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1.0 Introduction 
 
 
The Pacific Northwest National Laboratory (PNNL) is developing statistical methods for determining the 
amount of geophysical surveys conducted along transects (swaths) that are needed to achieve specified 
levels of confidence of finding target areas (TAs) of anomalous readings and possibly unexploded 
ordnance (UXO) at closed, transferring and transferred (CTT) Department of Defense (DoD) ranges and 
other sites.  The statistical methods developed by PNNL have been coded into the UXO module of the 
Visual Sample Plan (VSP) software code that is being developed by PNNL with support from the DoD, 
the U.S. Department of Energy (DOE), and the U.S. Environmental Protection Agency (EPA).  (The VSP 
software and VSP User’s Guide (Hassig et al, 2002) may be downloaded from http://dqo.pnl.gov/vsp.) 
This report describes and documents the statistical methods developed and the calculations and 
verification testing that have been conducted to verify that VSP’s implementation of these methods is 
correct and accurate. 
 
When a geophysical sensor system is deployed continuously along transects, anomalous readings may be 
recorded.  These anomalies may occur due to, e.g., metal fragments from exploded ordnance, scrap metal 
objects that remain from human activities in the area, natural geologic materials, or actual UXO.  The 
goal is to first find TAs of anomalous readings and then to determine whether any of the anomalous 
readings are indicative of UXO.   
  
Section 2.0 documents the methods used in VSP that compute the required spacing between transects in 
order to traverse circular or elliptical TAs of specified size and shape with specified high probability.  
Methods for circular and elliptical TAs are considered in Sections 2.1 and 2.2, respectively.   
 
In Section 3.0 the methods used to compute the probability of traversing and detecting a TA using a 
geophysical sensor system along transects determined using statistical design methods in VSP are 
provided.  Section 3.1 provides the methods used to compute this probability when the Uniform 
probability distribution is selected to model the density of anomalies (number of anomalies per unit area) 
in the TA.  Section 3.2 provides the methods used in VSP when the Bivariate Normal distribution model 
is selected.  These distributions are described in many statistical books, for example, Rothschild and 
Logothetis (1986, pages 22-23 and 30-31). 
 
Section 4.0 describes a statistical Bayesian approach for computing the probability that a TA exists even 
though it has not been found using a geophysical survey of the area.  Section 5.0 documents the methods 
in VSP that are used to approximate the probability that a TA of specified size and shape would have 
been found using the straight-line or meandering transects that were used in the geophysical survey.  
Section 5.1 documents the methods in VSP used to compute the probability of traversing (but not 
necessarily detecting) a TA when meandering transects have been used.  Sections 5.2 and 5.3 document 
the methods used to compute the probability of both traversing and detecting a TA with the meandering 
transects actually used when the density of anomalies in the TA is modeled by a Uniform distribution or a 
Bivariate Normal distribution, respectively.   
 
Section 6.0 documents the technical basis of the methods used in VSP to determine the number of parallel 
transects that should be surveyed and found to have no UXO in order to have specified high confidence 
that few if any UXO exist in transects that have not been surveyed.  Sections 6.1 and 6.2 describe the 
methods of Shilling (1978, 1982) and Grieve (1994) and Wright (1992), respectively, that are used in 
VSP.  Section 7.0 presents data obtained by PNNL from computer and hand calculations to verify that 
VSP computations are correct and accurate.  Section 8.0 provides references to the literature cited in this 
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report.  Appendices A, B, and C provide additional detailed descriptions of the statistical methods used in 
VSP. 
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2.0 Spacing Between Transects Required to Traverse Target Areas 
with High Probability 

 
 
Geophysical surveys are conducted at DoD sites and facilities to search for TAs that contain anomalies, 
e.g., UXO or metallic objects that indicate UXO may be present.  In some cases the sites may be very 
large or may contain obstacles or features such as dense forests that make it impractical or impossible to 
survey 100% of the site.  In these situations it is necessary to determine the maximum spacing that should 
be allowed between transects that will still achieve the necessary confidence that TAs of specified size, 
shape, and density of anomalies will be traversed by one or more transects and detected by the 
geophysical survey detectors employed along the transects.  
 
This section provides the equations used to compute the maximum spacing, b (in units of feet or meters) 
between transects that can be allowed in order to achieve the required probability, 1− β .  The 
computations are conducted by the VSP software.  Equations are provided for three different transect 
patterns (parallel, square grid, or rectangular grid) for circular or elliptical TAs. 
 
2.1 Circular Target Areas 
 
First, the equations for computing the probability, P, that the circular TA is traversed by the transect 
pattern selected are provided.  These equations are a function of several parameters: the radius of the 
smallest TA that must be traversed, the transect width and the spacing between transects.  The UXO 
module in VSP solves these equations for b for specified values of P and the other parameters.  The 
mathematical derivation of this methodology is provided in Appendix A. 
 
The following notation is used: 
 
P    =    required probability of traversing the TA 
r     =    radius of the smallest TA that must be detected with probability P 
w   =    width of each transect (the width of the “footprint” of the geophysical  
            sensor that is deployed along the transect) 
b    =    spacing between transects (feet or meters) 
a    =    spacing between transects in the other direction for a square or rectangular  
            transect pattern 
 
Parallel Transects 
 

 P
r w

b w
=

+
+

2
 (1) 

 
Rectangular Grid Transect Pattern 

 

 
( ) ( )

( )( )P
a r w b r w r w

a w b w
=

+ + + − +
+ +

2 2 4 2 2

  (2) 
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Square Grid Transect Pattern 
 

 
( )

( )P
b r w r w

b w
=

+ − +
+

2 2 4 2 2

2  (3) 

 
2.2 Elliptical Target Areas 
 
In addition to the notation given for circular targets in Section 2.1 above, the following additional notation 
is used: 
 
x   =  half-width of the TA rotated at an angle 
y   =  half-height of the TA rotated at an angle 
θ   =  angle of orientation of the TA with respect to the transect 
r1  =  length of the semi-major axis of the TA  
r2  =  length of the semi-minor axis of the TA 
 
Parallel Transects 
 

 
P

y w
b w

=
+

+
2

 (4) 

 
Rectangular Transect Pattern  
 

 
( ) ( )

( )( )P
b x w a y w xy w

a w b w
=

+ + + − +
+ +

2 2 4 2

 (5) 

 
Square Transect Pattern 
 

 
( ) ( )

( )P
b x w b y w xy w

b w
=

+ + + − +
+

2 2 4 2

2  (6) 

 
where 
 

  x r d= −1
2 2 2sin θ  

 

  y r d= −1
2 2 2cos θ  

 

  d r  r= −1
2

2
2

 
Known Angle of Orientation  
 
If the angle of orientation, θ , is known, the appropriate equation for P above (Equation 4, 5 or 6) is 
solved for b with a specified value of P and θ .  
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Unknown Angle of Orientation  
 
For an unknown angle of orientation, θ , solutions to elliptic integrals must be used (see Appendix A).  It 
is not practical to solve these integrals in terms of b, so a binary search method is used in VSP to 
determine b, the maximum spacing.  Formulas to determine the probability of traversing the TA at an 
unknown angle using the binary search method are as follows for the three transect patterns: 
 
Parallel Transects 
 

 ( )P P
o

o

≅
=
∑1

91
4

0

90

θ

 (7) 

 
Rectangular Transect Pattern 
 

 ( )P
o

o

≅
=
∑1

91
5

0

90

θ

P  (8) 

 
Square Transect Pattern 
 

 ( )P
o

o

≅
=
∑1

46
6

0

45

θ

P  (9) 

 
where , , and are the probabilities computed from Equations (4), (5), and (6) above, 
respectively. 

( )P 4 ( )P 5 ( )P 6

 
The binary search method for finding b with unknown θ  given r1, r2, w, and P is as follows: 
 
1. bhi is set at a value that guarantees that the probability the transect is traversed is > P 
2. blo is set at a value that guarantees that the probability the transect is traversed is < P 
3. Repeat Steps 3.1 through 3.5 as long as  (bhi - blo) > 0.00005 
 3.1 Bnew = (blo + bhi)/2 
 3.2 Compute Pnew using Equation (7), (8), or (9), as appropriate, for the specified values of r1, r2, w 

and for b = bnew 

 3.3 If P = Pnew, then blo = bnew and bhi = bnew 
 3.4 If  P > Pnew, then blo = bnew 
 3.5 If  P < Pnew, then bhi = bnew 
4. Compute the maximum spacing allowed as follows: 

b = (blo + bhi) / 2 
 
Conservative Angle of Orientation 
 
The VSP software code permits the user to specify a conservative angle of orientation of an elliptical TA.  
The conservative angle option means that the TA is oriented so that it presents its narrowest profile to the 
transects.  This option assures that the probability of traversing the TA is the value, P, specified by the 
VSP user when the target is oriented at the angle that is the hardest to detect.  For parallel transects, this 
should occur when θ  = 0o.  For transects that are aligned in a square grid pattern, this should occur when 
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θ  = 45o.  For transects that are in a rectangular grid pattern, this should occur when θ  is between 0o and 
45o, depending on the rectangle width-to-height ratio and the shape of the ellipse. 
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3.0  Probability of Traversing and Detecting a Target Area 
 
 
Section 2.0 presented the methods used to determine the maximum spacing between transects that will 
assure that a TA of specified size and shape will be traversed by one or more transects.  However, the TA 
may not be detected even though it is traversed.  The methods for computing the probability of both 
traversing and detecting a TA are documented in this section.   
 
The probability of traversing and detecting a TA of anomalies of a specified size, shape, and density is 
computed in VSP using the following formula: 
 
 ( )PTD D T= −1 β P  (10) 
 
where 
 

  1− β  =    probability that the TA is traversed by one or more transects 

    P    =    mean probability that the geophysical survey detects the TA  
                                      given that the TA is traversed by one or more transects 

D T

 
The VSP software code computes the probability PD T  based on the value of VSP input parameters 
concerning the size and shape of the TA, the density of anomalies in the TA, and the false negative 
detection rate of the geophysical sensor system (as applied under normal field conditions) that will be 
used to conduct the surveys.  The VSP user can specify that the model for the density (number per unit 
area) of anomalies is either a Uniform distribution (i.e., an unchanging mean density throughout the TA, 
i.e., the items are placed completely at random throughout the TA) or a Bivariate Normal distribution (the 
anomaly density is lowest at the edge of the TA and increases toward the center of the TA at a rate 
according to the Bivariate Normal distribution model).   
 
The VSP user must also specify both a critical density and a trigger density of anomalies.   The critical 
density,  (number/unit area), is the anomaly density in the TA that the stakeholders have determined 
must have a high probability of being detected by the geophysical survey so that the TA can be searched 
more closely for UXO.  The trigger density ( ) is the lowest anomaly density of concern, that is, there is 
no need to find a TA that has an anomaly density that is less than the trigger density.  

Dc

Dt

 
VSP computes PD T  by (1) constructing a TA of the shape, size, and critical anomaly density specified by 
the VSP user, (2) placing that TA at a random location within the study site (e.g., suspected artillery 
impact range) such that all portions of the TA are within the boundary of the site, and by (3) specifying 

, which is the false negative detection error rate (probability) of the geophysical sensor system under 
field operating conditions.  In other words, it is assumed that each anomaly that lies within the portion of 
the TA that is traversed by one or more transects has the same probability, 1

Pfn

− Pfn , of being seen 
(detected) by the geophysical sensor system.   
 
The process VSP uses to compute the maximum spacing between transects is as follows: 

 
1. The VSP user specifies  

 

o the size  (in mA 2, ft2, in2 or acres) and shape (circular or elliptical) of the TA of concern 
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o the probability, 1− β , required that the TA of that size and shape will be traversed by 
one or more transects 

o whether a parallel, square grid, or rectangular grid transect design will be used 
o the width (the geophysical sensor “footprint”) of the transects (in units of meters, feet, or 

inches) 
2. VSP computes the maximum spacing between transects that will achieve the probability 1− β  

that one or more transects will traverse the TA.  A larger spacing will result in a probability less 
than 1− β  of the TA being traversed. 

 
3.1 Uniform Distribution Model for the Density of Anomalies in the Target 

Area 
 
The process VSP uses to compute PD T  is as follows if the VSP user has specified that the density of 
anomalies has the uniform distribution: 
 

1. VSP places the TA at a random location within the study site such that the entire TA lies inside 
the study site 

2. The VSP user specifies the critical and trigger densities (  and ) and the false negative 
detection error rate, , of the geophysical sensor system under field conditions.  It is assumed 
that is the same value for each object that causes an anomalous reading. 

Dc Dt

Pfn

Pfn

3. VSP computes the number of anomalies in the TA as follows: n ADTA c=  
4. VSP uses simple random sampling to place the  anomalies at random locations in the TA of 

the specified size and shape 
nTA

5. VSP places the transect pattern at a random geographical starting place so that the transects cover 
the entire study site using the transect spacing, width, and pattern selected by the VSP user 

6. VSP computes  
o the size of the area, , within the TA that is traversed by one or more of the transects 

that happen to cross the TA, where 0 
Att

Att ≥
o the actual number of anomalies, , that lie within the area of size  nd Att

o the number of anomalies,  =  , that are expected to lie within the area of 
size when the density of detectable items is at the trigger value,  

ne Att Dt

Att Dt

7. VSP computes PD T , the probability the geophysical sensor has detected the TA given that the 
TA has been traversed by one or more transects, as follows: 

 ( ) ( ) (P
n

i n i
P PD T

d

d
fn

i

fn
n i

i n

n
d

e

d

=
−

− −

=
∑ !

! !
1 )  if n ≥ n  (11) d e

 
 PD T = 0  if n < n  (12) d e

Then VSP repeats 10,000 times the process of placing the transect pattern at a random geographical 
starting place and recomputing , , andAtt nd ne PD T .   

