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Summary 
 

 The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) was scheduled in 

October 2000 to implement design upgrades that include the enlargement of the HB-2 and HB-4 beam 

tubes.   Higher dose rates and higher radiation embrittlement rates were predicted for the two beam-tube 

nozzles and surrounding vessel areas.  ORNL had performed calculations for the upgraded design to 

show that vessel integrity would be maintained at acceptable levels.  Pacific Northwest National 

Laboratory (PNNL) was requested by the U.S. Department of Energy Headquarters (DOE/HQ) to 

perform an independent peer review of the ORNL evaluations.    PNNL concluded that the calculated 

probabilities of failure for the HFIR vessel during hydrostatic tests and for operational conditions as 

estimated by ORNL are an acceptable basis for selecting pressures and test intervals for hydrostatic tests 

and for justifying continued operation of the vessel.   While there were some uncertainties in the 

embrittlement predictions, the ongoing efforts at ORNL to measure fluence levels at critical locations of 

the vessel wall and to test materials from surveillance capsules should be effective in dealing with 

embrittlement uncertainties.  It was recommended that ORNL continue to update their fracture mechanics 

calculations to reflect methods and data from ongoing research for commercial nuclear power plants.  

Such programs should provide improved data for vessel fracture mechanics calculations.   
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Introduction 
 

 The High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) was scheduled in 

October 2000 to implement design upgrades that include the enlargement of the HB-2 and HB-4 beam 

tubes.  Enlargement of the beam tubes gives higher dose rates and thus higher radiation embrittlement 

rates for the two beam-tube nozzles and surrounding vessel areas.  ORNL has performed probabilistic 

fracture mechanics calculations for the upgraded design to show that vessel integrity is maintained at 

acceptable levels.  Justification for continued operation is based in large measure on periodic hydrostatic 

pressure tests of the vessel.  The technical bases for the hydrostatic test program are described in 

ORNL/TM-1999/181/R1 (Cheverton and Bryson 2000).  Pacific Northwest National Laboratory (PNNL) 

was requested by the U.S. Department of Energy Headquarters (DOE/HQ) to perform an independent 

peer review of this ORNL document, and of other ORNL documents that support the conclusions of the 

ORNL evaluation.  The PNNL review was to complement a DOE/HQ evaluation described in USQD-D-

HFIR-1999-007.  The present report describes the scope, conclusions, and recommendations of the 

PNNL review. 

 

 The proposed HFIR upgrades involve the replacement of existing beam tubes with beam tubes of 

larger diameter.  Installation of the new tubes requires no structural changes to the reactor pressure 

vessel, because the new tubes are designed to bolt onto the existing vessel flanges.  However, the larger 

diameter tubes result in significantly greater radiation doses to the vessel wall and, in particular, to the 

highly stressed corner region of the nozzle penetrations to the vessel.  Irradiation-induced embrittlement 

at the critical locations will increase more rapidly than for the existing smaller diameter beam tubes.  

ORNL staff have performed extensive evaluations of the structural integrity of the HFIR vessel to ensure 

the continued safe operation of the vessel and to establish if the modified HFIR vessel can achieve its life 

extension goal to 50 effective full power years (EFPY) of operation.  The PNNL review addresses the 

methods and conclusions of the ORNL evaluations. 

 

 

Scope of Review 
 

 Three senior staff from PNNL performed the peer review, each from the standpoints of their 

specialized technical knowledge and experience.  Dr. F. A. Simonen led the review and addressed issues 

related to fracture mechanics calculations and failure probability predictions.  Drs. F. A. Garner and 

L. R. Greenwood assisted by reviewing issues related to radiation damage to materials and flux 

calculations/dosimetry, respectively. 

 

 Components of concern to the HFIR upgrades were the reactor pressure vessel and the beam tubes.  

From the initial review of DCM HFIR-197M-4 it was concluded that the review should be most heavily 

focused on the pressure vessel and the effects of the enlarged beam tube on radiation-induced 

embrittlement of the vessel (the nozzle corner regions in particular).  This focus was driven in part by the 

potentially significant consequences of a vessel failure and also by the life limiting implications to HFIR 

of the vessel.  The vessel (unlike the beam tube) is not considered a replaceable component. 
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 The primary source of information for the technical bases for the HFIR upgrades was the document 

ORNL/TM-13698 (Cheverton and Dickson 1998).  This ORNL report was supplemented with 

documentation on the proposed hydrostatic test and on pressure temperature limits provided by 

ORNL/TM-1999/181/R1 (Cheverton and Bryson 2000) and with documentation for the neutron and 

gamma fluxes as provided by ORNL/TM-13693 (Blakeman 2000).  Other ORNL documents were made 

available to PNNL as listed in the reference section of the present report.  In addition to the written 

documents, PNNL staff prepared questions for ORNL staff.  These questions were to gain clarification 

and more details regarding the ORNL studies.  The written questions formed the basis for 

teleconferences that included PNNL and ORNL staff along with staff from DOE/HQ. 

