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Abstract 

INTERMITTENT TURBULENCE IN THE 
VERY STABLE EKMAN LAYER 

 James Coles Barnard 

Chairperson of the Supervisory Committee:  Professor James J. Riley 
Department of Mechanical Engineering 

This study describes a Direct Numerical Simulation (DNS) of a very stable Ekman 

layer in which a constant downward heat flux is applied at the lower boundary, thus 

cooling the fluid above. Numerical experiments were performed in which the strength 

of the imposed heat flux was varied.  For downward heat fluxes above a certain critical 

value the turbulence becomes intermittent and, as the heat flux increases beyond this 

value, the flow tends to relaminarize because of the very strong ambient stratification.  

We adopt Mahrt’s (1999) definition of the very stable boundary layer as a boundary 

layer in which intermittent, rather than continuous turbulence, is observed. Numerical 

experiments were used to test various hypothesis of where in “stability parameter 

space” the very stable boundary layer is found.  These experiments support the 

findings of Howell and Sun (1999) that the boundary layer will exhibit intermittency 

and therefore be categorized as “very stable”, when the stability parameter, z/Λ, 

exceeds unity. Another marker for the very stable boundary layer, Derbyshire’s (1990) 

maximum heat flux criterion, was also examined. 

Using a case study drawn from the simulations where turbulence intermittency was 

observed, the mechanism that causes the intermittence was investigated.  It was found 

that patchy turbulence originates from a vigorous inflectional, Ekman-like instability -- 



 

 

a roll cell -- that lifts colder air over warmer air.  The resulting convective instability 

causes an intense burst of turbulence.  This turbulence is short-lived because the lifting 

motion of the roll cell, as well as the roll cell itself, is partially destroyed after the 

patchy turbulence is generated. 

Examples of intermittent turbulence obtained from the simulations appear to be 

consistent with observations of intermittency even though the Reynolds number of the 

DNS is relatively low (400). 
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CHAPTER 1: INTRODUCTION  

The Ekman layer serves as a prototype for the boundary layer of the ocean and 

atmosphere.  Because of its relevance to these geophysical flows, the Ekman layer has 

been the focus of many studies since the formulation of the laminar theory in 1905 

(Ekman, 1905).  In the past few decades, Ekman’s original focus on the laminar 

boundary layer has been greatly expanded to examine more realistic models of 

geophysical boundary layers in which turbulence and thermal stratification play major 

roles.   These studies are obviously important in their own right as inquiries into 

fundamental fluid mechanics, and from a more practical point of view, they support 

engineering work that might, for example, look at the important problem of diffusion of 

contaminants in stably stratified atmospheric boundary layers (e.g., Kemp and 

Thomson, 1996; Gryning, 1999; Rao; 1999).  The engineer’s need to understand how 

stable thermal stratification affects the geophysical (Ekman) boundary layer continues 

to motivate many studies of oceanic and atmospheric boundary layers.  As one may 

expect, the strength (and vertical extent) of the stratification exerts considerable 

governance over the dynamics of the stratified Ekman layer.  The very stable Ekman 

layer, with its potential for varied physical phenomena including intermittent 

turbulence (Mahrt, 1985; Mahrt, 1998), boundary layer collapse, and propagation of 

gravity waves (Einaudi and Finnigan, 1981; Finnigan and Einaudi, 1981) perhaps poses 

the greatest challenge to the boundary layer research community.  This challenge is 

just now being addressed.   

1.1  THE VERY STABLE EKMAN LAYER  

The very stable boundary layer (VSBL) may be identified in terms of the unique 

physical phenomena that are frequently witnessed under very stable conditions.  
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Perhaps the characteristic that most distinguishes the VSBL from its less stable 

counterpart is the intermittent nature of turbulence (Mahrt, 1999).  Because 

intermittency is such an important feature of the very stable regime, a stable boundary 

layer may be considered as “very stable” when intermittent turbulence is observed.  

This intermittent nature stands out in marked contrast to the continuous state of 

turbulence found in weakly stable and moderately stable boundary layers.   

The line between the various stability regimes may be characterized by the value of a 

suitably chosen stability parameter.  The stability parameter z/L was considered by 

Mahrt (1998) and Mahrt et al. (1998) in an analysis using data from the 

MICROFRONTS project conducted in Kansas, March 1995 (described in part in 

Howell and Sun, 1999).  This parameter forms an important part of Monin -Obukhov 

similarity theory (Garratt, 1992) and it is composed of the height above the ground, z, 

and L, the Monin-Obukhov (MO) length, 3

0

' '*
g

L u wκ θ
θ

= − .  In the expression for L, 

κ is the Von Karman constant, g is the gravitational constant, θo is the reference 

potential temperature, and u* and ' 'w θ  are the surface friction velocity and surface 

temperature flux, respectively.    

Based on the value of z/L, Mahrt et al. (1998) classified the stable boundary into three 

regimes.  The weakly stable regime is defined roughly as range of values, z/L, such that 

0 < z/L  < ε  << 1, where ε is the maximum stability for the weakly stable regime.  In 

this regime, the magnitude of the downward turbulent heat flux increases with 

increasing z/L.  For the MICROFRONTS data, ε is about equal to 0.05 at z = 10 m (see 

Figure 1, adapted from Mahrt 1998.  In this figure a downward heat flux is defined as 

being negative so that flux becomes more negative as z/L increases in the weakly 

stable regime.).  As noted by Mahrt et al. (1998), the exact value of ε may not be 

universal.  For stability parameters in a “transition” range ε  < z/L < O(1), the 
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downward heat flux decreases with increasing stability.  This range of stability is also 

termed moderately stable regime.  The point z/L = O(1) demarks the stability at which 

the VSBL begins.  In the VSBL, the turbulent heat flux is small and continues to 

decrease as z/L becomes even larger.   

 

Figure 1: The turbulent, kinematic heat flux as 
a function of z/L. Adapted from Mahrt (1998). 

 

That the magnitude of the downward turbulent heat flux reaches a maximum as the 

stability increases and then declines with further increases in stratification is easily 

explained.  At one extreme, neutral stratification, the turbulence may be very vigorous 

but no heat is transported because the potential temperature fluctuations upon which 

the turbulence acts are essentially zero.   In other words, the turbulence merely pushes 
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around air, all of the same potential temperature, and no heat is transported.  At the 

other extreme a strong potential temperature gradient will completely extinguish the 

means of transporting heat -- the turbulence -- and no heat transport is possible.  

Between these two extremes, a combination of turbulence and temperature gradient 

exists that maximizes the downward transport of heat. 

Support for Mahrt et al.’s (1998) assertion that intermittency, and therefore the VSBL, 

occurs when z/L ≥ 1 comes from observational evidence.  Some of this evidence is 

displayed in Figure 2, taken from Howell and Sun (1999).  This figure shows a flux   

 

Figure 2: Flux intermittency factor for the 
turbulent heat flux, plotted as a function of z/Λ. 
(Λ is the local Obukhov length).  The standard 
deviations of the flux intermittency factor are 

shown as the vertical bars with the 
corresponding solid symbols.  From Howell and 

Sun (1999). 
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intermittency factor plotted versus local stability parameter, z/Λ.  The local Obukhov 

length, Λ, is calculated in terms of local turbulent fluxes instead of the values very 

close to the surface.  Because Mahrt et al. (1998) calculated L from fluxes at a height 

of 10 meters, it is very likely true that Λ (10 meters) = L (from Mahrt et al., 1998) and, 

for all practical purposes, we can substitute z/L for z/Λ in this figure..   

The flux intermittency factor is a measure of how much the flux varies over an interval 

of 10 minutes.  A value of zero means that the flux was constant over the interval, 

while a value approaching one implies significant intermittency.  Because we associate 

flux intermittency with the VSBL, the identification of the range of z/Λ over which the 

intermittency factor begins to increase towards a value of one also uncovers the range 

of z/Λ over which we classify the boundary layer as being very stable.   Clearly, as 

shown in Figure 2, the intermittency increases dramatically only after z/Λ exceeds one, 

and these data support the proposition that the VSBL exists for stability parameters 

(z/Λ) greater than one.  That the very stable regime has turbulence properties 

significantly different from the weakly stable regime is also supported by the wind 

tunnel experiment of Ohya et al. (1997) and in the observations of Smedman (1988).   

It is also possible to demarcate the very stable regime from the moderately stable 

regime using a maximum heat flux criterion developed by Derbyshire (1990).  In 

contrast to the observational work presented above, Derbyshire’s criterion stems solely 

from theory.  Such theory is related to the intuitive notion that the atmosphere can 

handle only so much surface cooling until the ambient stratification becomes strong 

enough to cause the properties of the turbulence to undergo a change from continuous 

to sporadic turbulence.  For sufficiently strong cooling, the turbulence may cease 

entirely. 
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In somewhat more quantitative terms, the theory can be viewed in the following 

manner.  A downward surface heat flux is imposed at the lower boundary of the 

atmosphere.  This flux is made progressively larger.  When this downward heat flux 

exceeds a critical value, Bmax, continuous turbulence ceases, and it is replaced by 

intermittent turbulence.  Thus, Bmax may be considered as a boundary separating the 

VSBL from the moderately stable boundary layer.  For typical mid -latitude conditions, 

Derbyshire (1990) calculated Bmax to be about 40 W/m
2
 -- a magnitude that seems very 

reasonable.   This heat flux may be interpreted as the maximum surface heat flux for 

which continuous turbulence is maintained; for fluxes larger than this maximum, 

turbulence in the boundary layer may become intermittent and ultimately the boundary 

layer may collapse. 

Support for the maximum heat flux concept comes from modeling studies presented in 

Derbyshire (1990).  For example, Figure 3 (adapted from Derbyshire, 1990) shows the 

height of the stable Ekman layer derived from three models plotted versus an imposed 

surface heat flux, expressed as B0/Bmax.  The models here: (1) a large eddy simulation 

(LES) - indicated in the figure by the symbol, ÿ; (2) a gradient-transport model (GTM) 

indicated by an “x”; and (3) the second-order closure model of Brost and Wyngaard 

(1978), represented by the triangle, ∆. Unfortunately, few details regarding the GTM 

model are given in Derbyshire (1990). The LES model is that described in Mason and 

Derbyshire (1990).  

In the model runs depicted in Figure 3, either a constant cooling rate or a constant heat 

flux was specified at the lower boundary.  As expected, Figure 3 shows a decrease in 

height, h, of the stable Ekman layer as the downward heat flux increases for all three 

models.  The various lines in this figure are Derbyshire’s extension of Nieuwstadt’s 

(1984, 1985) stable boundary layer theory to span the range between very stable and 

neutral flow.  The different lines correspond to different calibrations of the theory.  
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Figure 3: The modeled boundary layer height, 
h, and the Monin-Obukhov length, L, as a 

functions of Bo/Bmax.  The symbols ÿ, x, and ∆ 
refer to, respectively, a large eddy simulation, a 

gradient-transport model, and a second-order 
closure model. Figure from Derbyshire (1990). 

 

The theory agrees with the models reasonably well.  Considering the models and 

theory together, one could conclude that the boundary layer height tends to zero as 

B0/Bmax goes to one.  This collapse in height is best interpreted as the cessation of 

continuous turbulence and/or the collapse of the entire boundary layer. The only 

contravening evidence to this picture is the behavior of the GTM for B0/Bmax > 1.  In 

this parameter range, the boundary layer height in the GTM model assumes a constant 

value greater than zero and the turbulence is highly intermittent. (In support of this 

finding, we note that the data analysis of Arya [1981] suggests that, for very stable 

boundary layers, collapse does not occur.)  Despite the divergence of the GTM 
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behavior from the rest of the models, the overall results support the hypothesis that 

turbulence within the boundary layer undergoes a significant change as B0/Bmax tends 

to one, and the change is one from continuous to intermittent turbulence.  We repeat 

that this intermittency is the characteristic “signature” of the VSBL and, therefore, the 

specification of B0/Bmax= 1 as the point separating the moderately stable and very 

stable regimes seems justified. 

However, the specification of the boundary between moderately stable and very stable 

in terms of a maximum downward heat flux seems to contradict the observations of 

Mahrt et al. (1998).  In terms of stability, they found that the point of the maximum 

downward turbulent heat flux, z/L = ε  < < 1, was the upper limit of a weakly stable 

regime in which no intermittency is evident.  Also, their analysis indicates that the 

onset of the VSBL occurs only when z/L exceeds one, at which point the heat flux is 

much less than its maximum.  In contrast, Derbyshire asserts that the beginning of the 

very stable regime coincides with the maximum heat flux. These two placements of the 

maximum heat flux, one defining the boundary between weakly stable and moderately 

stable, and the other defining the boundary between stable and very stable, pose a 

seeming contradiction (see Mahrt et al., 1998).  

However, there are four caveats that bear on this apparent contradiction and these 

must be addressed. The first of these is that the observations are from one field study 

only, and conclusions drawn from just a single study are not always reliable.  In fact, as 

stated by Mahrt et al. (1998), “there is no evidence that the value of z/L corresponding 

to the maximum downward heat flux is universal.”  Perhaps measurements from 

another field study would show something different; for example, maybe the boundary 

layer would show very stable behavior as the heat flux approached a maximum.   

Second, the comparison between the models and the observations could be flawed 

because of the lower boundary condition applied to the models: either a constant heat 
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flux or a constant cooling rate (i.e., dθ/dt = -constant).  These boundary conditions are 

tied to the interior of the model using the traditional Monin -Obukhov heat and 

temperature profiles.  Whether these profiles are valid for moderate to very stable 

conditions is questionable.  Mahrt (1999) and Högström (1996) are some of the more 

recent papers that raise uncertainty about the use of standard Monin -Obukhov theory 

for the more stable regimes.   If for strong stability Monin-Obukhov similarity breaks 

down as suggested by the available evidence, then the connection of lower boundary 

condition to the model will be defective, perhaps leading to serious errors in the model 

simulations, such as a collapse of the boundary layer. 

 Third, the model simulations could be seriously in error and therefore misleading.  For 

example, one potential source of major errors in LES is the poor resolution of the 

“large eddies” near the surface.  Close to the surface the large eddies scale with the 

height above the surface, z, and these eddies will be underresolved; moreover, as 

thermal stratification reduces the length scale of the turbulence (≈ L), the lack of 

resolution close to the wall1 and elsewhere is exacerbated. The poor resolution of the 

turbulent eddies near the wall may increase flux errors, which in turn, worsen the 

coupling of the boundary conditions with the interior of the model so that the entire 

simulation feels the effect of the near-wall resolution problems.  In an effort to 

alleviate these difficulties, Brown et al. (1994) added a backscatter term (Mason and 

Thompson, 1992) to the original stable LES model of Mason and Derbyshire (1990).  

The backscatter2 may ameliorate resolution problems, and hence simulations from LES 

models with backscatter are presumably more reliable proxies of reality than models 

                                                 
1 Engineers like to refer to solid boundaries as “walls”. 
2 In the turbulent energy cascade, energy is transferred from larger eddies to smaller eddies.  Some 

stochastic “backscatter” of energy occurs that transfers energy to larger scales, but in the mean this 
“upscale” transfer is less than the downscale transfer so that the net transfer is sti ll from larger to 
smaller eddies.  Adding a backscatter feature to a subgrid scale model presumably makes it more 
realistic. 
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without this feature.  (Although we must be mindful that backscatter itself cannot solve 

all the resolution woes; for example, the ability of LES to predict gradients in the near-

wall region depends also upon the type of subgrid parameterization chosen for the LES 

[Khana and Brasseur, 1997]).   For the present we shall assume that the backscatter 

improves model simulations directly in the near-wall region, and therefore indirectly 

throughout the whole modeling domain.  Yet, even when this improvement is added to 

an LES, the height of the boundary layer still tends to zero as B0/Bmax became close to 

one (see Figure 1d in Brown et al. , 1994).  Thus, the evidence from the improved LES 

model still supports the conclusion that the boundary layer fundamentally changes as 

B0/Bmax→ 1. 

Finally, for a given value of the heat flux, Figure 1 indicates that two values of the 

stability parameter (falling in one of the two ranges: z/L < ε [weakly stable] or z/L  > ε  

[moderately to very stable]) may be associated with any one value of heat flux.  The 

possibility of two solutions for a given heat flux was noted by De Bruin (1994) and 

observations that bolster this proposition have been described by Malhi (1995). 

McNider et al. (1995) also examined the predictability of the stable boundary layer 

using tools from non-linear dynamics and they, too, noted the dual nature of the 

solutions. That is, for a range of some external parameters, the stable boundary layer 

could exist in two possible states. Perhaps the modeling results presented in Derbyshire 

(1990), Mason and Derbyshire (1990), and Brown et al. (1994) have tracked only one 

of the two solutions. Whether Derbyshire’s model-based conclusions would have been 

different had the models tracked the other solution remains unknown.  At this time, we 

don’t know if the models are capable of uncovering the other solution or not 3. 

                                                 
3 The reason why the models preferred one solution over the other is probably related to the initial 

condition: neutrally stratified flow.  It is well known that nonlinear systems are sensitive to initial 
conditions, and if one had substituted a strongly stratified initial condition for the original (neutral) 
initial condition, the model integration may have locked onto the second solution. 
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The fact that we cannot reconcile a prediction derived from theory with the 

observations is emblematic of our general lack of knowledge of both the VSBL and the 

modeling of this boundary layer.  Indeed, the divergence between the observations 

(Mahrt, 1998; Mahrt et al., 1998; Howell and Sun, 1999) and models (Mason and 

Derbyshire, 1990; Derbyshire, 1990) calls into question our very ability to model 

VSBLs at all (for example, see Mahrt [1998]).   Clearly, if we are to enhance our 

understanding of the VSBL through the use of models, then we must strive to 

understand the ills of the existing models, and develop new models in which these ills 

are alleviated. We also need to understand more about the nature of the VSBL itself.  

For example, is Monin-Obukhov theory applicable to the surface layer?  Or indeed, 

does a surface layer exist at all?  These questions, as well as many others, remain 

unanswered. 

1.2 TURBULENCE IN THE VERY STABLE BOUNDARY LAYER 

The cause of the turbulence intermittency found in the VSBL is another important 

issue that remains unresolved.  Unlike turbulence found in slightly stable boundary 

layers, the turbulence in the VSBL is presumed to be intermittent in both space and 

time; and as we have emphasized above, this intermittency is the defining 

characteristic of the VSBL. That the turbulence is sporadic has been documented in 

many field studies and various theoretical efforts have attempted to explain the 

intermittency.  Riley and Lelong (2000) have examined various aspects of turbulence 

in stable conditions.  ReVelle (1993) has reviewed theories of sporadic turbulence as 

well as some of the field observations in which sporadic turbulence and bursting 

phenomena are observed.  These theories include the mechanism of Blackadar (1979), 

various gravity wave phenomena in the boundary layer including critical layer 

absorption (see for example, Nappo, [1991]; Winters and D’Asaro [1989]; Winters and 

D’Asaro [1994]; Lombard and Riley, [1996a, 1996b]; Dörnbrack, [1998]), Kelvin -
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Helmholtz (K-H) instabilities (Drazin and Reid, 1989), the so-called “upside down 

boundary layer (Mahrt, 1999; Smedman, 1988), and the formation of roll vortices 

(Thorpe and Guymer, 1977).  The physical principles underlying these phenomena are 

well known, although sometimes the name associated with the principle is not.  For 

example, when one hears of the “Blackadar mechanism”, one might not know that this 

name is associated with the classic way that sporadic turbulence is generated in the 

stable boundary layer.4  Therefore we shall describe this mechanism as well the related 

idea of the upside-down boundary layer.  

The Blackadar mechanism is based on a Richardson number modulation of the flow, 

where it is assumed that turbulence ceases when the critical value of the gradient 

Richardson number is exceeded.  Here the gradient Richardson number, Ri, is defined 

in the customary manner, Ri  = 
2
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.  In the early evening hours, once 

the surface heating by solar radiation has ceased, the bottom of the boundary layer is 

cooled by the emission of long-wave radiation to space.  This cooling leads to 

enhanced stability in the lower part of the boundary layer, which in turn, may cause Ri 

in this part of the boundary layer to exceed the critical value, Ric, usually assumed to 

be close to the classical, inviscid value of ¼.  Turbulence is therefore shut off.  Surface 

drag is no longer transmitted to the interior of the flow because of the cessation of 

turbulence adjacent to the surface.  The resulting imbalance of the drag, pressure 

gradient, and Coriolis forces accelerates the interior flow leading to a nocturnal jet.   

The picture now is one of little or no turbulence in a region close to the surface, and 

the formation of a nocturnal jet above the area of diminished turbulence.  As the jet 

gains strength, the shear below the jet increases and the Richardson number may again 

                                                 
4 This mechanism was also described by Businger in 1973 and in the author’s opinion it could just as well 

be called the “Businger mechanism”. 
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fall below the critical value and turbulence emerges just below the jet.  This picture 

describes the “upside down” boundary layer described by Smedman (1988).  

Eventually the turbulence below the jet may make its way to the ground, and the 

quiescent flow near the ground then becomes turbulent again.  Surface drag is now 

effectively transmitted through the boundary layer and the shear tends to decrease, and 

in some parts of the boundary layer, Ri again exceeds Ric and the turbulence stops, and 

the process repeats. This cycle of the buildup and decrease of shear resulting in 

Richardson number swings through Ric leads to sporadic turbulence in the boundary 

layer. 

Given a particular set of turbulence observations in which intermittency is evident, it 

often cannot be readily determined if the Blackadar mechanism described above leads 

to the intermittency, or whether another mechanism is responsible.  Part of the 

problem in choosing one mechanism over another is the fact that the observations are 

always spatially and temporally limited and the entire boundary layer is not “seen” and 

therefore important information is missing that may allow the mechanism to be 

identified.  Despite this problem, a number of field studies in which sporadic 

turbulence has been found have attempted to ascribe a cause to the intermittency.  

ReVelle (1993) summarizes some of the field studies in which turbulent bursting is 

observed; see Table 1 below (adapted from ReVelle, 1993).  In this table, a “burst” 

means a period of turbulence in an otherwise quiescent flow, and the duration of the 

burst is simply the duration of the turbulence.  These observations of bursting occur on 

temporal and spatial scales that are thought to be small compared to the scales of the 

entire boundary layer.  With this scale difference in mind, these specialized 

observations must be kept distinct from more generic observations of the stable 

boundary layer in which coarser scale properties are measured and described, such as 

the mean temperature and wind profiles. (See, for example, Mahrt [1985]; Sorbjan, 

[1988]). 
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Table 1: Observations of sporadic turbulence in 
the stable boundary layer. (Adapted from 

ReVelle [1993]). 