8. VSP computes the arithmetic mean, PD T , of the 10,000 values of PD T  

9. Finally, VSP computes ( )P PTD D T= −1 β . 
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3.2 Bivariate Normal Distribution Model for the Density of Anomalies in the 
Target Area 

 
If the VSP user has specified that the density of the anomalies in the TA has the Bivariate Normal 
distribution, then VSP computes PD T  by first computing the volume, V, of the BN distribution that lies 
under the one or more transects that transect the TA, where 0<V<1.  The method used to compute V is 
given in Appendix B of this report.  Then, VSP computes: 
 

n N V ADd c c= = V    and    n N V ADVe t t= =  
 
where  is the expected total number of anomalies in the TA when the density of anomalies is 

, and  is the expected total number of anomalies in the TA when the density of anomalies is 
.  Then VSP uses Equations (11) and (12) above to compute

N A Dc t=
N At =

c

tDc

Dt

D
PD T .  VSP repeats this whole process 

10,000 times and computes the average of the 10,000 values of PD T , denoted by PD T , and 

finally ( )P PD TTD = −1 β . 
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4.0  Probability a Target Area Exists when None was Found 
 
 
This section describes the Bayesian approach used to compute the probability, , that one or more 
TAs are present even though none have been found by a geophysical survey of the site.  The equation 
used to compute this probability is 

PUXO

 

 
( )

( ) ( )( )P
P P

P P P P
UXO

TD ap

TD ap ta ap

=
−

− + − −

1

1 1 1
 (13) 

 
where 

PUXO  = the probability that one or more TAs are present even though none were found by 
a survey  

PTD  = the probability that the TA is traversed and detected 
Pap  = the a-priori probability that one or more TAs of critical size, shape, and density 

are present 
Pta  = the probability that the survey incorrectly indicates that a TA is present. 

 
Equation (13) is derived in Gilbert (1987, Equation 10.5, pages 128-129).  The probability may be 

selected to be the expected value, δ, of a specified distribution such as the Beta distribution.  For example, 
may be selected to be δ = 0.0001 to correspond to one’s belief that a Beta distribution with parameters 

a = 1 and b = 10,000 is appropriate.  However, there is no requirement that the VSP user associate  

with any specific distribution.  

Pap

Pap

Pap

 
It should be noted that if = 0, then  is a valid estimate of the probability that a TA exists when 

none has been found using the survey.  But if > 0, then the value of  computed by VSP is biased 
high.  In practice, it may make the most sense to assume = 0.   

Pta PUXO

Pta PUXO

Pta

 
To illustrate the computation of Equation (13), suppose  =  0.90, = 0.01, and  = 0.00.  Then PTD Pap Pta

 

 0010
990010100

010100 .
...

..PUXO =
+∗

∗
= . 

 
Hence, if  
 
• the a priori probability ( ) is 0.01 that a TA of the critical size, shape, and density is present at the 

site, and 

Pap

• the detector survey design used was developed to achieve a probability  = 0.90 that the TA is 
both traversed and detected, 

PTD
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then the probability  = 0.001 that a TA of the critical size, shape, and density exists either in the un-
surveyed areas or in the surveyed areas even though the transect design used did not find any TAs.  

PUXO

 
The verification that VSP is correctly computing Equation (13) is provided in Section 6.1. 
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5.0 Technical Basis of the Statistical Post-Survey Target Area 
Detection Evaluation Method 

 
 
The transect sampling plans laid out by VSP are perfect straight lines that are spaced at regular intervals.  
However, when field crews implement a VSP sampling plan, they may find that obstacles, dense 
vegetation, geographic features and other factors make it undesirable, difficult, or impossible to follow 
straight lines with the geophysical sensors.  This section documents the methods in VSP that can be used 
to approximate the probability that a TA of specified size and shape would have been found using the 
straight-line or meandering transects that were actually used in the geophysical survey.  Section 5.1 
documents the methods used in VSP to compute the probability of traversing meandering transects.  
Sections 5.2 and 5.3 document the methods used to compute the probability of both traversing and 
detecting the TA when the density of anomalies in the TA have a Uniform or Bivariate Normal 
distribution, respectively. 
 
5.1 Approximating the Probability that Meandering Transects Traverse a 

Target Area  
 
VSP defines transects as a series of connected points.  Figure 5.1 depicts how connected points (and the 
line segments they define) may appear on a map. 
 
 

 
Figure 5.1.  Meandering Transects Depicted as a Series of Connected Points 

 
In reality, transects have a width reflecting the width (“footprint”) of the geophysical sensor equipment as 
it traverses the ground.  Hence, VSP represents the transects as a series of connected rectangles rather 
than as a series of connected line segments. VSP refers to these types of transects as meandering 
transects.  Figure 5.2 depicts how meandering transects may appear. 
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Figure 5.2.  Meandering Transects Depicted as a Series of Connected Rectangles 

 
The probability of traversing an elliptical or circular TA with a meandering transect is approximated by 
the probability that the TA intersects one or more of the rectangles.  This probability is an approximation 
because of the gaps between and overlapping areas of the rectangles.  VSP uses a Monte-Carlo method 
for simulating the probability of traversing the TA, as outlined below. 
 
The simulation uses the following parameters: 
 

n  =  number of simulation iterations 
r   =  radius of TA (length of the semi-major axis for elliptical TAs) 
s   =  shape of TA (height to width ratio, i.e., the length of the semi-minor axis  
         divided by the length of the semi-major axis) 
θ  =  orientation of TA (random or a specified angle) 

 
For each iteration of the simulation the following steps are performed: 
 

1. A random point (x,y) within the area being surveyed is chosen to represent the center of the TA 
2. If a random orientation is chosen, a random TA orientation, θ, between 0˚ and 180˚ is chosen 
3. Each transect segment is checked against the TA as follows: 
4. A quick check is made to see if the point (x,y) is more than r from the extents of the transect 

segment.  If so, the next segment is checked (Step 3 and following). 
5. If the TA is an ellipse (s < 1.0) then each of the 4 corner points (px, py) of the transect segments 

is rotated by –θ to orient the ellipse horizontally (see Figure 5.3).  The rotated point (x’,y’) is 
calculated by the following formulae: 
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6. If the TA is an ellipse (s < 1.0), then it is stretched to obtain a circle.  To stretch the elliptical TA, 

the y coordinate of each rotated corner point of the ellipse and the center of the TA is divided by s 
(see Figure 5.4). 
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Figure 5.3.  Rotating the Elliptical Target Area to a Horizontal Orientation 

 
 
 

 
 

Figure 5.4.  Stretching the Elliptical Target Area to Make it a Circle 
 

7. The rotated and stretched transect segment is checked against the circular TA to see if there is any 
overlap.  If there is overlap, the hit count is increased by one and the next simulation iteration is 
tried (Step 1 and following).  If there is no overlap, then the next transect segment is checked 
against the TA (Step 3 and following). 

8. After all iterations have been tried, the probability of traversing the TA is given by the number of 
hits divided by n. 

 
If the “Place samples on map to show simulation” option in VSP is selected, VSP places a point (black 
dot) on the site map for each trial TA location that was not traversed by the meandering transect.  Figure 

 14 



 

5.5 shows the results of trying to traverse a target that has shape s = 0.5 and orientation angle θ = 45˚.  
The dark area in Figure 5.5 is the dense cluster of locations where targets could exist without being 
traversed.  All targets in the clear (yellow) area would be traversed by one or more meandering swath. 
 

 
Figure 5.5.  Display of Points (Locations) for which Trial Target Areas 

Centered at those Points were not Traversed 

 
5.2 Probability of Traversing and Detecting a Target Area with Meandering 

Transects; Uniform Distribution Model of the Density of Anomalies   
 
The probability that the meandering transects will traverse and detect an elliptical or circular TA that has 
a uniform density of anomalies is approximated in VSP by a Monte-Carlo simulation method, as outlined 
below.   
 
The simulation uses the following parameters: 
 

n      =  number of simulation iterations 
r      =   radius of TA (length of the semi-major axis for elliptical TAs) 
s      =  shape of target (height to width ratio) 
θ     =  orientation of target with respect to the x-axis (random or a set angle) 
Dc   =  critical density 
Dt   =   trigger density 
Pd   =  false negative error rate of  the geophysical sensor as used in field conditions 

 
For each simulation iteration, the following steps are performed: 
 

1. A random point (x,y) within the sample area is chosen to represent the center of the TA 
2. If the TA is an ellipse and a random orientation is chosen, a random TA orientation, θ, is chosen 

(0˚ to 180˚) 
3. Each transect segment is checked against the TA as follows: 
4. A quick check is made to see if the point (x,y) is farther than distance r from the extents of the 

transect segment.  If so, the next segment is checked (Step 3 and following). 
5. If the TA is an ellipse (s < 1.0) then each of the 4 corner points (px,py) of the swath segments is 

rotated by –θ to orient the ellipse horizontally (see Figure 5.3).  A rotated point (x’,y’) is 
calculated by the following formulae: 
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6. It is simpler to check the intersection of a circle than an ellipse, so if the target is an ellipse (s < 
1.0) then the test plane is stretched vertically to make the target a circle.  To stretch the plane, the 
y coordinate of each rotated corner point of the ellipse and the center of the target is divided by s 
(see Figure 5.4). 

7. The rotated and stretched swath segment is checked against the TA circle to see if there is any 
overlap, as described in Appendix B (see separate documentation of the Polygon Intersect Circle 
Area algorithm in Section C1 of Appendix C).  If there is no overlap, then the next transect 
segment is checked against the TA (Step 3 and following).  If there is overlap, then the area of 
intersection between the transect segment and the TA is computed and added to the total 
intersection area (Att) (see separate documentation of the Polygon Intersect Circle Area algorithm 
in Section C1), the meandering swath segment is added to an array, and the next swath segment is 
checked against the target (Step 3 and following). 

8. After all transect segments have been checked, overlapping transect segments in the array are 
found and any duplicated areas are removed from Att as outlined in Steps 9 through 11 below.  
There is a deficiency in this method of removal for multiple intersections as outlined in Section 
C10 of Appendix C. 

9. Each transect segment in the array is checked against each other transect segment in the array. 
10. If one transect segment in the array intersects another transect segment in the array, then the 

intersection (the red and blue area in Figure 5.6) is turned into a polygon (see separate 
documentation for Polygon Intersecting Polygon algorithm in Section C2) 

11. The intersection area between the intersection polygon and the target circle (the blue area in 
Figure 5.6) is found (see separate documentation of the Polygon Intersect Circle Area algorithm 
in Section C3) and subtracted from Att . 

 
Figure 5.6.  Finding the (Blue) Intersection Area between the Intersection Polygon and  

the Target Area Circle 

 
12. If Att is zero that indicates that no transect segments overlapped the TA.  The Number of Misses 

is increased by one and the next simulation iteration is tried (Step 1 and following). 
13. At this point, Att is represented by the green and blue areas in Figure 5.6.  If the target is an 

ellipse, the test area must be squashed to turn the circle back into an ellipse so that Att represents 
the area in the original (un-stretched) test area.  This transformation is accomplished by 
multiplying Att by s. 

14. nd and ne are computed as follows: 

 16 



 

 ttte

cttd

DAn
DAn

=
=

 
 

(note:  nd and ne are rounded to the nearest integer) 
15. If ne is zero, it is changed to one so that the following equation is correctly calculated 
16. The probability that the sensor detects ne or more of the nd anomalies, PD T , is computed using 

Equations 11 and 12 above                                        
17. PD T  is added to Total PD T .   The PD T Count is increased by 1.  The next simulation iteration is 

tried (Step 1 and following). 
18. When all n simulation iterations have been tried, the mean PD T is calculated as                     

                             PD T  =  (Total PD T ) / ( PD T Count) 
19. The probability that the TA is traversed, 1-β, is calculated as                                                      

                              1-β  =  1.0 – (Number of Misses) / n 
20. The probability that the TA is traversed and detected, , is calculated as                                              

                               =  (1-β) 

PTD

PTD PD T . 
 
If the “Place samples on map to show simulation” option is selected, VSP places a point where each 
trial target intersected one or more of the meandering swath segments.  Figure 5.7 shows the results of 
trying to traverse a target of s = 0.5 and θ = 45˚.  The clear (yellow) areas in Figure 5.7 are the 
locations where targets could exist without being traversed.  All targets in the dark areas would be 
traversed by one or more meandering swath segments.  More information can be found by right 
clicking on one of the samples that represents a simulated target.  The sample label “56.5%,45” 
means 56.5% of the simulated target was traversed by meandering swath segments and the target was 
oriented at 45 degrees. 
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Figure 5.7.  Dark Portions Indicate Areas that would be Traversed by One or More of  
the Meandering Transects for a Target Area of Shape s = 0.5 and θ = 45˚ 

 
5.3 Probability of Traversing and Detecting a Target Area with Meandering 

Transects; Bivariate Normal Distribution Model of the Density of 
Anomalies 
 

The probability of traversing and detecting an elliptical or circular target area with a meandering swath is 
approximated by a Monte-Carlo simulation method similar to the method used when the density of 
anomalies has a Uniform distribution (Section 4.2).    
 
The simulation uses the same parameters as are used for the Uniform distribution: 
 

n      =  number of simulation iterations 
r      =  radius of TA (length of the semi-major axis for elliptical TAs) 
s      =  shape of target (height to width ratio) 
θ     =  orientation of target with respect to the x-axis (random or a set angle) 
Dc   =  critical density 
Dt   =  trigger density 
Pd   =  false negative error rate of  the geophysical sensor 

 
For each simulation iteration, the following steps are performed: 
 

1. A random point (x,y) within the sample area is chosen to represent the center of the TA 
2. If the TA is an ellipse and a random orientation is chosen, a random target orientation, θ, is 

chosen (0˚ to 180˚) 
3. Each transect segment is checked against the TA as follows: 
4. A quick check is made to see if the point (x,y) is farther than distance r from the extents of the 

swath segment.  If so, the next segment is checked (Step 3 and following). 
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5. If the TA is an ellipse (s < 1.0), then each of the 4 corner points (px,py) of the swath  segments is 
rotated by –θ to orient the ellipse horizontally (see Figure 5.3).  A rotated point (x’,y’) is 
calculated by the following formulae: 
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6. It is simpler to check the intersection of a circle than an ellipse, so if the TA is an ellipse (s < 1.0) 

then the test plane is stretched vertically to make the target a circle.  To stretch the plane, the y 
coordinate of each rotated corner point of the ellipse and the center of the TA is divided by s (see 
Figure 5.4). 

