane, Washington

January 6, 1924 13:09 v 46.1°N 118.3°W Walla Walla, Washington
January 6, 1924 23:10 \Y 45.8°N 118.3°W Milton and Weston, Oregon
May 27, 1924 00:19:00 v 46.1°N 118.3°W Walla Walla, Washington
November 28, 1925 01:25:00 4.30 ML 47.5°N 116.0°W —

April 23, 1926 13:56:00 v 46.1°N 118.3°W Walla Walla, Washington
October 17, 1926 02:45:00 \% 45.7°N 121.5°W White Salmon, Washington
November 27, 1926 18:25 LT \% 47.5°N 116.0°W Near Rathdrum, Idaho
December 30, 1926 17:57:00 VI 47.7°N 120.2°W Chelan-East Central Washington
January 3, 1927 04:58:00 VI 47.6°N 120.6°W Leavenworth, Washington

April 8, 1927 05:00 \Y 44 .8°N 117.2°W Richland, Washington
September 3, 1930 13:00:00 \% 47.3°N 117.8°W Near Lamont, Washington
December 8, 1931 14:25:00 v 47.8°N 120.0°W Lakeside-Chelan Falls, Washington
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Table 7.4. (contd)

Universal Intensity @/
Date Time Magnitude Coordinates Remarks
Earthquakes with Magnitude >3 or Intensity >V, 1866 to 1966
May 31, 1933 20:20:00 v 47.8°N 120.0°W Chelan, Washington
May 31, 1933 20:30:00 v 47.8°N 120.0°W Chelan, Washington
March 9, 1934 16:00:00 (\V4 47.8°N 120.0°W Lakeside, Washington
September 18, 1934 24 LT \% 47.0°N 120.5°W Ellensburg, Washington
September 22, 1934 11:30 LT v 47.0°N 120.5°W Ellensburg, Washington
September 22, 1934 17:37 LT v 47.0°N 120.5°W Ellensburg, Washington
September 26, 1934 16:15LT \% 47.0°N 120.5°W Ellensburg, Washington
September 26, 1934 16:45LT \% 47.0°N 120.5°W Ellensburg, Washington
September 26, 1934 21:A5LT \% 47.0°N 120.5°W Ellensburg, Washington
October 4, 1934 02:26 LT v 47.0°N 120.5°W Ellensburg, Washington
October 11, 1934 21:19 LT v 47.0°N 120.5°W Ellensburg, Washington
October 19, 1934 23:31LT \% 47.0°N 120.5°W Ellensburg, Washington
October 29, 1934 18:36 LT v 47.0°N 120.5°W Ellensburg, Washington
November 1, 1934 07:28 LT \Y 47.0°N 120.5°W Ellensburg, Washington
November 2, 1934 15:17 LT \% 47.0°N 120.5°W Ellensburg, Washington
July 9, 1935 22:45:00 \% 47.7°N 120.0°W Near Chelan Falls, Washington
October 12, 1935 01:03 \Y 47.7°N 120.2°W Entiat, Washington
November 1, 1935 03:35 v 47.5°N 115.9°W Wallace, Idaho
July 16, 1936 07:07:49.0 VIl 6.10 MS 46.2°N 118.2°W Milton-Freewater, Oregon
5.75 ML
July 18, 1936 16:30 \Y 45.9°N 118.4°W Milton-Freewater, Oregon
July 30, 1936 11:20 \V4 45.9°N 118.4°W Freewater, Oregon
July 30, 1936 12:00 v 45.9°N 118.4°W Freewater, Oregon
July 30, 1936 12:20 v 46.1°N 118.3°W Walla Walla, Washington
August 4, 1936 09:19 \Y 45.8°N 118.6°W Helix, Oregon
August 28, 1936 04:39 \Y 45.9°N 118.8°W Milton-Freewater, Oregon
February 9, 1937 22:20 v 46.1°N 118.3°W Walla Walla, Washington
June 4, 1937 14:43 v 46.1°N 118.3°W Walla Walla, Washington
August 11, 1938 18:52 v 45,9°N 118.4°W Milton, Oregon
October 27, 1938 23:10 \Y} 45.9°N 118.4°W Milton, Oregon
January 26, 1939 07:59 v 45.7°N 118.7°W Mission, Oregon
November 29, 1939 04:39 \Y 47.7°N 120.0°W Chelan Falls, Washington
March 24, 1940 03:04 \V4 46.0°N 121.2°W Mt. Rainier, Washington
April 7, 1941 09:25 VI 4.50 ML 48.3°N 119.6°W Felt over 14,000 km? (5,500 mi?)
Mazanna, Washington
April 12, 1941 17:40 \V4 47.6°N 120.1°W Waterville, Washington
February 23, 1942 14:03 \% 47.6°N 120.2°W Wenatchee-Chelan, Washington
June 12, 1942 09:30 \% 44.9°N 117.1°W Halfway and Pine, Oregon
October 14, 1942 11:30 \Y 48.3°N 120.6°W Stehekin, Washington
November 1, 1942 18:50:06.0 VI15.50 ML 48.0°N 116.7°W Sandpoint, Idaho
April 24,1943 00:10:46.0 VI 47.3°N 120.6°W Felt over 24,000 km? (10,000 mi?)
Leavenworth, Washington
September 22, 1943 2150 LT v 48.0°N 119.0°W Grand Coulee, Washington
September 2, 1944 01:25:14.0 v 46.1°N 118.3°W Walla Walla, Washington
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Table 7.4. (contd)