Source Duration of calm 
periods (min) 

Total burst duration 
(min) 

Average Number 
of bursts per night 

Nappo (1991) 15-19 15 13-18 

Schubert (1977) 150 15 3 

Coulter (1990) > 360 15 3 

 

 

The observations referred to in Table 1 were taken over flat terrain.  (although Nappo 

[1991] includes some observations in complex terrain; these observations have been 

excluded from Table 1).  The measurements of Schubert (1977) were obtained from a 

combination of acoustic sounder and anemometers deployed at two levels on a tall 

tower.  The anemometer measurements at the upper level indicate a windiness that 

occurs throughout the entire evening while the wind measurements at lower level 

clearly show quiescent periods interspersed with turbulent bursts.  He conjectured that 

the bursts were caused by something akin to the Blackadar mechanism.  Coulter 

(1990) used acoustic means (a minisodar) to probe the boundary layer, but he 

attributed the presence of sporadic turbulence to Kelvin -Helmholtz (K-H) waves 

(although he left some room for alternative explanations).  From an array of masts 

instrumented with anemometers and temperature sensors, Nappo devised a simple 

analysis to detect the turbulent bursts.  Nappo speculated that such bursts were 

probably responsible for most of transport of atmospheric pollutants (in particular 

ozone, see Harrison et al., 1978) to the ground.  He went on to note that such bursts 



 

 

15 
 
 

would not be handled well by traditional numerical models.  The nature of the 

instrumentation -- a point measurement of wind and temperature -- did not provide 

enough information to ascertain what was causing the intermittency.  

A vivid example of turbulence intermittency is depicted in Figure 4 taken from Coulter 

(1990).  This figure shows several bursts of turbulence of duration 15-30 minutes 

during the course of one night (although data from two nights are shown in the figure).  

Reading the panels from top to bottom, this figure shows the standard deviation of the 

vertical velocity, the dissipation rate, and the temperature variance dissipation rate. For  

 

Figure 4: Time series of vertical velocity 
standard deviation (top panel); dissipation rate 
(middle panel), and temperature variance 
dissipation rate (lower panel).  The 
measurements are from a minisodar and are for 
two nights; the height of the measurements is 
36 m.  The curves represent a 20-min running 
mean.  (Figure from Coulter, 1990).  
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the night of October 2, the sporadic nature of the turbulence is very evident as shown 

by the marked variation in these quantities with time. Obviously, intermittency is a real 

observable phenomenon in the stable boundary layer.  It is interesting to note that the 

ambient meteorological conditions for the nights of October 1 st and 2nd are very similar; 

yet, in one night, sporadic turbulence occurred, while during the other night it was 

absent.  There is no explanation for this curiosity. 

1.3 ISSUES  

The discussion above has served to highlight just a few of the important issues 

regarding the flow associated with the VSBL.  We have seen that our understanding of 

the VSBL, as well as our ability to model it, is so primitive that even resolving different 

claims over the role of the maximum heat flux in delineating the start of the VSBL is 

an unsolved problem.  Because of our very modest level of understanding the VSBL 

we can only devise for ourselves a set of simple, but very important, research goals.  

This first of our goals is fundamental to understanding the VSBL: how do we mark off 

the boundaries of the VSBL in the parameter spaces of various stability parameters?  

As previously discussed Derbyshire (1990) used the surface heat flux as a proxy for 

the stability of the boundary layer.  He then set the beginning of the VSBL at the 

maximum imposed surface heat flux for which continuous turbulence could be 

supported.  For fluxes greater than this maximum heat flux, modeling studies indicated 

that the turbulence became intermittent, and in some cases the turbulence as well as 

the boundary layer collapsed.  In contrast, the approach of Mahrt et al. (1998) was 

based almost entirely on observations, and they found that the point of maximum heat 

flux separates a weakly stable and moderately stable boundary layer.  Based on this 

finding it seems that the maximum flux cannot be associated with start of the VSBL, in 

contradiction to conjecture of Derbyshire.  The confusion witnessed here stems from 
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the two approaches based either on theory and modeling, or based on observations.  

The contradictory results from these approaches motivate us to examine these issues: 

What are good working values, in terms of various stability parameters, of where the 

very stable regime begins?  And, is the demarcation of the VSBL in stability parameter 

space applicable to both models and observations.   

The next issue we wish to explore -- and this is the crux of this study -- is the 

mechanisms associated with the formation of sporadic turbulence in the VSBL.  We 

have already mentioned several ways speculated to cause that turbulence intermittency 

over flat terrain.  The observations in which intermittency occurs are too sparse and 

incomplete to permit the identification of the exact cause of the intermittency and 

therefore our understanding of a cause (or causes) remains inadequate. Because of the 

limitations inherent to observational studies (i.e., lack of spatial and temporal coverage, 

and the inability to measure all variables of concern), we will resort to a modeling 

study and model the flow using a Direct Numerical Simulation (DNS) of turbulence.  

The DNS is designed for the highly idealized flow of an Ekman boundary layer over 

flat terrain with an imposed downward surface heat flux.  By varying the strength of 

this flux, we can vary the stability of the modeled atmosphere and observe how the 

stability affects the turbulence, and attempt to ferret out the mechanism responsible for 

the intermittent nature of turbulence in the VSBL. 
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CHAPTER 2: DIRECT NUMERICAL SIMULATION OF THE VERY STABLE 

BOUNDARY LAYER – BACKGROUND AND NUMERICAL METHOD 

We are proposing to investigate the VSBL using a DNS of a very stable Ekman layer.  

The DNS technique avoids some of the pitfalls of other models because all scales of 

turbulence are resolved from the molecular dissipation scale to the largest eddies.  

Thus, there is no need to apply an ad hoc subgrid scale (SGS) model to drain down the 

energy of the large eddies5 as is done in an LES.  (Rogallo and Moin [1984] review the 

differences between LES and DNS.  For a more recent evaluation of the LES 

technique, see Mason [1994]).  For the VSBL, the DNS seems indispensable because 

as mentioned by Derbyshire (1999) many phenomena seen in VSBLs such as sporadic 

breakdowns have not yet been seen in LESs of moderately stable boundary layers.  

Moreover, the inability of present LES technology to simulate the VSBL has recently 

been underscored in an article by Saiki et al. (2000). (See also Kosovic and Curry 

(2000) for another example of recent LES modeling applied to stable boundary layers).  

One goal of the Saiki et al. study was to use LES to model the VSBL but attempts to 

realize this goal failed. This failure led the authors to conclude that in order to simulate 

the VSBL a better SGS model is needed.   

2.1 REYNOLDS NUMBER SIMILARITY AND THE COMPARISON OF DNS WITH 

ATMOSPHERIC MEASUREMENTS 

The DNS technique resolves all scales of turbulence without the need for an artificial 

SGS model. Of course, if we choose to resolve the smallest, dissipation scales of 

turbulence, then we are limited by computational resources on how large a domain we 
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may model and this restriction implies that DNS can only model flows at low Reynold s 

number, Re.  Despite the restriction to low Reynolds number, the DNS technique has 

been applied to both laboratory and geophysical flows.  Recently, it has been possible 

to match the Reynolds number of a laboratory flow with that of a DNS (de Bruyn Kops 

and Riley, 1998) and the correspondence between the DNS and measurements was 

extremely good.  Such good agreement can only buttress our faith in the DNS method.  

In an apparently less realistic application, the DNS method has been applied to flows 

with large Reynolds number including Ekman layers.  In these simulations the DNS can 

be thought of as an approximation to the actual, high Reynolds number flow, and the 

hope is that some of the important flow features of the high Reynolds number flow will 

show up relatively intact in a low Reynolds number DNS.  Put in other terms, since the 

Reynolds number of the DNS is high enough to permit turbulent flow, we hope that to 

some degree the concept of “Reynolds number similarity” holds (Townsend, 1980), 

which would imply that flow phenomena captured in the DNS are Reynolds number 

independent (or approximately so).  Therefore, if such similarity holds, then results 

derived for low Reynolds simulations can be generalized to higher Reynolds number.  

Coleman (1999) has suggested that Reynolds number similarity is apparent even at the 

low Reynolds number of current DNSs and therefore, a DNS may be applicable to 

flows with much larger Re.  In his study, DNSs for neutrally stratified Ekman layers at 

Reynolds numbers equal to 400, 500, and 1000 were compared with laboratory studies 

of Ekman layers (e.g., Caldwell et al., 1972) as well as various LES runs (Andrén and 

Moeng, 1993; Andrén et al., 1994).  When total stress profiles from the three DNSs are 

plotted in appropriate scaled nondimensional coordinates a near collapse of the profiles 

is evident. (The total stress, τ, is defined as 22
yx τττ += , where τx and τy are down- 

and cross-stream components of the horizontal stress.)  This collapse indicates the near 

                                                                                                                                             
5 The subgrid model for the DNS can be viewed as being molecular viscosity; this model is correct 
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independence of the stress magnitude to Re, i.e., Reynolds number similarity is 

emerging even at these low Reynolds numbers.  From an intuitive standpoint this 

seems utterly remarkable given the relatively low Reynolds number (400) of one of the 

model runs! 

Additional evidence of Reynolds number similarity can be seen in a series of three 

papers {Coleman et al., 1990a, 1992, 1994), in which a neutrally stratified, a stably 

stratified, and a convective Ekman layer are simulated, respectively, using the DNS 

technique.  These studies illustrate in greater detail some of the strengths and 

limitations of using DNS to understand various aspects of the higher Reynolds number 

flow for which the DNSs serves as proxies.  For example, both the neutral DNS and 

convective DNS are relevant to an investigation of the conditions that encourage the 

formation of roll vortices in the boundary layer.  Etling and Brown (1993) have 

reviewed the mechanisms suspected to be responsible for the development of such 

vortices: dynamic instabilities (inflection-point and parallel) associated with the 

background mean flow (an Ekman layer), and thermal instabilities.  There is still a 

question concerning the relative importance of these mechanisms in instigating and 

maintaining the vortices, and perhaps DNS can provide insight into this problem.   In 

the DNS simulations, roll vortices were only observed in convective conditions for 

moderate heating rates (as depicted by stability parameter zi/L, where zi is the inversion 

height); no vortices were present in the neutral case.  The simulations therefore suggest 

that the thermal instability is more important than the dynamic instabilities.  (Indeed, 

evidences of vortices are most often observed in moderately convective circumstances 

such as cold air outbreaks over the ocean; see Hartman et al., 1997).   But here we run 

into the questions imposed, in part, by the low Reynolds number of the neutral DNS 

runs: Is the development of roll vortices in the neutral simulation hindered by the low 

Reynolds number of the simulation? At the present time, this question cannot be 

                                                                                                                                             
everywhere in the modeling domain.  
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answered and, in this respect, the conclusions drawn from the DNS are equivocal, 

although the emergence of Reynolds number similarity exhibited in Coleman (1999) 

suggest that the Reynolds number is not a major factor for neutrally stratified flow.  

The stably stratified simulations of Coleman et al. (1992) were performed for light to 

moderate thermal stratification and hence, they are not representative of the very 

stable case that we are concerned with here.  However, Coleman et al.’s (1992) 

simulation illustrates again the usefulness of a low Reynolds number DNS as a tool for 

making sense of its large Reynolds number counterpart.  One important theoretical 

concept of the stable boundary layer is “local scaling” (Nieuwstadt, 1984) in which 

appropriately nondimensionalized turbulent quantities (e.g., variances and covariances) 

become functions of z/Λ only, where Λ is a local Monin-Obukhov length, defined in 

terms of the local heat flux and local friction velocity.  Such a scaling seems intuitively 

plausible because under very stratified conditions the vertical inhibition of transport by 

the stratification implies that the turbulence should only depend on local conditions.  

Figure 5 shows an example of local scaling applied to one of Coleman et al.’s (1992) 

DNS runs with relatively low stratification.  As mentioned by Coleman et al., the mild 

stratification of the DNS runs and the low Reynolds number make the test of local 

scaling tenuous. Given these rigorous conditions the agreement between modeled and 

measured results is surprisingly good for two of the four variables modeled, the 

gradient Richardson number (panel “a” in Figure 5) and the RMS velocity fluctuations 

(panel “b”).  If a comparison between Nieuwstadt’s (1984) so-called “filtered data”6 

and the RMS temperature fluctuations is made, then agreement between the modeled 

and observed variables for this quantity also becomes good.  Considering the 

comparison portrayed in Figure 5 we may conclude that local scaling holds up 

reasonably well even in a low Reynolds number DNS.   
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Figure 5: A test of Nieuwstadt’s (1984) local 
scaling hypothesis using the stably stratified 
DNS of Coleman et al. (1992). (a) Gradient 

Richardson number;  (b) RMS velocity 
fluctuations, solid and dashed lines are total 

and vertical velocity fluctuations, respectively; 
(c) RMS temperature fluctuations; (d) eddy 
viscosity, the dashed and solid lines are two 

definitions of eddy viscosity. ÿ; Nieuwstadt’s 
(1984) unfiltered data; �, filtered data. 

2.2 GOVERNING EQUATIONS 

The evidence supporting Reynolds number similarity even at relatively low Re, as well 

as the generally favorable comparison between the simulation results and data, bolster 

                                                                                                                                             
6 The filtered data was composed by running a high-pass filter through the original data set to remove, as 

well as possible, contamination by gravity waves. 
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confidence in the low Reynolds number DNS as a description of idealized boundary 

layer flows with much larger Reynolds numbers.  We now describe the construction of 

the DNS including the presentation of the governing equations and the description of 

the numerical methods used to solve these equations. 

2.2.1 GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The governing equations of the flow considered here are derived from the Navier-

Stokes equations, the continuity equation for incompressible flow, and the energy 

equation for incompressible flow7; these are 
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where u is the vector of velocity components (u, v, w), Ω is the rotation rate of the 

system aligned along the positive z-axis, G is the geostrophic wind in the direction of 

the positive x-axis, Θ is the (potential) temperature,  ν and κ are the kinematic 

viscosity and thermal diffusivity, respectively, and ρ is the fluid density. The 

substantial derivative, Du/Dt is defined in the usual manner 
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Below, we shall link the temperature and density together through the Boussinesq 

approximation; this linkage closes the set of equations listed above.  
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The Ekman flow is driven by a uniform pressure gradient, ∂pE/∂y, along the positive y-

axis (pE is the pressure associated with this uniform gradient),  
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and this pressure gradient can be subtracted from the momentum equatio n to yield: 
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where the constant pressure gradient has been removed from the pressure gradient 

term in the momentum equation, eq. 2.1 (To avoid the proliferation of symbols, we 

shall retain p as the symbol for pressure in the eq. 2.5, although this “new” pressure 

does not include pE.) 

For our model simulations, we are using a constant heat flux, B0, as the lower 

boundary condition.  To implement this boundary condition, we first define the total 

temperature as a sum of three terms: 

 0 ( , ) ( , , , )d z t x y z t′Θ = Θ + Θ + Θ  (2.7) 

where Θ0 is a constant background temperature, Θd(z,t) is a “diffusive” component of 

the temperature, to be defined shortly, and Θ′(x, y ,z, t) is a temperature perturbation.  

We can substitute the expression for Θ into the energy equation, and in a manner 

analogous to regular perturbation theory, split the equation into two components, one 

for the diffusive component, 
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7 Derivation of the energy equation appropriate for incompressible flow is discussed in Panton (1984). 
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and a companion equation for the perturbation component,  

 2( ) dw
t z

κ
′ ∂Θ∂Θ ′ ′+ ∇ ⋅ Θ + = ∇ Θ

∂ ∂
u  (2.9) 

The splitting of the total temperature into dΘ  and ′Θ  is merely done for convenience 

in satisfying the lower boundary condition.  For ′Θ  a no-flux boundary condition is 

imposed at z = 0 and the surface heat flux boundary condition, 0Hdk
z

∂Θ
− =

∂
, is 

applied to find dΘ  (k is the thermal conductivity, and H0 is the surface heat flux). At z 

= ∞, both temperatures must tend to zero. With the initial condition, ( , 0) 0d z tΘ = = , 

eq. 2.7 is easily solved for Θd. We note that with these boundary condit ions the 

temperature perturbation, ′Θ , is subject to diffusive as well as advective transport 

everywhere except very close to the surface. 

Using the definition of the total temperature (eq. 2.6) we can apply the Boussinesq 

approximation (Tritton, 1988; Brown, 1974) to the vertical component of the 

momentum equation.  First, following the Boussinesq approximation we assume that 

density variations are only important in the buoyancy term of vertical momentum 

equation and that density variations may be related to fluctuations in temperature by 

the relation 
0 0

ρ
ρ

∆∆Θ = −Θ , where ∆Θ  ( << Θ0) and ∆ρ ( << ρ0) represent 

fluctuations in temperature and density, and ρ0 is the background density.  Invoking 

these approximations, the vertical momentum equation may be written 
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Defining a slowly varying hydrostatic pressure, ph(z,t), that satisfies the equation 

 0
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we may define the total pressure, p, as ( , ) ( , , , )hp p z t p x y z t′= + , where p′  is the 

perturbation pressure.  Subtracting eq. 2.11 from eq. 2.10 yields the Bossinesq form of 

the vertical momentum equation 
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We briefly digress to mention that neither the perturbation pressure, p′, nor the 

perturbation temperature, Θ′, is necessarily zero when averaged over a horizontal 

plane. Denote the horizontal average with brackets, < >.  To find the average, of say p′ 

over a horizontal plane ,<p′>, we integrate in this manner: 

 
/ 2/ 2

,
/ 2 /2

1 1 ( , , )lim
yx

x y
x y

y Lx L

L L x y x L y L

p p x y z dxdy
L L

==

→∞
=− =−

′ ′= ∫ ∫  (2.13) 

A diagnostic equation for <p′> may be found by assuming horizontal homogeneity and 

taking the horizontal average of eq. 2.12; this gives, with 0w =  

 
2

0 0

1w p g
z zρ

′ ′∂ ∂ Θ= − +
∂ ∂ Θ

 (2.14) 

We may now summarize the dimensional form of the governing equations for 

momentum as 

 2

0

1Du p
u fv

Dt x
ν

ρ
′∂

= − + ∇ +
∂

 (2.15) 
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 2

0

1Dv p
v fu

Dt y
ν

ρ
′∂

= − + ∇ −
∂

 (2.16) 

 2

0 0

1Dw p
w g

Dt z
ν

ρ
′ ′∂ Θ

= − + ∇ +
∂ Θ

 (2.17) 

where f is the Coriolis parameter ( = 2 Ω ).  The additional governing equations are the 

continuity equation, 0∇⋅ =u , and the two energy equations, eq. 2.8 and eq. 2.9.  The 

unknowns are the three components of the velocity, u,v,w; the perturbation pressure, 

p′; and the diffusive temperature, Θd; and the perturbation temperature, Θ′.  The 

background density, ρ0, is a specified parameter, as are f, g, κ, and ν. We therefore 

have a closed system of six equations and six unknowns.  The boundary conditions for 

the temperatures Θ′ and Θd have been described above, and the velocity components 

must satisfy the no-slip condition at the surface, and as z → ∞, we have (u, v, w) = 

(G, 0, 0).  Because the model domain must be finite in the x and y directions, 

periodic boundary conditions are applied for all variables in these directions. The 

application of periodic boundary conditions presumes that the modeling domain is 

sufficiently large in the two horizontal directions to capture the largest eddies of the 

flow.  That this condition is satisfied has been discussed in Coleman et al. (1990b).  

2.2.2 NONDIMENSIONALIZATION OF THE GOVERNING EQUATIONS  

The governing equations may be nondimensionlized in the conventional manner by 

finding appropriate scales for the independent and dependent variables. We first 

provide scales for the independent variables, length and time. The customary length 

scale for the laminar Ekman layer, D, is given by 2 fν  (Tritton, 1988) and we adopt 

this as the length scale of the flow.  An appropriate time scale is D/G, where G is the 

magnitude of the geostrophic wind.  It is important to realize that alternative length and 

time scales exist that are also appropriate for Ekman layers. For example, a customary 
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length scale for the neutrally stratified turbulent Ekman layer is *u f , (Tennekes and 

Lumley, 1989) where u* is the surface friction velocity.  An alternative time scale is 

1/f.  Occasionally the results from the model simulations are best cast in terms of these 

scales and we will advise the reader when such scales are used.  Table 2 lists the scales 

for the independent and dependent variables. 

Table 2: Scales of the dependent and 
indepedent variables 

variable scale 

Length (x,y,z) 2 f Dν =  

Time (t) D/G 

Velocity (u,v,w) G 

Pressure, p′ ρ0G2 

Temperature, Θ′ and Θd 0d

surface

B D
D

z k
 ∂Θ = ∂  

 

 

Using these scales, the equations easily are nondimensionalized (where we have again 

dropped the primes and all variables are nondimensional unless otherwise noted)  

 21 1
Re Ro

Du p
u v

Dt x
∂

= − + ∇ +
∂

 (2.18) 

 21 1
Re Ro

Dv p
v u

Dt y
∂

= − + ∇ −
∂

 (2.19) 

 2
b

1
Ri

Re
Dw p

w
Dt z

∂
= − + ∇ + Θ

∂
 (2.20) 

 0∇⋅ =u  (2.21) 
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2

2

1
RePr

d d

t z
∂Θ ∂ Θ

=
∂ ∂

 (2.22) 

 21
( )

RePr
dw

t z
∂Θ ∂Θ

+ ∇ ⋅ Θ + = ∇ Θ
∂ ∂

u  (2.23) 

where Re and the Prandtl number, Pr,  are defined in the usual manner,  Re GD ν= , 

and Pr ν κ= .  In this particular instance the Rossby number G/fD, is equal to exactly 

one-half the Reynolds number, so once the Reynolds number is specified, the Rossby 

number is known.  The bulk Richardson number, Rib, is defined as  

 0 dim
b 2Ri

d

surface

g
z

G
D

 ∂Θ
  Θ ∂ =

 
 
 

 (2.24) 

In the definition of the bulk Richardson number, the temperature derivative is a 

dimensional temperature derivative (hence the subscript “dim”) and this derivative is 

linearly proportional to the surface heat flux.  With the temperature scale defined in 

Table 2, the lower boundary condition on the diffusive temperature is  

 d
o

surface

   H 1
z

∂Θ
= =

∂
 (2.25) 

where H0 is the nondimensional surface heat flux, and the derivative d surface
z∂Θ ∂   is 

formed from the nondimensional variables Θd and z. With this definition of H0 the 

nondimensional heat flux is always a constant equal to one. This amounts to 

nondimensionalizing the surface heat flux is with the scale kD/Θs, where Θs is the 

temperature scale.  The effects of the variable dimensional heat flux enter into the 
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model equations only through the bulk Richardson number such that variations in the 

Rib are linearly proportional to variations in the surface heat flux. 

2.3 NUMERICAL METHOD 

2.3.1 SOLUTION OF THE DIFFUSIVE HEAT EQUATION 

The solution of the diffusive heat equation (eq 2.22) can be found independently from 

the remainder of the governing equations and we present the solution here.  Given the 

lower boundary condition eq. 2.25 and the initial condition Θd(z, t = 0) = 0, the heat 

diffusion equation is easily solved using standard methods; we get 

 
2RePr RePr( , ) 2 exp erfc

RePr 4 2d
t z zt z z

t tπ

  
Θ = − − +        

 (2.26) 

where erfc is the complementary error function  The derivative of  Θd with respect to z 

is a component of eq. 2.23 and this derivative is easily calculated: 

 RePrerfc
2

d z
z t

 ∂Θ =  ∂  
 (2.27) 

Note that the derivative is always positive implying that temperature increases upward, 

which implies the downward transfer of heat from the atmosphere to the surface; i.e., 

the atmosphere is being cooled.  Note also that at z = 0 the derivative is one and thus 

the lower boundary condition, eq. 2.25, is satisfied. 
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2.3.2 NUMERICAL METHOD FOR THE MOMENTUM AND TEMPERATURE PERTURBATION 

EQUATIONS 

The numerical technique is fully spectral in all three spatial dimensions and third-order 

accurate in time.  The technique is exhaustively described in Coleman et al. (1990b). 