7. The rotated and stretched transect segment is checked against the TA circle to see if there is any 
overlap (see separate documentation of the Polygon Intersect Circle Area algorithm in Section C3 
for details.)  If there is no overlap, then the next transect segment is checked against the TA (Step 
3 and following). 

8. If there is overlap, then the transect segment is intersected with a bounding box (see Figure 5.8).  
The intersection is a new polygon.  The bounding box encloses the target at the –3σ and +3σ 
levels in both the x and y dimensions. 

 
 

        
 

 
Figure 5.8.  Intersection of a Transect Segment with a Bounding Box 

 
 

9. The bivariate normal volume of the TA under the intersection polygon (see Figure 5.9) is 
computed and added to the total intersection volume (Vt) (see separate documentation of the 
Polygon Bivariate Normal Volume algorithm in Section C4), the meandering transect segment is 
added to an array, and the next transect segment is checked against the TA (Step 3 and 
following). 
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Figure 5.9.  Bivariate Normal Distribution Volume of the Target Area under the  

Intersection Polygon 

 
10. After all transect segments have been checked, overlapping transect segments in the array are 

found and any duplicated volumes are removed from Vt as outlined in Steps 11 through 13 below.  
There is a deficiency in this method of removal for multiple intersections as outlined in Section 
C10 of Appendix C. 

11. Each transect segment in the array is checked against each other transect segment in the array 
12. If one transect segment in the array intersects another transect segment in the array, then the 

intersection is turned into a polygon (see the documentation for the Polygon Intersection Polygon 
algorithm in Section C2).  The intersection polygon is also intersected with the bounding box (the 
blue area in Figure 5.10). 

 
Figure 5.10.  Intersection Polygon Intersecting with the Bounding Box 

 
13. The volume under the intersection polygon (Figure 5.11) is found (see the documentation of the 

Polygon Bivariate Normal Volume algorithm in Section C4) and subtracted from Vt. 
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Figure 5.11.   Volume Under the Intersection Polygon 

 
14. If Vt is zero, that means no transect segments overlapped the target area.  The number of misses is 

increased by one and the next simulation iteration is tried (Step 1 and following). 
15. nd and ne are computed as follows: 

 
ttte

cttd
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=
=

 

where: At = r2s  is the area of the target ellipse 
and nd and ne are rounded to the nearest integer 

16. If ne is zero, it is changed to one so that the following equation is correctly calculated. 
17. The probability that the sensor detects ne or more of the nd detectable objects, PD T , is computed 

using Equations 11 and 12 above  
18. PD T  is added to Total PD T .   The PD T Count is increased by 1.  The next simulation iteration is 

tried (Step 1 and following). 
19. When all n simulation iterations have been tried, the mean PD T is calculated as  

PD T  =  (Total PD T ) / ( PD T Count) 
20. The probability that the target is traversed, 1-β,  is calculated as 

1-β  =  1.0 – (Number of Misses) / n 
21. The probability that the TA is traversed and detected, , is calculated as PTD

PTD   =  (1-β) PD T . 
 
The “Place samples on map to show simulation” option in VSP works the same for the bivariate normal 
distribution as it does for the uniform distribution (see Figure 5.7 above).  The sample label has a slightly 
different meaning: “56.5%, 45” means 56.5% of the volume of the simulated target was traversed by 
meandering swath segments and the target was oriented at 45 degrees. 
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6.0 Technical Basis of Compliance Sampling Methods 
 
 
This section describes the statistical methods selected by PNNL and used in VSP for determining the 
number of transects that should be surveyed and found to have no UXO to have high confidence that few 
if any UXO exist in transects that have not been surveyed.  Such surveys may be necessary or desirable to 
support a no further action (NFA) decision for the area being surveyed. 
 
6.1 Shilling’s Method for Determining the Number of Transects to Survey to 

be Confident that Very Few Transects Contain UXO 
 
Suppose that in the area of interest there are N possible parallel transects that could be surveyed using a 
geophysical sensor, but that N is so large that only n transects can be surveyed, where n < N.  How should 
n be determined?  Shilling (1978, 1982) developed an acceptance sampling plan he called “compliance 
sampling” for determining n.  He developed compliance sampling for industrial applications, but the 
methodology is also suitable for UXO applications and has been coded into VSP.   
 
For UXO applications, Shilling’s approach is implemented in VSP as follows:    
 

• The VSP user specifies the width of each transect (all transects are assumed to have the same 
width) 

• VSP uses the transect width and the map of the study area to compute the total number, N, of 
potential parallel transects that could be surveyed in the study area 

• The VSP user specifies an upper limit on the percent, PL, of transects that contain one or more 
UXO that can be tolerated by the stakeholders.  For example, the stakeholders may specify that 
no further action (or some other specified action) at the study site is needed if PL < 2 percent of 
the transects contain UXO 

• The VSP user specifies the 100(1-ε) percent confidence, say 100(1 - 0.10) = 90%, that is required 
by the stakeholders that PL < 2 percent 

• Then VSP computes the number, n, of the N transects that must be selected using simple random 
sampling and surveyed to find UXO   

• If no UXO are found in the n transects and all transects are equal (or approximately equal) in 
length, then it can be stated that the probability is 0.90 that less than 2 percent of the N transects 
contain UXO.    

 
As explained in Shilling [1978 and 1982 (pages 474-482)], n is determined by first computing D = N 
x PL and using D in a special table to find the fraction, f, of the N transects that must be surveyed.  
Then n = f x N.  The fractions, f, in Shilling’s table are only appropriate when the required confidence 
is 90% (ε = 0.10).  However, Shilling (1978, 1982) also shows how to determine the fraction, f, for 
any other confidence level that is desired.   

 
The verification that VSP is correctly computing n using Shilling’s method is provided in Section 6.2. 
 
Figure 6.1 illustrates Schilling’s method.  A rectangular study area is shown.  In the dialogue box the 
VSP user has specified that each transect is 5 feet wide, that 90% confidence is required that no more 
than 10 percent of the possible 15 transects of 5-foot width contain UXO.  VSP computes that 12 of 
the 15 transects must be surveyed and found to be free of UXO in order to make this confidence 
statement. 
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Study Area 

Dialogue Box 

 
 

Figure 6.1.  Illustration of Shilling’s Method in VSP for Determining the Number  
of Transects to be Surveyed to Assure Compliance with UXO Removal  

Requirements 
 
6.2 Wright and Grieve’s Method for Determining the Number of Transects 

to Survey to be Confident that No Transects Not Surveyed Contain UXO 
 
Grieve (1994) developed an equation (his Equation 2.5) that can be used to compute the number of 
transects, n, that should be selected from the total set of N transects and found to contain no UXO in order 
to be 100(1-ε) percent confident that no UXO are present in the transects not surveyed.  Grieve’s 
equation, which is based on the methods in Wright (1992), is coded into the VSP software.   
 
Wright and Grieve’s method is “Bayesian” because it requires that the stakeholders provide a quantitative 
measure of their belief that the study area contains UXO.  This belief should be based on all information 
and data collected about the study area and the conceptual site model developed for the area.  The 
stakeholders quantify their “belief” by choosing a specific Beta probability distribution for the fraction, f, 
of the N units that contain one or more UXO.  [The Beta distribution is described in, e.g., Rothschild and 
Logothetis (1986, pages 50-51), Patel et al (1976) and Johnson and Kotz (1970).]  In other words, the 
stakeholders are uncertain about the fraction of transects that contain UXO, but they can agree that the 
probability that f takes on various values can be modeled by a specific Beta distribution, the shape of 
which is determined by the value of the two parameters of the distribution: a and b.   The expected (true 
average) value, δ , of f for a Beta distribution with parameter values a and b is δ = +a a b/ ( ) .   
 

 23 



 

The VSP software allows the VSP user to choose among 7 possible Beta distributions.  These 
distributions are listed in Table 6.1 and are illustrated in Figures 6.2 - 6.8.  The shape of each distribution 
and the expected value δ for each distribution is determined by the values of the two parameters, a and b.   
 

Table 6.1.  The Seven Beta Distributions Available for Selection in VSP to Model the  
Uncertainty in the Fraction of Transects that Contain One or More UXO 

 
Parameter Values of the 
Seven Beta Distributions  

in VSP 

Expected Value, δ,* of the  
Fraction, f, of Transects that 

Contain  
UXO 

English Characterization of 
the Beta Distribution used in 

the VSP Software 

1.       a = 1,    b = 999                 0.001   Extremely low fraction 
2.       a = 1,    b = 99                 0.01   Very low fraction 
3.       a = 1,    b = 9                 0.1   Low fraction 
4.       a = 1,    b = 1                 0.5   All fractions equally  

  likely  
5.       a = 9,    b = 1                 0.9   High fraction 
6.       a = 99,  b = 1                 0.99   Very high fraction 
7.       a= 999, b = 1                 0.999   Extremely high fraction 

* δ = a/(a+b) 
 
The VSP user selects one of the seven distributions and VSP computes n using the following equation 
[derived from Equation 2.5 in Grieve (1994)]: 
 

 ( ) ( )( ) ( ){ }n N N b b≥ − + − − −1 1 1ε δ δ/  (14) 
 
where N, a, b, δ and 1-ε have been defined above.  If the geophysical sensor surveys do result in finding 
any UXO in any of the n randomly selected transects, then one can state with 100(1-ε) percent confidence 
that there are also no UXO in any of the N-n transects that were not surveyed.  As is the case for 
Schilling’s method in Section 6.1, it is assumed that all transects are equal (or approximately) equal in 
length.   
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Beta Distribution (a=1, b=999)
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Figure 6.2.  Beta Distribution with Parameters a = 1, b = 999 and Expected Value 

δ =  0.001 
 

Beta Distribution (a=1, b=99)
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Figure 6.3.  Beta Distribution with Parameters a = 1, b = 99 and Expected Value δ = 0.01 
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Beta Distribution (a=1, b=9)
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Figure 6.4.  Beta Distribution with Parameters a = 1, b = 9 and Expected Value δ = 0.1 
 

Beta Distribution (a=1, b=1)
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Figure 6.5.  Beta Distribution with Parameters a = 1, b = 1 and Expected Value δ = 0.5 
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Beta Distribution (a=9, b=1)
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Figure 6.6.  Beta Distribution with Parameters a = 9, b = 1 and Expected Value δ = 0.9 
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Figure 6.7.  Beta Distribution with Parameters a = 99, b = 1 and Expected Value δ = 0.99 
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Beta Distribution (a=999, b=1)
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Figure 6.8.  Beta Distribution with Parameters a = 999, b = 1 and Expected Value δ = 0.999 
 
Figure 6.9 illustrates the Wright-Grieve method.  A rectangular study area is shown.  In the dialogue box 
the VSP user has specified that each transect is 5 feet wide, that it is the VSP user’s prior belief that 10% 
of the transects in the study area may contain UXO and that 95% confidence is required that there are no 
UXO in the study area if no UXO are found in the n transects that are surveyed. With these specifications, 
VSP computes that 14 of the 15 transects must be surveyed and found to have no UXO in order to have 
95% confidence that no UXO are present in the study area. 
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Figure 6.9.  Illustration of the Wright-Grieve Method in VSP for Determining the  
Number of Transects to Survey 
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7.0  Verification of Visual Sample Plan Software UXO Module 
Computations 

 
 
This section documents the hand or computer calculations conducted at PNNL to verify that VSP is 
correctly computing 

• the probability that a TA exists when none has been found (Section 7.1) 
• the number of transects, n, as determined using Shilling’s method (Section 7.2) 
• the number of transects, n, as determined using the Wright and Grieve method (Section 7.3), and 
• the number of anomalies that occur in the portion of the transects that traverse the TA when the 

density of the anomalies in the TA has a Bivariate Normal Distribution (Section 7.4).    
 
7.1 Probability a Target Area Exists when None was Found 
 
This section documents the agreement between hand and VSP calculations of the probability, , that a 
TA exists when none were found during the geophysical survey of the study area.  VSP used Equation 
(13) in Section 4.0 to compute this probability.  The calculation results are presented in Table 7.1.  There 
was perfect agreement of the hand and VSP calculation of  for the six combinations of Equation (13) 
parameters used in Table 7.1. 

PUXO

PUXO

 
Table 7.1.  Values of the Probability that a Target Area Exists when None was Found by  

a Geophysical Survey 
 

PTP  Pap  Pta  PUXO  
Computed by 

Hand 

PUXO  
Computed b  

VSP 
       0.50        0.50        0.50       0.50        0.50 
       0.90        0.50        0.50       0.16667        0.16667 
       0.90        0.10        0.50       0.02174        0.02174 
       0.90        0.10        0.05       0.01156        0.01156 
       0.999        0.0001               0.01       0.000        0.000 
       0.001        0.999        0.001       0.999        0.999 
       0.90        0.999        0.000       0.990        0.990 

 
7.2  Shilling’s Method for Computing the Number of Transects to Survey 
 
The test results are provided in Table 7.2.  We see that there is perfect agreement between the VSP and 
hand calculations of n, the number of transects that need to be selected using simple random sampling, 
surveyed, and found to contain no UXO in order to state with specified confidence that the percentage of 
the total number of possible transects that contain one or more UXO is less than the specified value PL. 
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Table 7.2.  Comparison of Values of  n Computed using VSP and by Hand 
 

N* PL ** 
 

Confidence  
Required 

n Computed by 
Hand 

n Computed 
using VAP 

         10         1 %         90 %          10          10 
         10         0.769 %         95 %          10          10 
       100         0.769 %         95 %          95          95 
       100         1 %         90%          90          90 
       100       10 %         90 %          21          21 
       100         2 %         99 %          90          90 
     1000         0.769 %         95 %        259        259 
     1000         5 %         90 %          46          46 
     1000       10 %         90 %        206        206 
   10000         0.769 %         95 %        297        297 
   10000         1 %         90 %        237        237 

*   Number of potential transects in the study area 
** Upper limit on the percent, PL, of transects that contain one or more UXO that can be  
     tolerated by the stakeholders.    

