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Summary 
 
 

Visual Sample Plan (VSP) is an easy-to-use visual and graphic statistically-based software tool being 
developed by the Pacific Northwest National Laboratory (PNNL) to help determine the appropriate 
number and location of environmental samples so that environmental decisions can be made with the 
required confidence.  The VSP software, which is available free at http://dqo.pnl.gov/vsp, is a significant 
aid in developing probability-based sampling designs (number and location of samples and 
measurements) using the Data Quality Objectives (DQO) planning process developed by the U.S. 
Environmental Protection Agency (EPA).  VSP also has the capability of conducting statistical analyses 
to provide descriptive statistical summaries of data sets, to test whether data are normally distributed, and 
to compute upper confidence limits on means.  

 
This report is the latest in a series of reports that document the statistical methods used in VSP    
[Davidson (2001), Gilbert et al. (2001), Gilbert et al. (2002), and Gilbert et al. (2003)] and the quality 
assurance (QA) activities conducted by PNNL to verify that VSP computations are correct and accurate.  
This report focuses on the VSP buildings module that was developed with support from the Department 
of Homeland Security (DHS), Combating Terrorism Technology Support Office (CTTSO), and the 
Technical Support Working Group (TSWG).  Section 1.0 provides an introduction and overview of the 
buildings module, while Section 2.0 describes the statistical computations and methods used.  Section 3.0 
provides the results of the QA activities.  Section 4.0 is the reference list. 
 
The QA verification results in Section 3.0 demonstrate that VSP is providing correct and accurate 
computations for  
 

• the number of samples required for the various sampling objectives and design options  
• all statistical calculations, including descriptive statistics, statistical tests for evaluating if data 

are normally distributed, and upper confidence limits on the mean, and 
• the graphs of data used to visually evaluate if data are normally distributed. 
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1.0 Introduction and Overview of the Buildings Module 
 
 
Visual Sample Plan (VSP) is a software tool under development at the Pacific Northwest National 
Laboratory (PNNL) with support from the U.S. Department of Energy (DOE), the U.S. Environmental 
Protection Agency (EPA), the U.S. Department of Defense (DoD) via the Strategic Environmental 
Research Development Program (SERDP) and the Environmental Security Technology Certification 
Program (ESTCP), the U.S. Navy, and the Department of Homeland Security (DHS). 
 
This report focuses on the VSP buildings module that was recently added to VSP with support from DHS 
through the Combating Terrorism Technical Support Office, Technical Support Working Group (TSWG).  
The motivation for developing the buildings module is the possibility that biological, chemical, or nuclear 
agents may be used in terrorist attacks on buildings.  If these attacks should occur, measurements of 
building surfaces will be needed to decide whether specific rooms or suites of rooms have been 
contaminated, require decontamination, have been successfully decontaminated, or have been 
recontaminated.  The VSP buildings module complements other modules in VSP that were developed to 
determine the number and location of samples needed to assess the levels of contamination in soils and 
sediments, as documented in the VSP User’s Guide [Hassig et al. (2004) and Hassig et al. (2005)].   
 
The buildings module helps the VSP user to quickly determine the number and location of samples 
needed for a user-defined “target population.”  The target population is a specified portion of surfaces 
(walls, floors, ceilings, doors, and windows) in a room or a suite of rooms for which a decision is needed.  
For example, a target population might consist of all floor, wall, and ceiling surfaces in two adjacent 
rooms that share an air circulation system.   

 
VSP determines the number and location of samples needed for a defined target population when a 
decision about the population will be made on the basis of  

 
• comparing the mean or median to an action level (AL) (threshold value) 
• comparing individual measurements to an AL, or 
• comparing both an average and individual measurements to ALs.  

   
If the data are normally distributed, VSP determines the number and location of samples or in-situ 
measurements for four statistical tests that compare the mean to an AL:  
 

• the one-sample t test 
• the Sequential Probability Ratio Test 
• Barnards Sequential t test, and  
• Collaborative Sampling.   

 
If the data are not normally distributed, VSP determines the number and location of samples or in-situ 
measurements for two statistical tests that compare the median (50th percentile) to an AL: 
 

• MARSSIM Sign test, which is applicable to any non-normally distributed set of data 
• Wilcoxon Signed Ranks test, which is applicable to any symmetric non-normally distributed set 

of data. 
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MARSSIM is an acronym for Multi-Agency Radiation Survey and Site Investigation Manual. When 
comparing individual samples or in-situ measurements to the AL, VSP determines the number and 
location of samples or measurements needed for making decisions using the following statistical methods:  
 

• Assessing if circular or elliptical hot spots that exceed a specified size and AL are present  
• Comparing a parametric one-sided upper tolerance limit (UTL) to the AL to assess if the 

fraction of the target population that exceeds the AL is larger than what can be tolerated.  The 
method assumes that the data are normally distributed 

• Comparing a non-parametric (distribution-free) one-sided UTL to the AL to assess if the fraction 
of the target population that exceeds the AL is larger than what can be tolerated.  This UTL is 
valid regardless of the underlying distribution of the data. 

• Using acceptance sampling to assess if the percentage of the target population that exceeds the 
AL is larger than what can be tolerated.  The target population consists of a finite number of 
small square geographical “grid units,” a subset of which are measured.  A grid unit might be the 
area over which a swipe or swab sample is taken, or the area (location) that is effectively scanned 
by an in-situ detector.  

• Using the Wright-Grieve Bayesian method to determine the number of small grid units in the 
target population that must be measured and found to be less than the AL (or more generally, to 
be non-defective) to state with specified confidence that all of the grid units in the target 
population are less than the AL.     

 
All of these methods are defined and discussed in Sections 2.1, 2.2 and 2.3.  The methods described in 
these sections were originally developed for other VSP modules (Gilbert et al. 2002).  The methods 
described here in Sections 2.3.2 through 2.3.6 for comparing individual measurements to ALs were 
developed specifically for the buildings module.  The QA activities performed for the previously 
developed methods are discussed in Section 3.1.  QA activities for the new buildings module methods are 
documented in Section 3.2.   
 
The measurements obtained at locations determined using the buildings module can be entered into VSP 
in order to compute summary (descriptive) statistics, test for normally distributed data, and compute one-
sided upper confidence limits for the mean, and more generally, make decisions on the basis of the data.  
VSP reports the results of these analyses and automatically prepares a project report that summarizes and 
describes the sampling objectives, number and location of samples, underlying assumptions, costs, and 
other information needed to document the basis of data-based decisions.  The project report also includes 
a sensitivity analysis that shows the sensitivity of the required number of samples to changes in VSP user 
inputs (data quality objectives: DQOs).  The latest User’s Guide for VSP (Hassig et. al, 2005) includes 
instructions for using the buildings module.  The User’s Guide can be downloaded from 
http://dqo.pnl.gov/vsp. 
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2.0 Documentation of Statistical Methods and Computations 
 
 
2.1 Compare Mean to a Threshold when Data are Normally Distributed 
 
2.1.1 One-Sample t Test 
 
The one-sample t-test can be used to test if the true mean of the population exceeds a fixed upper limit 
(action level).  The equation used in VSP to compute the minimum recommended number of samples, n, 
needed for the test when the VSP user specifies that only r = 1 analytical measurement for each sample 
will be made is 
 

 

( ) 2
12

2
11

2

5.0 α
βα

−
−− +

∆
+

= Z
ZZs

n total

 (1) 
 
If the VSP Measurement Quality Objectives (MQO) module is used, which allows for r = 1, 2, or 3 
analytical replicates of each field sample, then the equation that is used to compute n is 
 

 

( )
2
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2
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2
2
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βα

−

−−

+
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+⎟
⎟
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⎞
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⎛
+

= Z
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s

s
n

analytical
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 (2) 

 
The notation used in Equations (1) and (2) is defined in Table 1.  These equations are computed using the 
values of α ,β , ∆ , r , stotal , ssample , and sanalytical that are specified by the VSP user. 

 
Table 1.  Some Notation used in this Report 

Notation Description 
n 
 

the minimum recommended number of samples or observations that should be collected or 
obtained from the target population, as computed using one of the sample-size equations or 
algorithms in VSP. 

r the number of measurements (analytical replicates) that will be obtained for each sample. 
       α  the probability that the VSP user is willing to tolerate that a Type I decision error will be made, 

i.e., that the data collected and used in the appropriate statistical test will falsely reject the null 
hypothesis.  For example, if the null hypothesis is “the mean concentration of the target 
population exceeds the action level (AL),” then α is the probability the VSP user can tolerate 
that the statistical test computed using the n data will incorrectly indicate that the mean 
concentration does not exceed the AL; in short, calling a “dirty” site “clean.” 

      β  
 

the probability the VSP user is willing to tolerate that a Type II decision error will be made, i.e., 
that the data collected and used in the appropriate statistical test will falsely accept the null 
hypothesis.  For example, if the null hypothesis is that the mean concentration of the target 
population exceeds the AL, then β   is the probability the VSP user can tolerate that the 
statistical test computed using the n data will falsely indicate the mean concentration does exceed 
the AL; in short, calling a “clean” site “dirty.” 
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        ∆ the width of the “gray region” in the Decision Performance Goal Diagram (DPGD) used in the 
DQO process (EPA 2000a) and in VSP.  For example, if the sampling objective is to compare the 
true mean of the target population to the true mean of a reference or “background” population, 
then  is the difference between the true target population mean and the true reference mean 

that the VSP user specifies is important to detect with (high)  probability 1 - 

∆
β .  Similarly, if the 

objective is to compare the mean of the target population to a fixed AL, then is the difference 
between the true mean and the AL that is important to detect with (high) probability 1 - 

∆
β . 

      σ total
2 the true total variance of the population of all possible measurements made on all possible  

samples collected from the target population.  The model of the true total variance used in VSP is 

 
                             σ σ σtotal sample analytical

2 2 2= +

where    is the true variance component due to the analytical measurement process in 

the laboratory and  is the true variance component due to all other sources of variation, 

including variations in true concentrations at different target population locations and the 
variance added due to selecting, collecting, and transporting samples to the laboratory. 

σ analytical
2

σ sample
2

      stotal
2 the computed estimate of the true total variance, .  If r = 1 for all n samples, then the 

quantity  is computed as 

σ total
2

stotal
2

                            
( )

s
x x

ntotal

i
i

n

2

2

1

1
=

−

−
=
∑

   , 

 
where  is the measurement obtained for the single aliquot or measurement from the ixi

th sample 
and x  is the arithmetic mean of the n measurements, . xi

     ssample
2 an estimate of the total variance of the data  that would be obtained if  xi

σ analytical
2 = 0. 

    sanalytical
2 an estimate of the total variance of the data  that would be obtained if the only variability in 

the data was due to the analytical process, i.e., if = 0. 

xi

σ sample
2

    t  df1−α ,
the value of the Student’s t-distribution with df degrees of freedom.  By definition, the proportion 
of the distribution to the left of the value t is 1- α. A table of the values of is found 

in most statistics books, e.g., Gilbert (1987, Table A2, page 255). 
df1−α , t df1−α ,

     Z1−α
the value from the standard normal distribution for which the proportion of the distribution to the 
left of is 1- α.  A table of the values of  is found in most statistics books, e.g., Gilbert 

(1987, Table A1, page 254).  If the selected probability of a false rejection, 

Z1−α Z1−α

α , is made smaller, 
then  will be larger, leading to a larger number of samples.  If the null hypothesis is that the 
concentrations in the target population exceed the action level, i.e., that the target population is 
“dirty,” then can be thought of as an index number whose magnitude quantifies the strength 

of our desire to avoid deciding a dirty target population is clean. 

Z1−α

Z1−α
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     Z1−β
the value of the standard normal distribution for which the proportion of the distribution to the 
left of  is 1- β.   If the selected probability of a false acceptance of the null hypothesis, β, is 

made smaller, then will be larger, leading to a larger number of samples.  If the null 

hypothesis is that concentrations for the target population exceed the action limit, i.e., that the 
target population is “dirty,” then can be thought of as an index number whose magnitude 

quantifies the strength of our desire to avoid deciding a clean target population site is dirty. 

Z1−β

Z1−β

Z1−β

   φ( )z  the cumulative standard normal distribution function, i.e., 

                                        
φ π( )z e x

z

= −

−∞
∫1

2

1
2

2

dx
 

A table of φ( )z values is provided in most statistics books, e.g., Gilbert (1987, Table A1, page 

254). 
 
The assumptions that underlie the derivation of Equation (1) are that the data are normally distributed and 
representative of the target population, they are not spatially or temporally correlated, and that 

x kstotal− is normally distributed with mean µ σ− k  and variance 
σ 2 2

1
2n
k⎛

⎝
⎜

⎞
⎠
⎟ +
⎛
⎝
⎜

⎞
⎠
⎟  where k is a given 

constant (Guenther 1981).  The derivation of Equation (1) is found in Wallis (1947), Guenther (1977), 
EPA (2000a, Appendix A), and EPA (1992, pp. F-8, F-9, and F-10).  Equation (1) is used in the statistics 
book by Bowen and Bennett (1988, pp. 155, 156), EPA (2000a), EPA(1994, p. 21), and EPA (2000b, pp. 
3-7).  
 