However, because we are addressing a different problem than Coleman et al., some 

modification of their method is needed to fit our unique problem.  In terms of model 

physics, the difference between our problem and that examined by Coleman et al. 

manifests itself in the lower boundary condition for temperature. In Coleman et al., the 

surface temperature was held fixed whereas we are specifying a constant heat flux at 

the surface. There are also further changes that stem from the need to provide more 

vertical resolution in the interior of the fluid than was specified in Coleman et al.  

Because the exposition of the numerical method in Coleman et al. is very detailed, we 

shall simply outline our strategy here with a special emphasis on the modifications 

required to accommodate the above changes. 

The numerical method employs a weighted-residual Galerkin technique and has been 

described in the literature in many places, for example see Spalart et al. (1991) and 

Canuto et al. (1988).  A unique feature of the method is the expansion of the velocity 

component in terms of non-divergent basis functions that automatically satisfy the 

boundary conditions and the continuity equation. The fact that the continuity equation 

is automatically satisfied means that there is no need to calculate the pressure through, 

say, an unwieldy Poisson equation.  This results in a large savings of computer time 

and significantly reduces the complexity of the code. 

It is convenient to cast the equations in terms of variables that satisfy homogeneous 

boundary conditions at the surface and at the top of the modeling domain, or z = ∞.  

(We have already stated that periodic boundary conditions are applied to all variables 

in the horizontal directions.)  The temperature perturbation, Θ′, already satisfies 
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homogeneous boundary conditions for there is a no-flux requirement specified at the 

surface while as z → ∞, Θ′ must tend to zero.  The vertical component of the velocity, 

w, conforms to homogeneous boundary conditions; obviously w is zero at the surface 

and at z = ∞.  Thus, we must only examine the variables u and v.  We introduce 

computational variables u* and v* such that these variables are deviations from the 

laminar Ekman solution; to wit, ( )1 cos( ) *zu e z u−= − +  and sin( ) *zv e z v−= + 8.  Such 

variables obviously satisfy the requirements of homogeneity.  We label the two 

components of the laminar Ekman solution as ( )( )1 cos(z
BSU e z−= −  and 

( )sin( )z
BSV e z−= .  Substituting the expressions for u and v into the three momentum 

equations and the temperature perturbation equation yields 

 
* * *

2 * *1 1
Re Ro

BS
BS BS

dUDu p u uu v U V w
Dt x x y dz

 ∂ ∂ ∂= − + ∇ + − + + ∂ ∂ ∂ 
 (2.28) 

 
* * *

2 * *1 1
Re Ro

BS
BS BS

dVDv p v vv u U V w
Dt y x y dz

 ∂ ∂ ∂= − + ∇ − − + + ∂ ∂ ∂ 
. (2.29) 

 2
b

1
Ri

Re BS BS
Dw p w w

w U V
Dt z x y

 ∂ ∂ ∂
= − + ∇ + Θ − + ∂ ∂ ∂ 

 (2.30) 

 21
( )

RePr
d

BS BSw U V
t z x y

 ∂Θ ∂Θ ∂Θ ∂Θ
+ ∇ ⋅ Θ + = ∇ Θ − + ∂ ∂ ∂ ∂ 

u  (2.31) 

and, of course, the continuity equation applies to the computational variables such that 
* * 0u x v y w z∂ ∂ + ∂ ∂ + ∂ ∂ = . Finally, the non-linear part of the momentum equations 

may be written in vector form as / 2⋅ ∇ = × + ∇ ⋅u u u u uω  , where ω  is the vorticity 

( ∇ ×u ).  This “rotational” formulation is advantageous for several reasons.  First, the 

                                                 
8 Remember that z has already been nondimensionalized by D. 
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rotational form conserves kinetic energy for inviscid flow (see Canuto et al., 1988, 

page 208). Second, the rotational form explicitly includes vorticity, which is a strong 

indicator of turbulence, and therefore the rotational form is presumed to be better for 

simulating turbulent flows.  We define a new pressure, * 2p p= + ⋅u u , and the 

equations can be cast into their final form9 

 
* * * *

2 * *1 1
Re Ro

x BS
BS BS

u p u u dUNL u v U V w
t x x y dz

 ∂ ∂ ∂ ∂+ = − + ∇ + − + + ∂ ∂ ∂ ∂ 
 (2.32) 

 
* * * *

2 * *1 1
Re Ro

y BS
BS BS

v p v v dVNL v u U V w
t y x y dz

 ∂ ∂ ∂ ∂+ = − + ∇ − − + + ∂ ∂ ∂ ∂ 
 (2.33) 

 
*

2
b

1
Ri

Re
z

BS BS
w p w w

NL w U V
t z x y

 ∂ ∂ ∂ ∂
+ = − + ∇ + Θ − + ∂ ∂ ∂ ∂ 

 (2.34) 

where ( )x , ,  =y zNL NL NL ×uω ; i.e., the vector NL represents the three components of 

the non-linear terms.  It is interesting to note that if the non-linear terms are dropped 

from eqs. (2.28-2.31) and we set d z∂Θ ∂  equal to one, we obtain the linear stability 

equations for the stratified Ekman layer with the Brunt-Väisälä frequency, N, ( = 

dim0

dg
z

∂Θ 
 Θ ∂ 

) constant throughout the flow. 

Spatial Discretization – Horizontal Directions 

Given periodic boundary conditions, we may take the Fourier transform of the above 

equations (eqs. 2.31 –2.34) in the horizontal directions to obtain semi-discrete 

equations.  More formally, this may be thought of a Galerkin process where the 

dependent variables are expanded in a terms Fourier basis (test) 

                                                 
9 It may seem gratuitous to again list the equations; these numerous listings are motivated by clarity.  
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functions,
22

, ( , )
yx

yx

x y

kk i yi x
LL

k k x y e e
ππ

φ
−−

= ; where, kx and ky are integer wavenumbers, i  is 

1− , and Lx and Ly are the lengths of the modeling domain in the x- and y-directions, 

respectively.  For the rest of this study, we shall assume that Lx = Ly = L.  The 

expansion is merely a two-dimensional Fourier series of finite length 

 
22

,

ˆ( , , , ) ( , , , )
yx

x y

kki x i y
L L

x y
k k

u x y z t u k k z t e e
ππ− −

= ∑  (2.35) 

where the “^” over the variables denotes the Fourier coefficient of the variable.  In the 

Galerkin formulation the trial functions, ,x yk kψ , are simply the complex conjugate of 

the test functions.  Substituting the Fourier expansions for the variables in the 

governing equations, and then taking the inner product of the equation with a given 

trail function yields an equation discretized by wavenumber in Fourier space.  For 

example, we have for the kth component of the w-momentum equation  

 

¶

* 2
2
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ˆ

ˆ 1 ˆˆ( ) Ri
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22
ˆ ˆ
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yx
BS BS

w
NL

t

p
w

z z

kk
U i w V i w

L L

L

ππ

π

∂
+ =

∂

∂ ∂
− + − + Θ

∂ ∂

− − + −

 
 
 

   
       

k
k

k
k k

k k

k
 (2.36) 

where the boldface, k, is the vector (kx, ky).  The other momentum equations and the 

temperature equation can be discretized in a similar manner; see Coleman et al. 

(1990b) for details.  

A clever trick introduced by Leonard and Wray (1982) decomposes the Fourier 

transformed velocity components in a “+” vector and a “ -” vector and this 

decomposition leads to the use of non-divergent basis functions which, in turn, 
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eliminates the need to find the pressure explicitly.  First we define horizontal 

components of the velocity parallel and perpendicular to the wavevector (Spalart et al., 

1991) 

 
* ** * ˆ ˆˆ ˆ

ˆ ˆ y xx y k u k vk u k v
u u⊥ − ++

= = kkk k
k kk k
P  (2.37) 

Using these components the U+ and U
_
 vector modes are defined as ˆ( ,0, )u wk

P  and 

ˆ(0, ,0)u⊥
k , respectively.  In Fourier space the continuity equation may be written as 

 
ˆ2 ˆ 0
w

i u
L z
π ∂

− + =
∂

k
kk P  (2.38) 

and we see that only the U+ mode is involved in the continuity equation.  The U
_
 mode 

is not part of the continuity equation and the velocity component û⊥
k  must only satisfy 

the boundary conditions, while ˆ andu wk
P  must satisfy not only the boundary 

conditions but the continuity equation as well.  

For the sake of completeness, we list the equations for ûk
P , û⊥

k , ŵk , and Θ̂k , for k ≠ 0, 

(and we drop the superscript “*” on the pressure terms) 
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 (2.39) 
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 (2.40) 
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 (2.42)

  

where BSU P and BSU ⊥  are analogs to ûk
P  and û⊥

k , respectively.  Note that the pressure is 

absent from the equation for û⊥
k (eq. 2.40).  For the case k = 0, Pand ⊥ decomposition 

is not valid but a similar set of equations can be derived for *û =k 0 and *v̂ =k 0  (and ŵ =k 0  

and ˆ
=Θk 0 , as well).   

Spatial Discretization and Mapping – Vertical Direction 

Once the P and ⊥ decomposition is finished, the next task is to discretize in the veritcal 

direction.  The idea here is to express the vertical variation of the Fourier components 

of the velocity and temperature in terms of a set of basis functions; for example, we 

may express û⊥
k  in this manner 
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 ( ) ( ) ( )
,

1

,
0

ˆ ,
l

l M

l
l

u z t t r zα
= −

⊥ ⊥ ⊥

=

= ∑ kk k  (2.43) 

where , ( )l tα ⊥
k is an expansion coefficient, and , ( )lr z⊥

k  is the basis function.  By design 

û⊥
k  is not involved in the continuity equation.  To ensure continuity we require that the 

basis functions used to expand ûk
P and ŵk explicitly satisfy the continuity equation 

 
ˆ
,

,

2
0

w
l

l

r
i r

L z
π ∂

− + =
∂

k
k

k P  (2.44) 

where ,lrk
P and ˆ

,
w

lrk  are the appropriate basis functions for ûk
P and ŵk , respectively. For 

each l, the basis function ˆ
,

w
lrk is the same for all k ≠ 0.  (We shall discuss the case k = 0 

below.)  In terms of computation, this means we only need to find ˆ
,

w
lrk once for all l and 

then store them. We then differentiate these functions and store the differentiated 

results.  To find ,lrk
P we just divide these “differentiated functions” by i2π|k|/L, and 

there is no need to explicitly calculate and store ,lrk
P . 

An important feature of the vertical discretization is that the vertical domain is semi -

infinite, z ∈ [0, ∞). Very fine resolution is necessary near the wall, both to resolve the 

viscous sub-layer and the vortical region above, but above the vortical region such fine 

resolution is not necessary. To provide resolution where it is needed a mapping scheme 

is designed to map the vertical domain to a finite interval spanned by the variable, ζ ∈ 

[a, b].  Spalart et al. (1991) have advocated an exponential mapping such that z → ζ 

using the relationship, map

z
zeζ

−

= , where zmap is the mapping length scale.  As pointed 

out by Spalart et al. and others (e.g., Boyd, 1982; Metcalfe et al., 1987), exponential 

mappings lead to an excellent enhancement of resolution in the vortical (i.e., turbulent) 
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region near the wall but suffer from poor convergence due to Gibbs phenomena 10.  

Algebraic mappings retain exponential convergence but may not be able to concentrate 

resolution where it is needed and an even greater drawback is the difficulty of 

portraying the irrotational part of the flow (which decays in the vertical as kze− , where 

k is the wavenumber).  The inability to capture this decay exactly slows down the 

initial convergence of spectral methods using an algebraic mapping and to 

circumnavigate this problem requires the expense of employing more basis functions.  

Despite this potential difficulty, we use the algebraic mapping 

 0
1
1

z z
ζ
ζ

+
=

−
 (2.45) 

where z0 is a mapping parameter set equal to 2.  With this mapping the vertical 

coordinate z is mapped the coordinate ζ such that a value of z = 0 corresponds with ζ 

= -1 and z = ∞ corresponds with ζ = 1.  Although this mapping provides a little less 

resolution near the wall than an exponential mapping (given a fixed number of vertical 

nodes, of course!), a little more resolution is concentrated in the interior of the fluid.  

This enhancement of interior resolution was sought to provide a means of propagating 

gravity waves, should these waves arise during the simulations.  As demonstrated by 

Grosch and Orzag (1977), waves directed towards regions of inadequate resolution 

tend to bounce back from these regions.  (In fact, there was little evidence of major 

gravity wave activity in the simulations but this was not known prior to the 

simulations). To what extent convergence is delayed by the algebraic mapping is not 

known, but no convergence problems were evident suggesting that the convergence 

was adequate. 

                                                 
10 Spalart et al. (1991) got around the poor convergence by inc luding an extra basis function to resolve the 

slowing decaying (in z) irrotational component of the flow. 
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With the mapping described above (eq. 2.45) the equations (2.39 – 2.42) are solved in 

the mapped coordinate system, ζ ∈ [-1,1].  The Fourier components of velocity and 

temperature are expressed in terms of basis functions that are functions of ζ(z).  We 

now find these functions.  As pointed out by Coleman et al. (1990a) spectral accuracy 

may be achieved  (for so-called “well-behaved” functions) using a basis set 

constructed from the singular Sturm-Liouville problem (see, for example, Canuto et al., 

1988, page 54).  Jacobi polynomials are the only set of polynomials that satisfy the 

singular Strum-Liouville problem, and accordingly we form our basis set from the 

celebrated class of Jacobi polynomials known by the name Legendre.  For our 

particular mapping, such polynomials lead to solution matrices with low bandwidth, 

thus speeding up the computations. 

 To represent ŵk (and therefore ûk
P ) we define the functions g that automatically 

satisfy the boundary conditions on ŵk ; this is, ŵk → 0 as z → ∞ and at z = 0, ŵk  and 

ŵ z∂ ∂k must both equal to zero. To obtain the single zero at infinity and the double 

zero at the surface, we multiply the Legendre polynomial by the factors indicated 

below 

 2( ) (1 )(1 ) ( )l lg Pζ ζ ζ ζ= − +  (2.46) 

where ( )lP ζ is the lth Lengendre polynomial.  Clearly gl(ζ) has a double zero at ζ = -1 

(z = 0) and a single zero at ζ = 1 (z = ∞).  These “g” functions led to the following 

expansions for ŵk  and ûk
P  

 ( ) ( )
,

1

0

ˆ ( , ) ( )
l

l M

l
l

w z t t g zα ζ
= −

=

= ∑ kk
P  (2.47) 

and 
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2
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1ˆ ( , ) ( )
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l M

l
l L

d
u z t t g z

dzi πα ζ
= −

=

= ∑ kk k
P P  (2.48) 

where ( )zζ  is the inverse of eq. 2.45, or 0 0( ) ( ) ( )z z z z zζ = − + .  Note that the same 

coefficient, ,lαk
P , is used in the expansions for ŵk  and ûk

P .  This follows because these 

two quantities are related through the continuity equation so that if we know one of 

them, we also know the other.  Such expansions may be considered to be “backward 

transforms” that transform the coefficients α to Fourier space.  

 A different set of functions are used to portray û⊥
k ; these functions only require a 

single zero at both the surface and z = ∞.  Accordingly, these functions are 

 ( ) (1 )(1 ) ( )l lh Pζ ζ ζ ζ= − +  (2.49) 

and û⊥
k is given by the expansion 

 ( ) ( )
,

1

0

ˆ ( , ) ( )
l

l M

l
l

u z t t h zα ζ
= −

⊥ ⊥

=

= ∑ kk  (2.50) 

The expansion for the temperature perturbation requires consideration of the lower 

boundary condition on this quantity, 
0

ˆ 0
z

z
=

∂Θ ∂ =k .   A suitable set of basis functions 

that satisfy this condition is easily formulated.  Consider the functions el(ζ) defined as 

 ( ( )) ( )(1 ) ( )l l le z Pζ ζ β ζ ζ= + −  (2.51) 

where βl is some unknown parameter that depends on l. These functions are 

automatically congruent with the upper boundary conditions because as z → ∞ (i.e., 

ζ → 1) the function is zero.  Taking the first derivative with respect to z yields 
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 (1 2 ) ( )(1 )l l
l l l

de de d dP d
P

dz d dz d dz
ζ ζ

β ζ ζ β ζ
ζ ζ

 
= = − − + + − 

 
 (2.52) 

At z = 0 (i.e., ζ = -1) we require a no-flux boundary condition and this requirement 

can be met by setting the term in brackets “[ ]” equal to zero and solving for βl.  

Recalling that Pl(-1) = (-1)l and that 
1

( 1) ( 1) 2l
ldP d l l

ζ
ζ

=−
= − − + , we can easily solve 

for βl,  

 
( 1) 3
( 1) 1l

l l
l l

β
+ +

=
+ +

 (2.53) 

With βl so defined, the el functions meet both the upper and lower boundary 

conditions, and the expansion for the temperature perturbation is  

 ( ) ( )
,

1

0

ˆ ( , ) ( )
l

l M

l
l

z t t e zα ζ
= −

Θ

=

Θ = ∑ kk  (2.54) 

We now examine the case k = 0.  In this case, the decomposition described by eqs. 

2.37 is not longer valid, and from the continuity equation we conclude that 0ŵ =k = 0.11  

0û =k
P  and 0û⊥

=k can be taken as the two orthogonal components of the mean perturbation 

velocity aligned with the positive x and y axis, respectively.  Each component has a 

single zero at z = 0, and can therefore be expanded in terms of the “hl” functions (eq. 

2.49) described above.  The perturbation temperature expansion for k = 0 is identical 

to eq. 2.54. 

Once the vertical expansions for all variables are known, for both k = 0 and k ≠ 0, the 

spatial discretization proceeds in a somewhat roundabout manner motivated by the 

desire to solve the viscous part of eqs. 2.39 – 2.42 implicitly, thus allowing a larger 

                                                 
11 Finally, the graduate student finds an equation he can solve! 
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time step.  All other terms are solved explicitly.  To visualize this process, we aga in 

rewrite eqs. 2.39 – 2.42 as 

 
22

2

2ˆ 2 1ˆ ˆ
Re

u i p u F
t L z L

ππ   ∂ ∂ = + − +  ∂ ∂   

k
k k k

k
k

P
P P  (2.55) 

 
22

2

2ˆ 1 ˆ
Re

u u F
t z L

π⊥
⊥ ⊥

  ∂ ∂ = − +  ∂ ∂   

k
k k

k
 (2.56) 

 
2

2

2
ˆ ˆ 1 ˆ

Re

2 ww p
w F

t z z L

π∂ ∂ ∂
= − + − +

∂ ∂ ∂

  
     

k k
k k

k
 (2.57) 

 
22

2

ˆ 21 ˆ
Re Pr

F
t z L

π Θ
  ∂Θ ∂ = − Θ +  ∂ ∂   

k
k k

k
 (2.58) 

The vector Fk = ( , , ,wF F F F⊥ Θ
k k k k
P ) is a so-called forcing term, consisting of the 

following linear and non-linear components 

 
· ·21 ˆ ˆ ˆ

Ro

x y
x yBS BS

k NL k NLU dUF u i u w
L dz

π⊥ + 
= + − − 

 

k k

k k k k

k
k

P P
P P  (2.59) 

 
· ·21 ˆ ˆ ˆ

Ro

y x
x yBS BS k NL k NLU dU

F u i u w
L dz

π ⊥
⊥ ⊥  −

= − + − − 
 

k k

k k k k

k

k

P
P  (2.60) 

 ¶
bRi

2ˆ ˆ zw BS NL
U

F i w
L

π
= Θ + − kkk k

k P

 (2.61) 
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 ¶22 2ˆ ˆ, ,yBS x dkU k
F i i i w

L L L z z
ππ πΘ  ∂ ∂Θ

= Θ − − − ⋅ Θ − ∂ ∂ 
kk k k

k
u

P

 (2.62) 

Given the coefficients, α = ( , ,α α α⊥ Θ
k k k
P ), one can find the linear components of the 

vector Fk using the backward transformations (i.e., , , ˆˆ ˆ ˆ, , ,u w uα ⊥ Θ ⊥→ Θk k k k k
P P ) embodied 

in eqs. 2.47, 2.48, 2.50 and 2.54.   

Evaluation of the non-linear components is done in a manner that avoids aliasing (as 

opposed to a so-called pseudo-spectral method in which aliasing errors are permitted; 

see Canuto et al. [1988], page 83).  For example, let us examine the non-linear term 

· xNL k  that is present in eqs. 2.59 and 2.60.  In expanded form, this term is 

 ·( ) · ·x
y zw vω ω× = −

k kk
uω  (2.63) 

where ω y and ω z are the components of the vorticity vector in the y and z directions, 

respectively.  The evaluation of this term begins by the backward transforms described 

above from which ˆ ˆ ˆ, ,u w u⊥
k k k
P  are found.  Using the inverse of eqs. 2.37, ûk and 

v̂k are trivially determined.  A Fast Fourier Transform (FFT) takes all three 

components of the velocity vector to real space.  A similar process may be used to find 

the three components of the vorticity vector.  To calculate the non-linear term of 

interest here, the appropriate components of the vorticity vector and the velocity 

vector are multiplied together (eq. 2.63), and the FFT then transforms the products 

back to Fourier space.  The method of padding, also known as the 3/2 rule, (Canuto et 

al., 1988, pg. 84) is invoked to eliminate aliasing errors.   

Once the vector F is determined, the governing equations 2.55- 2.58 may be written in 

so-called semi-discrete form, in which the three spatial dimensions have been fully 

discretized leaving only time derivatives.  Taking, for example, eqs. 2.55 and 2.57 that 
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compose the two non-zero components of the U+ vector mode, the path to the semi-

discrete form begins by substituting the series expansions for ûk
P (eq. 2.48 ) and ŵk  (eq. 