 

 

Probabilistic Fracture Mechanics Methodology 
 

 The ORNL methodology used to calculate failure probabilities for the HFIR vessel follows the 

approach that was developed and approved during the mid 1980s by the U.S. Nuclear Regulatory 

Commission (NRC) to perform probabilistic fracture mechanics calculations for pressurized water 

reactor (PWR) vessels for conditions of pressurized thermal shock (PTS) transients.  Since that time the 

NRC has been funding continuing research (including studies at ORNL) to advance the 1980s 

technology.  NRC is currently in the process of using the advances in knowledge to update their 

regulatory guidance for evaluations of PTS risks.  Many changes to the computational methodology and 

to inputs to the calculations are expected.  These changes will result in less conservative and more 

realistic predictions of vessel failure probabilities.  The current HFIR calculations by ORNL are based on 

the currently approved NRC methods, and as such do not exploit potentially less conservative approaches 

that are supported by the results of ongoing research programs. 

 

 Part of the PNNL review was to identify areas where the ORNL calculations are conservative or 

possibly unconservative, and to estimate the extent to which the calculations may overstate failure 

probabilities for the HFIR vessel.  The main focus of PNNL evaluations as described in the next section 

was on issues related to the number and sizes of flaws in vessel welds and plate material because 

(1) flaw-related inputs were identified by ORNL as the greatest source of uncertainty in their 

calculations, and (2) PNNL research for NRC has resulted in new data that greatly reduces the level of 

uncertainty in flaw related inputs. 

 

 Key assumptions and inputs to the ORNL fracture mechanics calculations are addressed briefly 

below. 

 

Simulation of a Sequence of Hydrostatic Tests and Potential Over Pressure Events – PNNL 

identified concerns with the method used to generate Figures 5 and 6 in ORNL/TM-13698.  The ORNL 

computer runs for these calculations simulated only one hydrostatic test at selected times over the time 

period of 22 to 55 EFPY.  Failure probabilities for a sequence of hydrostatic tests were then evaluated by 

manipulating the results of these computer runs rather than by actually applying the fracture mechanics 

code to numerically simulate the sequence of pressure loadings.  This ORNL approach greatly simplified 



 

3 

the calculations, was intuitively reasonable, but was not supported by rigorous derivations.  Therefore, 

PNNL performed test calculations with the VISA-II code to compare results from the ORNL 

methodology with results from more detailed simulations of a time sequence of pressure loadings for 

conditions of decreasing fracture toughness as a function of time.  Numerical results from the two 

alternative methodologies were found to give identical results within the numerical truncation error of the 

Monte Carlo method. 

 

Flaw Aspect Ratio – The ORNL calculations assumed that all flaws had an aspect ration of 6:1 (the ratio 

of flaw length to flaw through-wall depth dimension).  Some flaws found by PNNL in the PVRUF and 

Shoreham vessels exceeded this 6:1 ratio, but most flaws (particularly the larger flaws) were less than the 

6:1 ratio.  On this basis, the results of the ORNL calculations should be conservative with respect to 

inputs for flaw aspect ratios. 

 

Estimation of Fracture Toughness – The ORNL work used an approach common to the ASME 

Section XI Code and current NRC guidance for a reference toughness curve and the concept of the 

RTNDT temperature.  Current developments (the master curve approach) are expected to lead eventually 

to ASME and NRC adoption of an improved description of the temperature dependence of the fracture 

toughness of ferritic steels.  This approach also addresses toughness changes from radiation damage that 

causes a shift in RTNDT.  Recent research shows that the current ORNL approach is conservative, which 

means that adoption of the master curve approach should result in lower values of calculated failure 

probabilities. 

 

Residual Stresses – The ORNL calculations accounted for the relatively modest levels of residual 

stresses that are expected to remain at weld locations even after stress relief heat treatments are 

performed.  The assigned levels of these residual stresses at welds are consistent with available data.  In 

contrast, ORNL made no allowance for residual stresses that may exist in base metal regions.  Although 

PNNL would expect residual stresses for base metal to be less than for welds, the ORNL reports do not 

justify the assumption of zero residual stresses.  An acceptable justification could be a citation of 

relevant data that shows inner surface stresses to be very small or compressive in nature.  Alternatively, 

ORNL could cite NRC guidance for PTS evaluations. 

