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Clearing Unexploded Ordnance: Bayesian
Methodology for Assessing Success

Kevin Anderson

Pacific Northwest National Laboratory
Richland, Washington

August 1, 2005

1 Introduction.

The Department of Defense has many Formerly Used Defense Sites (FUDS) that are slated

for transfer for public use. Some sites have unexploded ordnance (UXO) that must be

cleared prior to any land transfers. Sites are characterized using geophysical sensing devices

and locations are identified where possible UXO may be located.

In practice, based on the analysis of the geophysical surveys, a dig list of N suspect

locations is created for a site that is possibly contaminated with UXO. The suspect locations

on the dig list are often assigned into K bins ranging from “most likely to contain UXO”

to “least likely to be UXO” based on signal discrimination techniques and expert judgment.

Usually all dig list locations are sampled to determine if UXO is present before the site is

determined to be free of UXO. While this method is 100% certain to insure no UXO remains

in the locations identified by the signal discrimination and expert judgment, it is very costly.

This paper proposes a statistical Bayesian methodology that may result in digging less than

100% of the suspect locations to reach a pre-defined tolerable risk, where risk is defined in

terms of a low probability that any UXO remains in the unsampled dig list locations. Two

important features of a Bayesian approach are that it can account for uncertainties in model

parameters and that it can handle data that becomes available in stages. The results from

each stage of data can be used to direct the subsequent digs.

Prior research at PNNL was based on a probability model involving a known performance

matrix and an unknown site-dependent parameter, the true proportion of UXO on the site

(Anderson et al. 2003). The performance matrix specifies the probabilities of UXO and

non-UXO locations being assigned into each of the K bins, that is, it characterizes the

statistical model of the signal discrimination techniques and expert judgment. A Bayesian

approach was proposed in the estimation of the probability that there is no UXO left in the
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remaining unsampled suspect locations. Digging could be stopped once this probability was

determined to be high enough with desired statistical confidence. This paper extends this

previous Bayesian research to the case when the performance matrix has uncertainty. The

uncertainty is important because the higher it is, the more suspect locations would have to

be dug up.

The probability model and the figure of merit are described in Section 2. A discussion

of Dirichlet priors, used to model the uncertainty in the performance matrix, is presented in

Section 3. The calculation methodology, Markov Chain Monte Carlo, is presented in Section

4. Dynamic dig strategies are presented in Section 5. These strategies are based on additional

figures of merit which suggest which suspect locations should be dug up in subsequent

stages of sampling in order to reduce the risk of stopping digging. An appendix presents

the modifications to the probability model when the signal discrimination techniques and

expert judgment produces continuous numeric values instead of assigning suspect locations

to discrete bins.

2 The Probability Model.

Assume that there are N suspected UXO locations on the initial dig list for the site of

interest. The true state of each suspect location is given by Xi, which is a random variable

defined as

Xi =

{
1 if UXO is present
0 if UXO is not present

for i = 1, 2, . . . , N. (1)

Before the geophysical measurements have been taken, each Xi can be considered to be a

random sample from a Bernoulli distribution with probability determined by its expectation:

E(Xi) = Pr(Xi = 1) = p , (2)

where p is the proportion of identified suspect locations on the site that contain UXO.

Let Yi represent the binning response from the geophysical measurement system at the i-

th suspect location. The response Yi is a discrete random variable with K possible outcomes

ordered from 1 to K, where 1 means “most likely” to contain UXO and K means “least

likely” to contain UXO. The conditional probability distribution of the response Yi given the

true state Xi is determined by the geophysical measurement system performance matrix.

That is, there is a (K × 2) matrix A with (k, l)-element Akl, such that

Akl = Pr(Yi = k | Xi = l) for k = 1, 2, . . . , K and l = 0, 1 . (3)
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The performance matrix A is presented in Table 1. Each column of the performance matrix

is a multinomial probability distribution (and each column sums to one) which characterizes

the statistical model of the signal discrimination techniques and expert judgment used to

bin each suspect location.

