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Purpose of the Annual MeetingsPurpose of the Annual MeetingsPurpose of the Annual Meetings

To review progress in the GTSP, and

To solicit advise in directions for the future.
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Thanks to the SponsorsThanks to the SponsorsThanks to the Sponsors

Battelle Memorial Institute
California Energy Commission
Electric Power Research Institute—Climate Programs
Electric Power Research Institute—Nuclear Programs
Gas Research Institute
General Motors
Kansai Electric Power
National Institutes for Environmental Studies (Japan)
Rio Tinto
US Department of Energy—Office of Science
US Department of Energy—Office of Fossil Energy
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Yesterday’s Technical SessionsYesterdayYesterday’’s Technical Sessionss Technical Sessions

9:00 a.m. Welcome and Introductions—Ron Sands, Gerry Stokes, Jae Edmonds
9:15 a.m. Scenarios Overview—Hugh Pitcher, JGCRI
9:45 a.m. Value of Technology—Leon Clarke, JGCRI

10:15 a.m. Break

10:30 a.m. Technology Choice in Industry—Matthias Ruth, University of Maryland
11:15 a.m. Technology and Climate Change in China—Ron Sands for Jiang Kejun, 

ERI, Beijing
12:00 noon Working Lunch
1:00 p.m. Technology and Climate Change in India—P.R. Shukla, IIM, 

Ahmedabad

2:00 p.m. Technology in Buildings—Jae Edmonds, JGCRI

2:40 p.m. Break

3:00 p.m. Nuclear Technologies—Sonny Kim, JGCRI
3:45 p.m. Energy Challenges in Northeast Asia—Tae-Yong Jung, IGES, Japan



5

Today’s AgendaTodayToday’’s Agendas Agenda
8:00 a.m. Continental Breakfast
8:30 a.m. Welcome and Introductions Richard H. Rosenzweig
8:40 a.m. Purpose of Meeting Charlette A. Geffen
8:50 a.m. What Have We Learned? Jae Edmonds
10:00 a.m. Break
10:15 a.m. Global Dimensions of the Energy Technology Strategy 

Gerald Stokes
11:00 a.m. Biotechnology: Challenges and Opportunities

Ari Patrinos
12:00 noon Lunch
1:00 p.m. The Economics of Biotechnology Steven Smith
2:00 p.m. Break
2:15 p.m. The Status of the Carbon Capture and Storage Deep Dive

Marshall Wise & James Dooley
3:15 p.m. The Midwest Regional Carbon Sequestration Project: 

Laying the Groundwork for CCSP Deployment on 
the Ground Dave Ball

4:00 p.m. Summary of Proceedings and Next Steps
4:30 p.m. Adjourn
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The GTSP 
Phase II

The GTSP The GTSP 
Phase II

Objective
To articulate the cost and environmental 
performance targets for technologies and 
technology systems in a climate 
constrained world and the institutional 
means of implementation.

Objective
To articulate the cost and environmental 
performance targets for technologies and 
technology systems in a climate 
constrained world and the institutional 
means of implementation.
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GTSP Phase IIGTSP Phase IIGTSP Phase II

implementation & institutions

modeling, scenarios & non-co2 gases

carbon capture and disposal

biotechnology

hydrogen &
 transportation

renew
ables

nuclear

deep dives

cross cuts

energy intensity



8

Lessons from
GTSP Phase I
Lessons fromLessons from
GTSP Phase IGTSP Phase I
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Achieving the Reference Case Achieving the Reference Case 
Will Not Necessarily Be EasyWill Not Necessarily Be Easy

Assumed Advances In
• Fossil Fuels

• Energy intensity
• Nuclear

• Renewables

The “Gap”

Gap technologies
• Carbon capture & 

disposal
Adv. fossil

• H2 and Adv. 
Transportation

• Biotechnologies
Soils, Bioenergy, adv. 
Biological energy
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A Technology Strategy Supports A 
Broad and Competitively Balanced 
Portfolio (There’s No Silver Bullet.)

A Technology Strategy Supports A A Technology Strategy Supports A 
Broad and Competitively Balanced Broad and Competitively Balanced 
Portfolio (TherePortfolio (There’’s No Silver Bullet.)s No Silver Bullet.)