 

Stress and Fracture Mechanics Solutions – PNNL reviewed the stress levels reported in Tables 1 

through 5 of ORNL/TM-13698.  These stresses are mainly due to internal pressures with some 

contribution from residual stresses and clad thermal expansion stresses.  Independent stress and fracture 

mechanics calculations to validate the ORNL results were beyond the scope of the PNNL review.  

However, the numbers cited in the ORNL report are consistent with PNNL hand calculations.  In 

particular, the stress concentration of about 3.0 for nozzle corner regions is consistent with expected 

values. 

 

Flaws at Nozzle Corner Locations – The ORNL calculations assumed that corners of the nozzle 

forgings are just as likely to have flaws as the plate material of the vessel shell.  Lacking detailed 

knowledge of the nozzle, this assumption is a reasonable basis for fracture mechanics calculations.  

However, much could be gained by detailed consideration of the forging process used to manufacture the 
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nozzles and the inspection methods used to examine the forgings both before and after machining the 

nozzles to final shape.  It is expected that the fabrication processes have been optimized to ensure that 

any flaws, if present, are not at the critical locations or at orientations to interact with the elevated stress 

levels that are known to be present at nozzle corners.  Subject to future discussions with experts on vessel 

fabrication, it is therefore reasonable to bound occurrence rates for nozzle corner flaws with data on 

through-thickness flaws in rolled plate material used to fabricate vessel shells. 

 

Initial Toughness of Vessel Materials – The initial toughness levels of the plates, forgings, and welds 

were based on tests of samples taken from the actual materials used in the construction of HFIR.  The 

main concern was with the values of RTNDT that directly affect the amount of radiation damage that can 

be tolerated.  For the critical nozzle forgings that have the highest fluence exposures, PNNL noted very 

favorable properties, with RTNDT values listed by ORNL as low as -110°F.  The use of these values is 

well justified because ORNL has actual properties of the forging materials used for the HFIR vessel. 

 

Predictions of Radiation Degraded Toughness – The predictions of current and future levels of 

embrittlement are based on data from exposure within the HFIR reactor of archival materials from 

construction of the HFIR vessel.  The exposed materials have been installed in surveillance capsules and 

then subjected to actual HFIR environments.  The data are considered to provide an excellent basis to 

estimate embrittlement levels.  ORNL has also shown that the HFIR data are consistent with other 

published data on embrittlement at relatively low temperatures.  Furthermore, trends from HFIR data 

have been extensively discussed within the technical community of experts on radiation damage, and 

have as such been subjected to a high level of peer review. 

 

Spatial Variations in Stress and Fluence – The ORNL fracture mechanics calculations have accounted 

for the large variations in applied stress and fluence (neutron and gamma) levels.  The calculations have 

taken a conservative approach of basing inputs for each computational subregion on the peak stress and 

fluence for any location within the subregion.  The locations of these peak levels of fluence and stress are 

conservatively assumed to coincide. 

 

Effect of Cladding – The ORNL fracture mechanics calculations have included the adverse effects of 

differential thermal expansion of stainless steel cladding material relative to the underlying ferritic steel 

of the vessel wall.  The methods used to account for these clad-related stresses are consistent with the 

approaches recommended in NRC guidance for fracture mechanics analyses of LWR vessels. 

 

External Loads to Vessel Flanges – PNNL addressed the possible stresses in the HFIR vessel associated 

with attachment of the beam tubes to the vessel flanges.  Such loadings and stresses were not discussed in 

any of the documents submitted to PNNL for review.  This concern was discussed with ORNL staff by 

teleconference.  Possible sources of stress were bolt-up loads from attachment of the beam tubes to the 

flanges, thermal expansion loads, and vibrational loads due to flow-induced vibrations.  PNNL was 

informed that such loads have been considered in past evaluations of HFIR and found to be insignificant 

compared to the pressure loadings to the vessel.  The beam tubes are relatively light and compliant 

compared to the vessel wall, and thus are not capable of imposing substantial loadings at the attachment 

points to the vessel.  Flow velocities within the outer part of the vessel occupied by the beam tubes are 
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relatively low.  Thus, flow-induced vibrations are not of concern.  The reactor operates at relatively low 

temperatures with only about a 40°F range of temperature between cold and hot conditions.  This results 

in low levels of thermal expansion stresses. 

 

 

Flaw Densities and Size Distributions 
 

 ORNL has properly identified that the greatest uncertainty in their methodology for predicting failure 

probabilities is related to the inputs for the numbers and sizes of flaws in various regions of the vessel.  

The ORNL calculations have allowed for these uncertainties by introducing two significant 

conservatisms into the calculations: 

 

(1) All flaws are assumed to be located at the vessel inner surface, although most (if not all) actual flaws 

will be buried within the vessel wall, and are thus far removed from the critical inner surface 

locations. 