Guenther (1981) indicates that although Equation (1) is an approximation to the true minimum sample 
size required for the one-sample t-test, Equation (1) usually yields the exact solution for n.  The exact 
solution is obtained using an iterative approach using tables of the non-central t distribution found in 
Owen (1965).   
  
Equation (2) also should provide a very accurate approximation of n for a specified value of r because it is 
a straightforward extension of Equation (1) to the case of r > 1.  For this case, it is easily shown that the 
total variance is estimated by computing        
    

r
s

ss analytical
sampletotal

2
22 += . 

 
Inserting this equation for s  into Equation (1) yields Equation (2). total

2

 
2.1.2  Sequential Sampling (Sequential Probability Ratio Test) 
 
Sequential sampling of small batches of samples or measurements over time is provided in VSP to test if 
the true mean exceeds a specified threshold value (AL).  The sampling is sequential in the sense that 
several sequential (in time) samplings of the target population are made until the statistical test has the 
power (ability) specified by the VSP user to decide between the null or alternative hypothesis.  Sequential 
tests are useful if samples can be easily obtained and analyzed (measured) in small batches over time.   
 
The Sequential Probability Ratio Test (SPRT) (Wald 1947; Wetherill 1966) is discussed in this section.  
This test requires that the standard deviation of the measurements be known with great accuracy before 
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the sequential sampling study is conducted.  In Section 2.1.3, Barnard’s sequential test is discussed 
(Barnard, 1952; Wetherill, 1966).  Barnard’s test can be used in place of the SPRT when the standard 
deviation is not known with great accuracy, which is the usual situation.  
 
The assumptions that underlie the SPRT test are that the data are normally distributed and representative 
of the study site, the data are not spatially or temporally correlated, and the standard deviation of the data 
to be collected is known with great accuracy. 
 
The SPRT test in VSP works as follows if a map with a specific selected target population, e.g., the walls 
of a room, is drawn or loaded into VSP: 
 

• The VSP user inputs the DQO parameters (α ,β , null hypothesis, width of the gray region, 

known standard deviation (σ ), and the threshold value) in the design dialog box.  Also, the 
number of samples to collect on each sampling excursion is specified.  When the “Apply” button 
in VSP is pressed, VSP places the required number of sampling locations for the first sampling 
occasion on the map.  VSP also provides a listing of the geographical coordinates of the required 
samples. 

• The samples are collected and analyzed for the bio/chem/rad threats of concern. 
• The VSP user reopens the SPRT design dialog box, presses the “Input Values” button, and inputs 

the measurements obtained for the samples collected.  The VSP user then closes the data input 
dialog box and VSP computes the mean and determines whether another round of sampling is 
needed before a decision can be made by the SPRT whether to accept the null hypothesis or the 
alternative hypothesis.  The sample mean is plotted on a decision graph in the VSP “Graph View” 
for ease of interpretation. 

• If another round of sampling is needed, the Apply button is pressed and VSP places the additional 
sampling locations on the map (avoiding existing sampling locations) and provides the 
geographical coordinates of the new samples.  

 
The last three bullets above are repeated until there is enough data so that the SPRT can either accept the 
null hypothesis or the alternative hypothesis with the probabilities of making decision errors specified by 
the VSP user.  It is useful to watch the VSP Graph View during the sequential sampling and testing 
process to see how close the SPRT is to making a decision.   
 
If no sample areas on the target population map have been selected by the VSP user, or no map is being 
used, then the VSP user can enter as few or as many data values as desired.  Also, in this case, it is not 
necessary to close the design dialog box in order to enter more data values. 
 
Suppose the null hypothesis selected by the VSP user is that the target population is dirty.  Then the 
SPRT determines that there is enough evidence to accept the null hypothesis if the mean of the sample 
values is greater thanUL , where d

UL AL
A
nd = − +

∆
∆2

2σ

. 
 
Also, the SPRT determines that there is enough evidence to accept the alternative hypothesis if the mean 
of the sample values is less than LLd , where                                 
                                     

LL AL
B
nd = − −

∆
∆2

2σ
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and 
 

A =
−

ln
1 β
α

            

B =
−

ln
1 α
β

 

ln is the natural logarithm 
α  is the maximum acceptable Type I decision error rate (probability of rejecting the null             

        hypothesis when the null hypothesis is true) 

β is the maximum acceptable Type II decision error rate (probability of accepting the null  
hypothesis when the null hypothesis is false) 

∆  is the width of the gray region in the Decision Performance Goal Diagram (DPGD) 
σ 2  is the variance of the data, assumed to be known with great accuracy 
n is the number of samples collected thus far and used in the SPRT 
AL is the action level (threshold value). 
 
If the null hypothesis is that the site is clean, then the SPRT determines that there is enough evidence to 
accept the null hypothesis if the mean of the sample values is greater than ULc and that there is enough 
evidence to accept the alternative hypothesis if the mean of the sample values is less than LLc, where: 
 

   UL AL
A
nc = + +

∆
∆2

2σ

 

   
LL AL

B
nc = = + −

∆
∆2

2σ  

 
The notation for these equations is defined above. 
 
VSP projects the number of additional samples needed to make a decision by using the following 
algorithm: 
 

1. Increase the value of n by 1. 
2. Recalculate the upper and lower bounds using the new value of n. 
3. If the sample mean falls outside the new boundaries, then the increase in n is given by 

VSP as the number of additional samples needed. 
4. Repeat Steps 1 through 3 up to 100 times 

 
2.1.3 Barnard’s Sequential t Test 
 
Barnard’s sequential t-test (Barnard 1952) can be used in place of the SPRT discussed in Section 2.1.2 
when the standard deviation is not known with great accuracy.  The assumptions that underlie Barnard’s 
test are that the data are sampled sequentially from a normal distribution and that the data are 
representative of the study site and are not spatially or temporally correlated. 
 
The VSP user goes through the same steps to use the sequential t-test using the VSP dialogue box as was 
described above for the SPRT except that the user must initially supply the measurements for 10 samples 
collected from the target population of interest.  VSP uses these data to compute a sample standard 
deviation for the first iteration of the sequential t-test. 
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Null Hypothesis: Site is Dirty 
 
If the null hypothesis selected by the VSP user is that the target population is dirty, then the sequential t-
test determines that there is enough evidence to accept the null hypothesis if        

 

ln( ) lnLn ≥
−⎛

⎝
⎜

⎞
⎠
⎟

1 α
β

 

 
where 
 
Ln     is the likelihood ratio test statistic, which is computed using the method described in  

         Appendix A of Gilbert et al., (2002). 
 
ln      is the natural logarithm. 
 
The definitions of α andβ  are given in Section 2.1.2.  The sequential t-test determines that there is 

enough evidence to reject the null hypothesis and accept the alternative hypothesis if 
 

ln( ) lnLn ≤
−

⎛
⎝
⎜

⎞
⎠
⎟

α
β1

. 

 
Finally, the sequential t-test determines that the information from the n samples is not sufficient to make a 
decision if           

ln ln( ) ln
α
β

α
β1

1
−

⎛
⎝
⎜

⎞
⎠
⎟ < <

−⎛
⎝
⎜

⎞
⎠
⎟Ln

, 

  
in which case additional samples are collected and the sequential test repeated using the full data set of all 
measurements collected to date. 
 
Null Hypothesis: Site is Clean 
 
If the null hypothesis selected by the VSP user is that the site is clean, then the sequential t-test 
determines that there is enough evidence to accept the null hypothesis if                              

 

ln( ) lnLn ≤
−

⎛
⎝⎜

⎞
⎠⎟

β
α1

, 

 
that there is enough evidence to reject the null hypothesis and accept the alternative hypothesis if

 

ln( ) lnLn ≥
−⎛

⎝⎜
⎞
⎠⎟

1 β
α

, 

 
and that additional samples are needed if                                     
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ln ln( ) ln
β
α

β
α1

1
−

⎛
⎝⎜

⎞
⎠⎟ < <

−⎛
⎝⎜

⎞
⎠⎟Ln

. 

 
Appendix A in Gilbert et al., (August 2002) provides additional discussion of Barnard’s sequential t test. 
 
2.1.4  Collaborative Sampling 
 
The Collaborative Sampling (CS) design uses two measurement techniques to obtain a cost effective 
estimate of the mean of the characteristic of interest for the specified target population.  One measurement 
technique is the "standard analysis" (referred to in VSP as the expensive analysis method), and the other 
is a less expensive and less accurate measurement method (referred to in VSP as the inexpensive analysis 
method).  The idea behind CS is to replace the need for collecting so many expensive analyses with 
obtaining a fewer number of those analyses to allow one to obtain a relatively large number of the 
inexpensive analyses.  It works like this:  At n’ field locations selected using simple random sampling or 
grid sampling, the inexpensive analysis method is used.  Then, for each of n of the n’ locations, the 
expensive analysis method is also conducted. The data from these two analysis methods are used to 
estimate the mean and the standard error (SE: the standard deviation of the estimated mean).  The method 
of estimating the mean and SE assumes there is a linear relationship between the inexpensive and 
expensive analysis methods.  If the linear correlation between the two methods is sufficiently high (close 
to 1), and if the cost of the inexpensive analysis method is sufficiently less than that of the expensive 
analysis method, then CS is expected to be more cost effective at estimating the population mean than if 
the entire measurement budget was spent on obtaining only expensive analysis results at locations 
selected using simple random sampling or grid sampling. 
 
The VSP CS module computes the values of n’ and n that should be used to estimate the CS mean and 
SE.  VSP also computes the mean, standard error and other outputs that can be used to assess the validity 
of the assumptions that underlie CS.  The equations used for these computations are provided below.  It 
should be noted that Gilbert (1987, Chapter 9) and other statisticians use the term Double Sampling 
instead of Collaborative Sampling.  The term Collaborative Sampling rather than Double Sampling is 
used in VSP in order to prevent potential users from thinking that a Double Sampling design requires 
doubling the number of samples.    
 
Method Used to Determine if Collaborative Sampling is Cost Effective 

 
Before VSP computes n’ and n it determines if CS is cost effective compared with using the entire 
measurement budget to obtain only expensive analysis results at target population locations selected using 
simple random sampling or grid sampling.  If CS is found to be cost effective, then VSP computes n’ and 
n.  If CS is not cost effective, then VSP computes the number of field locations that should be collected 
and analyzed using only the expensive analysis method to estimate the mean and SE. 
 
VSP declares CS to be cost effective if  
 

 ( )ρ2
2

4
1

>
+

R
R

, (3) 

where 
 
ρ  =   the true correlation coefficient between the expensive and inexpensive analysis 

measurements,                                                            
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Inex

Ex
c

cR = ,                                                                                                        

Exc  =   the per unit cost of an expensive analysis, including the cost of collecting, handling, 
preparing, and measuring the sample, and  

Inexc  =  the per-unit cost of an inexpensive analysis, including finding the field location and 
conducting the inexpensive analysis method. 

 
Equation (3) above is from Gilbert (1987, page 108).   It is assumed that the following cost equation 
applies: 
 

=+= 'ncncC InexEx  total dollars available for doing n’ inexpensive analyses and n expensive 
analyses 

 
Note that C  does not include what might be termed "overhead" costs of project management, preparing 
the Quality Assurance Project Plan or the Sampling and Analysis Plan, QA/QC, and other such costs.   
 
Method VSP Uses to Compute the Number of Expensive and Inexpensive Analysis Measurements 
when CS is Cost Effective 
 
VSP computes n' and n such that the product of the total measurement cost, C, and the variance of the 

estimated mean,
2

csxσ  is minimized.  VSP uses the following formulas that were derived using the same 
method of proof used in Appendix A of EPA (2000a): 
 

 
( ) ( )ρρρ

σ
α

βα +−
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

∆

+
=′ −

−− )1(
2
1 22

12

2
,

2
11 RZ

ZZ
n extotal ,  (4) 

 
and 
 

 
( )

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
+−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+

∆

+
= −

−−

R
Z

ZZ
n extotal )1(1

2
1 2

22
12

2
,

2
11 ρρρ

σ
α

βα , (5) 

 
where 
 
n’  is the recommended minimum number of samples to measure with the inexpensive method, 
n is the recommended minimum number (subset) of the n’ samples to also measure with the 

expensive method, 
α  is the acceptable probability that the statistical test will falsely reject the null hypothesis, 
β  is the acceptable probability that the statistical test will falsely accept the null hypothesis, 
∆  is the width of the gray region in the Decision Performance Goal Diagram (DPGD), 

extotal ,σ  is the total standard deviation of the expensive measurements, including analytical error, 

α−1Z  is the value of the standard normal distribution such that the proportion of the distribution less 
than  is 1- α−1Z α , 
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β−1Z  is the value of the standard normal distribution such that the proportion of the distribution less 

than  is 1- β−1Z β , 
ρ  is the assumed correlation between the expensive and inexpensive measurements obtained on the 

same samples, 
exC  is the cost of making a single expensive measurement, 

inexC  is the cost of making a single inexpensive measurement, 
R is the cost ratio / , and exC inexC
C is the total measurement cost, i.e., C = inexC  n’ + exC  n. 
 
