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BackgroundBackgroundBackground

Well recognized discrepancy between predictions 
and observations of contaminant distributions at 
Hanford 

early arrival and high concentrations of mobile 
contaminants
Late or non arrival of sorbing contaminants

Discrepancy is due primarily to
inappropriate choice of model parameters 
inappropriate conceptual models 

Conceptual Errors
Lateral flow due to anisotropy
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Typical Hydrogeological AssumptionsTypical Typical HydrogeologicalHydrogeological AssumptionsAssumptions

Flow in the vadose zone is predominantly 
downward

Predictions- pervasive early arrival and high 
concentrations of mobile contaminants 
Observations- lateral flow due to anisotropy has 
dominated every experiment, planned and unplanned at 
Hanford
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Anisotropy at Hanford’s BX Tank FarmAnisotropy at Hanford’s BX Tank FarmAnisotropy at Hanford’s BX Tank Farm
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Anisotropy at Sisson and Lu (VZTFS) Test SiteAnisotropy at Sisson and Lu (VZTFS) Test SiteAnisotropy at Sisson and Lu (VZTFS) Test Site
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Mass Balance Comparison at VZTFSMass Balance Comparison at VZTFSMass Balance Comparison at VZTFS
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Typical Geochemical AssumptionsTypical Geochemical AssumptionsTypical Geochemical Assumptions

All reactive sites are assessable to contaminants
Predictions- strong retardation and long delays in arrival 
time for reactive contaminants
Observations- significant bypass due to immobile 
regions and anisotropy



9

Two-region Transport and Ion ExchangeTwoTwo--region Transport and Ion Exchangeregion Transport and Ion Exchange
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Multi-region Flow at Army Loop Road DikeMultiMulti--region Flow at Army Loop Road Dikeregion Flow at Army Loop Road Dike
80 cm Solution Samples
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Challenge:Challenge:
Develop rigorousDevelop rigorous
method represent method represent 
unsaturated flow and unsaturated flow and 
transport in typical transport in typical 
heterogeneous,heterogeneous,
porous mediaporous media
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Project Goals and ObjectivesProject Goals and ObjectivesProject Goals and Objectives

Determine the scale of applicability and the 
limitations of the small perturbation (stochastic) 
approach for predicting flow and transport at arid 
sites with strong heterogeneity.
Develop an appropriately rigorous averaging 
approach to better quantify local-scale behavior 
in anisotropic soils.
Develop a multi-region transfer method to bridge 
the gap between pore-scale fluid migration and 
macro-scale displacement behavior under strong 
anisotropy
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Approaches to Modeling AnisotropyApproaches to Modeling AnisotropyApproaches to Modeling Anisotropy

Evidence to suggest anisotropy is 
state-dependent
Stochastic approach assumes 
that flow can be linearized and 
treated as a small perturbation of 
unsaturated dynamics 
Assumes an exponential 
relationship between K and ψ. 
Requires small variance in ln K
Horizontal K is always larger than 
vertical K



14

ConceptualizationConceptualizationConceptualization
(a)Spherical particles (e.g. 

sand) could be isotropic 
due to the small difference 
in tortuosity and 
connectivity in the 
horizontal and vertical 
directions and KH ≅ KV

(b)Flat particles (e.g. mica), 
leads to major differences 
in tortuosity and 
connectivity in the 
horizontal and vertical 
directions and KH >> KV.

KV

KH

(a)

KV

KH

KH

(b)
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Research Design and MethodologiesResearch Design and MethodologiesResearch Design and Methodologies

Controlled Laboratory Studies
Controlled Field Experiments
Numerical Simulations
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Controlled Laboratory StudiesControlled Laboratory StudiesControlled Laboratory Studies
Quantitative Pore Morphology

Map pore morphology and connectivity of samples representative of 
facies in Upper Hanford Formation
Quantify pore-induced anisotropy and connectivity for each facies

Pore-scale Anisotropy
Measure directional K
Determine water entry pressures and connectivity tensor
Develop dataset to verify pore-scale modeling

Centrifuge Modeling
Centrifuge scaling relationships for anisotropic flow and transport
Investigate effect of flow regime on multi-region processes
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Cass Soil 
(Laliberte, 
1966)
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Improved Conceptual and Numerical 
Models

Improved Conceptual and Numerical Improved Conceptual and Numerical 
ModelsModels

Pore-scale Modeling  
(Lattice Boltzmann)

generate 3-D pore scale 
model representative of each 
facies
Develop an understanding of 
pore-scale anisotropy in 
relation to particle shape and 
pore characteristics
quantify effects of flow regime 
and fluid properties on 
relative permeabilities, 
anisotropy, and non-
equilibrium transfer
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Controlled Field ExperimentsControlled Field ExperimentsControlled Field Experiments

Establish an hierarchical description of 
heterogeneity
Collect quantitative dataset for validating 
macroscale continuum model and for identifying 
effective parameters
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Significance to EM MissionSignificance to EM MissionSignificance to EM Mission

Most subsurface remediation problems require 
predictions over large temporal (≥ 103 yr) and 
spatial (≥ 1 km) scales 

small scale observations => relevant scales
Improved conceptual models (NAS)

Improved understanding of long-term fate and transport
Selection and design of remediation technologies 
Reduced incidence of over-engineered solutions 

Results will bridge gap between local scale 
measurements and field scale observations



22

Preliminary ResultsPreliminary ResultsPreliminary Results
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Preliminary ResultsPreliminary ResultsPreliminary Results