2.47) into eqs. 2.55 and 2.57 to yield 

 

( )

( ) ( )

,

,

1

2
0

231

32 2
0

1
( )

2 ˆ

21 1 1
( ) ( )

Re

l

l

l M

l
l L

l M

l l
l L L

d d
g z

dt dzi

i p
L

d d
g z g z F

dz L dzi i

π

π π

α
ζ

π

π
α ζ ζ

= −

=

= −

=

=

  
 + − +    

∑

∑

k

k

k

k

kk k

k

k

P

P P

 (2.64) 
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l

p
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g z g z

dz L
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π
α ζ ζ
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=

= −

=

∂
= −

∂

+ +
 
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∑

∑

k

k

k

k

k

P
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 (2.65) 

Using the Galerkin weighted residual method, we multiply this “vector” of two 

equations by the vector test functions, ,ms+
k , 

 ,

1
2 m

m

m

d
g

dzs i
L
g

π+

 − 
 =
 
 
 

k

k
 (2.66) 

and integrate over the vertical dimension ( )
0

dz
∞

∫ (applied using the 3/2 rule to avoid 

aliasing errors) to obtain semi-discrete equations of the form 

 
d
dt

= +k
k k k kA B T

P
P P P Pα

α  (2.67) 
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where for each k, αk is a vector with components (α0,…,αm-1), and A
||
k and B

||
k are 

square M x M matrices are matrices with the following elements (for k ≠ 0) 

 , , 2
0

1
( )

2
l m

l m l m

dg dg
A g g dz

dz dz

L
π

∞

= +
 
 
 

∫k
k

P  (2.68) 

 
22 2

, , 2 2 2
0

21 1
( 2 )

Re 2
l m l m

l m l m

d g d g dg dg
B g g dz

dz dz dz dz L

L

π

π

∞  
= − + +  

   
 
 

∫k

k

k
P  (2.69) 

and T
||
k is a vector of length M, with elements 

 ,
0

1
( )

2
wl

l l

dg
T F F g dz

dz
i

L
π

∞

= − +∫k k kk
P P  (2.70) 

The pressure terms in the U+ equation set conveniently integrate to zero, thus 

demonstrating the advantage of using the non-divergent basis functions.  The matrix 

A
||
k is somewhat sparse with a bandwidth of 13 while the matrix B

||
k is symmetric and 

negative definite.  This property of B
||
k is a manifestation of the role of molecular 

viscosity, which only dissipates energy.  Energy only enters into this system of 

equations through the “forcing” term T
||
k. 

In a similar manner as described above, semi-discrete equations can be derived for the 

U
_
 mode and the energy equations.  The semi-discrete equation for the U

_
 mode takes 

a form analogous to eq. 2.67, 

 
d
dt

⊥
⊥ ⊥ ⊥ ⊥= +k

k k kA B T
α

α  (2.71) 
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This equation is obtained by substituting the expansion for û⊥
k , eq. 2.50, into the 

equation for û⊥
k , eq. 2.56, multiplying by the “-” mode test functions, ,ms−

k , 

 ,m ms h− =k  (2.72) 

and then integrating over the vertical coordinate as above.  The matrix A⊥ has the 

components 

 
, 0l m l mA h h dz

∞⊥ = ∫  (2.73) 

and this matrix is pentadiagonal and does not depend on the wavenumber k. The 

components of B⊥
k and T⊥

k are, respectively,  

 
2

, ,
0

21
( )

Re
l m

l m l m

dh dh
B h h dz

dz dz L

π∞
⊥  

= − +  
 

∫k

k
 (2.74) 

and 

 ,
0

( )l lT F h dz
∞

⊥ ⊥= ∫k k  (2.75) 

Again, B⊥
k is negative definite.   

Finally, the semi-discrete form of the energy equation, eq. 2.58, is found in an 

analogous way to the semi-discrete equations described above.  We again substitute 

the expansion for Θ̂k  (eq. 2.54) into the energy equation, multiply by the test function, 

el, and integrate over the vertical coordinate.  This procedure results in the semi-

discrete equation 
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d

dt

Θ
Θ Θ Θ Θ= +k

k k kA B T
α

α  (2.76) 

The pentadiagonal matrix AΘ has elements 

 ,
0

( )l m l mA e e dz
∞

Θ = ∫  (2.77) 

and the elements of Θ
kB (negative definite) and Θ

kT are, respectively,  

 
2

, ,
0

21
( )

RePr
l m

l m l m

de de
B e e dz

dz dz L

π∞
Θ  

= − +  
 

∫k

k
 (2.78) 

and 

 ,
0

( )l lT F e dz
∞

Θ Θ= ∫k k  (2.79) 

We must also consider the case k = 0.  For this case, all derivatives in the x- and y-

directions are zero and the mean vertical velocity, 0ŵ =k , is also zero.  The parallel-

perpendicular decomposition described above (eq. 2.37) is, of course, no longer 

applicable, and we make take 0û =k
P as being aligned along the positive x-axis and 0û⊥

=k as 

being aligned along the positive y-axis.  The governing equations are then 

 
2

0 0
02

ˆ ˆ1
Re

u d u
F

t dz
= =

=
∂

= +
∂

k k
k

P P
P  (2.80) 

 
2

0 0
02

ˆ ˆ1
Re

u d u
F

t dz

⊥ ⊥
⊥= =
=

∂
= +

∂
k k

k  (2.81) 

 0ˆ 0w = =k  (2.82) 
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2

0 0
02

ˆ ˆ1
RePr

d
F

t dz
Θ= =
=

∂Θ Θ
= +

∂
k k

k  (2.83) 

and the components of Fk=0 are given by 

 ·( )0 0
0

1 ˆ
Ro

x
F u⊥

= =
=

= − ×k k
k

uωP  (2.84) 

 ·( )0 0
0

1 ˆ
Ro

y
F u⊥

= =
=

= − − ×k k
k

uωP  (2.85) 

 ¶
00

d
F w

dz
Θ

== = − Θkk  (2.86) 

For k = 0, the velocity components trivially satisfy the continuity equation, and the 

lower boundary condition is satisfied by a function with single zero at z = 0; therefore, 

we can expand these components in terms of the “h” functions defined in eq. 2.49.  

The semi-discrete equations for the 0û⊥
=k  and 0

ˆ
=Θk are identical to those given above 

(eqs. 2.71 and 2.76) and the elements of the “A” (eqs. 2.73 and 2.77) and “B” (eqs. 

2.74 and 2.78) matrices are the same, with k set equal to zero.  The vectors 0
⊥
=kT and 

0
Θ
=kT  are formed using eqs. 2.85 and 2.86, respectively, multiplying these equations by 

the test function, hl,  and integrating over the vertical coordinate. The semi-discrete 

equation for 0û =k
P is identical to eq. 2.67, but with the 0=kAP  = 0

⊥
=kA  and 0=kBP = 0

⊥
=kB , 

with the elements of 0=kTP  given by 0
0

k lF h dz
∞

=∫ P . 

When finding Θ
kT  it is useful to use an integration by parts to simplify the computation 

of this vector.  Explicity, the expression for elements of Θ
kT  is 
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 ¶ ¶ ¶

,

0

22 2ˆ ˆ( )

l

yBS x d
l

T

kU k
i i u i v w w e dz

L L L z z
ππ π

Θ

∞

=

∂Θ∂
Θ + Θ + Θ − Θ −

∂ ∂∫

k

k k kk k

k P  (2.87) 

In this integral, it is convenient to integrate the term ¶
0

( ) lw e dz
z

∞ ∂ Θ
∂∫ k  by parts yielding 

¶
0

( ) l
dw e dz
dz

∞

− Θ∫ k .  With this trick, we avoid the computation of the vertical derivative 

of ¶wΘk and instead use the derivative of el -- a derivative that is easily calculated and 

used in other parts of this numerical algorithm.  

Time Advancement Scheme 

The mixed implicit-explicit time advancement scheme employed here is identical to 

that described in Coleman et al. (1990b). (This scheme is attributed to unpublished 

work by Wray.)  The time advancement algorithm begins with the semi-discrete 

equations for ûk
P , û⊥

k , and Θ̂k
P (eqs. 2.67, 2.71, and 2.76, respectively).  The viscous 

part of the flow has been isolated in the semi-discrete equations and is embodied in the 

B matrices and the time advancement associated with these terms is solved implicitly 

using the second-order accurate Crank-Nicolson method.  Time advancement for the 

linear and non-linear forcing, contained in the T vectors, is done explicitly using a 

third-order accurate Runge-Kutta scheme.  This mixed formulation is motivated in part 

by the need to have as large a time step as possible while still preserving numerical 

accuracy.  Solving the viscous terms implicitly avoids the onerous requirement of a 

very small time step that comes with an explicit method. 

In the method employed here, each full time step, ∆t, is divided into three unequal 

substeps, ∆ts, such that 
3

1

s

s
s

t t
=

=

∆ = ∆∑ .  For all three semi-implicit equations, the 
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algorithm that advances the solution, α, over one full time step (∆ t) from αn to αn+3, 

takes the form 

 1 1 2

2 2
n s n s n s n ss s

s s s s
t t

t tχ ψ+ − + − + − +∆ ∆   − = + + ∆ + ∆   
   

A B A B T Tα α  (2.88) 

where the index “s” varies from 1 to 3, A is the “A” matrix associated with the semi-

implicit equations, and χs and ψs are coefficients listed in Table 3 below. 

Table 3: Coefficients for time advancement 
scheme 

s ψs χs st
t

V
V

 

1 0 1 8/15 

2 -17/8 25/8 2/15 

3 -5/4 9/4 1/3 

 

(In eq. 2.88 confusion can be avoided by realizing that advancement over a full time 

step requires three substeps and the time indices “ n” are locked to these substeps.  

Thus over a full time step, ∆t, n will range from n to n+3 and ∆t = tn+3 - tn, where tn 

and tn+3 are the times at the beginning and end of the time step, respectively).  

As shown by Coleman et al. (1990b), the maximum (full) time step may be estimated 

by the following equation 
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 max

max max max

3
( )

2
3

t
u v w

x y z
π

∆ =
 

+ + 
 V V V

 (2.89) 

In practice, this estimate was found to work quite well.  A larger time step was 

permitted by a Galilean transformation of the u and v components of the velocity such 

that the u component was reduced by a factor of ½ and the v component was reduced 

by about 15%. 

Summary of Numerical Algorithm 

Given the expansion coefficients ( )n

kαP , ( )n⊥
kα , and ( )nΘ

kα at the time tn, the full 

numerical algorithm updates these coefficients to the next time tn+3  in the following 

manner: 

1) The coefficients ( )n

kαP , ( )n⊥
kα , and ( )nΘ

kα are transformed to the quantities ûk
P , 

ŵk , û⊥
k , and Θ̂k , using the expansions described above (eqs. 2.48, 2.47, 2.50 and 

2.54, respectively). 

2) Spatial derivatives (∂/∂x, ∂/∂y, ∂/∂z) of the Fourier transformed velocity 

components are found. Derivatives with respect to either horizontal direction are 

calculated trivially in the customary manner: ˆ ˆ2 xw x i k L wπ∂ ∂ = − ⋅k k , etc.  For 

derivatives with respect to z, this calculation requires a slight modification of the 

expansions (eqs. 2.47, 2.48, and 2.50).  For example, to find ŵ z∂ ∂k eq. 2.47 is 

changed to  

 ( ) ( )
,

1

0

ˆ ( , )
( )

l

l M

l
l

w z t d
t g z

z dz
α ζ

= −

=

∂
=

∂ ∑ k

k P  (2.90) 



 

 

52 

3) Once the Fourier transform of the derivatives is found, an inverse Fourier 

transform (using an FFT, of course) takes Fourier transforms of derivatives and the 

Fourier transforms of the velocity components and temperature perturbation to real 

space.  The real space variables (u, v, w, Θ) and the derivatives of these variables 

are used to find the vorticty vector, ω , from which the non-linear term ω  x u is 

calculated.  The heat flux, uΘ, is trivially calculated.   For these calculations the 

3/2 rule is invoked to prevent aliasing errors. 

4) Linear components of the vector Fk (eqs. 2.59-2.62) are calculated from the 

Fourier transformed velocity and temperature components.  (The linear 

components are terms such as 
21 ˆ ˆ ˆ

Ro
BS BSU dU

u i u w
L dz

π⊥  
+ − 

 
k k k

k P P
P .) 

5) The Fourier transforms of the non-linear terms (ω  x u , uΘ) are found and added to 

the corresponding linear terms.  This completes the constructio n of the vectors, Fk. 

6) The vector Fk is transformed to the vectors T||
k, T⊥

k, and TΘ
k using a so-called 

forward transformations given by eqs. 2.70, 2.75, and 2.79 for k ≠ 0, and analogous 

expressions for the case k = 0. 

7) The A and B matrices of the semi-discrete equations are calculated.  The building 

block of these matrices (terms such as 
0 l mg g dz
∞

∫ ) can be calculated once and for 

all and then stored saving considerable computational cost at each time step.  

8) Time advancement takes place using eq. 2.88 and the new coefficients ( ) 3n+

kαP , 

( ) 3n+⊥
kα , and ( ) 3n+Θ

kα are determined.   

9) We go back to step (1) and repeat the process. 
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2.3.3 ASSESSING MODEL PERFORMANCE 

Does the model described above performed as advertised? We now examine this 

question.  The primary means of evaluating the model is to compare our results with 

the neutrally stratified results of Coleman et al. (1990a).  Our supposition is that the 

two approaches are similar -- essentially differing only in the vertical mapping -- and 

therefore simulations from both models should be similar.  If this is the case, it is likely 

that both models are indeed working in accordance with the stated goal providing an 

accurate solution to the Navier-Stokes equations at low Re. 

Of course, the examination of neutrally stratified flow cannot tell us whether the parts 

of the model associated with stratification are working.  Moreover, a direct comparison 

with the stably stratified simulations of Coleman et al. (1994) is problematic because of 

the differing lower boundary condition on temperature between his model and the 

model presented here.  Another way of examining the linear aspects of the “stratified 

part” of the model is through a linear stability analysis, wherein the model can be 

started from a quiescent state seeded with a low level of noise, and the initial behavior 

observed.  Presumably the early stages of flow will be linear because of the small 

amplitudes involved, and the modeled flow can be compared with the results of a 

linear stability analysis to assess whether the model is performing correctly.  

Neutral Stratification 

Table 4 lists the parameters that describe the mesh structure of our neutrally stratified 

DNS with a Reynolds number of 400 and Rib = 0. For the sake of comparison, this 

table also lists the corresponding parameters for Coleman et al. (1990a) run with Re = 

400, and Coleman’s (1999) simulation with Re = 1000.  In this table, Nx and Ny are the 

number of grid points in the x- and y-directions, and Nz is the number of quadrature 

points in the vertical direction, with Nz  > 3/2 M, where M is the number of basis 

functions used in the vertical discretization. With  Nz  > 3/2 M aliasing errors are 
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eliminated through the 3/2-rule.  This rule is also applied in the horizontal direction, 

and therefore, for our model, the “effective” wavenumbers kx and ky extend from –15 

to 16, for a total “bandwidth” of 16 in each horizontal direction. In these directions our 

model’s length (Lx, Ly) is 26 nondimensional length units.  The first quadrature point in 

the vertical, z0, is at the surface, z = 0, while the point immediately above the surface, 

z1, is equal to 2.43 x 10-3.  The height above the surface of the maximum quadrature 

point, zmax, is 4182.   

Table 4: Numerical parameters for neutrally 
stratified model runs. 

 Nx Ny Nz Lx, Ly z1 zmax 

this study, Re = 400 48 48 55 26 2.43 x 10-3 4182  

Coleman et al. 
(1990a), 

 Re = 400, Case A90 

96 96 45 ≈26 7.67 x 10-3 ≈23.5 

Coleman (1999),  
Re = 1000 

384 384 85 ≈18 unknown unknown 

 

When compared with DNS runs performed on the lastest supercomputers (e.g., for 

Coleman’s [1999] run with Re = 1000, Nx = Ny = 384), the numerical resolution of our 

model seems admittedly unimpressive.  However, as will be discussed below, the 

results do not seem to suffer greatly from this very modest resolution.  It is important 

to note that the vertical resolution of our model is somewhat greater than Coleman et 

al.’s (1990a) Re = 400 run and that this enhanced resolution extends further from the 

lower boundary -- a consequence of the algebraic mapping.  This augmented resolution 

was designed to better capture gravity wave activity should it occur.  
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The model was initialized with a low level of noise in the form of random Gaussian 

deviates.  Figure 6 shows the time evolution of the friction velocity, u* /G, as well as 

the angle, β, that the surface stress vector makes with the geostrophic wind.  These 

quantities have been plotted versus the time, nondimensionalized by 1/f.  (The time  

 

Figure 6: Time series of the friction velocity, 
u*/G (top panel), and the angle, β, that the 
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surface stress vector makes with the 
geostrophic wind (bottom panel). 

scale 1/f, as opposed to the scale D/G, seems the most sensible scale for examining 

these results).  The span of time for this run, tf = 20, requires about 3 days of CPU time 

on a Sun Ultra 30 workstation.  (“ tf” is the time nondimensionalized by f.) After a time 

of about tf = ½ roll cells begin to develop in the flow; these cells are a manifestation of 

the “inflectional instability” (Lilly, 1966; Brown, 1972) of the laminar Ekman layer.  

The growth rate of these cells has an e-folding time of about ¼ and, after about four 

time units, the cells begin to break down into turbulence.   

The turbulence appears to become in equilibrium (overall production = overall 

dissipation) with the main flow at about eight time units, because after this time, the 

quantities u* /G and β appear to become stationary, and exhibit fluctuations about 

steady mean values.  These fluctuations are statistical in nature and stem from 

averaging over a horizontal plane of finite site.  In principle, the fluctuations would be 

reduced or eliminated if the horizontal domain over which the averages are found is 

infinite in extent; see Coleman et al. (1990a).  

An estimate of the mean values of the friction velocity and the stress angle, β, can be 

calculated by averaging the time series of these quantities from about tf = 7.5 to tf = 

20.  (This encompasses a span of about two inertial periods, where one inertial period 

has a length of tf = 2π.)  The mean values are listed in Table 5 along with the 

corresponding  

Table 5: Values of the friction velocity, u*/G, 
and the stress angle, β, for various model runs.  

 u*/G β 
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this study, Re = 400 0.0672 28.4 

Coleman et al., (1990a), Re = 400. 
Run A90 

0.0652 28.5 

Coleman (1999), Re = 1000 0.0539 19.0 

 

mean values from Coleman et al.’s (1990a) simulation with Re = 400 run, and for the 

sake of comparison, we have included Coleman’s (1999) Re = 1000 run.  These 

“global” results (i.e., averaged results that reflect the state of the entire flow) show 

fairly good agreement between the model described here and that of Coleman et al.  

This comparison is certainly useful, but whether it can be used as an indicator of 

adequate resolution is hard to determine. 

A more detailed comparison of the turbulent processes can be obtained by examining 

vertical profiles of the Reynolds stress from Coleman et al. (1990a) and our work.  

This comparison is shown in Figure 7 in which the upper panel shows the off -diagonal 

components of the Reynolds stress tensor from our model (depicted by <uw>, <uv>, 

and <vw>) while the lower panel shows the same quantities derived from Coleman et 

al.  In both panels, the vertical coordinate is zf/u* but it is expressed in the lower panel 

as z/δ where δ is this is scale height of the turbulent Ekman layer equal to u*/f 

(Tennekes and Lumley, 1989).   These Reynolds stresses have been time -averaged 

over a span of at least one inertial period for the results of Coleman et al., and for our 

model somewhat less than one period.  The correspondence between the <uw> and 

<vw> is almost exact but there is small but significant difference between the <uv> 

profiles. It is difficult (if not impossible) to track down the cause of this difference.  

We can only speculate that the lack of complete agreement in the <uv> profile could 

be attributed to differences in either horizontal or vertical resolution. Our horizontal 
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resolution is one-half that of Coleman et al.’s yet our vertical resolution is greater.  It is 

possible that the enhanced vertical resolution of our model allows it to pick up features 

that may be missed in the other model.  (Of course, this argument could be applied in 

the reverse direction: the greater horizontal resolution of Coleman et al.’s model may 

make it the better simulation.)  It is also possible, but unlikely, that had we been able to 

average our profiles over a longer time period, the differences in the <uv> profiles 

would have  
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Figure 7: Three components of the Reynolds 
stress; -<uw> is solid line ; -<vw> is 

dashed line ------, -<uv> is dotted line ……; x-
axis is aligned with geostrophic wind.  The top 
panel depicts Reynolds stress from this study 
while the bottom panel is from Coleman et al. 

(1990b) 

 

disappeared.  Despite this difference, the agreement between the stress profiles from 

the two models is quite good.  

A one-dimensional spectrum of w (from our model at a height of z/D = 0.85), averaged 

over time and space, is shown in Figure 8.  The spectrum is smooth and if a resolutio n 

problem were active, it would show up as “pile up” of energy at the high 

wavenumbers.  Such an upturn is not seen.  Upturns in spectra constructed for other 

heights have never been seen; taken together, these spectra suggest that the resolution 

is adequate. 
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Figure 8: One-dimensional energy spectrum for 
the vertical velocity, w.  The spectrum is taken 

in a direction parallel to the x-axis. 

 

Before leaving the neutral case we show in passing an example of what could be 

boundary layer streaks.  We will not explore the issue of streaks further here.  We 

merely want to show a plot (Figure 9) that suggests the existence of boundary layer 

streaks in our DNS.  This figure shows a shaded contour plot of the instantaneous 

vertical velocity, w, taken at a height of z/D = 0.03.  The elongation and orientation of 

the contours suggest thin coherent structures with longitudinal axis oriented at angles 

from about 10 to 30 degrees to the x-axis (the direction of the geostrophic wind).  

These structures are confined to the lower boundary layer and are not seen elsewhere, 

and they are consistent with the concept of a boundary layer streak (Drobinski and 

Foster, 2000; Foster, 1997).  The LES simulation depicted in Figure 1 of Moeng and 

Sullivan (1994) shows “streaky structures” similar to those seen in Figure 9 below.  
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Figure 9: Contour plot of the vertical velocity, 
w, at a height z/D = 0.03.   

 

Stable Stratification 

The neutral stratification comparisons discussed above indicate that our model is 

working well when Rib = 0. For stable stratification, Rib > 0, we cannot evaluate our 

complete model by a similar head-on-head model comparison because, as far as we 
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know, the constant heat flux lower boundary condition makes our model unique.  

Comparisons with other models are therefore virtually impossible.  However, the linear 

parts of the model can be assessed by first, turning off the nonlinear parts of the model; 

second, fixing the temperature profile so that the buoyancy frequency, N, remains 

constant in time and space; and finally, initializing the model with a low level of 

Gaussian noise.  The model is run, and roll cells develop characteristic of linear Ekman 

layer stability theory. The growth rates and wavelengths of these cells can be 

compared to theory, and the degree to which the simulation matches the theory is an 

indication of how well the linear parts of the full model are working.  This comparison 

is show in Table 6. 

Table 6: Growth rates from model and linear 
stability theory, Re = 400, Pr = 0.7. 

Rib α εr growth rate 
(DNS) 

growth rate 
(linear theory) 

0.0 0.5404 26.56 0.019262 0.019263 
0.005 0.5404 26.56 0.013342 0.013344 
0.01 0.5404 26.56 0.007177 0.007037 

 
 

In this table α  is the wavenumber of the roll cell and εr is the orientation of the cell 

with respect to the geostrophic wind. α and εr are the same for each run because of the 

discrete nature of the DNS.  The fastest growing roll cell for all Rib in this table occurs 

at discrete wavenumbers of kx = -1 and ky = 2 corresponding to the α and εr indicated 

above.  The agreement between growth rates is very favorable with virtually no 

difference except at Rib = 0.01 and here the difference is small.  Thus it appears that 

the linear parts of the model associated with both stratified and unstratified flow are 

working well.  We know that the non-linear parts associated with neutrally 
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stratification are reliable from the discussion of the previous section, and the non-linear 

parts of the heat equation were checked for energy conservation.  All these checks 

indicate that the DNS is working well.  