 
7.3 Wright and Grieve’s Method for Computing the Number of Transects to 

Survey 
 
The test results are presented in Tables 7.3, 7.4, 7.5, and 7.6 for N = 10, 100, 1000 and 10,000, 
respectively.  Recall from Section 6.2 that N is the total number of potential transects in the study area.  In 
all cases, the hand calculation of n agreed with the VSP calculation of n after the hand calculations were 
rounded up to the next largest integer.  Both the hand and VSP calculations were made using Equation 14.  
Because perfect agreement in n was obtained (after rounding up) in all cases, the table entries are the 
values of n obtained by VSP.  Recall that δ is the expected fraction of the N transects that contain UXO.  
Each value of δ corresponds to a different Beta distribution (see Table 6.1 and Figures 6.2 through 6.8).   
 
These tables provide information on how n changes with changes in the confidence required, the Beta 
distribution, and the number of potential transects, N.  Clearly, the number of transects, n, that need to be 
surveyed and found to not contain UXO increases greatly as the required confidence increases, as the 
expected fraction of transects that contain UXO increase, and as N increases. 
 
Also, it should be noted in Table 7.3 and 7.4 that a value of n = 0 indicates the actual n computed by hand 
and by VSP using Equation 14 was negative.  VSP converts these negative values to zero because a 
negative n has no meaning.   
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Table 7.3.  Values of n Computed by both VSP and Hand Calculations using the  
Wright and Grieve Method (Equation 14) when there are N = 10 Transects 

 
Required 
Confidence 

  δ =  
 0.001* 

δ = 0.01 δ = 0.10 δ = 0.50 δ = 0.90 δ = 0.99   δ = 
0.999 

     50 %      0      0       1        5      10      10      10 
     80 %      0      0       7        8      10      10      10 
     90 %      0      0       9        9      10      10      10 
     99 %      0      9     10      10      10      10      10 
     99.9 %      9    10     10      10      10      10      10 

*Expected value, δ, of the fraction of transects that contain UXO 
 

Table 7.4.  Values of n Computed by both VSP and Hand Calculations using the Wright and Grieve 
Method (Equation 14) when there are N = 100 Transects 

 
Required 
Confidence 

   δ =  
 0.001* 

δ = 0.01 δ = 0.10 δ = 0.50 δ = 0.90 δ = 0.99    δ = 
0.999 

     50 %       0        1     46      50      93     100     100 
     80 %       0      61      79      80      98     100     100 
     90 %       0      81     90      90      99     100     100 
     99 %     90      99     99      99    100     100     100 
     99.9 %     99    100   100    100    100     100     100 

*Expected value, δ, of the fraction of transects that contain UXO 
 

Table 7.5.  Values of n Computed by both VSP and Hand Calculations using the Wright and Grieve 
Method (Equation 14) when there are N = 1000 Transects 

 
Required 
Confidence 

   δ =          
 0.001* 

δ = 0.01 δ = 0.10 δ = 0.50 δ = 0.90 δ = 0.99    δ = 
0.999 

     50 %         1     451    496    500     926     994    1000 
     80 %     601     781    799    800     975     998    1000 
     90 %     801     891    900    900     988     999    1000 
     99 %     981     990    990    990     999   1000    1000 
     99.9 %     999     999    999    999   1000   1000    1000 

*Expected value, δ, of the fraction of transects that contain UXO     
 

Table 7.6.  Values of n Computed by both VSP and Hand Calculations using the Wright and Grieve 
Method (Equation 14) when there are N = 10,000 Transects 

 
Required 
Confidence 

   δ =          
 0.001* 

δ = 0.01 δ = 0.10 δ = 0.50 δ = 0.90 δ = 0.99    δ = 
0.999 

     50 %   4501     4951    4996    5000    9259    9931    9994 
     80 %   7801     7981    7999    8000    9756    9978    9998 
     90 %   8901     8991    9000    9000    9884    9990    9999 
     99 %   9891     9900    9900    9900    9989    9999 10,000 
     99.9 %   9990     9990    9990    9990    9999 10,000 10,000 

*Expected value, δ, of the fraction of transects that contain UXO     
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7.4 Computing the Number of Anomalies when the Density of Anomalies in 
the Target Area has a Bivariate Normal Distribution 

 
As discussed in Sections 3.1 and 3.2, in order to compute the probability of traversing and detecting a TA, 
it is necessary to first compute, , which is the number of anomalies that are present within that portion 
of the transects that cross over the TA.  If the density of anomalies within the TA has a Uniform 
distribution (i.e., anomalies occur at random locations throughout the TA at a specified density), then 

is easily determined.  But if the density has a Bivariate Normal distribution, the computation of is 
much more complex, as is detailed in Appendix B.  Hence, it is important to verify that VSP is correctly 
computing using the method in Appendix B. 

nd

nd nd

nd

 
VSP uses the C++ computer language to compute .  The accuracy of the computations was assessed by 
independent computation of n by a second individual in the Statistical and Quantitative Sciences Group, 
Mr. Robert F. O’Brien, using a different computer language (from Mathematica software).  Table 7.7 
provides the testing results. 

nd

d

 
The notation in Table 7.7 is defined as follows: 
 

b =  spacing between transects 
a =  spacing between transects in the other direction 
w = width of each transect 
r1  = length of semi-major axis of the elliptical TA 
r2 =  length of semi-minor axis of the elliptical TA   
D = density of anomalies in the TA  
nTA = number of anomalies in the TA 
nd = the average number of anomalies that are present within that portion of the  
        transects that cross over the TA (based on 10,000 simulations) 

% Difference =  % difference in the two computed value of n  d

 
The last column indicates that for the 12 cases considered, the value of n computed by VSP deviated 
from the value of 

d

nd computed by Mr. O’Brien using Mathematica code by no more than 1.9%.   
 

Table 7.7.  Values of nd Computed by VSP Versus that Computed Using Mathematica Computer Code 
 

 
Case 

 
b 

 
a 

 
w 

 
r1  

  
r2  

  
D 

 
nTA  

 
nd  

(VSP) 

 
nd  

(O’Brien) 

  
% Differ-
ence in nd  

1 10 10 5 5 5 300 23562 13018 13045 0.21 
2 8 16 4 5 4 300 18850 8855 8804 0.58 
3 5 15 3 5 2.5 300 11781 5679 5679 0.00 
4 35 70 5 5 5 300 23562 4290 4290 1.9 
5 15.570 23.36 3 5 3.75 300 17671 4571 4491 1.8 
6 16.729 16.73 3 5 2.5 300 11781 3288 3338 1.5 
7 13.25 * 3 5 5 300 23562 4272 4348 -1.8 
8 10.384 * 3 5 2.5 300 11781 2636 2631 0.2 
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Table 7.7.  Values of nd Computed by VSP Versus that Computed Using Mathematica Computer Code 
(cont.) 

 
 
Case 

 
b 

 
a 

 
w 

 
r1  

  
r2  

  
D 

 
nTA  

 
nd  

(VSP) 

 
nd  

(O’Brien) 

  
% Differ-
ence in nd  

9** 7 * 3 5 2.5 300 11781 3508 3525 -0.5 
10*** 13.25 * 3 5 2.5 300 11781 2156 2175 -0.8 
11** 12.661 18.99 3 5 2.5 300 11781 3526 3556 -0.8 
12*** 22.934 15.29 3 5 2.5 300 11781 3047 3071 -0.8 

*  Parallel transects rather than perpendicular transects were used 
** The TA was orientated at a fixed angle = 0 degrees relative to the x axis 
*** The TA was orientated at a fixed angle = 90 degrees relative to the x axis 

 
For Cases 9, 10, 11, and 12, the value of n (O’Brien) (10d

th column) was computed using numerical 
integration of the expected value, rather than using 10,000 simulations. 
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APPENDIX A 
 

Probabilities that a Rectangular Grid of Transects of Specified 
Width Will Intersect an Elliptical Target Area  

 
Robert F. O’Brien 

Statistical and Quantitative Sciences 
Pacific Northwest National Laboratory 

Richland, Washington 99352 
 

1.0 Introduction 
 
 
A problem often considered in environmental characterization and remediation is to develop a sampling 
scheme for traversing a contaminated target area of a specified size and shape.  The typical approach is to 
define a systematic grid pattern of sampling points that will have a specified probability of traversing a 
randomly located target area of concern.  When the sampling points lie on the nodes of a rectangular or 
triangular grid of field transects and the specified target area is elliptical, Gilbert (1987) discusses a 
method developed by Singer (1972, 1975) that gives the proper grid spacing for the nodes.  When the grid 
is rectangular and the sampling points are continuous along the transects, Duma and Stoka (1993) give a 
methodology to find the probability of traversing a randomly located elliptical target for the special case 
when both axes of the ellipse are less than the length of the smallest side of an elementary rectangle of the 
grid.  This paper extends the results of Duma and Stoka’s methodology to the more general case where 
the transects may also have a specified width and further includes the case where one of the axes of the 
ellipse may be shorter than one of the sides of an elementary rectangle of the grid. 
 
This paper develops a methodology of finding the probability of the grid traversing an elliptical target of a 
specified size when a rectangular grid is used for sampling and the transects have a specified width.  This 
probability can then be used to determine the spacing between the transects of the grid that is necessary to 
traverse a specified elliptical target with a specified probability.  This methodology was developed for the 
situation in which a nondestructive assay device such as a magnetometer or ground penetrating radar is 
used to pass over the transects of a rectangular grid looking for elliptically shaped clusters of shrapnel that 
may indicate the existence of unexploded ordnance (UXO).  In these situations, the field of view of the 
magnetometer or ground penetrating radar has a given width.  The methodology, however, is applicable to 
any environmental situation where a measurement device collects continuous, or near continuous, 
measurements of a certain width along a transect.   
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2.0  Methodology 
 
 
To find the dimensions of the grid (distance between transects) it is sufficient to develop a relationship 
that gives the probability of the grid traversing an elliptical target area as a function of the parameters that 
define an elementary rectangle of the grid and the ellipse.  This follows from the fact that if the grid 
traverses the target ellipse then the ellipse’s center must lie in one of the elementary rectangles of the grid.  
Once a formula for this probability is developed, it is only a matter of solving for the unknown parameters 
of the elementary rectangle of the grid to find the appropriate grid spacing needed to find an ellipse of a 
specified size with a given probability. 
 
Section 2.1 develops a formula for the probability of a randomly placed target ellipse intersecting an 
elementary rectangle of the grid in terms of the parameters that define an elementary rectangle of the grid 
and the ellipse.  Two cases are considered; one where the dimensions of the ellipse are such there exists a 
set of points inside an elementary rectangle of the grid where the ellipse can be fully rotated 360 degrees 
about its center without intersecting the grid, the other case is where there is no such set of points where 
the ellipse can be fully rotated 360 degrees about its center without intersecting the ellipse.  Section 2.2 
discusses certain special cases for the parameters of the grid and target ellipse.  These special cases are: 1) 
where the grid consists of only parallel transects, 2) where the target area is a circle, 3) when the angle of 
orientation to the grid is known, and 4) when there may be more than one target ellipse.  Section 3 gives 
examples using these formulas to find grid dimensions that will yield a specified probability of traversing 
the target ellipse when the target ellipse and transect widths are specified. 
 
2.1 Probability of an Ellipse Intersecting an Elementary Rectangle of the 

Grid 
 
Let L be a rectangular grid in the Euclidean plane whose transects have a specific width w1 in the north-
south direction and w2 in the east-west direction.  Without loss of generality, let an elementary rectangle 
of this grid, T(a+w1, b+w2 ), be defined as  
 

  T (a + w1,b + w2 ) = Bii=1

4U  

where 
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Also define R(a+w1, b+w2 ) as the rectangle formed by the vertices (0,0), ( a+w1 ,0), (a+w1, b+w2 ) and 
(0, b+w2 ).  Similarly define R(a,b).  We are interested in finding the probability of an ellipse with semi- 
axes r1 and r2 , r2 ≤ r1, whose center lies inside the rectangle R(a+w1, b+w2 ) that intersects an elementary 
rectangle T(a+w1, b+w2 ) of the grid.  This probability, P, assumes that the center of the ellipse and its 
angle θ between its main axis and the side a+w1 are independent uniformly distributed on T(a+w1, b+w2 ) 
and on [0,π)  respectively.  Figures A1 and A2 show a graphic of the grid and T(a+w1, b+w2 ), R(a+w1, 
b+w2 ), R(a,b) and an ellipse.  
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Figure A1.  Sampling Grid and Elementary Rectangular Grid Element 
 
 

 
 
 

Figure A2.  Elementary Rectangle T( a+w1,b+w2), Rectangle R(a,b), R(a+w1,b+w2), R(a-xθ,b-yθ),  and 
Ellipse with Semi-Axes r1 and r2 
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For a given angle θ, an ellipse with center at (xθ,yθ) will lie just inside the rectangle R(a,b) without 
intersecting R(a,b) when xθ = (r1

2 − d2 sin2 θ)1/ 2and yθ = (r1
2 − d2 cos2 θ)1/ 2 , where d2 = r1

2 – r2
2.  This 

can be shown using differential calculus, noting that -xθ and  xθ,  are the minimum and maximum x values 
of the ellipse with respect to y and -yθ and  yθ,  are the minimum and maximum y values of the ellipse 
with respect to x when the ellipse has center at the origin and whose major axis is  at an angle θ to the x–
axis. To find the probability, P, it is sufficient to only find the probability, Q, that the ellipse does not 
intersect R(a,b), since 
 

P =1−
ab

(a + w1)(b + w 2)
Q . 