 

(2) Based on prior uncertainty analyses, ORNL has increased the number of flaws by a factor of 45 to 

correlate their best estimate calculations to correspond to mean values of failure probabilities from 

the uncertainty analyses. 

 

 The PNNL evaluation presented below shows that recent data on vessel flaws could be applied to 

demonstrate that these two measures are more than adequate to allow for the uncertainties of concern. 

 

 Figure 1 compares the ORNL estimates (based on the current NRC-approved methodology) for the 

number and sizes of flaws in the HFIR vessel with the number and sizes of observed flaws that have been 

found by PNNL by examinations of vessel welds and plate material.  The studies by PNNL were part of 

NRC-funded research (Doctor et al. 1999) that made use of both nondestructive and destructive 

examination methods. 

 

 Data from the PVRUF and Shoreham vessels show that flaw densities in weld metal are much greater 

than the 1.0 flaw per cubic meter (best estimate) value of the current NRC methodology.  Even with the 

factor of 45 to account for the uncertainty in the flaw density, the values used for the HFIR evaluation are 

still unconservative.  On the other hand, the PNNL vessel examinations show that weld flaws are 

distributed uniformly through the thickness of the vessel wall, rather than at the inner surface of the 

vessel (worst-case location).  The effect of flaw location is shown here to more than offset the 

underestimation of flaw density. 

 

 The observed flaw density for base metal is about 1.0 flaw per cubic meter compared to the 0.1 flaws 

per cubic meter value of the current NRC methodology.  The factor of 45 used by ORNL for HFIR 

calculations is more than adequate to bound the data from the PNNL studies.  The PNNL studies for base 

metal have focused exclusively on flaws with radial (through-wall) extent rather than benign flaws that 

 



 

6 

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

0 10 20 30 40

Through-Wall Extent of Flaw, a, mm

N
u

m
b

e
r 

o
f 

F
la

w
s

 p
e

r 
C

u
b

ic
 M

e
te

r 
w

it
h

 D
e

p
th

 >
 a

PVRUF Weld Data

Shoreham Weld Data

Best Estimate

With Uncertainty

(Factor of 45)

HFIR Weld
HFIR 

Base Metal

Best Estimate

With Uncertainty

(Factor of 45)

PNNL Exams of 

Base Metal

C:/HIFR/PVRUF-SHOREHAM.XLS

 
 

Figure 1. Flaw Frequencies as Estimated for HFIR Vessel Compared to Data 

From Recent NRC Research Studies at PNNL. 

 

are parallel to the vessel surface.  In the examinations to date, about one cubic meter of plate material has 

been examined.  Only one flaw (about 1-2 mm in size) has been detected (shown as a data point on 

Figure 1).  The other data point conservatively assumes that examinations of a greater volume of material 

would detect about 0.3 flaws per cubic meter with a depth of 4 mm.  Flaws of 4 mm depth can be 

detected by PNNL’s ultrasonic method with a high level of reliability. 

 

 As part of the current review, sensitivity calculations were performed with the VISA-II probabilistic 

fracture mechanics code (Simonen et al. 1986).  Results for axial welds and for the vessel shell (base 

metal) are shown in Figures 2 and 3, respectively.  The two contrasting cases of interest are 

 

(1) HFIR flaw distribution with a factor of 45 applied to flaw density and with all flaws located at the 

inner vessel surface 

 

(2) the PVRUF flaw distribution with no factor applied to flaw density and with the flaws distributed 

uniformly through the thickness of the vessel wall. 
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Figure 2.  Calculated Failure Probabilities for Axial Weld of HFIR Vessel Showing 

Effect of Conservative Assumptions for Flaw Related Inputs. 
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Figure 3.  Calculated Failure Probabilities for Vessel Shell of HFIR Vessel Showing 

Effect of Conservative Assumptions for Flaw Related Inputs. 
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 The calculations show that placing the flaws at the inner surface is a very conservative assumption, 

which by itself more than offsets the uncertainties associated with the ORNL inputs for flaw densities. 

 

 The sensitivity calculations by PNNL indicate the following: 

 

(1) Figure 2 shows that the HFIR evaluations may overestimate the failure probabilities for welds by a 

factor of 1,000 compared to PNNL predictions made on the basis of the more realistic data for flaw 

densities and size distributions. 

 

(2) Figure 3 indicates that the HFIR evaluations may overestimate the failure probabilities for the vessel 

shell by a factor of 10,000 compared to PNNL predictions made on the basis of the more realistic 

data for flaw densities and size distributions. 

 

In conclusion, the ORNL probabilistic fracture mechanics model is very conservative with respect to the 

assumptions and inputs for flaws in both the welds and base metal of the HFIR vessel. 