Energy Intensity 
Improvements

Industry
Buildings
Transportation

Wind and Solar
Biotechnology

Soils
Biomass crops
Advanced biotechnology

Nuclear
Fission
Fusion

Carbon Capture and 
Storage
Advanced Transformation 
Systems

Electricity
Hydrogen
Bio-derivative fuels
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Adding to the Portfolio Will Be EssentialAdding to the Portfolio Will Be Essential

Filling T
he 

T
echnology G

ap
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ADDITIONAL Investment 
Opportunities Exist
ADDITIONAL Investment ADDITIONAL Investment 
Opportunities ExistOpportunities Exist
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Technology Contributions Change Technology Contributions Change 
With Place and TimeWith Place and Time
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Technology Alone WonTechnology Alone Won’’t t 
NECESSARILY Stabilize CONECESSARILY Stabilize CO22 Concentrations Concentrations 
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Technology Helps Control CostTechnology Helps Control Cost

Why control 
costs?

Wasted 
resources 
mean other 
worthy 
products go 
un-produced.
Or, we settle 
for lower 
environmental 
quality.

Carbon Tax
Uniformly & 
Efficiently 
Applied Over 
Time and 
Space
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A reference case with 
advanced technology 
development of carbon 
capture and H2, and a limit 
on CO2 concentrations at 
550 ppm.



GTSP Phase 2GTSP Phase 2GTSP Phase 2

What have we learned?
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CCSCCSCCS

The story is more nuanced than we (the 
research community) told previously

Regionally distributed resource associated with a 
specific place.
Participation in the IPCC special report on CCS.
The presence of CCS as an option in the context of a 
value to carbon affects important electric utility 
decisions.
Seemingly minor technological parameters can have 
a large impact on the global energy system, e.g. 
capture rate on CO2 from power plants.
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Technology & Stabilization 
Regimes

Technology & Stabilization Technology & Stabilization 
RegimesRegimes

Stabilization of climate change can lead to large-
scale deployment of technologies that are 
presently only minor components of the global 
energy system.

Carbon dioxide capture and storage,
Hydrogen, and/or
Biotechnology—commercial biomass, terrestrial 
sequestration and technologies flowing from the 
intersection of genomics and nanotechnologies.



19

How Big?How Big?How Big?
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Estimates of Global Capacity Imply That 
Large Scale CCS Deployment Implies 

Usage of Deep Saline Formations

Estimates of Global Capacity Imply That Estimates of Global Capacity Imply That 
Large Scale CCS Deployment Implies Large Scale CCS Deployment Implies 

Usage of Deep Saline FormationsUsage of Deep Saline Formations
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Global CO2 Storage Capacity: 
Now

Global COGlobal CO22 Storage Capacity: Storage Capacity: 
NowNow
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Composition of Power 
Generation in Japan, 2095

Composition of Power Composition of Power 
Generation in Japan, 2095Generation in Japan, 2095
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Better Estimates of Storage Would Make 
a Big Difference in Key Regions

Better Estimates of Storage Would Make Better Estimates of Storage Would Make 
a Big Difference in Key Regionsa Big Difference in Key Regions

Ratio of Cumulative Emissions 1990 to 2095 to Maximum Potential Geologic 
Storage Capacity by Region
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CCSCCSCCS

The overriding conclusion from our work on 
CCS is that this technology is potentially an 
important component of a technology strategy to 
address climate change.
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BiotechnologyBiotechnologyBiotechnology

A portfolio unto itself
Soil carbon
Interface with agriculture & agricultural 
productivity.
Potential of modern biological science to create 
revolutionary breakthroughs.
Combining biotechnology with CCS.
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Biomass and Land-Use Change 
Emission

Biomass and LandBiomass and Land--Use Change Use Change 
EmissionEmission

Land-Use Change Carbon Emissions
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H2 and Biotech
B2 AT with Stabilization

H2 and BiotechH2 and Biotech
B2 AT with StabilizationB2 AT with Stabilization
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Combining Biotechnology with 
CCS

Combining Biotechnology with Combining Biotechnology with 
CCSCCS

We have begun to explore the implication of 
combining commercial biomass production with 
CCS in electricity production.
Preliminary work
The principal conclusion is that this combination 
of technologies could be an important 
component in a world that is limiting net CO2
emissions to the atmosphere.