Method VSP Uses to Compute the Number of Expensive Analysis Measurements when CS is Not Cost-
Effective, 
 
VSP uses the following equation to compute the required number of expensive measurements, n, needed 
to compare a mean to a threshold using the Z test described below:  
 

 
( ) 2

12

2
,

2
11

2
1

α
βα σ

−
−− +
∆

+
= Z

ZZ
n extotal   (6) 

 
which is derived in EPA (2000a, Appendix A).  The parameters in Equation (6) are defined in Table 1. 
 
Method VSP Uses to Estimate the Mean and Standard Error when CS is Cost-Effective 
 
The estimated mean and SE (standard deviation of the estimated mean) are computed assuming that there 
is a linear relationship between the expensive and inexpensive measurements obtained on the same set of 
n samples.  This assumption should be verified by the VSP user before CS in VSP is used.  After the VSP 
CS design is determined and the resulting measurements are entered into VSP, VSP shows the linear 
regression plot of these data.  This plot should be examined to verify that the assumption of a linear 
relationship does indeed seem reasonable.  Also, VSP computes the correlation coefficient, ρ , using the 
inexpensive and expensive data.  The VSP user should use this correlation and the cost ratio, R, in the CS 
module of VSP to see if CS is still considered to be more cost efficient than simple random sampling. 
 
The process used by VSP in the CS module to compute the mean and SE is given in the following steps: 
 

1. The n’ inexpensive and n expensive analysis measurements are made by the VSP user and 
entered into VSP.  Let  and denote the expensive and inexpensive measurements, 
respectively, on the i 

xExi
xInexi

th unit. 

2. VSP estimates the mean by computing csx  (cs stands for collaborative sampling) as follows 
 
 ( )InexnExcs xxbxx −+= '  , (7) 

 
where Exx  and Inexx  are the means of the  expensive and inexpensive measurements, 
respectively, 

n

'nx  is the mean of the n' inexpensive values, and b  is the slope of the estimated 
regression of expensive on inexpensive values. 

3. VSP computes the estimated standard error (standard deviation of csx ) as follows: 
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⎣

⎡

−
−

+== , (8) 

 
where  and  are the variances of the n expensive and inexpensive measurements, 

respectively, and  is the residual variance about the estimated linear regression line.  The 
equations used to calculate the quantities in Equations (7) and (8) are: 

2
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Method VSP Uses to Compute the Mean and SE when CS is Not Cost-Effective 
 
The process used by VSP to compute the estimated mean and SE (standard deviation of the estimated 
mean) when CS is not cost effective compared to simple random sampling is given in the following steps: 
 

1. After the n samples are collected and the n expensive measurements have been obtained, the VSP 
user enters them into VSP.  Let  denote the expensive measurement on the iix th unit. 
 

2. VSP estimates the mean by computing  as follows: 
 

 ∑
=

=
n

i
ix

n
x

1

1
 (9) 
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3. VSP computes the standard deviation of the n measurements as follows: 

 

( )∑
=

−
−

=
n

i
i xx

n
s

1

2

1
1

 

 
4. VSP computes the standard error (standard deviation of x ) as follows: 

 

 
n
ssx =  (10) 

 
 
Method VSP Uses to Test if the True Mean Exceeds a Specified Threshold Value When CS is Cost-
Effective 
 
If the null hypothesis is Ho: true mean ≥ threshold value, then VSP computes    
 

 Z
x ThresholdValue

s
cs

xcs

=
−

2
 (11) 

 
and Ho is rejected if Z z≤ − −1 α , where  is the (1-α)z1−α

th percentile of the standard normal distribution.  
For example, if the VSP user specifies that α = 0.05, then Ho is rejected if               Z ≤ -1.645. 
 
If the null hypothesis is Ho: true mean ≤ threshold value, then VSP computes Equation (11) and Ho is 
rejected if ,where is defined in Table 1.   Z z≥ −1 α z1−α

 
Method VSP Uses to Test if the True Mean Exceeds a Specified Threshold Value when CS is Not Cost-
Effective 
 
If the null hypothesis is Ho: true mean ≥ threshold value, then VSP computes    
 

 Z
x ThresholdValue

sx

=
−

2
, (12) 

 
where x and sx

2 are computed using Equations (9) and (10), respectively, and Ho is rejected if  
. Z z≤ − −1 α

 
If the null hypothesis is Ho: true mean ≤ threshold value, then VSP computes Equation (12) and Ho is 
rejected if  Z z≥ −1 α
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Statistical Assumptions 
 
The assumptions that underlie the equations used to compute n' and n and to test the hypotheses are: 
 

1. There is an underlying linear relationship between the expensive and inexpensive analysis 
methods 

2. The true correlation coefficient,ρ , is well known from prior studies or has been well estimated 
using a preliminary sampling study of the target population or a very similar target population 

3. Collaborative sampling is more cost effective than simple random sampling 
4. The optimum values of n' and n are used to estimate the true mean, i.e., the values of n' and n 

computed, assuming the value of ρ  used is valid 
5. The field sampling locations are selected using simple random sampling or systematic grid 

sampling 
6. The costs  and  are appropriate ExC InexC
7.   The measurements are normally or approximately normally distributed. 

 
2.2 Compare Median to a Threshold when Data are not Normally Distributed 
 
2.2.1  MARSSIM Sign Test 
 
The sign test can be used to test whether the true median concentration of the target population exceeds a 
fixed action level (upper limit value).  The assumptions that underlie this test are that the data are 
representative of the study site and that the data are not spatially or temporally correlated.  The probability 
distribution of the data need not be known.  Hence, the Sign test is a distribution-free test.     
 
The formula used to compute the approximate number of samples, n, needed for the sign test when only r 
= 1 analytical replicates per field sample will be obtained is given in the Multi-Agency Radiation Survey 
and Site Investigation Manual (MARSSIM) (EPA 1997, p. 5-33): 
 

 

( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

+
= −−

2

2
11

50.04
20.1

SignP
ZZ

n βα

, 

(13) 

 
where  

 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ∆
=

totals
SignP φ

. 

(14) 

 
If the VSP user makes use of the MQO module, in which case r = 1, 2, or 3 analytical replicates per field 
sample can be used, then 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

∆
= 212

2

r
s

s

SignP
analytical

sample

φ

. 
 
Equation (14) is derived in Gogolak, Powers, and Huffert (1997, pp. 9-3 and 9-7). 
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VSP denotes the sign test as the MARSSIM sign test to indicate that Equation (13) is taken from the 
MARSSIM document (EPA 1997).  The function φ  in Equation (14) is defined in Table 1 as denoting the 
cumulative distribution function of the standard normal distribution (the normal distribution with mean 

zero and standard deviation 1).  Hence, by definition, φ
∆

stotal

⎛
⎝
⎜

⎞
⎠
⎟ is the fraction of the bell-shaped standard 

normal distribution that is less than or equal to the value of  

∆
stotal

.  Note that 
∆

stotal
> 0 because , the width of the gray region in the DPGD, must be greater than 

zero.  VSP computes Sign P = 

∆

φ
∆

stotal

⎛
⎝
⎜

⎞
⎠
⎟ using the value of 

∆
stotal

specified by the VSP user.  EPA (1997, 

Table 5.4, p. 5-32) provides values of Sign P for selected values of ∆
stotal

between 0.1 and 3.0.    

 
Equation (13) is based on the formula for n proposed by Noether (1987, Section 2.1) for the sign test.  His 
equation for n is identical to Equation (13) except that Noether used the constant 1.00 in place of 1.20.  
The assumptions that underlie Noether’s equation are that the data are representative of the underlying 
population, the data are not correlated, and the computed sign test statistic (the quantity computed using 
the data to make the test) is approximately normally distributed.   
 
Noether (1987) indicates that the value of n computed using his method should achieve the performance 
requirements for the sign test (as specified byα ,β  and ∆ ) unless the computed n is “quite small.”  The 

MARSSIM report (EPA 1997) used 1.20 instead of 1.00 in Equation (13) to provide subjective added 
confidence that the larger value of n computed would result in achieving the performance requirements 
specified for the test by the VSP user.   
 
Equation (13) is used in VSP primarily because it is used in EPA (1997), which is a multi-agency 
consensus document that was developed collaboratively by four federal agencies having authority and 
control over radioactive materials: the U.S. Departments of Defense and Energy, the U.S. Nuclear 
Regulatory Commission, and the EPA. 
 
2.2.2  Wilcoxon Signed Ranks Test 
 
The Wilcoxon Signed Ranks test can be used to test whether the true median or mean of the target 
population exceeds the fixed action level.  The assumptions needed for this test are that the data are 
representative of the study site, are not spatially or temporally correlated, and have a symmetric (but not 
necessarily normal) distribution.  Note that the test applies to either the mean or median when the 
assumption of symmetry is true, because those two parameters have identical values for symmetric 
distributions. 
 
The equation used in VSP to compute the minimum recommended number of samples, n, needed for the 
test when the VSP user specifies that only r = 1 analytical replicates from each field sample will be 
obtained,  is 
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This equation is also used in EPA (2000b, pp. 3-12).   
 
If the MQO module is used, in which case r = 1, 2, or 3 can be used, then the equation for n is 
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Equation (15) is identical to Equation (1) and Equation (16) is identical to Equation (2) except for the 
1.16 multiplier.  The constant 1.16 is used because it is known (Conover 1999, p. 363) that the Wilcoxon 
Signed Ranks test will require no more than 1.16 times as many samples as the t-test to achieve theα  and

β  decision error rate test performance specifications when the data are normally distributed. 
 
Noether (1987, Section 2.2) developed an alternative to Equation (15) for computing n for the Wilcoxon 
Signed Ranks test.  His method does not require that the data have a symmetric distribution.  His method 
is based on the assumptions that the data are representative of the underlying target population, the data 
are not correlated, and the computed Wilcoxon Signed Ranks test statistic (the quantity computed using 
the data to make the test) is approximately normally distributed.  Noether (1987) indicates that the value 
of n computed using his method should achieve the performance requirements for the test (as specified by
α andβ ) unless the n computed using his method is “quite small.” 
 
2.3 Compare Individual Measurements to a Threshold Value 
 
2.3.1 Detecting Hot Spots of Contamination 
 
Suppose a VSP user wants to determine the spacing of sampling or measurement locations in the target 
population that should be used to detect a hot spot of specified size.  The VSP user can specify that the 
sampling locations should be laid out in a square, rectangular, or triangular pattern.  VSP determines the 
optimum spacing between sampling locations using an implementation of a computer program called 
ELIPGRID-PC (Davidson 1995b).  The events that led to the development of this program are now 
briefly summarized. 
 
Singer and Wickman (1969) published an algorithm for calculating the probability of locating elliptical 
hot spots when sampling is done on a square, rectangular, or triangular grid pattern over space.  Singer 
(1972) published a FORTRAN IV computer program, ELIPGRID, to automate the hot spot probability 
calculations.   He also evaluated the efficiency of square and triangular grids in the search for elliptically-
shaped hot spots (Singer 1975).  Zirschky and Gilbert (1984) developed nomographs for answering the 
same questions addressed by ELIPGRID.  These nomographs were published in Gilbert (1987, Chapter 
10) along with examples of the calculations.  Davidson (1995b) wrote and published ELIPGRID-PC for 
the personal computer, an upgraded and corrected version of the original ELIPGRID algorithm.  
ELIPGRID-PC was subsequently incorporated into VSP.   
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The assumptions that underlie the ELIPGRID-PC and the VSP implementation of that code are, from 
Gilbert (1987, pp. 119-120): 
 

• The target (hot spot) is circular or elliptical.  For subsurface targets, this assumption applies to the 
projection of the target to the ground surface. 

• Samples or measurements are taken on a square, rectangular, or triangular pattern. 
• The distance between grid points is much larger than the area sampled, measured, or cored at grid 

points; that is, a very small proportion of the area being studied can actually be measured. 
• The definition of “hot spot” is clear and unambiguous; the types of measurement and the levels of 

contamination that constitute a hot spot are clearly defined. 
• There are no measurement misclassification errors; that is, no errors are made in deciding when a 

hot spot has been found. 
 
The computations conducted by VSP to determine the spacing of sampling locations are described in 
Singer (1972) and Davidson (1995b).  
 