 

 

Integrity of Beam Tube 
 

 In addition to issues related to vessel integrity, the document USQD-D-HFIR-1999-007 addresses the 

structural integrity and the consequences of failure of the HB-2 and HB-4 beam tubes.  No other 

documents were made available for review by PNNL.  The cited document presented only a summary of 

issues related to the beam tubes and concluded that the design and construction of the larger diameter 

beam tubes followed the same approach as used for the existing beam tubes.  The wall thickness was 

increased in accordance with the larger diameter to maintain the stresses at the same levels as for the 

smaller diameter tubes.  For this reason, no new degradation mechanisms or failure modes were 

identified by ORNL for the modified beam tubes.  It was also noted that the tubes are hydrostatically 

tested at 1.5 times their design pressure of 1,000 psig before they are installed, which provides assurance 

of their integrity and ability to sustain the expected service loads.  Given no new identified issues with 

the beam tubes, the focus of PNNL’s review was directed to concerns with the reactor vessel and the 

effect of increased radiation levels on structural failure probabilities. 

 

 

Probabilistic Criteria for Hydrostatic Tests 
 

 The ORNL conclusions regarding the ability to safely operate HFIR to 55 EFPY and also the bases 

for the recommend hydrostatic tests are founded on probabilistic fracture mechanic calculations along 

with criteria for acceptable levels of failure probabilities.  While the detailed equations for the 

probabilistic criteria will not be cited here, the following discussion summarizes the ORNL approach. 
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 Hydrostatic tests are performed on a periodic basis with the pressures being sufficiently high to 

ensure that any incipient failures will occur during the hydrostatic tests rather than during the subsequent 

periods of operation.  It is assumed that fuel will be removed from the reactor during hydrostatic tests to 

minimize the consequences of a failure during the test.  The hydrostatic tests are performed at pressures 

and at test intervals determined by calculations of relative probabilities for vessel failure during the test 

versus failure probabilities for operational and accident conditions.  With the use of relative probabilities, 

this aspect of the probabilistic criteria is relatively insensitive to uncertainties in the fracture mechanics 

model and inputs to the model. 

 

 A second aspect of the probabilistic criteria is expressed in terms of absolute rather than relative 

probabilities, and is sensitive to uncertainties in assumptions and inputs to the probabilistic model.  The 

ORNL criteria states that the probability of vessel failure during any given hydrostatic test should be less 

than 1×10
-5

 failures per test.  The adoption of this failure probability as being acceptable is a judgment 

call that must be agreed upon by the various stakeholders in the HFIR reactor.  The 1×10
-5

 criterion was 

outside the scope of PNNL review.  PNNL would only note that the 1×10
-5

 number is about the same as 

the failure frequency (failures per year) that is stated in the NRC guidance for PWR/PTS evaluations.  

These evaluations address vessel failures caused by events that occur during full power operation, 

whereas the hydrostatic tests of HFIR are performed with all fuel removed from the reactor.  This means 

that the consequences of vessel failure will be much less for HFIR than for the PWR/PTS condition.  

Accordingly, this review concludes that the 1×10
-5

 criteria for HFIR is more conservative than NRC 

guidance for LWR power reactors. 

 

 The present review has identified conservatisms in both the methods and inputs to the calculations of 

vessel failure probabilities.  Calculations by PNNL have specifically addressed the conservatisms 

associated with inputs for flaws in the HFIR vessel.  As noted above, it is estimated that the ORNL 

calculations predict failure probabilities that are a factor of 1000 greater than would be predicted using 

results of recent research on flaw occurrence rates.  On this basis, PNNL estimates that the probability of 

vessel failure during a hydrostatic test is more like 1×10
-8

 rather than 1×10
-5

 as estimated by ORNL. 

 

 

Probabilistic Criteria for Pressure Temperature Limits 
 

 ORNL/TM-1999/181/R1 presents the results of calculations and the supporting technical bases for 

the pressure temperature limits that will govern the future operation of HFIR.  Two P/T curves are 

developed.  The more conservative curve (limiting conditions for operation or LCO) is based on the 

assumption that a hydrostatic test is performed at a frequency of only once per six EFPY.  The other 

curve (pressure safety limit curve or PSL) is based on the expected frequency of hydrostatic tests 

(nominally once per 3 EFPY).  The ORNL documents did not explain how these two limits would be 

applied to govern the operation of HFIR.  One possibility is that the operating procedures at HFIR may 

be based on the more conservative LCO curve for P/T limits, whereas the PSL curve may be used to 

define set points for alarms and pressure control devices or to impose enforcement of actions if safety 

violations occur. 
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 PNNL reviewed the basis of the P/T curves of ORNL/TM-1999/181/R1 and concluded that the 

recommendations provide an acceptable basis for operation of HFIR.  The development of these curves is 

based on a number of stated and unstated conservatisms as follows: 

 

(1) The ORNL probabilistic fracture mechanics model has conservative assumptions regarding the flaws 

in the various regions of the vessel; the conservative assumptions are estimated to increase the 

calculated failure probabilities by a factor of 1000 or more. 