 
There are two cases to consider: one where 2r2 ≤ 2r1 < min{a,b} and the other when  
2r2 < min{a,b} ≤ 2r1 < max{a,b}.  In the first case, if the ellipse has its center in the rectangle R(a- xθ,, b- 
yθ,) formed by the vertices (xθ,yθ), (a-xθ,yθ), (a-xθ,b-yθ), and (xθ,b-yθ) the ellipse never intersects R(a,b) for 
all angles θ, where 0< θ < π..  In the second case this is not true for all 0< θ < π. 
 
Case 1: 2r2 = 2r1 < min{a,b} 
 
To find Q in this case note that an ellipse with semi-axes r1 and r2 and angle θ will not intersect R(a,b) if 
the center lies in the rectangle R(a- xθ, b- yθ,).  In this case Duma and Stoka show that the probability of 
the ellipse not intersecting the rectangle R(a,b) is given by 
 

Q = πab( )−1 (a −2xθ )(b −2yθ )dθ
0

π∫
= πab( )−1 [a − 2 r1

2 − d2 sin2 θ( )1/ 2
][b − 2 r1

2 − d2 cos2 θ( )1/ 2
]dθ

0

π∫
= πab( )−1[4(a + b)r1E( d 2

r1
2 ) − 8 r1r2( )E − d 4

4r1
2r2

2 )( )]
 

 

where E(•) is a complete elliptic integral of the second kind defined as E(z) = 1− zsin2 (ϕ)
0

π / 2∫ dϕ .  It 

then follows that  
 

P =1− ab
(a + w1)(b + w 2)

Q

=1−
a − 2 r1

2 − d2 sin 2 θ( )1/ 2[ ]b − 2 r1
2 − d2 cos2 θ( )1/ 2[ ]dθ

0

π∫
π (a + w1)(b + w2 ) .

 

 
Here numerical integration is required to obtain the desired probability.  This is easiest to implement 
using Gaussian quadrature.  
 
Case 2: 2r2 < min{a,b}  = 2r1 < max{a,b} 
  
In this case for a given angle θ, the ellipse will not intersect R(a,b) only if the center of the ellipse is in the 

rectangle R(a- xθ,, b- yθ,) where 0 <θ <  cos-1 (r1
2 − b2 / 4) /d2( ) or 
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π - cos-1 (r1
2 − b2 / 4) /d2( )<θ <  π .  These values of θ are obtained by noting that the height of the 

rectangle R(a- xθ,, b- yθ,), given by b-2yθ,  is only greater than zero when θ is in these intervals.  
 
In this case the probability P can be obtained as  
 

P =1−
2 (a −2xθ )(b − 2yθ )dθ

0

ζ∫
π (a + w1)(b + w2 )

=1−
2 (a −2(r1

2 − d2 sin2 θ)1/ 2)(b −2(r1
2 − d2 cos2 θ)1/ 2 )dθ

0

ζ∫
π (a + w1)(b + w2 )

 

 

where ζ =  cos-1 (r1
2 − b2 / 4) /d2( ).  Here again the probability requires numerical solution and 

Gaussian quadrature is easiest to implement. 
 
2.2 Special Cases of Interest 
 
There are several special cases of interest: 
 
1. The grid consists of parallel transects of width w at a distant b apart 
 
When one side of the elementary rectangle of the grid, say a, tends to infinity we obtain as a limiting case 
the probability that the ellipse intersects parallel transects of width w at a distance b apart.  The 
probability in this case becomes 
 
 

P =1−
1

π(b + w)
2 (b −2(r1

2 − d2 cos2 θ)1/ 2 )dθ
0

ψ∫[ ] 

 
 

where ψ =
π/2                                   if 2r2 ≤  2r1 <  min{a,b} 

cos -1 (r1
2 − b2 / 4) /d2( )    if 2r2 <  min{a, b} ≤ 2r1 <  max{a,b}

 
 
 

  
.

 

 
 
2. The target area is a circle 
 
In this case the semi-axes of the ellipse are equal, r1=r2 =r, and the probability that the  circle intersects 
T(a+w1, b+w2 ) becomes 
 

P =
a(2r + w2) + b(2r + w1) + w1w2 − 4r 2

(a + w1)(b + w 2)
 

 
If in addition the side a also tends to infinity, then a grid of parallel transects of width w is obtained and 
the probability becomes 
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 P =
2r +w 2

b + w 2 .
 

 
3. The angle of orientation, θ, is known 
 
If the angle of orientation of the ellipse to the grid is already known, θ, then the probability of the ellipse 
not intersecting R(a,b), Q, becomes  
 

(Area of R(a- xθ,, b- yθ,)) /(Area of R(a, b)) 
 

and the probability , P, becomes  
 

   P =1−
(a − 2(r1

2 − d2 sin2 θ)1/ 2)(b − 2(r1
2 − d 2 cos2 θ)1/ 2 )

(a + w2 )(b + w1)
 

 
where θ  is an element of  (0, 2π)  if  2r2 = 2r1 < min{a,b},  or θ is an element of  one of the intervals 

[0, cos-1 (r1
2 −b 2 /4)/ d 2( )]  or [π - cos-1 (r1

2 −b2 /4) /d2( ), π ]  if 2r2 < min{a,b}  = 2r1 < max{a,b}. 

 
 
4. The probability of intersecting more than one ellipse 
 
The probability of one ellipse intersecting the grid is given above as P.  If there is interest in there 
possibly being more than one ellipse of interest in the Euclidean plane then the probability of intersecting 
at least one of n possible ellipses of the same size can be obtained as follows: 
 
For a given ellipse and a given grid the probability of intersecting one ellipse that is randomly placed on 
the Euclidean plane is given by P above.  If there are n ellipses of interest, all of the same size and 
independently distributed on the Euclidean plane, then the probability of not intersecting any of the 
ellipses with the given grid is 1− P( )n

.  Thus, the probability of intersecting at least one ellipse is given 

by 1− (1− P)n . 
 
If each of the n ellipses is of a different size and independently distributed on the Euclidean plane, then 
each ellipse has a probability of Pi of intersecting the grid where Pi depends on the length of the semi-
axes of each ellipse.  Then the probability of the grid not intersecting any of the ellipses is given by 

1− Pi( )
i=1

n∏  and thus the probability of the grid intersecting at least one of the ellipses is given by 

1− 1− Pi( )
i=1

n∏ . 

 
It should be noted that the probabilities above were mostly solved when the transect widths may be 
different, w1 ? w2, to cover the most general case.  This was done to cover the instances where parallel 
transects, say north-south, may be done at one time using some non-destructive instrument or array of 
instruments and the east-west transects were done at another time possibly using a different non-
destructive device or array of devices.  In most real applications w1=w2=w and these values may be easily 
substituted into the probability calculations. 
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3.0  Examples 
 
 
To demonstrate how the probabilities above can be used to find the dimensions of a grid let us start out 
with a fixed size grid and a fixed size ellipse.  For the target ellipse let r1=2.5 and r2=1.0, and let the grid 
parameters be a=15.0, b=10.0 and w1=w2=0.05.  Then, since 2r1 < 2r2 < min{a,b}, we get the probability 
of a grid intersecting the specified ellipse to be  
 

P =1− 1
π(a + w1)(b + w2 )

a −2 r1
2 − d2 sin 2 θ( )1/ 2[ ] b − 2 r1

2 − d2 cos2 θ( )1/ 2[ ]dθ
0

π∫ 
 

 
 

= 0.53 .

 

 
For different values of a and b, with w1=w2=0.05 and the ellipse fixed, we can see the differing 
probabilities in Table A1 below. Note that probabilities of greater than 0.80 are not realized until one of 
the lengths, a or b, get close to the length of the semi-major axis of 2r1. 
 

Table A1. Probabilities of a Grid with Dimensions a, b, and w Intersecting an Ellipse for  
Specified Values of r1 and r2 

 
a b w1 = w2 r1 r2 P 
60.0 40.0 0.05 2.5 1.0 0.15 
30.0 20.0 “ “ “ 0.29 
18.0 12.0 “ “ “ 0.46 
15.0 10.0 “ “ “ 0.53 
12.0 8.0 “ “ “ 0.64 
10.0 7.0 “ “ “ 0.72 
8.0 6.0 “ “ “ 0.81 
6.0 5.0 “ “ “ 0.93 
5.0 5.0 “ “ “ 0.97 
5.0 4.0 “ “ “ 0.99 
5.0 2.0 “ “ “ 1.00 

      
60.0 40.0 0.05 1.0 0.5 0.05 
30.0 20.0 “ “ “ 0.09 
18.0 12.0 “ “ “ 0.18 
15.0 10.0 “ “ “ 0.21 
12.0 8.0 “ “ “ 0.26 
10.0 7.0 “ “ “ 0.29 
8.0 6.0 “ “ “ 0.35 
6.0 5.0 “ “ “ 0.43 
5.0 5.0 “ “ “ 0.47 
5.0 4.0 “ “ “ 0.52 
5.0 2.0 “ “ “ 0.77 
4.0 2.0 “ “ “ 0.80 
3.0 2.0 “ “ “ 0.86 
3.0 1.5 “ “ “ 0.97 
2.0 1.5 “ “ “ 0.99 
2.0 1.0 “ “ “ 1.00 

a This probability was computed using 7-point Guassian quadrature as discussed in Abramowitz 
and Stegun (1972) 
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In practice the transect widths w1 and w2 are often known in advance due to the instruments available to 
take measurements along the grid transects.  However, even with w specified there is no unique solution 
to find a grid spacing that intersects an ellipse of a specified size, r1 and r2, for a given probability p*.  
This is because we have one equation with two unknown parameters, a and b, if w is given. 

 
A unique solution does exist if we assume that a is a multiple of b, that is if we can specify a constant c 
such that a = cb where c is some positive real number greater than zero.  
 
For example if the target ellipse has dimensions r1 = 2.5 and r2 =1.0 as in the above example and 
w1=w2=0.05 and we wish the grid to intersect the ellipse with a specified probability of p* =0.95, then if 
we desire to have a= b (i.e. c=1)) we can solve the following equation for a 
 

1−
1

π(a + w1)(b + w2 )
a −2 r1

2 − d2 sin 2 θ( )1/ 2[ ]b − 2 r1
2 − d 2 cos2 θ( )1/ 2[ ]dθ

0

π∫ 
   

  = 0.95
.
 

 
This yields a=5.23 and b=5.23, which seems reasonable looking at Table A1 above.  The above situation 
involved using the probability defined in case 1 above.  Whether or not to use the Case 1 or Case 2 
probability formula can be determined by looking at the boundary conditions for r1 and r2 in each case, 
namely  
 
Case 1: 2r2 = 2 r1< min{a,b} versus Case 2: 2r2 < min{a,b} = 2 r1< max{a,b}. 

 
Let a=b=max{2 r1,2r2} which are the smallest values for a and b allowed in Case 1.  If for these values of 
a and b if P is not greater than or equal to the specified p* then the solution for any a and b will involve 
the Case 2 probability. 
 
For example let r1=1 and r2=0.5 as in Table A1, then max{2 r1,2r2} = 2.0.  If the desired probability for 
the grid to intersect the ellipse is p*=0.99 then at a=b=2.0 the best that case 1 can do is to achieve a 
probability of P= 0.957.  Since P < p* it will be necessary to use the Case 2 probability formula to solve 
for a. If it is desired to have a=4/3 b then we can solve the following equation for b when r1, r2, 
w1=w2=w=0.05, and p*=0.99 
 

∫ −−−−
++

−=
ζ

θθθ
π 0

2/1222
1

2/1222
1

12

))cos(2)()sin(2(
))((

2
199.0 ddrbdra

wbwa
. 

 
Solving we obtain a=2.12 and b= 1.59.  If we desire a=3/2 b instead, then the solution would be a=2.21 
and b=1.47. 
 
The solutions for a and b can be obtained by using a numerical minimization or maximization routine 
found in many mathematical and statistical software packages, or by approximating the integral using 
Guassian quadrature and then using numerical minimization routines or solving the resulting equations 
directly for a or b. 
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1.0  Introduction 
 
 
This appendix describes the processes used by the Visual Sample Plan (VSP) software to approximate the 
volume, V, of the target area (TA) that is traversed by geophysical detectors deployed along straight line 
transects (swaths) when the distribution of the density (number per unit area) of anomalies in the TA is 
bivariate normal (BN).  The processes for both parallel and lattice (grid) swath patterns are described.  It 
is assumed that the optimal distance between swaths (transects) has already been determined. 
 
Actually, 10,000 values of V are simulated, and for each simulated value of V, the expected number of 
anomalies that lie within the portion of the transects that traverse the TA is computed.   
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2.0   Simulation Process for Parallel Transects 
 
 
The simulation process when geophysical detectors are deployed along parallel transects (swaths) is: 
 

1. Choose the size and shape of the elliptical TA and calculate its area (A) 
2. Compute the average critical density, , and trigger density, , of anomalies in the entire TA cD Dt

3. Lay down transects over the study area at a random angle, θ, to the x-axis 
4. Choose the location of the center of the ellipse 
5. Center the ellipse at the origin, (0,0) 
6. Integrate the Bivariate Normal distribution to obtain the volume, V, under the distribution curve 

that overlays the swaths that intersect the TA 
7. Calculate the expected number of anomalies that lie within the path of the transects within the TA 
8. Repeat Steps 5 through 8 a total of 10,000 times to obtain a distribution of the expected number 

of anomalies that lie within the path of the transects within the TA. 
 
2.1  Case of Parallel Swaths when 0<θ<π/2 

 
Each step is discussed below for the case when the angle θ lies between 0 and π/2.  The special cases of θ 
= π/2 and θ = 0 are discussed in Sections 2.2 and 2.3, respectively.  
 

1. Choose the size and shape of the elliptical TA and calculate its area, (A) 
 
Assume that the spatial coordinates (locations) of detectable items in the elliptical TA have a bivariate 

normal distribution.  Then,  and 
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y
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l ( )Σ,N~l µ , where  and .   

The quadratic form  is known to have a Chi-Square ( ) distribution with 2 degrees of 

freedom; i.e., l . 
 