2.3.2   One-Sided Upper Tolerance Limits when Data are Normally Distributed 
 
Tolerance limits can be used to statistically test whether the target population, e.g., a specified area or 
room in a building, is contaminated with biological agents, chemicals, or radionuclides at concentrations 
greater than their respective fixed ALs.  The statistical meaning, use, and computation of tolerance limits 
are discussed in Hahn and Meeker (1991) and Helsel (2005, Chapter 6).  VSP computes the number of 
measurements, n, needed to compute a tolerance limit to statistically test if a fixed AL has been exceeded.  
A discussion of this use of tolerance limits is given by Millard and Neerchal (2001, page 339).  If the VSP 
user inputs the n measurements into VSP on the Data Analysis tab of the dialog box, then VSP computes 
the tolerance limit and conducts the statistical test.   
 
VSP computes a one-sided upper tolerance limit, which is identical to a one-sided upper confidence limit 
on a specified percentile of the population of measurements.  The Pth percentile is the value above which 
(1-P)% of the population lies and below which P% of the population lies, where 0< P <100.   
 
A one-sided upper tolerance limit on the Pth percentile of a population, denoted byUT , is a value 
computed using the n measurements such that at least P% of the population of measurements is less than 

with 100(1-α)% confidence.  For example, if P = 90 and 

LP ,α

UTLP ,α α  = 0.05, then at least 90% of the 
population is less than the computed value UTL  with 95% confidence.     90 0 05, .

 
The method VSP uses to compute tolerance limits using n data depends on the probability distribution of 
the population of measurements.   It is assumed in this section  that the measurements made in buildings 
are normally distributed.  If this assumption is false, the computed tolerance limits will not be accurate 
and decisions based on that computed limit may be in error.  Statistical goodness-of-fit tests and graphical 
plots within VSP should always be used to evaluate if the measurements are from a normal distribution  
before using the normal tolerance limits.  Also, VSP can compute upper tolerance limits when the 
underlying distribution is uncertain or unknown (Section 2.3.3).     
 
The other assumptions that underlie the use of tolerance limits are: 
 

• Representative measurements have been obtained from a defined target population (e.g., a wall, 
section of a wall, the floor in a hallway, the walls and floors of a selected set of rooms, etc.) using 
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simple random sampling, systematic sampling on a grid, or some other suitable probability-based 
sampling design. 

• The measurements are statistically independent, i.e., there is no spatial correlation (no spatial 
patterns) of contaminant levels throughout the target population.   

 
The assumption of statistical independence implies that tolerance limits may be most useful for building 
areas that are not expected to contain “hot spots” or other dominant spatial patterns.  Hence, they may be 
most useful after decontamination has occurred and the objective is to test if the building is ready to be re-
occupied.    
 
Method Used in VSP to Compute a Percentile of a Normal Distribution 
 
The Pth percentile of a normal distribution, denoted by , is computed from n measurements as follows 
(Millard and Neerchal, 2001, page 276, Equation 5.138): 

xP

 
 x x ZP sP= + , (17) 
 
where 
 

x
n

xi
i

n

=
=
∑1

1
 =  mean of the n measurements, (18) 

 
xi  = ith measurement,    
 
ZP  = Pth percentile of the standard normal distribution (normal distribution (19) 

with mean zero and standard deviation 1), e.g., if P = 95, then  
 = 1.645.  Tables of  values are in many statistical books, e.g., Gilbert  

(1987, Table A1, page 254), 
Z95 ZP

 

( )s
n

x xi
i

n

=
−

−
=
∑1

1
2

1
    =   standard deviation of the n measurements.  (20) 

 
Method Used in VSP to Compute a One-Sided Upper Tolerance Limit on the Pth Percentile of a 
Normal Distribution 
 
A one-sided upper tolerance limit for the Pth percentile of a normal distribution is computed as follows: 
 
 UTL x t sP n Z nP, , ,α α= +

− −1 1 , (21) 

 
where x and  are computed using Equations (18) and (20), respectively, and s
 
tn Z nP−1 1, , α−   =   the 100(1-α)th percentile of the non-central t distribution    

                          with (n-1) degrees of freedom and non-centrality parameter Z nP . 
 
The null hypothesis being tested by comparing the UT to the AL is LP ,α
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Ho:  Pth percentile of the population ≥ AL. 
 
The Ho is rejected and the statement “Conclude Site is Clean” is stated if UT  < AL. LP ,α

The statement “Conclude Site is Dirty” is stated if UT ≥ AL. LP ,α

Method Used in VSP to Compute the Number of Measurements Needed to Test Ho Using a One-
Sided Upper Tolerance Limit on the Pth Percentile of a Normal Distribution  
 
VSP uses the exact method given by Lyles and Kupper (1996, Equation 5) to compute the number of 
measurements, n, needed to test the null hypothesis Ho.  The procedure is to find the smallest integer n 
such that 
 
 t tn Z n n Z nP− − − −

− ≥
−1 1 11

0, , , ,α θ β , (22) 

 
where 
 
 
tn Z nP− −1, ,α      =   the 100(α)th percentile of the non-central t distribution with  (23) 

                             n-1 degrees of freedom and non-centrality parameter − Z nP , 
 
tn Z n− − −−1 11, ,θ β   =   the 100(1-β)th percentile of the non-central t distribution with (24) 

                              n-1 degrees of freedom and non-centrality parameter − −Z n1 θ  , 
 

 θ φ
σ

= −
−

+
⎡
⎣⎢

⎤
⎦⎥

1
UBGR LBGR

ZP  (25) 

 
α   is the false rejection rate specified by the VSP user, i.e., α is the probability  
     the VSP user can tolerate that the data will falsely indicate that the null hypothesis, Ho,  
     should be rejected, 
 
β   is the false acceptance rate specified by the VSP user, i.e., β is the probability the  
     VSP user can tolerate that the data will falsely indicate that the null hypothesis should  
     be accepted, 
 
φ( )x  is the probability that a measurement from a standard normal distribution falls  
          below the value x, 
 
UBGR is the upper bound of the gray region of the Decision Performance Goal  
            Diagram (DPGD) specified by the VSP user, 
 
LBGR is the lower bound of the gray region of the DPGD specified by the VSP user, 
 
ZP   is defined by Equation (19) above, 
 
σ    is the true standard deviation of all possible measurements from the target     
       population.  In practice, an estimate of σ is used in Equation (25). 
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2.3.3 Nonparametric (Distribution-Free) One-Sided Upper Tolerance Limits  
 
Nonparametric (distribution-free) tolerance limits can be used to statistically test whether a specified area 
or room in a building is contaminated with biological agents, chemicals or radionuclides at concentrations 
greater than their respective fixed action levels (ALs).  The VSP user can have VSP compute the number 
of measurements needed to compute a nonparametric tolerance limit to statistically test if a fixed AL has 
been exceeded.  VSP will also determine the tolerance limit using the n measurements obtained and does 
the statistical test.  This use of tolerance limits is discussed in Millard and Neerchal (2001, page 339).   
 
A nonparametric tolerance limit is valid regardless of the probability distribution of the population of 
measurements.  That is, the data distribution need not be known.  If the distribution is known with 
confidence to be a normal distribution, the tolerance limits for the normal distribution should be used.  If 
the distribution is known with confidence to be a lognormal distribution then tolerance limits for the 
lognormal distribution should be used. 
 
A one-sided upper tolerance limit is identical to a one-sided confidence limit on a specified percentile P 
of the population of measurements.  The Pth percentile is the value above which (1-P)% of the population 
lies and below which 100P% of the population lies. 
 
A one-sided upper tolerance limit on the Pth percentile of a population is a value, denoted here byUT , 
such that at least P% of the population of measurements is less than UT with 100(1-α)% confidence.  
For example, if P = 90 and 

LP ,α

LP ,α

α  = 0.05, then at least 90% of the population is less than the computed value 
 with 95% confidence.     UTL90 0 05, .

 
The following assumptions are needed when using nonparametric tolerance limits: 
 

• Representative measurements have been obtained from a defined target population (e.g., a wall, 
section of a wall, the floor in a hallway, the walls and floors of a selected set of rooms, etc.) using 
simple random sampling, systematic sampling on a grid, or some other suitable probability-based 
sampling design. 

• The measurements are statistically independent, i.e., there is no spatial correlation (no spatial 
patterns of contaminant levels throughout the target population).   

• There are no “outliers,” i.e., there are no observations that are mistakes or that do not belong to 
the population being studied. 

 
The assumption of statistical independence implies that tolerance limits may be most useful for building 
areas that are not expected to contain “hot spots” or other dominant patterns.  Hence, they may be most 
useful after decontamination has occurred and the objective is to test if the building is ready to be re-
occupied.    
 
Method Used in VSP to Determine a Nonparametric One-Sided Upper Tolerance Limit on the Pth 
Percentile of Any Distribution 
 
Nonparametric tolerance limits are determined in VSP as follows: 
 

1. The VSP user specifies the desired values of P and α and the action level, AL.  
 
2. VSP computes the number of measurements that should be obtained using the following equation 

(from Hahn and Meeker, 1991, page 169): 
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n
P

=
ln( )
ln( )

α
 

 
3. The VSP user obtains the n representative measurements from the target    

population using a probability-based design, e.g., using simple random sampling  
or sampling on a square or triangular grid pattern.   

 
4. Then  

 
                 UT  =   the largest of the n measurements obtained is the nonparametric  
                                    upper 100(1-

LP ,α

α )% tolerance limit on the Pth percentile.     
 

5. If UT ≥ AL, then the null hypothesis LP ,α

 
        Ho:  Pth percentile of the population ≥ AL 

 
            is not rejected and the statement “Conclude Site is Dirty” is given by VSP.   
 

6. If UT  < AL, then the null hypothesis is rejected and the statement  
“Conclude the Site is Clean” is given by VSP.   

LP ,α

 
Clearly, the assumptions of representative measurements and “no outliers” are important because if one or 
more outliers occur, the maximum of the n measurements will not be a valid nonparametric upper 
tolerance limit on a percentile. 
 
2.3.4  Nonparametric (Distribution-Free) Compliance Sampling for  Attributes  
 
There may be occasions when decisions about the need for decontamination, additional decontamination, 
or some other action will depend on how much of a room or set of rooms is contaminated above an action 
level (AL) or is “defective” in some way.  Compliance sampling for attributes (Schilling 1982, Chapter 
17, pages 474-482) can be used to statistically test whether the fraction of a room (or suite of rooms) that 
is contaminated above the action level (AL) is less than a prescribed upper limit.  VSP determines the 
number, n, and location of grid units (defined below) in the room that must be measured or inspected to 
make this determination.  If one or more of the grid units equal or exceed the AL or are defective as 
defined by the VSP user, then the required confidence is not achieved.  This section documents the 
compliance sampling methodology in Schilling (1982), which is implemented in VSP.   
 
Definitions 
 
Grid Unit A grid unit is a small unit area on a room surface that will be inspected or measured to 

determine if it exceeds the action level (AL) or is otherwise defective.  For example, a 
single grid unit might be a 10cm by 10cm area that will be swiped and then measured for 
a biological or chemical agent. 

 
N   N is the total number of grid units in the target population.   
 
n n is the number of grid units that are randomly selected and measured or  

inspected.  The value of n is computed in VSP as described below. 
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AL AL is the action level, e.g., a contaminant concentration or the value of some other metric 

for a grid unit that indicates the grid unit is not acceptable, i.e., that the grid unit is 
“defective.” 

 
Po  is the maximum tolerable proportion of defective grid units in the  

target population of N grid units.  
Po

 
Ho  Ho is the null hypothesis 
 
   Ho:  The proportion of the N grid units that are defective ≤  Po

 
Ha  Ha is the alternative hypothesis 
 
   Ha:  The proportion of the N grid units that are defective >  Po

 
C C is the “acceptance number,” i.e., the number of the n measured grid  

units that can exceed the AL (i.e., allowed to be defective) without  
rejecting the null hypothesis.   For compliance sampling, C is always  
equal to zero. 

 
Decision If one or more of the n grid units measured or inspected exceed the AL or 
Rule are otherwise defective, then reject Ho and accept Ha and take the action 

needed when Ho is rejected. 
 
Assumptions Underlying Compliance Sampling  
 

• The size of the grid unit has been determined to be appropriate for the measurement (inspection) 
method to be performed.  For example, an appropriate grid unit size might be a 10cm by 10cm 
surface area. 

• The total number of grid units in the target population, N, is known.  All N grid units are the same 
size. 

• n of the N grid units are selected using simple random sampling or perhaps in a square, 
rectangular, or triangular pattern that has a randomly selected starting point.   

• The n grid units selected must be representative of the total population of N grid units. 
• Each of the n grid units are measured or inspected using an approved method that has a very low 

chance of making measurement or inspection mistakes.  
 