 

(2) The pressure temperature limits are based on the embrittlement levels that are predicted to exist for 

the end-of-life conditions at 50 EFPY; this imposes conservative limits on HFIR operation for the 

present embrittled condition of the vessel. 

 

(3) The use of the LCO limits allows for additional uncertainties in the fracture mechanics calculations 

by imposing a P/T curve based on a six EFPY interval for hydrostatic tests rather than a more 

realistic interval of three EFPY. 

 

 It is concluded that, for the next few years, the proposed P/T limits will provide a very conservative 

basis for operating HFIR.  For later operating periods, there will be additional dosimetry data, material 

property measurements from ongoing surveillance programs, and enhancements to the fracture mechanics 

calculations.  It will then be possible to make improved evaluations of P/T limits and to modify HFIR 

operating practices as needed. 

 

 

Radiation Damage to the HFIR Vessel 
 

 An important part of the PNNL review focused on radiation damage aspects of the HFIR reports.  

Dr. F. A. Garner, an internationally recognized expert in this field of research, performed this review. 

 

 The general assessment of the ORNL reports was very positive.  One of the most significant concerns 

was that the ORNL reports address directly and adequately the issue that caused HFIR to suspend 

operation some years ago.  This was the unanticipated “acceleration” of embrittlement of the pressure 

vessel.  As finally resolved, it was found that the apparent acceleration occurred not because the damage 

correlation was inadequate or incorrect, but that the damage levels used as input to the correlation were 

low by a factor of 5 to 6.  This underestimate arose because it was not originally recognized that the 

unique features of HFIR construction led to a damage dose rate from gamma rays that was much greater 

than that from neutrons.  In most reactors this predominance of gamma dose does not occur and is usually 

negligible.  This was especially true for the test volumes used to generate the correlation.  The only 

lingering question was the possibility that there might be a dependence of embrittlement on dpa rate, 

either between the correlation database and the pressure vessel, or between the current beam environment 

and the modified environment.  The success in resolving the original apparent acceleration appeared to 

put this issue to rest. 
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 The modification of the beam tubes not only increases the total dpa, but also allows the possibility of 

significant shifts in the gamma/neutron dose ratio.  Therefore, it is important to address the issue head-

on.  It appears that ORNL has risen to the challenge and adequately analyzed the modified environment 

and its consequences on vessel performance.  In addition, the radiation transport results also appear to be 

reasonable.  However, short of an extended effort to address details of the transport code and its input, 

this review will need to assume that the calculations were done correctly. 

 

 It is important to note that two assumptions on radiation response to the calculated dpa levels drive 

the analysis. 

 

(1) The choice of the Remec correlation over that of Cheverton, Dickson, and Nanstad is significant.  It 

appears that the former was chosen because it was considered “excessively conservative” and “the 

linear extrapolation is not satisfactory” for predicted embrittlement levels to 50 EFPY for the 

enhanced radiation levels associated with the enlarged beam tubes.  No adequate defense of this 

statement is given and, assuming the other correlation as being correct, might significantly change 

the conclusion.  It is recommended that the choice of the Remec correlation should be better 

defended. 

 

(2) It is assumed that dose rate effects can be ignored in the analysis.  Since the new environment moves 

closer to the conditions embodied in the Remec correlation, this is judged to be an adequate and safe 

assumption. 

 

 In conclusion, PNNL believes that radiation damage levels have been appropriately estimated.  The 

uncertainties as identified above are concerns that do not have the potential to impact the near-term 

safety of operability of HFIR.  The existing dosimetry and surveillance programs at HFIR can be relied 

upon to address longer-term concerns. 

 

 

Fluence and Dosimetry 
 

 The reports prepared by ORNL present a thorough and comprehensive summary of the neutron flux, 

gamma flux, and radiation damage calculations.  These calculations are required to determine the impact 

of the proposed HFIR upgrades on the pressure vessel and other structural components.  Although a 

detailed review of the accuracy of the calculated fluxes and damage rates was not practical, the ORNL 

calculations appear to be well documented and to include sufficient internal consistency checks to give 

us some confidence in their validity.  The proposed, ongoing surveillance program will validate the 

calculations in short order once operations are resumed.  Hence, it is important to point out that there is 

no real concern about the longer-term safety of the upgraded HFIR operations because periodic 

surveillance specimens will directly determine the neutron and gamma doses as well as provide a direct 

measure of the nil ductility at key locations.  The proposed neutron, gamma, and materials surveillance 

program for future operations appears to be quite thorough.  These future measurements will ultimately 

determine the safe operating lifetime of the upgraded HFIR facility, rather than the present calculations.  
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Nevertheless, it is important that the present evaluations be done correctly in order to avoid a premature 

shutdown of HFIR due to a significant miscalculation or underestimation of the radiation damage effects. 