Table 1: Performance Matrix A

Probability that a Probability that a
location that is location that is

Bin truly not UXO is truly UXO is
assigned to this assigned to this

bin bin
1 - highest likelihood of UXO A10 A11

2 - high likelihood of UXO A20 A21
...

...
...

K - lowest likelihood of UXO AK0 AK1

The data from the site of interest (unobserved until dug), (Xi, Yi), i = 1, 2, . . . , N, can

be tabulated into a (K × 2) contingency table. As counts in a two-way contingency table,

each suspect location randomly falls into a cell of the table according to a two-dimensional

probability matrix, given in Table 2. As data become available, the likelihood is based on

these probabilities.

Table 2: Two-Dimensional Probability Matrix

Bin Not UXO UXO Totals
1 (1− p)A10 pA11 (1− p)A10 + pA11

2 (1− p)A20 pA21 (1− p)A20 + pA21
...

...
...

...
K (1− p)AK0 pAK1 (1− p)AK0 + pAK1

Totals (1− p) p 1

The first data available to the analyst are the binning results, Y = (Y1, Y2, . . . , YN),

which are summarized by the bin counts (N1, N2, . . . , NK), where Ni is the number of suspect

locations assigned to bin i. The likelihood function of this data is

L(A, p ;Y) ∝
K∏

i=1

((1− p)Ai0 + pAi1)
Ni . (4)
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As suspect locations are dug, the likelihood changes. Let D be the set of n indices of the

suspect locations that have been dug up and let XD = {Xj ; j ∈ D} represent the dig results.

Then the likelihood is

L(A, p ;XD,Y) ∝ L(A, p ;Y)
K∏

i=1

(
(1− p)Ai0

(1− p)Ai0 + pAi1

)ni0
(

pAi1

(1− p)Ai0 + pAi1

)ni1

∝
K∏

i=1

((1− p)Ai0 + pAi1)
Ni−ni

K∏
i=1

((1− p)Ai0)
ni0 (pAi1)

ni1 (5)

where ni is the number of bin i suspect locations that have been dug up and ni1 and ni0 are

the number of these suspect locations that were found to be UXO or not, respectively.

2.1 Probability of No UXO Remaining.

If A and p were known, the probability that all of the remaining suspect locations are not

UXO, P0, is

P0 =
K∏

i=1

(
(1− p)Ai0

(1− p)Ai0 + pAi1

)Ni−ni

, (6)

where Ni−ni is the number of bin i suspect locations that remain undug. Because p and the

elements of the matrix A are random variables in our Bayesian approach, P0 is also a random

variable which depends on the binning results, dig results, and prior distributions. However,

for simplicity, this dependence is not reflected in the notation. The posterior distributions of

A and p given the data at each stage of analysis XD and Y can be propagated into a posterior

distribution for P0 from which probabilistic inferences can be made, such as determination

of lower confidence bounds.

In previous research, we assumed that the A matrix was a known input to the problem.

Our previous Bayesian analysis only had to contend with the prior distribution of p. In

this paper, we extend our Bayesian analysis to account for uncertainty in the A matrix by

assuming that two Dirichlet probability distributions are available to characterize the prior

distributions of the columns of the A matrix. The uncertainty in the A matrix results in

greater uncertainty in P0. The Dirichlet distribution is presented in the next section.

3 The Dirichlet Distribution.

The Dirichlet distribution is convenient as a prior distribution for this problem because it is

a conjugate family for multinomial distributed data (Berger 1985). The (K−1)-dimensional
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Dirichlet distribution with parameters (α1, α2, . . . , αK) can be described by the joint density

of (K − 1) variables

f(p1, p2, . . . , pK−1) ∝
K−1∏
i=1

pαi−1
i (1−

K−1∑
j=1

pj)
αK−1 , (7)

for αi > 0, pi ≥ 0,
∑K−1

i=1 pi ≤ 1, and f(p1, p2, . . . , pK) = 0 otherwise (Johnson and Kotz

1972). The constant of proportionality is not critical in calculations.