Calculations 
 
VSP uses the following steps to calculate the number, n, of the N grid units that need to be randomly 
selected and measured (inspected) [Schilling (1978) and Schilling (1982, pages 476-479)]: 
 

1. The VSP user specifies N and , which are defined above.   Po

2. The VSP user specifies the % confidence required that less than 100 % of the N grid units in 
the target population are defective.   

Po

3. VSP determines the factor  from Table 2, which is based on Table 17-2 in Schilling (1982, 
page 478).  This table gives the correspondence between the required confidence and . 

Pg

Pg
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4. VSP computes . D N P Po g= ( / )
5. VSP computes , where VSP selects f from Table 3, which is Table 17-1 in Schilling 

(1982, page 477).  The cells of Table 3 give values of D.  VSP determines f from the row and 
column headings that correspond to the value of D computed in Step 4 above. 

n N f= *

 
Table 2.  Values of the Factor Needed to Compute n for Compliance Sampling Pg

Required 
Confidence 

50% 75% 90% 95% 97.5% 99% 99.5% 99.9% 

Pg  0.301 0.602 1.000 1.301 1.602 2.000 2.300 2.996 

 
 

Table 3.  Values of the Factor D Needed to Compute n for Compliance Sampling 
f .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 
.0 ∞ 229.1053 113.9741 75.5957 56.4055 44.8906 37.2133 31.7289 27.6150 24.4149 

.1 21.8543 19.7589 18.0124 16.5342 15.2668 14.1681 13.2064 12.3576 11.6028 10.9272 

.2 10.3189 9.7682 9.2674 8.8099 8.3902 8.0039 7.6471 7.3165 7.0093 6.7231 

.3 6.4557 6.2054 5.9705 5.7496 5.5415 5.3451 5.1594 4.9836 4.8168 4.6583 

.4 4.5076 4.3640 4.2270 4.0963 3.9712 3.8515 3.7368 3.6268 3.5212 3.4196 

.5 3.3219 3.2278 3.1372 3.0497 2.9652 2.8836 2.8047 2.7283 2.6543 2.5825 

.6 2.5129 2.4454 2.3797 2.3159 2.2538 2.1933 2.1344 2.0769 2.0208 1.9660 

.7 1.9125 1.8601 1.8088 1.7586 1.7093 1.6610 1.6135 1.5667 1.5207 1.4754 

.8 1.4307 1.3865 1.3428 1.2995 1.2565 1.2137 1.1711 1.1286 1.0860 1.0432 

.9 1.0000 0.9562 0.9117 0.8659 0.8184 0.7686 0.7153 0.6567 0.5886 0.5000 

 
 
2.3.5   Nonparametric (Distribution-Free) Acceptance Sampling for Attributes 
 
Acceptance sampling for attributes can be used instead of compliance sampling (Section 2.3.4) to test if a 
room is sufficiently free from contamination.  The two methods are very similar, except that acceptance 
sampling permits one or more grid units to be defective, e.g., exceed the action level, without concluding 
that the allowed level of contamination has been exceeded.  VSP determines the “acceptance number,” C, 
and the location and number, n, of grid units (defined below) in the room that must be measured or 
inspected to make this determination.  C is the number of grid units that are allowed to be defective 
without concluding that the allowed level of contamination has been exceeded.  

  
Definitions 
 
Grid Unit, N, n, AL Defined in Section 2.3.4 
 
Ho  Ho is the null hypothesis that is being tested:  
 

Ho: The number of the N grid units that are defective = Do = NPo
   

Ho is assumed to be true unless the data strongly indicate otherwise. 
 
Po  Po is the maximum proportion (fraction) of the target population of N grid units that are 

allowed to be defective, e.g., contaminated above the AL.  Po is an input of the VSP user. 
 
Ha  Ha is the alternative hypothesis 
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   Ha: The number of the N grid units that are defective = Da = NPa      
 
  where Da > Do.  Ha is accepted as being true if Ho is rejected. 
 
Pa Pa is an unacceptable proportion of the N grid units that have contamination greater than 

the AL.  Pa is an input of the VSP user. 
  
C C is the “Acceptance Number,” i.e., the number of grid units that are  

allowed to exceed the AL (allowed to be defective) without rejecting the  
null hypothesis.   C is computed in VSP as described below. 

 
α  α (alpha) is the probability that can be tolerated that the n data indicate Ho should be 

rejected when it is really true. 
 
β  β  (beta) is the probability that can be tolerated that the n data indicate Ho  

should not be rejected when Ho is really false. 
 
1− β   1− β  is the probability that the n data indicate Ho should be rejected when  

Ho is really false.  1− β  is the “power” of the statistical test. 
 
Decision  
Rule  If more than C of the n grid units measured or inspected are defective, e.g.,  

exceed the AL, then reject Ho and accept Ha and take the needed action. 
 
 
Assumptions Underlying Schilling’s Acceptance Sampling for Attributes 
 

• The size of the grid unit has been determined to be appropriate for the measurement (inspection) 
method to be performed.  For example, an appropriate grid unit size might be a 10cm by 10cm 
surface area. 

• The total number of grid units in the target population, N, is known.  All N grid units are the same 
size. 

• n of the N grid units are selected using simple random sampling or perhaps in a square, 
rectangular, or triangular pattern that has a randomly selected starting point. 

• The n grid units selected must be representative of the total population of N grid units. 
• Each of the n grid units are measured or inspected using an approved method that has a very low 

chance of making measurement or inspection mistakes.  
 
Iterative Method Used in VSP to Compute the Number of Grid Units to be Measured, n, and the 
Acceptance Number, C 
 
The method provided here is based on Equations (26) and (27) below, which are from Desu and 
Raghavarao (1990, pages 66 and 67) and Bowen and Bennett (1988).  The idea is to determine the 
acceptance number C and the minimum value of n such that Equations (26) and (27) are satisfied: 
 

Probability(More than C Grid Units are Defective H  is True) =o  
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A solution is obtained by choosing successively larger values of C beginning with C = 0, and then 
determining the minimum value of n for which both Equation (26) and Equation (27) are satisfied.   
  
Iterative Algorithm used by VSP
 

1. Begin with setting C = 0.   
 

2. Search for an n between 0 and N that will satisfy both Equation (26) and Equation (27).  
 
This is done by performing the following binary search on the range [nL, nu] starting with nL = 0 
and nu = N 
 
Binary Search  
Evaluate Equations (26) and (27) with n = midpoint of the range [nL, nu]. 

• If both S0  ≤  α and SA  ≥ 1-β  are satisfied, then go to Step 3 
• If only S0  ≤ α is satisfied, then a larger n is needed.  Search on the range [n, nu] (the upper 

half of the current range). 
• If only SA ≥ 1-β is satisfied, then a smaller n is needed.  Search on the range [nL, n] (the 

lower half of the current range). 
• If neither condition is satisfied, then increment C and begin the search again at Step 2.   
 

3. Find the minimum n that will satisfy Equations (26) and (27). 
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Perform another binary search on the range [nL, nu], where nu is the n found in Step 2 that satisfies 
Equations (26) and (27), and nL is the last nL from Step 2.  Note that nL is the largest value of n < 
nu that was found not to satisfy Equations (26) and (27), and nu is the smallest value of n found 
that does satisfy those equations.   
 
Binary Search 
Evaluate Equations (26) and (27) with n set at the midpoint of the range [nL, nu] 

• If both equations are satisfied, then a smaller satisfactory n has been found.  Make the 
range [nL, n], where n = nu . 

• Otherwise, a larger unsatisfactory n has been found.  Change the range to      [n, nu], 
where n = nL. 

 
When the length of the range is 1, that is, nu -  nL ≤ 1, then n = nu is the minimum value of n that 
satisfies both Equations (26) and (27) for the minimum value of C.  

 
Example 1 of the Iterative Method 
 

N  =  5 
Po =  0.05  (Do = 0) 
Pa  =  0.20  (Da = 1) 
α  =  0.01 
β  =  0.05 
 

Steps C n S0 SA S0  ≤ α SA  ≥ 1-β 
Start the search with C = 0 
and n = midpoint of the full 
range [0,5] 

0 3 0.00000000000000000 0.60000000000000064 Yes No 

SA condition not satisfied, so 
take n = midpoint of upper 
half [3,5] 

0 4 0.00000000000000000 0.80000000000000004 Yes No 

SA condition not satisfied, so 
take n = midpoint of upper 
half [4,5] 

0 5 0.00000000000000000 1.0000000000000000  Yes Yes 

Both satisfied, and final 
range [4,5] is of length 1, so 
minimum n for C = 0 is      
n = 5  

0 5     
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Example 2 of the Iterative Method 
 

N  =  10 
Po  =  0.10 (Do = 1) 
Pa =  0.20 (Da = 2) 
α  =  0.05 
β  =  0.10 
 

Steps C n S0 SA S0  ≤  
α 

SA  ≥ 1-β 

Start the search with C = 0 
and n = midpoint of the 
full range [0,10] 

0 5 0.49999999999999906 0.77777777777777513 No No 

Neither satisfied, so start 
over with C=1 and             
n = midpoint of the full 
range [0,10] 

1 5 0.00000000000000000 0.22222222222222132 Yes No 

SA not satisfied, so take     
n = midpoint of upper half 
[5,10] 

1 8 0.00000000000000000 0.62222222222221812 Yes No 

SA not satisfied, so take     
n = midpoint of upper half 
[8,10] 

1 9 0.00000000000000000 0.79999999999999505 Yes No 

SA not satisfied, so take     
n = midpoint of upper half 
[9,10] 

1 10 0.00000000000000000 1.0000000000000000 Yes Yes 

Both satisfied, and final 
range [9,10] is of length 
1, so solution is C = 1 and   
n = 10 

1 10     
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Example 3 of the Iterative Method 
 

N  = 50 
Po  =  0.02 (Do = 1) 
Pa  =  0.10 (Da = 5) 
α  =  0.05 
β  =  0.10 

 
Steps C n S0 SA S0  ≤ α SA  ≥ 1-β 
Start the search with C = 
0 and n = midpoint of 
the full range [0,50] 

0 25 0.49999999999999906 0.97492401215806124 No Yes 

S0 not satisfied, so take     
n = midpoint of lower 
half [0,25] 

0 13 0.26000000000001089 0.79426787366194951 No No 

Neither satisfied, so 
start over with C = 1 
and             n = midpoint 
of the full range [0,50] 

1 25 0.00000000000000000 0.82566217976552680 Yes No 

SA not satisfied, so take     
n = midpoint of upper 
half [25,50] 

1 38 0.00000000000000000 0.99074836224960339 Yes Yes 

Both satisfied, so now 
begin search for 
minimum by taking n = 
midpoint of [25,38] 

1 32 0.00000000000000000 0.94974041420452349 Yes Yes 

Both still satisfied, so 
take  n = midpoint of 
[25,32] 

1 29 0.00000000000000000 0.90847760010573875 Yes Yes 

Both still satisfied, so 
take  n = midpoint of 
[25,29] 

1 27 0.00000000000000000 0.87127659574468153 Yes No 

Conditions not satisfied, 
so change range to 
[27,29] 

1 28 0.00000000000000000 0.89090128188185957 Yes No 

Conditions not 
satisfied, and the new 
range [28,29] has 
length 1, so solution is 
C = 1 and n = 29 

1 29      
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Example 4 of the Iterative Method 
 

N  = 45 
Po  =  0.07 (Do = 3) 
Pa  =  0.30 (Da = 14) 
α  =  0.05 
β  =  0.05 
 

Steps C n S0 SA S0  ≤ α SA  ≥  1-β 
Start with C = 0 and          
n = midpoint of the full 
range [0,45] 

0 23 0.89147286821702953 0.99999808373317167 No Yes 

S0 not satisfied, so take   
n = midpoint of lower 
half [0,23] 

0 12 0.61550387596899303 0.99509317043459966 No Yes 

S0 not satisfied, so take   
n = midpoint of lower 
half [0,12] 

0 6 0.35595489781536127 0.90960398081781979 No No 

Neither satisfied, so start 
again with C = 1 and        
n = midpoint of the full 
range [0,45] 

1 23 0.51705426356587558 
 

0.99992952396523571 
 

No Yes 

S0 not satisfied, so take   
n = midpoint of lower 
half [0,23] 

1 12 0.16899224806201746 
 

 

0.95387580208521339 
 

 

No  Yes 

S0 not satisfied, so take   
n = midpoint of lower 
half [0,12] 

1 6 0.042635658914728709 0.61755530346000809 Yes No 

SA not satisfied, so take  
n = midpoint of upper 
half [6,12] 

1 9 0.097251585623678000 0.85262056178852386 No 
 

No 

Neither satisfied, so start 
again with C=2 and        
n  = midpoint of the full 
range [0,45] 

2 23 0.12480620155038495 0.99894911928375341 No Yes 

S0 not satisfied, so take   
n = midpoint of lower 
half [0,23] 

2 12 0.015503875968992432 0.81354047651468697 
 

 

Yes No 

SA not satisfied, so take  
n = midpoint of upper 
half [12,23] 

2 
 

18 0.057505285412260757 
 

 

0.98177734791460636 No Yes 

S0 not satisfied, so take   
n = midpoint of lower 
half [12,18] 

2 15 0.032064834390415346 0.93393946867721767 
 

 

Yes No 

SA not satisfied, so take   
n = midpoint of upper 
half [15,18] 

2 17 0.047921071176886168 0.97115147427113779 
 

Yes Yes 

Both conditions satisfied, 
so now begin search for 
minimum n within range 
[15,17] 

2 16 0.039464411557435991 0.95570902814568315 
 

Yes Yes 

Both conditions 
satisfied, and the new 
range [16,17] has length 

2 16     
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1, so the solution is C=2 
and n=16 

 
 
2.3.6 Wright and Grieve’s Bayesian Method for Attributes 
 
Grieve (1994) developed an equation (his Equation 2.5) that can be used to compute the number of grid 
units, n, that should be selected from the total set of N equal-sized grid units in the target population and 
found to have contamination less than the AL (or to be non-defective) in order to be 100(1- ε) percent 
confident that all N grid units are less than the AL or are non-defective.  Grieve’s equation, which is 
based on the methods in Wright (1992), is coded into the VSP software.    