 

 The prior dosimetry measurements conducted for HFIR by Remec et al. (1994) provide a solid basis 

for validating and normalizing the neutron and gamma flux calculations.  This renormalization appears to 

be appropriate at locations where previous measurements have been performed when the locations are 

well removed from the proposed beam tube modifications.  However, in reviewing the renormalization 

process, there are two areas of concern that should be addressed: 

 

(1) The normalization factors vary significantly from location to location.  Table E.1 in ORNL/TM-

13698 shows that the neutron factor varies from 0.56 to 1.0 while the gamma factor varies from 

1.09 to 0.54.  Hence, it is not always clear what normalization factors were used (or should be used) 

for the new beam tube locations.  This point needs some additional discussion in the ORNL reports 

to clarify exactly how the normalizations are being estimated and applied for new geometries. 

 

(2) Because of the significant variation in the normalization factors, it is not clear that we can 

confidently predict the proper normalization of the neutron and gamma fluxes at the critical new 

beam tube locations, since the reasons for the differences between the measurements and calculations 

may not be sufficiently understood.  Some additional discussion is needed on this point.  It is 

critically important that we assume a sufficiently conservative estimate of these factors to ensure that 

we are not significantly underestimating the radiation damage at the critical new locations. 

 

Again, it should be noted that the ongoing surveillance program will provide data to correct and update 

the calculations once HFIR operations are resumed. 

 

 

Conclusions 
 

 It is concluded that the calculated probabilities of failure for the HFIR vessel during hydrostatic tests 

and for operational conditions as estimated by ORNL are an acceptable basis for selecting pressures and 

test intervals for hydrostatic tests and for justifying continued operation of the vessel.  It is expected that 

future calculations based on improved fracture mechanics models and inputs to these models will give 

significantly lower probabilities of failure compared to those now calculated by ORNL. 

 

 The PNNL review concludes that ORNL has a well-founded technical basis for predicting future 

levels of embrittlement of the materials in the HFIR vessel.  While there are some uncertainties in the 

embrittlement predictions, the ongoing efforts at ORNL to measure fluence levels at critical locations of 

the vessel wall and to test materials from surveillance capsules should be effective in dealing with 

embrittlement uncertainties.  Unfavorable trends in vessel embrittlement would become known on a 

timely basis such that corrective actions could be taken to minimize risks of vessel failure. 

 

 In contrast, uncertainties in the fracture mechanics calculations are not addressed by the dosimetry 

and surveillance programs for HFIR materials.  Of greatest concern are the inputs to the probabilistic 



 

13 

fracture mechanics model related to flaw densities and flaw size distributions.  There are at present no 

ongoing programs to obtain better information on the flaws that may exist at the nozzles and other critical 

locations of the HFIR vessel.  It is recommended that ORNL continue to update their fracture mechanics 

calculations to reflect methods and data from ongoing research for commercial nuclear power plants.  

Such programs should provide improved data for vessel fracture mechanics calculations.  The specific 

concerns with nozzle corner flaws will need to be addressed specifically for HFIR, because nozzle corner 

flaws are not a critical issue or the focus of research for LWR vessels. 

 

 A number of recommendations are given in the following section regarding activities that will further 

minimize the probability of failure for the HFIR vessel.  These activities will also provide an enhanced 

level of confidence that the probabilities of failure are indeed as small as predicted and that the program 

of hydrostatic tests continues to guard against unexpected failures under operating conditions. 

 

 

Recommendations for Future Activities 
 

 Recommendations are made as follows to ensure continued safe operation of the HFIR pressure 

vessel: 

 

(1) Dosimetry at critical vessel locations, including the nozzle corners, should be performed on a 

continuing basis to maintain a validated basis for estimating accumulated fluence levels for use in 

estimating embrittlement levels. 

 

(2) Exposures of archival materials in the surveillance capsules should be continued along with material 

testing to maintain an updated basis for levels of embrittlement. 

 

(3) The probabilistic fracture mechanics calculations should be revisited on a regular basis to reevaluate 

the risks of vessel failure; the methodology should be updated in accordance with NRC guidance that 

is expected to be revised in the near future. 

 

(4) Hydrostatic test requirements should be reviewed and revised on a periodic basis in accordance with 

improved estimates of embrittlement rates and refinements in the probabilistic fracture mechanics 

calculations. 