Universal Intensity @/
Date Time Magnitude Coordinates Remarks

Earthquakes with Magnitude >3 or Intensity >V, 1866 to 1966

September 20, 1944 03:00 \Y} 44.9°N 116.9°W Rockville, Oregon

October 31, 1944 11:34:28.7 \Y 47.8°N 120.6°W Fish Lake, Washington

December 25, 1944 13:12:08.8 v 47.7°N 120.2°W Entiat, Washington

January 4, 1945 02:34:48.7 \Y 47.7°N 120.2°W Entiat, Washington

February 27, 1945 11:00 v 48.5°N 121.2°W Winthrop, Washington

March 2, 1945 07:54:59.3 \V4 47.7°N 120.2°W Entiat, Washington

September 23, 1945 02:40 v 46.1°N 118.3°W Walla Walla, Washington

February 5, 1946 16:12:42.0 v 47.8°N 120.2°W Chelan-Ardenvoir, Washington

February 6, 1946 03:20 v 48.5°N 121.4°W Marblemount, Washington

December 22, 1947 10:30 \V4 47.7°N 120.2°W Entiat, Washington

January 13, 1948 06:55 \Y 47.9°N 120.3°W Lucerne-Waterville, Washington

August 28, 1948 22:25 v 48.0°N 117.5°W Deer Park, Washington

October 25, 1948 19:50 \Y} 47.8°N 120.0°W Chelan, Washington

December 20, 1948 16:18 \V4 45.0°N 120.2°W Fossil, Oregon

March 15, 1949 20:53:11.0 4.80 ML 45.5°N 117.0°W Joseph, Oregon

October 20, 1949 16:00 \Y} 48.5°N 120.5°W Lost River, Washington

March 8, 1950 06:25 \V4 47.6°N 120.2°W Entiat, Washington

June 25, 1950 23:45 v 47.5°N 117.6°W Cheney, Washington

January 4, 1951 13:45 \% 47.7°N 120.0°W Chelan-Waterville, Washington

January 7, 1951 22:45 \Y 45.9°N 119.2°W McNary, Oregon

March 4, 1951 13:45:00.0 \Y 47.7°N 120.0°W Chelan-Waterville, Washington

March 4, 1952 19:42 \Y 47.7°N 117.4°W Spokane, Washington

September 9, 1952 09:30 v 48.7°N 116.3°W Felt Bonners Ferry, Idaho

September 9, 1952 09:45 v 48.7°N 116.3°W Felt Bonners Ferry, Idaho

September 9, 1953 09:30 \V4 48.7°N 116.3°W Felt Bonners Ferry, Idaho

May 23, 1954 13:41:42.0 \Y 48.342°N Twisp, Washington
120.137°W

June 8, 1954 00:16:13.0 \% 47.5°N 116.0°W Mortaern-Coeur d’Alene, Idaho

February 6, 1955 LT v 47.967°N Grand Coulee, Washington
119.000°W

May 31, 1955 23:35 \V4 47.7°N 116.8°W Felt Coeur d’Alene, Idaho

February 24, 1956 22:00 \Y 47.9°N 119.1°W Electric City, Washington

November 1, 1957 10:12:02.0 4.2 ML 46.7°N 121.5°W Mt. Rainier, Washington

December 18, 1957 25:25 5.0 ML 47.5°N 116.0°W —

April 12, 1958 00:00 v 47.9°N 119.1°W Electric City, Washington

April 12, 1958 22:37:11.0 4.1 ML 48.0°N 120.0°W Chelan, Washington

January 20, 1959 About 23:15 \% 26.2°N 118.2°W Milton-Freewater, Oregon

January 21, 1959 07:15 v 46.1°N 118.3°W Walla Walla, Washington

July 11, 1959 15LT v 47.6°N 119.3°W Deep Lake, Washington

August 6, 1959 03:44:32.0 4.4 ML 47.8°N 119.9°W Chelan, Washington

November 9, 1959 21:10 v 45.4°N 119.6°W Heppner, Oregon

May 22, 1961 01:57:51.4 v 47.6°N 120.2°W —

June 28, 1961 10:22:52.9 \V4 47.537°N Rocky Reach Dam, Washington
120.293°W
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Table 7.4. (contd)

Universal Intensity @/

Date Time Magnitude Coordinates Remarks
Earthquakes with Magnitude >3 or Intensity >V, 1866 to 1966
October 31, 1961 02:35 4.3 ML 48.4°N 120.0°W —
October 31, 1961 03:34:29.8 \ 48.4°N 120.0°W Felt over 3,000 km? (1,200 mi%)
January 15, 1962 05:29 4.3 ML 47.8°N 120.2°W Chelan, Washington
December 22, 1963 02:54:04.9 V 4.4MB 48.59°N 119.76°W Reported felt information
April 28, 1965 19:00 4.3 ML 48.6°N 116.9°W —
November 7, 1965 16:41:47.4 4.3 MB 44.9°N 117.0°W —