We close this section by making a few comments regarding the linear stability code 

from which the results in Table 6 are obtained.  This code was developed using a 

spectral Galerkin method similar to that described previously, and the vertical 

discretization is provided by the same basis functions employed in the DNS.  This code 

was checked by writing another code based on an entirely different numerical method 

(Melander, 1983).  When fed the same input conditions the output from both codes is 

virtually identical and similar to other published results (e.g., Brown, 1972; Coleman et 

al., 1990b; Kaylor and Fallor, 1972; Lilly, 1966). 

The Continuous Spectrum of Eigenvalues 

A notable feature of the stability code is its ability to reproduce some of the continuous 

spectrum of eigenvalues associated with the stable, laminar Ekman layer.  Part of the 

complete eigenvalue spectrum is depicted in Figure 10, where the continuous spectrum 

is show by the black dots and the discrete spectrum is show by the circled dots.  This 

spectrum came from a linear stability analysis with parameters: Re = 400, Pr = 0.7, Rib 

= 0.005, α = 0.5404 and εr = 26.56.  The continuous spectrum consists of three parts:  

one associated with neutral stratification, and the other two associated with 

stratification.  This three-part structure is evident in Figure 10 as the three prongs of a 

“pitchfork” pattern.  An analysis of the continuous spectrum can be carried out based 

on an extension of the work of Grosch and Salwen (1978) and Craik (1991) concerned 

only with the continuous spectrum of the Orr-Sommerville equation over a semi-

infinite domain.  A comprehensive exposition of the continuous spectrum for the 

stratified Ekman layer, although interesting, is not central to the goals of this thesis but 

a brief analysis is outlined in Appendix A. 
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Figure 10: Part of the eigenvalue spectrum 
derived from a linear stability analysis of the 

laminar Ekman layer. The dots are the 
continuous spectrum while the circled dots 

represent the discrete spectrum. The dashed 
lines are a closed- form solution for the 

continuous spectrum, with Pr = 0.7. 

 

In this appendix it is shown that for Pr = 1, the complex phase speed, c, (where c is in 

the expression for the disturbance, ( )ˆ ( ) i x ctw z e α
α

− − ) is given by three simple, closed-

form equations (eq. 2.91) where b is a parameter that ranges from zero to infinity, and 

εk is the angle that the wavenumber, k, of the disturbance makes with the x-axis.  The 

uppermost equation in eq. 2.91 is associated with the continuous spectrum of the Orr -

Sommerville equation, while the bottom two components are the continuous spectrum 

associated with stratification.   
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The three branches of the continuous spectrum have been added to Figure 10 as the 

three dashed lines.  These three lines have been calculated from theory for Pr = 0.7 

(although the difference between the spectra for Pr = 0.7 and Pr = 1.0 results is 

minimal, and we could just as well use the expressions contained in 2.91 above).  The 

agreement between the numerical and theoretical results is very good in this range of 

the continuous spectrum. For large negative growth rates, the divergence between the 

analytic and numerical results becomes larger than what might be surmised from Figure 

10. 

Summary – Evaluation of Model Performance 

Our model has been tested in several ways.  The comparison between the neutrally 

stratified simulations of Coleman et al. (1990a) and our model suggest that the 

neutrally stratified parts of our model are working well.  Based on an examination of  1-

D spectra of vertical velocity the resolution of our model appears to be adequate 

because no peculiarities have been noticed in the spectra that might indicate, for 

example, a pile up of energy at the high wavenumbers.  A comparison of the 

disturbance growth rates from the fully stratified model (without the nonlinear 

mechanisms) with the growth rates from a linear stability analysis looks very good.  

The results from all these tests, taken together, form a picture of a model that is doing 
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what it is supposed to be doing: accurately solving the Navier-Stokes equations for 

stratified flow at low Reynolds number.  
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CHAPTER 3: DIRECT NUMERICAL SIMUATION OF THE VERY 

STRATIFIED EKMAN LAYER  - RESULTS 

3.1 DEFINITION OF THE VERY STABLE BOUNDARY LAYER IN TERMS OF 

VARIOUS STABILITY PARAMETERS 

In this chapter we describe the use of the DNS technique to examine the issues brought 

forth in the Introduction.  Taking on the first issue, we ask: How can the VSBL be 

delineated in terms of various stability parameters (e.g., z/L, z/Λ, Bo/Bmax, Rib)? As we 

have repeatedly emphasized, the VSBL is distinguished from its less stable counterpart 

by the temporal and spatial distribution of turbulence.  For the less stable boundary 

layer the turbulence is continuous while in the VSBL turbulence becomes intermittent 

or disappears entirely (see Mahrt et al., 1998; see also Mahrt, 1999 for a brief 

discussion of intermittency).  If we consider an ensemble of stable boundary layers, 

ordered from less stable to more stable in terms of some stability parameter, then the 

start of VSBL may be considered as that stability parameter at which the turbulence 

just starts to become intermittent. The goal here is to assign a numerical value to the 

chosen stability parameter that marks the boundary between the very stable and less 

stable regimes, and to determine if the value of the DNS-derived parameters are similar 

with those derived from field studies and theory. 

How can the DNS help delineate these parameter values?  Our strategy is to run the 

DNS at various increments of the “instrinsic” stability parameter, Rib.  Starting from 

Rib equal to zero, the stratification is increased at intervals of 0.001 up to Rib = 0.006.  

We also ran a simulation at Rib = 0.10.  All runs start from an initial, neutrally 

stratified, quiescent state initialized by low levels of Gaussian noise.  The runs are 

allowed to develop under neutral conditions and at time tf  = 15 -- at which time we 
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are assured that the neutrally stratified flow is fully developed -- we apply a cooling 

heat flux at the surface.  We then search time series of surface friction velocity as well 

as other quantities looking for evidence of the intermittency that signals very stable 

conditions. This procedure is illustrated in Figures 11 and 12 in which time series of the 

surface friction velocity (u*/G, Figure 11) and β (the angle that the stress makes with 

the geostrophic wind, Figure 12) are shown at Rib values of 0.001, 0.004, and 0.005.  

The “markers” u* /G and β serve as rough indicators of the presence or absence of 

turbulence.  However, before identifying areas of possible intermittency, we point out 

a few general features common to all the time series.  The initialization procedure is 

evident in the first part of all the series, in which a laminar Ekman instability develops 

(from tf = 0 to about tf = 2) followed by a transition to turbulence.   The transition 

appears to be complete at about a time of tf = 8 and the flow is allowed to continue in 

this neutrally stratified state until tf = 15, at which time the surface is cooled.  This 

cooling quenches the turbulence in rough proportion to the strength of the cooling.  As 

the downward heat flux is increased from one simulation to the next, the stratification 

eventually will become strong enough so that the turbulence becomes intermittent. 

Such an intermittent state would consist of quiet, near-laminar flow during which 

values of u* /G and β hover close to their laminar values, juxtaposed against more 

turbulent states for which these variables move away from their laminar values.  A 

simple analysis applied to the laminar Ekman layer shows that u* /G and β  have 

“laminar” values of ( )1/2
2 Re  ( = 0.05946 at Re = 400) and 45°, respectively.  

Returning to Figures 11 and 12 we can now screen for states of intermittency as 

evinced by oscillations of the marker variables (u*/G) and β between laminar and 

turbulent states.  Glancing at the uppermost panel, Rib = 0.001, we see that there are 

oscillations in the marker variables but the time series show no evidence of laminar 

conditions after the heat flux is turned on.  This is in marked contrast to the later stages  
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Figure 11: Time series of the surface friction 
velocity, u* /G.  The times series are plotted for 

three values of the bulk Richardson number, 
Rib.  The surface heat flux is turned on at time 
tf = 15.  The case Rib = 0.001 only extends to 

time tf = 45. 
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Figure 12: Time series of the β, the angle that 
the surface stress makes with the geostrophic 

wind.  Three time series are plotted 
corresponding to Rib equal to 0.001, 0.004, and 
0.005.  The case        Rib = 0.001 extends only 

to tf = 45. 
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of the Rib = 0.004 case (tf greater than about 45) and almost all of the Rib = 0.005 

case, after the transient behavior associated with the abrupt cooling has died off (tf 

greater than about 25).  In these time ranges there are frequent excursions of the 

marker variables to and from their laminar values, and for significant periods of time 

the flow appears to be in a laminar state.  For example, for the case Rib = 0.005, the 

flow in the time period between tf = 39 and tf = 42 looks laminar as signaled by the 

values of the marker variables, and this period is sandwiched between two turbulent 

states.  A visual examination of the flow fields during this time of supposed laminar 

behavior reveals that the flow is indeed laminar or nearly laminar (a visual display of 

the flow will be provided later in this section).  It is interesting to note that the interval 

between two laminar episodes has a period of about tf = 2π, or one inertial period; this, 

too, will be discussed later. 

A more graphic and detailed illustration of the intermittent nature of the turbulence can 

be had by a closer examination of the time period tf = 39 through tf = 46 (Rib = 0.005). 

The turbulent (kinematic) heat flux from this period is shown in Figure 13 where the  
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Figure 13:  Kinematic turbulent heat flux,           
Rib = 0.005. 
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intermittent condition of the turbulent heat flux is vividly apparent.  At both ends of 

the time interval the heat flux is nearly zero, indicating little or no turbulence, while in 

the center of the interval the heat flux oscillates dramatically and even becomes 

positive for a short time (a countergradient heat flux!). From this visual appraisa l it is 

possible to identify a bulk Richardson number of about 0.005 (or maybe a little less) as 

that Richardson number where the VSBL begins.  

Merely stating that the VSBL begins at this value of Rib is not very useful because in a 

practical sense the bulk Richardson number as defined here (eq. 2.24) is a quantity that 

is rarely, if ever, measured in the field, thus rendering comparisons between the DNS 

and field studies problematic.  The analysis of the simulations is much more meaningful 

if more conventional stability parameters are brought into the picture because 

meaningful comparisons between the DNS and various modeling and field studies 

become possible. For each parameter we must find the range of this parameter that 

“maps” into the VSBL.  As discussed in the Introduction, there have been two 

parameters proposed as signposts for the boundary of the VSBL.  These are the surface 

heat flux (Bo), and one parameter based on the local Obuhkov lengths, z/Λ.  We first 

examine z/Λ.   

3.1.1 z/Λ AND THE FLUX INTERMITTENCY FACTOR 

One stability parameter that is sometimes measured in the field and that has great 

theoretical import is the parameter, z/Λ12.  Howell and Sun  (1999) have identified the 

VSBL using a flux intermittency factor, If, that indicates the presence or absence of 

                                                 
12 The theoretical significance of this parameter stems from its use in Nieuwstadt’s (1984) local scaling 

theory. One of the central tenets of this theory is that appropriately scaled variables that describe 
turbulent flow (variances, covariances, and the gradient Richardson number) should approach constant 
values as z/Λ goes to infinity.  This idea makes sense because for very stable conditions (large z/Λ) the 
turbulence will only be influenced by local conditions -- the vertical transport having been suppressed 
by the strong stability.  This amounts to the “z-less stratification” proposed by Wyngaard (1973). 
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significant flux variability over a given interval of time.  This factor may be defined in 

the following manner (adapted from Howell and Sun, 1999).  Let F  be the average 

(heat or momentum) flux over the time interval ∆t; we divide this interval into N 

subintervals of duration ∆t/N.  The flux of each subinterval is f i, and the fractional 

contribution that this flux makes to the average flux, F , is f i/N.  We then order all the 

f i/N from largest to smallest and we form the partial sums, 
1

( )
m

i
i

S m f N
=

= ∑ , beginning 

from the largest f i/N and working toward the smallest.   The smallest M such that S(M) 

≤ 0.9 F  is the minimum number of subintervals required to equal 90% of the average 

flux F .  We then define the flux intermittency factor as If = (1-M/N), where If is a 

number between zero and one.  

One can easily understand the flux intermittency factor by looking at the two 

asymptotic limits.  The first of these is when all f i are equal to F , in which case there 

is no flux intermittency over the time interval in question because the flux is constant.  

In this limit, M is approximately equal to N and If ≈ 0.  By contrast, assume that all the 

flux is contained in one subinterval and all the other f i are zero.  In this limit If ≈ 1.  

Mindful of these two limits, we see that the flux intermittency factor provides an easily 

understood and conveniently computed measure of the intermittency over any given 

time interval. 

For the DNS simulations, we can find this factor and graph it against the stability 

measure z/Λ as was done by Howell and Sun (1999) using actual field data from the 

MICROFRONTS experiment.  As z/Λ increases, we expect that If might increase as 

well.  The field studies show that this increase does not occur in a linear manner and, 

over a wide range of z/Λ, If remains essentially flat.  For convenience, we reproduce 

below Figure 2 (now labeled Figure 14), and the figure shows this flat behavior up until 
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z/Λ ≈ 1 after which the flux intermittency increases.  At this point we say that the 

VSBL begins. 

 

 

Figure 14: Flux intermittency factor as a 
function of the stability parameter, z/Λ.  The 
flux intermittency factor is flat over a wide 

range of the stability parameter and only begins 
to increase for z/Λ > 1.  (This figure is taken 

from Howell and Sun, 1999). 

The question is whether this behavior will be seen in the DNS.  If so, it would suggest 

that defining the very stable boundary in terms of the parameter z/Λ is very likely to be 

a good strategy because it has been confirmed in both modeling and field studies. We 

remind ourselves that the local Obukhov length, Λ, is defined in terms of the local 
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friction velocity and the local heat flux and may be written in nondimensional form

  

 

3 / 22 2

b

( ' ') ( ' ')

Ri ' '

u w v w

D wκ

 +Λ  =
Θ

 (3.1) 

where we have used the relationship 2 2 2
* ( ' ') ( ' ')u u w v wτ ρ= = + and the turbulent 

heat and momentum fluxes are all measured at one specific height, z, above the 

surface. An important consideration in calculating Λ from the DNS is this choice of 

this height. 

Observations of the heat flux in stable boundary layers (see Garratt, 1992, who 

summarizes the work of Nieuwstadt, 1984, and others) indicate that the turbulent heat 

flux in moderately stable boundary layers decreases linearly with height.  This is not 

true in the DNS because of the low Reynolds number of the flow.  This low Reynolds 

number implies that effect of viscosity is large enough to suppress the turbulence in the 

vicinity of the lower boundary.  Of course, this suppression near a solid boundary 

happens in flows with very large Reynolds number but, for these flows, the “reach” of 

viscous effects above the surface is very small and is usually confined to a thin viscous 

sublayer (Schlichting, 1968, page 531).  This is not so in the low Reynolds number 

simulations performed here in which viscous effects protrude far into the turbulent 

boundary layer.  It seems appropriate, therefore, to pick a height above the surface 

where viscous effects are considerably diminished. 

An examination of turbulent heat flux profiles has shown that the flux is zero at the 

surface (naturally) and gradually increases with height and reaches a maximum at a 

height of about z/D = 2.5.  Even at this height the viscous contribution to the heat flu x 

is on the order of 20%.  Above this height, the heat flux decreases to zero in an 

approximately linear manner.  We therefore choose as our reference height z/D = 2.44.  
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This is the quadrature point closest to the level of the maximum heat flux, and we 

calculate z/Λ and the flux intermittency factor at this height. 

An average z/Λ and If is calculated for each Rib between the times of tf = 25 and tf = 

45.  We recall that the heat flux is turned on at time tf = 15, after which the flow 

adjusts to a new state of stable stratification.  All flows seem to have completely 

adjusted to the applied heat flux after time tf = 25 implying an adjustment time of 

much less than ten. Coleman et al. (1992) find that for light stratification the 

adjustment time is very small, tf = 0.5, corresponding to about one-half an eddy turn 

over time (defined as vertical average of q2/ε, where q is the turbulent kinetic energy 

“velocity” and ε is the dissipation rate).  This very quick rate of adjustment seems to 

be observed only for our simulations with mild stratification, Rib = 0.001.  For the more 

stratified simulations the adjustment appears to take somewhat longer.  If we define 

equilibrium as the achievement of a steady mean in the global variables u* /G and β, 

then for the case Rib = 0.004, equilibrium appears to be reached by time tf = 25 and 

persists until about time tf = 35 after which z/Λ increases with a concomitant increase 

in the flux intermittency.  Therefore for this case we calculate an average z/Λ and an 

average If for the time interval extending from tf  = 25 to tf  = 35 and another set of 

averages for tf  > 35. 

For the DNS simulations the flux intermittency factor is plotted versus z/Λ in Figure 

15.   Comparing this figure to the results of the field studies shown above in Figure 14, 

it is clear that the pattern of the flux intermittency factor is similar between the two 

figures: the flux intermittency factor stays flat over a wide range of z/Λ followed by an 

increase with larger values of the stability parameter.  The DNS results indicate that 

the increase begins at about a z/Λ equal to about 0.8, while for the field studies this 

increase does not start until about z/Λ ≈ 2 and the increase is more gradual. Other 
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studies (Smedman, 1988, as described in Mahrt [1999]) show that markers of 

intermittency, specifically velocity standard deviations, “turn up” at somewhat lower  
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Figure 15: Flux intermittency factor, If, 
calculated from the DNS simulations.   

values of z/L ( ≈ z/Λ ) than the upturn pictured in Howell and Sun.  In this regard the 

findings of Smedman are quite consistent with the DNS results.  Given the difference 

between the very idealized DNS simulation and the real atmosphere, we conclude that 

the agreement between the simulations and the field studies is very good.  This 

agreement supports the notion expressed by Howell and Sun (1999) that the VSBL 

exists in the parameter range z/Λ ≥ 1.  This good agreement also lends credibility to the  

DNS as a “reasonable idealization” of real VSBLs. 

That the VSBL begins at z/Λ ≥ 1 seems consistent with Nieuwstadt’s local scaling 

hypothesis (Nieuwstadt, 1984).  In this theory the strong stability limit occurs formally 
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in the asymptotic limit as z/Λ → ∞, at which time appropriately scaled dependent 

variables reach their asymptotic values.  One such variable is the gradient Richardson 

number.  Figure 16 (from Nieuwstadt, 1984) shows values of the gradient Richardson 

number, Rig, derived from field data as well as a prediction of Rig from a model based 

on local scaling theory.  At z/Λ ≈ 1 the gradient Richardson number is close to 

approaching to its “strong stability” value of about 0.2, thereby suggesting that z/Λ ≈ 1 

is a reasonable lower limit for the strong stability regime.  These findings, considered  

along with the results from the DNS, Howell and Sun (1999), and Smedman (1988) all 

paint a fairly consistent picture: the VSBL exists for all z/Λ such that z/Λ ≥ 1. 

 

Figure 16: The gradient Richardson number 
plotted versus the local stability parameter, z/Λ 
(adapted from Nieuwstadt, 1984).  The curve is 
from a model based on the local scaling theory 
while the filled circles with error bar represent 

values of the gradient Richardson number 
derived from field studies. 
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3.1.2  THE MAXIMUM HEAT FLUX CRITERION 

In this section, we use DNS to examine the criterion established by Derbyshire (1990) 

for the start of the VSBL.  This criterion, derived from theory, is based on the idea of 

the maximum surface heat flux, Bmax, that can be supported by stationary, fully 

turbulent flow (Mahrt et al., 1998).  For heat fluxes close to this value or just slightly 

greater, the boundary layer may exhibit the intermittent behavior characteristic of the 

VSBL.  

The maximum heat flux can be formally derived from a singular perturbation 

(Derbyshire, 1990) but it is perhaps easier to understand this idea using a simple 

physical argument (also proposed by Derbyshire, 1990, although we present his 

argument in modified form).  The physical underpinnings of the ma ximum heat flux 

criterion arise from the energy considerations: the buoyant production/destruction of 

turbulent kinetic energy (TKE) should be some fraction of the total input of energy to 

the system.  We start from the definition of the flux Richardson number, Rf,  

 
' '

' ' ' '

o

g w
buoyant productdion

Rf
u vshear production u w v w
z z

Θ
Θ

= =
∂ ∂+
∂ ∂

 (3.2) 

thus, by definition, shear production = buoyant production/Rf.  For stationary 

conditions, Rf is approximately constant throughout the boundary layer (Nieuwstadt 

and Tennekes, 1981; Nieuwstadt, 1984).  With Rf constant, we rearrange eq. 3.2 and 

integrate over the depth of the boundary layer.  
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An upper bound to the shear production can be estimated by equating the total 

mechanical input to the atmosphere, T, to the shear production.  This is work done 

against the ambient pressure gradient or  

 
0 0

( ) ( )dpT v z dz shear production dz
dy

∞ ∞

= − >∫ ∫  (3.4) 

In eq. 3.4, v(z) is the mean wind speed in the y direction and dp/dy is the ambient 

pressure gradient.  Continuing on in the spirit of approximations described above, we 

take v(z) to be / sin( / )z DGe z D− and dp/dy = -fG.  Our estimate of the total mechanical 

input is therefore fG2D/2 (  > shear production).  

The total buoyant production (or destruction), K, is given by 

 
0

' '
o

gK w dz
∞

= Θ
Θ∫  (3.5) 

Theory (Nieuwstadt, 1984) indicates that, for the strongly stratified boundary layer, the 

turbulent heat flux is a linear function of height, and we have ' ' ' ' (1 / )sw w z hΘ = Θ −  

for z in the range [0, h] and where ' 'sw Θ  is the surface heat flux and h is the height of 

the boundary layer.   Integration then yields 0 ' ' 2sK g w h= Θ Θ .  The flux 

Richardson number, Rf, under very stable conditions is about ¼ (Nieuwstadt, 1984) 

and D/h is about 1/5.   Solving for the surface (kinematic) heat flux, we have 

 2' ' o
s

D
w Rf f G

g h
Θ

Θ <  (3.6) 

With f = 10-4 sec-1, G = 10 m/sec, g = 10 m/sec2, and Θo = 300° K we have ' 'sw Θ < 

0.015 m/sec °K.  This amounts to an upper bound for the maximum surface heat flux, 

Bmax, of about 20 W/m2.  A more refined estimate of Bmax can be obtained by a rigorous 
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calculation based on a singular perturbation (Derbyshire, 1990) in which the heat flux 

follows naturally in the limit of strong stability.  This calculation gives  

 2
max

1
' '

3
o

sw Rf f G B
g

Θ
Θ < =  (3.7) 

from which we infer a numerical value of Bmax of about 40 W/m2 (in units of an energy 

flux). Although the two estimates differ, the important point is that both values are 

roughly in agreement with observed downward surface heat fluxes in nocturnal 

boundary layers; the range of observed heat fluxes is about -100 W/m2 to 0 W/m2; 

Shaw, 2000 (the negative sign indicates a flux directed towards the surface).    