Assume without loss of generality that the chosen TA is centered at (0,0) so that 
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Also assume that the elliptical TA is oriented so that its major axis is parallel to the x-axis; that is, σ x  
> σ y  and ρ  = 0.  Under these assumptions, the distribution of l is  
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The 99th quantile of the  distribution, which is denoted by , is equal to 9.21034.  The 
boundary of the elliptical TA is defined here to be the 99

2
2χ χ0 99 2

2
. ,

th quantile contour line of the bivariate 
normal distribution.  Hence, the equation for the elliptical TA boundary is  
 

χ
σ σ0 99 2

2
2

2

2

2. , = +
x y

x y
 

or 

 2

2

2

2
210349

yx

yx.
σσ

+= . (1) 

 
Now, the formula for an ellipse in standard form is  

 

 12

2

2

2
=+

yx r
y

r
x  (2) 

 
where rx is the length of the semi-major axis of the ellipse and ry is the length of the semi-minor axis 
of the ellipse.  If both sides of Equation (1) are divided by 9.21034, then the 99th contour line is in 
standard form [Equation (2)].  Then, from Equations (1) and (2),  

 

 
210349

2
2

.
rx

x =σ  (3) 

 

 
210349

2
2

.
ry

y =σ  (4) 

 
For specified values of r and , Equations (3) and (4) are solved for x ry σ x and σ y , respectively.  
These values of σ x and σ y are then substituted into the formula for the area of an ellipse ( A r rx y= π ), 
which from Equations (3) and (4) is given by  
  

 yxyxrrA σπσπ 21034.9==  (5) 
 

 to compute the area, A, of the TA.   
 
The values of and r  needed for Equations (3) and (4) are obtained as follows:  VSP asks the VSP 
user to supply the values of and the shape parameter, s, of the elliptical TA, where s = .  
Given s and r , VSP solves for .  Then VSP uses  and r  in Equation (5) to obtain A.  

rx

x

y

rx r ry x/
ry rx y

 
2. Compute the average critical density, , and trigger density, ,of anomalies in the 

entire TA 
Dc Dt

 
The average critical and trigger densities (  and ) of anomalies in the entire elliptical TA can 
be obtained in two ways.   

Dc Dt

• One, the VSP user can simply specify the desired values of  and .   Dc Dt
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• Two, the VSP user can specify critical and trigger densities that are appropriate for the 
outer band (edge) of the elliptical TA, where the “outer band” is the area between the 98th 
and 99th quantiles of the Bivariate Normal distribution of the density of anomalies.  These 
critical and trigger “outer band” densities, which are denoted by and , 
respectively, are then used to compute  and , respectively.     

Dcob Dtob

Dc Dt

 
If the VSP user selects the second option, then VSP goes through the following steps to compute 

 and .  The method is described for , and the same process is also used for . Dc Dt Dc Dt

 
a. Calculate the area between the 98th and 99th quantiles of the TA 

 
This area, denoted by , is the area inside the 99A∆

χ

th quantile minus the area inside the 98th 
quantile.  The 99th and 98th quantiles of the  distribution with 2 degrees of freedom are 
9.21034 and 7.8240, respectively.  From Step 1 above, the area of the elliptical TA is 

 where  is the

2χ

yxA σπσχα
2

2,= 2
2,α α percentile of the  distribution with 2 degrees of 

freedom.  Therefore, the area between the 99

2χ
th and 98th quantiles is 
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b. Calculate the expected number of anomalies, n∆ , in the area between the 98th and 99th 

quantiles, A∆ , of the TA 
 
The number of anomalies, n , in the area  is equal to the critical density of anomalies in 

multiplied by the area, or 
∆ A∆

A∆

 
 n D Acob∆ ∆=  (7) 

 
where  is specified by the VSP user and is obtained from Equation (6) above.   Dcob A∆

 
c. Calculate the expected number of anomalies in the elliptical TA 

 
The total number of anomalies in the elliptical TA, whose boundary is the 99th quantile of the 
Bivariate Normal distribution, is 

 
 N n= 99 ∆   , (8) 
 

where is computed using Equation (7). n∆

 
d. Calculate Dc , the average critical density of anomalies inside the entire TA  
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The average critical density, , is computed by dividing the expected number  
of anomalies inside the TA by the area of the TA, i.e., 

Dc

 

 
A
NDc =  (9) 

 
where N and A are computed using Equation (8) and Equation (5), respectively. 

 
Steps a, b, c and d are then repeated after replacing by in Equation (7) to compute the 
average trigger density, , for the entire TA.  Then and  are used as discussed in Section 
3.2 of this report.   

Dcob

Dc

Dtob

DtDt

 
EXAMPLE 1 

 
Suppose the VSP user specifies that the TA of concern has a semi-major axis of length r  = 2.2 
meters and a shape s = 0.4.  Hence, the length of the semi-minor axis of the TA is  = (s)( ) = 
(0.4)(2.2) = 0.88 meters.  Then, using Equations (3) and (4):  

x

ry rx

 

σ x = =
2 2

9 21034
0 72491

.
.

.  meters 

and  

σ y = =
088

9 21034
0 28996

.
.

.  meters 

 
which, when used in Equation (6), yields 
 

A x y∆ = = =138634 138634 314159 0 72491 0 28996 0 91546. . ( . )( . )( . ) .πσ σ
 

 
square meters for the area between the 99th and 98th quantiles of the TA.   
 
Suppose also that the VSP user has specified that the critical density, , of anomalies in this 
outer band of the TA is 2 anomalies per square meter.   Hence, using Equation (7), the expected 
number of anomalies, n , in the outer band is 

Dcob

∆

 
n D Acob∆ ∆= = =( )( . ) .2 0 9154 18308 

 
and the expected number of anomalies in the entire elliptical TA [from Equation (8)] is 
 
  

N n= = =99 99 18308 181249∆ ( )( . ) . . 
 
The total area (A) of the TA is computed using Equation (5) to be 6.0820 square meters.  
Hence, the average critical density of anomalies for the entire elliptical TA is computed 
using Equation (9) to be 
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8.29
0820.6

249.181
===

A
NDc  

 
anomalies per square meter.    
 
The above calculations are then repeated after replacing with in order to compute the 
trigger density, , for the entire TA.  If = 1, then the calculations yield = 14.9.  Figure 
B1 (which is a screen capture from VSP) shows the TA, the outer band, the specified values of  

 and , and the computed values of  and  for this example. 

Dcob Dtob

Dt Dtob

D

Dt

Dcob Dtob c Dt

 

 
 

Figure B1.  Elliptical target area showing the outer band for Example 1. 
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3. Lay down parallel transects over the study area at a random angle, θ, to the x-axis 
 

Pick a random angle 





∈

2
0 πθ , relative to the x-axis.  The width of the swaths is w, which is selected by 

the VSP user.  The distance between swaths is a, which is determined by VSP.  The projections of swath 
width and distance between swaths on the x-axis are denoted a′  and w′ , where 
 

 
( )

( ) .
sin

ww

sin
aa

θ

θ

=′

=′

 

 
Figure B2 illustrates the swaths and the projections of their width and distance between swaths. 
 

 
 

Figure B2.  Swath edges rotated by angle θ and center of ellipse at (c, 0). 
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4. Choose the location of the center of the ellipse. 
 
For parallel swaths, the center of the ellipse, c, will fall somewhere between 0 and a .  The distance 

 is the length of the major axis of the elliptical TA.  The problem is constrained in this way so that at 
most 2 swaths will intersect the TA. 

w′+′
a′

 
The equations of the lines for the swath edges are written bmxy += , where m is the slope and b is the 
y-intercept.  The swath edges are arranged so that the inside edge of the 1st swath intersects the point 
(0,0).  This swath edge is denoted L2.  The equations of the swath edges, written in terms of θ , are: 
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5. Center the ellipse at the origin, (0,0) 
 

This is done to simplify the limits of integration.  The equations of the swath edges are now written 
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Figure B3.  Elliptical target area and swaths are centered about (0,0). 
 
Note that zero, one, or two swaths may intersect the ellipse (see Figure B3). 
 
In order to get the limits of integration, the equations of these lines are rewritten in terms of x: 
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6. Integrate the Bivariate Normal distribution to obtain the volume, V, under the distribution 
curve that overlays the swaths that intersect the TA 

 
If there are no transects intersecting the elliptical TA, this volume should be equal to zero.  The 
actual volume represented by the intersection of the sw ths and the ellipse is approximated by 
integrating the BN distribution in the y-direction from 

a
( )yy , σσ 33−  instead of setting the limits 

of integration to the equation of the ellipse.  This approximation overestimates the volume the 
farther away from the center of the ellipse the swaths intersect it.  But, by doing this, we avoid 
having to partition the integral.  

 

The integral to solve depends on the angle θ.  If ,
4

0 πθ <<  then solve  
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Because we are integrating from ( )σσ 33 ,− , if the swaths do not intersect the elliptical TA, we'll 
still get a non-zero volume from the integral.  Because the ellipse represents the 99th 
concentration contour of the BN distribution, there is very little volume outside its boundaries, 
and the over-estimation is small.  An alternative approach is to manually set the volume, V, equal 
to zero if no transects intersect the ellipse.  However, if the density of anomalies follows a BN 
distribution, there will be some positive number of anomalies outside the ellipse boundary. 

 
7. Calculate the expected number of anomalies that lie within the path of the swaths within the 

TA 
 
The expected number of anomalies within the swaths that cross the TA, n, is the total number of 
anomalies in the TA, N, multiplied by the volume of the density specified by the transects, V.  
The equation is 

 
 NVn = . 
 

8. Repeat Steps 4-8 10,000 times to get a distribution for n 
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2.2  Case of Parallel Swaths when 
2
πθ =  

The process described in Section 2.1 is appropriate when θ is between 0 and 
2
π

.  When 
2
πθ = , then 

( ) 1=θsin , so a  and ′ w′  simplify to a and w, respectively.  In Step 4 of Section 2.1, the swath edges are 
now perpendicular to the major axis of the ellipse, and so their equations become  
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In Step 5, choose the center of the ellipse, c, between a and a + w.  The center of this region is constrained 
so that at most two swaths intersect the ellipse.  See Figure B4 for an illustration of the swath edges and 
the center of the ellipse.  In Step 6, the equations of the swath edges become  
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See Figure B5 for an illustration of the swath edges and the center of the ellipse when the axes have been 
transformed so that the center of the ellipse is located at (0,0).  The equation used in Step 7 to solve for 
the volume of the density intersected by the swaths is 
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Figure B4.  Swath edges rotated by 
2
πθ =  and center of ellipse ( )wa,c +∈ 0  

 
 

 
 

Figure B5.  Swaths translated so that center of ellipse is at (0,0). 
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2.3  Case of Parallel Swaths when θ = 0 
 
When θ = 0, the swaths run parallel to the x-axis and the major axis of the ellipse.  Up to this point, the 
swath edges have been denoted by L1, L2, L3, and L4, the distance between swaths by a or , and the 
width of the swaths by w or .  Because of the notation used in Section 3, which considers swaths laid 
out in a lattice (grid) pattern, slightly different notation will be used here for the case of parallel swaths 
when θ = 0. 

a′
w′

 
For the case of parallel swaths and θ = 0, the swath edges will be denoted L5 through L8; the distance 
between swaths will be denoted b or , and the width of these swaths will be denoted v or .  The 
distance between swaths falls in the y-axis direction, which is the direction of minor axis of the ellipse. 

b′ v′

 

As with the special case of 
2
πθ = , the differences in the algorithm start in Step 4. 

4. Lay down parallel swaths in an orientation perpendicular to the y-axis 
 
The width of the swaths is w.  The distance between swaths is b.  Because these swaths are 
parallel to the x-axis, there is no need to calculate projections. 

 
5. Choose a location for the center of the ellipse 
 

The equations of the lines for the swath edges are written so that the inside edge of the bottom 
swath intersects the point (0,0).  For parallel swaths rotated 0 radians, the center of the ellipse will 
be somewhere between 0 and b + v.  As before, this is done so that at most 2 swaths will intersect 
the elliptical TA.  Figure B6 illustrates the swath edges and the center of the ellipse.  The 
equations of the swath edges under this scenario are written 
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6. Transform the space so that the ellipse is centered at (0,0) 

 
As before, the coordinates are translated so the TA is centered at (0,0) for simplicity in writing 
the limits of integration.  The results of the translation are shown in Figure B7; the equations of 
the swath edges are now written 
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Figure B6.  Swath edges rotated by θ = 0 and center of ellipse ( )vbcy +∈ ,0 . 
 
 

 
 

Figure B7.  Space translated so that center of ellipse is at (0,0). 
 
 
 

7. Integrate out the BN distribution specified by the swaths intersecting the ellipse 
 

The result is the volume, V, under the BN distribution defined by the intersection of the swaths 
and the ellipse.  The equation for V is 
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3.0  Simulation Process for Lattice (Grid) Swaths 
 
 
3.1  Case of 0<θ <π / 2 for Lattice Swaths 
 
The process for lattice (perpendicular) swaths is somewhat more complicated than for parallel swaths.  
Steps 1- 3 are the same as for parallel swaths.  The differences start in Step 4.  Once an angle θ is selected 

for a set of swaths, the perpendicular swaths are added at an angle of 




+

2
πθ

 . 

 
4. Lay down swaths at a random angle to the x-axis 
 

The random angle the swaths are laid out relative to the x-axis is θ, where 





∈

2
0 πθ , .  As 

before, the width of these swaths is specified by the VSP user to be w and the distance between 
the swaths is computed by VSP to be a.  The projection of the swath width and distance between 
swaths along the x-axis are denoted w′  and a′ , where 
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Lay down perpendicular swaths that are rotated from the x-axis by an angle of 




+

2
πθ

 .  The 

swath width of these swaths is denoted v and the distance between these swaths is b.  As above, 
the projections of the swath width and distance between swaths along the x-axis are denoted v′  
and , where b′
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See Figure B8 for an illustration of the swaths. 