 
For the VSP building module, grid units must be square and of a size such that an appropriate sample 
(e.g., a swipe or swab sample) or in-situ measurement can be made for each grid unit.  If the VSP user 
draws or loads a map of the room or rooms of concern into VSP, then VSP asks the user to specify the 
grid size in meters, feet or inches, whereupon VSP computes N.  If a map is not drawn or loaded, then 
VSP asks the user to specify the grid unit size and N.     

 
Note that the Wright and Grieve method is also used in the VSP UXO module.  However, in that case a 
grid unit is a swath (a long, narrow rectangular transect) along which a geophysical detector is moved to 
look for anomalies that may indicate the presence of UXO.  
 
Wright and Grieve’s method is “Bayesian” because it requires that the stakeholders provide a quantitative 
measure of their belief that the target population has grid units that contain contamination greater than the 
AL (or are defective).  This belief should be based on all information and data collected about the target 
population and the conceptual site model developed for the population.  This “belief” is quantified by 
choosing a specific Beta probability distribution for the fraction, f, of the N grid units that are 
contaminated above the AL.  In other words, there is uncertainty about the fraction of the grid units that 
are “defective,” but there is agreement that the probability that f takes on various values can be modeled 
by a specific Beta distribution, the shape of which is determined by the value of the two parameters of the 
distribution: a and b.   The expected (true average) value,δ , of f for a Beta distribution with parameter 
values a and b is δ = +a a b/ ( ) .  The Beta distribution is described in many books, including Rothschild 
and Logothetis (1986, pages 50-51), Patil et al (1976) and Johnson and Kotz (1970). 
 
The VSP user can choose among seven possible Beta distributions.  These distributions are listed in Table 
4 and are illustrated in Figures 1 through 6.  The shape of each distribution and the expected value, δ, for 
each distribution is determined by the values of the two parameters, a and b.   
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Table 4.  The Seven Beta Distributions Available for Selection in VSP to Model the  
Uncertainty in the Fraction of Grid Units that are Contaminated above the  

Action Level or are Defective in Some Other Manner. 
Parameter Values of the 
Seven Beta Distributions  
              in VSP 

Expected Value, δ,* of the  
         Fraction, f, of the Grid 

Units that are Defective 

English Characterization of 
the Beta Distribution used in 
the VSP Software      

1.       a = 1,    b = 999                 0.001   Extremely low fraction 
2.       a = 1,    b = 99                 0.01   Very low fraction 
3.       a = 1,    b = 9                 0.1   Low fraction 
4.       a = 1,    b = 1                 0.5   All fractions equally  

  likely  
5.       a = 9,    b = 1                 0.9   High fraction 
6.       a = 99,  b = 1                 0.99   Very high fraction 
7.       a= 999, b = 1                 0.999   Extremely high fraction 
* δ = a/(a+b) 

 
The VSP user selects one of the seven distributions and VSP computes n using the following equation 
(derived from Equation 2.5 in Grieve 1994): 
 

( ) ( )( ) ( ){ }n N N b b≥ − + − − −1 1 1ε δ δ/ , 
 
where N, a, b, δ and 1-ε have been defined above.  If all of the n randomly selected grid units have 
contamination measurements less than the AL (or are non-defective), then one can state with 100(1-ε) 
percent confidence that none of the remaining N-n grid units are contaminated above the AL.  As is the 
case for Schilling’s method in Section 2.3.5, it is assumed that all grid units are equal (or approximately) 
equal in size.   
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Beta Distribution (a=1, b=999)
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Figure 1.  Beta Distribution with Parameters a = 1, b = 999 and Expected Value 
δ =  0.001 

 

Beta Distribution (a=1, b=99)
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Figure 2.  Beta Distribution with Parameters a = 1, b = 99 and Expected Value δ = 0.01 
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Beta Distribution (a=1, b=9)
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Figure 3.  Beta Distribution with Parameters a = 1, b = 9 and Expected Value δ = 0.1 

 

Beta Distribution (a=1, b=1)
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Figure 4.  Beta Distribution with Parameters a = 1, b = 1 and Expected Value δ = 0.5 

 
 
 

 33 



 

Beta Distribution (a=9, b=1)
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Figure 5.  Beta Distribution with Parameters a = 9, b = 1 and Expected Value δ = 0.9 

 

Beta Distribution (a=99, b=1)
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Figure 6.  Beta Distribution with Parameters a = 99, b = 1 and Expected Value δ = 0.99 
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 Beta Distribution (a=999, b=1)
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Figure 7.  Beta Distribution with Parameters a = 999, b = 1 and Expected Value 
δ = 0.999 

 
 
2.4 Data Quality Assessment (DQA) 
 
Data quality assessment (DQA) is the scientific and statistical evaluation of data to determine if data 
obtained are of the right type, quality, and quantity to support their intended use (EPA 2000b).  Although 
VSP has been designed to determine the number and location of samples needed to make statistically 
defensible decontamination decisions for rooms in buildings, VSP also has some DQA capability.  Once 
the required n data are obtained, they can be entered into VSP using the Data Analysis tab on the dialog 
box.  Then VSP will compute summary (descriptive) statistics and statistical tests and graphs to help 
assess if the data are normally distributed.  The normality assumption is needed for the statistical methods 
in VSP discussed in Sections 2.1.1, 2.1.2, 2.1.3, 2.1.4, and 2.3.2.   The DQAs conducted in VSP are 
documented in Sections 2.4.1, 2.4.2 and 2.4.3, below. 
 
2.4.1 Summary (Descriptive) Statistics 
 
The summary statistics computed by VSP are as follows: 
 
n   the number of measurements in a data set 
 
Min  the minimum of the n data values 
 
Max  the maximum of the n data values 
 
Mean  the arithmetic mean of the n data values: 
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   x
n

xi
i

n

=
=
∑1

1
 

 
Median the 50th percentile of the data set, i.e., the value above which and below which half the 

data lay.  The sample median is computed from the ordered data, which are denoted 
by , as follows: [ ] [ ] [ ]x x x n1 2≤ ≤ ≤  L

 
Median =                       if n is an odd number [x n( )/+1 2]

             =  [ ] [(1
2 2 2 2x xn n/ ( )/+

+ ] )    if n is an even number  

    
Range  the maximum data value minus the minimum data value, i.e., 
 
                                       [ ] [ ]Range  = −x xn 1

 
Pth Percentile the value below which P% of the n data lie and above which  

(1 – P)% of the n data lay, where 0 < P < 100.  
 
VSP computes the Pth percentile by first computing ( )( )k P n= +/ 100 1 .   
If k is an integer, the Pth percentile is , which is the k[ ]x k

th largest of the n data values.  
For example, to compute the 50th percentile of a data set of     n = 9 measurements, we 
have P = 50 and ( )( )k P n= +/ 100 1 = 0.50(10) = 5, which is an integer.  Hence, the 50th 
percentile (the median) is the 5th largest datum, .  [ ]x 5

 
If k is not an integer, the Pth percentile is obtained by linear interpolation between the two 
closest ordered data values.  For example, suppose n = 11 and P = 70.  Then 

= 0.70(12) = 8.4.  The 70( )(k P n= / 100 1)+ th percentile is computed using linear 
interpolation between the 8th and 9th largest data values, i.e., between  and .  [ ]x 8 [ ]x 9

 
Interquartile  
Range  
(IQR)  the 75th percentile of the data set minus the 25th percentile of the data set 
 
Standard  
Deviation 
(s)             the spread of the data, s, computed as:  
 

                                        ( )s
n

x xi
i

n

=
−

−
=
∑1

1
2

1
 

 
Variance the square of the standard deviation:  
 
                                    Variance  = s2
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Standard 
Error the standard deviation of the estimated mean computed as 
 

                                     ( )SE
s
n n n

x xi
i

n

= =
−

−
=
∑1

1
2

1( )
 

 
Skewness 
Coefficient a measure of the symmetry of the data set computed as 
 

  
( )

SKEW  =
− −

−
=
∑n

n n
x x

s

i
i

n

( )( )1 2
3

1
3 , 

 
  where x and s are computed as given previously. 
 
Figure 8 shows the summary (descriptive) statistics computed and displayed by VSP for a set of 150 data 
generated from a normal distribution.     
 
 

 
Figure 8.   VSP Summary (Descriptive) Statistics Computed using  

150 Data from a Normal Distribution 
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2.4.2  Testing Whether Data are Normally Distributed 
 
Shapiro-Wilk Test  
 
The Shapiro-Wilk test, which is denoted by W, tests whether the n data are normally distributed.  VSP 
computes this test when the number of data does not exceed 50.  The null and alternative hypotheses are  
 

Ho:  The data are normally distributed 
Ha:  The data are not normally distributed 

 
The test is conducted as follows (from Gilbert 1987, pp. 158-160): 
 

1. Compute 

( )d x xi
i

n

= −
=
∑ 2

1
 

2. Order the n data from smallest to largest to obtain the sample order statistics 
 [ ] [ ] [ ]x x x n1 2≤ ≤ ≤  L

3. Compute k, where 

                         k
n

=
2

        if n is even 

                         k
n

=
− 1
2

   if n is odd 

4. Find coefficients  from Table A6 in Gilbert (1987, pages 259- 
           260). 

 a ,  a ,  a  ,  ...  ,  a1 32 k

5. Compute 

                            [ ]W
d

a x xi n i i
i

k

= −
⎡

⎣
⎢

⎤

⎦
⎥− +

=
∑1

1
1

2

(  

 
6. Reject Ho and accept Ha at the α  significance level if W is less than the  

percentile,W , of the W statistic given in Table A7 of Gilbert (1987,  
page 261) 

nα ,

 
Figure 9 shows the VSP results for the Shapiro-Wilk test for the 30 data used in Figure 8.  For these data, 
null hypothesis is not rejected, i.e., the test indicates that there is insufficient evidence to conclude that the 
data are not normally distributed.    
 
Note that Figure 9 also shows the 95% upper confidence limit on the mean that is computed assuming the 
data are normally distributed.  Since the Shapiro-Wilk test indicated that the assumption of normally 
distributed data cannot be rejected, VSP automatically recommends on the screen shot in Figure 9 that 
this UCL be compared to the action level (AL) for making decontamination decisions.  If the Shapiro-
Wilk test had rejected the null hypothesis, then VSP would have automatically recommended that the 
UCL computed using the nonparametric (distribution-free) Chebyshev method (shown in Figure 9) be 
compared to the AL.  
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Shapiro-Wilk Test for 
Normality 

Figure 9.  The VSP Results for the Shapiro-Wilk Test for Normality  
using 30 Data Generated from a Normal Distribution 

 
Lilliefors Test 
 
The Lilliefors test (Conover 1999, pages 443-447) tests the following null and alternative hypotheses for 
data sets for which 50 < n ≤ 1000:   
 

Ho:  The data are normally distributed 
Ha:  The data are not normally distributed 

 
The test is conducted as follows: 
 

1.  Compute the mean 

                                          x
n

xi
i

n

=
=
∑1

1
 

 
              and the standard deviation 
                              

                                ( )s
n

x xi
i

n

=
−

−
=
∑1

1
2

1
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2. Compute the “normalized” sample values : Zi

 

                         Z
x x

si
i=
−

        i  =  1,  2, … , n                              (28) 

 
3. Compute the Lilliefors test statistic T as follows: 
 
                      T F x S= −sup ( ) ( )* x , 
 

where  
 
T  is the supremum over all x of the absolute value of the difference  
                 , and F x S x*( ) ( )−
 
F x*( )  is the cumulative distribution function of a normal distribution with mean zero and 

standard deviation one, and 
 
S x( )  is the empirical distribution function of the values of , which are computed using 

Equation (28) above. 
Zi

 
4. Reject Ho and accept Ha at the α  significance level if T exceeds the critical value  

for the test, which can be obtained from Table A14 in Conover (1999, page 548).  
 