The use of maximum heat flux as a sign for the start of the VSBL poses some problems 

when this concept is tested using a numerical model.  In particular one must  distinguish 

between the downward heat flux imposed at the lower boundary of a model as a 

boundary condition and the turbulent heat flux within the model’s interior.  The heat 

flux at the boundary is specified, and it can assume any value regardless of whether the 

value is realistic of the atmosphere or not.  The turbulent heat flux above the boundary 

responds to the imposed flux, because in the absence of other effects such as radiative 

cooling, the surface heat flux “sets” the stability of the atmosphere.   The interior, 

turbulent heat flux responds to the stability, and it may collapse if the imposed 

downward heat flux is large enough to squelch the turbulence.  The interior flux is 

therefore limited by physics, while the imposed lower heat flux is in unlimited and set 

by fiat of the modeler.   

Keeping in mind the difference between the interior flux and the imposed surface flux, 

the question now becomes: in our DNS simulations can the maximum interior turbulent 

heat flux be associated with the beginning of VSBL?  Our strategy here is to vary the 

imposed surface heat flux and thereby change the ambient stratification of the flow.  

We monitor the interior heat flux (averaged over at least several inertial periods) and, 
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when it reaches a maximum, we then look for evidence that we are in the regime of the 

VSBL.  Again, we are looking for flux intermittency.  From this simple test we can 

assess the validity of the maximum heat flux criterion as a marker for the boundary 

between the merely stable boundary layer and the VSBL. 

To facilitate the comparison between the DNS fluxes and those in the real atmosphere 

it is useful to “calibrate” the DNS so that the dimensional heat fluxes assume values 

that are characteristic of the atmosphere.  First, we remind the reader that the low 

Reynolds number of the flow (Re = 400) implies, in terms of a physical height, a very 

small boundary layer.  For example, a boundary layer with a scale height about 0.06 

meter and a geostrophic wind of about 0.1 m/sec gives a Reynolds number of  GD/ν = 

(0.06 m/sec * 0.1 m)/ (1.6 x 10-5 m2/sec) ≈ 400.  The heat flux required to cool this 

small boundary layer by, say, a degree per ½ day (one inertial period) is obviously very 

small, on the order of 10-3 W/m2.  This tiny flux is very much less than that required to 

cool an atmospheric boundary layer by a similar rate.  The calibration we propose here 

artificially scales up the simulation so that realistic heat fluxes are calculated.  

This calibration follows a simple procedure.  From the definition of the bulk 

Richardson number, eq. 2.24, the downward dimensional surface heat flux, H, may be 

written as  

 
2

bRi
RePr p o

G
H c G

gD
ρ= Θ  (3.8) 

where cp is the heat capacity of air.  With Rib = 0.005, Re = 400, Pr = 0.7, G = 0.06 

m/sec, D = 0.1 m, Θo = 300 °K, and ρ = 1.25 kg/m3, the heat flux is equal to about 10-3 

W/m2.  By contrast a typical heat flux is 40 W/m2 and the ratio of the two is our 

calibration factor of 40 x 103.  To calibrate our DNS surface heat fluxes we merely 

multiply the DNS flux numbers by this factor.  It is interesting to note that when the 
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Reynolds number of our DNS is multiplied by the calibration factor, the resulting 

Reynolds number is roughly 107.  This is comparable to Reynolds numbers typical of 

atmospheric boundary layer flow (Stull, 1991, page 93).  This result is surprising 

because there is no reason to expect the heat flux to scale linearly with the Reynolds 

number and such agreement seems merely a coincidence. 

The imposed surface heat flux (dashed line) and the interior turbulent heat flux (dots) 

are plotted in Figure 17 versus bulk Richardson number, Rib.  The turbulent heat flux is 

calculated at discrete values of Rib in increments of 0.001 from Rib = 0 to Rib = 0.006.  

An additional DNS simulation provides another point at Rib = 0.01.  The “turbulent” 

flux at this point is entirely due to laminar motions.  The flux (= 0) at  Rib=0.02 is an 

estimate.  At this large stratification we assume that the turbulent flux is completely 

extinguished by the very strong stratification.  A smooth curve has been drawn through 

the points that represent the turbulent heat flux.   

Figure 17 illustrates two points.  The first of these is rather trivial: the imposed surface 

heat flux decreases linearly with an increase in Rib and that the imposed flux is 

generally much larger in magnitude than the interior turbulent heat flux.  The second 

point is much more important and is the crux of our analysis.  We see that the turbulent 

heat flux peaks in magnitude at a Rib equal to about 0.005.  From our previous 

examination of the simulations, we have found that this value of Rib is about where the 

turbulence becomes intermittent and the VSBL begins.  Thus, our findings support 

Derbyhsire’s supposition that the maximum heat flux may be associated with the 

beginning of the VSBL.   
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Figure 17: The imposed surface heat flux 
(dashed line) and the interior turbulent heat 

flux (dots) plotted versus Rib.  A smooth curve 
has been fit to the turbulent heat flux points. 

The heat fluxes shown in Figure 17 have been averaged over many inertial periods.  

(The averaging period began after the initial transient associated with the abrupt 

application of the surface flux had died off.)  The relatively large values of the time -

averaged heat flux that occur in the vicinity of Rib = 0.005 are averages of fluxes that 

are very intermittent in time (see for example, Figure 13).  This very intermittent 

nature is again illustrated in Table 4, in which the turbulent fluxes are listed as well as 

their standard deviations over the averaging period.  Clearly the flux intermittency as 

portrayed by the flux standard deviation is very large around Rib = 0.005 and 

decreases thereafter.  The decrease at Rib = 0.01 is symptomatic of steady laminar 

“roll cell” motions that carry the turbulent heat flux  
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The standard deviations in Table 7 again support the notion of sign ificant flux 

intermittency occurring when the flux itself is close to or at its maximum value.  But 

after  

Table 7: Average turbulent fluxes and flux 
standard deviations as functions of the bulk 

Richardson number, Rib. 

Rib flux (W/m2) flux standard deviation (W/m2) 

0 0 0 

0.001 -5.1 1.2 

0.002 -8.3 2.9 

0.003 -10.8 4.5 

0.004 -14.0 10.0 

0.005 -14.2 14.0 

0.006 -10.7 14.3 

0.01 -5.0 2.3 

 

reaching this conclusion, our work is still not finished because we must contend with 

the field study analyzed by Mahrt et al. (1998) in which intermittency did not occur at 

the point of maximum heat flux.  Referring to Figure 2 in the Introduction we see that 

the maximum heat flux for this one particular study occurred at z/L ∼ 0.1 whereas our 

modeling results indicate that the maximum heat flux occurs at an Rib equal to about 

0.005.  In turn, in the DNS a Rib value of 0.005 corresponds roughly to a z/Λ (≈ z/L) 

value of about 1.   Thus, the DNS indicates that the maximum heat flux occurs at z/L ∼ 

1, and we have a difference between the DNS and the field study.  This difference 

occurs in spite of the good agreement between modeled and measured flux 

intermittency as depicted in Figures 14 and 15. 
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We cannot reconcile this difference.  However, it is important to reiterate the 

comments of Mahrt et al. (1998):  “there is no evidence that the value of z/L 

corresponding to the maximum downward heat flux is universal.”  Mahrt et al. also cite 

the study of Malhi (1995) in which the maximum flux occurs at z/L = 0.2.   These 

findings also depend on height above the ground further rendering the situation even 

more ambiguous, however, from the scant number of field measurements, it does 

appear that the maximum heat flux occurs for thermal stabilities less than the range of 

stabilities where flux intermittency is observed.  The uncertain nature of these findings 

underscores the need for more data and more simulations.  More data could help 

resolve the issue of what values of z/L actually correspond to the maximum heat flux 

or even whether such an association is possible.  Simulations run at higher Reynolds 

number and with a more realistic lower boundary condition on the heat flux (perhaps 

an actual surface energy budget) might also help reconcile the difference noted here. 

Still, we take a justifiably positive tack here (The Dalai Lama and Cutler, 1998), and 

we assert that the DNS provides significant practical insight into the definition of the 

VSBL.  From this practical, engineering point of view, defining the stable  boundary 

layer in terms of z/L (or z/Λ) has one substantial advantage over the maximum flux 

criterion.  With a little care these quantities can be readily inferred from field 

measurements (Arya, 1988) whereas determination of the maximum heat flux might 

require the examination of lengthy time series of flux data, and concomitant turbulence 

data, in the hopes of discovering from these measurements the maximum heat flux for 

which continuous turbulence is maintained.  Obviously, at the present time, the 

maximum heat flux idea is much more a theoretical concept than a workable field 

parameter. 
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3.2 MECHANISMS OF INTERMITTENCY 

Our discussion of the definition of the stable boundary layer has strengthened the case 

for using the stability parameter z/Λ as a practical way to mark the beginning of the 

VSBL.   Once we know where to find the VSBL in “stability parameter space” we can 

begin to examine that intermittency of turbulence that most distinguishes the VSBL 

from its less stable counterpart.  To discover what mechanisms lead to intermittency 

we follow a two-step process in which we first visually examine the flow to develop an 

intuitive understanding of the intermittency mechanism followed by a more rigorous 

analysis.  

We must emphasize that the idealized nature of the DNS technique cannot support all 

possible mechanisms leading to intermittency.  For example, there is no possibility of 

generating patchy turbulence from gravity waves originating from topographic forcing 

because there is no topography in the model.  The lower boundary is flat!  The fact the 

DNS cannot possibly admit all means of creating intermittency begs the questions to 

what possible mechanisms will be permitted by the physics and numerical scheme of 

our DNS. 

The possible mechanisms of intermittency have been discussed in the Introduction and 

for convenience we repeat them here: 

• intermittency that stems from gravity waves (breaking gravity waves, 

interaction with a critical layer, etc.) 

• Kelvin-Helmholtz instability 

• Ekman layer instabilities 

• the Blackadar mechanism 
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Our arguments regarding what is possible and what is not possible in our DNS will be 

very qualitative.  We first examine the potential of the DNS to propagate gravity 

waves.  If this ability is absent or unlikely, then intermittency that ultimately comes 

from gravity waves cannot be present in the model.  Critical for the existence of 

gravity waves is a stably stratified profile of temperature.  The strength of this 

stratification is represented by the Brunt-Väisälä frequency, N.  Plane linear gravity 

waves can only exist in the media if the frequency of the gravity wave is less than N, 

or ω < N, where ω is the frequency of the gravity wave.  In our model, an initially 

unstratified atmosphere with N equal to zero is cooled from below and the resulting 

diffusive, background temperature profile is such that N is greatest at the boundary and 

tapers off monotonically to zero with height.  Thus plane gravity waves cannot 

propagate without modification throughout the vertical domain because they wi ll soon 

reach a height where ω > N.  (Gill, 1982, points outs that for vertical variations in N, 

the WKB approximation may be applied to propagating gravity waves to show that 

wave reflection does not occur; rather in this approximation the wave properties 

change in response to variations in N.) 

An exhaustive analysis of gravity wave propagation in our model is beyond the scope 

of this study, but it seems reasonable to assert that because of the decline of N with 

height (a physical reason), and the poor vertical grid resolution above the boundary 

layer (a numerical reason), the presence of gravity waves in the model is unlikely, and 

if some gravity wave activity exists, it must be confined near the boundary.  

Additionally there is no obvious forcing that would beget gravity waves.  These waves 

can be spawned by turbulence (e.g., Carruthers and Hunt, 1986; Riley and Metcalf, 

1987) and by topography but the stability structure of the model combined with of the 

lack of topography would seem to preclude the generation of gravity waves by such 

means.  Considering all these factors, we tentatively conclude that gravity wave 

activity is likely to be small in our simulations.  This assertion was confirmed by a flow 
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animation that revealed some low amplitude fluid motions that were most likely 

inertial-gravity waves.  These motions did not appear to be dynamically significant.  

Next, we move on to the Kelvin-Helmholtz (K-H) mechanism, and we are immediately 

confronted with a mild philosophical dilemma.  The classic K-H instability (Drazin and 

Reid, 1989) is appropriate for an inviscid, two-layer flow with one layer having a 

constant density and velocity overriding another layer with another different velocity 

and “optionally” a different density.  This classic problem can be generalized to an 

inviscid problem with arbitrary background velocity and density as embodied in the 

Taylor-Goldstein equation.  This more general problem is still classified as a K-H 

instability problem (see Drazin and Reid, 1989, page 321).  If we take the Ekman layer 

as the background velocity profile, add a lower boundary, and then add a viscous term 

to the equations, this generalized K-H problem becomes that of the instability of a 

laminar Ekman layer, and our model permits such instabilities by design.   We can 

easily distinguish between the Ekman instability and the traditional K-H instability by 

noting that the Ekman instability is associated only with the Ekman layer profile while 

the K-H instability is more general and may be found in any almost sheared flow, 

stratified or otherwise. (The K-H instability is often connected to roll-ups observed in 

the atmosphere, see Figure 1.4 in Drazin and Reid, 1989). Both instabilities are so-

called inflectional instabilities (Brown, 1974; Drazin and Reid, 1989). 

In our model, all of the physics are in place to permit the traditional K-H instability to 

occur, although the viscosity, relatively large with Re = 400, as well as the lower 

boundary would modify and perhaps completely inhibit the instability from developing.  

For example, in a DNS of turbulence in stratified sheared flow, Jacobitz et al. (1997) 

reported a dependence of the critical Richardson number on the (microscale) Reynolds 

number, and this finding suggests that other DNS simulations might have a Reynolds 

number dependence.  Numerical parameters such as grid spacing and domain size 

would restrict the maximum and minimum wavelengths of the instability.  We must 
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note, however, that the K-H instability has also been simulated in DNS simulations of 

unstratified mixing layers in domains that are fully infinite in the z-direction. (Rogers 

and Moser, 1992; for these simulations, the Reynolds number was 500 based on the 

“half velocity” and the initial vorticity thickness.  This definition of the Re is roughly 

analogous to the definition of the Reynolds number associated with the Ekman layer. 

See also Staquet and Riley, 1989.)  The simulations of Rogers and Moser had 

numerical resolutions somewhat greater than our model, but not markedly greater thus 

suggesting the possibility of observing isolated K-H instabilities in our simulations if the 

flow conditions (i.e., shear and stability profiles) are right.  Whether such flow 

conditions and consequent instabilities show up in the simulations remains to be seen.  

Focusing now on the remaining intermittency processes, we remark that, of necessity, 

the model has been designed to simulate the Ekman layer instability because the 

turbulence originates from it.  The Blackadar mechanism does not rely on any specific 

instability.  It is rather a sequence of events in which the existence of turbulence is 

modulated by the value of the Richardson number.  Because there is nothing in the 

model design that would prevent such modulation from occurring -- indeed it must 

occur if the model is to have any physical verisimilitude -- the Blackadar mechanism 

has the potential of being observed in our simulations.  Finally, we cannot help but 

state that other intermittency mechanisms may occur in the model that have yet to be 

discovered and named. 

3.2.1 FLOW VISUALIZATION 

One way to identify which process is active in creating intermittency is through the use 

of flow visualization.  We first chose a period of time from our simulation with Rib = 

0.005 where evidence of intermittency was observed in the time series of surface 

friction velocity as depicted in Figure 11.  The choice of what time period to study is 

rather arbitrary and we chose the interval of time extending from tf = 39 to tf = 46 as a 
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case study.  Figure 13 shows the nondimensional heat flux that occurs over this time 

interval in which irregular behavior is readily observed.  A detailed view of this 

irregular behavior in the surface friction velocity and β, the angle that the surface 

stress make with the geostrophic wind, is show in Figure 18 in which time series of 

these quantities are plotted.  Recalling that the laminar values of u* /G and β for 

laminar flow  
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Figure 18: Detailed view of the surface friction 
velocity (u*/G) and the angle that the surface 

stress makes with the geostrophic wind, β. 

 

are 0.05946 and 45°, respectively, we see evidence of irregular turbulent flow in a time 

interval extending from about tf = 41.5 to about tf = 44.  On either side of this interval 

the flow appears to be laminar or near laminar. 

Additional confirmation of the intermittent nature of the flow in the chosen time 

interval can be seen in Figure 19.  This figure shows time series of vertical velocity 

measured by a fictitious probe placed in the fluid at a height of z/D = 0.751.  The top 

panel of this figure depicts the vertical velocity measured under stably stratified 

conditions in the time interval chosen for study.  For the sake of comparison, the 

bottom panel shows the same variable measured at the same height in a neutrally 

stratified flow.  The intermittency of the stably stratified flow is vividly apparent, and 

the magnitude of the vertical velocity fluctuations in this flow equal or exceed those of 

the neutrally stratified flow.  It is remarkable that the turbulence found in the 

simulations of the VSBL, when it occurs, is as strong as the turbulence found in the 

neutrally stratified simulations. 

Flow Cross Sections 

Once we are convinced that our case study contains significant intermittent behavior 

we examine cross-sections of the flow sampled from various times within the case 

study.  First, we look at vertical and horizontal cross sections at the beginning of the 

time interval, tf = 39.5, when we suspect that the flow is nearly laminar.  A vertical 

cross section of the temperature structure of the flow, overlaid with vectors that show 

the (v,w) velocity components of the flow, is shown in the top panel of Figure 20.  The 

bottom panel pictures a horizontal snapshot of the flow with contours of the vertical 
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velocity, w, and vectors that show the (u, v) velocity components. All the velocity 

components have been nondimensionalized by the geostrophic wind, G, and the 

distances x, y, and z have been nondimensionalzied by the Ekman depth, D. The flow 

is smooth and laminar and there is no sign of turbulence. 
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Figure 19: The upper panel shows the vertical 
velocity measured at a height of z/D = 0.751 in 
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a stably stratified flow while the bottom panel 
shows the vertical velocity, measured at the 
same height, in a neutrally stratified flow. 

We next show a series of figures serving as an animation that illustrates the flow 

evolution from the laminar state through the development of sporadic turbulence.  This 

series of five figures starts at Figure 21 and continues through Figure 26; in sequential 

order the times associated with these figures are tf = 40.0, 40.5, 41.0, 41.75, 42.0, 42.1.  

(Note that increment in time is 0.5 except for the sequence 41.0, 41.75, 42.0; also, the 

last time is 42.1).  These figure show a chain of events:   

(1) the flow remains laminar at tf = 40.0 and tf = 40.5, but there is evidence of 

some flow organization as seen by the development of roll structures oriented 

about 20° to the left of the geostrophic wind (oriented along the x-axis).  These 

roll structures are particularly apparent when looking down on the flow from 

above; this downward view composes the bottom panels of Figures 21 and 22.  

The magnitude of the vertical velocity during these times is on the order of 

0.01. Relatively speaking, this velocity magnitude is quite low. 

(2) Figures 22 and 23, for times tf = 40.5 and tf  = 41.0, respectively, show the 

development of a “wave” in the temperature structure.  The initial stages of 

this wave are evident in the lower part of the modeling domain at about y = 23 

in Figure 22.  As time marches forward the wave increases in amplitude.  

Figure 23 (tf  = 41.0) shows the buildup of the wave and its translation in the 

negative y direction.  The wave in now positioned at about y = 10 (see top 

panel of Figure 23).  The bottom panel of this figure indicates that the roll 

structures are aligning themselves along the geostrophic wind and that the 

vertical velocity has increased further; the maximum magnitude of these 

velocities is now on the order of 0.05. 
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(3) At time tf = 41.75, the wave structure is well-developed and markedly visible -

- you just can’t miss it in the top panel of Figure 24.  The velocity vectors in 

this figure reveal the development of a strong vortex (or roll cell; we use these 

terms interchangeably.)  Figure 24 also shows that the axis of the roll cell is 

aligned almost precisely along the geostrophic wind and that the vertical 

velocities have further increased in magnitude; they are now on the order 0.10.  

The irregular nature of the roll cell is illustrated by the distribution of the 

vertical velocity.  Contours of this velocity do not line up exactly parallel to the 

roll’s longitudinal axis as would be the case for a “pure” roll cell made up of a 

single Fourier mode (see for example, the bottom panel of Figure 32 for a 

picture of “regular” roll cells.)  Rather the vertical velocity tends to occurs in 

patches; for example, the largest velocities are located in a patch centered near 

the coordinates x = 9 and y = 20. 

(4) Of great importance is the wave’s temperature structure as depicted in Figure 

24.  We see that the circulation of the roll cell has transported cold fluid over 

warmer fluid.  This situation is convectively unstable. 

(5) Figures 25 and 26 show the beginning of the convective breakdown of the roll 

cell at about y = 19 and the development of a new temperature wave at about y 

= 8.  The convective breakdown is a violent event that unleashes potential 

energy which is converted into fluid motion.  These motions manifest 

themselves as the patchiness in the vertical velocity shown in the bottom of 

Figures 25 and 26.  Such patchiness is confined to small areas in which the 

magnitude of the vertical velocity is quite high, as high as 0.23!  An example of 

such a patch is centered at the coordinates x = 16 and y = 20 in Figure 25.  

These outbreaks of extremely large vertical velocities constitute intermittent 

turbulence. Figures 25 and 26 also show the development of another roll cell.  

We note for future reference that these vortices all rotate in the same 
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counterclockwise direction when viewed looking down the direction of the 

positive x-axis. 
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Figure 20: The top panel shows a cross section 
of the temperature in the y-z plane with the 

wind components (v,w) indicated by the 
vectors, tf = 39.5.  Contours of w are shown in 
the bottom panel in an x-y plane at a height of 



 

 

98 

z/D = 1.38, and the vectors depict the wind 
components (u,v). 
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Figure 21: Same a Figure 20, but tf = 40.0 
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Figure 22: Same as Figure 20, but tf = 40.50 
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Figure 23: Same as Figure 20, but tf = 41.0 
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Figure 24: Same as Figure 20, but tf = 41.75 
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Figure 25: Same as Figure 20, but tf = 42.0 
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Figure 26: Same as Figure 20, but tf = 42.1 

 

 

(6) The final stage of the intermittence mechanism occurs when the first roll cell 

begins to decay.  This disintegration is shown in Figure 27 in which the 

disintegrating roll cell is found above a position of about y = 13.  Because the 

cell is decaying it can no longer lift cold air over warm air and a new 

convective instability will not occur.  Thus, the source of the turbulence is 

choked off and the turbulence that comes from this particular roll vortex dies 

away through viscous dissipation. 
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Figure 27: Vertical cross section of the flow, tf 
= 42.5.  The roll cell responsible for the patchy 
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turbulence seen in the previous figures, 
positioned above y = 13, is beginning its decay. 

 

Mean Flow Visualization 

The steps described above follow the flow from a smooth, laminar state through the 

development of small but intense patches of turbulence.  The description thus far has 

examined details of the flow, but the picture is not complete without looking at the 

mean flow.  In particular, we examine profiles of the u and v as functions of time in 

Figure 28. The point of this figure is to show the time evolution of the mean flow with 

special emphasis on the times tf = 39.5 and tf = 43.0.  These profiles are denoted by 

the thick black lines and the thick pink line (with pattern: ___ ---).  At the beginning of 

our case study, tf = 39.5, there is a well-developed nocturnal jet at height z/D = 3 with 

u-component speed of about 1.13.  This speed is considerably in excess of the u-

component speed (slightly greater than 1.0) found in neutrally stratified flow at this 

height.  As time progresses, the nose of this profile is considerably eroded as indicated 

by the profile for tf = 43 (the pink line).  Some or most of this erosion could be 

attributed to an inertial oscillation as will be discussed below. 