 
5. Choose a random center of the elliptical region 

 
Choose the center of the ellipse (cx , cy) so that ( )wa,cx ′+′∈ 0  and c ( vb,y ′+′ )∈ 0 .  As above, 
the assumption is that at most two swaths in either direction intersect the ellipse. 

 
6. Transform the space so that the ellipse is centered at (0,0) 

 
Now the equations of the swath edge lines are: 
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As before, there are instances when the equations of the lines need to be rearranged to get the 
limits of integration.  By doing this, we get 
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Figure B8.  Swath edges rotated by angle θ and perpendicular swaths rotated by  

angle 





 +

2
πθ  with center of ellipse at (cx,cy). 

 
The distance between the new swaths is b′ and swaths have a width v′  along the x-axis. 
 

7. Integrate over the swaths 
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This calculation is performed in a series of steps: 
 

a. Determine the x-coordinates of the points of intersection for each of the parallel and 
perpendicular swaths. 

b. Integrate over the swath regions. 
c. Integrate the corner regions. 
d. Calculate the total volume under the bivariate normal specified by the swaths. 

 
Each of these steps is explained in more detail below. 

 
a. Determine the x-coordinates of the intersection points of the swaths.  

 
This information is needed to get the limits of integration.  Begin by setting L1 = L5 to get 
the point x15 (see Figure B9).  This gives 
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Similarly, 

 

 

( )
( )

( )
( )
( )
( )

( )
( )
( )

( )
( )

( )
( )

( )
( ).tanwvbtanatanccsincosx

tanwbtanatanccsincosx

sinwsinasinccoscsinx

sinwcosvsinasinccoscsinx

vbtanatanccsincosx

btanatanccsincosx

sinasinccoscsinx

cosvsinasinccoscsinx

vbtanccsincosx

cosbsinccoscsinx

sinccoscsinx

cosvsinccoscsinx

tanwvbtanccsincosx

sinwcosbsinccoscsinx

sinwsinccoscsinx

xy

xy

xy

xy

xy

xy

xy

xy

xy

xy

xy

xy

xy

xy

xy

θθθθθ

θθθθθ

θθθθθ

θθθθθθ

θθθθ

θθθθ

θθθθ

θθθθθ

θθθ

θθθθ

θθθ

θθθθ

θθθθ

θθθθθ

θθθθ

′+′+′+′+−−=

′+′+′+−−=

′−′−+−=

′−′+′−+−=

′+′+′+−−=

′+′+−−=

′−+−=

′+′−+−=

′+′+−−=

′−+−=

+−=

′++−=

′−′+′+−−=

′+′−+−=

′++−=

48

47

46

45

38

37

36

35

28

27

26

25

18

17

16

 

 
b. Integrate over the swaths. 
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As with the parallel swaths case, the volume under the density will be positive, even if 
the ellipse does not intersect the swaths.  The regions which must be integrated are shown 
in Figure B10.  Each swath is integrated on the interval (-3σ,3σ).  When this is done, the 
regions E, F, G, H in Figure B10 are represented twice, once for each set of swaths.  So, 
as a last step, it is necessary to subtract the volume under these curves once so that they 
are represented only once. 

 

 
 

Figure B9.  Centered ellipse and swaths, with swath intersection point labeling  
illustrated. 

 
 

 
 

Figure B10.  Regions of integration for perpendicular swath patterns. 
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The order of integration and the limits of integration depend upon the angle θ.  If 

4
0 πθ << , the volumes under the BN distribution between lines (L1 and L2) and 

between lines (L3 and L4) in Figure B10 are 
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and between lines (L5 and L6) and (L7 and L8) are 
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If 
24
πθπ

<< , Equations 7 through 10 become 
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c. Integrate over the corner regions in Figure B10. 

 
The volumes under the corner segments must now be calculated individually so that they 
can be subtracted from the total volume.  The order of integration for these corners 
depends on θ.  If wvtan ′′>θ we do the integral one way; otherwise, the limits of 
integration change. 

 
If wv ′′≤tanθ , then  
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If wv ′′>tanθ , the corner volumes are calculated as follows: 
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d. Calculate the total volume. 

 
The total volume is then V = V12 + V34 + V56 + V78 – VE – VF – VG - VH.  As in the case of 
only parallel swaths, because we are integrating over the y region from (-3σy,3σy), we 
slightly overestimate the volume under the density. 

 
8. Calculate the number of objects inside the swaths 

 
The expected number of anomalies inside the area covered by regions A through G is the total 
number of items, N, multiplied by the volume of the density represented by those regions, V.  The 
equation for the expected number of anomalies is 

 
 NVn = . 
 

Repeat Steps 4 through 8 10,000 times to get a distribution for n.  
 

3.2  Case of θ = 0 for Lattice Swaths 
 
In VSP, the major axis (denoted a) is always oriented along the x-axis; the minor axis (denoted b) is 
always oriented along the y-axis.  Therefore, when considering special cases of lattice swaths, we only 
need consider the rotation of θ = 0.  As expected, this case is a combination of the special cases for 
parallel swaths.  As with the special cases of parallel swaths, the differences in the algorithm start in Step 
4. 
 

4. Lay down swaths parallel to the x- and y-axes 
 
The set of swaths which run parallel to the x-axis have swath edges denotes L1 through L4; the 
width of these swaths is denoted w.  These swaths are distance a apart.  The swath edges of the 
intersecting perpendicular swaths have edges denoted L5 through L8; the swaths have width v and 
distance between swaths b.  As before, the line representing the right edge of the leftmost swath, 
L2, intersects (0,0); see Figure B10.  The equations of the lines representing the swath edges are: 
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5. Choose a random center of the elliptical region 

 
Choose the center of the ellipse (cx,cy) so that ( )wa,cx +∈ 0  and ( )vb,cy +∈ 0 .  As before, we 
do this so that at most two swaths intersect the ellipse.  See Figure B12.  

 
6. Transform the space so that the ellipse is centered at (0,0) 

 
The ellipse is centered at (0,0) by subtracting cx from lines L1 through L4 and subtracting cy from 
lines L5 through L8.  The equations of these lines now become 
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The results of the translation are shown in Figure B13. 

 

 
 

Figure B11.  Perpendicular swaths rotated by angle θ = 0. 
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Figure B12.  Perpendicular swaths rotated by angle θ  = 0 and center of  
ellipse located at (cx,cy). 

 

 
 

Figure B13.  Space translated so that center of ellipse is (0,0). 
 

7. Integrate over the swaths 
 
Integrate out the bivariate normal density specified by the swaths intersecting the ellipse.  The 
result is the volume, V, under the BN distribution defined by the intersection of the swaths and 
the ellipse.  As before, the intersections of the swaths must be subtracted once.  The equation for 
V is 
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1.0  Area of Polygon Intersecting Circle Algorithm 
 
 
Finding the area of intersection between a circle and a polygon (see the red area in Figure C1) is a 
complicated problem.  To make the problem manageable, VSP breaks the problem into two steps. 
 

 
 

Figure C1.  Area of intersection between a circle and a polygon. 
 
 
Step one is to break the polygon into non-overlapping triangles (see Figure C2).  Any polygon that 
doesn’t intersect itself can be decomposed into a set of non-overlapping triangles.  See documentation of 
Triangulate algorithm in Section C5 for details. 
 

 
 

Figure C2.  Breaking the polygon into non-overlapping triangles. 
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Step two is to find the area of intersection between each individual triangle and the circle.  The area of 
intersection between the circle and the polygon is the sum of the intersections with the individual 
triangles.  See documentation of the Triangle Circle Area algorithm in Section C6 for details. 
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2.0  Polygon Intersecting Polygon Algorithm 
 
 
The purpose of this algorithm is to find the intersection between two polygons (A and B).  The 
intersection (if it exists) will be a new polygon (C in Figure C3).  This algorithm assumes that the two 
polygons have no interior holes and that they do not intersect themselves (one segment of a polygon does 
not intersect another segment of the same polygon). 
 

 
Figure C3.  The intersection, C, between Polygons A and B. 

 
First a quick check is made on the extents of the two polygons.  For instance, if the maximum Y 
coordinate of A is less than the minimum Y coordinate of B, then the algorithm returns a value of false 
(no intersection). 
 

 

Figure C4.  The intersection, C, between Polygons A and B. 
 
The next step is to intersect Polygon A with Polygon B.  Each segment of A is checked for intersections 
with B to find intersection points (see Figure C4).  Every original point (P1, P2, P3, P4) and intersection 
point (P5, P6, P7, P8, P9, P10) is put into List A in correct order.  The process is as follows: 
 

1. P1 is added to List A 
2. Each segment of A (P1-P2, etc.) is checked 
3. Each segment of B is checked for intersections with the segment of A 
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4. If an intersection is found, the intersection point is added to a temporary list (List T).  An 
insertion sort is used to arrange List T so that the first point in List T is closest to the first point in 
segment of A (e.g., P1 in the first segment) 

5. After all segments in B have been checked against the segment in A, then the points in List T are 
appended to List A 

6. Point P2 is appended to List A 
7. The next segment of A is checked (step 2 and following). 
 

When this process is finished, List A contains the following points for the example in Figure 2:  P1, P5, 
P2, P6, P7, P8, P3, P9, P10, P4. 

 
At this point, if no intersections have been found between the segments of the two polygons then two 
special cases must be checked:  1) if a point of A is inside B, then A is the intersection and the algorithm 
ends, 2) if a point of B is inside A, then B is the intersection and the algorithm ends. 

 
Figure C5.  Finding intersection points of polygons A and B. 

 
If, however, there were intersections between the segments of the two polygons (this includes shared 
points) the algorithm continues.  Polygon B is intersected with Polygon A using the method outlined 
above.  When the process is finished, List B contains the following points for the example in Figure C5:  
P11, P12, P6, P13, P7, P14, P8, P9, P15, P10, P16, P17, P5, P18. 

 
Next, consecutive points in List A are treated as segments.  All the segments from List A whose midpoint 
is inside Polygon B are put into List SA.  When this process is complete, List SA contains the following 
segments for the given example: (P5-P2, P2-P6, P7-P8, P9-P10). 

 
Next, consecutive points in List B are treated as segments.   All the segments from List B whose midpoint 
is inside Polygon A are put into List SB.  If the segment already exists in List SA, the segment is not 
added to List SB.  When this process is complete, List SB contains the following segments for the given 
example: (P6-P13, P13-P7, P8-P9, P10-P16, P16-P17, P17-P5). 

 
Next, shared segments are added to List SA.  Shared segments are line segments that exist in both List A 
and List B.  Shared segments normally would not have already been added to either list, because they are 
outside of the polygon by definition.  For the given example there are no shared segments, but Figure C6 
shows a shared segment (Pe-Pf). 
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Figure C6.  Example of a shared segment (Pe-Pf). 

 
Next, orphan segments must be removed from List SA and List SB.  Orphan segments are those that have 
at least one point that is not used by another segment.  The process is as follows: 

 
1. Each segment in List SA is checked   
2. The endpoints of the segment to be checked are Px and Py.  Found1 and Found2 are set to false 
3. If Px is used by another segment in List SA or List SB, then Found1 is set to true 
4. If Py is used by another segment in List SA or List SB, then Found2 is set to true 
5. If Found1 or Found2 is false, then the segment Px-Py is an orphan and is removed from List SA 

and the entire process is performed again (Step 1 and following).  Otherwise, the process 
continues with step 6 

6. Each segment in List SB is checked   
7. The endpoints of the segment to be checked are Px and Py.  Found1 and Found2 are set to false 
8. If Px is used by another segment in List SA or List SB then Found1 is set to true 
9. If Py is used by another segment in List SA or List SB then Found2 is set to true 
10. If Found1 or Found2 is false, then the segment Px-Py is an orphan and is removed from List SB 

and entire process is performed again (step 1 and following) 
11. If Found1 and Found2 are true, then there are no more orphans and the process is complete. 
 

Finally, the segments in List SA and List SB must be combined into a new polygon. This process is as 
follows: 

 
1. The new polygon, C, contains no points to begin with   
2. If List SA has any segments in it, the first segment (Px-Py) is removed from it.  If List SA does 

not have any segments, then the first segment (Px-Py) is removed from List SB.  Point Px is 
added to C.  Nextpnt is set to Py 

3. Each segment (Px-Py) in List SA is checked for a point matching Nextpnt 
4. If Px matches Nextpnt, then Nextpnt is added to C, Nextpnt is set to Py, and processing continues 

with Step 3 
5. If Py matches Nextpnt, then Nextpnt is added to C, Nextpnt is set to Px, and processing continues 

with Step 3 
6. If neither Px nor Py matches Nextpnt, then the next segment in List SA is checked (Step 3 and 

following) 
7. After all segments in List SA have been checked and a matching point has still not been found, 

the process is repeated with List SB (Step 8 and following) 
8. Each segment (Px-Py) in List SB is checked for a point matching Nextpnt 
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9. If Px matches Nextpnt, then Nextpnt is added to C, Nextpnt is set to Py, and processing continues 
with Step 3 

10. If Py matches Nextpnt, then Nextpnt is added to C, Nextpnt is set to Px, and processing continues 
with Step 3 

11. If neither Px nor Py matches Nextpnt, then the next segment in List SB is checked (Step 8 and 
following) 

12. In rare cases, a matching point may not have been found in List SB at this point.  In such cases, 
the last point in C is exchanged with Lastpnt and the search is tried again (Step 3 and following) 

13. The process continues until Lists SA and SB are empty. 
 

Polygon C now contains the points that make up the intersection of Polygon A and Polygon B.  For the 
given example, these points are:  (P5, P2, P6, P13, P7, P8, P9, P10, P16, P17, P5).  Figure C7 show 
Polygon C with its points. 

 
Figure C7.  The intersection of Polygons A and B. 

. 
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3.0  Polygon Intersect Circle Area Algorithm 
 
 
A polygon is represented in VSP as a series of points.  The number of points is the number of segments of 
the polygon.  The polygon is closed by a segment from the last point back to the first point.  The polygons 
in VSP must not intersect themselves (one segment must not intersect another segment of the polygon).  
Figure C8 depicts a four-sided polygon comprising points P1, P2, P3, and P4. 