Figure 10 shows the VSP results for the Lilliefors test for a set of 150 normally distributed data.   For 
these data, the null hypothesis is not rejected, i.e., the test indicates that there is insufficient evidence to 
conclude that the data are not normally distributed.  Figure 10 also provides the 95% upper confidence 
limit on the mean that is computed assuming the data are normally distributed, as well as when the data 
are assumed not to be normally distributed.   
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Lilliefors Test for 
Normality 

Figure 10.  VSP Results for the Lilliefors Test for Normality using  
150 Data Generated from a Normal Distribution 

      
2.4.3 Graphical Tools for Assessing Whether Data are Normally Distributed 
 
VSP provides three graphical summaries of the data that provide visual assessments of the normality 
assumption:  
 

• Histograms 
• Box-and-whisker plots 
• Quantile-quantile plots (also called “probability plots”) 

 
Examples of these graphs are shown in Figures 11, 12, and 13, which were produced by VSP.  These 
graphs display the 150 measurements used in Figure 10.   
 
All three plots are consistent with the conclusion of the Lilliefors test, that is, they provide no strong 
evidence that the data are not normally distributed.  The shape of the histogram in Figure 11 is not 
inconsistent with bell shape of the normal distribution.  The box-and-whisker plot in Figure 12 indicates 
that the median is approximately midway between the 25th and 75th percentiles and that the data are 
scattered to the same extent in both tails of the distribution, which suggests normality.  Finally, the Q-Q 
plot in Figure 13 shows that there is a strong linear relationship between the observed data and the data 
that are theoretically expected if the data are normally distributed.    
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Figure 11.  Histogram of n = 150 Data Compared to the Normal Distribution 
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25th Percentile 
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75th Percentile 

Figure 12.  Box-and-Whisker Plot of n = 150 Data 
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Figure 13.  Quantile-Quantile Plot of n = 150 Data 

 
 
2.5   One-Sided Upper Confidence Limits on the Mean 
 
VSP also automatically computes one-sided upper confidence limits (UCL) on the mean for any data set 
entered into the VSP building module.  Two methods for computing the UCL are provided.  One method 
assumes the data are normally distributed, and one does not. The formulas in VSP for these two methods 
of computing UCLs are identical to those used in the ProUCL (2004) computer code.   
 
The equation used to compute the UCL when the data are assumed to be normally distributed is the usual 
formula (Gilbert 1987, Equation 11.6, page 139): 
 

UCL x t s
nn= + − −1 1α , , 

 
where  
 
x  = mean of the n measurements 
s  = standard deviation of the n measurements 
t n1− −α , 1  = 100(1-α ) percentile of the t distribution with n-1 degrees of freedom 
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n = number of measurements 
 
VSP uses the following Chebyshev formula to compute the UCL when no assumption is made about the 
distribution of the data: 
 

UCL x s
n

= + −
1 1
α

    , 

 
where x,  s,   and n α have been defined above.   
 
Both of these methods are also used in the EPA-developed software ProUCL (2004, pages A-24 and A-
32). 
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3.0 Verification of VSP Computations and Outputs 
 
3.1 Previously Developed Statistical Methods in VSP that are Applicable to 

the VSP Buildings Module 
 
Gilbert et al. (2002) documents the computations conducted to verify that VSP is correctly and accurately 
computing the number of samples needed for the statistical methods described in Sections 2.1, 2.2, and 
2.3.1 of this report.  PNNL staff compared VSP computations with hand calculations and the results of 
PNNL-prepared (S-PLUS® software (http://www.insightful.com/products/splus/default.asp) and SAS® 
(Statistical Analysis System) software (http://www.SAS.com).  Exact or sufficiently good agreement was 
obtained in all cases considered as described in Sections 3.2.1, 3.2.3, 3.2.4, and 3.2.5 in Gilbert et al. 
2002.  In addition, computations conducted independently by the Research Triangle Institute (RTI) for the 
“one-sample” t test (as well as other VSP methods not discussed in this report) agreed exactly with those 
of VSP as described in Section 3.2.2 of Gilbert et al (2002).   Davidson (2001) verified the accuracy of 
sample-size equations in an early version of VSP. 

 
     PNNL also checked the accuracy of the four graphical displays in VSP outputs: 
 

• the “Map View,” which shows on the map of the study site the sampling locations determined by 
VSP, 

• the “Graph View,” which shows the Decision Performance Goal Diagram, a graph of the 
quantitative DQO parameters specified by the VSP user, 

• the “Report View,” which documents the sampling objectives, number and location of samples, 
underlying assumptions, costs, and other information, and 

• the “Coordinate View,” which lists the geographical coordinates of the sampling locations. 
    

Three minor display problems were uncovered and corrected.   
 
Finally, extensive testing by PNNL verified that the following non-statistical portions of VSP were 
operating correctly in Sections 4.1 - 4.7 of Gilbert et al. (2002): 
 

• installation success for various computer platforms 
• file import, export, and removal of sampling locations 
• drawing functions  
• correspondence between dialog box values and values in view windows 
• documentation of algorithms to determine sampling locations 
• pseudo-random and quasi-random number generators 
• the largest unsampled spot location algorithm 

 
3.2 New Statistical Methods Developed for the VSP Buildings Module 
 
3.2.1 One-Sided Upper Tolerance Limits for Normally Distributed Data 
 
Verifying Computations of n 

 
As indicated in Section 2.3.2, a one-sided upper tolerance limit on the Pth percentile of a population is a 
value, denoted here byUT , computed using the n measurements such that at least P% of the 
population of measurements is less than UT with 100(1-α)% confidence, where 0 < P < 100.  For 

LP ,α

LP ,α
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example, if P =  95 and α  = 0.05, then at least 95% of the population is less than the computed value 
 with 95% confidence.    UTL95 0 05, .

 
VSP uses the iterative method in Section 2.3.2, Equation (22), to determine the number of samples or 
measurements, n, needed to computeUT .  The VSP user inputs the parameters P, α, β, AL, ∆, and s.  
Then VSP computes n.  The values of n computed by VSP were verified as being accurate by using VSP 
to compute n for 24 combinations of input parameters used in Lyles and Kupper (1996, Table II).  The 
values of n computed by VSP and by Lyles and Kupper (1996) were identical for all 24 cases.   The 
inputs and computed values of n are given in Table 5.  Tables 6 and 7 show the iterations VSP conducted 
to compute n = 58 and n = 20 in Table 5.    

LP ,α

 
Table 5.  Number of Samples or Measurements, n, Computed by both VSP and Lyles and  

Kupper (1996) for Computing a One-Sided Upper Tolerance Limit on the 95th  
Percentile of a Normal Distribution*

Variance of the Natural Logarithms of the Measurements ( ) σ y
2UBGR

LBGR
 

Ln(UBGR)- 
Ln(LBGR)  

** 0.50 1.0 1.5 2.0 2.5 3.0 
1.5 0.40546 58      107      154      202      249      295 
2.0 0.69315 24        42        59        76        93      109 
2.5 0.91629 16    27    37     47    57    67 

     3.0 1.09861 13    20    28     35    42    49 
* The values of n in this table were obtained for the following VSP DQO inputs:              
P = 95, α = 0.05, β = 0.20, action level (AL) = 3, Ln (3) = 1.0986 = UBGR.    
**  Width of the gray region (in natural logarithms) of the Decision Performance Goal  
Diagram. 

 
Table 6.  Iterations Computed by VSP in Determining the Number of Samples Needed  

for a Normal Distribution One-Sided Upper Tolerance Limit when P = 95,  
α = 0.05, β = 0.20, Action Level = 1.0986, Width of Gray Region = 0.405, and  

Variance = 0.50 
n tn Z nP− −1, ,α  

*  

tn Z n− − −−1 11, ,θ β  

** 

t tn Z n n Z nP− − − −
−

−1 1 1, , , ,α βθ 1  

*** 
         10000 
           5001 
           2501 
           1251 
             626 
             314 
             158 
               80 
               41 
               61 
               51 
               56 
               59 
               58 
               57 
               58  

-437.0290 
-212.7520 
-100.3410 
  -60.7745 
  -43.7835  
  -31.8240 
  -23.4242 
  -17.5704 
 -13.5638 
 -15.7653 
 -14.7119 
 -15.2490 
 -15.5611 
 -15.4579 
 -15.3539 
 -15.4579 

       -596.286 
       -293.9670 
       -142.6840 
         -76.9311 
         -53.9880 
         -37.8151 
         -26.4179 
         -18.41150 
         -12.8207  
         -15.0133 
         -14.4421 
         -15.19390 
         -15.6291 
         -15.48530 
         -15.3402 
         -15.48730 
 

          159.258 
             81.21500 
             42.34280 
             16.15660 
             10.20450 
               5.99113 
               2.99365 
               0.84107 
              -0.74314 
               0.14800 
              -0.26980 
              -0.05518 
                0.06798 
                0.02736 
               -0.01369 
                0.02736 
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*  Equation (23) 
**  Equation (24) 
***  Equation (22) 

 
Table 7.  Iterations Computed by VSP in Determining the Number of Samples Needed  

for a Normal Distribution One-Sided Upper Tolerance Limit when P = 95,  
α = 0.05, β = 0.20, Action Level = 1.0986, Width of Gray Region = 1.09861  

and Variance = 1.0 
n tn Z nP− −1, ,α  

*  

tn Z n− − −−1 11, ,θ β  

** 

t tn Z n n Z nP− − − −
−

−1 1 1, , , ,α βθ 1  

***  
         10000 
           5001 
           2501 
           1251 
             626 
             314 
             158 
               80 
               41 
               21                 
               11  
               16  
               19  
               20         

-437.0290 
-212.7520 
-100.3410 
  -60.7745 
  -43.7835  
  -31.8240 
  -23.4242 
  -17.5704 
 -13.5638 
-10.8672 

   -9.33628 
-10.0946 
-10.5618 
-10.7152 

       -741.044     
       -367.19 
       -180.178 
         -95.2448 
         -66.8698 
         -46.8679 
         -32.7722 
         -22.8703 
         -15.9557            
         -11.0335 
           -7.64787 
           -9.46975 
         -10.4322 
         -10.7365 

         304.016 
         154.438 
           79.8368 
           34.4703 
           23.0863 
           15.0439 
             9.348 
             5.29983 
             2.39186              
             0.166307 
            -1.6884 
            -0.62488 
            -0.12955 
              0.0212574 
 

*  Equation (23) 
**  Equation (24) 
***  Equation (22) 

 
As explained in Section 2.3.2, the computation of normal distribution upper tolerance limits, as well as 
the number of samples required, requires using percentiles from the non-central t distribution.  These 
percentiles used in the VSP software were verified as being accurate by comparison with percentiles 
computed using non-central t values computed using the SAS® (Statistical Analysis System) software 
(http://www.SAS.com).  One hundred comparisons were made for various values of the non-centrality 
parameter and degrees of freedom.  For all cases the two methods agreed to at least 5 digits.   

 
Note that Lyles and Kupper (1996) assumed that the data were lognormally distributed, rather than 
normally distributed as is assumed here in this section.   However, the natural logarithms of lognormally 
distributed data are normally distributed.  Hence, to make the Lyles and Kupper (1996) computations of n 
applicable to the normal distribution, the natural logarithms of the standard deviation, s, and of the AL 
were used in VSP.   Note that VSP can be used to determine n for tolerance limits when the data are either 
normally or lognormally distributed.  For the lognormal case, the VSP user must be sure to input the 
natural logarithms of the standard deviation and AL   
 
Verifying VSP Computations of Percentiles and One-Sided Upper Tolerance Limits 
 
Hand calculations were conducted to verify that VSP was correctly computing estimates of percentiles 
and one-sided upper tolerance limits.  These comparisons were conducted for the three sets of input 
parameters shown in Table 8.0.   Both VSP and hand calculations of n were exactly the same, and 
computations of percentiles and UTLs agreed to at least 4 decimal places.    
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Table 8.  Comparing VSP and Hand Calculations for Computing One-Sided Upper  

Tolerance Limits for the Normal Distribution 
VSP Inputs VSP and Hand Calculations 

Percentile of 
Interest 

α β ∆ s AL n Estimated 
Percentile* 

UTL** 

0.90 0.05 0.10 2   1   10   9 12.49        11.28 
0.99 0.05 0.20 2   1.4     5 20    7.557          6.521 
0.70 0.01 0.05 5   2   30   8 29.396 33.579 

* Computed using Equation (17) 
** Computed using Equation (21) 
 
3.2.2  Nonparametric (Distribution-Free) One-Sided Upper Tolerance  Limits 
 
As indicated in Section 2.3.4, VSP computes the number of samples or measurements needed to 
determine the 100(1-α) % nonparametric upper tolerance limit on the Pth percentile using the following 
equation from Hahn and Meeker (1991, page 169): 
 

                                               n
P

=
ln( )
ln( )

α
 

 
Numerous hand calculations verified that VSP was accurately computing n using this equation for various 
combinations of α and P . 
 