The v-component of the mean speed is shown in the bottom panel of Figure 28.  

Perhaps the most notable feature of this plot is the strong nocturnal jet that develops at 

a height of z/D = 4.  This jet is particularly marked at time, tf = 41.0 (green broken 

line).  If we assume that this is a manifestation of an inertial oscillation in the jet 

(Blackadar, 1957), and if we assume that the jet is aligned along the geostrophic wind 

at tf = 39.5, then the rotation of the jet through ¼ inertial period should occur in a time 

interval of ∆tf = 2π/4 ≈ 1.6.  Thus the peak in the v-component of the jet should occur 

at a time of about 41.0 and it should be pointed perpendicularly to the right of the 

geostrophic wind, along the negative y-axis. From Figure 28, looking at the green line 
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for time tf = 41.0, we see that this prediction is fulfilled, suggesting the presence of a 

strong nocturnal jet undergoing an inertial oscillation.   
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Figure 28: The top panel contains profiles of 
the mean flow component u while the bottom 

panel contains profiles of the mean flow 
component v. 
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Summary – Flow Visualization 

An visual examination of the flow over a period where the flow cycles from quiescent 

to intermittently turbulent has revealed that the flow is indeed laminar at the start of 

this period.  Organized, but irregular, roll vortices develop that transport cooler air over 

warmer air and convective instability ensues resulting in patchy turbulence.  

Eventually the turbulence is extinguished because the roll cell responsible for the 

turbulence dies away and the flow becomes laminar again.  During this process a 

strong nocturnal jet associated with the mean flow exhibits an inertial oscillation.  

 3.2.2 A DETAILED EXPLORATION OF THE INTERMITTENCY MECHANISM  

Through flow visualization, we have arrived at an empirical picture of the 

intermittency mechanism.  In this section, we add rigor to this empirical picture.  

Specifically, we seek answers to the following questions: 

(1) Are the observed roll vortices a manifestation of an Ekman layer instability? 

(2) Why to the rolls tend to orient themselves along the geostrophic wind? 

(3) Why do the roll vortices rotate only in the counterclockwise direction (when 

viewed looking in the positive x direction)? 

(4) Is there some relationship between the inertial oscillation and the development 

of the intermittent turbulence? Would the same behavior be observed if the 

inertial oscillation were absent? 

The first two questions may be examined as a group, subsumed under the heading of 

Ekman Layer Instability.  Questions 3 and 4 are discussed in following subsections 
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entitled Counterclockwise Rotation of the Roll Vortices and Intermittency and the 

Inertial Oscillation. 

Ekman Layer Instability 

Evidence that the roll vortices stem from an Ekman layer instability modified by the 

inertial oscillation is very convincing.  Such evidence comes from a comparison of the 

DNS with the results of a linear stability analysis.  We were motivated to apply a linear 

stability analysis to the early phase of intermittency mechanism after looking at flo w 

spectra.  These spectra indicate that only a few wavenumbers in the lowest end of the 

wavenumber range (i.e., largest wavelengths) had appreciable energy while all other 

parts of a spectrum were virtually zero.  Confirmation of this observation was obtained 

by running a modified DNS model in which the number of wavenumbers was reduced 

by a factor of four (from 48 to 12).  For this special run, the velocity fields generated 

by this decimated model were identical to the fields derived from the full -sized model.  

Obviously, the high wavenumber components contribute nothing to the early stages of 

the flow and only the lowest wavenumbers are “active”. 

But for the flow to be linear the amplitude of the energy associated with the active 

wavenumbers must be small and this requirement was observed to be in force in the 

early phase of the flow.  The low energy values are consistent with the finding, 

mentioned above, that the vertical velocity levels during the initial stages of the flow 

evolution were quite low, being on the order of 0.01.  On the other hand, spectra 

obtained from the turbulent phase of the flow revealed that a large number of 

wavenumbers had been activated and that the energy density associated with these 

wavenumbers was significant.  In this phase of the flow, the assumption of linearity 

would not be justified.  For the case study under consideration, we estimate that the 

time ranges over which linear processes dominate extends from about tf = 39.0 to 

about tf = 41.5.  Linearity would also apply to a time period at the end of the case 
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study when the flow becomes laminar again.  However, we will restrict our attention 

only to the time interval at the beginning of the flow. 

Using the mean profiles of temperature, and the mean u and v velocity components 

obtained from the simulations at a given time, we perform a linear stability analysis to 

compute the growth rate, phase speed, wavenumber, and roll cell orientation angle. 

The wavenumber and orientation angle are varied systematically until “optimal” valu es 

of the wavenumber and orientation angle are determined at which the growth rate is 

maximized.  At these optimal values the phase speed is also calculated.  When deriving 

the linear stability equations used for this analysis it is necessary to add a Reynolds 

stress to the flow equations to achieve a balance of forces in the mean flow.  For 

example, the mean flow equation for the u-component of the velocity is 

 
2

2

1 1 ( ' ')
Ro Re

U U u w
V

t z z
∂ ∂ ∂

= + −
∂ ∂ ∂

 (3.9) 

where the overbar represents a horizontally averaged (mean) quantity.  The linear 

stability equations are derived in the usual manner and are identical to those of the 

laminar Ekman layer (eqs. A.5 through A.9) except that the background velocity 

components and temperature profile are the mean u, v, and Θ profiles obtained from 

the simulations.  The mean profiles of wind do not follow the traditional laminar 

Ekman spiral because of the modification by Reynolds stresses and by the inertial 

oscillation. 

For time increments of ∆(tf) = 0.1, we perform the stability analysis from time tf = 

39.0 to time tf = 41.5 and find the maximum growth rate, the phase speed, and the 

values of the wavelength and orientation angle corresponding to the maximum growth 

rate.  From the simulations, we infer the same parameters and then compare the 

simulation results with those from the stability analysis.   
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When performing this comparison, we must be mindful of several important caveats.  

The first of these is that the linear stability analysis is a static calculation that gives 

growth rates, phase speeds, etc., which are related only to the mean flow at the specific 

time under consideration.  In this regard, the linear analysis provides an indication of 

the “forcing” of the flow at the present time; i.e., where growth occurs in wavenumber 

space and how fast growth occurs. In contrast, the simulations are dynamic and the 

flow structure at a particular time depends on past history.  The difference between a 

dynamic and static calculation is easily illustrated by considering a simple example. At 

a particular time, t, the static, linear stability analysis shows that the growth rate is 

largest at the optimal wavenumber k, yet examination of the simulation at this time 

shows that disturbances associated with other wavenumbers have larger amplitudes.  

How could this be?  This seeming discrepancy is easily explained.  The other 

disturbances may be larger because of the large growth rates they possessed in the past 

and therefore these vortices had an opportunity to build up large amplitudes over time. 

Yet the roll cell with largest growth rate at time t may just be in the initial stages of 

growth and, with little time to develop its amplitude, it could be much smaller than the 

others. 

The second caveat is also easily understood: the stability analysis is continuous in 

wavenumber space whereas the numerical construction of the DNS permits only a 

finite set of discrete wavenumbers to be present.  This implies, among other things, that 

the maximum growth rates derived from the DNS must be less than or equal to those 

from the stability analysis.  Why is this the case?  Because the maximum growth rate 

calculated from the stability analysis will occur at a specific optimal wavenumber, k, 

and for all other wavenumbers the growth rate will be less than this maximum.  Unless 

the DNS happens to have the optimal k in its discrete wavenumber set (either by 

coincidence or design), the maximum growth rate of any disturbance in the DNS will 

be less than the maximum growth rate connected with k. 
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A third caveat concerns the extraction of the phase speeds, etc. from the simulations.  

A glance at Figures 20 through 23 shows that the organized structures in the DNS, 

while readily discernable by eye, are not very regular and they are certainly not as 

regular as the sinusoidal pattern of the roll cells predicted by theory (see again the 

bottom panel of Figure 32 for an example of a regular roll cell).  This lack of 

uniformity in the simulations makes the assessment of, say, a disturbance wavenumber 

somewhat ambiguous.  Of the four parameters in which we are interested, the roll cell 

orientation is most easily and unambiguously determined from a visual inspection.  

This is not necessarily the case for the other three quantities.  

To reduce this ambiguity we developed a simple way of objectively deriving the four 

disturbance parameters from the flow.  This method begins with the horizontal Fourier 

transform of the w-component of the flow and then finds the three wavenumbers 

connected with the amplitude of the three largest Fourier components.  Call these 

wavenumbers k1, k2 and k3.  For a particular time, the orientation and wavelength of 

the disturbance of the flow is a weighted average over these three wavenumbers, 

where the weights are the magnitude of the Fourier transform of w. If rε  is the 

“average” roll cell orientation for the time in question, then 
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In this equation ŵk  is the magnitude of the Fourier transform at wavenumber k and 

rε k is the angle that the longitudinal axis of the roll cell makes with the geostrophic 

wind.  The verisimilitude of this formula was assessed by comparing angles calculated 

using eq. 3.10 with angles estimated from a visual inspection of the flow field.  This 

evaluation indicated that our objective method works reasonably well.  The same 

formula can be applied to find the average wavenumber, α, of the growing 
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disturbances by substituting the magnitude of the wavenumber for orientation angle in 

this manner, 

 1 2 3

1 2 3

1 2 3ˆ ˆ ˆ

ˆ ˆ ˆ

w w w

w w w
α

+ +
=

+ +
k k k

k k k

k k k
 (3.11) 

Diagnosing growth rates and phase speeds from the simulations is slightly more 

complicated.  To obtain these variables, we resort to the following device.  Assume 

that the w-component of the velocity field can be represented by a sum over all Fourier 

disturbances with complex frequency Re[ ] Im[ ]iω ω ω= + ⋅k k k , 

 ˆ( , , , ) ( ) i t iw x y z t w z e eω− ⋅= ∑ k k x
k

k

 (3.12) 

After time ∆t the expression for the disturbances is 

 ( )ˆ ˆ( , , , ) ( ) ( , )i t t i iw x y z t w z e e w z t t eω− +∆ ⋅ ⋅′= = + ∆∑ ∑k x k x
k k

k k

 (3.13) 

where ( )ˆ ˆ( , ) ( ) i t tw z t t w z e ω− +∆′ + ∆ =k k .  Focusing on one wavenumber at a time, we can 

determine the growth rate and phase speeds from the simple numerical formulae  

 ( )/ 2 1 ˆRe[ ( , ) ]t tgrowth rate Log w z t t
t

+ ′≈ + ∆
∆ kk

V  (3.14) 

 ( )/ 2 1 1 ˆIm[ ( , ) ]t tphase speed Log w z t t
t

+ ′≈ − + ∆
∆ kk k

V  (3.15) 

To find an averaged growth rate (or phase speed), we calculate, in an analogous 

manner to the eq. 3.10, the weighted average using growth rates (or phase speeds) 

associated with the three largest Fourier coefficients.  It was possible to check the skill 

of the growth rate equation, eq. 3.14, by finding a time series of the maximum vertical 
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velocity in a specified horizontal plane, wmax(t), and then differentiating. The growth 

rate of the disturbances is approximately max

max

1 dw
w dt

.  The rates derived from this 

simple formula are comfortingly similar to rates from eq. 3.14, thus suggesting that this 

equation is at least approximately correct. 

Armed with the set of the four parameters calculated from the simulations, and another 

set derived from theory, it is possible to appraise how well the simulations follow the 

theory.  This comparison is shown in Figure 29 in which the results from the linear 

stability analysis and the simulations are shown as lines and black dots, respectively.   

The parameters originating from the simulations are taken from a field of the vertical 

velocity, w, in a horizontal plane at a height of z/D = 2.19 -- a height where the roll cell 

structure is well developed.  The comparison between the two roll cell orientation 

angles is pictured in the top panel of this figure.  This variable is most easily visualized 

in the simulations and, considering the caveats expressed above, the agreement 

between the theory and simulations is surprisingly good.  Certainly the trends in time 

agree very well. 

This panel illustrates one of the caveats expressed above: that the simulations are 

performed in discrete wavenumber space while the linear stability theory is continuous 

in this space.  For times greater than about tf = 41.0, the roll cells in the simulations 

orient themselves exactly parallel to the geostrophic wind (x-axis).  This exact 

orientation is probably due to the fact that the wavenumbers that represent the roll 

cells must “project” into the discrete wavenumber space inherent to any spectral 

simulation.  For small orientation angles -- close to zero but not exactly equal to zero -- 

the best possible projection that can occur is along the ky-axis since other projections 

would only be appropriate for much larger orientation angles.  Projection of the 

wavenumber onto this axis results in roll cell axis orientations exactly parallel to the x-

axis. 
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Figure 29: Comparison between four variables 
derived from linear stability theory (lines) and 

from the simulations (black dots). The variables 
are the roll cell orientation, rε ; the roll cell 
wavenumber, 2α π λ= , where λ is the roll 
cell’s wavelength; the phase speed, and the 

growth rate. 

 

Focusing now on the second panel from the top in Figure 28, we see that, as expected, 

the agreement between the two roll cell wavenumbers is not as good as the agreement 

obtained for the orientation angles.  Still, the agreement is reasonably good given the 

caveats expressed above.  Again we must reemphasize the irregular nature of the roll 

cells that arise in simulations.  These cells are not the roll cells of theory that possess a 

perfectly uniform sinusoidal pattern in a horizontal direction lateral to the roll cell axis. 

The absence of perfect regularity makes the precise determination of a roll cell 

wavenumber somewhat problematic. 

Phase speeds and growth rates are pictured in the bottom two panels of Figure 29.  

(These quantities have been nondimensionalized using the time scale most often used 

for the Ekman linear stability analysis, D/G, and not the inertial time scale, 1/f.  The 

ratio of the two scales is 1/f  ÷ D/G = G/fD = Ro = 200.)  As expected, the growth 

rates derived from the simulations are less than the theoretical growth rates but the 

trends show reasonable agreement.  The magnitudes of the phase speeds exhibit 

approximate but not perfect conformity with one another.  Intuitively speaking, we 

guess that the phase speed would be the most difficult variable to extract from the 

simulations given the irregular shape and meandering orientation of the roll cells.  

Taken together, the plots in Figure 29 strongly suggest that the initial part of the 

intermittency mechanism is a linear response of the flow to an Ekman-type forcing that 
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gives birth to organized flow structures that resemble roll vortices.  This forcing is 

completely analogous to the forcing that arises from linear Ekman layer stability 

analysis in which energy is transferred from the mean flow to perturbations with 

positive growth rates.  Unlike the traditional Ekman forcing, however, the mean, 

background velocity is not steady but rather changes in time in a manner of an inertial 

oscillation.  The time variation of the mean flow is reflected in the changing nature of 

the flow structures that gradually orient themselves along the x-axis and possess 

accelerating growth rates.  

The case that the flow is responding to an “Ekman forcing” 13 can be made even 

stronger by demonstrating mathematically that the only forcing available to the flow in 

the linear phase is an Ekman forcing.  This demonstration starts with the governing 

equations for the computational variables (i.e., perturbations from the background 

flow) with the non-linear terms dropped and in which the computational variables have 

been transformed to Fourier space and cast into  and ⊥ modes.  By deleting the non-

linear terms from eqs. (2.39 – 2.42), we have 
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13 We use the term Ekman forcing loosely to mean forcing associated with mean flow profiles that are 

“Ekman like”.  These profiles would include profiles from the laminar Ekman layer, as well as profiles 
from turbulent Ekman layers. 
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These equations can be discretized in the z-direction using the Galerkin method 

described in Chapter 2.  (For the sake of brevity we omit a recapitulation of the 

details).  If ka  is a column vector consisting of the expansion coefficients 

 ( , ,α α α⊥ Θ
k k k
P ) of the computational variables, then the discretized linear equations may 

be written in vector- matrix form as 

 
d
dt

=k
k k

a
A a  (3.20) 

where Ak is a square matrix, the elements of which depend upon the background 

velocity profiles at a time t0. The solution to this linear equation at a time t0 + ∆t is  

 0 1
0 0( ) ( )tt t e t−+ ∆ = ?

k ka S S a  (3.21) 
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where λ  is a diagonal matrix consisting of the eigenvalues of Ak, and S is a matrix 

whose columns are the eigenvectors of Ak.   If we assume that the background velocity 

profiles at time t0 are the mean profiles from the simulation at this particular time, an 

estimate of the expansion coefficients for the perturbation quantities (roll cells) at time  

t0 + ∆t is given by eq. 3.21.  The eigenvalues of the matrix Ak govern which 

eigenmodes -- the columns of the matrix S -- grow or decay over the time interval ∆t.  

But these eigenvalues are exactly the eigenvalues14 obtained from a linear stability 

analysis of the Ekman layer.  With this realization we see that over the in crement of 

time, ∆t, the flow modes that receive the largest boost are simply the fastest growing 

Ekman modes and that no other forcing is operative.  This conclusion, of course, would 

not hold once the flow becomes non-linear. 

Counterclockwise Rotation of the Roll Vortices 

An additional aspect of the proposed intermittency mechanism that demands an 

explanation is the observation that the roll vortices only rotate in the counterclockwise 

direction, when viewed looking along the positive x-axis.  The single direction of the 

rotation is evident in the upper panel of Figure 30 which is a snapshot of the flow in 

the y-z plane taken at time tf = 42.1.  The (v, w) velocity field is depicted by the 

vectors and the black lines are approximate, computer-generated streamlines.  A 

glance at the field unmistakably shows the two “closed cell” roll cells centered at the 

coordinates x = 3.5, y = 3.5 and x = 16, y = 3.5.  There is no evidence of vortex 

rotation in the clockwise direction. 

We inquire why the vortices rotate in only one direction, particularly when Ekman roll 

cells tend to come in counterrotating pairs (for example, see Figure 10 in Brown, 

                                                 
14 The relationship between λ and the eigenvalues of a linear stability analysis, ω, is:  

λ= i ω, where i = - 1− . 
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1972).  The answer is very simple and can be immediately grasped by considering the 

difference between the flow consisting of Ekman perturbations only and the total flow 

consisting of the perturbations and the mean background flow.  Both these flows are 

depicted in Figure 30.  In this figure the top panel is the total flow where the vortices 

rotate in only the counterclockwise direction.  The bottom panel is the perturbation 

flow; that is, the total flow from which the mean, background flow has been 

subtracted.  (We kindly remind the reader that the mean flow in the y-z plane is shown 

in the bottom panel of Figure 28).   In the perturbed flow only a roll cell pair is evident 

in which one roll of the pair, centered at the coordinates (x = 3.5, y = 3.5) and is 

rotating in the opposite direction than the other roll, centered at (x = 3.0, y = 11.5).  

The  
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Figure 30: Cross sections of the flow in the y,z 
plane at time tf = 42.10.  The vectors show the 
v, w components of the flow and the black lines 

are approximate representation of the flow 
streamlines.  The upper panel is the total flow 
(mean + perturbation) while the bottom panel 

is the perturbation flow 
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streamlines of this cell, rotating clockwise, form a pattern that is quite similar to the 

Ekman perturbations found by Brown (1972).   

Apparently, the absence of counterrotating vortices in the full flow stems merely from 

the effect of adding the mean flow to the perturbation flow.  The mean flow in the 

vertical range z/D ≈ 1 to z/D ≈ 4 possesses considerable positive vorticity 

( v z v z−∂ ∂ ≈ −∆ ∆  = 0.3/2  = 0.15) aligned along the positive x-axis.  On the other 

hand, the roll cell centered at (x = 3.0, y = 11.5) -- the cell with clockwise rotation -- 

has a negative vorticity of about v z v z−∂ ∂ ≈ −∆ ∆  = -(0.03-(-0.2))/(4.41-1.08) =  -

0.07 over the vertical range of interest.  When the two vorticities are added to find the 

total flow vorticity, the negative vorticity (clockwise rotation) is completely swamped 

and canceled by the positive vorticity of the mean flow.  Therefore clockwise rotation 

of the organized structures does not show up in the total flow. 

Intermittency and the Inertial Oscillation 

In this section we further examine the role that the inertial oscillation plays in the 

development of intermittent turbulence.  We have already seen that the inertial 

oscillation influences the time development of the roll cell perturbations during the 

linear phase of the intermittency mechanism. But we wonder if the oscillation might 

have an even stronger role; for example, would the intermittence occur in the absence 

of an oscillation? 

We cannot answer this question unequivocally, but additional numerical tests suggest 

that the answer “no”.  The intermittency mechanism needs the inertial oscillation to 

exist!  A test simulation (called “TS” for short) from which this conclusion is drawn 

uses, as its initial condition for temperature, the diffusive temperature profile occurring 

at the beginning of the case study examined above (i.e., at time tf = 39.0).  We then 

effectively erase the inertial oscillation in the velocity initial condition by settin g the 
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mean flow profiles equal to the profiles of the laminar Ekman layer, and we replace the 

perturbation field existing in the original simulation with low-amplitude, Gaussian 

deviates.  At the start of the test simulation, the flow is therefore just a laminar Ekman 

layer with the diffusive temperature appropriate for the beginning of our case study.  

The DNS is started and run for a time of about tf = 20.0.  Although roll cells develop 

(see below) intermittency is NOT observed!  This test cannot fully put  to rest the issue 

of whether the inertial oscillation is essential for the existence of the intermittency 

mechanism described above, but the results are strongly suggestive that it is.  For the 

sake of comparison, we show in Figure 31 the surface friction velocity, u*/G, and the 

angle that the surface stress makes with the geostrophic wind, β, from the test run.  To 

facilitate the comparison between this test run and the previous simulations these 

parameters are plotted on the same scale as shown in Figures 11 and 12.  That these 

parameters scarcely deviate from their laminar values indicates that the flow remains 

laminar throughout the duration of the simulation.  Also, there is little evidence of any 

appreciable effect on the mean flow.  It, too, remains nearly fixed in a laminar-like 

state.  

Figure 32 shows the flow structure of the vertical velocity at time tf = 3.0.  The 

existence of regular Ekman-like roll cell is unmistakable.  In contrast to the roll cell 

structures of the simulations in which the inertial oscillation is present, the cells in the 

TS runs are very uniform and characterized by very low vertical velocities with 

magnitudes on the order of 0.01 or less.  Obviously, the difference between the flow 

with and without the inertial oscillation is very marked.  The comparison of the flow 

evolution, with and without the presence of the inertial oscillation, suggests that, when 

the oscillation is present, energy is extracted from the mean flow and transferred to the 

smaller scales in a very effective manner.  This energy transfer is easily explored by  
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Figure 31: Surface friction velocity, u* /G, and 
the angle that the surface stress makes with the 
geostrophic wind, β, for the test simulation in 

which the inertial oscillation is erased. 
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Figure 32: Vertical velocity contours for the TS 
runs (inertial oscillation removed).  The top 

panel shows the vertical velocity, w, contoured 
in the y-z plane and the bottom panel shows w 
contoured in the x-y plane.  Note the regular 

structure of these cells. 
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looking at the mean flow energetics as embodied in the mechanical energy equation 

integrated through the depth of the atmosphere: 
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 (3.22) 

where U  and V are the mean velocity components and the overbar indicates an 

average over a horizontal plane.  The terms in eq. 3.22 are, proceeding from right to 

left, the rate of change of the mean kinetic energy, the production of kinetic energy 

from the interaction of the mean flow with the ambient horizontal pressure gradient, 

molecular dissipation, and the transfer of energy between the mean flow and other 

scales.  