The conjugate family property can be seen as follows. Let M = (M1, M2, . . . ,MK) be

multinomial with probabilities (p1, p2, . . . , pK) and number of trials n =
∑K

i=1 Mi. If n is

given and the probabilities have a Dirichlet prior, then the posterior distribution on the

probabilities given the multinomial data is

f(p1, p2, . . . , pK−1 | M) ∝ f(M1, M2, . . . ,MK | n, p1, p2, . . . , pK−1)f(p1, p2, . . . , pK−1)

∝

K−1∏
i=1

pMi
i (1−

K−1∑
j=1

pj)
MK

K−1∏
i=1

pαi−1
i (1−

K−1∑
j=1

pj)
αK−1


∝

K−1∏
i=1

pαi+Mi−1
i (1−

K−1∑
j=1

pj)
αK+MK−1 , (8)

which is recognized as a Dirichlet distribution with parameters (α1 +M1, α2 +M2, . . . , αK +

MK). Hence, a Dirichlet prior yields a Dirichlet posterior, and further data (i.e., another

realization of M) updates the posterior by simply adding results to the Dirichlet parameters.

This updating property makes the Dirichlet distribution the natural prior distribution for

each column of the performance matrix A.

The Dirichlet distribution features a simple formula for the marginal expected values. If

(p1, p2, . . . , pK−1) has a prior Dirichlet distribution with parameters (α1, α2, . . . , αK), then

the prior expected value of pi is

E(pi) =
αi

α0

for i = 1, 2, . . . , K , (9)

where α0 =
∑K

j=1 αj and the posterior expected value of pi after observing M is

E(pi | M) =
αi + Mi

α0 + n
for i = 1, 2, . . . , K , (10)

where n =
∑K

i=1 Mi.
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3.1 Setting Dirichlet Parameters.

An Empirical Bayes approach to setting the prior distributions on the columns of the per-

formance matrix is natural. For example, if a seeded study of the signal discrimination

technique is performed, the columns of the (K × 2) contingency table of results can be used

as the parameters of the Dirichlet priors. Results gathered from the clearing of other similar

defense sites might also be used, where similar is in terms of ordnance used and geology.

Alternatively, the parameters of the Dirichlet priors can be set using just expert judgment.

For example, if the expert believes his Ai1 probabilities are the pi values in column 2 of Table

3, then the expert can set the parameters of the Dirichlet prior as

αi = Cpi for i = 1, 2, . . . , K , (11)

for some value of C > 0. By Equation 9, the marginal expected values of the Dirichlet

distribution are the given pi values. The choice of C will control the uncertainty, with a

larger value giving less uncertainty, as the relative standard deviation is

RSDi =

√
1− pi

(C + 1)pi

for i = 1, 2, . . . , K (12)

(see Berger 1985). Because there is only one parameter controlling the uncertainty of all K

probabilities, the expert cannot set the uncertainty on each probability individually. Table

3 presents two times the relative standard deviations as a percentage for some values of C

and for a fixed set of probabilities. For example, if the expert thinks his probabilities are

as in column 2 of Table 3 and that his 2-sigma uncertainty on p1 = 0.48 is about ±5%

(i.e., p1 ∈ (0.456, 0.504)), then he should choose C = 2000. In general, such a table could

be generated for the specific set of pi the expert has in mind, allowing him to choose an

appropriate value for C which models his uncertainties.

Expert judgment can be incorporated with empirical data using a Bayes/Empirical Bayes

approach. For example, if the expert models his initial beliefs regarding Ai1 as a Dirichlet

with parameters (α1, α2, . . . , αK) and empirical results from seeding the site of interest with

UXO give bin counts (X1, X2, . . . , XK), then the prior on the Ai1 probabilities for the analysis

of the site of interest is Dirichlet with parameters (α1 + X1, α2 + X2, . . . , αK + XK).