3.2.3  Nonparametric (Distribution-Free) Compliance Sampling for Attributes 
 
The acceptance sampling methodology in the VSP buildings module is identical to the acceptance 
sampling methodology used in the UXO Module of VSP except that grid units in the UXO module are 
long, narrow rectangles (transects) suitable for use with geophysical detectors, whereas units in the 
building module are relatively small square units of a size specified by the VSP user.  Hence, the 
computations reported in Gilbert et al. (2003, Section 7.2, Table 7.2, pages 29-30) to verify that VSP is 
correctly computing n for the UXO module also apply to the buildings module.   There was perfect 
agreement between the VSP and hand calculations of n (the number of grid units that need to be selected 
and measured) for 11 combinations of VSP input parameters used in Gilbert et al. (2003). 
 
3.2.4  Nonparametric (Distribution-Free) Acceptance Sampling for  Attributes 
 
As discussed in Section 2.3.5, acceptance sampling can be used to statistically test whether the fraction of 
a room (or suite of rooms) that is contaminated above a level (AL) is less than a prescribed upper limit.   
VSP determines the number (n) and location of grid units (defined below) in the room that must be 
measured or inspected to make this determination.  VSP also computes the integer C.   If more than C of 
the n measured grid units equal or exceed the AL or are defective in some other way as defined by the 
VSP user, then the required confidence is not achieved and additional investigations may be needed. 

 
Two comparisons (examples) were conducted to verify the accuracy of VSP’s computations of n and C.   
VSP computations were compared with those in Schilling (1982, pages 120-121) and Bowen and Bennett 
(1987, pages 884-886).  Figures 14 and 15 show VSP software results that document the VSP input 
parameters and the resulting computed values of n and C for these two examples.   The results are also 
summarized in Table 9.  The values of n and C computed by VSP were exactly the same as those 
computed by Bowen and Bennett (1987) and Schilling (1982).   
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Table 9.  Comparing VSP and Scientific Literature Computations of the Number  

of Samples (n) and the Acceptance Number (C) for Acceptance  
Sampling 

Acceptance Sampling Input Parameters VSP Results*  
Acceptable % 
of Grid Units 
Allowed to be 
Contaminated 

Unacceptable 
% of Grid 

Units Allowed 
to be 

Contaminated 

Acceptable 
False 

Rejection 
Rate 

(Alpha) of 
the Null 

Hypothesis 

Acceptable 
False 

Acceptance 
Rate (Beta) 
of the Null 
Hypothesis 

Number 
of Grid 

Units that 
Must be 

Sampled, 
n 

Accept-
ance 

Number
C 

Schilling 
(1982) 

Example 

 10 20 0.24 0.30 10 1 

Bowen 
and 

Bennett 
(1987) 

Example 

5 20 0.10 0.10 14 1 

* VSP results agree exactly with those of Schilling (1982) and Bowen and Bennett (1987) 
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Figure 14.  VSP Acceptance Sampling Inputs and Computation  

of n and C using Input Parameters for the Example in 
Schilling (1982, Pages 120-121) 
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Figure 15.  VSP Acceptance Sampling Inputs and Computation  

of n and C using Input Parameters for the Example  
in Bowen and Bennett (1987, Pages 884-886) 

 
3.2.5 Wright and Grieve’s Bayesian Method for Attributes 
 
The Wright and Grieve method in the VSP buildings module for computing the number of square grid 
units to sample or measure is identical to the Wright and Grieve method in the VSP UXO module.  
Hence, the computations reported in Gilbert et al. (2003, Section 7.3, Tables 7.3 – 7.6, pages 30-31) to 
verify that VSP was correctly computing n for the UXO module also apply to the buildings module.  
There was perfect agreement between VSP and hand calculations for the 20 UXO cases considered in 
Gilbert et al. (2003). 
 
3.2.6 Data Quality Assessment (DQA) Methods 
 
The DQA methods available for the buildings module of VSP were described and illustrated in Section 
2.4.   The accuracy of VSP computations was confirmed using two generated data sets: a subjectively 
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selected small data set of size n = 10 and a larger data set of size n = 150 generated from a Uniform 
distribution (i.e., all data values between zero and 1 are equally likely) using the Minitab® software.   The 
n = 10 data are (ordered from smallest to largest):  3, 3, 4, 5, 5, 5, 5, 7, 8, 9.  The n = 150 data are shown 
in Table 10 below. 
 

Table 10.  Data Values for the n = 150 Data from a Uniform Distribution that were used  
to Confirm VSP Calculations 

0.393239   0.217942   0.884915   0.591513   0.448162   0.848726   0.449710 
0.060060   0.907290   0.306071   0.967525   0.397397   0.306274   0.701034 
0.473084   0.961279   0.496642   0.324835   0.097984   0.769982   0.659596 
0.368637   0.841605   0.409483   0.546913   0.291464   0.806556   0.096745 
0.687879   0.721830   0.544905   0.004014   0.626819   0.569690   0.055153 
0.267127   0.723115   0.352003   0.237320   0.755126   0.420712   0.843423 
0.068970   0.304536   0.528710   0.500253   0.746839   0.940291   0.773938 
0.075600   0.306106   0.797992   0.838047   0.031409   0.314868   0.676918 
0.305022   0.699674   0.915306   0.096862   0.238844   0.678509   0.584849 
0.654240   0.069360   0.684844   0.718156   0.042515   0.137714   0.360637 
0.504661   0.176554   0.269683   0.670299   0.330245   0.639786   0.518187 
0.926014   0.123607   0.319425   0.016896   0.691269   0.602390   0.923842 
0.475836   0.521439   0.886162   0.213561   0.986175   0.821703   0.088199 
0.412209   0.155279   0.607685   0.709771   0.756929   0.623754   0.764255 
0.063380   0.597041   0.963442   0.647390   0.259159   0.580860   0.725436 
0.384467   0.747730   0.412887   0.789853   0.349645   0.793819   0.831777 
0.514551   0.484066   0.464942   0.254986   0.594485   0.294630   0.847482 
0.865880   0.364579   0.653673   0.855020   0.112503   0.128002   0.118295 
0.446828   0.926365   0.541171   0.772976   0.402897   0.781555   0.134294 
0.061969   0.478819   0.407399   0.104149   0.795857   0.503805   0.466339 
0.068171   0.963593   0.817505   0.765519   0.657113   0.108781   0.056217 

0.258344   0.933720   0.633266 
 

 
Descriptive Statistics 
 
For both the small and large data sets, the VSP and Minitab® (2003) software calculations of the 
descriptive statistics listed in Table 11 gave the same computed values as displayed in the table.   Note 
that the 1st, 5th, 95th, and 99th percentiles in Table 11 were calculated by hand because Minitab does not 
compute those percentiles.  In those cases, both the VSP and hand calculations gave the same values 
shown in the table.  
 

Table 11.  Values of Descriptive Statistics for the Small and Large Data Sets Used to  
Verify the Accuracy of Computations in VSP 

Descriptive Statistic Small Data Set (n = 10) Large Data Set (n = 150) 
Minimum 3 0.0040 
Maximum 9 0.9862 
Range/minimum minus 
maximum 

6 0.9822 

Mean 5.4 0.507 
Standard Deviation 2.011 0.2786 
Variance 4.04 0.0776 
Standard Error (Standard 0.636 0.0227 
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Deviation of the Estimated 
Mean) 
Interquartile Range (75th 
Percentile minus 25th 
Percentile) 

3.5 0.456 

1st Percentile 3* 0.011* 
5th Percentile 3* 0.061* 
25th Percentile 3.75 0.294 
50th Percentile (Median) 5 0.516 
75th Percentile 7.25 0.75 
95th Percentile 9* 0.93* 
99th Percentile 9* 0.977* 
*Computed by hand 

 
Upper Confidence Limits on the Mean 
 
Recall from Section 2.0 that VSP computes UCLs in two ways: when data are assumed or known to be 
normally distributed and when no assumption about the distribution is made.  Hand computations were 
conducted to verify the accuracy of VSP computations of the UCLs.    The UCLs were computed using 
the two data sets (small and large) described above.  The UCLs computed by VSP are given in Table 12.  
Hand calculations gave identical results in all cases. 
 

Table 12.  Comparing VSP and Hand Calculations of UCLs for Two Data Sets 
Assume Data are Normally 

Distributed* 
No Data Distribution 

Assumption** 
 
Number of 
Samples 95% 

Confidence 
99% 

Confidence 
95% 

Confidence 
99% 

Confidence 
n = 10 6.566 7.194 8.172 11.73 
n = 150 0.545 0.560 0.606 0.733 

*Computed as follows: UC  L x t s
nn= + − −1 1α ,

**Computed as follows: UC  L x s
n

= + −
1 1
α

 

 
Tests that Data are Normally Distributed 
 
VSP computes two statistical tests to evaluate if data sets are normally distributed: the Shapiro-Wilk 
(SW) test and the Lilliefors (LF) test.  These tests were described in Section 2.4.2.  VSP computes the SW 
test when n ≤ 50 and the LF test when n > 50.  Minitab® computes the LF test, but not the SW test.  
Hence, the accuracy of VSPs computations for the SW test was verified using hand calculations rather 
than Minitab®.   
 
As both Minitab® and VSP compute the LF test statistic, Minitab® was used to verify the accuracy of 
VSPs LF test results.  VSP also computes LF test critical values for three different significance levels 
(values ofα , the false rejection decision error rate).  As Minitab does not compute these critical values, 
hand calculations were conducted to verify the accuracy of VSP’s computation of critical values.  The 
accuracy of VSP calculations for the SW and LF tests was evaluated for the two data sets (small and 
large) described above.  The results are reported in Table 13.    
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The VSP computations for the SW test are all very close in value to those computed by hand.  The 
agreement of VSP and Minitab in computing the LF test statistic was excellent.   The agreement of VSP 
and hand computations for the LF critical values was somewhat less for theα = 0.10 critical value than 
for α = 0.01 and α = 0.05 critical values.  However, these critical values were computed by hand using 
the approximate formula at the bottom on Table A14 in Conover (1999, page 548).  The slight 
disagreement between VSP and hand-computed critical values is believed to be due to using the 
approximate formula rather than to errors within VSP. 
 

Table 13.  Comparing VSP, Minitab®, and Hand Calculations for the Shapiro-Wilk and  
Lilliefors Tests that the Data are Normally Distributed for a Small Data Set 

 (n = 10) and a Large Data Set (n = 150) 
Test Statistic Test Critical Values 

α = 0.01 α = 0.05 α = 0.10 
 

 
VSP 

Minitab or
by Hand VSP Hand  VSP Hand  VSP Hand  

Shapiro-
Wilk Test       
(n = 10) 

0.9024 0.9024* 0.781 0.781† 0.842 0.842† 0.869 0.869† 

Lilliefors 
Test         (n 
= 150) 

0.0742 0.074** 0.0842 0.0841
†† 

0.0723 0.0723†
† 

0.0657 0.06676 
†† 

*Computed by hand 
**Computed by Minitab® 
†Read from Table of Critical Values in Gilbert (1987, Table A7, page 261) 
††Computed by hand using Table A14 in Conover (1999, page 548) 

 
All methods above except the summary statistics were directly transferred to VSP from the ProUCL 
(2004) software (Version 3.0).  The summary statistics and statistical/graphical tests for normal 
distributions listed above are described in ProUCL (2004).  The UCL formula for normally distributed 
data is described in ProUCL (2004, Equation 32, page A-24).  The nonparametric Chebyshev UCL is 
described in ProUCL (2004, Equation 46, page A-32).  These UCL methods are also described in EPA 
(2002b).   
 
Comparing Graphical Displays of VSP 
 
Both VSP and Minitab® produce histogram, box-and-whisker plots, and quantile-quantile plots.  These 
plots were constructed for both the small (n = 10) and the large (n = 150) data set.  The graphs produced 
by Minitab® were identical to those produced by VSP aside from different display formats.  For example, 
the quantile-quantile plots (also called “probability plots”) for the large data set for VSP and Minitab® are 
given in Figures 16 and 17, respectively.  The similarity of the two figures is obvious.  Both indicate that 
the normality assumption for these n = 150 data should be rejected.   
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Figure 16.  Quantile-Quantile Plot for the Large Data Set (n = 150) Created in VSP 
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Figure 17.  Quantile-Quantile Plot for the Large Data Set (n = 150) Created in Minitab®
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