Implications for land-use
Implications for CCS deployment—complementary 
technologies.
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implementation & institutions

modeling, scenarios & non-co2 gases

carbon capture and disposal

biotechnology

hydrogen &
 transportation

renew
ables

nuclear

deep dives

cross cuts

GTSP Phase II  New 
Developments

GTSP Phase II  New GTSP Phase II  New 
DevelopmentsDevelopments

energy intensity

• Last year the new 
transport sector was 
implemented for the USA 
only.  This year the model 
is global.

• Energy demands in the 
new global transportation 
services are derived from 
the demand for 
transportation services

• CO2 and non-CO2 GHG’s 
are now part of the story.

• Distinction between 
passenger and freight.

• Distinction between 
modes and modal 
technology options.
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implementation & institutions

modeling, scenarios & non-co2 gases

carbon capture and disposal

biotechnology

hydrogen &
 transportation

renew
ables

nuclear

deep dives

cross cuts

GTSP Phase II  New 
Developments

GTSP Phase II  New GTSP Phase II  New 
DevelopmentsDevelopments

energy intensity

• Top-down models generally have not 
considered nuclear technology explicitly.

• The fuel cycle is addressed explicitly
• Technological change is modeled 

explicitly:
•Gen II
•Gen III, and
•Gen IV reactors.

• Fuels are tracked
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implementation & institutions

modeling, scenarios & non-co2 gases

carbon capture and disposal

biotechnology

hydrogen &
 transportation

renew
ables

nuclear

deep dives

cross cuts

GTSP Phase II  New 
Developments

GTSP Phase II  New GTSP Phase II  New 
DevelopmentsDevelopments

energy intensity

Market penetration for Gen III and IV 
reactors is potentially thousands of 
reactors by the end of the century.
In the presence of a limit on CO2 
concentrations, nuclear energy 
deployment expands dramatically 
relative to the reference case.
the better the technology, and in 
particular, the lowering capital cost of 
advanced nuclear technologies, the 
greater their deployment and the larger 
their contribution to emissions 
reductions.
The extent of nuclear deployment 
depends importantly on the cost and 
performance of competing technologies.  
The cost and availability of CCS is of 
particular interest.
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implementation & institutions

modeling, scenarios & non-co2 gases

carbon capture and disposal

biotechnology

hydrogen &
 transportation

renew
ables
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deep dives

cross cuts

GTSP Phase II  New 
Developments

GTSP Phase II  New GTSP Phase II  New 
DevelopmentsDevelopments

energy intensity

Potentially large component of both the 
reference case and response to climate 
change.
In most top-down models energy 
intensity is controlled by one parameter, 
AEEI.
AEEI provides significant emissions 
reductions in the reference case, but 
does not distinguish contributions by 
technology source.
Since the last Steering Group Meeting 
significant progress has been made in 
building the capacity to consider end-
use energy technology explicitly in a 
top-down model.
This work was made possible by 
support from a GTSP related program 
sponsored by the US DOE Office of 
Energy Efficiency and Renewable 
Energy as well as GTSP sponsors.

Carbon Emissions
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GTSP Phase II  New GTSP Phase II  New 
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energy intensity

Commercial
Buildings

Two buildings sectors: 
Residential and Commercial

A single U.S. region.
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modeling, scenarios & 

non-co2 gases
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ScenariosScenariosScenarios
Developing new scenarios from the ground up for the CCSP process.
Developing new GDPs cognizant of PPP versus MER issues.
New energy technology assumptions.

Global Population Regional Components of the Global Population
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BAU Matters in Non-CO2 GHGsBAU Matters in NonBAU Matters in Non--COCO22 GHGsGHGs
Global Methane Forcing
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Limiting GMST to 2oC
CO2 Emissions

Limiting GMST to 2Limiting GMST to 2ooCC
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Uncertainty in Climate Sensitivity
GMST Change Stabilization at ∆T<2oC

For Climate Sensitivities of 1.5, 2.5, and 3.5oC
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Whither GTSP?Whither GTSP?Whither GTSP?

GTSP Phase 2 is in its 3rd year.
We are beginning the process of documenting 
the lessons learned.

Carbon dioxide capture and storage
Biotechnology
Hydrogen and advanced transportation systems
Nuclear power
Energy efficiency
Other renewables
Cross-cutting themes
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GTSP Phase IIIGTSP Phase IIIGTSP Phase III

We are also beginning to think about the shape 
of future research and the frame for a potential 
GTSP Phase III.

Technology development and deployment will be 
time and place dependent.
The muddle in the middle

Regional
Temporal
Technology specific

Your comments are welcome.
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