After the priors on the two columns of the A matrix are set, the prior on the parameter p

must be set. The initial PNNL research suggested the use of a Beta distribution (Anderson

et al. 2003). It just so happens that a Beta distribution is a Dirichlet distribution with
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Table 3: Example of Dirichlet 2-Sigma Relative Uncertainties

Probability Parameter Multiplier C
Bin pi 100 500 1000 2000 5000
1 0.480 20.8% 9.3% 6.6% 4.7% 2.9%
2 0.250 34.6% 15.5% 11.0% 7.7% 4.9%
3 0.150 47.6% 21.3% 15.1% 10.6% 6.7%
4 0.109 57.2% 25.6% 18.1% 12.8% 8.1%
5 0.010 199.0% 89.0% 62.9% 44.5% 28.1%
6 0.001 632.1% 282.7% 199.9% 141.4% 89.4%

K = 2. The two parameters can be set using information about dud rates for the ordnance

used at the site of interest, results gathered from the clearing of other similar defense sites, or

results from initial sub-site clearing. Choice of α1 and α2 is made easy using the expressions

for the mean and variance of the Beta distribution:

µ =
α1

α1 + α2

and σ2 =
α1α2

(α1 + α2)2(α1 + α2 + 1)
. (13)

These expressions are inverted as

α1 = µ

(
(1− µ)µ

σ2
− 1

)
and α2 = (1− µ)

(
(1− µ)µ

σ2
− 1

)
. (14)

So if prior information on p is represented as a mean µ and a variance σ2, then Equation 14

provides the values of α1 and α2 for the Beta prior distribution.

4 Markov Chain Monte Carlo.

The goal of the Bayesian analysis is to produce the joint posterior distribution of the pa-

rameters A and p conditional on the available data. It is then possible to make probabilistic

inferences on the parameters or functions of the parameters, such as P0 in Equation 6. The

Bayesian analysis is based on the fact that the joint posterior density function is proportional

to the product of the prior density functions and the likelihood function. Section 3 proposed

the use of Dirichlet distributions as priors for the two columns of A and for p. Likelihood

functions were given in Section 2, Equations 4 and 5, depending on what data is available.

The clearing of the site can be performed in stages, with a Bayesian analysis at each stage

assessing how well cleared the site is and guiding the subsequent stage of clearing. More

discussion on this is in Section 5.
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Unfortunately, the likelihood functions in Equations 4 and 5 are too complicated to

admit a closed form solution for the posterior distribution. Thus, producing the posterior

distribution at each stage in the site clearing process is a numerical analysis problem. Markov

Chain Monte Carlo algorithms (MCMC) are powerful tools for solving the problem (Gilks

et al. 1996). MCMC produces pseudo-randomly generated data from the desired posterior

distribution. These simulated data are then used to make the desired probabilistic inferences

on the parameters or functions of the parameters.

We propose the use a form of MCMC known as an “independence sampler Metropolis-

Hastings” algorithm (Tierney 1994). While it is one of the easiest MCMC algorithms to

implement, the numerical details will be omitted from this paper. Our approach is to generate

the random data from Dirichlet distributions using maximum posterior analyses to set the

parameters of the distributions. Our implementation is in the R language and environment

for statistical computing and graphics. R is available as Free Software under the terms of

the Free Software Foundation’s GNU General Public License (see www.r-project.org).

5 Dynamic Dig Strategies.

Our proposed dig strategy is to first sample some suspect locations from each of the K bins

and then to let the dig results guide the subsequent sampling. The preliminary sampling

will provide a check on the prior beliefs regarding the performance of the discrimination

procedure at the site. Of course, all suspect locations judged most likely to be UXO will

have to be dug up, so the strategies discussed below will pertain to the suspect locations

with lower likelihoods of being UXO.

Interim results from the sampling and Bayesian analysis can be used to guide the subse-

quent sampling. It is useful to examine the conditional probabilities

P0i =
(1− p)Ai0

(1− p)Ai0 + pAi1

for i = 1, 2, . . . , K , (15)

which represent the likelihood that a remaining Bin i suspect location does not contain UXO.

Because these conditional probabilities enter into the calculation of P0 in Equation 6, they

need to be large, i.e., close to 1, in order for P0 to be large. We can estimate the posterior

expected values of these conditional probabilities using the simulated MCMC A and p values.

Other useful quantities are the expected number of UXO remaining in each bin. These

are calculated by (Ni−ni)(1−P0i) for i = 1, 2, . . . , K and the goal is to minimize them. The
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expected number of UXO remaining could have great importance in the decision to transfer

a site to public use.