 

(5) Procedures for reactor operation should be modified as practical to minimize the challenges to vessel 

integrity by maximizing vessel temperatures, minimizing pressures, and implementing procedural 

and hardware changes that will prevent the occurrence of over-pressure events. 

 

(6) Inservice inspections of the vessel should focus on the nozzle corner regions to obtain additional 

assurance by nondestructive testing (e.g., ultrasonics) that the nozzle corners are free of structurally 

significant flaws. 
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(7) The inputs for flaw probabilities at the nozzle corners should be reviewed and updated based on 

systematic considerations of the forging and cladding processes relevant to fabrication of the HFIR 

vessel. 

 

(8) Design and construction records for the HFIR vessel should be assembled and reviewed to verify that 

estimates of flaw distributions based on LWR vessel data for welds and plates are relevant to the 

HFIR vessel; the data of interest should address details of welding and cladding processes. 

 

 

References 
 

Blakeman, E. D.  2000.  Neutron and Gamma Fluxes and dpa Rates for HFIR Vessel Beltline Region 

(Present and Upgrade Designs).  ORNL/TM-13693 (Draft of September 2000). 

 

Cheverton, R. D., and R. K. Nanstad.  1994.  Evaluations of HFIR Vessel Surveillance Data and Hydro-

Test Conditions.  ORNL/TM-1372/S2. 

 

Cheverton, R. D.  1994.  An Evaluation of Life Extension of the HFIR Pressure Vessel.  ORNL/TM-

12877. 

 

Cheverton, R. D.  1996.  An Evaluation of Life Extension of the HFIR Pressure Supplement 1.  

ORNL/TM-12877/S1. 

 

Cheverton, R. D., and T. L. Dickson.  1997.  HFIR Vessel Probabilistic Fracture Mechanics Analysis.  

ORNL/TM-13303. 

 

Cheverton, R. D., and T. L. Dickson.  1998.  HFIR Vessel Life extension with Enlarged HB-2 and HB-4 

Beam Tubes.  ORNL/TM-13698. 

 

Cheverton, R. D., and J. R. Inger.  1999.  HFIR Maximum Permissible Pressures for Operating Period 26 

to 50 EFPY (100 MW).  ORNL/TM-13355. 

 

Cheverton, R. D.  1999.  HFIR Vessel Probabilistic Fracture Analysis, Considering Success of 

Hydrostatic Proof Tests.  ORNL/TM-13376. 

 

Cheverton, R. D., R. K. Nanstad, and E. D. Blakeman.  1999.  HFIR Pressure Vessel and Structural 

Components Materials Surveillance – Supplement 2.  ORNL/TM-1372/S2. 

 

Cheverton, R. D., and J. W. Bryson.  2000.  HFIR Vessel Pressure/Temperature Limits Corresponding to 

the Upgrade Design.  ORNL/TM-1999/181/R1. 

 

DCM HFIR-197M-4, HB2 Beam Tube and Ancillary Components - Research Reactors Division 

Unreviewed Safety Question Determination Long Form, Revision 0. 



 

15 

 

Doctor, S. R., G. J. Schuster, and F. A. Simonen.  1999.  “Fabrication Flaws in Reactor Pressure 

Vessels,” In Proceeding of the Twenty-Sixth Water Reactor Safety Information Meeting - Volume 1.  

NUREG/CP-0166 Vol. 1, pp. 85-103, U.S. Nuclear Regulatory Commission, Washington, D.C. 

 

Farrell, K., S. T. Mahmood, R. E. Stoller, and L. K. Mansur.  1994.  “An Evaluation of Low Temperature 

Radiation Embrittlement Mechanisms in Ferritic Alloys.”  Journal of Nuclear Materials, 210, 268-281. 

 

Linn, L. A., and J. R. Inger.  2000.  “Evaluation – A Simplified Approach to Showing that the Likelihood 

of Exceeding the Limiting Conditions for Operation (LCO) Pressure/Temperature (P/T) for the HFIR 

Vessel Following the Beam Tube Upgrade is Very Small.”  Letter report to D. H. Cook, Oak Ridge 

National Laboratory, January 27, 2000. 

 

Remec, I., J. A. Wang, F.B.K. Kam, and K. Farrell.  1994.  “Effects of Gamma-Induced Displacements 

on HFIR Pressure Vessel Materials.”  Journal of Nuclear Materials, 217, 258-268. 

 

Simonen, F. A., K. I. Johnson, A. M. Liebetrau, D. W. Engel, and E. P. Simonen.  1986.  VISA-II-A 

Computer Code for Predicting the Probability of Reactor Pressure Vessel Failure.  NUREG/CR-4486, 

PNL-5775. 

 

 


	13523.pdf
	Prepared for the U.S. Department of Energy