 
Figure C8.  A four-sided polygon with points P1, P2, P3 and P4. 

 
VSP uses the following algorithm to determine whether a circle overlaps a polygon: 

 
1. The distance from the center of the circle P to each point of the polygon Pn(xn,yn) is checked.  If 

any distance is less than the radius of the circle, then there is overlap and the algorithm ends (see 
Figure C9). 

 

 
Figure C9.  Looking for an overlap of the polygon and the circle.   

 
2. Each segment of the polygon Px-Py is checked to see if it intersects the circle P.  See the 

documentation of the Line Circle algorithm in Section C8 for details.  If any segment does 
intersect the circle, then there is overlap and the algorithm ends (see Figure C10). 
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Figure C10.  Looking for an intersection between a transect segment and the circle. 

 
3. Finally, if the center of the circle P is inside the polygon (see documentation of Inside Polygon 

algorithm in Section C9 for details), then there is overlap and the algorithm ends (see Figure 
C11).  If the center of the circle P is not inside the polygon, then there is no overlap and the 
algorithm ends. 

 

 
Figure C11.  Looking to see if the center of the circle is inside the polygon. 
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4.0  Polygon Bivariate Normal Volume Algorithm 
 
 
Finding the bivariate normal volume under a polygon (see Figure C12) is a complicated problem.  To 
make the problem manageable, VSP breaks the problem into two steps. 
 

 
Figure C12.  Finding the volume of the Bivariate Normal Distribution under a polygon. 

 
Step one is to break the polygon into non-overlapping triangles (see Figure C13).  Any polygon that 
doesn’t intersect itself can be decomposed into a set of non-overlapping triangles.  See the documentation 
of the Triangulate algorithm in Section C5 for details. 

 
Figure C13.  Breaking the polygon into non-overlapping polygons. 

 
Step two is to find the bivariate normal volume under each individual triangle.  See the  documentation of 
the Bivariate Normal Triangle algorithm in Section C7 for details.  The bivariate normal volume under 
the polygon is the sum of the volumes under the individual triangles. 
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5.0  Triangulate Algorithm 
 
 
A polygon is represented in VSP as a series of points (vertices).  The number of points is the number of 
segments of the polygon.  The polygon is closed by a segment from the last point back to the first point.  
VSP uses the following algorithm to convert this list of points into a set of non-overlapping triangles. 
 

1. Determine whether the polygon has a clockwise or a counter-clockwise orientation.  If A < 0, 
then the polygon has a clockwise orientation.  If A > 0, then the polygon has a counter-clockwise 
orientation, where 

       

∑
=

++ −=
n

i
iiii xyyxA

1
11 )(  

n   =   the number of points in the polygon 
xi  =   the x coordinate of the ith point 
yi  =   is the y coordinate of the ith point 

 
2. If the polygon has more than 3 points, find and remove the best triangle from the point list using 

Steps 3 through 8 below.  The best triangle to remove is the smallest triangle comprising 
consecutive points remaining in the point list that is oriented in the same direction as the original 
polygon and encloses no other points in the list. 

3. The best triangle (k) and best size (Sk) are reset. 
4. Perform Steps 5 through 8 for each point (i) in the polygon list, setting the current triangle to 

check using the (i-1), (i) and (i+1) points as the vertices of the triangle. 
5. The orientation of the triangle is checked to see if it is oriented in the same direction as the 

original polygon.  If not, the next triangle is checked (Step 4 and following).  If d < 0, then the 
triangle has a clockwise orientation.  If d > 0, then the triangle has a counter-clockwise 
orientation, where: 

 
))(())(( 111111 −+−−+− −−−−−= iiiiiiii xxyyyyxxd  

 
6. Each point (j) in the polygon list is checked to see if it is contained inside the triangle. If the point 

is contained, the next triangle is checked (Step 4 and following).  This is accomplished by 
checking the orientation of the 3 sub-triangles: (i, i-1, j), (i-1, i+1, j), and (i+1, i, j).  If each of 
those 3 sub-triangles is oriented in the opposite direction of the original polygon then the point is 
contained by the triangle. 

7. The size of the current triangle (Si) is checked against the best size (Sk).  If Si < Sk, then Sk is set to 
Si and k is set to i. 

 
2

11
2

11 )()( +−+− −+−= iiiii yyxxS  
 

8. After all triangles have been checked (Steps 4 through 7), then point k is removed from the 
polygon list of points, and the best triangle (k-1, k, k+1) is added to the list of triangles. 

9. The next best triangle in the polygon list is found and removed (Step 2 and following). 
10. When only 3 points remain in the polygon list, those points are added to the list of new triangles 

and the algorithm is complete. 
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6.0  Triangle Circle Area Algorithm 
 
 
The area of intersection or overlap between a circle and a triangle requires first knowing the nature of the 
intersection.  VSP categorizes intersections into 9 types.  Each of the 9 intersection types is listed below 
with the determination of the type and the area calculation. 
 
Type 1 
 

 
Determination: 
No vertices of triangle are inside circle. 
No triangle sides are intersected by circle. 
Center of circle is not inside triangle. 
 
Calculation of Intersection Area: 

0=A  
 
 
Type 2 
 

 
 

Determination: 
No vertices of triangle are inside circle. 
No triangle sides are intersected by circle. 
Center of circle is inside triangle. 
 
Calculation of Intersection Area: 

2rA π=  
Where: r is the radius of the circle. 
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Type 3 
 

 
 

Determination: 
All vertices of triangle are inside circle. 
 
Calculation of Intersection Area: 
The area of the triangle is calculated using the following general area equation for a polygon: 

∑
=

++ −=
n

i
iiii yxyxA

1
11 )(  (C1) 

n is the number of points in the polygon 
xi is the x coordinate of the ith point 
yi is the y coordinate of the ith point 

 
 
Type 4 
 

 
Determination: 
 
Two vertices of the triangle are inside the circle. 

 
Calculation of Intersection Area: 
 
The area of intersection is the sum of the area of quadrangle BCXY and the area of the circle 
segment XYr.  The area of the quadrangle is found using Equation C1.  The intersection points X 
and Y are found using the Line Circle Algorithm, which is documented in Section C7.  The area 
of the circle segment XYr is calculated as: 
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2212 cos drd
r
drA −−






= −  (C2) 

 
where: 
 

( )
2

)()(4 222
YXYX yyxxr

d
−+−−−

=  

 
xx is the x coordinate of point X 
yx is the y coordinate of point X 
xy is the x coordinate of point Y 
yy is the y coordinate of point Y 
r is the radius of the circle 

 
Type 5 
 

 
 

Determination: 
One vertex of triangle is inside circle. 
Two sides of triangle intersect circle. 
 
Calculation of Intersection Area: 
The area of intersection is the sum of the area of the triangle AXY(Equation C1) and the area of 
the circle segment XYr (Equation C2). 

 
Type 6 
 

 
 

Determination: 
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One vertex of triangle is inside circle. 
All three sides of triangle intersect circle. 
 
Calculation of Intersection Area: 
The area of intersection is the sum of the area of the polygon AVWXY(Equation C1) and the area 
of the circle segments VWr and XYr (Equation C2). 
 
 

Type 7 
 

 
 

Determination: 
No vertex of the triangle is inside the circle. 
One side of the triangle intersects the circle. 
 
Calculation of Intersection Area: 
This type has two different cases.  In the first case, the center of the circle is not inside the 
triangle.  The area of intersection is the area of the circle segment XYr (Equation C2).  In the 
second case, the center of the circle is inside the triangle.  The area of intersection is the major 
circle segment: (πr2 – area of circle segment XYr). 

 
Type 8 
 

 
Determination: 
No vertex of the triangle is inside the circle. 
Two sides of the triangle intersect the circle. 
 
Calculation of Intersection Area: 
The area of intersection is the sum of the area of polygon VWXY and the area of circle segments 
VYr and WXr.  The circle segment WXr is a major circle segment if a line segment from A to the 
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center of the circle intersects the line segment XW.  See Type 7 for calculation of major circle 
segment. 

 
Type 9 
 

 
 

Determination: 
No vertex of the triangle is inside the circle. 
All three sides of the triangle intersect the circle. 
 
Calculation of Intersection Area: 
The area of intersection is the sum of the area of polygon UVWXYZ and the area of circle 
segments VWr, XYr, and ZUr. 
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7.0  Bivariate Normal Triangle Algorithm 
 
 
The bivariate normal volume under a triangle is calculated using the following method.  The triangle is 
defined by three points and three lines.  The points of the triangle are sorted by ascending x coordinate so 
that it is arranged similarly to the triangle in Figure C14. 
 

 
Figure C14.  The three points and three lines of a triangle. 

 
The volume is calculated as follows: 
 

∫ ∫∫ ∫ += 3
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3333 xmyb −=  

























+−= 2

2

2

2

2
1exp

2
1),(

yxyx

yxyx
σσσπσ

φ  

21034.9

2
2 x

x
r

=σ  

21034.9

2
2 y

y

r
=σ  

 
rx is the semi-major axis of the target ellipse 
ry is the semi-minor axis of the target ellipse. 
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8.0  Line Circle Algorithm 
 
 
To determine whether a line segment from P1(x1,y1) to P2(x2,y2) intersects the circle centered at point 
P3(x3,y3) having radius r, it is first necessary to solve the following equation to find the intersection 
between the circle and line: 
 

02 =++ cbuau  
 
where: 
 

22 )12()12( yyxxa −+−=  
)]31)(12()31)(12[(2 yyyyxxxxb −−+−−=  

22222 )1*31*3(21133 ryyxxyxyxc −+−+++=  
 

(If , that means P1 and P2 are the same so there is no intersection.) 0=a
 
The discriminant is calculated as: 
 

acbd 42 −=  
 
If d is not real, then there are no real solutions and therefore no intersections. 
 
Next, it is necessary to calculate the actual points of intersection A(xa,ya) and B(xb,yb) to determine 
whether those intersection points lie on the segment between P1 and P2: 
 

)12(1 1 xxuxxa −+=  
)12(1 1 yyuyya −+=  
)12(1 2 xxuxxb −+=  
)12(1 2 yyuyyb −+=  

 
where: 
 

a
dbu

21
+−

= , 
a

db
22

−−
=u  

 
(If d = 0, then there is only one point of intersection.) 
 
If Ratio1 is between 0 and 1, then A lies on the segment between P1 and P2.  If Ratio2 is between 0 and 
1, then B lies on the segment between P1 and P2. 
 
where: 
 

12
11

xx
xxaRatio

−
−

= , 
12
12

xx
xxbRatio

−
−

=   when |x1-x2| ≥ |y1-y2| 
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12
11

yy
yyaRatio

−
−

= , 
12
12

yy
yybRatio

−
−

=   when |x1-x2| < |y1-y2|. 

 
If A or B lies on the segment between P1 and P2, then the circle intersects the line segment, otherwise the 
circle does not intersect the line segment. 
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9.0  Inside Polygon Algorithm 
 
 
To determine whether point P(x,y) is inside or outside a polygon, VSP uses the following algorithm: 
 

If ∑ , then P is outside the polygon. πθ <
=

n

i
i

1

If ∑ , then P is inside the polygon. πθ ≥
=

n

i
i

1

 
where: 
 
n  =   the number of segments in the polygon 
π  =   the constant 3.14159265… 

iθ  =   the normalized a difference of angles ( ba θθ − ) for the ith polygon segment 

aθ  =  the angle (in radians) from P to the first endpoint of the ith polygon segment 

bθ  =  the angle (in radians) from P to the second endpoint of the ith polygon segment 
 
The angleθ  from P(x,y) to an endpoint A(ax,ay) is given by the formula: 
 









−
−

= −

xax
yay1tanθ  

 
a The normalization process for an angle,θ , is as follows: 
If πθ > , then π2 is repeatedly subtracted from θ  until πθ ≤  
If πθ −< , then π2 is repeatedly added to θ  until πθ −≥  
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10.0  Deficiency of the Subtraction Method When Computing the 
Total Area of Intersecting Transect Segments 

 
 

Figure C15 shows the method used by VSP for calculating the total area of two intersecting transect 
segments.  The area of segment 1 is added to the area of segment 2.  Then the area of intersection between 
segment 1 and segment 2 (1x2 for shorthand), shown in red, is subtracted. 
 

 
Figure C15.  Setup for calculating the total area of two intersecting transect segments 

 
If more than two transect segments overlap, then the method of adding and subtracting becomes 
geometrically more complicated.  Figure C16 shows the method of calculating total area when three 
transect segments overlap.  The area of segment 1 is added to the area of segment 2 and the area of 
segment 3.  Then the intersections 1x2, 1x3 and 2x3 (shown in red and blue) must be subtracted.  Then 
the intersection 1x2x3 (shown in blue) must be added back in. 

 
Figure C16.   Setup for calculating the total area of three overlapping transect segments  

 
Figure C17 begins to show more levels of complexity for calculating the total area of four overlapping 
swath segments.  The area of segment 1 is added to the areas of segments 2, 3, and 4.  Then the 
intersections 1x2, 1x3, 1x4, 2x3, 2x4 and 3x4 must be subtracted (shown in red, blue, and yellow).  Then 
the intersections 1x2x3, 1x2x4, 1x3x4 and 2x3x4 must be added back in (shown in blue and yellow).  
Then the intersection 1x2x3x4 must be subtracted. 
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Figure C17.  Setup for calculating the total area of four overlapping transect segments. 

 
Because each added swath geometrically increases the complexity of calculating the total area, VSP 
ignores overlaps beyond the first overlap.  This may cause the area (Att) to be smaller than it should be 
when multiple overlaps exist. 
 
Combining the overlapping transect segments into a single complex polygon has been considered.  
Because of the complexities resulting from possible interior holes (see Figure C18), this method has not 
been implemented yet.  If the Polygon Intersection algorithm can be adapted to accommodate and 
produce interior holes, this method will prove most effective. 
 

 

 
Figure C18.  An interior hole of overlapping transects. 
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