One can use the MCMC analysis in a predictive manner to decide how many suspect

locations of any Bin need to be dug up. This involves doing calculations using predicted

dig outcomes. For example, if the least likely to be UXO bin remains unsampled, we can

calculate the effect on P0 of digging 100 more suspect locations and finding no UXO among

them. In this manner of forward calculations, we can determine approximately how many

more samples are required before we can stop digging.

5.1 Digging by Spatial Blocks.

Implicit in the discussion thus far has been the ability to dig up desired individual suspect

locations. It may be case that the site of interest is spatially partitioned into blocks and

that for cost and effort reasons digging will be done by blocks. This means that instead

of choosing to dig all suspect locations from a certain bin, the analyst has to choose which

blocks to dig. Hence, the analyst has substantially less freedom to determine from which

bins the locations will be sampled. However, the dig results can still be summarized in terms

of Bin and UXO/Not UXO counts and the likelihood produced as in Equation 5.

6 Conclusions.

A probability model was presented which can be used to analyze the type of data available

from geophysical surveys and digging of suspect UXO locations at FUDS that are slated for

transfer for public use. Dig strategies were discussed that reduce the probability that any

UXO remains in the unsampled dig list locations to a tolerable level so that a complete sam-

pling is unnecessary. A Bayesian methodology was proposed to account for the uncertainties

involved with discriminating suspect locations into bins ranging from “most likely to contain

UXO” to “least likely to be UXO.”
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7 Appendix.

In this appendix we present the model for continuous metric UXO discrimination. That is,

instead of assigning suspect locations to discrete bins, Yi = k, which range from “most likely

to contain UXO” to “least likely to be UXO,” Real numeric values, Yi = yi, are produced;

the larger the value, the more likely to contain UXO. In this case the performance matrix

is replaced by two probability density functions representing the distributions of Yi given

Xi = 0 (not UXO) and Yi given Xi = 1 (not UXO):

f(yi ; θ0) and f(yi ; θ1), (16)

respectively, where θ0 and θ1 are the parameters of the conditional distributions. Implicit in

the above is that the two density functions are from the same distributional family, that only

the parameters θ0 and θ1 are different. The model could be made more general by allowing

two completely different density functions, but using a single distributional family such as

Normal or Beta should be adequate. For example, if Normal distributions are used, then

θ0 = (µ0, σ
2
0) and θ1 = (µ1, σ

2
1).

The marginal density function of Yi = yi (i.e., when Xi is not known) is the mixture

density g(yi ; θ0, θ1, p) = (1− p)f(yi ; θ0) + pf(yi ; θ1). The likelihood function of Equation 4

is replaced by

L(θ0, θ1, p ;Y) =
N∏

i=1

g(Yi ; θ0, θ1, p) , (17)

which represents the data before any suspect locations have been dug up. The likelihood
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function of Equation 5 is then replaced by

L(θ0, θ1, p ;XD,Y) =
∏
i∈R

g(Yi ; θ0, θ1, p)
∏

i∈D0

((1− p)f(Yi ; θ0))
∏

i∈D1

(pf(Yi ; θ1)) (18)

as suspect locations are dug, where D is the set of indices of the suspect locations that have

been dug up, R are those that have not been dug up (the remaining), and D1 and D0 are

the indices of the suspect locations that were found to be UXO or not, respectively. Prior

distributions on θ0 and θ1 are the last inputs required for the Bayesian analysis. Consult

Berger (1985) for mathematically convenient priors for the chosen distributional family.

The probability of no UXO remaining on the site of interest in Equation 6 is replaced by

P0 =
∏
i∈R

((1− p)f(Yi ; θ0)/g(Yi ; θ0, θ1, p)) . (19)

The terms in the product represent the posterior probabilities (given Y and the dig data XD)

that the unsampled suspect location i is not UXO. Typically, these posterior probabilities

are smaller for larger values of Yi, so digging up the suspect locations with the largest values

of Yi will reduce the risk that any UXO remains.
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