These terms are easily computed from the simulations, and we show them in Figure 33 

(with some modification) for the simulations with and without the inertial oscillation, 

for a time period of about one inertial period (tf = 2π).  In this figure the production 

and dissipation terms have been lumped together so that a single term, production 

minus dissipation, is shown.  All the terms have been integrated in time.  For example, 

if T(t) is the rate of transfer of kinetic energy to the smaller scales – the last term in eq. 

3.22, then what we show in Figure 33 is 

 
0

( ') '
t

T t dt∫  (3.23) 

This time integration indicates the total amount of energy that has been interchanged 

between the mean flow and the smaller scales at time t.  
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Figure 33: Time integrated terms of the mean 
flow kinetic energy balance.  The top panel 

shows the balance with the inertial oscillation 
present, while the bottom panel shows the 

balance without the oscillation. 
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Again, we see a big difference between the two flows.  Looking first at the top panel 

(oscillation present) we see that over a period of an inertial oscillation the kinetic 

energy15 of the flow (dashed green line) varies in a more-or-less sinusoidal manner, and 

the amount of kinetic energy is about the same at the beginning and end of the inertial 

period.  The energy transfer to smaller scales is appreciable and about equal to the 

difference between the maximum and minimum value of the kinetic energy.  To 

facilitate comparison of the energy balance with and without the oscillation, we have 

kept the scale of the y-axis the same between the top and bottom plots.  Looking now 

at the bottom plot we note the very small transfer of energy to smaller scales; it is 

about 10% of that when the oscillation is present.  Apparently the inertial oscillation’s 

interaction with the smaller scales of the flow is a very effective mechanism of 

extracting energy from the work done by the mean horizontal pressure gradient and 

then transferring this energy to smaller scales.  Without this energy transfer the 

intermittency mechanism described above would not exist.  

We conjecture that the inertial oscillation plays a major role in the intermittency 

mechanism during the time that the roll vortex is lifting cold air over warmer air.   In 

the initial stages of the development of the roll vortex, tf = 39.0, an intense jet (relative 

to the laminar profile) exists at a height of z/D = 1. This jet is shown in Figure 34 in 

which the v-component of the mean flow is plotted for various times along with the v-

component of the laminar Ekman layer.  This jet enhances the counterclockwise 

motion of the vortex which, in effect, supplies kinetic energy to the vortex.  The 

additional kinetic energy helps overcome the gravitational force when the vortex is 

transporting cold air upward, and without this additional energy the transport is 

                                                 
15 In these plots the kinetic energy is “normalized” by setting the kinetic energy equal to zero at the 

beginning of the time interval in question.  The energy can then assume negative values which, of 
course, are physically unrealistic. The normalization simply helps visualize the rate of change of the 
kinetic energy. 
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significantly weakened. While the cold air is lifted, the mean flow changes so that a 

strong jet  
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Figure 34:  Profiles of the v-component of the 
mean flow plotted for various times.  For the 
sake of comparison, the v-component of the 
laminar Ekman layer is shown by the dashed 

line. 

develops in the negative y-direction at a height of z/D = 4 (see Figure 34) after a time 

interval of about one-quarter inertial period, π/2, from tf = 39.0.  This jet is fully 

developed at a time of tf = 41.5, and at this time, the cold air has reached the jet and 

the vortex is given another boost in the counterclockwise direction.  This again aids the 
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lifting process and helps push cold air over warmer air so that the convective instability 

is set up (see the top panel of Figure 24).   

Later in the intermittency process, at a time of about tf = 43.50, the jet that was 

formerly at z/D = 4 (at tf = 41.5), is obliterated.  A broad area of motion in the positive 

y-direction replaces the jet.  Such motion inhibits counterclockwise motion of the 

vortices thus reducing the ability of the vortices to raise cold air.  The source of 

turbulence is therefore choked off, and additional turbulence cannot be produced until 

the cycle begins again.   

In summary, the interaction of the inertial oscillation with the roll vortices is analogous 

to a pinwheel, in which a force is applied to periphery of a rotating wheel to cause the 

rotation. In a similar manner, the mean flow applies a boost to the outer parts of the 

vortices at strategic times and locations to facilitate their rotation in the 

counterclockwise direction.  This boost apparently increases the kinetic energy of the 

vortices a sufficient amount to raise cold air over warm air.  We call this effect the 

“pinwheel effect.” 

Finally, for the sake of completeness, we show the TKE budget of the simulations with 

the oscillation present.  This budget is described by the TKE equation, and for 

horizontally homogenous conditions, the vertically integrated TKE equation is  

 
2 2 2

b
0 0 0 0

( ) Ri
2

d u v w U Vdz uw vw dz w dz dz
dt z z

ε
∞ ∞ ∞ ∞ + + ∂ ∂= − + + Θ − ∂ ∂ 
∫ ∫ ∫ ∫  (3.24) 

where, in customary notation,  u,v,w are the velocity fluctuations from the mean, ε is 

the dissipation, and wΘ is the turbulent heat flux.  When integrated vertically the 

transport term disappears.  The terms in eq. 3.24 are, from left to right, the rate of 

change of the TKE, the shear production of TKE, the buoyant production of TKE, and 

the molecular dissipation.  The latter three terms are calculated from the simulation 
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with the inertial oscillation and they are graphed in Figure 35 (bottom panel) as well as 

the kinetic energy (top panel).  This figure shows the variation in these quantities over 

the time period of our  
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Figure 35: The top panel shows the TKE while 
the bottom panel shows the various terms in 

the vertically integrated TKE equation.  These 
quantities have been derived from our case 

study with Rib = 0.005. 

 

 

case study.  That the TKE varies dramatically with time reflects the build up of the 

amplitude of the roll cells and the subsequent development of patchy turbulence.  The 

rate terms in the bottom panel show a variation over time consistent with the kinetic 

energy variation.  The shear production is approximately balanced by the dissipation, 

and the buoyant production is relatively small.  Such results are consistent with 

measurements in the stable boundary layer, see for example, Lenschow et al. (1988).  

Summary  

We have put forth a mechanism to describe the origin of turbulence intermittency in 

the very stable boundary layer. Briefly, this mechanism follows a sequence of events in 

which an Ekman-like instability grows and carries colder air over warmer air.  The 

resulting convective instability cataclysmically releases the built -up potential energy 

and patchy turbulence ensues.  The turbulence is then quickly extinguished because 

the source of the turbulence, the roll cell, decays away.  A key element of this 

mechanism is the transfer of energy from the mean flow to smaller scales aided by the 

inertial oscillation.  Without the presence of this oscillation, the mechanism described 

here would not exist.  The possibility that an Ekman instability could lead to turbulence 

in stable boundary layers was mentioned in passing by Thorpe and Guymer (1977) and 

our DNS simulation confirms that such a possibility is realized 
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An important unanswered question is whether this mechanism really exists in nature.  

Roll cells are easily observable during the day from cloud streets that are commonly 

observed from satellites or airplanes (see plate 1.3.8 in Sc orer, 1972).  Whether such 

cells exist at night under stable conditions is apparently unknown.  The irregular shapes 

of the cells, as suggested by the DNS, would make detection even more difficult.  

Nevertheless the results from the DNS are not inconsistent with the limited data anent 

turbulent bursts. Referring to Table 1, we see that the observed average number of 

turbulent bursts per night ranges from a low of three to a high of 18.  Two of the three 

studies measured burst frequencies of about 3 per nigh t.  If we take an inertial period 

(= ½ pendulum day) as the duration of a night, then the simulations produce turbulent 

bursts with a frequency on the order of 3 per night; see Figure 19 in which two major 

bursts are evident along with one or two minor bursts.  We have placed “probes” in a 

few other parts of the simulation domain, and we have also found that the number of 

bursts per night is agrees with this frequency.  In this regard, the data and the 

simulations appear consonant.    

The top panel of Figure 4 shows vertical velocity standard derivations measured by 

Coulter (1990).  The graph in this panel is a running standard deviation over a 20-

minute interval.  We have calculated a similar, dimensional quantity from our 

simulations by a calibration of the DNS using these scale relationships: 

• 12 hours = 1 inertial period, from which we conclude that 20 minutes is equal to 

1/36 of an inertial period 

• wdimensional = wnondimensionalG, with G ≈ 4.5 m/sec (from Coulter, 1990) 

•  boundary layer height = 100 meters ((from Coulter, 1990) ≈ 5 * D, or D = 20 

meters   



 

 

133 

The uppermost panel of Figure 36 shows the results of applying a running standard 

deviation of dimensional width “20 minutes” to a vertical velocity time series shown in 

Figure 19.  In the middle panel the same procedure is applied to another vertical 

velocity time series sensed from a probe at a different height and horizontal position.  

The standard deviations have been dimensionalized with the velocity scale listed 

above.  The dimensional heights of these “measurements” from the DNS are about 15 

and 34 meters, respectively, for the top and middle panels. 
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Figure 36: Top panel is a running standard 
deviation of dimensional width 20 minutes 
applied to the vertical velocity time series 

shown in Figure 19. The middle panel is the 
same for vertical velocities measured at a 

calibrated height of 34 meters, and the bottom 
panel (from Coulter, 1990) represents the same 

quantity, but derived from observations at a 
height of about 36 meters  

 

Considering the ideal nature of the DNS and the crude calibration mentioned above, a 

comparison of the running standard deviations in Figure 36 derived from the 

simulations, with observations of the same in the top panel of Figure 4, is somewhat 

tenuous. 

To facilitate the comparison between the observations and the simulations, this panel 

of Figure 4 has been reproduced in the bottom panel of Figure 36, and it is important to 

realize that the measurement height in Figure 4 is roughly 36 meters, about the same as 

probe height, 34 “calibrated” meters depicted in the middle panel of Figure 36. 

Focusing on the bottom two panels, we conclude that the agreement between the 

simulations and the observations is quite reasonable.  The magnitude (about 20 - 35 

cm/sec, in terms of a calibrated velocity) and spacing of the peaks (1 to 2.5 hours of 

“calibrated time”) of the DNS-derived standard deviations is certainly consonant with 

the data.  To what extent the agreement is merely coincidental is an issue we cannot 

answer, but the very least we can say is that the DNS results are NOT inconsistent with 

these data.  
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It is also possible that K-H instabilities reported in studies such as Coulter (1990) could 

be mistaken for roll cell activity16.  Coulter estimates the wavelength of the observed 

K-H instabilities to be about 540 meters.  With the length calibration given above, D = 

20 meters, we can estimated the wavelength of the roll cells to be about 13D or 260 

meters.  Considering the crude calibration of the DNS, we cannot pretend to achieve 

exact agreement between the two estimates.  But the fact that they agree to better than 

order of magnitude suggests, in some situations, it could be difficult to distinguish 

between K-H activity and roll cell activity.   

                                                 
16 We are not claiming that Coulter’s interpretation is in error; we are merely trying to point out that a 

signature of a roll cell and a K-H could be similar.  This similarity could mean that K-H instabilities 
could be mistaken for roll cells, and visa versa.  Of course, the Ekman instability and the K-H 
instability may be considered as two manifestations of an inflectional instability (Brown, 2000).  
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CHAPTER 4: CONCLUSIONS 

The goal of this study has been to investigate the properties of the VSBL using a DNS 

of an idealized boundary layer flow, the Ekman layer.  We performed a number of 

simulations in which the Ekman layer was cooled from below after turbulence had 

fully developed under neutrally stratified conditions.  The strength of the cooling was 

varied from simulation to simulation in an effort to find the characteristic signature, 

turbulence intermittency, of the VSBL.  Once we found simulations in which 

intermittency was evident, we investigated some important issues concerning the 

VSBL.  These issues are the delineation of boundaries in “stability parameter space” 

that mark where the VSBL is found and, more importantly, the manner in which 

intermittent turbulence develops under very stable conditions.  

Taking on the issue of boundary demarcation first, we explicitly defined the VSBL in 

terms of the primary physical property, intermittent turbulence, that distinguishes this 

boundary layer from less stable ones. Once this definition was established, we studied 

the mapping of values of various stability parameters to the onset of intermittency, and 

therefore, to the VSBL.  Most of these parameters form a continuum that spans 

unstable conditions to stable conditions.  What is sought is the point along this 

continuum that serves as a signpost for where the VSBL begins.  To this end we 

examined these proposed boundaries: 

• the maximum downward heat flux (Derbyshire, 1990) for which continuous 

turbulence is maintained; for heat fluxes greater than this value the boundary 

layer is considered to be very stable.  

• z/Λ = 1, as proposed by Howell and Sun (1999); for z/Λ greater than this value, 

the boundary layer is very stable. 
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From the DNS we have concluded that both the maximum heat flux criterion and the 

value of stability parameter, z/Λ = 1, as proposed by Howell and Sun (1999), serve as 

appropriate markers of the VSBL.  Of these two criteria, the use of z/Λ to define the 

VSBL is most practical.  We also noted that Mahrt’s (1998) analysis of the 

MICROFRONTS observations indicate that the maximum heat flux occurs at a value 

of z/L (≈ z/Λ)17 which is much less than the value, z/L = 1, found to be the boundary 

between moderately stable and very stable conditions.  Thus, these observations would 

imply that the maximum heat flux boundary proposed by Derbyshire (1990) is not 

correct, or the conclusions drawn by Mahrt et al. (1998) are dependent on the specific 

data set examined.  This last point may have prompted Mahrt (1998) to warn that the 

exact value of z/L where the maximum heat flux occurs may not be universal (and 

certainly may vary with height, z). 

Next, we examined the specific mechanism that causes turbulence intermittency in the 

simulations.  This intermittency exists only for bulk Richardson numbers, Rib, greater 

than about 0.05.  The intermittency develops from an Ekman-like instability following 

this chain of events.  From a laminar flow state, irregular roll cells are generated by the 

Ekman instability.  The cells are vigorous enough to transport patches of colder air 

over warmer air, at which time a small part of the atmosphere becomes convectively 

unstable.  The instability quickly releases potential energy resulting in intense patches 

of turbulence.  After the turbulence is generated, the roll cell that sets up the 

convective instability disintegrates and the source of turbulence ceases to exist.  Thus, 

the flow becomes laminar again as the turbulence is dissipated by viscosity.  

During the events that lead to turbulence intermittency, an inertial oscillation in the 

mean flow is observed.  This oscillation, working in conjunction with the smaller scale 

flow,  is very effective in transferring energy from the work done by the mean pressure 

                                                 
17 Note: for the discussion here we may take L ≈ Λ. 
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gradient to the smaller scales of the flow.  This transfer of energy is crucial for the 

development of roll cells with sufficient strength to lift cold air over warm air.  When 

simulations are run in which the oscillation is effectively erased, intermittency is not 

observed.  The inertial oscillation appears to aid in the development of patch 

turbulence by enhancing the strength of the roll cell circulation.   

Examples of intermittency found in simulations were compared with similar examples 

obtained from atmospheric measurements.  This comparison indicates that the DNS 

results are not inconsistent with the observations and that the mechanism proposed 

here may well occur in the atmosphere. 

There is some uncertainty as to whether the transition from the moderately stable 

boundary layer to the VSBL involves a fundamental change in physics of the flow, or 

whether the stratification becomes so large that the source of the turbulence can no 

longer support continuous turbulence.  The DNS appears to support both these 

propositions!  As pointed out by Brown (1974) energy is transferred from the mean 

flow to the turbulent flow through various flow instabilities.  The two primary types o f 

instability that mediate this energy transfer are the inflectional instability (Drazin and 

Reid, 1989) and the convective instability.  The DNS indicates that both instabilities 

play important roles in the development of intermittency, but circulations stemming 

from the inflectional instability precede the convective stability.  With this order in 

mind, we can consider the inflectional instability as the ultimate source of the 

turbulence.  This instability weakens as the stratification becomes larger so that cold 

air cannot be lifted above warm air. Such weakening is seen in the DNS at large 

stratifications (Rib = 0.01) in which very weak, laminar roll cell circulations develop, 

and these weak circulations cannot lift cold air over warm air.  The weakening of the 

circulations is related to the well-established physics of stratification reducing the 

growth rates of an inflectional instability. 
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On the other hand, when intermittency develops according to the scheme discovered 

here, new physics is brought to bear.  This new physics is evident in the interaction of 

the inertial oscillation with the roll cell circulation -- the pinwheel effect -- without 

which the intermittency could not develop.  Thus, it appears that both new physics 

(pinwheel effect) and well-established physics (inflectional and convective 

instabilities) contribute to the intermittency mechanism described in this study.  

This mechanism is but one possible way that intermittent turbulence can arise.  This 

brings up yet another question: when is this mechanism operative?  We speculate that 

this mechanism would most likely occur over flat terrain, with clear skies so that the 

boundary layer cools rapidly after sunset because of strong cooling by longwave 

radiation to space.  This strong cooling would foster the quick development of an 

inertial oscillation because the near-surface turbulence would be rapidly inhibited by 

the increase in stable stratification.  In complex terrain it is likely that patchy 

turbulence would tend to develop in other ways because the terrain would facilitate the 

development of gravity waves that might break and cause turbulence.  Which 

intermittency mechanism would be favored under different conditions is a question 

that has yet to be answered. 

Considering the ever-increasing power of the computer, it would be desirable to repeat 

the simulations at a larger Reynolds number.  Although the framework of intermittency 

mechanism described above should not depend greatly on the Reynolds number 

(provided it is sufficiently large, and we think Re is large enough), the details of the 

mechanism such as roll cell growth rates would be altered.  Simulations performed at 

larger Re would strengthen the conclusions stated here and make the comparison 

between the simulations and data more secure.  

Additional data collection and analysis is a critical activity that should contribute to 

our understanding of the VSBL.  Such data may provide evidence of roll vortices in 



 

 

140 

VSBLs and therefore substantiate the findings of this study.  Field studies designed to 

measure properties of the stable boundary layers have recently been carried out (for 

example, CASES – 99, Poulos et al., 2000), and analysis of these data may shed light 

on what intermittency mechanisms are active. 
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APPENDIX A: THE CONTINUOUS SPECTRUM OF THE LAMINAR, STRATIFIED 

EKMAN LAYER 

In this appendix we briefly outline the derivation of the continuous spectrum of 

eigenvalues associated with the laminar stratified Ekman layer.  We begin with the full 

equation set transformed to Fourier space and then decomposed into the ||, ⊥ form, 

eqs. 2.39 – 2.42, 
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We now: (1) linearize by simply dropping the nonlinear terms, (2) set 2 Lα π= k ,  

(3) assume that the buoyancy frequency, N, is constant with height so that 1d z∂Θ ∂ =  

everywhere18; and, finally, (4) assume a time dependence for the independent 

variables of the form, i cte α where c is the complex phase speed.  This last assumption 

implies disturbances of the form ( )ˆ( , , ) ( ) i x ctw x z t w z e α
α

− −= .  The equations now become 
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The continuity equation is  
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The pressure can be eliminated from this set of equations by differentiating eq. A.5 

with respect to z and adding the differentiated equation to iα times eq. A.7 and making 

                                                 
18 The assumption that N is constant with height implies that dd dzΘ  is constant with height.  To be 

compatible with the our definition of the lower boundary condition we must have dd dzΘ  equal to 
one. 
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liberal use of the continuity equation.  We are in effect finding a vorticity equation.  

The resulting equation is 
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When ûα
P  is replaced in eq. A.6 by 

ˆ1 dw
i dz

α

α
 (continuity), eqs. A.10, A.8 and the 

modified A.6 form a complete set of equations for the variables ŵα , ûα
⊥ , and ˆ

αΘ .  

Extending the theory of Grosch and Salwen (1978), we seek solutions of these 

equations that are merely bounded at infinity; that is ˆ
z

wα →∞
< ∞ 19.  This boundary 

condition is less stringent than that imposed in the normal eigenvalue problem in which 

we require that the solutions vanish at infinity.  To find the nature of these bounded 

solutions as z → ∞, we find the asymptotic form of the equations appropriate for z → 

∞.  Because BSU P becomes constant in this limit ( BSU P = cos(εk), εk is the angle the 

wavenumber makes with the kx-axis), all derivatives (d/dz) of BSU P are therefore zero as 

z → ∞.  We furthermore assume that the form of the solution for large z is sinusoidal, 

or ˆˆ ˆ, ,w uα α α
⊥ Θ ∼ ibze and derivative operators such as d2/dz2 can be replaced by –b2, 

where b is the vertical wavenumber. The asymptotic equations, valid for z → ∞, 

become 

 ( ) ( )( )22 2 2 2
b

1 1 ˆˆ ˆ Ri
Re Ro

0

BSb U c b w ibu i
i α α αα α α
α

⊥ − − − − − − − − − Θ 
 
=

P

 (A.11) 

                                                 
19 Grosch and Salwen (1978) discuss the details of how the boundary condition at z = 0 is satisfied. 



 

 

154 

 ( ) ( )2 2
2

1 1ˆ ˆ 0
Re RoBS

ib
b U c u w

i α αα
α α

⊥ − − − − − − = 
 

P  (A.12) 

 ( ) ( )2 2 ˆ1 ˆ 0
RePr BS

iw
b U c

i
α

αα
α α

 − − − − − Θ − = 
 

P  (A.13) 

The equations A.11 through A.13 form a homogenous equation set and for a solution 

to exist the determinant must vanish.  This requirement results in a third order 

polynomial, and the roots of this equation are the eigenvalues c of the continuous 

spectrum.  Because a closed form solution exists for the roots of a cubic polynomial, it 

is possible to find a closed form solution for the eigenvalues.  For Pr = 1, this closed 

form solution takes the very simple form embodied in eq. 2.91 and eq. A.14 below.  

Knowledge of the continuous spectrum is very useful for several reasons.  First, we can 

determine if any disturbance associated with the spectrum grows or decays. For this 

analysis we shall assume for the sake of simplicity that Pr = 1, but the analysis can 

extended to other Prandtl numbers as well.  For Pr = 1, the eigenvalues are (eq 2.91)  
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 + + − + + 

 (A.14) 

For the case 
2

2 2bRi b
Roα

+  > 0, the growth rate, -αci  = ( )2 21
Re

b α− + , is largest for b = 0 

and it is equal to 21
Re

α− .  Since the maximum growth rate is negative, we reach the 

useful conclusion that all disturbances associated with the continuous spectrum decay 
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with time for all Rib ≥ 0. Therefore all disturbances decay for neutral and stable 

stratification (for Pr = 1).  Furthermore, because the real part of the eigenvalues satisfy 

the dispersion relationship for inertial-gravity waves (Apel, 1990), we can interpret the 

asymptotic nature (z → ∞) of the disturbances as damped, plane inertial-gravity waves.  

The case for Pr ≠ 1 is algebraically much more complex and is beyond the scope of this 

simple discussion. 
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