July 23, 1966 01:57:08.8 4.3 MB 47.2°N 119.5°W Ephrata, Washington
December 30, 1966 03:51:40.3 4.2 MB 44.9°N 117.0°W —

(a) Davis (1981).

(b) DOE (1988).

(c) Latitude and longitude are used to define the location of historical earthquakes. Some times and coordinates have been
modified from the original source times and coordinates to better reflect the possible error of these early earthquakes.

(d) Modified Mercalli Intensity.

LT = Local time.

MB = Body-wave magnitude.

ML = Local magnitude.

MS = Surface-wave magnitude.

Volcanoes in the Cascade Range are currently considered to be active, but activity associated with
flood basalt volcanism has ceased. The flood basalt volcanism that produced the CRBG occurred
between 17 million and 6 million years BP. Most of the lava was extruded during the first 2 to
2.5 million years of the 11-million-year volcanic episode. Volcanic activity has not recurred during the
last 6 million years, suggesting that the tectonic processes that created the episode have ceased. The
recurrence of Columbia River basalt volcanism is not considered to be a credible volcanic hazard (DOE
1988).

Volcanism in the Cascade Range has been active throughout the Pleistocene Epoch (approximately
2 million years BP to 10,000 years BP) and through the Holocene Epoch (10,000 years BP to present).
The eruption history of the Holocene best characterizes the most likely types of activity in the next
100 years. Many of the volcanoes have been active in the last 10,000 years, including Mount Mazama
(Crater Lake) and Mount Hood in Oregon, and Mount St. Helens, Mount Adams, and Mount Rainier in
Washington. The Hanford Site is approximately 150 km from Mount Adams, 175 km from Mount
Rainier, and 200 km from Mount St. Helens, the three closest active volcanoes. At these distances, tephra
(ash) is the only hazard. Mount St. Helens has been considerably more active throughout the Holocene
than Mount Rainier or than Mount Adams, which is the least active of the three. Probabilistic volcanic
hazard studies of the Cascade Range have been completed by the U.S. Geological Survey (DOE 1988;
Scott et al. 1995).

7.4.2 Seismic Hazard Assessment
A seismic hazard analysis was completed for the Hanford Site (Geomatrix 1996). Previous seismic

hazard analyses were done for Washington Public Power Supply System WNP 1/4 and WNP/2, which
also are located on the Hanford Site.
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The following discussion is based on the current seismic hazard analysis (Geomatrix 1996) that
incorporates seismo-tectonic data and interpretations that postdate the earlier assessment of the
Washington Public Power Supply System. For details of the source models and attenuation relationships
used in the hazard assessment, see Geomatrix (1996).

The following potential seismic sources were determined to be the major contributors to the seismic
hazard in and around the Hanford Site:

e crustal sources
— fault sources related to the Yakima Folds

— shallow basalt sources that account for the observed seismicity within the CRBG and not
associated with the Yakima Folds

— crystalline basement source region.

e (Cascadia Subduction Zone earthquakes.

The Geomatrix (1996) analysis is currently being revised based on data collected since that report.
That analysis will not be complete until 2007.
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